face-api/dist/face-api.esm.js

3982 lines
1.1 MiB

var lm=Object.defineProperty,FX=Object.prototype.hasOwnProperty,lS=(r,l)=>()=>(l||(l={exports:{}},r(l.exports,l)),l.exports),LC=r=>lm(r,"__esModule",{value:!0}),hm=(r,l)=>{LC(r);for(var u in l)lm(r,u,{get:l[u],enumerable:!0})},_X=(r,l)=>{if(LC(r),typeof l=="object"||typeof l=="function")for(let u in l)!FX.call(r,u)&&u!=="default"&&lm(r,u,{get:()=>l[u],enumerable:!0});return r},Ke=r=>r&&r.__esModule?r:_X(lm({},"default",{value:r,enumerable:!0}),r);var IC=lS((mc,SC)=>{"use strict";var WX=function(){if(typeof self!="undefined")return self;if(typeof window!="undefined")return window;if(typeof ar!="undefined")return ar;throw new Error("unable to locate global object")},ar=WX();SC.exports=mc=ar.fetch;ar.fetch&&(mc.default=ar.fetch.bind(ar));mc.Headers=ar.Headers;mc.Request=ar.Request;mc.Response=ar.Response});var Xe=lS((um,xC)=>{(function(r,l){typeof um=="object"&&typeof xC!="undefined"?l(um):typeof define=="function"&&define.amd?define(["exports"],l):(r=r||self,l(r.tf=r.tf||{}))})(um,function(r){"use strict";const l=1e-7,u=1e-4;class p{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}}class g{time(e){return f("time")}read(e){return f("read")}readSync(e){return f("readSync")}numDataIds(){return f("numDataIds")}disposeData(e){return f("disposeData")}write(e,t,n){return f("write")}move(e,t,n,s){return f("move")}memory(){return f("memory")}floatPrecision(){return f("floatPrecision")}epsilon(){return this.floatPrecision()===32?l:u}batchMatMul(e,t,n,s){return f("batchMatMul")}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:s,bias:i,activation:o,preluActivationWeights:a}){return f("fusedBatchMatMul")}slice(e,t,n){return f("slice")}stridedSlice(e,t,n,s){return f("stridedSlice")}unstack(e,t){return f("unstack")}reverse(e,t){return f("reverse")}concat(e,t){return f("concat")}neg(e){return f("neg")}add(e,t){return f("add")}addN(e){return f("addN")}subtract(e,t){return f("subtract")}multiply(e,t){return f("multiply")}realDivide(e,t){return f("realDivide")}floorDiv(e,t){return f("floorDiv")}sum(e,t){return f("sum")}prod(e,t){return f("prod")}unsortedSegmentSum(e,t,n){return f("unsortedSegmentSum")}argMin(e,t){return f("argMin")}argMax(e,t){return f("argMax")}equal(e,t){return f("equal")}notEqual(e,t){return f("notEqual")}less(e,t){return f("less")}lessEqual(e,t){return f("lessEqual")}greater(e,t){return f("greater")}greaterEqual(e,t){return f("greaterEqual")}logicalNot(e){return f("logicalNot")}logicalAnd(e,t){return f("logicalAnd")}logicalOr(e,t){return f("logicalOr")}where(e){return f("where")}select(e,t,n){return f("select")}topk(e,t,n){return f("topk")}min(e,t){return f("min")}minimum(e,t){return f("minimum")}mod(e,t){return f("mod")}max(e,t){return f("max")}maximum(e,t){return f("maximum")}all(e,t){return f("all")}any(e,t){return f("any")}squaredDifference(e,t){return f("squaredDifference")}ceil(e){return f("ceil")}floor(e){return f("floor")}round(e){return f("round")}sign(e){return f("sign")}isNaN(e){return f("isNaN")}isInf(e){return f("isInf")}isFinite(e){return f("isFinite")}pow(e,t){return f("pow")}exp(e){return f("exp")}expm1(e){return f("expm1")}softmax(e,t){return f("softmax")}log(e){return f("log")}log1p(e){return f("log1p")}sqrt(e){return f("sqrt")}rsqrt(e){return f("rsqrt")}square(e){return f("square")}reciprocal(e){return f("reciprocal")}relu(e){return f("relu")}relu6(e){return f("relu6")}prelu(e,t){return f("prelu")}elu(e){return f("elu")}eluDer(e,t){return f("eluDer")}selu(e){return f("selu")}int(e){return f("int")}clip(e,t,n){return f("clip")}abs(e){return f("abs")}complexAbs(e){return f("complexAbs")}sigmoid(e){return f("sigmoid")}softplus(e){return f("softplus")}sin(e){return f("sin")}cos(e){return f("cos")}tan(e){return f("tan")}asin(e){return f("asin")}acos(e){return f("acos")}atan(e){return f("atan")}atan2(e,t){return f("atan2")}sinh(e){return f("sinh")}cosh(e){return f("cosh")}tanh(e){return f("tanh")}asinh(e){return f("asinh")}acosh(e){return f("acosh")}atanh(e){return f("atanh")}erf(e){return f("erf")}step(e,t){return f("step")}fusedConv2d({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){return f("fusedConv2d")}conv2d(e,t,n){return f("conv2d")}conv2dDerInput(e,t,n){return f("conv2dDerInput")}conv2dDerFilter(e,t,n){return f("conv2dDerFilter")}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){return f("fusedDepthwiseConv2D")}depthwiseConv2D(e,t,n){return f("depthwiseConv2D")}depthwiseConv2DDerInput(e,t,n){return f("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(e,t,n){return f("depthwiseConv2DDerFilter")}conv3d(e,t,n){return f("conv3d")}conv3dDerInput(e,t,n){return f("conv3dDerInput")}conv3dDerFilter(e,t,n){return f("conv3dDerFilter")}maxPool(e,t){return f("maxPool")}maxPoolBackprop(e,t,n,s){return f("maxPoolBackprop")}avgPool(e,t){return f("avgPool")}avgPoolBackprop(e,t,n){return f("avgPoolBackprop")}avgPool3d(e,t){return f("avgPool3d")}avgPool3dBackprop(e,t,n){return f("avgPool3dBackprop")}maxPool3d(e,t){return f("maxPool3d")}maxPool3dBackprop(e,t,n,s){return f("maxPool3dBackprop")}reshape(e,t){return f("reshape")}cast(e,t){return f("cast")}tile(e,t){return f("tile")}pad(e,t,n){return f("pad")}transpose(e,t){return f("transpose")}gather(e,t,n){return f("gather")}gatherND(e,t){return f("gatherND")}scatterND(e,t,n){return f("scatterND")}batchToSpaceND(e,t,n){return f("batchToSpaceND")}spaceToBatchND(e,t,n){return f("spaceToBatchND")}resizeBilinear(e,t,n,s){return f("resizeBilinear")}resizeBilinearBackprop(e,t,n){return f("resizeBilinearBackprop")}resizeNearestNeighbor(e,t,n,s){return f("resizeNearestNeighbor")}resizeNearestNeighborBackprop(e,t,n){return f("resizeNearestNeighborBackprop")}batchNorm(e,t,n,s,i,o){return f("batchNorm")}localResponseNormalization4D(e,t,n,s,i){return f("localResponseNormalization4D")}LRNGrad(e,t,n,s,i,o,a){return f("LRNGrad")}multinomial(e,t,n,s){return f("multinomial")}oneHot(e,t,n,s){return f("oneHot")}cumsum(e,t,n,s){return f("cumsum")}nonMaxSuppression(e,t,n,s,i){return f("nonMaxSuppression")}fft(e){return f("fft")}ifft(e){return f("ifft")}complex(e,t){return f("complex")}real(e){return f("real")}imag(e){return f("imag")}cropAndResize(e,t,n,s,i,o){return f("cropAndResize")}depthToSpace(e,t,n){return f("depthToSpace")}split(e,t,n){return f("split")}sparseToDense(e,t,n,s){return f("sparseToDense")}diag(e){return f("diag")}fill(e,t,n){return f("fill")}onesLike(e){return f("onesLike")}zerosLike(e){return f("zerosLike")}linspace(e,t,n){return f("linspace")}dispose(){return f("dispose")}}function f(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}const I="tfjsflags";class S{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){const s=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];const t=this.evaluateFlag(e);if(t instanceof Promise)throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;const e=x(this.global.location.search);if(I in e){const t=e[I].split(",");t.forEach(n=>{const[s,i]=n.split(":");this.urlFlags[s]=O(s,i)})}}}function x(e){const t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(v(t,s[0],s[1]),s.join("="))),t}function v(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function O(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function C(){return r.ENV}r.ENV=null;function U(e){r.ENV=e}let G;function ne(){if(G==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");G=e}return G}function te(){const e=ne();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function oe(e,t){const n=te();if(n.has(e))return n.get(e);{const s=t();return n.set(e,s),n.get(e)}}const ge="Abs",fe="Acos",Ae="Acosh",Te="Add",Ve="AddN",rt="All",vt="Any",$t="ArgMax",Kt="ArgMin",Dn="Asin",Tn="Asinh",An="Atan",Ks="Atanh",Li="Atan2",Xs="AvgPool",ua="AvgPoolBackprop",Xc="AvgPool3D",ex="AvgPool3DBackprop",ag="BatchMatMul",cg="BatchToSpaceND",lg="BroadcastTo",Jc="Cast",Zc="Ceil",Qc="ClipByValue",hg="Complex",$u="Concat",ug="Conv2D",tx="Conv2DBackpropFilter",dg="Conv2DBackpropInput",pg="Conv3D",nx="Conv3DBackpropFilterV2",sx="Conv3DBackpropInputV2",da="Cos",el="Cosh",mg="Cumsum",ix="CropAndResize",rx="DepthToSpace",fg="DepthwiseConv2dNative",ox="DepthwiseConv2dNativeBackpropFilter",ax="DepthwiseConv2dNativeBackpropInput",cx="Diag",Uu="Dilation2D",Bu="Dilation2DBackpropInput",Mu="Dilation2DBackpropFilter",pa="Div",tl="Elu",lx="EluGrad",nl="Erf",hx="Equal",sl="Exp",il="Expm1",gg="FFT",ux="Fill",Pu="FlipLeftRight",rl="Floor",yg="FloorDiv",ol="FusedBatchNorm",bg="GatherV2",dx="GatherNd",px="Greater",wg="GreaterEqual",al="Identity",Lg="IFFT",Sg="Imag",cl="IsFinite",ll="IsInf",hl="IsNan",mx="Less",fx="LessEqual",gx="LinSpace",ul="Log",dl="Log1p",yx="LogicalAnd",zu="LogicalNot",bx="LogicalOr",Ig="LogSoftmax",xg="LRN",wx="LRNBackprop",pl="Max",Tg="Maximum",ml="MaxPool",Gu="MaxPoolBackprop",Ag="MaxPool3D",Lx="MaxPool3DBackprop",Vu="MaxPoolWithArgmax",cD="Mean",vg="Min",Ng="Minimum",Cg="Mod",fl="Multiply",Rg="Negate",Yu="NotEqual",Og="NonMaxSuppressionV3",Hu="NonMaxSuppressionV4",qu="NonMaxSuppressionV5",Eg="OnesLike",Dg="OneHot",ju="PadV2",lD="Pool",kg="Pow",Fg="Prelu",Sx="Prod",Ix="Range",_g="Real",gl="Reciprocal",Wg="Relu",yl="Reshape",$g="ResizeNearestNeighbor",xx="ResizeNearestNeighborGrad",Ug="ResizeBilinear",Tx="ResizeBilinearGrad",Bg="Relu6",Mg="Reverse",bl="Round",wl="Rsqrt",Ax="ScatterNd",Pg="SelectV2",Ll="Selu",Ku="Slice",ma="Sin",Sl="Sinh",Il="Sign",xl="Sigmoid",Tl="Softplus",Al="Sqrt",zg="Sum",Xu="SpaceToBatchND",Gg="SplitV",Vg="Softmax",fa="SquaredDifference",Ju="Square",vl="Sub",vx="SparseToDense",Nx="StridedSlice",ga="Tan",Nl="Tanh",Yg="Tile",Cx="TopK",Cl="Transpose",Zu="Unique",Hg="Unpack",qg="UnsortedSegmentSum",jg="ZerosLike",Rl="Step",Qu="FromPixels",ed="RotateWithOffset",Kg="_FusedMatMul",Xg="FusedConv2D",Jg="FusedDepthwiseConv2D";const ya=oe("kernelRegistry",()=>new Map),Ol=oe("gradRegistry",()=>new Map);function Zg(e,t){const n=ey(e,t);return ya.get(n)}function Qg(e){return Ol.get(e)}function td(e){const t=ya.entries(),n=[];for(;;){const{done:s,value:i}=t.next();if(s)break;const[o,a]=i,[c]=o.split("_");c===e&&n.push(a)}return n}function nd(e){const{kernelName:t,backendName:n}=e,s=ey(t,n);ya.has(s)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ya.set(s,e)}function Rx(e){const{kernelName:t}=e;Ol.has(t)&&(C().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`)),Ol.set(t,e)}function hD(e,t){const n=ey(e,t);if(!ya.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ya.delete(n)}function uD(e){if(!Ol.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ol.delete(e)}function dD(e,t){const n=td(e);n.forEach(s=>{const i=Object.assign({},s,{backendName:t});nd(i)})}function ey(e,t){return`${t}_${e}`}function ty(e){let t=e.length,n=0,s=0;for(;t>0;)s=Math.random()*t|0,t--,n=e[t],e[t]=e[s],e[s]=n}function El(e,t,n){return Math.max(e,Math.min(t,n))}function ny(e){return e%2===0?e:e+1}function Ox(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function pD(e,t){const n=Math.random();return t*n+(1-n)*e}function mD(e,t){let n=0;for(let s=0;s<e.length;s++){const i=Number(e[s])-Number(t[s]);n+=i*i}return n}function k(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function dt(e,t,n=""){k(ot(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ao(e){k(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Yi(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||wn(e)&&!n)for(let s=0;s<e.length;++s)Yi(e[s],t,n);else t.push(e);return t}function we(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function fD(e){return e.length===0}function ot(e,t){if(e===t)return!0;if(e==null||t==null)return!1;if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ut(e){return e%1===0}function gD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{const t=Math.exp(2*e);return(t-1)/(t+1)}}function sd(e){const t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function yD(e){const t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return ty(t),t}function co(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function sy(e,t=s=>0,n){return new Promise((s,i)=>{let o=0;const a=()=>{if(e()){s();return}o++;const c=t(o);if(n!=null&&o>=n){i();return}setTimeout(a,c)};a()})}function id(e,t){let n=1,s=-1;for(let o=0;o<e.length;++o)if(e[o]>=0)n*=e[o];else if(e[o]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${o}`);s=o}else if(e[o]<0)throw Error(`Shapes can not be < 0. Found ${e[o]} at dim ${o}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);const i=e.slice();return i[s]=t/n,i}function ft(e,t){const n=t.length;return e=e==null?t.map((s,i)=>i):[].concat(e),k(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),k(e.every(s=>Ut(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function Sr(e,t){const n=[],s=[],i=t!=null&&Array.isArray(t)&&t.length===0,o=t==null||i?null:ft(t,e).sort();let a=0;for(let c=0;c<e.length;++c){if(o!=null){if(o[a]===c&&e[c]!==1)throw new Error(`Can't squeeze axis ${c} since its dim '${e[c]}' is not 1`);(o[a]==null||o[a]>c)&&e[c]===1&&(n.push(e[c]),s.push(c)),o[a]<=c&&a++}e[c]!==1&&(n.push(e[c]),s.push(c))}return{newShape:n,keptDims:s}}function bn(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function lo(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Ex(e,t){for(let n=0;n<e.length;n++){const s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function Dx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function iy(e,t){return t==="complex64"||(t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64")?!1:!(t==="bool"&&e==="bool")}function wn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function ry(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function kx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ir(e){return typeof e=="string"||e instanceof String}function Fx(e){return typeof e=="boolean"}function rd(e){return typeof e=="number"}function ba(e){return Array.isArray(e)?ba(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":rd(e)?"float32":Ir(e)?"string":Fx(e)?"bool":"float32"}function xr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function od(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Ot(e){const t=e.length;if(t<2)return[];const n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function _x(e,t){return t==="string"?ly(e):Tr([e],t)}function Tr(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Yi(e)),C().getBool("DEBUG")&&Ex(e,t),bD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){const n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Wx(e,t,n){const s=new Array;if(t.length===1){const i=t[0];for(let o=0;o<i;o++)s[o]=n[e+o]}else{const i=t[0],o=t.slice(1),a=o.reduce((c,h)=>c*h);for(let c=0;c<i;c++)s[c]=Wx(e+c*a,o,n)}return s}function ys(e,t){if(e.length===0)return t[0];const n=e.reduce((s,i)=>s*i);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return Wx(0,e,t)}function bD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function oy(e,t){const n=wa(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function wa(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function ay(e,t){const n=e.reduce((s,i)=>s*i,1);if(t==null||t==="float32")return ys(e,new Float32Array(n));if(t==="int32")return ys(e,new Int32Array(n));if(t==="bool")return ys(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Vn(){return C().platform.now()}function cy(e){e.forEach(t=>{k(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function $x(e,t){return C().platform.fetch(e,t)}function ly(e,t="utf-8"){return t=t||"utf-8",C().platform.encode(e,t)}function Dl(e,t="utf-8"){return t=t||"utf-8",C().platform.decode(e,t)}function Js(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let i=0;i<e.length-1;++i)s+=n[i]*e[i];return s}function La(e,t,n){if(t===0)return[];if(t===1)return[e];const s=new Array(t);for(let i=0;i<s.length-1;++i)s[i]=Math.floor(e/n[i]),e-=s[i]*n[i];return s[s.length-1]=e,s}var wD=Object.freeze({__proto__:null,shuffle:ty,clamp:El,nearestLargerEven:ny,sum:Ox,randUniform:pD,distSquared:mD,assert:k,assertShapesMatch:dt,assertNonNull:ao,flatten:Yi,sizeFromShape:we,isScalarShape:fD,arraysEqual:ot,isInt:Ut,tanh:gD,sizeToSquarishShape:sd,createShuffledIndices:yD,rightPad:co,repeatedTry:sy,inferFromImplicitShape:id,parseAxisParam:ft,squeezeShape:Sr,getTypedArrayFromDType:bn,getArrayFromDType:lo,checkConversionForErrors:Ex,isValidDtype:Dx,hasEncodingLoss:iy,isTypedArray:wn,bytesPerElement:ry,bytesFromStringArray:kx,isString:Ir,isBoolean:Fx,isNumber:rd,inferDtype:ba,isFunction:xr,nearestDivisor:od,computeStrides:Ot,createScalarValue:_x,toTypedArray:Tr,toNestedArray:ys,makeOnesTypedArray:oy,makeZerosTypedArray:wa,makeZerosNestedTypedArray:ay,now:Vn,assertNonNegativeIntegerDimensions:cy,fetch:$x,encodeString:ly,decodeString:Dl,locToIndex:Js,indexToLoc:La});class LD{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new ID)}profileKernel(e,t,n){let s;const i=()=>{s=n()},o=this.backendTimer.time(i);for(let c=0;c<s.length;c++){const h=s[c];h.data().then(d=>{SD(d,h.dtype,e)})}const a={kernelName:e,outputs:s,inputs:t,timeMs:o.then(c=>c.kernelMs),extraInfo:o.then(c=>c.getExtraProfileInfo!=null?c.getExtraProfileInfo():"")};return a}logKernelProfile(e){const{kernelName:t,outputs:n,timeMs:s,inputs:i,extraInfo:o}=e;n.forEach(a=>{Promise.all([a.data(),s,o]).then(c=>{this.logger.logKernelProfile(t,a,c[0],c[1],i,c[2])})})}}function SD(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){const i=e[s];if(isNaN(i)||!isFinite(i))return console.warn(`Found ${i} in the result of '${n}'`),!0}return!1}class ID{logKernelProfile(e,t,n,s,i,o){const a=typeof s=="number"?co(`${s}ms`,9):s.error,c=co(e,25),h=t.rank,d=t.size,m=co(t.shape.toString(),14);let y="";for(const b in i){const w=i[b];if(w!=null){const L=w.shape||t.shape,T=L.length;y+=`${b}: ${T}D ${T>0?L:""} `}}console.log(`%c${c} %c${a} %c${h}D ${m} %c${d} %c${y} %c${o}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function xD(e,t,n){const s={},i={};for(let h=0;h<t.length;h++)s[t[h].id]=!0;for(let h=0;h<e.length;h++){const d=e[h],m=d.inputs;for(const y in m){const b=m[y];let w=!1;for(let L=0;L<t.length;L++)if(s[b.id]){d.outputs.forEach(T=>s[T.id]=!0),w=!0,i[d.id]=!0;break}if(w)break}}const o={};o[n.id]=!0;const a={};for(let h=e.length-1;h>=0;h--){const d=e[h],m=d.inputs;for(let y=0;y<d.outputs.length;y++)if(o[d.outputs[y].id]){for(const b in m)o[m[b].id]=!0,a[d.id]=!0;break}}const c=[];for(let h=0;h<e.length;h++){const d=e[h];if(i[d.id]&&a[d.id]){const m={};for(const b in d.inputs){const w=d.inputs[b];s[w.id]&&(m[b]=w)}const y=Object.assign({},d);y.inputs=m,y.outputs=d.outputs,c.push(y)}}return c}function TD(e,t,n,s){for(let i=t.length-1;i>=0;i--){const o=t[i],a=[];if(o.outputs.forEach(h=>{const d=e[h.id];d!=null?a.push(d):a.push(null)}),o.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${o.kernelName}.`);const c=o.gradient(a);for(const h in o.inputs){if(!(h in c))throw new Error(`Cannot backprop through input ${h}. Available gradients found: ${Object.keys(c)}.`);const d=n(()=>c[h]());if(d.dtype!=="float32")throw new Error(`Error in gradient for op ${o.kernelName}. The gradient of input ${h} must have 'float32' dtype, but has '${d.dtype}'`);const m=o.inputs[h];if(!ot(d.shape,m.shape))throw new Error(`Error in gradient for op ${o.kernelName}. The gradient of input '${h}' has shape '${d.shape}', which does not match the shape of the input '${m.shape}'`);if(e[m.id]==null)e[m.id]=d;else{const y=e[m.id];e[m.id]=s(y,d),y.dispose()}}}}const Ux=20,kl=3,hy=7;function AD(e,t,n,s){const i=Ot(t),o=vD(e,t,n,i),a=t.length,c=ad(e,t,n,i,o),h=["Tensor"];return s&&(h.push(` dtype: ${n}`),h.push(` rank: ${a}`),h.push(` shape: [${t}]`),h.push(" values:")),h.push(c.map(d=>" "+d).join(`
`)),h.join(`
`)}function vD(e,t,n,s){const i=we(t),o=s[s.length-1],a=new Array(o).fill(0),c=t.length,h=n==="complex64"?_l(e):e;if(c>1)for(let d=0;d<i/o;d++){const m=d*o;for(let y=0;y<o;y++)a[y]=Math.max(a[y],Fl(h[m+y],0,n).length)}return a}function Fl(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(hy))} + ${parseFloat(e[1].toFixed(hy))}j`:Ir(e)?s=`'${e}'`:n==="bool"?s=Bx(e):s=parseFloat(e.toFixed(hy)).toString(),co(s,t)}function Bx(e){return e===0?"false":"true"}function ad(e,t,n,s,i,o=!0){const a=n==="complex64"?2:1,c=t[0],h=t.length;if(h===0){if(n==="complex64"){const T=_l(e);return[Fl(T[0],0,n)]}return n==="bool"?[Bx(e[0])]:[e[0].toString()]}if(h===1){if(c>Ux){const A=kl*a;let N=Array.from(e.slice(0,A)),E=Array.from(e.slice((c-kl)*a,c*a));return n==="complex64"&&(N=_l(N),E=_l(E)),["["+N.map((D,F)=>Fl(D,i[F],n)).join(", ")+", ..., "+E.map((D,F)=>Fl(D,i[c-kl+F],n)).join(", ")+"]"]}const T=n==="complex64"?_l(e):Array.from(e);return["["+T.map((A,N)=>Fl(A,i[N],n)).join(", ")+"]"]}const d=t.slice(1),m=s.slice(1),y=s[0]*a,b=[];if(c>Ux){for(let T=0;T<kl;T++){const A=T*y,N=A+y;b.push(...ad(e.slice(A,N),d,n,m,i,!1))}b.push("...");for(let T=c-kl;T<c;T++){const A=T*y,N=A+y;b.push(...ad(e.slice(A,N),d,n,m,i,T===c-1))}}else for(let T=0;T<c;T++){const A=T*y,N=A+y;b.push(...ad(e.slice(A,N),d,n,m,i,T===c-1))}const w=h===2?",":"";b[0]="["+b[0]+w;for(let T=1;T<b.length-1;T++)b[T]=" "+b[T]+w;let L=`,
`;for(let T=2;T<h;T++)L+=`
`;return b[b.length-1]=" "+b[b.length-1]+"]"+(o?"":L),b}function _l(e){const t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}class Ar{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=we(e),n!=null){const s=n.length;k(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||lo(t,this.size),this.strides=Ot(e)}set(e,...t){t.length===0&&(t=[0]),k(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);const n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(const s of e){if(s<0||s>=this.shape[t]){const i=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(i)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];const t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Si().makeTensor(this.values,this.shape,this.dtype)}}let Si=null,Sa=null,Mx=null;function ND(e){Si=e}function CD(e){Sa=e}function RD(e){Mx=e}class Q{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=we(e),this.strides=Ot(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const e=await this.data();return Sa.buffer(this.shape,this.dtype,e)}bufferSync(){return Sa.buffer(this.shape,this.dtype,this.dataSync())}async array(){const e=await this.data();return ys(this.shape,e)}arraySync(){return ys(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const e=Si().read(this.dataId);if(this.dtype==="string"){const t=await e;try{return t.map(n=>Dl(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();const e=Si().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Dl(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();const e=await Si().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){if(this.isDisposed)return;Si().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Sa.print(this,e)}clone(){return this.throwIfDisposed(),Sa.clone(this)}toString(e=!1){const t=this.dataSync();return AD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Sa.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Si().makeVariable(this,e,t,n)}}Object.defineProperty(Q,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});class Wl extends Q{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ot(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Si().disposeTensor(this),this.dataId=e.dataId,Si().incRef(this,null)}dispose(){Si().disposeVariable(this),this.isDisposedInternal=!0}}Object.defineProperty(Wl,Symbol.hasInstance,{value:e=>e instanceof Q&&e.assign!=null&&e.assign instanceof Function});(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(r.Rank||(r.Rank={}));var uy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(uy||(uy={}));var dy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(dy||(dy={}));var py;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(py||(py={}));var my;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(my||(my={}));const OD={float32:py,int32:uy,bool:dy,complex64:my};function vn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return OD[e][t]}function cd(e){return vn(e,"int32")}function Bt(e,t){if(e.dtype===t.dtype)return[e,t];const n=vn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Px(e,t){k(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function ld(e,t){return t.some(n=>n.id===e.id)}function Hi(e){const t=[],n=new Set;return zx(e,t,n),t}function zx(e,t,n){if(e==null)return;if(e instanceof Q){t.push(e);return}if(!ED(e))return;const s=e;for(const i in s){const o=s[i];n.has(o)||(n.add(o),zx(o,t,n))}}function ED(e){return Array.isArray(e)||typeof e=="object"}var DD=Object.freeze({__proto__:null,makeTypesMatch:Bt,assertTypesMatch:Px,isTensorInList:ld,getTensorsInContainer:Hi});class Gx{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(const e in this.registeredVariables)this.registeredVariables[e].dispose()}}class $l{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Gx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;const e=this.getSortedBackends();for(let t=0;t<e.length;t++){const n=e[t],s=await this.initializeBackend(n).success;if(s){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){const{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){const{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;const{success:t,asyncInit:n}=this.initializeBackend(e),s=n?await t:t;if(!s)return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new LD(this.backendInstance),!0}setupRegisteredKernels(){const e=td(this.backendName);e.forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){const t=td(e);t.forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){const t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{const n=t.factory();if(n&&!(n instanceof g)&&typeof n.then=="function"){const s=++this.pendingBackendInitId,i=n.then(o=>s<this.pendingBackendInitId?!1:(this.registry[e]=o,this.pendingBackendInit=null,!0)).catch(o=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message)),!1));return this.pendingBackendInit=i,{success:i,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){const e=this.getSortedBackends();for(let t=0;t<e.length;t++){const n=e[t],{success:s,asyncInit:i}=this.initializeBackend(n);if(i||s)return{name:n,asyncInit:i}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){const n=this.state.tensorInfo.get(t),s=n.backend,i=this.readSync(t);s.disposeData(t),n.backend=e,e.move(t,i,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{const s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return $l.nextTensorId++}nextVariableId(){return $l.nextVariableId++}clone(e){const t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},s=o=>({x:()=>{const a="float32",c={x:o},h={dtype:a};return V.runKernelFunc(d=>d.cast(o,a),c,null,Jc,h)}}),i=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,i,{}),t}runKernel(e,t,n,s,i){const o=null,a=null;return this.runKernelFunc(o,t,a,e,n,s,i)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){const s=this.backend.numDataIds();let i=0;n.forEach(c=>{i+=c.dtype==="complex64"?3:1});const o=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=s-t-i-o;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${e}'`)}runKernelFunc(e,t,n,s,i,o,a){let c,h=[];const d=this.isTapeOn();s==null&&(s=this.state.activeScope!=null?this.state.activeScope.name:"");const m=this.state.numBytes,y=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let b;const w=Zg(s,this.backendName);let L;if(w!=null)b=()=>{const A=this.backend.numDataIds();L=w.kernelFunc({inputs:t,attrs:i,backend:this.backend});const N=Array.isArray(L)?L:[L];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(s,A,N);const E=N.map(({dataId:D,shape:F,dtype:_})=>this.makeTensorFromDataId(D,F,_));if(d){let D=this.getTensorsForGradient(s,t,E);if(D==null){a==null&&(a=[]);const F=E.filter((_,B)=>a[B]);D=(o||[]).slice().concat(F)}h=this.saveTensorsForBackwardMode(D)}return E};else{const A=N=>{if(!d)return;h=N.map(E=>this.keep(this.clone(E)))};b=()=>{const N=this.backend.numDataIds();L=this.tidy(()=>e(this.backend,A));const E=Array.isArray(L)?L:[L];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(s,N,E),E}}let T;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?c=b():(T=this.profiler.profileKernel(s,t,()=>b()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(T),c=T.outputs)}),d&&this.addTapeNode(s,t,c,n,h,i),this.state.profiling&&this.state.activeProfile.kernels.push({name:s,bytesAdded:this.state.numBytes-m,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-y,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(t).map(A=>t[A]!=null?t[A].shape:null),outputShapes:c.map(A=>A.shape),kernelTimeMs:T.timeMs,extraInfo:T.extraInfo}),Array.isArray(L)?c:c[0]}saveTensorsForBackwardMode(e){const t=e.map(n=>this.keep(this.clone(n)));return t}getTensorsForGradient(e,t,n){const s=Qg(e);if(s!=null){const i=s.inputsToSave||[],o=s.outputsToSave||[];let a;s.saveAllInputs?(k(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(t).map(h=>t[h])):a=i.map(h=>t[h]);const c=n.filter((h,d)=>o[d]);return a.concat(c)}return null}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let i=e;n==="string"&&Ir(e[0])&&(i=e.map(c=>ly(c)));const o=s.write(i,t,n),a=new Q(t,n,o,this.nextTensorId());if(this.incRef(a,s),n==="string"){const c=this.state.tensorInfo.get(o),h=kx(i);this.state.numBytes+=h-c.bytes,c.bytes=h}return a}makeTensorFromDataId(e,t,n,s){n=n||"float32";const i=new Q(t,n,e,this.nextTensorId());return this.incRef(i,s),i}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));const i=new Wl(e,t,n,this.nextTensorId());if(this.state.registeredVariables[i.name]!=null)throw new Error(`Variable with name ${i.name} was already registered`);return this.state.registeredVariables[i.name]=i,this.incRef(i,this.backend),i}incRef(e,t){const n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let s=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(s=e.size*ry(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:s,refCount:0}),this.state.numBytes+=s}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof Wl||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;const t=this.state.tensorInfo.get(e.dataId),n=t.refCount;n<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):this.state.tensorInfo.get(e.dataId).refCount--}disposeVariables(){for(const e in this.state.registeredVariables){const t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){const e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;const t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(const s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,i,o){const a={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:i},c=Qg(e);c!=null&&(s=c.gradFunc),s!=null&&(a.gradient=h=>(h=h.map((d,m)=>{if(d==null){const y=n[m],b=wa(y.size,y.dtype);return this.makeTensor(b,y.shape,y.dtype)}return d}),s(h.length>1?h:h[0],i,o))),this.state.activeTape.push(a)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){const t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){const t=Hi(e),n=new Set(t.map(i=>i.id));for(let i=0;i<this.state.activeScope.track.length;i++){const o=this.state.activeScope.track[i];!o.kept&&!n.has(o.id)&&o.dispose()}const s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(i=>{!i.kept&&i.scopeId===s.id&&this.track(i)})}gradients(e,t,n,s=!1){if(k(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);const i=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));k(i instanceof Q,()=>"The result y returned by f() must be a tensor.");const o=xD(this.state.activeTape,t,i);if(!s&&o.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{const a={};a[i.id]=n==null?kD(i.shape):n,TD(a,o,h=>this.tidy(h),FD);const c=t.map(h=>a[h.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(h=>{for(const d of h.saved)d.dispose()}),this.state.activeTape=null),{value:i,grads:c}})}customGrad(e){return k(xr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{k(t.every(i=>i instanceof Q),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n;const s={};return t.forEach((i,o)=>{s[o]=i}),this.runKernelFunc((i,o)=>(n=e(...t,o),k(n.value instanceof Q,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),k(xr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s,(i,o)=>{const a=n.gradFunc(i,o),c=Array.isArray(a)?a:[a];k(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),k(c.every(d=>d instanceof Q),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");const h={};return c.forEach((d,m)=>{h[m]=()=>d}),h})}}readSync(e){const t=this.state.tensorInfo.get(e);return t.backend.readSync(e)}read(e){const t=this.state.tensorInfo.get(e);return t.backend.read(e)}async time(e){const t=Vn(),n=await this.backend.time(e);return n.wallMs=Vn()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Gx;for(const e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}}$l.nextTensorId=0,$l.nextVariableId=0;function kD(e){const t=oy(we(e),"float32");return V.makeTensor(t,e,"float32")}function Vx(){const e=ne();if(e._tfengine==null){const t=new S(e);e._tfengine=new $l(t)}return U(e._tfengine.ENV),ND(()=>e._tfengine),e._tfengine}const V=Vx();function FD(e,t){const n={a:e,b:t};return V.runKernelFunc((s,i)=>{const o=s.add(e,t);return i([e,t]),o},n,null,Te)}function _D(){return typeof navigator!="undefined"&&navigator!=null}function Yx(){if(_D()){const e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function fy(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var WD=Object.freeze({__proto__:null,isMobile:Yx,isBrowser:fy});const qi=C();qi.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")}),qi.registerFlag("IS_BROWSER",()=>fy()),qi.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined"),qi.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor)),qi.registerFlag("PROD",()=>!1),qi.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>qi.getBool("DEBUG")),qi.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0),qi.registerFlag("IS_TEST",()=>!1);function Ii(e,t){let n=e;if(wn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];const s=[];for(;Array.isArray(n)||wn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&C().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Hx(e,s,[]),s}function Hx(e,t,n){if(n=n||[],!Array.isArray(e)&&!wn(e)){k(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}k(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),k(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);const s=t.slice(1);for(let i=0;i<e.length;++i)Hx(e[i],s,n.concat(i))}function qx(e,t,n,s){if(e==null)return;if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}function W(e,t,n,s="numeric"){if(e instanceof Q)return qx(s,e.dtype,t,n),e;let i=ba(e);if(i!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(i=s),qx(s,i,t,n),e==null||!wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){const h=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${h}'`)}const o=Ii(e,i);!wn(e)&&!Array.isArray(e)&&(e=[e]);const a=!0,c=i!=="string"?Tr(e,i):Yi(e,[],a);return V.makeTensor(c,o,i)}function Ul(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);const i=e;return i.map((o,a)=>W(o,`${t}[${a}]`,n),s)}const jx="__op";function P(e){const t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0];const s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+jx;const i=(...o)=>{V.startScope(n);try{const a=s(...o);return a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),V.endScope(a),a}catch(a){throw V.endScope(null),a}};return Object.defineProperty(i,"name",{value:n,configurable:!0}),i}function $D(e,t){const n=W(e,"real","complex"),s=W(t,"imag","complex");dt(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);const i=a=>a.complex(n,s),o={real:n,imag:s};return V.runKernelFunc(i,o,null,hg)}const xi=P({complex_:$D});function vr(e,t,n,s){if(s==null&&(s=ba(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){cy(t);const i=we(t),o=we(n);k(i===o,()=>`Based on the provided shape, [${t}], the tensor should have ${i} values but has ${o}`);for(let a=0;a<n.length;++a){const c=n[a],h=a===n.length-1?c!==we(t.slice(a)):!0;k(n[a]===t[a]||!h,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!wn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Tr(e,s):Yi(e,[],!0),V.makeTensor(e,t,s)}function en(e,t,n){const s=Ii(e,n);return vr(e,t,s,n)}const gy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};const hd=4;async function yy(e,t){const n=[],s=[],i=Array.isArray(e)?e.map(a=>a.name):Object.keys(e);for(let a=0;a<i.length;++a){const c=i[a],h=Array.isArray(e)?e[a].tensor:e[c];if(h.dtype!=="float32"&&h.dtype!=="int32"&&h.dtype!=="bool"&&h.dtype!=="string"&&h.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${c}': ${h.dtype}`);const d={name:c,shape:h.shape,dtype:h.dtype};if(h.dtype==="string"){const m=new Promise(async y=>{const b=await h.bytes(),w=b.reduce((A,N)=>A+N.length,0)+hd*b.length,L=new Uint8Array(w);let T=0;for(let A=0;A<b.length;A++){const N=b[A],E=new Uint8Array(new Uint32Array([N.length]).buffer);L.set(E,T),T+=hd,L.set(N,T),T+=N.length}y(L)});s.push(m)}else s.push(h.data());t!=null&&(d.group=t),n.push(d)}const o=await Promise.all(s);return{data:UD(o),specs:n}}function ud(e,t){const n={};let s,i=0;for(const o of t){const a=o.name,c=o.dtype,h=o.shape,d=we(h);let m;if("quantization"in o){const y=o.quantization;if(y.dtype==="uint8"||y.dtype==="uint16"){if(!("min"in y&&"scale"in y))throw new Error(`Weight ${o.name} with quantization ${y.dtype} doesn't have corresponding metadata min and scale.`)}else if(y.dtype==="float16"){if(c!=="float32")throw new Error(`Weight ${o.name} is quantized with ${y.dtype} which only supports weights of type float32 not ${c}.`)}else throw new Error(`Weight ${o.name} has unknown quantization dtype ${y.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);const b=gy[y.dtype],w=e.slice(i,i+d*b),L=y.dtype==="uint8"?new Uint8Array(w):new Uint16Array(w);if(c==="float32")if(y.dtype==="uint8"||y.dtype==="uint16"){m=new Float32Array(L.length);for(let T=0;T<L.length;T++){const A=L[T];m[T]=A*y.scale+y.min}}else if(y.dtype==="float16")s===void 0&&(s=VD()),m=s(L);else throw new Error(`Unsupported quantization type ${y.dtype} for weight type float32.`);else if(c==="int32"){if(y.dtype!=="uint8"&&y.dtype!=="uint16")throw new Error(`Unsupported quantization type ${y.dtype} for weight type int32.`);m=new Int32Array(L.length);for(let T=0;T<L.length;T++){const A=L[T];m[T]=Math.round(A*y.scale+y.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${c}`);i+=d*b}else if(c==="string"){const y=we(o.shape);m=[];for(let b=0;b<y;b++){const w=new Uint32Array(e.slice(i,i+hd))[0];i+=hd;const L=new Uint8Array(e.slice(i,i+w));m.push(L),i+=w}}else{const y=gy[c],b=e.slice(i,i+d*y);if(c==="float32")m=new Float32Array(b);else if(c==="int32")m=new Int32Array(b);else if(c==="bool")m=new Uint8Array(b);else if(c==="complex64"){m=new Float32Array(b);const w=new Float32Array(m.length/2),L=new Float32Array(m.length/2);for(let N=0;N<w.length;N++)w[N]=m[N*2],L[N]=m[N*2+1];const T=en(w,h,"float32"),A=en(L,h,"float32");n[a]=xi(T,A)}else throw new Error(`Unsupported dtype in weight '${a}': ${c}`);i+=d*y}c!=="complex64"&&(n[a]=en(m,h,c))}return n}function UD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0;const n=[];e.forEach(o=>{if(t+=o.byteLength,n.push(o.byteLength===o.buffer.byteLength?o:new o.constructor(o)),!(o instanceof Float32Array||o instanceof Int32Array||o instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${o.constructor.name}`)});const s=new Uint8Array(t);let i=0;return n.forEach(o=>{s.set(new Uint8Array(o.buffer),i),i+=o.byteLength}),s.buffer}const by=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Kx(e){return by?Buffer.byteLength(e):new Blob([e]).size}function BD(e){if(by)return Buffer.from(e).toString("base64");const t=new Uint8Array(e);let n="";for(let s=0,i=t.length;s<i;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function MD(e){if(by){const s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}const t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function dd(e){if(e.length===1)return e[0];let t=0;e.forEach(i=>{t+=i.byteLength});const n=new Uint8Array(t);let s=0;return e.forEach(i=>{n.set(new Uint8Array(i),s),s+=i.byteLength}),n.buffer}function Xx(e){const t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);const n=e.split(t);return n[n.length-1]}function Bl(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Kx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Kx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function PD(){const e=n=>{let s=n<<13,i=0;for(;(s&8388608)===0;)i-=8388608,s<<=1;return s&=~8388608,i+=947912704,s|i},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function zD(){const e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function GD(){const e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function VD(){const e=PD(),t=zD(),n=GD();return s=>{const i=new ArrayBuffer(4*s.length),o=new Uint32Array(i);for(let a=0;a<s.length;a++){const c=s[a],h=e[n[c>>10]+(c&1023)]+t[c>>10];o[a]=h}return new Float32Array(i)}}class Xt{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Xt.instance==null&&(Xt.instance=new Xt),Xt.instance}static registerSaveRouter(e){Xt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Xt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Xt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Xt.getHandlers(e,"load",t)}static getHandlers(e,t,n){const s=[],i=t==="load"?Xt.getInstance().loadRouters:Xt.getInstance().saveRouters;return i.forEach(o=>{const a=o(e,n);a!==null&&s.push(a)}),s}}const YD=e=>Xt.registerSaveRouter(e),HD=e=>Xt.registerLoadRouter(e),wy=e=>Xt.getSaveHandlers(e),Ly=(e,t)=>Xt.getLoadHandlers(e,t);const pd="tensorflowjs",Sy=1,ho="models_store",Nr="model_info_store";async function kZ(){const e=Iy();return new Promise((t,n)=>{const s=e.deleteDatabase(pd);s.onsuccess=()=>t(),s.onerror=i=>n(i)})}function Iy(){if(!C().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");const e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function xy(e){const t=e.result;t.createObjectStore(ho,{keyPath:"modelPath"}),t.createObjectStore(Nr,{keyPath:"modelPath"})}class uo{constructor(e){if(this.indexedDB=Iy(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{const i=this.indexedDB.open(pd,Sy);i.onupgradeneeded=()=>xy(i),i.onsuccess=()=>{const o=i.result;if(t==null){const a=o.transaction(ho,"readonly"),c=a.objectStore(ho),h=c.get(this.modelPath);h.onsuccess=()=>{if(h.result==null)return o.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(h.result.modelArtifacts)},h.onerror=d=>(o.close(),s(h.error)),a.oncomplete=()=>o.close()}else{const a=Bl(t),c=o.transaction(Nr,"readwrite");let h=c.objectStore(Nr);const d=h.put({modelPath:this.modelPath,modelArtifactsInfo:a});let m;d.onsuccess=()=>{m=o.transaction(ho,"readwrite");const y=m.objectStore(ho),b=y.put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:a});b.onsuccess=()=>n({modelArtifactsInfo:a}),b.onerror=w=>{h=c.objectStore(Nr);const L=h.delete(this.modelPath);L.onsuccess=()=>(o.close(),s(b.error)),L.onerror=T=>(o.close(),s(b.error))}},d.onerror=y=>(o.close(),s(d.error)),c.oncomplete=()=>{m==null?o.close():m.oncomplete=()=>o.close()}}},i.onerror=o=>s(i.error)})}}uo.URL_SCHEME="indexeddb://";const Jx=e=>C().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(uo.URL_SCHEME))?qD(e.slice(uo.URL_SCHEME.length)):null;Xt.registerSaveRouter(Jx),Xt.registerLoadRouter(Jx);function qD(e){return new uo(e)}function jD(e){return e.startsWith(uo.URL_SCHEME)?e.slice(uo.URL_SCHEME.length):e}class KD{constructor(){this.indexedDB=Iy()}async listModels(){return new Promise((e,t)=>{const n=this.indexedDB.open(pd,Sy);n.onupgradeneeded=()=>xy(n),n.onsuccess=()=>{const s=n.result,i=s.transaction(Nr,"readonly"),o=i.objectStore(Nr),a=o.getAll();a.onsuccess=()=>{const c={};for(const h of a.result)c[h.modelPath]=h.modelArtifactsInfo;e(c)},a.onerror=c=>(s.close(),t(a.error)),i.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=jD(e),new Promise((t,n)=>{const s=this.indexedDB.open(pd,Sy);s.onupgradeneeded=()=>xy(s),s.onsuccess=()=>{const i=s.result,o=i.transaction(Nr,"readwrite"),a=o.objectStore(Nr),c=a.get(e);let h;c.onsuccess=()=>{if(c.result==null)return i.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{const d=a.delete(e),m=()=>{h=i.transaction(ho,"readwrite");const y=h.objectStore(ho),b=y.delete(e);b.onsuccess=()=>t(c.result.modelArtifactsInfo),b.onerror=w=>n(c.error)};d.onsuccess=m,d.onerror=y=>(m(),i.close(),n(c.error))}},c.onerror=d=>(i.close(),n(c.error)),o.oncomplete=()=>{h==null?i.close():h.oncomplete=()=>i.close()}},s.onerror=i=>n(s.error)})}}const Ti="/",po="tensorflowjs_models",Zx="info",XD="model_topology",JD="weight_specs",ZD="weight_data",QD="model_metadata";function FZ(){if(!C().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("purgeLocalStorageModels() cannot proceed because local storage is unavailable in the current environment.");const e=window.localStorage,t=[];for(let n=0;n<e.length;++n){const s=e.key(n),i=po+Ti;if(s.startsWith(i)&&s.length>i.length){e.removeItem(s);const o=eT(s);t.indexOf(o)===-1&&t.push(o)}}return t}function Qx(e){return{info:[po,e,Zx].join(Ti),topology:[po,e,XD].join(Ti),weightSpecs:[po,e,JD].join(Ti),weightData:[po,e,ZD].join(Ti),modelMetadata:[po,e,QD].join(Ti)}}function eT(e){const t=e.split(Ti);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ti)}function ek(e){return e.startsWith(mo.URL_SCHEME)?e.slice(mo.URL_SCHEME.length):e}class mo{constructor(e){if(!C().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Qx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{const t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Bl(e);try{return this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,BD(e.weightData)),this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,userDefinedMetadata:e.userDefinedMetadata})),{modelArtifactsInfo:s}}catch(i){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){const e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");const t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;const s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;const i=this.LS.getItem(this.keys.modelMetadata);if(i!=null){const a=JSON.parse(i);t.format=a.format,t.generatedBy=a.generatedBy,t.convertedBy=a.convertedBy,t.userDefinedMetadata=a.userDefinedMetadata}const o=this.LS.getItem(this.keys.weightData);if(o==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=MD(o),t}}mo.URL_SCHEME="localstorage://";const tT=e=>C().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(mo.URL_SCHEME))?tk(e.slice(mo.URL_SCHEME.length)):null;Xt.registerSaveRouter(tT),Xt.registerLoadRouter(tT);function tk(e){return new mo(e)}class nk{constructor(){k(C().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),k(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){const e={},t=po+Ti,n=Ti+Zx;for(let s=0;s<this.LS.length;++s){const i=this.LS.key(s);if(i.startsWith(t)&&i.endsWith(n)){const o=eT(i);e[o]=JSON.parse(this.LS.getItem(i))}}return e}async removeModel(e){e=ek(e);const t=Qx(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);const n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}}const Ia="://";class bs{constructor(){this.managers={}}static getInstance(){return bs.instance==null&&(bs.instance=new bs),bs.instance}static registerManager(e,t){k(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Ia)&&(e=e.slice(0,e.indexOf(Ia))),k(e.length>0,()=>"scheme must not be an empty string.");const n=bs.getInstance();k(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){const t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}}function md(e){if(e.indexOf(Ia)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${bs.getSchemes().join(",")}`);return{scheme:e.split(Ia)[0],path:e.split(Ia)[1]}}async function nT(e,t,n=!1){k(e!==t,()=>`Old path and new path are the same: '${e}'`);const s=Xt.getLoadHandlers(e);k(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),k(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);const i=s[0],o=Xt.getSaveHandlers(t);k(o.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),k(o.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);const a=o[0],c=md(e).scheme,h=md(e).path,d=c===md(e).scheme,m=await i.load();n&&d&&await bs.getManager(c).removeModel(h);const y=await a.save(m);return n&&!d&&await bs.getManager(c).removeModel(h),y.modelArtifactsInfo}async function sk(){const e=bs.getSchemes(),t={};for(const n of e){const s=await bs.getManager(n).listModels();for(const i in s){const o=n+Ia+i;t[o]=s[i]}}return t}async function ik(e){const t=md(e),n=bs.getManager(t.scheme);return n.removeModel(t.path)}async function rk(e,t){const n=!1;return nT(e,t,n)}async function ok(e,t){const n=!0;return nT(e,t,n)}class ak{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}}if(C().get("IS_BROWSER")){C().setPlatform("browser",new ak);try{bs.registerManager(mo.URL_SCHEME,new nk)}catch(e){}try{bs.registerManager(uo.URL_SCHEME,new KD)}catch(e){}}const ck={importFetch:()=>IC()};let xa;function _Z(){xa=null}function WZ(e){xa=e}function $Z(){return xa}class lk{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return C().global.fetch!=null?C().global.fetch(e,t):(xa==null&&(xa=ck.importFetch()),xa(e,t))}now(){const e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}}C().get("IS_NODE")&&C().setPlatform("node",new lk);function Ze(e,t="float32",n){return t=t||"float32",cy(e),new Ar(e,t,n)}function hk(e,t){const n=W(e,"x","cast");if(!Dx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");const s={x:n},i={dtype:t};return V.runKernelFunc(o=>o.cast(n,t),s,null,Jc,i)}const ve=P({cast_:hk});function uk(e){const t=W(e,"x","clone",null),n=()=>V.makeTensorFromDataId(t.dataId,t.shape,t.dtype),s={x:t};return V.runKernelFunc(n,s,null,al)}const Cr=P({clone_:uk});function sT(e,t=!1){console.log(e.toString(t))}Vx();const dk={buffer:Ze,cast:ve,clone:Cr,print:sT};CD(dk);const pk="model",mk=".json",fk=".weights.bin";function iT(e){return new Promise(t=>setTimeout(t)).then(e)}class Ta{constructor(e){if(!C().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Ta.URL_SCHEME)&&(e=e.slice(Ta.URL_SCHEME.length)),(e==null||e.length===0)&&(e=pk),this.modelTopologyFileName=e+mk,this.weightDataFileName=e+fk}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");const t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{const n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n},i=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),o=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(o.download=this.modelTopologyFileName,o.href=i,await iT(()=>o.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){const a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=t,await iT(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Bl(e)}}}}Ta.URL_SCHEME="downloads://";class gk{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){const e=this.files[0],t=this.files.slice(1);return new Promise((n,s)=>{const i=new FileReader;i.onload=o=>{const a=JSON.parse(o.target.result),c=a.modelTopology;if(c==null){s(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:c});const h=a.weightsManifest;if(h==null){s(new Error(`weightManifest field is missing from file ${e.name}`));return}let d;try{d=this.checkManifestAndWeightFiles(h,t)}catch(w){s(w);return}const m=[],y=[],b=[];h.forEach(w=>{w.paths.forEach(L=>{y.push(L),b.push(null)}),m.push(...w.weights)}),h.forEach(w=>{w.paths.forEach(L=>{const T=new FileReader;T.onload=A=>{const N=A.target.result,E=y.indexOf(L);b[E]=N,b.indexOf(null)===-1&&n({modelTopology:c,weightSpecs:m,weightData:dd(b),format:a.format,generatedBy:a.generatedBy,convertedBy:a.convertedBy,userDefinedMetadata:a.userDefinedMetadata})},T.onerror=A=>s(`Failed to weights data from file of path '${L}'.`),T.readAsArrayBuffer(d[L])})})},i.onerror=o=>s(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),i.readAsText(e)})}checkManifestAndWeightFiles(e,t){const n=[],s=t.map(o=>Xx(o.name)),i={};for(const o of e)o.paths.forEach(a=>{const c=Xx(a);if(n.indexOf(c)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${c}'`);if(n.push(c),s.indexOf(c)===-1)throw new Error(`Weight file with basename '${c}' is not provided.`);i[a]=t[s.indexOf(c)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return i}}const yk=e=>C().getBool("IS_BROWSER")&&(!Array.isArray(e)&&e.startsWith(Ta.URL_SCHEME))?bk(e.slice(Ta.URL_SCHEME.length)):null;Xt.registerSaveRouter(yk);function bk(e="model"){return new Ta(e)}function wk(e){return new gk(e)}function rT(e,t,n,s){a(e),n=n==null?0:n,s=s==null?1:s,c(n,s);let i=0;const o=h=>(h.then(d=>{const m=n+ ++i/e.length*(s-n);return t(m),d}),h);function a(h){k(h!=null&&Array.isArray(h)&&h.length>0,()=>"promises must be a none empty array")}function c(h,d){k(h>=0&&h<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${h}`),k(d>=0&&d<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${d}`),k(d>=h,()=>`startFraction must be no more than endFraction, but got startFraction ${h} and endFraction ${d}`)}return Promise.all(e.map(o))}async function oT(e,t){t==null&&(t={});const n=t.fetchFunc==null?C().platform.fetch:t.fetchFunc,s=e.map(y=>n(y,t.requestInit,{isBinary:!0})),i=0,o=.5,a=t.onProgress==null?await Promise.all(s):await rT(s,t.onProgress,i,o),c=a.map(y=>y.arrayBuffer()),h=.5,d=1,m=t.onProgress==null?await Promise.all(c):await rT(c,t.onProgress,h,d);return m}async function aT(e,t="",n,s){const i=a=>oT(a,{requestInit:s}),o=cT(i);return o(e,t,n)}function cT(e){return async(t,n="",s)=>{const i=t.map(()=>!1),o={},a=s!=null?s.map(()=>!1):[],c=[];if(t.forEach((w,L)=>{let T=0;w.weights.forEach(A=>{const N="quantization"in A?A.quantization.dtype:A.dtype,E=gy[N]*we(A.shape),D=()=>{i[L]=!0,o[L]==null&&(o[L]=[]),o[L].push({manifestEntry:A,groupOffset:T,sizeBytes:E})};s!=null?s.forEach((F,_)=>{F===A.name&&(D(),a[_]=!0)}):D(),c.push(A.name),T+=E})}),!a.every(w=>w)){const w=s.filter((L,T)=>!a[T]);throw new Error(`Could not find weights in manifest with names: ${w.join(", ")}.
Manifest JSON has weights with names: ${c.join(", ")}.`)}const h=i.reduce((w,L,T)=>(L&&w.push(T),w),[]),d=[];h.forEach(w=>{t[w].paths.forEach(L=>{const T=n+(n.endsWith("/")?"":"/")+L;d.push(T)})});const m=await e(d),y={};let b=0;return h.forEach(w=>{const L=t[w].paths.length;let T=0;for(let F=0;F<L;F++)T+=m[b+F].byteLength;const A=new ArrayBuffer(T),N=new Uint8Array(A);let E=0;for(let F=0;F<L;F++){const _=new Uint8Array(m[b+F]);N.set(_,E),E+=_.byteLength}const D=o[w];D.forEach(F=>{const _=A.slice(F.groupOffset,F.groupOffset+F.sizeBytes),B=ud(_,[F.manifestEntry]);for(const $ in B)y[$]=B[$]}),b+=L}),y}}const Lk="application/octet-stream",Sk="application/json";class Ty{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(k(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=C().platform.fetch,k(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&k(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");const t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;const n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,userDefinedMetadata:e.userDefinedMetadata,weightsManifest:n};t.body.append("model.json",new Blob([JSON.stringify(s)],{type:Sk}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:Lk}),"model.weights.bin");const i=await this.fetch(this.path,t);if(i.ok)return{modelArtifactsInfo:Bl(e),responses:[i]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${i.status}.`)}async load(){const e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(b){let w=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?w+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":w+=" Please make sure the server is serving valid JSON for this request.",new Error(w)}const n=t.modelTopology,s=t.weightsManifest,i=t.generatedBy,o=t.convertedBy,a=t.format,c=t.userDefinedMetadata;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let h,d;if(s!=null){const b=await this.loadWeights(s);[h,d]=b}const m={modelTopology:n,weightSpecs:h,weightData:d,userDefinedMetadata:c,generatedBy:i,convertedBy:o,format:a},y=t.modelInitializer;return y&&(m.modelInitializer=y),m}async loadWeights(e){const t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=Ik(t),i=this.weightPathPrefix||n,o=[];for(const d of e)o.push(...d.weights);const a=[],c=[];for(const d of e)for(const m of d.paths)this.weightUrlConverter!=null?c.push(this.weightUrlConverter(m)):a.push(i+m+s);this.weightUrlConverter&&a.push(...await Promise.all(c));const h=await oT(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[o,dd(h)]}}Ty.URL_SCHEME_REGEX=/^https?:\/\//;function Ik(e){const t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),i=n>t?e.substring(n):"";return[s+"/",i]}function Ay(e){return e.match(Ty.URL_SCHEME_REGEX)!=null}const lT=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>Ay(s)):n=Ay(e),n)return vy(e,t)}return null};Xt.registerSaveRouter(lT),Xt.registerLoadRouter(lT);function vy(e,t){return new Ty(e,t)}function fd(e,t){return vy(e,t)}class Ny{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}}class xk{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}}function Tk(e,t,n,s){if(arguments.length===1){const i=e.modelTopology!=null||e.weightSpecs!=null;return i?new Ny(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ny({modelTopology:e}))}else return console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ny({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s})}function Ak(e){return new xk(e)}var vk=Object.freeze({__proto__:null,browserFiles:wk,browserHTTPRequest:fd,concatenateArrayBuffers:dd,decodeWeights:ud,encodeWeights:yy,fromMemory:Tk,getLoadHandlers:Ly,getModelArtifactsInfoForJSON:Bl,getSaveHandlers:wy,http:vy,isHTTPScheme:Ay,loadWeights:aT,registerLoadRouter:HD,registerSaveRouter:YD,weightsLoaderFactory:cT,withSaveHandler:Ak,copyModel:rk,listModels:sk,moveModel:ok,removeModel:ik});function Nk(e,t){const n=W(e,"x","reshape",null),s={x:n},i={shape:t},o=(a,c)=>(t=id(t,n.size),k(n.size===we(t),()=>"new shape and old shape must have the same number of elements."),c([n]),a.reshape(n,t));return V.runKernelFunc(o,s,null,yl,i)}const K=P({reshape_:Nk});function Ck(e,t,n=!1,s=!1){let i=W(e,"a","matMul"),o=W(t,"b","matMul");[i,o]=Bt(i,o),k(i.rank>=2&&o.rank>=2&&i.rank===o.rank,()=>`Error in matMul: inputs must have the same rank of at least 2, got ranks ${i.rank} and ${o.rank}.`);const a=n?i.shape[i.rank-2]:i.shape[i.rank-1],c=s?o.shape[o.rank-1]:o.shape[o.rank-2],h=n?i.shape[i.rank-1]:i.shape[i.rank-2],d=s?o.shape[o.rank-2]:o.shape[o.rank-1],m=i.shape.slice(0,-2),y=o.shape.slice(0,-2),b=we(m),w=we(y);k(ot(m,y),()=>`Error in matMul: outer dimensions (${m}) and (${y}) of Tensors with shapes ${i.shape} and ${o.shape} must match.`),k(a===c,()=>`Error in matMul: inner shapes (${a}) and (${c}) of Tensors with shapes ${i.shape} and ${o.shape} and transposeA=${n} and transposeB=${s} must match.`);const L=i.shape.slice(0,-2).concat([h,d]),T=n?K(i,[b,a,h]):K(i,[b,h,a]),A=s?K(o,[w,d,c]):K(o,[w,c,d]),N=(_,B)=>(B([T,A]),_.batchMatMul(T,A,n,s)),E={a:T,b:A},D={transposeA:n,transposeB:s},F=V.runKernelFunc(N,E,null,ag,D);return K(F,L)}const at=P({matMul_:Ck});function Rk(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);const i=W(e,"indices","oneHot","int32"),o=[...i.shape,t],a=(d,m)=>(m([i]),K(d.oneHot(K(i,[i.size]),t,n,s),o)),c={indices:i},h={depth:t,onValue:n,offValue:s};return V.runKernelFunc(a,c,null,Dg,h)}const fo=P({oneHot_:Rk});function Ok(e,t){const n=W(e,"x","transpose");if(t==null&&(t=n.shape.map((o,a)=>a).reverse()),k(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(o=>{k(o>=0&&o<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();const s={x:n},i={perm:t};return V.runKernelFunc(o=>o.transpose(n,t),s,null,Cl,i)}const Me=P({transpose_:Ok});function Ek(e,t,n){const s=W(e,"labels","confusionMatrix"),i=W(t,"predictions","confusionMatrix");k(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),k(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),k(i.rank===1,()=>`Expected the rank of predictions to be 1, but got ${i.rank}`),k(s.shape[0]===i.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${i.shape[0]}. Labels and predictions should have the same number of elements.`),k(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);const o=fo(ve(s,"int32"),n),a=fo(ve(i,"int32"),n),c=Me(o);return ve(at(c,a),"int32")}const Dk=P({confusionMatrix_:Ek});var kk=Object.freeze({__proto__:null,confusionMatrix:Dk});function hT(e,t,n){if(ao(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");const s=Ii(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return vr(e,t,s,n)}let Aa;function Fk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,i=!1,o=!1,a=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)i=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)o=!0;else if(e.getContext!=null)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(i){const w=2;if(i&&e.readyState<w)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}const c=Zg(Qu,V.backendName);if(c!=null){const w={pixels:e},L={numChannels:t};return V.runKernel(Qu,w,L)}const[h,d]=i?[e.videoWidth,e.videoHeight]:[e.width,e.height];let m;a?m=e.getContext("2d").getImageData(0,0,h,d).data:s||n?m=e.data:(o||i)&&(Aa==null&&(Aa=document.createElement("canvas").getContext("2d")),Aa.canvas.width=h,Aa.canvas.height=d,Aa.drawImage(e,0,0,h,d),m=Aa.getImageData(0,0,h,d).data);let y;if(t===4)y=new Int32Array(m);else{const w=h*d;y=new Int32Array(w*t);for(let L=0;L<w;L++)for(let T=0;T<t;++T)y[L*t+T]=m[L*4+T]}const b=[d,h,t];return hT(y,b,"int32")}async function _k(e,t){let n=W(e,"img","toPixels");if(!(e instanceof Q)){const d=n;n=ve(d,"int32"),d.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);const[s,i]=n.shape.slice(0,2),o=n.rank===2?1:n.shape[2];if(o>4||o===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${o}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);const a=await n.data(),c=n.dtype==="float32"?255:1,h=new Uint8ClampedArray(i*s*4);for(let d=0;d<s*i;++d){const m=[0,0,0,255];for(let b=0;b<o;b++){const w=a[d*o+b];if(n.dtype==="float32"){if(w<0||w>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${w}.`)}else if(n.dtype==="int32"&&(w<0||w>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${w}.`);o===1?(m[0]=w*c,m[1]=w*c,m[2]=w*c):m[b]=w*c}const y=d*4;h[y+0]=Math.round(m[0]),h[y+1]=Math.round(m[1]),h[y+2]=Math.round(m[2]),h[y+3]=Math.round(m[3])}if(t!=null){t.width=i,t.height=s;const d=t.getContext("2d"),m=new ImageData(h,i,s);d.putImageData(m,0,0)}return n!==e&&n.dispose(),h}const uT=P({fromPixels_:Fk});var Wk=Object.freeze({__proto__:null,toPixels:_k,fromPixels:uT});function gd(e,t){if(e.rank<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.rank<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[t.rank-1]>e.rank)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[t.rank-1]} vs. ${e.rank}`);if(e.size===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);const n=t.shape,s=n[n.length-1];let i=1;for(let d=0;d<n.length-1;++d)i*=n[d];const o=e.shape,a=n.slice();a.pop();let c=1;for(let d=s;d<e.rank;++d)c*=o[d],a.push(o[d]);const h=[...Ot(e.shape).map(d=>d/c),1].slice(0,s);return[a,i,c,h]}var $k=Object.freeze({__proto__:null,prepareAndValidate:gd});function Cy(e,t,n){const s=t.rank>1?t.shape[t.rank-1]:1,i=t.rank>1?t.rank-1:1,o=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${i}.`;if(n.rank<i)throw new Error(o+` update.rank < ${i}. `);if(e.length<s+(n.rank-i))throw new Error(o+` Output shape length < ${s+(n.rank-i)}`);if(n.rank!==i+e.length-s)throw new Error(o+` update.rank != ${i+e.length-s}`);for(let a=0;a<i;++a)if(n.shape[a]!==t.shape[a])throw new Error(o+` updates.shape[${a}] (${n.shape[a]}) != indices.shape[${a}] (${t.shape[a]}).`);for(let a=0;a<n.rank-i;++a)if(n.shape[a+i]!==e[a+s])throw new Error(o+` updates.shape[${a+i}] (${n.shape[a+i]}) != shape[${a+i}] (${e[a+i]})`)}function Ry(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Cy(n,t,e)}function va(e,t,n){const s=t.shape.length,i=s>1?t.shape[s-1]:1,o=n.length;let a=1;for(let y=i;y<o;++y)a*=n[y];const c=i<1?1:i,h=we(t.shape)/c,d=[...Ot(n.slice(0,i)),1],m=we(n);return{sliceRank:i,numUpdates:h,sliceSize:a,strides:d,outputSize:m}}var Uk=Object.freeze({__proto__:null,validateUpdateShape:Cy,validateInput:Ry,calculateShapes:va});function Oy(e,t,n){const s=e.shape.length;k(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),k(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let i=0;i<s;++i)k(t[i]+n[i]<=e.shape[i],()=>`Error in slice${s}D: begin[${i}] + size[${i}] (${t[i]+n[i]}) would overflow input.shape[${i}] (${e.shape[i]})`)}function yd(e){const t=[];let n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function bd(e,t,n){const s=[];for(let i=0;i<e.length;i++)s[i]=Math.ceil((t[i]-e[i])/n[i]);return s}function dT(e,t,n,s){const i=[...e];for(let o=i.length;o<s.length;o++)i.push(1);for(let o=0;o<n;o++)o===0?i[t]=1:(i.splice(t,0,1),i.pop());return i}function pT(e,t,n){return n<=e?n:n-(t-1)}function mT(e,t){const n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function fT(e,t,n,s,i,o,a,c,h){const d=e.length;let m=new Array(d),y=new Array(d),b=new Array(d);if(t.length&&n>0){const w=t[0],L=n+1;m=gT(a,w,L,s,e),y=yT(c,w,L,i,e),b=dT(o,w,L,e)}else for(let w=0;w<d;w++)m[w]=wT(a,s,o,e,w,h),y[w]=LT(c,i,o,e,w,h),b[w]=bT(o,w,h);return{begin:m,end:y,strides:b}}function gT(e,t,n,s,i){const o=[...i],a=mT(n,t);for(let c=0;c<o.length;c++)if(a.indexOf(c)>-1)o[c]=0;else{const h=pT(t,n,c);let d=s[h];e&1<<h&&(d=0),o[c]=d}return o}function yT(e,t,n,s,i){const o=[...i],a=mT(n,t);for(let c=0;c<o.length;c++)if(a.indexOf(c)>-1)o[c]=Number.MAX_SAFE_INTEGER;else{const h=pT(t,n,c);let d=s[h];e&1<<h&&(d=Number.MAX_SAFE_INTEGER),o[c]=d}for(let c=0;c<o.length;c++){const h=i[c];o[c]<0&&(o[c]+=h),o[c]=El(0,o[c],i[c])}return o}function bT(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function wT(e,t,n,s,i,o){let a=t[i];const c=n[i]||1;(e&1<<i||o&1<<i||a==null)&&(c>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);const h=s[i];return a<0&&(a+=h),a=El(0,a,h-1),a}function LT(e,t,n,s,i,o){let a=t[i];const c=n[i]||1;(e&1<<i||o&1<<i||a==null)&&(c>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);const h=s[i];return a<0&&(a+=h),c>0?a=El(0,a,h):a=El(-1,a,h-1),a}function Ey(e,t,n){let s=n.length;for(let i=0;i<n.length;i++)if(n[i]>1){s=i;break}for(let i=s+1;i<n.length;i++)if(t[i]>0||n[i]!==e[i])return!1;return!0}function Dy(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function wd(e,t,n){let s;const i=e.shape.length;typeof t=="number"?s=[t,...new Array(i-1).fill(0)]:t.length<i?s=t.concat(new Array(i-t.length).fill(0)):s=t.slice(),s.forEach(a=>{k(a!==-1,()=>"slice() does not support negative begin indexing.")});let o;return n==null?o=new Array(i).fill(-1):typeof n=="number"?o=[n,...new Array(i-1).fill(-1)]:n.length<i?o=n.concat(new Array(i-n.length).fill(-1)):o=n,o=o.map((a,c)=>a>=0?a:(k(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${c}.`),e.shape[c]-s[c])),[s,o]}var ST=Object.freeze({__proto__:null,assertParamsValid:Oy,maskToAxes:yd,computeOutShape:bd,stridesWithElidedDims:dT,getNormalizedAxes:fT,startIndicesWithElidedDims:gT,stopIndicesWithElidedDims:yT,stridesForAxis:bT,startForAxis:wT,stopForAxis:LT,isSliceContinous:Ey,computeFlatOffset:Dy,parseSliceParams:wd});class go{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}}class ks{constructor(){this.classNameMap={}}static getMap(){return ks.instance==null&&(ks.instance=new ks),ks.instance}static register(e){ks.getMap().classNameMap[e.className]=[e,e.fromConfig]}}function me(e){k(e.className!=null,()=>"Class being registered does not have the static className property defined."),k(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),k(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ks.register(e)}var Bk=Object.freeze({__proto__:null,Serializable:go,SerializationMap:ks,registerClass:me});const Mk=.001,IT=.1;function Pk(e,t,n){return n==null&&(n=Ld()),ky(e,t,(s,i)=>_y(s,i,n))}function Ld(){return V.backend.floatPrecision()===32?Mk:IT}function ky(e,t,n){let s=!0;if((wn(e)||wn(t))&&(s=!1),wn(e)&&wn(t)&&(s=!0),s){const a=e.constructor.name,c=t.constructor.name;if(a!==c)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${c}`)}if(Array.isArray(e)&&Array.isArray(t)){const a=Ii(e),c=Ii(t);if(!ot(a,c))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${c}]`)}const i=wn(e)?e:Yi(e),o=wn(t)?t:Yi(t);if(i.length!==o.length)throw new Error(`Arrays have different lengths actual: ${i.length} vs expected: ${o.length}.
Actual: ${i}.
Expected: ${o}.`);for(let a=0;a<o.length;++a){const c=i[a],h=o[a];if(!n(c,h))throw new Error(`Arrays differ: actual[${a}] = ${c}, expected[${a}] = ${h}.
Actual: ${i}.
Expected: ${o}.`)}}function zk(e,t){e().then(()=>t.fail(),()=>t())}function Gk(e,t){const n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ir(e)||Ir(e[0])||Ir(t)||Ir(t[0])?ky(e,n,(s,i)=>s==i):ky(e,t,(s,i)=>_y(s,i,0))}function Fy(e,t,n){if(n==null&&(n=Ld()),!_y(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function _y(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function Vk(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function Yk(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}var Hk=Object.freeze({__proto__:null,TEST_EPSILON_FLOAT16:IT,expectArraysClose:Pk,testEpsilon:Ld,expectPromiseToFail:zk,expectArraysEqual:Gk,expectNumbersClose:Fy,expectValuesInRange:Vk,expectArrayBuffersEqual:Yk});const xT="2.6.0";function qk(){C().set("PROD",!0)}function jk(){C().set("DEBUG",!0)}function Kk(){C().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function nn(e){C().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}RD(nn);function Xk(){V.disposeVariables()}function Fs(){return V}function Sd(){return V.memory()}function Jk(e){return V.profile(e)}function ee(e,t){return V.tidy(e,t)}function He(e){const t=Hi(e);t.forEach(n=>n.dispose())}function Nn(e){return V.keep(e)}function Zk(e){return V.time(e)}function TT(e){return V.setBackend(e)}function Qk(){return V.ready()}function eF(){return V.backendName}function tF(e){V.removeBackend(e)}function nF(e){return V.findBackend(e)}function sF(e){return V.findBackendFactory(e)}function Wy(e,t,n=1){return V.registerBackend(e,t,n)}function AT(){return V.backend}function iF(e,t){C().setPlatform(e,t)}function rF(e,t){let n=W(e,"a","add"),s=W(t,"b","add");[n,s]=Bt(n,s);const i=(a,c)=>{const h=a.add(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,Te)}const be=P({add_:rF});function oF(e,t){let n=W(e,"a","floorDiv"),s=W(t,"b","floorDiv");[n,s]=Bt(n,s);const i=(a,c)=>{const h=a.floorDiv(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,yg)}const Id=P({floorDiv_:oF});function aF(e,t){let n=W(e,"a","div"),s=W(t,"b","div");if([n,s]=Bt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Id(n,s);const i=(c,h)=>{const d=c.realDivide(n,s);return h([n,s]),d},o={a:n,b:s},a={};return V.runKernelFunc(i,o,null,pa,a)}const _e=P({div_:aF});function cF(e,t){let n=W(e,"a","mul"),s=W(t,"b","mul");[n,s]=Bt(n,s);const i=(a,c)=>{const h=a.multiply(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,fl)}const X=P({mul_:cF});function lF(e){const t=W(e,"x","abs"),n={x:t};return V.runKernelFunc((s,i)=>(i([t]),t.dtype==="complex64"?s.complexAbs(t):s.abs(t)),n,null,ge)}const sn=P({abs_:lF});function hF(e){const t=W(e,"x","acos"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.acos(t);return i([t]),o},n,null,fe)}const $y=P({acos_:hF});function uF(e){const t=W(e,"x","acosh"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.acosh(t);return i([t]),o},n,null,Ae)}const Uy=P({acosh_:uF});function dF(e){k(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),k(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);const t=e.map((o,a)=>W(o,`tensors${a}`,"addN")),n=t[0];t.forEach(o=>{if(o.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!ot(o.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});const s=(o,a)=>{const c=o.addN(t);return a(t),c},i=t;return V.runKernelFunc(s,i,null,Ve)}const vT=P({addN_:dF});function By(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function NT(e,t,n){const s=e.length+t.length,i=[];let o=0,a=0;for(let c=0;c<s;c++)n.indexOf(c)===-1?i.push(e[o++]):i.push(t[a++]);return i}function Cn(e,t){const n=[],s=e.length;for(let o=0;o<s;o++)t.indexOf(o)===-1&&n.push(e[o]);const i=t.map(o=>e[o]);return[n,i]}function Rn(e,t){const n=t.map(s=>1);return NT(e,n,t)}function es(e,t,n){k(By(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function kn(e,t){if(By(e,t))return null;const n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function Ml(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function ws(e,t){const n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function pF(e,t=null,n=!1){let s=W(e,"x","all","bool");const i=c=>{const h=ft(t,s.shape);let d=h;const m=kn(d,s.rank);m!=null&&(s=Me(s,m),d=ws(d.length,s.rank));const y=c.all(s,d);if(n){const b=Rn(y.shape,h);return K(y,b)}return y},o={x:s},a={axis:t,keepDims:n};return V.runKernelFunc(i,o,null,rt,a)}const xd=P({all_:pF});function mF(e,t=null,n=!1){let s=W(e,"x","any","bool");const i=c=>{const h=ft(t,s.shape);let d=h;const m=kn(d,s.rank);m!=null&&(s=Me(s,m),d=ws(d.length,s.rank));const y=c.any(s,d);if(n){const b=Rn(y.shape,h);return K(y,b)}return y},o={x:s},a={axis:t,keepDims:n};return V.runKernelFunc(i,o,null,vt,a)}const Pl=P({any_:mF});function fF(e,t=0){let n=W(e,"x","argMax");const s=(a,c)=>{c([n]);let h=ft(t,n.shape);const d=kn(h,n.rank);return d!=null&&(n=Me(n,d),h=ws(h.length,n.rank)),a.argMax(n,h[0])},i={x:n},o={axis:t};return V.runKernelFunc(s,i,null,$t,o)}const zl=P({argMax_:fF});function gF(e,t=0){let n=W(e,"x","argMin");const s=(a,c)=>{c([n]),t==null&&(t=0);let h=ft(t,n.shape);const d=kn(h,n.rank);return d!=null&&(n=Me(n,d),h=ws(h.length,n.rank)),a.argMin(n,h[0])},i={x:n},o={axis:t};return V.runKernelFunc(s,i,null,Kt,o)}const My=P({argMin_:gF});function yF(e){const t=W(e,"x","asin"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.asin(t);return i([t]),o},n,null,Dn)}const Py=P({asin_:yF});function bF(e){const t=W(e,"x","asinh"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.asinh(t);return i([t]),o},n,null,Tn)}const zy=P({asinh_:bF});function wF(e){const t=W(e,"x","atan"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.atan(t);return i([t]),o},n,null,An)}const Gy=P({atan_:wF});function LF(e,t){let n=W(e,"a","atan2"),s=W(t,"b","atan2");[n,s]=Bt(n,s);const i=(a,c)=>{const h=a.atan2(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,Li)}const Vy=P({atan2_:LF});function SF(e){const t=W(e,"x","atanh"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.atanh(t);return i([t]),o},n,null,Ks)}const Yy=P({atanh_:SF});function Td(e,t,n,s,i="NHWC",o){const a=e[3],c=[...t,a],h=Yl(i);return Ai(e,c,n,o,s,null,null,h)}function Fn(e,t,n,s,i,o,a="channelsLast"){const[c,h]=Ad(t);let d;if(a==="channelsLast")d=[c,h,e[3],e[3]];else if(a==="channelsFirst")d=[c,h,e[1],e[1]];else throw new Error(`Unknown dataFormat ${a}`);return Ai(e,d,n,s,i,o,!1,a)}function Gl(e,t,n,s,i,o,a="NDHWC"){const[c,h,d]=qy(t);let m,y;if(a==="NDHWC")y="channelsLast",m=[c,h,d,e[4],e[4]];else if(a==="NCDHW")y="channelsFirst",m=[c,h,d,e[1],e[1]];else throw new Error(`Unknown dataFormat ${a}`);return Vl(e,m,n,s,i,!1,y,o)}function Ai(e,t,n,s,i,o,a=!1,c="channelsLast"){let[h,d,m,y]=[-1,-1,-1,-1];if(c==="channelsLast")[h,d,m,y]=e;else if(c==="channelsFirst")[h,y,d,m]=e;else throw new Error(`Unknown dataFormat ${c}`);const[b,w,,L]=t,[T,A]=Ad(n),[N,E]=Ad(s),D=Na(b,N),F=Na(w,E),{padInfo:_,outHeight:B,outWidth:$}=TF(i,d,m,T,A,D,F,o,c),H=a?L*y:L;let q;return c==="channelsFirst"?q=[h,H,B,$]:c==="channelsLast"&&(q=[h,B,$,H]),{batchSize:h,dataFormat:c,inHeight:d,inWidth:m,inChannels:y,outHeight:B,outWidth:$,outChannels:H,padInfo:_,strideHeight:T,strideWidth:A,filterHeight:b,filterWidth:w,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationHeight:N,dilationWidth:E,inShape:e,outShape:q,filterShape:t}}function Vl(e,t,n,s,i,o=!1,a="channelsLast",c){let[h,d,m,y,b]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[h,d,m,y,b]=e;else if(a==="channelsFirst")[h,b,d,m,y]=e;else throw new Error(`Unknown dataFormat ${a}`);const[w,L,T,,A]=t,[N,E,D]=qy(n),[F,_,B]=qy(s),$=Na(w,F),H=Na(L,_),q=Na(T,B),{padInfo:J,outDepth:re,outHeight:ce,outWidth:ue}=AF(i,d,m,y,N,E,D,$,H,q,c),he=o?A*b:A;let de;return a==="channelsFirst"?de=[h,he,re,ce,ue]:a==="channelsLast"&&(de=[h,re,ce,ue,he]),{batchSize:h,dataFormat:a,inDepth:d,inHeight:m,inWidth:y,inChannels:b,outDepth:re,outHeight:ce,outWidth:ue,outChannels:he,padInfo:J,strideDepth:N,strideHeight:E,strideWidth:D,filterDepth:w,filterHeight:L,filterWidth:T,effectiveFilterDepth:$,effectiveFilterHeight:H,effectiveFilterWidth:q,dilationDepth:F,dilationHeight:_,dilationWidth:B,inShape:e,outShape:de,filterShape:t}}function IF(e,t,n,s,i){s==null&&(s=Hy(e,t,n));const o=e[0],a=e[1],c=yo((o-t+2*s)/n+1,i);k(Ut(c),()=>`The output # of rows (${c}) must be an integer. Change the stride and/or zero pad parameters`);const h=yo((a-t+2*s)/n+1,i);return k(Ut(h),()=>`The output # of columns (${h}) must be an integer. Change the stride and/or zero pad parameters`),[c,h]}function xF(e,t,n,s,i,o){i==null&&(i=Hy(e,t,s));const a=e[0],c=e[1],h=e[2],d=yo((a-t+2*i)/s+1,o);k(Ut(d),()=>`The output # of depths (${d}) must be an integer. Change the stride and/or zero pad parameters`);const m=yo((c-t+2*i)/s+1,o);k(Ut(m),()=>`The output # of rows (${m}) must be an integer. Change the stride and/or zero pad parameters`);const y=yo((h-t+2*i)/s+1,o);return k(Ut(y),()=>`The output # of columns (${y}) must be an integer. Change the stride and/or zero pad parameters`),[d,m,y,n]}function Hy(e,t,n,s=1){const i=Na(t,s);return Math.floor((e[0]*(n-1)-n+i)/2)}function Ad(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function qy(e){return typeof e=="number"?[e,e,e]:e}function Na(e,t){return t<=1?e:e+(e-1)*(t-1)}function TF(e,t,n,s,i,o,a,c,h){let d,m,y;if(typeof e=="number"){const b=e===0?"VALID":"NUMBER";d={top:e,bottom:e,left:e,right:e,type:b};const w=IF([t,n],o,s,e,c);m=w[0],y=w[1]}else if(e==="same"){m=Math.ceil(t/s),y=Math.ceil(n/i);const b=Math.max(0,(m-1)*s+o-t),w=Math.max(0,(y-1)*i+a-n),L=Math.floor(b/2),T=b-L,A=Math.floor(w/2),N=w-A;d={top:L,bottom:T,left:A,right:N,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,type:"VALID"},m=Math.ceil((t-o+1)/s),y=Math.ceil((n-a+1)/i);else if(typeof e=="object"){const b=h==="channelsLast"?e[1][0]:e[2][0],w=h==="channelsLast"?e[1][1]:e[2][1],L=h==="channelsLast"?e[2][0]:e[3][0],T=h==="channelsLast"?e[2][1]:e[3][1],A=b===0&&w===0&&L===0&&T===0?"VALID":"EXPLICIT";d={top:b,bottom:w,left:L,right:T,type:A},m=yo((t-o+b+w)/s+1,c),y=yo((n-a+L+T)/i+1,c)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outHeight:m,outWidth:y}}function AF(e,t,n,s,i,o,a,c,h,d,m){let y,b,w,L;if(typeof e=="number"){const T=e===0?"VALID":"NUMBER";y={top:e,bottom:e,left:e,right:e,front:e,back:e,type:T};const A=xF([t,n,s,1],c,1,i,e,m);b=A[0],w=A[1],L=A[2]}else if(e==="same"){b=Math.ceil(t/i),w=Math.ceil(n/o),L=Math.ceil(s/a);const T=(b-1)*i+c-t,A=(w-1)*o+h-n,N=(L-1)*a+d-s,E=Math.floor(T/2),D=T-E,F=Math.floor(A/2),_=A-F,B=Math.floor(N/2),$=N-B;y={top:F,bottom:_,left:B,right:$,front:E,back:D,type:"SAME"}}else if(e==="valid")y={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},b=Math.ceil((t-c+1)/i),w=Math.ceil((n-h+1)/o),L=Math.ceil((s-d+1)/a);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:y,outDepth:b,outHeight:w,outWidth:L}}function yo(e,t){if(!t)return e;switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Rr(e){const[t,n,s]=Ad(e);return t===1&&n===1&&s===1}function rn(e,t){return Rr(e)||Rr(t)}function Yl(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function vF(e,t,n,s,i){const o=W(e,"x","avgPool","float32"),a=1;k(rn(n,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let c=o,h=!1;o.rank===3&&(h=!0,c=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),k(c.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${c.rank}.`),i!=null&&k(Ut(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const d=(w,L)=>{const T=Fn(c.shape,t,n,1,s,i);return L([c]),T.filterWidth===1&&T.filterHeight===1&&ot(T.inShape,T.outShape)?c.clone():w.avgPool(c,T)},m={x:c},y={filterSize:t,strides:n,pad:s,dimRoundingMode:i};let b=V.runKernelFunc(d,m,null,Xs,y);return b=ve(b,o.dtype),h?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const Hl=P({avgPool_:vF});function NF(e,t,n,s,i,o="NDHWC",a){a==null?a=[1,1,1]:nn("dilations is deprecated, this field will be gone in v3.0.0.");const c=W(e,"x","avgPool3d","float32");let h=c,d=!1;c.rank===4&&(d=!0,h=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),k(h.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${h.rank}.`),k(o==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${o}`),k(rn(n,a),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),i!=null&&k(Ut(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const m=(L,T)=>{a==null&&(a=[1,1,1]);const A=Gl(h.shape,t,n,a,s,i,o);return T([h]),L.avgPool3d(h,A)},y={x:h},b={filterSize:t,strides:n,pad:s,dimRoundingMode:i,dataFormat:o,dilations:a};let w=V.runKernelFunc(m,y,null,Xc,b);return w=ve(w,h.dtype),d?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const jy=P({avgPool3d_:NF});function Ky(e,t){const n=e[0].length;e.forEach((i,o)=>{k(i.length===n,()=>`Error in concat${n}D: rank of tensors[${o}] must be the same as the rank of the rest (${n})`)}),k(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);const s=e[0];e.forEach((i,o)=>{for(let a=0;a<n;a++)k(a===t||i[a]===s[a],()=>`Error in concat${n}D: Shape of tensors[${o}] (${i}) does not match the shape of the rest (${s}) along the non-concatenated axis ${o}.`)})}function Or(e,t){const n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}function CF(e,t=0){k(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ul(e,"tensors","concat");n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)});const s=(a,c)=>{const h=ft(t,n[0].shape)[0],d=Or(n.map(b=>b.shape),h);if(we(d)===0)return en([],d);if(n=n.filter(b=>b.size>0),n.length===1)return n[0];const m=n.map(b=>b.shape);Ky(m,h);const y=a.concat(n,h);return c(n),y},i=n,o={axis:t};return V.runKernelFunc(s,i,null,$u,o)}const Mt=P({concat_:CF});function RF(e){const t=W(e,"x","sigmoid"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.sigmoid(t);return i([o]),o},n,null,xl)}const vi=P({sigmoid_:RF});function OF(e,t,n){const s=W(e,"x","slice");if(s.rank===0)throw new Error("Slicing scalar is not possible");const i=(c,h)=>{const[d,m]=wd(s,t,n);return Oy(s,d,m),h([s]),c.slice(s,d,m)},o={x:s},a={begin:t,size:n};return V.runKernelFunc(i,o,null,Ku,a)}const nt=P({slice_:OF});function EF(e){const t=W(e,"x","tanh"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.tanh(t);return i([o]),o},n,null,Nl)}const Ca=P({tanh_:EF});function DF(e,t,n,s,i,o){const a=W(e,"forgetBias","basicLSTMCell"),c=W(t,"lstmKernel","basicLSTMCell"),h=W(n,"lstmBias","basicLSTMCell"),d=W(s,"data","basicLSTMCell"),m=W(i,"c","basicLSTMCell"),y=W(o,"h","basicLSTMCell"),b=Mt([d,y],1),w=at(b,c),L=be(w,h),T=L.shape[0],A=L.shape[1]/4,N=[T,A],E=nt(L,[0,0],N),D=nt(L,[0,A],N),F=nt(L,[0,A*2],N),_=nt(L,[0,A*3],N),B=be(X(vi(E),Ca(D)),X(m,vi(be(a,F)))),$=X(Ca(B),vi(_));return[B,$]}const kF=P({basicLSTMCell_:DF});function FF(e,t,n){const s=W(e,"x","batchToSpaceND"),i=t.reduce((h,d)=>h*d);k(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),k(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),k(s.shape[0]%i===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${i}`);const o=h=>h.batchToSpaceND(s,t,n),a={x:s},c={blockShape:t,crops:n};return V.runKernelFunc(o,a,null,cg,c)}const ql=P({batchToSpaceND_:FF});function _F(e){let t;return e.rank===0||e.rank===1?t=K(e,[1,1,1,e.size]):e.rank===2?t=K(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function WF(e,t,n,s,i,o){o==null&&(o=.001);const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;s!=null&&(m=W(s,"offset","batchNorm")),k(c.rank===h.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k(m==null||c.rank===m.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k(d==null||c.rank===d.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");const y=_F(a),b=(A,N)=>(N([y,c,h,d]),A.batchNorm(y,vd(c),vd(h),vd(m),vd(d),o)),w={x:y,scale:d,offset:m,mean:c,variance:h},L={varianceEpsilon:o},T=V.runKernelFunc(b,w,null,ol,L);return K(T,a.shape)}function vd(e){return e==null?null:e.rank===0?K(e,[e.size]):e.rank===1?e:e.rank===2?K(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?K(e,[1,e.shape[0],e.shape[1],e.shape[2]]):e}const bo=P({batchNorm_:WF});function $F(e,t,n,s,i,o){const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;return s!=null&&(m=W(s,"offset","batchNorm")),k(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),k(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${c.rank}.`),k(h.rank===2||h.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${h.rank}.`),d!=null&&k(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${d.rank}.`),m!=null&&k(m.rank===2||m.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${m.rank}.`),bo(a,c,h,m,d,o)}const CT=P({batchNorm2d_:$F});function UF(e,t,n,s,i,o){const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;return s!=null&&(m=W(s,"offset","batchNorm")),k(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),k(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${c.rank}.`),k(h.rank===3||h.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${h.rank}.`),d!=null&&k(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${d.rank}.`),m!=null&&k(m.rank===3||m.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${m.rank}.`),bo(a,c,h,m,d,o)}const RT=P({batchNorm3d_:UF});function BF(e,t,n,s,i,o){const a=W(e,"x","batchNorm"),c=W(t,"mean","batchNorm"),h=W(n,"variance","batchNorm");let d;i!=null&&(d=W(i,"scale","batchNorm"));let m;return s!=null&&(m=W(s,"offset","batchNorm")),k(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),k(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${c.rank}.`),k(h.rank===4||h.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${h.rank}.`),d!=null&&k(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${d.rank}.`),m!=null&&k(m.rank===4||m.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${m.rank}.`),bo(a,c,h,m,d,o)}const OT=P({batchNorm4d_:BF});function MF(e,t){let n=W(e,"broadcastTo","x");const s=n.shape;if(t.some(m=>!(m>0)||m%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){const m=n.shape.slice();for(;m.length<t.length;)m.unshift(1);n=K(n,m)}const i=n.shape,o=Array.from(t);for(let m=t.length-1;m>=0;m--)if(i[m]===t[m])o[m]=1;else if(n.shape[m]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);const a=o.map((m,y)=>m>1?y:-1).filter(m=>m>=0);if(a.length===0)return Cr(n);const c=m=>m.tile(n,o),h={x:n},d={shape:t,inputShape:i};return V.runKernelFunc(c,h,null,lg,d)}const jl=P({broadcastTo_:MF});function PF(e){const t=W(e,"x","ceil"),n={x:t};return V.runKernelFunc(s=>s.ceil(t),n,null,Zc)}const Xy=P({ceil_:PF});function zF(e,t,n){const s=W(e,"x","clipByValue");k(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);const i={x:s},o={clipValueMin:t,clipValueMax:n};return V.runKernelFunc((a,c)=>{const h=a.clip(s,t,n);return c([s]),h},i,null,Qc,o)}const Yn=P({clipByValue_:zF});function GF(e){return Mt(e,0)}const ET=P({concat1d_:GF});function VF(e,t){return Mt(e,t)}const DT=P({concat2d_:VF});function YF(e,t){return Mt(e,t)}const kT=P({concat3d_:YF});function HF(e,t){return Mt(e,t)}const FT=P({concat4d_:HF});function qF(e,t,n,s,i="NHWC",o=[1,1],a){const c=W(e,"x","conv2d"),h=W(t,"filter","conv2d");let d=c,m=!1;c.rank===3&&(m=!0,d=K(c,[1,c.shape[0],c.shape[1],c.shape[2]])),k(d.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${d.rank}.`),k(h.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${h.rank}.`),a!=null&&k(Ut(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);const y=i==="NHWC"?d.shape[3]:d.shape[1];k(y===h.shape[2],()=>`Error in conv2d: depth of input (${y}) must match input depth for filter ${h.shape[2]}.`),k(rn(n,o),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);const b=(A,N)=>{const E=Yl(i),D=Ai(d.shape,h.shape,n,o,s,a,!1,E),F=A.conv2d(d,h,D);return N([d,h]),F},w={x:d,filter:h},L={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a},T=V.runKernelFunc(b,w,null,ug,L);return m?K(T,[T.shape[1],T.shape[2],T.shape[3]]):T}const ji=P({conv2d_:qF});function jF(e,t,n,s,i="NWC",o=1,a){const c=W(e,"x","conv1d"),h=W(t,"filter","conv1d");let d=c,m=!1;c.rank===2&&(m=!0,d=K(c,[1,c.shape[0],c.shape[1]])),k(d.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${d.rank}.`),k(h.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${h.rank}.`),a!=null&&k(Ut(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),k(d.shape[2]===h.shape[1],()=>`Error in conv1d: depth of input (${d.shape[2]}) must match input depth for filter ${h.shape[1]}.`),k(rn(n,o),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${o}'`),k(i==="NWC",()=>`Error in conv1d: got dataFormat of ${i} but only NWC is currently supported.`);const y=K(h,[1,h.shape[0],h.shape[1],h.shape[2]]),b=K(d,[d.shape[0],1,d.shape[1],d.shape[2]]),w=[1,n],L=[1,o],T="NHWC",A=ji(b,y,w,s,T,L,a);return m?K(A,[A.shape[2],A.shape[3]]):K(A,[A.shape[0],A.shape[2],A.shape[3]])}const Nd=P({conv1d_:jF});function KF(e,t,n,s,i,o="NHWC",a){k(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let c=e,h=t,d=!1;t.rank===3&&(d=!0,h=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]),c=[1,e[0],e[1],e[2]]),k(c.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${c.length}.`),k(h.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${h.rank}`),k(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);const m=o==="NHWC"?c[3]:c[1],y=o==="NHWC"?h.shape[3]:h.shape[1];k(m===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${m}) must match input depth for filter ${n.shape[2]}.`),k(y===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${y}) must match output depth for filter ${n.shape[3]}.`),a!=null&&k(Ut(i),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${i}.`);const b=(A,N)=>{const E=1,D=Yl(o),F=Ai(c,n.shape,s,E,i,a,!1,D),_=A.conv2dDerInput(h,n,F);return N([h,n]),_},w={dy:h,filter:n},L={strides:s,pad:i,dataFormat:o,dimRoundingMode:a,inputShape:c},T=V.runKernelFunc(b,w,null,dg,L);return d?K(T,[T.shape[1],T.shape[2],T.shape[3]]):T}const Jy=P({conv2DBackpropInput_:KF});function XF(e,t,n,s,i,o){const a=W(e,"x","conv2dTranspose"),c=W(t,"filter","conv2dTranspose");return Jy(n,a,c,s,i,"NHWC",o)}const Cd=P({conv2dTranspose_:XF});function JF(e,t,n,s,i="NDHWC",o=[1,1,1]){const a=W(e,"x","conv3d"),c=W(t,"filter","conv3d");let h=a,d=!1;a.rank===4&&(d=!0,h=K(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),k(h.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${h.rank}.`),k(c.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${c.rank}.`),k(h.shape[4]===c.shape[3],()=>`Error in conv3d: depth of input (${h.shape[4]}) must match input depth for filter ${c.shape[3]}.`),k(rn(n,o),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),k(i==="NDHWC",()=>`Error in conv3d: got dataFormat of ${i} but only NDHWC is currently supported.`);const m=(L,T)=>{const A=Vl(h.shape,c.shape,n,o,s),N=L.conv3d(h,c,A);return T([h,c]),N},y={x:h,filter:c},b={strides:n,pad:s,dataFormat:i,dilations:o},w=V.runKernelFunc(m,y,null,pg,b);return d?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const Zy=P({conv3d_:JF});function ZF(e,t,n,s,i){k(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,a=t,c=!1;t.rank===4&&(c=!0,a=K(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),o=[1,e[0],e[1],e[2],e[3]]);const h=o[4],d=a.shape[4];k(o.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${o.length}.`),k(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),k(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),k(h===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${h}) must match input depth for filter ${n.shape[3]}.`),k(d===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[4]}.`);const m=L=>{const T=1,A=Vl(o,n.shape,s,T,i);return L.conv3dDerInput(a,n,A)},y={dy:a},b={pad:i},w=V.runKernelFunc(m,y,null,sx,b);return c?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const _T=P({conv3DBackpropInput_:ZF});function QF(e,t,n,s,i){const o=W(e,"x","conv3dTranspose"),a=W(t,"filter","conv3dTranspose");return _T(n,o,a,s,i)}const e_=P({conv3dTranspose_:QF});function t_(e){const t=W(e,"x","cos"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.cos(t);return i([t]),o},n,null,da)}const Kl=P({cos_:t_});function n_(e){const t=W(e,"x","cosh"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.cosh(t);return i([t]),o},n,null,el)}const Rd=P({cosh_:n_});function s_(e,t=0,n=!1,s=!1){const i=W(e,"x","cumsum"),o=(h,d)=>{const m=kn([t],i.rank);let y=i;m!=null&&(y=Me(i,m));const b=ws(1,i.rank)[0];let w=h.cumsum(y,b,n,s);if(d([i]),m!=null){const L=Ml(m);w=Me(w,L)}return w},a={x:i},c={axis:t,exclusive:n,reverse:s};return V.runKernelFunc(o,a,null,mg,c)}const Od=P({cumsum_:s_});function i_(e,t,n="NHWC"){const s=W(e,"x","depthToSpace"),i=n==="NHWC"?s.shape[1]:s.shape[2],o=n==="NHWC"?s.shape[2]:s.shape[3],a=n==="NHWC"?s.shape[3]:s.shape[1];k(i*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${i} and ${t} for depthToSpace with input shape
${s.shape}`),k(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${o} and ${t} for depthToSpace with input shape
${s.shape}`),k(a%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${a} for depthToSpace with input shape ${s.shape}`);const c=m=>m.depthToSpace(s,t,n),h={x:s},d={blockSize:t,dataFormat:n};return V.runKernelFunc(c,h,null,rx,d)}const Qy=P({depthToSpace_:i_});function r_(e,t,n,s,i="NHWC",o=[1,1],a){const c=W(e,"x","depthwiseConv2d"),h=W(t,"filter","depthwiseConv2d");let d=c,m=!1;c.rank===3&&(m=!0,d=K(c,[1,c.shape[0],c.shape[1],c.shape[2]])),k(d.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${d.rank}.`),k(h.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),k(d.shape[3]===h.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a!=null&&k(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);const y=(T,A)=>{o==null&&(o=[1,1]),k(rn(n,o),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);const N=Ai(d.shape,h.shape,n,o,s,a,!0),E=T.depthwiseConv2D(d,h,N);return A([d,h]),E},b={x:d,filter:h},w={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a},L=V.runKernelFunc(y,b,null,fg,w);return m?K(L,[L.shape[1],L.shape[2],L.shape[3]]):L}const wo=P({depthwiseConv2d_:r_});function o_(e){const t=W(e,"x","diag"),n=i=>{const o=K(t,[t.size]),a=i.diag(o),c=[...e.shape,...e.shape];return K(a,c)},s={x:t};return V.runKernelFunc(n,s,null,cx)}const a_=P({diag_:o_});function c_(e,t,n,s,i=[1,1],o="NHWC"){const a=W(e,"x","dilation2d"),c=W(t,"filter","dilation2d");k(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),k(c.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${c.rank}.`),k(o==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${o}`);let h=a,d=!1;a.rank===3&&(h=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]),d=!0);const m={x:h,filter:c},y={strides:n,pad:s,dilations:i},b=V.runKernel(Uu,m,y);return d?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const eb=P({dilation2d_:c_});function Lo(e,t){const n=e.length,s=[];for(let i=0;i<n;i++){const o=n-1-i,a=e[o]||1,c=t[t.length-1-i]||1;c>1&&a===1&&s.unshift(o)}return s}function on(e,t){const n=[];for(let s=0;s<t.length;s++){const i=e[e.length-s-1],o=t.length-s-1,a=t[o];(i==null||i===1&&a>1)&&n.unshift(o)}return n}function tt(e,t){const n=[],s=Math.max(e.length,t.length);for(let i=0;i<s;i++){let o=e[e.length-i-1];o==null&&(o=1);let a=t[t.length-i-1];if(a==null&&(a=1),o===1)n.unshift(a);else if(a===1)n.unshift(o);else if(o!==a){const c=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(c)}else n.unshift(o)}return n}function l_(e,t){let n=W(e,"a","equal"),s=W(t,"b","equal");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=a=>a.equal(n,s),o={a:n,b:s};return V.runKernelFunc(i,o,null,hx)}const Zs=P({equal_:l_});function h_(e,t,n){const s=W(t,"a","where"),i=W(n,"b","where"),o=W(e,"condition","where","bool"),a=tt(s.shape,i.shape),c=jl(s,a),h=jl(i,a);o.rank===1&&k(o.shape[0]===s.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),o.rank!==1&&dt(o.shape,h.shape,"Error in where: ");const d=(y,b)=>{const w=y.select(o,c,h);return b([o]),w},m={condition:o,t:c,e:h};return V.runKernelFunc(d,m,null,Pg)}const _n=P({where_:h_});function u_(e){const t=W(e,"x","zerosLike"),n={x:t};return V.runKernelFunc(s=>s.zerosLike(t),n,null,jg)}const Qe=P({zerosLike_:u_});function d_(e,t){let n=W(e,"a","div"),s=W(t,"b","div");[n,s]=Bt(n,s);const i=_e(n,s),o=Qe(i),a=Zs(s,o);return _n(a,o,i)}const tb=P({divNoNan_:d_});function p_(e,t){const n=W(e,"t1","dot"),s=W(t,"t2","dot");k((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);const i=n.rank===1?n.size:n.shape[1],o=s.rank===1?s.size:s.shape[0];if(k(i===o,()=>`Error in dot: inner dimensions of inputs must match, but got ${i} and ${o}.`),n.rank===1&&s.rank===1){const a=K(n,[1,-1]),c=K(s,[-1,1]),h=at(a,c);return K(h,[])}else if(n.rank===1&&s.rank===2){const a=K(n,[1,-1]),c=K(s,[s.shape[0],s.shape[1]]),h=at(a,c);return K(h,[h.size])}else if(n.rank===2&&s.rank===1){const a=K(s,[-1,1]),c=at(n,a);return K(c,[c.size])}else{const a=K(s,[s.shape[0],s.shape[1]]),c=at(n,a);return c}}const WT=P({dot_:p_});function m_(e){const t=W(e,"x","elu"),n=(i,o)=>{const a=i.elu(t);return o([a]),a},s={x:t};return V.runKernelFunc(n,s,null,tl)}const So=P({elu_:m_});function f_(e){let t=W(e,"x","erf");k(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ve(t,"float32"));const n={x:t};return V.runKernelFunc((s,i)=>{const o=s.erf(t);return i([t]),o},n,null,nl)}const nb=P({erf_:f_});function g_(e){const t=W(e,"x","exp"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.exp(t);return i([o]),o},n,null,sl)}const Ls=P({exp_:g_});function y_(e,t=0){const n=null,s=W(e,"x","expandDims",n);k(t<=s.rank,()=>"Axis must be <= rank of the tensor");const i=s.shape.slice();return t<0&&(k(-(s.rank+1)<=t,()=>`Axis must be in the interval [${-(s.rank+1)}, ${s.rank}]`),t=s.rank+t+1),i.splice(t,0,1),K(s,i)}const Hn=P({expandDims_:y_});function b_(e){const t=W(e,"x","expm1"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.expm1(t);return i([t]),o},n,null,il)}const sb=P({expm1_:b_});function w_(e,t){const n=null,s=W(e,"x","tile",n);k(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of reps ${t}.`);const i=(h,d)=>{const m=h.tile(s,t);return d([s]),m},o=[s],a={x:s},c={reps:t};return V.runKernelFunc(i,a,null,Yg,c,o)}const Er=P({tile_:w_});function L_(e,t,n,s="float32"){t==null&&(t=e);const i=Ze([e,t],s),o=e<=t?e:t;for(let c=0;c<o;++c)i.set(1,c,c);const a=K(i.toTensor(),[e,t]);if(n==null)return a;if(n.length===1)return Er(Hn(a,0),[n[0],1,1]);if(n.length===2)return Er(Hn(Hn(a,0),0),[n[0],n[1],1,1]);if(n.length===3)return Er(Hn(Hn(Hn(a,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}const Ed=P({eye_:L_});function Xl(e,t,n){const s={shape:e,value:t,dtype:n};return V.runKernelFunc(i=>i.fill(e,t,n),{},null,ux,s)}function S_(e){const t=W(e,"x","floor"),n={x:t};return V.runKernelFunc(s=>s.floor(t),n,null,rl)}const Ra=P({floor_:S_});const ib=30;function Jl(e){return e<=ib?e:od(e,Math.floor(Math.sqrt(e)))}function I_(e,t){let n=!1,s;for(e<=ib?(s=e,n=!0):s=od(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=od(e,s+1);return s}function x_(e,t,n){const s=[],i=e.length;for(let o=0;o<i;o++)o!==t?s.push(e[o]):s.push(n);return s}function $T(e,t,n){const s=e.shape[n],i=[];let o=1,a=1;for(let c=0;c<n;c++)i.push(e.shape[c]),o*=e.shape[c];for(let c=0;c<t.rank;c++)i.push(t.shape[c]);for(let c=n+1;c<e.rank;c++)i.push(e.shape[c]),a*=e.shape[c];return{batchSize:o,sliceSize:a,dimSize:s,outputShape:i}}var T_=Object.freeze({__proto__:null,segOpComputeOptimalWindowSize:I_,computeOutShape:x_,collectGatherOpShapeInfo:$T});function A_(e,t,n=0){const s=W(e,"x","gather"),i=W(t,"indices","gather","int32"),o={x:s,indices:i},a={axis:n},c=(h,d)=>{const m=ft(n,s.shape)[0],y=$T(s,i,m),b=h.gather(s,K(i,[i.size]),m);return d([s,i]),K(b,y.outputShape)};return V.runKernelFunc(c,o,null,bg,a)}const Oa=P({gather_:A_});function v_(e,t){let n=W(e,"a","greater"),s=W(t,"b","greater");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=a=>a.greater(n,s),o={a:n,b:s};return V.runKernelFunc(i,o,null,px)}const Ss=P({greater_:v_});function N_(e,t){let n=W(e,"a","greaterEqual"),s=W(t,"b","greaterEqual");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=(a,c)=>{const h=a.greaterEqual(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,wg)}const Ki=P({greaterEqual_:N_});function C_(e){const t=W(e,"input","imag"),n=i=>i.imag(t),s={input:t};return V.runKernelFunc(n,s,null,Sg)}const Ea=P({imag_:C_});function R_(e){const t=W(e,"x","isFinite"),n={x:t};return V.runKernelFunc(s=>s.isFinite(t),n,null,cl)}const UT=P({isFinite_:R_});function O_(e){const t=W(e,"x","isInf"),n={x:t};return V.runKernelFunc(s=>s.isInf(t),n,null,ll)}const BT=P({isInf_:O_});function E_(e){const t=W(e,"x","isNaN"),n={x:t};return V.runKernelFunc(s=>s.isNaN(t),n,null,hl)}const MT=P({isNaN_:E_});function D_(e,t){let n=W(e,"a","maximum"),s=W(t,"b","maximum");[n,s]=Bt(n,s),n.dtype==="bool"&&(n=ve(n,"int32"),s=ve(s,"int32")),tt(n.shape,s.shape);const i=(a,c)=>{const h=a.maximum(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,Tg)}const _s=P({maximum_:D_});function Ne(e,t){if((wn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&wn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");const n=[],s=[];return vr(e,n,s,t)}function k_(e,t=.2){const n=W(e,"x","leakyRelu");return _s(X(Ne(t),n),n)}const Dd=P({leakyRelu_:k_});function F_(e,t){let n=W(e,"a","less"),s=W(t,"b","less");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=a=>a.less(n,s),o={a:n,b:s};return V.runKernelFunc(i,o,null,mx)}const Zl=P({less_:F_});function __(e,t){let n=W(e,"a","lessEqual"),s=W(t,"b","lessEqual");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=(a,c)=>{const h=a.lessEqual(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,fx)}const Dr=P({lessEqual_:__});function PT(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");const s={start:e,stop:t,num:n};return V.runKernelFunc(i=>i.linspace(e,t,n),{},null,gx,s)}function W_(e,t=5,n=1,s=1,i=.5){const o=W(e,"x","localResponseNormalization");k(o.rank===4||o.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${o.rank}.`),k(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let a=o,c=!1;o.rank===3&&(c=!0,a=K(o,[1,o.shape[0],o.shape[1],o.shape[2]]));const h=(b,w)=>{const L=b.localResponseNormalization4D(a,t,n,s,i);return w([a,L]),L},d={x:a},m={depthRadius:t,bias:n,alpha:s,beta:i},y=V.runKernelFunc(h,d,null,xg,m);return c?K(y,[y.shape[1],y.shape[2],y.shape[3]]):y}const rb=P({localResponseNormalization_:W_});function $_(e){const t=W(e,"x","log"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.log(t);return i([t]),o},n,null,ul)}const ts=P({log_:$_});function U_(e){const t=W(e,"x","log1p"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.log1p(t);return i([t]),o},n,null,dl)}const kd=P({log1p_:U_});function B_(e){return k(xr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{const s=W(t,"x","tf.grad",null),i=n!=null?W(n,"dy","tf.grad"):null;return V.tidy(()=>{const{value:o,grads:a}=V.gradients(()=>e(s),[s],i);return i!=null&&dt(o.shape,i.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Fd(a),a[0]})}}function M_(e){return k(xr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{k(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");const s=Ul(t,"args","tf.grads",null),i=n!=null?W(n,"dy","tf.grads"):null;return V.tidy(()=>{const{value:o,grads:a}=V.gradients(()=>e(...s),s,i);return i!=null&&dt(o.shape,i.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(a),a})}}function P_(e){return k(xr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{k(t instanceof Q,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),k(n==null||n instanceof Q,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");const{grads:s,value:i}=V.gradients(()=>e(t),[t],n);return Fd(s),{grad:s[0],value:i}}}function z_(e){return k(xr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{k(Array.isArray(t)&&t.every(i=>i instanceof Q),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),k(n==null||n instanceof Q,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");const s=V.gradients(()=>e(...t),t,n);return n!=null&&dt(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(s.grads),s}}function ob(e,t){k(xr(e),()=>"The f passed in variableGrads(f) must be a function"),k(t==null||Array.isArray(t)&&t.every(d=>d instanceof Wl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");const n=t!=null;if(!n){t=[];for(const d in V.registeredVariables)t.push(V.registeredVariables[d])}const s=n?t.filter(d=>!d.trainable):null,i=t.length;t=t.filter(d=>d.trainable),k(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${i} variables is trainable.`);const o=!0,{value:a,grads:c}=V.gradients(e,t,null,o);k(c.some(d=>d!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),k(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);const h={};return t.forEach((d,m)=>{c[m]!=null&&(h[d.name]=c[m])}),s!=null&&s.forEach(d=>h[d.name]=null),{value:a,grads:h}}function Ni(e){return V.customGrad(e)}function Fd(e){const t=e.filter(n=>n==null).length;if(t>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function G_(e){const t=W(e,"x","neg"),n={x:t};return V.runKernelFunc(s=>s.neg(t),n,null,Rg)}const Pt=P({neg_:G_});function V_(e){const t=W(e,"x","softplus"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.softplus(t);return i([t]),o},n,null,Tl)}const Da=P({softplus_:V_});function Y_(e){const t=W(e,"x","logSigmoid"),n=Ni(s=>{const i=Pt(Da(Pt(s))),o=a=>{const c=X(a,vi(Pt(s)));return c};return{value:i,gradFunc:o}});return n(t)}const zT=P({logSigmoid_:Y_});function H_(e,t=null,n=!1){const s=W(e,"x","max"),i=(c,h)=>{const d=ft(t,s.shape);let m=d;const y=kn(m,s.rank);let b=s;y!=null&&(b=Me(s,y),m=ws(m.length,b.rank));const w=c.max(b,m);y!=null&&b.dispose();let L=w;if(n){const T=Rn(L.shape,ft(t,s.shape));L=K(L,T),w.dispose()}return h([s,L]),L},o={x:s},a={reductionIndices:t,keepDims:n};return V.runKernelFunc(i,o,null,pl,a)}const qn=P({max_:H_});function q_(e,t){let n=W(e,"a","sub"),s=W(t,"b","sub");[n,s]=Bt(n,s);const i=(a,c)=>{const h=a.subtract(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,vl)}const Ce=P({sub_:q_});function j_(e,t=null,n=!1){let s=W(e,"x","sum");s.dtype==="bool"&&(s=ve(s,"int32"));const i=(c,h)=>{h([s]);const d=ft(t,s.shape),m=kn(d,s.rank);let y=d,b=s;m!=null&&(b=Me(s,m),y=ws(y.length,s.rank));let w=c.sum(b,y);if(n){const L=Rn(w.shape,d);w=K(w,L)}return w},o={x:s},a={axis:t,keepDims:n};return V.runKernelFunc(i,o,null,zg,a)}const Ue=P({sum_:j_});function K_(e,t=-1){const n=W(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);const s=(a,c)=>{const h=!0,d=qn(e,t,!0),m=Ce(e,d),y=Ce(ve(m,"float32"),ts(Ue(Ls(m),t,h)));return c([y]),y},i={logits:n},o={axis:t};return V.runKernelFunc(s,i,null,Ig,o)}const _d=P({logSoftmax_:K_});function X_(e,t=null,n=!1){const s=W(e,"x","logSumExp"),i=ft(t,s.shape),o=qn(s,i,!0),a=Ce(s,o),c=Ls(a),h=Ue(c,i),d=ts(h),m=be(K(o,d.shape),d);if(n){const y=Rn(m.shape,i);return K(m,y)}return m}const ab=P({logSumExp_:X_});function J_(e,t){const n=W(e,"a","logicalAnd","bool"),s=W(t,"b","logicalAnd","bool");tt(n.shape,s.shape);const i={a:n,b:s};return V.runKernelFunc(o=>o.logicalAnd(n,s),i,null,yx)}const Ws=P({logicalAnd_:J_});function Z_(e){const t=W(e,"x","logicalNot","bool"),n={x:t};return V.runKernelFunc(s=>s.logicalNot(t),n,null,zu)}const Ql=P({logicalNot_:Z_});function Q_(e,t){const n=W(e,"a","logicalOr","bool"),s=W(t,"b","logicalOr","bool");tt(n.shape,s.shape);const i={a:n,b:s};return V.runKernelFunc(o=>o.logicalOr(n,s),i,null,bx)}const Wd=P({logicalOr_:Q_});function eW(e,t){const n=W(e,"a","logicalXor","bool"),s=W(t,"b","logicalXor","bool");return tt(n.shape,s.shape),Ws(Wd(e,t),Ql(Ws(e,t)))}const GT=P({logicalXor_:eW});function tW(e,t,n,s,i){const o=W(e,"x","maxPool"),a=1;let c=o,h=!1;o.rank===3&&(h=!0,c=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),k(c.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${c.rank}.`),k(rn(n,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),i!=null&&k(Ut(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const d=(w,L)=>{const T=Fn(c.shape,t,n,1,s,i);let A;return T.filterWidth===1&&T.filterHeight===1&&ot(T.inShape,T.outShape)?A=c.clone():A=w.maxPool(c,T),L([c,A]),A},m={x:c},y={filterSize:t,strides:n,pad:s,dimRoundingMode:i},b=V.runKernelFunc(d,m,null,ml,y);return h?K(b,[b.shape[1],b.shape[2],b.shape[3]]):b}const eh=P({maxPool_:tW});function nW(e,t=[1,1,1],n,s,i,o="NDHWC",a){a==null?a=[1,1,1]:nn("dilations is deprecated, this field will be gone in v3.0.0.");const c=W(e,"x","maxPool3d");let h=c,d=!1;c.rank===4&&(d=!0,h=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),k(h.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${h.rank}.`),k(o==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${o}`),k(rn(n,a),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),i!=null&&k(Ut(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);const m=(L,T)=>{a==null&&(a=[1,1,1]);const A=Gl(h.shape,t,n,a,s,i,o),N=L.maxPool3d(h,A);return T([h,N]),N},y={x:h},b={filterSize:t,strides:n,pad:s,dimRoundingMode:i,dataFormat:o,dilations:a},w=V.runKernelFunc(m,y,null,Ag,b);return d?K(w,[w.shape[1],w.shape[2],w.shape[3],w.shape[4]]):w}const cb=P({maxPool3d_:nW});function sW(e,t,n,s,i=!1){const o=W(e,"x","maxPoolWithArgmax"),a={x:o},c={filterSize:t,strides:n,pad:s,includeBatchInIndex:i},h=V.runKernel(Vu,a,c);return{result:h[0],indexes:h[1]}}const VT=P({maxPoolWithArgmax_:sW});function ct(e,t="float32"){if(t==="complex64"){const s=ct(e,"float32"),i=ct(e,"float32");return xi(s,i)}const n=wa(we(e),t);return V.makeTensor(n,e,t)}function Qs(e,t="float32"){if(t==="complex64"){const s=Qs(e,"float32"),i=ct(e,"float32");return xi(s,i)}const n=oy(we(e),t);return V.makeTensor(n,e,t)}function iW(e,t=null,n=!1){const s=W(e,"x","mean"),i=ft(t,s.shape),o=Cn(s.shape,i),a=o[1],c=we(a),h=Ni(d=>{const m=Ne(c),y=m.dtype===d.dtype?d:ve(d,m.dtype),b=_e(y,m),w=Ue(b,t,n),L=T=>{const A=d.shape.slice();i.forEach(D=>{A[D]=1});const N=K(T,A),E=_e(X(N,Qs(d.shape,"float32")),c);return E};return{value:w,gradFunc:L}});return h(s)}const zt=P({mean_:iW});function rW(e,t=null,n=!1){const s=W(e,"x","min"),i=(c,h)=>{const d=ft(t,s.shape);let m=d;const y=kn(m,s.rank);let b=s;y!=null&&(b=Me(s,y),m=ws(m.length,s.rank));const w=c.min(b,m);y!=null&&b.dispose();let L=w;if(n){const T=Rn(L.shape,d);L=K(w,T),w.dispose()}return h([s,L]),L},o={x:s},a={axis:t,keepDims:n};return V.runKernelFunc(i,o,null,vg,a)}const ka=P({min_:rW});function oW(e,t){let n=W(e,"a","minimum"),s=W(t,"b","minimum");[n,s]=Bt(n,s),n.dtype==="bool"&&(n=ve(n,"int32"),s=ve(s,"int32")),tt(n.shape,s.shape);const i=(a,c)=>{const h=a.minimum(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,Ng)}const Io=P({minimum_:oW});function aW(e,t){let n=W(e,"a","mod"),s=W(t,"b","mod");[n,s]=Bt(n,s);const i=(a,c)=>{const h=a.mod(n,s);return c([n,s]),h},o={a:n,b:s};return V.runKernelFunc(i,o,null,Cg)}const $d=P({mod_:aW});function cW(e){const t=W(e,"x","square"),n={},s=[t],i=[];return V.runKernelFunc((o,a)=>(a([t]),o.square(t)),{x:t},null,"Square",n,s,i)}const wt=P({square_:cW});function lW(e,t=null,n=!1){e=W(e,"x","moments");const s=ft(t,e.shape),i=zt(e,s,n);let o=i.shape;n||(o=Rn(i.shape,s));const a=wt(Ce(ve(e,"float32"),K(i,o))),c=zt(a,s,n);return{mean:i,variance:c}}const Ud=P({moments_:lW});function hW(e,t,n,s){const i=W(t,"data","multiRNNCell"),o=Ul(n,"c","multiRNNCell"),a=Ul(s,"h","multiRNNCell");let c=i;const h=[];for(let y=0;y<e.length;y++){const b=e[y](c,o[y],a[y]);h.push(b[0]),h.push(b[1]),c=b[1]}const d=[],m=[];for(let y=0;y<h.length;y+=2)d.push(h[y]),m.push(h[y+1]);return[d,m]}const uW=P({multiRNNCell_:hW});function dW(e,t,n,s=!1){const i=W(e,"logits","multinomial"),o=i.size,a=i.rank;if(o<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${o}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);n=n||Math.random();const c=a===1?K(i,[1,-1]):i,h=V.runKernelFunc(d=>d.multinomial(c,s,t,n),{logits2D:c});return a===1?K(h,[h.size]):h}const YT=P({multinomial_:dW});function pW(e,t){let n=W(e,"a","notEqual"),s=W(t,"b","notEqual");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=a=>a.notEqual(n,s),o={a:n,b:s};return V.runKernelFunc(i,o,null,Yu)}const kr=P({notEqual_:pW});function mW(e){const t=W(e,"input","real"),n=i=>i.real(t),s={input:t};return V.runKernelFunc(n,s,null,_g)}const xo=P({real_:mW});function fW(e){const t=W(e,"x","onesLike"),n=(i,o)=>{if(t.dtype==="complex64"){const a=On(xo(t)),c=Qe(Ea(t));return xi(a,c)}return i.onesLike(t)},s={x:t};return V.runKernelFunc(n,s,null,Eg)}const On=P({onesLike_:fW});function gW(e,t){const n=W(e,"v1","outerProduct"),s=W(t,"v2","outerProduct");k(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);const i=K(n,[-1,1]),o=K(s,[1,-1]);return at(i,o)}const yW=P({outerProduct_:gW});function bW(e,t,n=0){const s=W(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");const i=(c,h)=>(h([s]),c.pad(s,t,n)),o={paddings:t,constantValue:n},a={x:s};return V.runKernelFunc(i,a,null,ju,o)}const Ci=P({pad_:bW});function wW(e,t,n=0){return k(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Ci(e,[t],n)}const LW=P({pad1d_:wW});function SW(e,t,n=0){return k(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ci(e,t,n)}const IW=P({pad2d_:SW});function xW(e,t,n=0){return k(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ci(e,t,n)}const TW=P({pad3d_:xW});function AW(e,t,n=0){return k(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Ci(e,t,n)}const vW=P({pad4d_:AW});function NW(e,t,n){const s=W(e,"x","spaceToBatchND");k(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),k(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),k(s.shape.reduce((c,h,d)=>d>0&&d<=t.length?c&&(h+n[d-1][0]+n[d-1][1])%t[d-1]===0:c,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);const i=c=>c.spaceToBatchND(s,t,n),o={x:s},a={blockShape:t,paddings:n};return V.runKernelFunc(i,o,null,Xu,a)}const th=P({spaceToBatchND_:NW});function CW(e,t,n,s,i,o){i==null&&(i=[1,1]),o==null&&(o=1),s===0&&(s="valid");const a=W(e,"x","maxPool");let c=a,h=!1;a.rank===3&&(h=!0,c=K(a,[1,a.shape[0],a.shape[1],a.shape[2]])),k(rn(o,i),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${o} and dilations '${i}'`);const d=Fn(c.shape,t,o,i,s),m=[d.dilationHeight,d.dilationWidth];let y;s==="same"?y=OW([d.filterHeight,d.filterWidth],m):y=[[0,0],[0,0]];const b=m[0]===1&&m[1]===1,[w,L]=RW([d.inHeight,d.inWidth],m,y),T=b?s:"valid",A=b?c:th(c,m,w),N=n==="avg"?()=>Hl(A,t,o,T):()=>eh(A,t,o,T),E=N(),D=b?E:ql(E,m,L);return h?K(D,[D.shape[1],D.shape[2],D.shape[3]]):D}function RW(e,t,n){const s=n.map(m=>m[0]),i=n.map(m=>m[1]),o=e.concat(s,i),a=t.map((m,y)=>(m-o[y]%m)%m),c=i.map((m,y)=>m+a[y]),h=t.map((m,y)=>[s[y],c[y]]),d=t.map((m,y)=>[0,a[y]]);return[h,d]}function OW(e,t){const n=e.map((a,c)=>a+(a-1)*(t[c]-1)),s=n.map(a=>a-1),i=s.map(a=>Math.floor(a/2)),o=s.map((a,c)=>a-i[c]);return s.map((a,c)=>[i[c],o[c]])}const HT=P({pool_:CW});function EW(e,t){let n=W(e,"base","pow"),s=W(t,"exp","pow");[n,s]=Bt(n,s);const i={a:n,b:s},o=(a,c)=>{const h=a.pow(n,s);return c([n,s,h]),h};return V.runKernelFunc(o,i,null,kg)}const ei=P({pow_:EW});function DW(e,t){const n=W(e,"x","prelu"),s=W(t,"alpha","prelu"),i=(a,c)=>{const h=a.prelu(n,s);return c([n,s]),h},o={x:n,alpha:s};return V.runKernelFunc(i,o,null,Fg)}const nh=P({prelu_:DW});function kW(e,t=null,n=!1){let s=W(e,"x","prod");const i=c=>{s.dtype==="bool"&&(s=ve(s,"int32"));const h=ft(t,s.shape),d=kn(h,s.rank);let m=h,y=s;d!=null&&(y=Me(s,d),m=ws(m.length,s.rank));let b=c.prod(y,m);if(n){const w=Rn(b.shape,h);b=K(b,w)}return b},o={x:s},a={axis:t,keepDims:n};return V.runKernelFunc(i,o,null,Sx,a)}const Bd=P({prod_:kW});function FW(e,t,n){const s=we(e);let i=null;if(n==null||n==="float32")i=new Float32Array(s);else if(n==="int32")i=new Int32Array(s);else if(n==="bool")i=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let o=0;o<s;o++)i[o]=t();return V.makeTensor(i,e,n)}const _W=P({rand_:FW});var Fa=typeof globalThis!="undefined"?globalThis:typeof window!="undefined"?window:typeof global!="undefined"?global:typeof self!="undefined"?self:{};function UZ(e){return e&&e.__esModule&&Object.prototype.hasOwnProperty.call(e,"default")?e.default:e}function To(e,t){return t={exports:{}},e(t,t.exports),t.exports}function BZ(e){return e&&e.default||e}function MZ(){throw new Error("Dynamic requires are not currently supported by @rollup/plugin-commonjs")}var WW=To(function(e){(function(t,n,s){function i(h){var d=this,m=c();d.next=function(){var y=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=y-(d.c=y|0)},d.c=1,d.s0=m(" "),d.s1=m(" "),d.s2=m(" "),d.s0-=m(h),d.s0<0&&(d.s0+=1),d.s1-=m(h),d.s1<0&&(d.s1+=1),d.s2-=m(h),d.s2<0&&(d.s2+=1),m=null}function o(h,d){return d.c=h.c,d.s0=h.s0,d.s1=h.s1,d.s2=h.s2,d}function a(h,d){var m=new i(h),y=d&&d.state,b=m.next;return b.int32=function(){return m.next()*4294967296|0},b.double=function(){return b()+(b()*2097152|0)*11102230246251565e-32},b.quick=b,y&&(typeof y=="object"&&o(y,m),b.state=function(){return o(m,{})}),b}function c(){var h=4022871197,d=function(m){m=m.toString();for(var y=0;y<m.length;y++){h+=m.charCodeAt(y);var b=.02519603282416938*h;h=b>>>0,b-=h,b*=h,h=b>>>0,b-=h,h+=b*4294967296}return(h>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.alea=a})(Fa,e,!1)}),$W=To(function(e){(function(t,n,s){function i(c){var h=this,d="";h.x=0,h.y=0,h.z=0,h.w=0,h.next=function(){var y=h.x^h.x<<11;return h.x=h.y,h.y=h.z,h.z=h.w,h.w^=h.w>>>19^y^y>>>8},c===(c|0)?h.x=c:d+=c;for(var m=0;m<d.length+64;m++)h.x^=d.charCodeAt(m)|0,h.next()}function o(c,h){return h.x=c.x,h.y=c.y,h.z=c.z,h.w=c.w,h}function a(c,h){var d=new i(c),m=h&&h.state,y=function(){return(d.next()>>>0)/4294967296};return y.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},y.int32=d.next,y.quick=y,m&&(typeof m=="object"&&o(m,d),y.state=function(){return o(d,{})}),y}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xor128=a})(Fa,e,!1)}),UW=To(function(e){(function(t,n,s){function i(c){var h=this,d="";h.next=function(){var y=h.x^h.x>>>2;return h.x=h.y,h.y=h.z,h.z=h.w,h.w=h.v,(h.d=h.d+362437|0)+(h.v=h.v^h.v<<4^(y^y<<1))|0},h.x=0,h.y=0,h.z=0,h.w=0,h.v=0,c===(c|0)?h.x=c:d+=c;for(var m=0;m<d.length+64;m++)h.x^=d.charCodeAt(m)|0,m==d.length&&(h.d=h.x<<10^h.x>>>4),h.next()}function o(c,h){return h.x=c.x,h.y=c.y,h.z=c.z,h.w=c.w,h.v=c.v,h.d=c.d,h}function a(c,h){var d=new i(c),m=h&&h.state,y=function(){return(d.next()>>>0)/4294967296};return y.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},y.int32=d.next,y.quick=y,m&&(typeof m=="object"&&o(m,d),y.state=function(){return o(d,{})}),y}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xorwow=a})(Fa,e,!1)}),BW=To(function(e){(function(t,n,s){function i(c){var h=this;h.next=function(){var m=h.x,y=h.i,b,w,L;return b=m[y],b^=b>>>7,w=b^b<<24,b=m[y+1&7],w^=b^b>>>10,b=m[y+3&7],w^=b^b>>>3,b=m[y+4&7],w^=b^b<<7,b=m[y+7&7],b=b^b<<13,w^=b^b<<9,m[y]=w,h.i=y+1&7,w};function d(m,y){var b,w,L=[];if(y===(y|0))w=L[0]=y;else for(y=""+y,b=0;b<y.length;++b)L[b&7]=L[b&7]<<15^y.charCodeAt(b)+L[b+1&7]<<13;for(;L.length<8;)L.push(0);for(b=0;b<8&&L[b]===0;++b);for(b==8?w=L[7]=-1:w=L[b],m.x=L,m.i=0,b=256;b>0;--b)m.next()}d(h,c)}function o(c,h){return h.x=c.x.slice(),h.i=c.i,h}function a(c,h){c==null&&(c=+new Date);var d=new i(c),m=h&&h.state,y=function(){return(d.next()>>>0)/4294967296};return y.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},y.int32=d.next,y.quick=y,m&&(m.x&&o(m,d),y.state=function(){return o(d,{})}),y}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xorshift7=a})(Fa,e,!1)}),MW=To(function(e){(function(t,n,s){function i(c){var h=this;h.next=function(){var m=h.w,y=h.X,b=h.i,w,L;return h.w=m=m+1640531527|0,L=y[b+34&127],w=y[b=b+1&127],L^=L<<13,w^=w<<17,L^=L>>>15,w^=w>>>12,L=y[b]=L^w,h.i=b,L+(m^m>>>16)|0};function d(m,y){var b,w,L,T,A,N=[],E=128;for(y===(y|0)?(w=y,y=null):(y=y+"\0",w=0,E=Math.max(E,y.length)),L=0,T=-32;T<E;++T)y&&(w^=y.charCodeAt((T+32)%y.length)),T===0&&(A=w),w^=w<<10,w^=w>>>15,w^=w<<4,w^=w>>>13,T>=0&&(A=A+1640531527|0,b=N[T&127]^=w+A,L=b==0?L+1:0);for(L>=128&&(N[(y&&y.length||0)&127]=-1),L=127,T=4*128;T>0;--T)w=N[L+34&127],b=N[L=L+1&127],w^=w<<13,b^=b<<17,w^=w>>>15,b^=b>>>12,N[L]=w^b;m.w=A,m.X=N,m.i=L}d(h,c)}function o(c,h){return h.i=c.i,h.w=c.w,h.X=c.X.slice(),h}function a(c,h){c==null&&(c=+new Date);var d=new i(c),m=h&&h.state,y=function(){return(d.next()>>>0)/4294967296};return y.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},y.int32=d.next,y.quick=y,m&&(m.X&&o(m,d),y.state=function(){return o(d,{})}),y}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.xor4096=a})(Fa,e,!1)}),PW=To(function(e){(function(t,n,s){function i(c){var h=this,d="";h.next=function(){var y=h.b,b=h.c,w=h.d,L=h.a;return y=y<<25^y>>>7^b,b=b-w|0,w=w<<24^w>>>8^L,L=L-y|0,h.b=y=y<<20^y>>>12^b,h.c=b=b-w|0,h.d=w<<16^b>>>16^L,h.a=L-y|0},h.a=0,h.b=0,h.c=2654435769|0,h.d=1367130551,c===Math.floor(c)?(h.a=c/4294967296|0,h.b=c|0):d+=c;for(var m=0;m<d.length+20;m++)h.b^=d.charCodeAt(m)|0,h.next()}function o(c,h){return h.a=c.a,h.b=c.b,h.c=c.c,h.d=c.d,h}function a(c,h){var d=new i(c),m=h&&h.state,y=function(){return(d.next()>>>0)/4294967296};return y.double=function(){do var b=d.next()>>>11,w=(d.next()>>>0)/4294967296,L=(b+w)/(1<<21);while(L===0);return L},y.int32=d.next,y.quick=y,m&&(typeof m=="object"&&o(m,d),y.state=function(){return o(d,{})}),y}n&&n.exports?n.exports=a:s&&s.amd?s(function(){return a}):this.tychei=a})(Fa,e,!1)}),Ao=To(function(e){(function(t,n){var s=this,i=256,o=6,a=52,c="random",h=n.pow(i,o),d=n.pow(2,a),m=d*2,y=i-1,b;function w(F,_,B){var $=[];_=_==!0?{entropy:!0}:_||{};var H=N(A(_.entropy?[F,D(t)]:F==null?E():F,3),$),q=new L($),J=function(){for(var re=q.g(o),ce=h,ue=0;re<d;)re=(re+ue)*i,ce*=i,ue=q.g(1);for(;re>=m;)re/=2,ce/=2,ue>>>=1;return(re+ue)/ce};return J.int32=function(){return q.g(4)|0},J.quick=function(){return q.g(4)/4294967296},J.double=J,N(D(q.S),t),(_.pass||B||function(re,ce,ue,he){return he&&(he.S&&T(he,q),re.state=function(){return T(q,{})}),ue?(n[c]=re,ce):re})(J,H,"global"in _?_.global:this==n,_.state)}n["seed"+c]=w;function L(F){var _,B=F.length,$=this,H=0,q=$.i=$.j=0,J=$.S=[];for(B||(F=[B++]);H<i;)J[H]=H++;for(H=0;H<i;H++)J[H]=J[q=y&q+F[H%B]+(_=J[H])],J[q]=_;($.g=function(re){for(var ce,ue=0,he=$.i,de=$.j,le=$.S;re--;)ce=le[he=y&he+1],ue=ue*i+le[y&(le[he]=le[de=y&de+ce])+(le[de]=ce)];return $.i=he,$.j=de,ue})(i)}function T(F,_){return _.i=F.i,_.j=F.j,_.S=F.S.slice(),_}function A(F,_){var B=[],$=typeof F,H;if(_&&$=="object")for(H in F)try{B.push(A(F[H],_-1))}catch(q){}return B.length?B:$=="string"?F:F+"\0"}function N(F,_){for(var B=F+"",$,H=0;H<B.length;)_[y&H]=y&($^=_[y&H]*19)+B.charCodeAt(H++);return D(_)}function E(){try{var F;return b&&(F=b.randomBytes)?F=F(i):(F=new Uint8Array(i),(s.crypto||s.msCrypto).getRandomValues(F)),D(F)}catch($){var _=s.navigator,B=_&&_.plugins;return[+new Date,s,B,s.screen,D(t)]}}function D(F){return String.fromCharCode.apply(0,F)}if(N(n.random(),t),e.exports){e.exports=w;try{b=require("crypto")}catch(F){}}})([],Math)});Ao.alea=WW,Ao.xor128=$W,Ao.xorwow=UW,Ao.xorshift7=BW,Ao.xor4096=MW,Ao.tychei=PW;var zW=Ao,_a=zW.alea;class lb{constructor(e,t,n,s,i){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);const o=i||Math.random();this.random=_a(o.toString())}nextValue(){if(!isNaN(this.nextVal)){const s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,i,o;do s=2*this.random()-1,i=2*this.random()-1,o=s*s+i*i;while(o>=1||o===0);const a=Math.sqrt(-2*Math.log(o)/o);e=this.mean+this.stdDev*s*a,t=this.mean+this.stdDev*i*a,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}}class GW{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;const i=s||Math.random();this.randu=_a(i.toString()),this.randn=new lb(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,i,o;for(;;){do s=this.randn.nextValue(),o=1+this.c*s;while(o<=0);if(o*=o*o,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-o+Math.log(o)),i=this.randu(),i<t||Math.log(i)<n)break}return o=1/this.beta*this.d*o,this.alpha<1&&(o*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(o)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}}class VW{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=_a(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}}function PZ(e){const t=e.length,n=qW(e),s=HW(e),i=t/6*(Math.pow(n,2)+.25*Math.pow(s-3,2)),o=5.991;if(i>o)throw new Error(`Invalid p-value for JB: ${i}`)}function zZ(e,t,n,s){s==null&&(s=Ld());const i=hb(e);Fy(i,t,s),Fy(YW(e,i),n,s)}function hb(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t/e.length}function YW(e,t){let n=0;for(let s=0;s<e.length;s++){const i=e[s]-t;n+=i*i}return Math.sqrt(n/e.length)}function HW(e){const t=hb(e),n=e.length;let s=0,i=0;for(let o=0;o<n;o++){const a=e[o]-t;s+=Math.pow(a,2),i+=Math.pow(a,4)}return 1/n*i/Math.pow(1/n*s,2)}function qW(e){const t=hb(e),n=e.length;let s=0,i=0;for(let o=0;o<n;o++){const a=e[o]-t;s+=Math.pow(a,2),i+=Math.pow(a,3)}return 1/n*i/Math.pow(1/(n-1)*s,3/2)}function jW(e,t,n=1,s="float32",i){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);const o=new GW(t,n,s,i),a=Ze(e,s);for(let c=0;c<a.values.length;c++)a.values[c]=o.nextValue();return a.toTensor()}const KW=P({randomGamma_:jW});function XW(e,t=0,n=1,s,i){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);const o=new lb(t,n,s,!1,i),a=Ze(e,s);for(let c=0;c<a.values.length;c++)a.values[c]=o.nextValue();return a.toTensor()}const ub=P({randomNormal_:XW});function JW(e,t=0,n=1,s="float32",i){const o=Ze(e,s),a=new VW(t,n,null,i);for(let c=0;c<o.values.length;c++)o.values[c]=a.nextValue();return o.toTensor()}const vo=P({randomUniform_:JW});function ns(e,t){ao(e);const n=Ii(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");const s=null;return vr(e,s,n,t)}function sh(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");const i=()=>{const a=e===t,c=e<t&&n<0,h=t<e&&n>1;if(a||c||h)return ct([0],s);const d=Math.abs(Math.ceil((t-e)/n)),m=wa(d,s);t<e&&n===1&&(n=-1),m[0]=e;for(let y=1;y<m.length;y++)m[y]=m[y-1]+n;return ns(m,s)},o={start:e,stop:t,step:n,dtype:s};return V.runKernelFunc(i,{},null,Ix,o)}function ZW(e){const t=W(e,"x","reciprocal"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.reciprocal(t);return i([t]),o},n,null,gl)}const db=P({reciprocal_:ZW});function QW(e){const t=W(e,"x","relu"),n=(i,o)=>(o([t]),t.dtype==="bool"?ve(t,"int32"):i.relu(t)),s={x:t};return V.runKernelFunc(n,s,null,Wg)}const Ri=P({relu_:QW});function e$(e){const t=W(e,"x","relu6"),n=(i,o)=>(o([t]),t.dtype==="bool"?ve(t,"int32"):i.relu6(t)),s={x:t};return V.runKernelFunc(n,s,null,Bg)}const pb=P({relu6_:e$});function t$(e,t){const n=W(e,"x","reverse"),s=a=>{const c=ft(t,n.shape);if(n.rank===0)return Cr(n);const h=a.reverse(n,c);return K(h,n.shape)},i={x:n},o={dims:t};return V.runKernelFunc(s,i,null,Mg,o)}const Is=P({reverse_:t$});function n$(e){const t=W(e,"x","reverse");return k(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Is(t,0)}const s$=P({reverse1d_:n$});function i$(e,t){const n=W(e,"x","reverse");return k(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Is(n,t)}const r$=P({reverse2d_:i$});function o$(e,t){const n=W(e,"x","reverse");return k(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Is(n,t)}const a$=P({reverse3d_:o$});function c$(e,t){const n=W(e,"x","reverse");return k(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Is(n,t)}const l$=P({reverse4d_:c$});function h$(e){const t=W(e,"x","round"),n={x:t};return V.runKernelFunc(s=>s.round(t),n,null,bl)}const mb=P({round_:h$});function u$(e){const t=W(e,"x","rsqrt"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.rsqrt(t);return i([t]),o},n,null,wl)}const Md=P({rsqrt_:u$});function d$(e){const t=W(e,"x","selu"),n=(i,o)=>{const a=i.selu(t);return o([t]),a},s={x:t};return V.runKernelFunc(n,s,null,Ll)}const Pd=P({selu_:d$});function p$(e,t,n,s,i,o=[1,1],a="NHWC"){const c=W(e,"x","separableConv2d"),h=W(t,"depthwiseFilter","separableConv2d"),d=W(n,"pointwiseFilter","separableConv2d");let m=c,y=!1;if(c.rank===3&&(y=!0,m=K(c,[1,c.shape[0],c.shape[1],c.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");k(m.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${m.rank}.`),k(h.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${h.rank}.`),k(d.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${h.rank}.`),k(d.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${d.shape[0]}.`),k(d.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${d.shape[1]}.`);const b=h.shape[2],w=h.shape[3];k(d.shape[2]===b*w,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${b*w}, but got ${d.shape[2]}.`);const L=wo(m,h,s,i,a,o),T=1,A=ji(L,d,T,"valid",a);return y?K(A,[A.shape[1],A.shape[2],A.shape[3]]):A}const fb=P({separableConv2d_:p$});async function m$(e,t){const n=W(e,"x","setdiff1d"),s=W(t,"y","setdiff1d");k(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),k(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),k(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);const i=await n.data(),o=await s.data(),a=new Set(o);let c=0;for(let m=0;m<i.length;m++)a.has(i[m])||c++;const h=new Ar([c],n.dtype),d=new Ar([c],"int32");for(let m=0,y=0;m<i.length;m++)a.has(i[m])||(h.values[y]=i[m],d.values[y]=m,y++);return[h.toTensor(),d.toTensor()]}const qT=m$;function f$(e){const t=W(e,"x","sign"),n={x:t};return V.runKernelFunc(s=>s.sign(t),n,null,Il)}const gb=P({sign_:f$});function g$(e){const t=W(e,"x","sin"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.sin(t);return i([t]),o},n,null,ma)}const zd=P({sin_:g$});function y$(e){const t=W(e,"x","sinh"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.sinh(t);return i([t]),o},n,null,Sl)}const Gd=P({sinh_:y$});function b$(e,t,n){const s=W(e,"x","slice1d");return k(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),nt(s,[t],[n])}const Vd=P({slice1d_:b$});function w$(e,t,n){const s=W(e,"x","slice2d");return k(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),nt(s,t,n)}const yb=P({slice2d_:w$});function L$(e,t,n){const s=W(e,"x","slice3d");return k(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),nt(s,t,n)}const Yd=P({slice3d_:L$});function S$(e,t,n){const s=W(e,"x","slice4d");return k(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),nt(s,t,n)}const ih=P({slice4d_:S$});function I$(e,t=-1){const n=W(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);const s={logits:n},i={dim:t};return V.runKernelFunc((o,a)=>{const c=o.softmax(n,t);return a([c]),c},s,null,Vg,i)}const No=P({softmax_:I$});function x$(e){k(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);const t={input:e};return V.runKernelFunc(n=>{const s=e.shape[e.shape.length-1],i=e.size/s,o=e.as2D(i,s),a=n.fft(o);return a.reshape(e.shape)},t,null,gg)}const rh=P({fft_:x$});function T$(e){k(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);const t={input:e};return V.runKernelFunc(n=>{const s=e.shape[e.shape.length-1],i=e.size/s,o=K(e,[i,s]),a=n.ifft(o);return K(a,e.shape)},t,null,Lg)}const Wa=P({ifft_:T$});function A$(e){const t=e.shape[e.shape.length-1],n=e.size/t;let s;if(t<=2){const i=K(e,[n,t]);s=Wa(i)}else{const i=[n,2*(t-1)],o=K(xo(e),[n,t]),a=K(Ea(e),[n,t]),c=Is(nt(o,[0,1],[n,t-2]),1),h=X(Is(nt(a,[0,1],[n,t-2]),1),Ne(-1)),d=Mt([o,c],1),m=Mt([a,h],1),y=K(xi(d,m),[i[0],i[1]]);s=Wa(y)}if(s=xo(s),e.rank===3&&e.shape[0]!==0){const i=s,o=e.shape[0];s=K(s,[o,s.shape[0]/o,s.shape[1]]),i.dispose()}return s}const Hd=P({irfft_:A$});function jT(e,t,n=0){let s=[];if(typeof t=="number")k(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{const i=t.reduce((a,c)=>(c===-1&&(a+=1),a),0);k(i<=1,()=>"There should be only one negative value in split array.");const o=t.indexOf(-1);if(o!==-1){const a=t.reduce((c,h)=>h>0?c+h:c);t[o]=e.shape[n]-a}k(e.shape[n]===t.reduce((a,c)=>a+c),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function v$(e,t,n=0){const s=W(e,"x","split"),i=(c,h)=>{const d=ft(n,s.shape)[0],m=jT(s,t,d);return c.split(s,m,d)},o={x:s},a={numOrSizeSplits:t,axis:n};return V.runKernelFunc(i,o,null,Gg,a)}const ss=P({split_:v$});function N$(e,t){k(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1];const s=e.size/n;let i;if(t!=null&&t<n){const L=e.shape.map(A=>0),T=e.shape.map(A=>A);T[e.shape.length-1]=t,i=nt(e,L,T),n=t}else if(t!=null&&t>n){const L=e.shape.map(T=>T);L[e.shape.length-1]=t-n,i=Mt([e,ct(L)],e.shape.length-1),n=t}else i=e;const o=Qe(i),a=K(xi(i,o),[s,n]),c=rh(a),h=Math.floor(n/2)+1,d=xo(c),m=Ea(c),y=ss(d,[h,n-h],d.shape.length-1),b=ss(m,[h,n-h],m.shape.length-1),w=i.shape.slice();return w[i.shape.length-1]=h,K(xi(y[0],b[0]),w)}const oh=P({rfft_:N$});function C$(e){const t=W(e,"x","sqrt"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.sqrt(t);return i([t]),o},n,null,Al)}const Ln=P({sqrt_:C$});function R$(e,t){let n=W(e,"a","squaredDifference"),s=W(t,"b","squaredDifference");[n,s]=Bt(n,s),tt(n.shape,s.shape);const i=(c,h)=>{const d=c.squaredDifference(n,s);return h([n,s]),d},o={a:n,b:s},a={};return V.runKernelFunc(i,o,null,fa,a)}const ah=P({squaredDifference_:R$});function O$(e,t){const n=W(e,"x","squeeze");return K(n,Sr(n.shape,t).newShape)}const Fr=P({squeeze_:O$});function E$(e,t=0){const n=Ul(e,"tensors","stack");if(k(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length===1)return Hn(n[0],t);const s=n[0].rank,i=n[0].shape,o=n[0].dtype;k(t<=s,()=>"Axis must be <= rank of the tensor"),n.forEach(c=>{dt(i,c.shape,"All tensors passed to stack must have matching shapes"),k(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});const a=n.map(c=>Hn(c,t));return Mt(a,t)}const is=P({stack_:E$});function D$(e,t=0){const n=W(e,"x","step"),s={x:n},i={alpha:t};return V.runKernelFunc(o=>o.step(n,t),s,null,Rl,i)}const $a=P({step_:D$});function k$(e,t,n,s,i=0,o=0,a=0,c=0,h=0){let d=W(e,"x","stridedSlice");const m=w=>{s==null&&(s=new Array(t.length));const L=yd(a);if(L.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&c!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");const T=d.rank-t.length,A=yd(c),N=d.shape.slice();A.forEach(J=>{t[J]=0,n[J]=1,N.splice(J,0,1)}),d=K(d,N);const{begin:E,end:D,strides:F}=fT(d.shape,L,T,t,n,s,i,o,a);t=E,n=D,s=F;const _=yd(h);_.forEach(J=>{n[J]=t[J]+1,s[J]=1});const B=bd(t,n,s),$=B.filter((J,re)=>_.indexOf(re)===-1),H=s.every(J=>J===1);if(H)return K(nt(d,t,B),$);const q=w.stridedSlice(d,t,n,s);return K(q,$)},y={x:d},b={begin:t,end:n,strides:s,beginMask:i,endMask:o,ellipsisMask:a,newAxisMask:c,shrinkAxisMask:h};return V.runKernelFunc(m,y,null,Nx,b)}const bb=P({stridedSlice_:k$});function F$(e){const t=W(e,"x","tan"),n={x:t};return V.runKernelFunc((s,i)=>{const o=s.tan(t);return i([t]),o},n,null,ga)}const wb=P({tan_:F$});function _r(e,t,n){if(ao(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");const s=Ii(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return vr(e,t,s,n)}function Ua(e,t,n){if(ao(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");const s=Ii(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return vr(e,t,s,n)}function _$(e,t,n){if(ao(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");const s=Ii(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return vr(e,t,s,n)}function W$(e,t,n){if(ao(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");const s=Ii(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,vr(e,t,s,n)}function $$(e,t=1,n=!0){const s=W(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");const i=s.shape[s.shape.length-1];if(t>i)throw new Error(`'k' passed to topk() must be <= the last dimension (${i}) but got ${t}`);const o={x:s},a={k:t,sorted:n},[c,h]=V.runKernelFunc(d=>d.topk(s,t,n),o,null,Cx,a);return{values:c,indices:h}}const Lb=P({topk_:$$});function U$(e,t=0,n=1,s,i){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");const o=new lb(t,n,s,!0,i),a=Ze(e,s);for(let c=0;c<a.values.length;c++)a.values[c]=o.nextValue();return a.toTensor()}const ch=P({truncatedNormal_:U$});function B$(e,t=0){const n=W(e,"x","unique",null);k(n.rank>0,()=>"The input tensor must be at least 1D");const s={x:n},i={axis:t},[o,a]=V.runKernel(Zu,s,i);return{values:o,indices:a}}const qd=P({unique_:B$});function M$(e,t,n){const s=W(e,"x","unsortedSegmentSum"),i=W(t,"segmentIds","unsortedSegmentSum","int32");k(Ut(n),()=>"numSegments must be of dtype int");const o={x:s,segmentIds:i},a={numSegments:n},c=(h,d)=>{const m=h.unsortedSegmentSum(s,i,n);return d([i]),m};return V.runKernelFunc(c,o,null,qg,a)}const Sb=P({unsortedSegmentSum_:M$});function P$(e,t=0){const n=W(e,"x","unstack");k(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`),t<0&&(t+=n.shape.length);const s={value:n},i={axis:t},o=a=>a.unstack(n,t);return V.runKernelFunc(o,s,null,Hg,i)}const Oi=P({unstack_:P$});function KT(e,t=!0,n,s){return V.makeVariable(e,t,n,s)}function jd(e,t){const n=[];for(let o=0;o<t.length;o++)t[o]&&n.push(o);const s=Ze(e,"int32"),i=Ze([n.length,e.length],"int32");for(let o=0;o<n.length;o++){const a=s.indexToLoc(n[o]),c=o*e.length;i.values.set(a,c)}return i.toTensor()}async function z$(e){const t=W(e,"condition","whereAsync","bool"),n=await t.data(),s=jd(t.shape,n);return e!==t&&t.dispose(),s}const Ib=z$;async function G$(e,t,n){const s=W(e,"tensor","boolMask"),i=W(t,"mask","boolMask","bool"),o=n==null?0:n,a=i.rank,c=s.shape;k(a>0,()=>"mask cannot be scalar"),dt(c.slice(o,o+a),i.shape,"mask's shape must match the first K dimensions of tensor's shape,");let h=1;for(let T=o;T<o+a;T++)h*=c[T];const d=c.slice(0,o).concat([h],c.slice(o+a)),m=K(s,d),y=K(i,[-1]),b=await Ib(y),w=Fr(b,[1]),L=Oa(m,w,o);return e!==s&&s.dispose(),t!==i&&i.dispose(),w.dispose(),m.dispose(),y.dispose(),b.dispose(),L}const V$=G$;function Y$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","notEqualStrict"),s=W(t,"b","notEqualStrict");return dt(n.shape,s.shape,"Error in notEqualStrict: "),kr(n,s)}function H$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","lessStrict"),s=W(t,"b","lessStrict");return dt(n.shape,s.shape,"Error in lessStrict: "),Zl(n,s)}function q$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","equalStrict"),s=W(t,"b","equalStrict");return dt(n.shape,s.shape,"Error in equalStrict: "),Zs(n,s)}function j$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","lessEqualStrict"),s=W(t,"b","lessEqualStrict");return dt(n.shape,s.shape,"Error in lessEqualStrict: "),Dr(n,s)}function K$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","greaterStrict"),s=W(t,"b","greaterStrict");return dt(n.shape,s.shape,"Error in greaterStrict: "),Ss(n,s)}function X$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","greaterEqualStrict"),s=W(t,"b","greaterEqualStrict");return dt(n.shape,s.shape,"Error in greaterEqualStrict: "),Ki(n,s)}const XT=P({equalStrict_:q$}),JT=P({greaterEqualStrict_:X$}),ZT=P({greaterStrict_:K$}),QT=P({lessEqualStrict_:j$}),eA=P({lessStrict_:H$}),tA=P({notEqualStrict_:Y$});function J$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","addStrict"),s=W(t,"b","addStrict");return dt(n.shape,s.shape,"Error in addStrict: "),be(n,s)}function Z$(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","subStrict"),s=W(t,"b","subStrict");return dt(n.shape,s.shape,"Error in subStrict: "),Ce(n,s)}function Q$(e,t){return nn("strict variants of ops have been deprecated and will be removed in future"),dt(e.shape,t.shape,"Error in powStrict: "),ei(e,t)}function eU(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","mul"),s=W(t,"b","mul");return dt(n.shape,s.shape,"Error in multiplyStrict: "),X(n,s)}function tU(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","div"),s=W(t,"b","div");return dt(n.shape,s.shape,"Error in divideStrict: "),_e(n,s)}function nU(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","modStrict"),s=W(t,"b","modStrict");return dt(n.shape,s.shape,"Error in modStrict: "),$d(n,s)}function sU(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","minimumStrict"),s=W(t,"b","minimumStrict");return dt(n.shape,s.shape,"Error in minimumStrict: "),Io(n,s)}function iU(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","maximumStrict"),s=W(t,"b","maximumStrict");return dt(n.shape,s.shape,"Error in maximumStrict: "),_s(n,s)}function rU(e,t){nn("strict variants of ops have been deprecated and will be removed in future");const n=W(e,"a","squaredDifferenceStrict"),s=W(t,"b","squaredDifferenceStrict");return dt(n.shape,s.shape,"Error in squaredDifferenceStrict: "),ah(n,s)}const nA=P({addStrict_:J$}),sA=P({divStrict_:tU}),iA=P({maximumStrict_:iU}),rA=P({minimumStrict_:sU}),oA=P({modStrict_:nU}),aA=P({mulStrict_:eU}),cA=P({powStrict_:Q$}),lA=P({squaredDifferenceStrict_:rU}),hA=P({subStrict_:Z$});function oU(e,t="euclidean",n=null,s=!1){e=W(e,"x","norm");const i=uA(e,t,n);let o=i.shape;if(s){const a=ft(n,e.shape);o=Rn(i.shape,a)}return K(i,o)}function uA(e,t,n=null){if(e.rank===0)return sn(e);if(e.rank!==1&&n===null)return uA(K(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ue(sn(e),n);if(t===Infinity)return qn(sn(e),n);if(t===-Infinity)return ka(sn(e),n);if(t==="euclidean"||t===2)return Ln(Ue(ei(sn(e),Ne(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return qn(Ue(sn(e),n[0]),n[1]-1);if(t===Infinity)return qn(Ue(sn(e),n[1]),n[0]);if(t===-Infinity)return ka(Ue(sn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Ln(Ue(wt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}const Kd=P({norm_:oU});function aU(e,t,n,s,i=!0){const o=W(e,"v","movingAverage"),a=W(t,"x","movingAverage"),c=W(n,"decay","movingAverage");Px(o,a),k(ot(o.shape,a.shape),()=>"Shape mismatch in v and x");const h=Ne(1),d=Ce(h,c);let m=X(Ce(a,o),d);if(i){k(s!=null,()=>"When using zeroDebias: true, step is required.");const y=W(s,"step","movingAverage");m=_e(m,Ce(h,ei(c,y)))}return be(o,m)}const cU=P({movingAverage_:aU});function lU(e,t,n){const s=W(e,"indices","scatterND","int32"),i=W(t,"updates","scatterND");Ry(i,s,n);const o=h=>h.scatterND(s,i,n),a={indices:s,updates:i},c={shape:n};return V.runKernelFunc(o,a,null,Ax,c)}const dA=P({scatterND_:lU});function hU(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);const i=e.rank>0?e.shape[0]:1,o=e.rank>1?e.shape[1]:1;if(n.length!==o)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${o}.`);const a=t.size;if(!(t.rank===0||t.rank===1&&a===i))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${i}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function uU(e,t,n,s=0){const i=W(e,"sparseIndices","sparseToDense","int32"),o=W(t,"sparseValues","sparseToDense"),a=W(s,"defaultValue","sparseToDense",o.dtype);hU(i,o,n,a);const c={sparseIndices:i,sparseValues:o,defaultValue:a},h={outputShape:n};return V.runKernelFunc(d=>d.sparseToDense(i,o,n,a),c,null,vx,h)}const xb=P({sparseToDense_:uU});function dU(e,t){const n=W(t,"indices","gatherND","int32"),s=W(e,"x","gatherND"),i=a=>a.gatherND(s,n),o={params:s,indices:n};return V.runKernelFunc(i,o,null,dx)}const pA=P({gatherND_:dU});function pU(e,t){if(t==null)return e.shape.slice();if(ot(e.shape,t))return t;if(e.shape.length===t.length){const n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function mU(e,t,n,s){const i=W(e,"x","dropout");if(k(i.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${i.dtype} tensor instead.`),k(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Q?i.clone():i;const o=pU(i,n),a=1-t,c=_e(Ra(be(vo(o,0,1,"float32",s),a)),a);return X(i,c)}const mA=P({dropout_:mU});function fA(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Tb(e,t,n){const s=1-e%2,i=new Float32Array(e);for(let o=0;o<e;++o){const a=2*Math.PI*o/(e+s-1);i[o]=t-n*Math.cos(a)}return ns(i,"float32")}async function fU(e,t,n=1){const s=W(e,"predictions","inTopK"),i=W(t,"targets","inTopK");k(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),k(s.rank-1===i.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${i.rank}`),dt(s.shape.slice(0,s.shape.length-1),i.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");const o=s.shape[s.shape.length-1];k(n>0&&n<=o,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${o}), but got ${n}`);const a=await s.data(),c=await i.data(),[h,d]=[a.length/o,o],m=bn("bool",h);for(let y=0;y<h;y++){const b=y*d,w=a.subarray(b,b+d),L=[];for(let T=0;T<w.length;T++)L.push({value:w[T],index:T});L.sort((T,A)=>A.value-T.value),m[y]=0;for(let T=0;T<n;T++)if(L[T].index===c[y]){m[y]=1;break}}return e!==s&&s.dispose(),t!==i&&i.dispose(),en(m,i.shape,"bool")}const gU=fU;function yU(e,t,n,s,i,o="NHWC",a){let c=e;e.rank===3&&(c=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let h=t;h.rank===3&&(h=K(t,[1,t.shape[0],t.shape[1],t.shape[2]])),k(c.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${c.shape}.`),k(h.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${h.shape}.`),k(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);const d=o==="NHWC"?c.shape[3]:c.shape[1],m=o==="NHWC"?h.shape[3]:h.shape[1];k(d===n[2],()=>`Error in conv2dDerFilter: depth of input ${d}) must match input depth in filter (${n[2]}.`),k(m===n[3],()=>`Error in conv2dDerFilter: depth of dy (${m}) must match output depth for filter (${n[3]}).`),a!=null&&k(Ut(i),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${i}.`);const y=L=>{const T=1,A=Yl(o),N=Ai(c.shape,n,s,T,i,a,!1,A);return L.conv2dDerFilter(c,h,N)},b={x:c,dy:h},w={strides:s,pad:i,dataFormat:o,dimRoundingMode:a};return V.runKernelFunc(y,b,null,tx,w)}const Ab=P({conv2DBackpropFilter_:yU});function Xd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return X(e,$a(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Jd(e,t){let n=t;const s=on(e.shape,t.shape);return s.length>0&&(n=Ue(n,s)),K(n,e.shape)}function Zd(e,t,n){if(t==="linear")return e;if(t==="relu")return Ri(e);if(t==="elu")return So(e);if(t==="relu6")return pb(e);if(t==="prelu")return nh(e,n);throw new Error(`Unknown fused activation ${t}.`)}const Qd=(e,t)=>{const n=e>0;return!n||t==="linear"};function bU({x:e,filter:t,strides:n,pad:s,dataFormat:i="NHWC",dilations:o=[1,1],dimRoundingMode:a,bias:c,activation:h="linear",preluActivationWeights:d}){if(h=h||"linear",Qd(V.state.gradientDepth,h)===!1){let _=ji(e,t,n,s,i,o,a);return c!=null&&(_=be(_,c)),Zd(_,h,d)}const m=W(e,"x","conv2d"),y=W(t,"filter","conv2d");let b=m,w=!1;m.rank===3&&(w=!0,b=K(m,[1,m.shape[0],m.shape[1],m.shape[2]])),k(b.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${b.rank}.`),k(y.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${y.rank}.`),a!=null&&k(Ut(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),k(b.shape[3]===y.shape[2],()=>`Error in conv2d: depth of input (${b.shape[3]}) must match input depth for filter ${y.shape[2]}.`),k(rn(n,o),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),k(i==="NHWC",()=>`Error in conv2d: got dataFormat of ${i} but only NHWC is currently supported.`);const L=Ai(b.shape,y.shape,n,o,s,a);let T;c!=null&&(T=W(c,"bias","fused conv2d"),[T]=Bt(T,m),tt(L.outShape,T.shape));let A;d!=null&&(A=W(d,"prelu weights","fused conv2d"));const N=(_,B)=>{const[$,H,q,J]=B,re=Xd(_,q,h);k(Rr(o),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);const ce=Jy(H.shape,re,$,n,s),ue=Ab(H,re,$.shape,n,s),he=[ce,ue];if(J!=null){const de=Jd(J,re);he.push(de)}return he},E=_=>{const B=_.fusedConv2d({input:b,filter:y,convInfo:L,bias:T,activation:h,preluActivationWeights:A});return B},D={x:b,filter:y,bias:T,preluActivationWeights:A},F={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a,activation:h};if(c==null){const _=Ni((B,$,H)=>{let q=V.runKernelFunc(E,D,null,Xg,F);return H([$,B,q]),w&&(q=K(q,[q.shape[1],q.shape[2],q.shape[3]])),{value:q,gradFunc:N}});return _(b,y)}else{const _=Ni((B,$,H,q)=>{let J=V.runKernelFunc(E,D,null,Xg,F);return q([$,B,J,H]),w&&(J=K(J,[J.shape[1],J.shape[2],J.shape[3]])),{value:J,gradFunc:N}});return _(b,y,T)}}const vb=P({fusedConv2d_:bU});function wU(e,t,n,s){let i=e;e.rank===3&&(i=K(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let o=t;o.rank===3&&(o=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]));const a=h=>h.depthwiseConv2DDerFilter(i,o,s),c={x:i,dy:o};return V.runKernelFunc(a,c,null,ox)}const gA=P({depthwiseConv2dNativeBackpropFilter_:wU});function LU(e,t,n,s){let i=t,o=!1;t.rank===3&&(o=!0,i=K(t,[1,t.shape[0],t.shape[1],t.shape[2]]));const a=d=>d.depthwiseConv2DDerInput(i,n,s),c={dy:i},h=V.runKernelFunc(a,c,null,ax);return o?K(h,[h.shape[1],h.shape[2],h.shape[3]]):h}const yA=P({depthwiseConv2dNativeBackpropInput_:LU});function SU({x:e,filter:t,strides:n,pad:s,dataFormat:i="NHWC",dilations:o=[1,1],dimRoundingMode:a,bias:c,activation:h="linear",preluActivationWeights:d}){if(Qd(V.state.gradientDepth,h)===!1){let _=wo(e,t,n,s,i,o,a);return c!=null&&(_=be(_,c)),Zd(_,h,d)}const m=W(e,"x","depthwiseConv2d"),y=W(t,"filter","depthwiseConv2d");let b=m,w=!1;m.rank===3&&(w=!0,b=K(m,[1,m.shape[0],m.shape[1],m.shape[2]])),k(b.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${b.rank}.`),k(y.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${y.rank}.`),k(b.shape[3]===y.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${b.shape[3]}) must match the inChannels dimension in filter ${y.shape[2]}.`),o==null&&(o=[1,1]),k(rn(n,o),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),a!=null&&k(Ut(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${s}.`);const L=Ai(b.shape,y.shape,n,o,s,a,!0);let T;c!=null&&(T=W(c,"bias","fused conv2d"),[T]=Bt(T,m),tt(L.outShape,T.shape));let A;d!=null&&(A=W(d,"prelu weights","fused depthwiseConv2d"));const N=(_,B)=>{k(Rr(o),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);const[$,H,q,J]=B,re=Xd(_,q,h),ce=yA(H.shape,re,$,L),ue=gA(H,re,$.shape,L);if(J!=null){const he=Jd(T,re);return[ce,ue,he]}return[ce,ue]},E=_=>{const B=_.fusedDepthwiseConv2D({input:b,filter:y,convInfo:L,bias:T,activation:h,preluActivationWeights:A});return B},D={x:b,filter:y,bias:T,preluActivationWeights:A},F={strides:n,pad:s,dataFormat:i,dilations:o,dimRoundingMode:a,activation:h};if(c==null){const _=Ni((B,$,H)=>{let q=V.runKernelFunc(E,D,null,Jg,F);return H([$,B,q]),w&&(q=K(q,[q.shape[1],q.shape[2],q.shape[3]])),{value:q,gradFunc:N}});return _(b,y)}else{const _=Ni((B,$,H,q)=>{let J=V.runKernelFunc(E,D,null,Jg,F);return q([$,B,J,H]),w&&(J=K(J,[J.shape[1],J.shape[2],J.shape[3]])),{value:J,gradFunc:N}});return _(b,y,T)}}const bA=P({fusedDepthwiseConv2d_:SU});function IU({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:i,activation:o="linear",preluActivationWeights:a}){if(Qd(V.state.gradientDepth,o)===!1){let J=at(e,t,n,s);return i!=null&&(J=be(J,i)),Zd(J,o,a)}let c=W(e,"a","fused matMul"),h=W(t,"b","fused matMul");[c,h]=Bt(c,h);const d=n?c.shape[c.rank-2]:c.shape[c.rank-1],m=s?h.shape[h.rank-1]:h.shape[h.rank-2],y=n?c.shape[c.rank-1]:c.shape[c.rank-2],b=s?h.shape[h.rank-2]:h.shape[h.rank-1],w=c.shape.slice(0,-2),L=h.shape.slice(0,-2),T=we(w),A=we(L);k(c.rank>=2&&h.rank>=2&&c.rank===h.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${c.rank} and ${h.rank}.`),k(ot(w,L),()=>`Error in fused matMul: outer dimensions (${w}) and (${L}) of Tensors with shapes ${c.shape} and ${h.shape} must match.`),k(d===m,()=>`Error in fused matMul: inner shapes (${d}) and (${m}) of Tensors with shapes ${c.shape} and ${h.shape} and transposeA=${n} and transposeB=${s} must match.`);const N=c.shape.slice(0,-2).concat([y,b]),E=n?K(c,[T,d,y]):K(c,[T,y,d]),D=s?K(h,[A,b,m]):K(h,[A,m,b]);let F;i!=null&&(F=W(i,"bias","fused matMul"),[F]=Bt(F,c),tt(N,F.shape));let _;a!=null&&(_=W(a,"prelu weights","fused matMul"));const B=(J,re)=>{const[ce,ue,he,de]=re,le=Xd(K(J,he.shape),he,o);let ye,pe;if(!n&&!s?(ye=at(le,ue,!1,!0),pe=at(ce,le,!0,!1)):!n&&s?(ye=at(le,ue,!1,!1),pe=at(le,ce,!0,!1)):n&&!s?(ye=at(ue,le,!1,!0),pe=at(ce,le,!1,!1)):(ye=at(ue,le,!0,!0),pe=at(le,ce,!0,!0)),i!=null){const Ie=Jd(de,le);return[ye,pe,Ie]}else return[ye,pe]},$=J=>{const re=J.fusedBatchMatMul({a:E,b:D,transposeA:n,transposeB:s,bias:F,activation:o,preluActivationWeights:_});return re},H={a:E,b:D,bias:F,preluActivationWeights:_},q={transposeA:n,transposeB:s,activation:o};if(i==null){const J=Ni((re,ce,ue)=>{const he=V.runKernelFunc($,H,null,Kg,q);return ue([re,ce,he]),{value:K(he,N),gradFunc:B}});return J(E,D)}else{const J=Ni((re,ce,ue,he)=>{const de=V.runKernelFunc($,H,null,Kg,q);return he([re,ce,de,ue]),{value:K(de,N),gradFunc:B}});return J(E,D,F)}}const ep=P({fusedMatMul_:IU});var xU=Object.freeze({__proto__:null,conv2d:vb,depthwiseConv2d:bA,matMul:ep});function TU(e){return Tb(e,.54,.46)}const AU=P({hammingWindow_:TU});function vU(e){return Tb(e,.5,.5)}const wA=P({hannWindow_:vU});function NU(e,t,n,s=!1,i=0){let o=0;const a=[];for(;o+t<=e.size;)a.push(nt(e,o,t)),o+=n;if(s)for(;o<e.size;){const c=o+t-e.size,h=Mt([nt(e,o,t-c),Xl([c],i)]);a.push(h),o+=n}return a.length===0?_r([],[0,t]):K(Mt(a),[a.length,t])}const LA=P({frame_:NU});function CU(e,t,n,s,i=wA){s==null&&(s=fA(t));const o=LA(e,t,n),a=X(o,i(t)),c=[];for(let h=0;h<o.shape[0];h++)c.push(oh(nt(a,[h,0],[1,t]),s));return Mt(c)}const RU=P({stft_:CU});function OU(e,t,n,s,i,o){const a=W(e,"image","cropAndResize"),c=W(t,"boxes","cropAndResize","float32"),h=W(n,"boxInd","cropAndResize","int32");i=i||"bilinear",o=o||0;const d=c.shape[0];k(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),k(c.rank===2&&c.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${d},4] but had shape ${c.shape}.`),k(h.rank===1&&h.shape[0]===d,()=>`Error in cropAndResize: boxInd must be have size [${d}] but had shape ${c.shape}.`),k(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),k(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),k(i==="bilinear"||i==="nearest",()=>`method must be bilinear or nearest, but was ${i}`);const m=L=>L.cropAndResize(a,c,h,s,i,o),y={image:a,boxes:c,boxInd:h},b={method:i,extrapolationValue:o,cropSize:s},w=V.runKernelFunc(m,y,null,ix,b);return w}const EU=P({cropAndResize_:OU});function DU(e){const t=W(e,"image","flipLeftRight","float32");k(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);const n={image:t},s=V.runKernel(Pu,n,{});return s}const kU=P({flipLeftRight_:DU});function FU(e,t,n=0,s=.5){const i=W(e,"image","rotateWithOffset","float32");k(i.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${i.rank}.`);const o={image:i},a={radians:t,fillValue:n,center:s},c=V.runKernel(ed,o,a);return c}const _U=P({rotateWithOffset_:FU});function Ba(e,t,n,s,i,o){s==null&&(s=.5),i==null&&(i=Number.NEGATIVE_INFINITY),o==null&&(o=0);const a=e.shape[0];return n=Math.min(n,a),k(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),k(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),k(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),k(t.rank===1,()=>"scores must be a 1D tensor"),k(t.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${t.shape[0]}`),k(0<=o&&o<=1,()=>`softNmsSigma must be in [0, 1], but was '${o}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:i,softNmsSigma:o}}function WU(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY){const o=W(e,"boxes","nonMaxSuppression"),a=W(t,"scores","nonMaxSuppression"),c=Ba(o,a,n,s,i);n=c.maxOutputSize,s=c.iouThreshold,i=c.scoreThreshold;const h={maxOutputSize:n,iouThreshold:s,scoreThreshold:i};return V.runKernelFunc(d=>d.nonMaxSuppression(o,a,n,s,i),{boxes:o,scores:a},null,Og,h)}const $U=P({nonMaxSuppression_:WU});function UU(e,t,n){const s=BU(e,t,n),i=s<0?-(s+1):s;e.splice(i,0,t)}function BU(e,t,n){return PU(e,t,n||MU)}function MU(e,t){return e>t?1:e<t?-1:0}function PU(e,t,n){let s=0,i=e.length,o=0,a=!1;for(;s<i;){o=s+(i-s>>>1);const c=n(t,e[o]);c>0?s=o+1:(i=o,a=!c)}return a?s:-s-1}function tp(e,t,n,s,i){return Nb(e,t,n,s,i,0).selectedIndices}function np(e,t,n,s,i,o){return Nb(e,t,n,s,i,0,!1,o,!0)}function sp(e,t,n,s,i,o){return Nb(e,t,n,s,i,o,!0)}function Nb(e,t,n,s,i,o,a=!1,c=!1,h=!1){const d=[];for(let A=0;A<t.length;A++)t[A]>i&&d.push({score:t[A],boxIndex:A,suppressBeginIndex:0});d.sort(SA);const m=o>0?-.5/o:0,y=[],b=[];for(;y.length<n&&d.length>0;){const A=d.pop(),{score:N,boxIndex:E,suppressBeginIndex:D}=A;if(N<i)break;let F=!1;for(let _=y.length-1;_>=D;--_){const B=zU(e,E,y[_]);if(B>=s){F=!0;break}if(A.score=A.score*GU(s,m,B),A.score<=i)break}A.suppressBeginIndex=y.length,F||(A.score===N?(y.push(E),b.push(A.score)):A.score>i&&UU(d,A,SA))}const w=y.length,L=n-w;c&&L>0&&(y.push(...new Array(L).fill(0)),b.push(...new Array(L).fill(0)));const T={selectedIndices:ns(y,"int32")};return a&&(T.selectedScores=ns(b,"float32")),h&&(T.validOutputs=Ne(w,"int32")),T}function zU(e,t,n){const s=e.subarray(t*4,t*4+4),i=e.subarray(n*4,n*4+4),o=Math.min(s[0],s[2]),a=Math.min(s[1],s[3]),c=Math.max(s[0],s[2]),h=Math.max(s[1],s[3]),d=Math.min(i[0],i[2]),m=Math.min(i[1],i[3]),y=Math.max(i[0],i[2]),b=Math.max(i[1],i[3]),w=(c-o)*(h-a),L=(y-d)*(b-m);if(w<=0||L<=0)return 0;const T=Math.max(o,d),A=Math.max(a,m),N=Math.min(c,y),E=Math.min(h,b),D=Math.max(N-T,0)*Math.max(E-A,0);return D/(w+L-D)}function GU(e,t,n){const s=Math.exp(t*n*n);return n<=e?s:0}function SA(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function VU(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY){const o=W(e,"boxes","nonMaxSuppressionAsync"),a=W(t,"scores","nonMaxSuppressionAsync"),c=Ba(o,a,n,s,i);n=c.maxOutputSize,s=c.iouThreshold,i=c.scoreThreshold;const h=await Promise.all([o.data(),a.data()]),d=h[0],m=h[1],y=tp(d,m,n,s,i);return o!==e&&o.dispose(),a!==t&&a.dispose(),y}const YU=VU;function HU(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=0){const a=W(e,"boxes","nonMaxSuppression"),c=W(t,"scores","nonMaxSuppression"),h=Ba(a,c,n,s,i,o);n=h.maxOutputSize,s=h.iouThreshold,i=h.scoreThreshold,o=h.softNmsSigma;const d={boxes:a,scores:c},m={maxOutputSize:n,iouThreshold:s,scoreThreshold:i,softNmsSigma:o},y=V.runKernel(qu,d,m);return{selectedIndices:y[0],selectedScores:y[1]}}const qU=P({nonMaxSuppressionWithScore_:HU});async function jU(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=0){const a=W(e,"boxes","nonMaxSuppressionAsync"),c=W(t,"scores","nonMaxSuppressionAsync"),h=Ba(a,c,n,s,i,o);n=h.maxOutputSize,s=h.iouThreshold,i=h.scoreThreshold,o=h.softNmsSigma;const d=await Promise.all([a.data(),c.data()]),m=d[0],y=d[1],b=sp(m,y,n,s,i,o);return a!==e&&a.dispose(),c!==t&&c.dispose(),b}const KU=jU;function XU(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=!1){const a=W(e,"boxes","nonMaxSuppression"),c=W(t,"scores","nonMaxSuppression"),h=Ba(a,c,n,s,i,null),d=h.maxOutputSize,m=h.iouThreshold,y=h.scoreThreshold,b={boxes:a,scores:c},w={maxOutputSize:d,iouThreshold:m,scoreThreshold:y,padToMaxOutputSize:o},L=V.runKernel(Hu,b,w);return{selectedIndices:L[0],validOutputs:L[1]}}const JU=P({nonMaxSuppressionPadded_:XU});async function ZU(e,t,n,s=.5,i=Number.NEGATIVE_INFINITY,o=!1){const a=W(e,"boxes","nonMaxSuppressionAsync"),c=W(t,"scores","nonMaxSuppressionAsync"),h=Ba(a,c,n,s,i,null),d=h.maxOutputSize,m=h.iouThreshold,y=h.scoreThreshold,[b,w]=await Promise.all([a.data(),c.data()]),L=np(b,w,d,m,y,o);return a!==e&&a.dispose(),c!==t&&c.dispose(),L}const QU=ZU;function eB(e,t,n=!1){const s=W(e,"images","resizeBilinear");k(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),k(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=K(s,[1,s.shape[0],s.shape[1],s.shape[2]]));const[a,c]=t,h=(b,w)=>(w([i]),b.resizeBilinear(i,a,c,n)),d={images:i},m={alignCorners:n,size:t},y=V.runKernelFunc(h,d,null,Ug,m);return o?K(y,[y.shape[1],y.shape[2],y.shape[3]]):y}const IA=P({resizeBilinear_:eB});function tB(e,t,n=!1){const s=W(e,"images","resizeNearestNeighbor");k(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),k(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),k(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let i=s,o=!1;s.rank===3&&(o=!0,i=K(s,[1,s.shape[0],s.shape[1],s.shape[2]]));const[a,c]=t,h={images:i},d={alignCorners:n,size:t},m=(b,w)=>(w([i]),b.resizeNearestNeighbor(i,a,c,n)),y=V.runKernelFunc(m,h,null,$g,d);return o?K(y,[y.shape[1],y.shape[2],y.shape[3]]):y}const xA=P({resizeNearestNeighbor_:tB});function nB(e,t,n){k(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),k(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);const s=W(e,"a","bandPart");k(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);const i=s.shape,[o,a]=s.shape.slice(-2);if(!(t<=o))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${o}).`);if(!(n<=a))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${a}).`);t<0&&(t=o),n<0&&(n=a);const c=K(sh(0,o,1,"int32"),[-1,1]),h=sh(0,a,1,"int32"),d=Ce(c,h),m=Ws(Dr(d,Ne(+t,"int32")),Ki(d,Ne(-n,"int32"))),y=ct([o,a],s.dtype);return K(is(Oi(K(s,[-1,o,a])).map(b=>_n(m,b,y))),i)}const sB=P({bandPart_:nB});function iB(e){let t;if(Array.isArray(e)){t=!1,k(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");const i=e[0].shape[0];for(let o=1;o<e.length;++o)k(e[o].shape[0]===i,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[o].shape[0]} vs. ${i})`)}else t=!0,e=ss(e,e.shape[0],0).map(i=>Fr(i,[0]));k(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);const n=[],s=e;for(let i=0;i<e.length;++i)n.push(V.tidy(()=>{let o=s[i];if(i>0)for(let a=0;a<i;++a){const c=X(Ue(X(n[a],o)),n[a]);o=Ce(o,c)}return _e(o,Kd(o,"euclidean"))}));return t?is(n,0):n}const rB=P({gramSchmidt_:iB});function oB(e,t=!1){if(k(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return TA(e,t);{const n=e.shape.slice(0,e.shape.length-2).reduce((h,d)=>h*d),s=Oi(K(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),i=[],o=[];s.forEach(h=>{const[d,m]=TA(h,t);i.push(d),o.push(m)});const a=K(is(i,0),e.shape),c=K(is(o,0),e.shape);return[a,c]}}function TA(e,t=!1){return V.tidy(()=>{k(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);const n=e.shape[0],s=e.shape[1];let i=Ed(n),o=Cr(e);const a=_r([[1]],[1,1]);let c=Cr(a);const h=n>=s?s:n;for(let d=0;d<h;++d){const m=o,y=c,b=i;[c,o,i]=V.tidy(()=>{const w=nt(o,[d,d],[n-d,1]),L=Kd(w),T=nt(o,[d,d],[1,1]),A=_n(Ss(T,0),_r([[-1]]),_r([[1]])),N=Ce(T,X(A,L)),E=_e(w,N);E.shape[0]===1?c=Cr(a):c=Mt([a,nt(E,[1,0],[E.shape[0]-1,E.shape[1]])],0);const D=Pt(_e(at(A,N),L)),F=nt(o,[d,0],[n-d,s]),_=X(D,c),B=Me(c);if(d===0)o=Ce(F,at(_,at(B,F)));else{const q=Ce(F,at(_,at(B,F)));o=Mt([nt(o,[0,0],[d,s]),q],0)}const $=Me(_),H=nt(i,[0,d],[n,i.shape[1]-d]);if(d===0)i=Ce(H,at(at(H,c),$));else{const q=Ce(H,at(at(H,c),$));i=Mt([nt(i,[0,0],[n,d]),q],1)}return[c,o,i]}),He([m,y,b])}return!t&&n>s&&(i=nt(i,[0,0],[n,s]),o=nt(o,[0,0],[s,s])),[i,o]})}const aB=P({qr_:oB});(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(r.Reduction||(r.Reduction={}));function cB(e,t,n=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const s=W(e,"losses","computeWeightedLoss");let i=null;t!=null&&(i=W(t,"weights","computeWeightedLoss"));const o=i==null?s:X(s,i);if(n===r.Reduction.NONE)return o;if(n===r.Reduction.SUM)return Ue(o);if(n===r.Reduction.MEAN){if(i==null)return zt(o);{const a=s.size/i.size,c=_e(Ue(o),Ue(i));return a>1?_e(c,Ne(a)):c}}if(n===r.Reduction.SUM_BY_NONZERO_WEIGHTS){if(i==null)return _e(Ue(o),Ne(s.size));{const a=X(i,Qs(s.shape)),c=ve(Ue(kr(a,Ne(0))),"float32");return _e(Ue(o),c)}}throw Error(`Unknown reduction: ${n}`)}const Xi=P({computeWeightedLoss_:cB});function lB(e,t,n,s=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const i=W(e,"labels","absoluteDifference"),o=W(t,"predictions","absoluteDifference");let a=null;n!=null&&(a=W(n,"weights","absoluteDifference")),dt(i.shape,o.shape,"Error in absoluteDifference: ");const c=sn(Ce(i,o));return Xi(c,a,s)}const hB=P({absoluteDifference_:lB});function uB(e,t,n,s,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const o=W(e,"labels","cosineDistance"),a=W(t,"predictions","cosineDistance");let c=null;s!=null&&(c=W(s,"weights","cosineDistance")),dt(o.shape,a.shape,"Error in cosineDistance: ");const h=Ne(1),d=Ce(h,Ue(X(o,a),n,!0));return Xi(d,c,i)}const dB=P({cosineDistance_:uB});function pB(e,t,n,s=r.Reduction.SUM_BY_NONZERO_WEIGHTS){let i=W(e,"labels","hingeLoss");const o=W(t,"predictions","hingeLoss");let a=null;n!=null&&(a=W(n,"weights","hingeLoss")),dt(i.shape,o.shape,"Error in hingeLoss: ");const c=Ne(1);i=Ce(X(Ne(2),i),c);const h=Ri(Ce(c,X(i,o)));return Xi(h,a,s)}const mB=P({hingeLoss_:pB});function fB(e,t,n,s=1,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const o=W(e,"labels","huberLoss"),a=W(t,"predictions","huberLoss");let c=null;n!=null&&(c=W(n,"weights","huberLoss")),dt(o.shape,a.shape,"Error in huberLoss: ");const h=Ne(s),d=sn(Ce(a,o)),m=Io(d,h),y=Ce(d,m),b=be(X(Ne(.5),wt(m)),X(h,y));return Xi(b,c,i)}const gB=P({huberLoss_:fB});function yB(e,t,n,s=1e-7,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const o=W(e,"labels","logLoss"),a=W(t,"predictions","logLoss");let c=null;n!=null&&(c=W(n,"weights","logLoss")),dt(o.shape,a.shape,"Error in logLoss: ");const h=Ne(1),d=Ne(s),m=Pt(X(o,ts(be(a,d)))),y=X(Ce(h,o),ts(be(Ce(h,a),d))),b=Ce(m,y);return Xi(b,c,i)}const bB=P({logLoss_:yB});function wB(e,t,n,s=r.Reduction.SUM_BY_NONZERO_WEIGHTS){const i=W(e,"labels","meanSquaredError"),o=W(t,"predictions","meanSquaredError");let a=null;n!=null&&(a=W(n,"weights","meanSquaredError")),dt(i.shape,o.shape,"Error in meanSquaredError: ");const c=ah(i,o);return Xi(c,a,s)}const LB=P({meanSquaredError_:wB});function SB(e,t){const n=W(e,"labels","sigmoidCrossEntropyWithLogits"),s=W(t,"logits","sigmoidCrossEntropyWithLogits");dt(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");const i=Ri(s),o=X(s,n),a=kd(Ls(Pt(sn(s))));return be(Ce(i,o),a)}function IB(e,t,n,s=0,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=W(e,"multiClassLabels","sigmoidCrossEntropy");const a=W(t,"logits","sigmoidCrossEntropy");let c=null;if(n!=null&&(c=W(n,"weights","sigmoidCrossEntropy")),dt(o.shape,a.shape,"Error in sigmoidCrossEntropy: "),s>0){const d=Ne(s),m=Ne(1),y=Ne(.5);o=be(X(o,Ce(m,d)),X(y,d))}const h=SB(o,a);return Xi(h,c,i)}const xB=P({sigmoidCrossEntropy_:IB});function TB(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);const s=Ni((i,o,a)=>{const c=!0,h=ab(o,[n],c),d=Ce(ve(o,"float32"),h);a([i,d]);const m=Pt(X(d,i)),y=Ue(m,[n]),b=(w,L)=>{const[T,A]=L,N=Rn(w.shape,[n]);return[X(K(w,N),Ce(ve(T,"float32"),Ls(A))),X(K(w,N),Ce(Ls(A),ve(T,"float32")))]};return{value:y,gradFunc:b}});return s(e,t)}function AB(e,t,n,s=0,i=r.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=W(e,"onehotLabels","softmaxCrossEntropy");const a=W(t,"logits","softmaxCrossEntropy");let c=null;if(n!=null&&(c=W(n,"weights","softmaxCrossEntropy")),dt(o.shape,a.shape,"Error in softmaxCrossEntropy: "),s>0){const d=Ne(s),m=Ne(1),y=Ne(o.shape[1]);o=be(X(o,Ce(m,d)),_e(d,y))}const h=TB(o,a);return Xi(h,c,i)}const vB=P({softmaxCrossEntropy_:AB});const NB={fft:rh,ifft:Wa,rfft:oh,irfft:Hd},CB={hammingWindow:AU,hannWindow:wA,frame:LA,stft:RU},Wr={flipLeftRight:kU,resizeNearestNeighbor:xA,resizeBilinear:IA,rotateWithOffset:_U,cropAndResize:EU,nonMaxSuppression:$U,nonMaxSuppressionAsync:YU,nonMaxSuppressionWithScore:qU,nonMaxSuppressionWithScoreAsync:KU,nonMaxSuppressionPadded:JU,nonMaxSuppressionPaddedAsync:QU},AA={bandPart:sB,gramSchmidt:rB,qr:aB},RB={absoluteDifference:hB,computeWeightedLoss:Xi,cosineDistance:dB,hingeLoss:mB,huberLoss:gB,logLoss:bB,meanSquaredError:LB,sigmoidCrossEntropy:xB,softmaxCrossEntropy:vB};class Ji extends go{minimize(e,t=!1,n){const{value:s,grads:i}=this.computeGradients(e,n);if(n!=null){const o=n.map(a=>({name:a.name,tensor:i[a.name]}));this.applyGradients(o)}else this.applyGradients(i);return He(i),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return ob(e,t)}dispose(){this.iterations_!=null&&He(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ne(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}}Object.defineProperty(Ji,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});class lh extends Ji{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=V.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=V.registeredVariables[n],o=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:ee(()=>Qe(i).variable(o))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:ee(()=>Qe(i).variable(o))});const a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;const c=this.accumulatedGrads[s].variable,h=this.accumulatedUpdates[s].variable;ee(()=>{const d=be(X(c,this.rho),X(wt(a),1-this.rho)),m=X(_e(Ln(be(h,this.epsilon)),Ln(be(c,this.epsilon))),a),y=be(X(h,this.rho),X(wt(m),1-this.rho));c.assign(d),h.assign(y);const b=be(X(m,-this.learningRate),i);i.assign(b)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(He(this.accumulatedGrads.map(e=>e.variable)),He(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){const e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}}lh.className="Adadelta",me(lh);class hh extends Ji{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=V.registeredVariables[n];if(this.accumulatedGrads[s]==null){const c=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:ee(()=>Xl(i.shape,this.initialAccumulatorValue).variable(c))}}const o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;const a=this.accumulatedGrads[s].variable;ee(()=>{const c=be(a,wt(o));a.assign(c);const h=be(X(_e(o,Ln(be(c,V.backend.epsilon()))),-this.learningRate),i);i.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&He(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}}hh.className="Adagrad",me(hh);class uh extends Ji{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],ee(()=>{this.accBeta1=Ne(t).variable(),this.accBeta2=Ne(n).variable()}),s==null&&(this.epsilon=V.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);ee(()=>{const n=Ce(1,this.accBeta1),s=Ce(1,this.accBeta2);t.forEach((i,o)=>{const a=V.registeredVariables[i],c=!1;this.accumulatedFirstMoment[o]==null&&(this.accumulatedFirstMoment[o]={originalName:`${i}/m`,variable:ee(()=>Qe(a).variable(c))}),this.accumulatedSecondMoment[o]==null&&(this.accumulatedSecondMoment[o]={originalName:`${i}/v`,variable:ee(()=>Qe(a).variable(c))});const h=Array.isArray(e)?e[o].tensor:e[i];if(h==null)return;const d=this.accumulatedFirstMoment[o].variable,m=this.accumulatedSecondMoment[o].variable,y=be(X(d,this.beta1),X(h,1-this.beta1)),b=be(X(m,this.beta2),X(wt(h),1-this.beta2)),w=_e(y,n),L=_e(b,s);d.assign(y),m.assign(b);const T=be(X(_e(w,be(Ln(L),this.epsilon)),-this.learningRate),a);a.assign(T)}),this.accBeta1.assign(X(this.accBeta1,this.beta1)),this.accBeta2.assign(X(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&He(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&He(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){const e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),ee(()=>{this.accBeta1.assign(ei(this.beta1,this.iterations_+1)),this.accBeta2.assign(ei(this.beta2,this.iterations_+1))});const t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}}uh.className="Adam",me(uh);class dh extends Ji{constructor(e,t,n,s=null,i=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=i,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],ee(()=>{this.iteration=Ne(0).variable(),this.accBeta1=Ne(t).variable()}),s==null&&(this.epsilon=V.backend.epsilon())}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);ee(()=>{const n=Ce(1,this.accBeta1),s=_e(-this.learningRate,be(X(this.iteration,this.decay),1));t.forEach((i,o)=>{const a=V.registeredVariables[i],c=!1;this.accumulatedFirstMoment[o]==null&&(this.accumulatedFirstMoment[o]={originalName:`${i}/m`,variable:Qe(a).variable(c)}),this.accumulatedWeightedInfNorm[o]==null&&(this.accumulatedWeightedInfNorm[o]={originalName:`${i}/v`,variable:Qe(a).variable(c)});const h=Array.isArray(e)?e[o].tensor:e[i];if(h==null)return;const d=this.accumulatedFirstMoment[o].variable,m=this.accumulatedWeightedInfNorm[o].variable,y=be(X(d,this.beta1),X(h,1-this.beta1)),b=X(m,this.beta2),w=sn(h),L=_s(b,w);d.assign(y),m.assign(L);const T=be(X(_e(s,n),_e(y,be(L,this.epsilon))),a);a.assign(T)}),this.iteration.assign(be(this.iteration,1)),this.accBeta1.assign(X(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&He(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&He(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}}dh.className="Adamax",me(dh);class Ma extends Ji{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;const o=V.registeredVariables[n];ee(()=>{const a=be(X(this.c,i),o);o.assign(a)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Nn(Ne(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}}Ma.className="SGD",me(Ma);class ph extends Ma{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ne(this.momentum)}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=V.registeredVariables[n];if(this.accumulations[s]==null){const c=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:ee(()=>Qe(i).variable(c))}}const o=this.accumulations[s].variable,a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;ee(()=>{let c;const h=be(X(this.m,o),a);this.useNesterov?c=be(X(this.c,be(a,X(h,this.m))),i):c=be(X(this.c,h),i),o.assign(h),i.assign(c)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&He(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}}ph.className="Momentum",me(ph);class mh extends Ji{constructor(e,t=.9,n=0,s=null,i=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=i,s==null&&(this.epsilon=V.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){const t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);t.forEach((n,s)=>{const i=V.registeredVariables[n],o=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:ee(()=>Qe(i).variable(o))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:ee(()=>Qe(i).variable(o))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:ee(()=>Qe(i).variable(o))});const a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;const c=this.accumulatedMeanSquares[s].variable,h=this.accumulatedMoments[s].variable;ee(()=>{const d=be(X(c,this.decay),X(wt(a),1-this.decay));if(this.centered){const m=this.accumulatedMeanGrads[s].variable,y=be(X(m,this.decay),X(a,1-this.decay)),b=_e(X(a,this.learningRate),Ln(Ce(d,be(wt(y),this.epsilon)))),w=be(X(h,this.momentum),b);c.assign(d),m.assign(y),h.assign(w);const L=Ce(i,w);i.assign(L)}else{const m=be(X(c,this.decay),X(wt(a),1-this.decay)),y=be(X(h,this.momentum),_e(X(a,this.learningRate),Ln(be(m,this.epsilon))));c.assign(m),h.assign(y);const b=Ce(i,y);i.assign(b)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&He(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&He(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&He(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){const e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);const t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}}mh.className="RMSProp",me(mh);class Co{static sgd(e){return new Ma(e)}static momentum(e,t,n=!1){return new ph(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,i=!1){return new mh(e,t,n,s,i)}static adam(e=.001,t=.9,n=.999,s=null){return new uh(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new lh(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,i=0){return new dh(e,t,n,s,i)}static adagrad(e,t=.1){return new hh(e,t)}}const Ro={sgd:Co.sgd,momentum:Co.momentum,adadelta:Co.adadelta,adagrad:Co.adagrad,rmsprop:Co.rmsprop,adamax:Co.adamax,adam:Co.adam};const OB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ip(){return new Promise(e=>OB(()=>e()))}function Cb(e,t,n){const s=n*(typeof e=="number"?e:e[0]),i=t*(typeof e=="number"?e:e[1]);return[s,i]}function fh(e,t,n,s=!0){let i=[];if(s)i=i.concat(t.slice(0)),i.push(e[0]/n),i=i.concat(e.slice(1));else{i=i.concat(e[0]);const o=t.length;for(let a=0;a<o;++a)i=i.concat([e[a+1]/t[a],t[a]]);i=i.concat(e.slice(o+1))}return i}function gh(e,t,n=!0){const s=[];if(n){s.push(t);for(let i=t+1;i<e;++i)i<=2*t?(s.push(i),s.push(i-(t+1))):s.push(i)}else{const i=[],o=[];for(let a=1;a<e;++a)a>=t*2+1||a%2===1?o.push(a):i.push(a);s.push(...i),s.push(0),s.push(...o)}return s}function yh(e,t,n,s=!0){const i=[];s?i.push(e[0]/n):i.push(e[0]*n);for(let o=1;o<e.length;++o)o<=t.length?s?i.push(t[o-1]*e[o]):i.push(e[o]/t[o-1]):i.push(e[o]);return i}function Rb(e,t){const n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function Ob(e,t,n){const s=e.slice(0,1);for(let i=0;i<n;++i)s.push(e[i+1]-t[i][0]-t[i][1]);return s}const rp=1.7580993408473768,op=1.0507009873554805;const Eb=.3275911,Db=.254829592,kb=-.284496736,Fb=1.421413741,_b=-1.453152027,Wb=1.061405429;function Pa(...e){C().getBool("IS_TEST")||console.warn(...e)}function EB(...e){C().getBool("IS_TEST")||console.log(...e)}function Zi(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);const n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function vA(e){const t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function NA(e){const t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let i=0;i<e.length;i+=4)n[Math.floor(i/4)]=e[i],s[Math.floor(i/4)]=e[i+1];return{real:n,imag:s}}function CA(e){const t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let i=2;i<e.length;i+=4)n[Math.floor(i/4)]=e[i],s[Math.floor(i/4)]=e[i+1];return{real:n,imag:s}}function $b(e,t){const n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function RA(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function OA(e,t){const n=new Float32Array(e/2),s=new Float32Array(e/2);for(let i=0;i<Math.ceil(e/2);i++){const o=(t?2:-2)*Math.PI*(i/e);n[i]=Math.cos(o),s[i]=Math.sin(o)}return{real:n,imag:s}}function EA(e,t,n){const s=(n?2:-2)*Math.PI*(e/t),i=Math.cos(s),o=Math.sin(s);return{real:i,imag:o}}function DA(e,t,n){if(t==="complex64"){if(e.dtype==="complex64")return e.clone();const s=ct(e.shape),i=ve(e,"float32"),o=n.complex(i,s);return s.dispose(),i.dispose(),o}if(!iy(e.dtype,t))return V.makeTensorFromDataId(e.dataId,e.shape,t);if(e.dtype==="complex64"){const s=n.real(e),i=ve(s,t);return s.dispose(),i}if(t==="int32")return n.int(e);if(t==="bool"){const s=Ne(0,e.dtype),i=n.notEqual(e,s);return s.dispose(),i}else throw new Error(`Error in Cast: failed to cast ${e.dtype} to ${t}`)}function kA(e,t){return V.makeTensorFromDataId(e.dataId,t,e.dtype)}function Ub(e,t,n){const s=(t-e)/(n-1),i=wa(n,"float32");i[0]=e;for(let o=1;o<i.length;o++)i[o]=i[o-1]+s;return ns(i,"float32")}var Bb=Object.freeze({__proto__:null,slice_util:ST,segment_util:T_,castTensor:DA,reshapeTensor:kA,linspaceImpl:Ub,upcastType:vn,axesAreInnerMostDims:By,combineLocations:NT,computeOutAndReduceShapes:Cn,expandShapeToKeepDim:Rn,assertAxesAreInnerMostDims:es,getAxesPermutation:kn,getUndoAxesPermutation:Ml,getInnerMostAxes:ws,getBroadcastDims:Lo,getReductionAxes:on,assertAndGetBroadcastShape:tt,assertParamsConsistent:Ky,computeOutShape:Or,computeDilation2DInfo:Td,computePool2DInfo:Fn,computePool3DInfo:Gl,computeConv2DInfo:Ai,computeConv3DInfo:Vl,computeDefaultPad:Hy,tupleValuesAreOne:Rr,eitherStridesOrDilationsAreOne:rn,convertConv2DDataFormat:Yl,getFusedDyActivation:Xd,getFusedBiasGradient:Jd,applyActivation:Zd,shouldFuse:Qd,PARALLELIZE_THRESHOLD:ib,computeOptimalWindowSize:Jl,getImageCenter:Cb,getReshaped:fh,getPermuted:gh,getReshapedPermuted:yh,getSliceBeginCoords:Rb,getSliceSize:Ob,prepareAndValidate:gd,validateUpdateShape:Cy,validateInput:Ry,calculateShapes:va,SELU_SCALEALPHA:rp,SELU_SCALE:op,ERF_P:Eb,ERF_A1:Db,ERF_A2:kb,ERF_A3:Fb,ERF_A4:_b,ERF_A5:Wb,warn:Pa,log:EB,mergeRealAndImagArrays:Zi,splitRealAndImagArrays:vA,complexWithEvenIndex:NA,complexWithOddIndex:CA,getComplexWithIndex:$b,assignToTypedArray:RA,exponents:OA,exponent:EA,prepareSplitSize:jT});function Mb(e,t,n){const s=new Array(e.rank).fill(0),i=e.shape.slice();return t.map(o=>{const a=[...i];a[n]=o;const c=nt(e,s,a);return s[n]+=o,c})}function Pb(e,t){const n=new Array(e.rank);for(let i=0;i<n.length;i++)n[i]=e.shape[i]*t[i];const s=Ze(n,e.dtype);for(let i=0;i<s.values.length;++i){const o=s.indexToLoc(i),a=new Array(e.rank);for(let h=0;h<a.length;h++)a[h]=o[h]%e.shape[h];const c=e.locToIndex(a);s.values[i]=e.values[c]}return s.toTensor()}function zb(e,t,n,s,i){const o=t[t.length-1],[a,c]=[e.length/o,o],h=bn(n,a*s),d=bn("int32",a*s);for(let y=0;y<a;y++){const b=y*c,w=e.subarray(b,b+c),L=[];for(let E=0;E<w.length;E++)L.push({value:w[E],index:E});L.sort((E,D)=>D.value-E.value);const T=y*s,A=h.subarray(T,T+s),N=d.subarray(T,T+s);for(let E=0;E<s;E++)A[E]=L[E].value,N[E]=L[E].index}const m=t.slice();return m[m.length-1]=s,[en(h,m,n),en(d,m,"int32")]}var DB=Object.freeze({__proto__:null,nonMaxSuppressionV3Impl:tp,nonMaxSuppressionV4Impl:np,nonMaxSuppressionV5Impl:sp,split:Mb,tile:Pb,topkImpl:zb,whereImpl:jd});const kB={kernelName:ge,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,$a(ve(n,"float32"),-1))}}};const FB={kernelName:fe,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=wt(ve(n,"float32")),i=Ln(Ce(Ne(1),s));return Pt(_e(e,i))}}}};const _B={kernelName:Ae,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=Ln(Ce(wt(ve(n,"float32")),1));return _e(e,s)}}}};const WB={kernelName:Te,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{let c=e;const h=on(n.shape,i);return h.length>0&&(c=Ue(c,h)),K(c,n.shape)},a=()=>{let c=e;const h=on(s.shape,i);return h.length>0&&(c=Ue(c,h)),K(c,s.shape)};return{a:o,b:a}}};const $B={kernelName:Ve,saveAllInputs:!0,gradFunc:(e,t)=>{const n={};return t.forEach((s,i)=>{n[i]=()=>e.clone()}),n}};const UB={kernelName:$t,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>Qe(n)}}};const BB={kernelName:Kt,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>Qe(n)}}};const MB={kernelName:Dn,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,Ln(Ce(Ne(1),wt(ve(n,"float32")))))}}};const PB={kernelName:Tn,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=Ln(be(Ne(1),wt(ve(n,"float32"))));return _e(e,s)}}}};const zB={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{const c=be(wt(n),wt(s));let h=X(e,_e(s,c));const d=on(n.shape,i);return d.length>0&&(h=Ue(h,d)),K(h,n.shape)},a=()=>{const c=be(wt(n),wt(s));let h=Pt(X(e,_e(n,c)));const d=on(s.shape,i);return d.length>0&&(h=Ue(h,d)),K(h,s.shape)};return{a:o,b:a}}};const GB={kernelName:An,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,be(wt(ve(n,"float32")),1))}}};const VB={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,Ce(Ne(1),wt(ve(n,"float32"))))}}};function YB(e,t,n,s,i=[1,1,1],o,a){const c=W(e,"dy","avgPool3dBackprop"),h=W(t,"input","avgPool3dBackprop");let d=c,m=h,y=!1;h.rank===4&&(y=!0,d=K(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),m=K(h,[1,h.shape[0],h.shape[1],h.shape[2],h.shape[3]])),k(d.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${d.rank}.`),k(m.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${m.rank}.`),k(rn(s,i),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'`),a!=null&&k(Ut(o),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);const b=A=>{const N=Gl(m.shape,n,s,i,o,a);return A.avgPool3dBackprop(d,m,N)},w={dy:d,input:m},L={filterSize:n,strides:s,dilations:i,pad:o,dimRoundingMode:a},T=V.runKernelFunc(b,w,null,ex,L);return y?K(T,[T.shape[1],T.shape[2],T.shape[3],T.shape[4]]):T}const HB=P({avgPool3dBackprop_:YB});const qB={kernelName:Xc,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{filterSize:i,strides:o,dilations:a,pad:c,dimRoundingMode:h}=n,d=a==null?[1,1,1]:a;return{x:()=>HB(e,s,i,o,d,c,h)}}};function jB(e,t,n,s,i){const o=W(e,"dy","avgPoolBackprop"),a=W(t,"input","avgPoolBackprop");k(a.rank===o.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${o.rank})`);let c=a,h=o,d=!1;a.rank===3&&(d=!0,c=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]),h=K(o,[1,o.shape[0],o.shape[1],o.shape[2]])),k(h.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${h.rank}.`),k(c.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${c.rank}.`);const m=L=>{const T=Fn(c.shape,n,s,1,i);return L.avgPoolBackprop(h,c,T)},y={dy:h,input:c},b={filterSize:n,strides:s,pad:i},w=V.runKernelFunc(m,y,null,ua,b);return d?K(w,[w.shape[1],w.shape[2],w.shape[3]]):w}const KB=P({avgPoolBackprop_:jB});const XB={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{filterSize:i,strides:o,pad:a}=n;return{x:()=>KB(e,s,i,o,a)}}};const JB={kernelName:ag,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{const[s,i]=t,{transposeA:o,transposeB:a}=n;return!o&&!a?{a:()=>at(e,i,!1,!0),b:()=>at(s,e,!0,!1)}:!o&&a?{a:()=>at(e,i,!1,!1),b:()=>at(e,s,!0,!1)}:o&&!a?{a:()=>at(i,e,!1,!0),b:()=>at(s,e,!1,!1)}:{a:()=>at(i,e,!0,!0),b:()=>at(e,s,!0,!0)}}};const ZB={kernelName:cg,gradFunc:(e,t,n)=>{const{blockShape:s,crops:i}=n;return{x:()=>th(e,s,i)}}};const QB={kernelName:lg,gradFunc:(e,t,n)=>{const s=n,i=s.inputShape,o=s.shape,a=Array.from(o);for(let h=i.length-1;h>=0;h--)if(i[h]===o[h])a[h]=1;else if(i[h]!==1)throw new Error(`broadcastTo(): [${i}] cannot be broadcast to [${o}].`);const c=[];for(let h=0;h<a.length;h++)a[h]>1&&c.push(h);return{x:()=>Ue(e,c,!0)}}};const eM={kernelName:Jc,gradFunc:e=>({x:()=>e.clone()})};const tM={kernelName:Zc,gradFunc:e=>({x:()=>Qe(e)})};const nM={kernelName:Qc,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{clipValueMin:i,clipValueMax:o}=n;return{x:()=>_n(Ws(Ki(s,i),Dr(s,o)),e,Qe(e))}}};const sM={kernelName:$u,saveAllInputs:!0,gradFunc:(e,t,n)=>{const s=t.map(h=>h.shape),{axis:i}=n,o=ft(i,t[0].shape)[0],a=s.map(h=>h[o]),c=ss(e,a,o);return c.map(h=>()=>h)}};const iM={kernelName:ug,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const[s,i]=t,{dilations:o,strides:a,pad:c,dataFormat:h}=n;return k(Rr(o),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`),{x:()=>Jy(s.shape,e,i,a,c,h),filter:()=>Ab(s,e,i.shape,a,c,h)}}};const rM={kernelName:dg,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{const[s,i]=t,{strides:o,pad:a,dataFormat:c,dimRoundingMode:h}=n;return{dy:()=>ji(e,i,o,a,c,1,h),filter:()=>Ab(e,s,i.shape,o,a,c,h)}}};function oM(e,t,n,s,i){let o=e;e.rank===4&&(o=K(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let a=t;a.rank===4&&(a=K(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),k(o.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${o.shape}.`),k(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),k(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),k(o.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${o.shape[4]}) must match input depth in filter (${n[3]}.`),k(a.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${n[4]}).`);const c=m=>{const y=1,b=Vl(o.shape,n,s,y,i);return m.conv3dDerFilter(o,a,b)},h={x:o,y:a},d={strides:s,pad:i};return V.runKernelFunc(c,h,null,nx,d)}const aM=P({conv3DBackpropFilter_:oM});const cM={kernelName:pg,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const{dilations:s,strides:i,pad:o}=n;k(Rr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);const[a,c]=t;return{x:()=>_T(a.shape,e,c,i,o),filter:()=>aM(a,e,c.shape,i,o)}}};const lM={kernelName:da,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Pt(zd(ve(n,"float32"))),e)}}};const hM={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Gd(ve(n,"float32")),e)}}};const uM={kernelName:mg,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{axis:i,exclusive:o,reverse:a}=n;return{x:()=>{const c=kn([i],s.rank);let h=Od(e,i,o,!a);return c!=null&&(h=Me(h,c)),h}}}};const dM={kernelName:fg,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const{dilations:s,strides:i,pad:o,dimRoundingMode:a}=n,c=s==null?[1,1]:s;k(Rr(c),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${c}'`);const[h,d]=t;k(h.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${h.rank}.`),k(d.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${d.rank}.`),k(h.shape[3]===d.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),k(rn(i,c),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'.`),a!=null&&k(Ut(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);const m=Ai(h.shape,d.shape,i,c,o,a,!0);return{x:()=>yA(h.shape,e,d,m),filter:()=>gA(h,e,d.shape,m)}}};const pM={kernelName:Uu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{const[s,i]=t,o={x:s,filter:i,dy:e},a={x:s,filter:i,dy:e};return{x:()=>V.runKernel(Bu,o,n),filter:()=>V.runKernel(Mu,a,n)}}};const mM={kernelName:pa,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{const c=_e(e,ve(s,"float32")),h=on(n.shape,i);return h.length>0?K(Ue(c,h),n.shape):c},a=()=>{let c=X(e,ve(n,"float32"));const h=on(s.shape,i);h.length>0&&(c=K(Ue(c,h),s.shape));const d=wt(s);return Pt(_e(c,ve(d,"float32")))};return{a:o,b:a}}};const fM={kernelName:tl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t,s=o=>o.eluDer(e,n),i={dy:e,y:n};return{x:()=>V.runKernelFunc(s,i,null,lx)}}};const gM={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t,s=X(Ls(Pt(wt(n))),2/Math.sqrt(Math.PI));return{x:()=>X(e,s)}}};const yM={kernelName:sl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,n)}}};const bM={kernelName:il,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,Ls(n))}}};const wM={kernelName:rl,gradFunc:e=>({x:()=>Qe(e)})};const LM={kernelName:yg,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{const c=_e(e,ve(s,"float32")),h=on(n.shape,i);return h.length>0?K(Ue(c,h),n.shape):c},a=()=>{let c=X(e,ve(n,"float32"));const h=on(s.shape,i);h.length>0&&(c=K(Ue(c,h),s.shape));const d=wt(s);return Pt(_e(c,ve(d,"float32")))};return{a:o,b:a}}};const SM={kernelName:ol,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{const{varianceEpsilon:s}=n,[i,o,a,c]=t,h=c==null?Ne(1):c,d=on(o.shape,i.shape),m=[];if(o.rank===1){for(let F=0;F<i.shape.length-1;++F)m.push(i.shape[F]);m.push(1)}const y=Ce(i,o),b=X(e,h),w=Md(be(a,Ne(s))),L=X(X(X(w,w),w),Ne(-.5)),T=()=>o.rank===1?K(X(X(e,Er(K(w,[1,1,1,o.shape[0]]),m)),h),i.shape):K(X(X(e,w),h),i.shape),A=()=>{let F=X(X(w,Ne(-1)),b);return o.rank===1&&(F=Ue(F,d)),K(F,o.shape)},N=()=>{let F=X(X(L,y),b);return o.rank===1&&(F=Ue(F,d)),K(F,o.shape)},E=()=>{const F=X(y,w);let _=X(e,F);return o.rank===1&&(_=Ue(_,d)),K(_,o.shape)},D=()=>{let F=e;return o.rank===1&&(F=Ue(F,d)),K(F,o.shape)};return{x:T,mean:A,variance:N,scale:E,offset:D}}};const IM={kernelName:bg,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{const[s,i]=t,{axis:o}=n,a=ft(o,s.shape)[0],c=()=>{const h=s.shape,d=i.size,m=h.slice(0,a),y=m.length,b=h.slice(o,h.length).slice(1),w=b.length,L=FA(0,y),T=FA(y+1,y+1+w),A=_A([m,[d],b]),N=K(e,A),E=K(i,[d]),D=_A([[y],L,T]),F=Me(N,D);let _=Sb(F,E,s.shape[a]);const B=Ml(D);return _=Me(_,B),_};return{x:c,indices:()=>i}}};function FA(e,t){const n=[];for(let s=e;s<t;++s)n.push(s);return n}function _A(e){const t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}const xM={kernelName:wg,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t;return{a:()=>Qe(n),b:()=>Qe(s)}}};const TM={kernelName:al,gradFunc:e=>({x:()=>ve(e,"float32")})};const AM={kernelName:cl,gradFunc:e=>({x:()=>Qe(e)})};const vM={kernelName:ll,gradFunc:e=>({x:()=>Qe(e)})};const NM={kernelName:hl,gradFunc:e=>({x:()=>Qe(e)})};const CM={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,be(n,1))}}};const RM={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,ve(n,"float32"))}}};const OM={kernelName:Ig,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s]=t,{axis:i}=n;return{logits:()=>{const o=!0,a=Ls(s);return Ce(e,X(Ue(e,i,o),a))}}}};function EM(e,t,n,s=5,i=1,o=1,a=.5){const c=m=>m.LRNGrad(n,e,t,s,i,o,a),h={x:e,y:t,dy:n},d={depthRadius:s,bias:i,alpha:o,beta:a};return V.runKernelFunc(c,h,null,wx,d)}const DM=P({localResponseNormalizationBackprop_:EM});const kM={kernelName:xg,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s,i]=t,{depthRadius:o,bias:a,alpha:c,beta:h}=n;return{x:()=>DM(s,i,e,o,a,c,h)}}};function WA(e,t,n,s,i){return t.rank<n.rank&&(t=K(t,Rn(t.shape,s))),e.rank<n.rank&&(e=K(e,Rn(e.shape,s))),{x:()=>{const o=X(e,ve(Zs(n,t),e.dtype));return i==null?o:Me(o,i)}}}const $A={kernelName:pl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const s=n,{reductionIndices:i}=s,[o,a]=t,c=ft(i,o.shape),h=kn(c,o.rank),d=WA(e,a,o,c,h);return{x:()=>{let m=d.x();return h!=null&&(m=Me(m)),m}}}};const FM={kernelName:Tg,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=()=>X(e,ve(Ki(n,s),"float32")),o=()=>X(e,ve(Zl(n,s),"float32"));return{a:i,b:o}}};function _M(e,t,n,s,i,o=[1,1,1],a,c){const h=W(e,"dy","maxPool3dBackprop"),d=W(t,"input","maxPool3dBackprop"),m=W(n,"output","maxPool3dBackprop");let y=h,b=d,w=m,L=!1;d.rank===4&&(L=!0,y=K(h,[1,h.shape[0],h.shape[1],h.shape[2],h.shape[3]]),b=K(d,[1,d.shape[0],d.shape[1],d.shape[2],d.shape[3]]),w=K(m,[1,m.shape[0],m.shape[1],m.shape[2],m.shape[3]])),k(y.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${y.rank}.`),k(b.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${b.rank}.`),k(w.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${w.rank}.`),k(rn(i,o),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${i} and dilations '${o}'`),c!=null&&k(Ut(a),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${c} but got pad ${a}.`);const T=D=>{const F=Gl(b.shape,s,i,o,a,c);return D.maxPool3dBackprop(y,b,w,F)},A={dy:y,input:b,output:w},N={filterSize:s,strides:i,dilations:o,pad:a,dimRoundingMode:c},E=V.runKernelFunc(T,A,null,Lx,N);return L?K(E,[E.shape[1],E.shape[2],E.shape[3],E.shape[4]]):E}const WM=P({maxPool3dBackprop_:_M});const $M={kernelName:Ag,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s,i]=t,{filterSize:o,strides:a,dilations:c,pad:h,dimRoundingMode:d}=n,m=c==null?[1,1,1]:c;return{x:()=>WM(e,s,i,o,a,m,h,d)}}};function UM(e,t,n,s,i,o,a){const c=W(e,"dy","maxPoolBackprop"),h=W(t,"input","maxPoolBackprop"),d=W(n,"output","maxPoolBackprop");k(h.rank===c.rank,()=>`Rank of input (${h.rank}) does not match rank of dy (${c.rank})`),k(c.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${c.rank}.`),k(h.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${h.rank}.`),a!=null&&k(Ut(o),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);const m=w=>{const L=Fn(h.shape,s,i,1,o,a);return w.maxPoolBackprop(c,h,d,L)},y={dy:c,input:h,output:d},b={filterSize:s,strides:i,pad:o,dimRoundingMode:a};return V.runKernelFunc(m,y,null,Gu,b)}const BM=P({maxPoolBackprop_:UM});const MM={kernelName:ml,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s,i]=t,{filterSize:o,strides:a,pad:c}=n;return{x:()=>BM(e,s,i,o,a,c)}}};const PM={kernelName:vg,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{const s=n,{axis:i}=s,[o,a]=t,c=ft(i,o.shape),h=kn(c,o.rank),d=WA(e,a,o,c,h);return{x:()=>{let m=d.x();return h!=null&&(m=Me(m)),m}}}};const zM={kernelName:Ng,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=()=>X(e,ve(Dr(n,s),"float32")),o=()=>X(e,ve(Ss(n,s),"float32"));return{a:i,b:o}}};const GM={kernelName:Cg,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{const c=on(n.shape,i);return c.length>0?K(Ue(e,c),n.shape):e},a=()=>{const c=X(e,Pt(Ra(_e(n,s)))),h=on(s.shape,i);return h.length>0?K(Ue(c,h),s.shape):c};return{a:o,b:a}}};const VM={kernelName:fl,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{const c=X(e,ve(s,"float32")),h=on(n.shape,i);return h.length>0?K(Ue(c,h),n.shape):c},a=()=>{const c=X(e,ve(n,"float32")),h=on(s.shape,i);return h.length>0?K(Ue(c,h),s.shape):c};return{a:o,b:a}}};const YM={kernelName:Rg,gradFunc:e=>({x:()=>Pt(e)})};const HM={kernelName:Dg,inputsToSave:["indices"],gradFunc:(e,t)=>{const n=t[0];return{indices:()=>ct(n.shape,"float32")}}};const qM={kernelName:Eg,gradFunc:e=>({x:()=>Qe(e)})};const UA={kernelName:ju,inputsToSave:["x"],gradFunc:(e,t,n)=>{const s=t[0],{paddings:i}=n,o=i.map(a=>a[0]);return{x:()=>nt(e,o,s.shape)}}};const jM={kernelName:kg,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{const[n,s,i]=t,o=n,a=s,c=tt(o.shape,a.shape),h=()=>{const m=ve(a,"float32");let y=X(e,X(m,ei(o,Ce(m,Ne(1)))));const b=on(o.shape,c);return b.length>0&&(y=Ue(y,b)),K(y,o.shape)},d=()=>{const m=Ss(o,0),y=_n(m,ts(o),Qe(o));let b=X(e,X(i,y));const w=on(a.shape,c);return w.length>0&&(b=Ue(b,w)),K(b,a.shape)};return{a:h,b:d}}};const KM={kernelName:Fg,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{const[n,s]=t,i=Ss(n,0);return{x:()=>_n(i,e,X(e,s)),alpha:()=>{let o=_n(i,Qe(e),X(e,n));const a=on(s.shape,e.shape);return a.length>0&&(o=Ue(o,a)),K(o,s.shape)}}}};const XM={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,Pt(wt(n)))}}};const JM={kernelName:Bg,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t,s=X(Dr(n,6),$a(n));return{x:()=>X(e,ve(s,"float32"))}}};const ZM={kernelName:Wg,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,ve($a(n),"float32"))}}};const QM={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>K(e,n.shape)}}};const eP={kernelName:Ug,inputsToSave:["images"],gradFunc:(e,t,n)=>{const[s]=t,i=c=>{const{alignCorners:h}=n;return c.resizeBilinearBackprop(e,s,h)},o={images:s},a=()=>V.runKernelFunc(i,o,null,Tx,n);return{images:a}}};const tP={kernelName:$g,inputsToSave:["images"],gradFunc:(e,t,n)=>{const[s]=t,i=c=>{const{alignCorners:h}=n;return c.resizeNearestNeighborBackprop(e,s,h)},o={images:s},a=()=>V.runKernelFunc(i,o,null,xx,n);return{images:a}}};const nP={kernelName:Mg,gradFunc:(e,t,n)=>{const{dims:s}=n,i=ft(s,e.shape);return{x:()=>Is(e,i)}}};const sP={kernelName:bl,gradFunc:e=>({x:()=>Qe(e)})};const iP={kernelName:wl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>Pt(_e(e,X(ei(n,1.5),2)))}}};const rP={kernelName:Pg,inputsToSave:["condition"],gradFunc:(e,t)=>{const[n]=t;return{condition:()=>ve(Qe(n),"float32"),t:()=>X(e,ve(n,e.dtype)),e:()=>X(e,ve(Ql(n),e.dtype))}}};const oP={kernelName:Ll,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>{const s=Ss(n,Ne(0)),i=Ne(rp),o=Ne(op),a=X(e,o),c=X(X(e,i),Ls(ve(n,"float32")));return _n(s,a,c)}}}};const aP={kernelName:xl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,X(n,Ce(Ne(1),n)))}}};const cP={kernelName:Il,gradFunc:e=>({x:()=>Qe(e)})};const lP={kernelName:ma,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Kl(ve(n,"float32")),e)}}};const hP={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Rd(ve(n,"float32")),e)}}};const uP={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{begin:i,size:o}=n,a=s.shape,[c,h]=wd(s,i,o),d=[];for(let m=0;m<e.rank;m++)d.push([c[m],a[m]-c[m]-h[m]]);return{x:()=>Ci(e,d)}}};const dP={kernelName:Vg,outputsToSave:[!0],gradFunc:(e,t,n)=>{const[s]=t,{dim:i}=n,o=!0,a=X(e,s);return{logits:()=>Ce(a,X(Ue(a,[i],o),s))}}};const pP={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,vi(n))}}};const BA={kernelName:Xu,gradFunc:(e,t,n)=>{const{blockShape:s,paddings:i}=n;return{x:()=>ql(e,s,i)}}};const MA={kernelName:Gg,gradFunc:(e,t,n)=>{const{axis:s}=n;return{x:()=>Mt(e,s)}}};const mP={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,X(Ln(ve(n,"float32")),2))}}};const fP={kernelName:Ju,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(e,X(ve(n,"float32"),2))}}};const gP={kernelName:fa,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=Ne(2),o=()=>X(e,X(i,Ce(n,s))),a=()=>X(e,X(i,Ce(s,n)));return{a:o,b:a}}};const yP={kernelName:Rl,gradFunc:e=>({x:()=>Qe(e)})};const bP={kernelName:vl,inputsToSave:["a","b"],gradFunc:(e,t)=>{const[n,s]=t,i=tt(n.shape,s.shape),o=()=>{let c=e;const h=on(n.shape,i);return h.length>0&&(c=Ue(c,h)),K(c,n.shape)},a=()=>{let c=e;const h=on(s.shape,i);return h.length>0&&(c=Ue(c,h)),K(Pt(c),s.shape)};return{a:o,b:a}}};const wP={kernelName:zg,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,i=s.shape.slice(),{axis:o}=n,a=ft(o,s.shape);a.forEach(d=>{i[d]=1});const c=K(e,i),h=X(c,Qs(s.shape,"float32"));return{x:()=>h}}};const LP={kernelName:ga,inputsToSave:["x"],gradFunc:(e,t)=>{const[n]=t;return{x:()=>_e(e,wt(Kl(n)))}}};const SP={kernelName:Nl,outputsToSave:[!0],gradFunc:(e,t)=>{const[n]=t;return{x:()=>X(Ce(Ne(1),wt(n)),e)}}};const IP={kernelName:Yg,inputsToSave:["x"],gradFunc:(e,t,n)=>{const[s]=t,{reps:i}=n,o=()=>{let a=Qe(s);if(s.rank===1)for(let c=0;c<i[0];++c)a=be(a,nt(e,[c*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let c=0;c<i[0];++c)for(let h=0;h<i[1];++h)a=be(a,nt(e,[c*s.shape[0],h*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let c=0;c<i[0];++c)for(let h=0;h<i[1];++h)for(let d=0;d<i[2];++d)a=be(a,nt(e,[c*s.shape[0],h*s.shape[1],d*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let c=0;c<i[0];++c)for(let h=0;h<i[1];++h)for(let d=0;d<i[2];++d)for(let m=0;m<i[3];++m)a=be(a,nt(e,[c*s.shape[0],h*s.shape[1],d*s.shape[2],m*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return a};return{x:o}}};const xP={kernelName:Cl,gradFunc:(e,t,n)=>{const s=n,{perm:i}=s,o=Ml(i);return{x:()=>Me(e,o)}}};const TP={kernelName:Hg,gradFunc:(e,t,n)=>{const s=n,{axis:i}=s;return{value:()=>is(e,i)}}};const AP={kernelName:qg,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{const[n]=t,s=()=>vP(e,n);return{x:s}}};function vP(e,t){const n=_s(t,Qe(t)),s=Oa(e,n);let i=Ki(t,Ne(0,"int32"));const o=s.rank-i.rank;for(let c=0;c<o;++c)i=Hn(i,c+1);i=Ws(i,Qs(s.shape,"bool"));const a=Qe(s);return _n(i,s,a)}const NP={kernelName:jg,gradFunc:e=>({x:()=>Qe(e)})};const CP=[kB,FB,_B,WB,$B,UB,BB,MB,PB,zB,GB,VB,qB,XB,JB,ZB,QB,eM,tM,nM,sM,rM,iM,cM,lM,hM,uM,dM,pM,mM,fM,gM,yM,bM,LM,wM,SM,IM,xM,TM,AM,vM,NM,CM,RM,OM,kM,$A,$A,FM,$M,MM,PM,zM,GM,VM,YM,HM,qM,UA,UA,jM,KM,XM,JM,ZM,QM,eP,tP,nP,sP,iP,rP,oP,aP,cP,lP,hP,uP,dP,pP,BA,BA,MA,MA,mP,gP,fP,yP,bP,wP,LP,SP,IP,xP,TP,AP,NP];for(const e of CP)Rx(e);Q.prototype.abs=function(){return this.throwIfDisposed(),sn(this)};Q.prototype.acos=function(){return this.throwIfDisposed(),$y(this)};Q.prototype.acosh=function(){return this.throwIfDisposed(),Uy(this)};Q.prototype.addStrict=function(e){return this.throwIfDisposed(),nA(this,e)};Q.prototype.add=function(e){return this.throwIfDisposed(),be(this,e)};Q.prototype.all=function(e,t){return this.throwIfDisposed(),xd(this,e,t)};Q.prototype.any=function(e,t){return this.throwIfDisposed(),Pl(this,e,t)};Q.prototype.argMax=function(e){return this.throwIfDisposed(),zl(this,e)};Q.prototype.argMin=function(e){return this.throwIfDisposed(),My(this,e)};Q.prototype.asScalar=function(){return this.throwIfDisposed(),k(this.size===1,()=>"The array must have only 1 element."),K(this,[])};Q.prototype.asType=function(e){return this.throwIfDisposed(),ve(this,e)};Q.prototype.as1D=function(){return this.throwIfDisposed(),K(this,[this.size])};Q.prototype.as2D=function(e,t){return this.throwIfDisposed(),K(this,[e,t])};Q.prototype.as3D=function(e,t,n){return this.throwIfDisposed(),K(this,[e,t,n])};Q.prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),K(this,[e,t,n,s])};Q.prototype.as5D=function(e,t,n,s,i){return this.throwIfDisposed(),K(this,[e,t,n,s,i])};Q.prototype.asin=function(){return this.throwIfDisposed(),Py(this)};Q.prototype.asinh=function(){return this.throwIfDisposed(),zy(this)};Q.prototype.atan=function(){return this.throwIfDisposed(),Gy(this)};Q.prototype.atan2=function(e){return this.throwIfDisposed(),Vy(this,e)};Q.prototype.atanh=function(){return this.throwIfDisposed(),Yy(this)};Q.prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Hl(this,e,t,n,s)};Q.prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),ql(this,e,t)};Q.prototype.batchNorm=function(e,t,n,s,i){return this.throwIfDisposed(),bo(this,e,t,n,s,i)};Q.prototype.broadcastTo=function(e){return this.throwIfDisposed(),jl(this,e)};Q.prototype.cast=function(e){return this.throwIfDisposed(),ve(this,e)};Q.prototype.ceil=function(){return this.throwIfDisposed(),Xy(this)};Q.prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Yn(this,e,t)};Q.prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Q&&(e=[e]),Mt([this,...e],t)};Q.prototype.conv1d=function(e,t,n,s,i,o){return this.throwIfDisposed(),Nd(this,e,t,n,s,i,o)};Q.prototype.conv2dTranspose=function(e,t,n,s,i){return this.throwIfDisposed(),Cd(this,e,t,n,s,i)};Q.prototype.conv2d=function(e,t,n,s,i,o){return this.throwIfDisposed(),ji(this,e,t,n,s,i,o)};Q.prototype.cos=function(){return this.throwIfDisposed(),Kl(this)};Q.prototype.cosh=function(){return this.throwIfDisposed(),Rd(this)};Q.prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Od(this,e,t,n)};Q.prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Qy(this,e,t)};Q.prototype.depthwiseConv2D=function(e,t,n,s,i,o){return nn("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),wo(this,e,t,n,s,i,o)};Q.prototype.depthwiseConv2d=function(e,t,n,s,i,o){return this.throwIfDisposed(),wo(this,e,t,n,s,i,o)};Q.prototype.dilation2d=function(e,t,n,s,i){return this.throwIfDisposed(),eb(this,e,t,n,s,i)};Q.prototype.divNoNan=function(e){return this.throwIfDisposed(),tb(this,e)};Q.prototype.divStrict=function(e){return this.throwIfDisposed(),sA(this,e)};Q.prototype.div=function(e){return this.throwIfDisposed(),_e(this,e)};Q.prototype.dot=function(e){return this.throwIfDisposed(),WT(this,e)};Q.prototype.elu=function(){return this.throwIfDisposed(),So(this)};Q.prototype.equalStrict=function(e){return this.throwIfDisposed(),XT(this,e)};Q.prototype.equal=function(e){return this.throwIfDisposed(),Zs(this,e)};Q.prototype.erf=function(){return this.throwIfDisposed(),nb(this)};Q.prototype.exp=function(){return this.throwIfDisposed(),Ls(this)};Q.prototype.expandDims=function(e){return this.throwIfDisposed(),Hn(this,e)};Q.prototype.expm1=function(){return this.throwIfDisposed(),sb(this)};Q.prototype.fft=function(){return this.throwIfDisposed(),rh(this)};Q.prototype.flatten=function(){return this.throwIfDisposed(),K(this,[this.size])};Q.prototype.floor=function(){return this.throwIfDisposed(),Ra(this)};Q.prototype.floorDiv=function(e){return this.throwIfDisposed(),Id(this,e)};Q.prototype.gather=function(e,t){return this.throwIfDisposed(),Oa(this,e,t)};Q.prototype.greaterEqualStrict=function(e){return this.throwIfDisposed(),JT(this,e)};Q.prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ki(this,e)};Q.prototype.greaterStrict=function(e){return this.throwIfDisposed(),ZT(this,e)};Q.prototype.greater=function(e){return this.throwIfDisposed(),Ss(this,e)};Q.prototype.ifft=function(){return this.throwIfDisposed(),Wa(this)};Q.prototype.irfft=function(){return this.throwIfDisposed(),Hd(this)};Q.prototype.isFinite=function(){return this.throwIfDisposed(),UT(this)};Q.prototype.isInf=function(){return this.throwIfDisposed(),BT(this)};Q.prototype.isNaN=function(){return this.throwIfDisposed(),MT(this)};Q.prototype.leakyRelu=function(e){return this.throwIfDisposed(),Dd(this,e)};Q.prototype.lessEqualStrict=function(e){return this.throwIfDisposed(),QT(this,e)};Q.prototype.lessEqual=function(e){return this.throwIfDisposed(),Dr(this,e)};Q.prototype.lessStrict=function(e){return this.throwIfDisposed(),eA(this,e)};Q.prototype.less=function(e){return this.throwIfDisposed(),Zl(this,e)};Q.prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),rb(this,e,t,n,s)};Q.prototype.logSigmoid=function(){return this.throwIfDisposed(),zT(this)};Q.prototype.logSoftmax=function(e){return this.throwIfDisposed(),_d(this,e)};Q.prototype.logSumExp=function(e,t){return this.throwIfDisposed(),ab(this,e,t)};Q.prototype.log=function(){return this.throwIfDisposed(),ts(this)};Q.prototype.log1p=function(){return this.throwIfDisposed(),kd(this)};Q.prototype.logicalAnd=function(e){return this.throwIfDisposed(),Ws(this,e)};Q.prototype.logicalNot=function(){return this.throwIfDisposed(),Ql(this)};Q.prototype.logicalOr=function(e){return this.throwIfDisposed(),Wd(this,e)};Q.prototype.logicalXor=function(e){return this.throwIfDisposed(),GT(this,e)};Q.prototype.matMul=function(e,t,n){return this.throwIfDisposed(),at(this,e,t,n)};Q.prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),eh(this,e,t,n,s)};Q.prototype.max=function(e,t){return this.throwIfDisposed(),qn(this,e,t)};Q.prototype.maximumStrict=function(e){return this.throwIfDisposed(),iA(this,e)};Q.prototype.maximum=function(e){return this.throwIfDisposed(),_s(this,e)};Q.prototype.mean=function(e,t){return this.throwIfDisposed(),zt(this,e,t)};Q.prototype.min=function(e,t){return this.throwIfDisposed(),ka(this,e,t)};Q.prototype.minimumStrict=function(e){return this.throwIfDisposed(),rA(this,e)};Q.prototype.minimum=function(e){return this.throwIfDisposed(),Io(this,e)};Q.prototype.modStrict=function(e){return this.throwIfDisposed(),oA(this,e)};Q.prototype.mod=function(e){return this.throwIfDisposed(),$d(this,e)};Q.prototype.mulStrict=function(e){return this.throwIfDisposed(),aA(this,e)};Q.prototype.mul=function(e){return this.throwIfDisposed(),X(this,e)};Q.prototype.neg=function(){return this.throwIfDisposed(),Pt(this)};Q.prototype.norm=function(e,t,n){return this.throwIfDisposed(),Kd(this,e,t,n)};Q.prototype.notEqualStrict=function(e){return this.throwIfDisposed(),tA(this,e)};Q.prototype.notEqual=function(e){return this.throwIfDisposed(),kr(this,e)};Q.prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),fo(this,e,t,n)};Q.prototype.onesLike=function(){return this.throwIfDisposed(),On(this)};Q.prototype.pad=function(e,t){return this.throwIfDisposed(),Ci(this,e,t)};Q.prototype.pool=function(e,t,n,s,i){return this.throwIfDisposed(),HT(this,e,t,n,s,i)};Q.prototype.powStrict=function(e){return this.throwIfDisposed(),cA(this,e)};Q.prototype.pow=function(e){return this.throwIfDisposed(),ei(this,e)};Q.prototype.prelu=function(e){return this.throwIfDisposed(),nh(this,e)};Q.prototype.prod=function(e,t){return this.throwIfDisposed(),Bd(this,e,t)};Q.prototype.reciprocal=function(){return this.throwIfDisposed(),db(this)};Q.prototype.relu=function(){return this.throwIfDisposed(),Ri(this)};Q.prototype.relu6=function(){return this.throwIfDisposed(),pb(this)};Q.prototype.reshapeAs=function(e){return this.throwIfDisposed(),K(this,e.shape)};Q.prototype.reshape=function(e){return this.throwIfDisposed(),K(this,e)};Q.prototype.resizeBilinear=function(e,t){return this.throwIfDisposed(),IA(this,e,t)};Q.prototype.resizeNearestNeighbor=function(e,t){return this.throwIfDisposed(),xA(this,e,t)};Q.prototype.reverse=function(e){return this.throwIfDisposed(),Is(this,e)};Q.prototype.rfft=function(){return this.throwIfDisposed(),oh(this)};Q.prototype.round=function(){return this.throwIfDisposed(),mb(this)};Q.prototype.rsqrt=function(){return this.throwIfDisposed(),Md(this)};Q.prototype.selu=function(){return this.throwIfDisposed(),Pd(this)};Q.prototype.separableConv2d=function(e,t,n,s,i,o){return this.throwIfDisposed(),fb(this,e,t,n,s,i,o)};Q.prototype.sigmoid=function(){return this.throwIfDisposed(),vi(this)};Q.prototype.sign=function(){return this.throwIfDisposed(),gb(this)};Q.prototype.sin=function(){return this.throwIfDisposed(),zd(this)};Q.prototype.sinh=function(){return this.throwIfDisposed(),Gd(this)};Q.prototype.slice=function(e,t){return this.throwIfDisposed(),nt(this,e,t)};Q.prototype.softmax=function(e){return this.throwIfDisposed(),No(this,e)};Q.prototype.softplus=function(){return this.throwIfDisposed(),Da(this)};Q.prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),th(this,e,t)};Q.prototype.split=function(e,t){return this.throwIfDisposed(),ss(this,e,t)};Q.prototype.sqrt=function(){return this.throwIfDisposed(),Ln(this)};Q.prototype.square=function(){return this.throwIfDisposed(),wt(this)};Q.prototype.squaredDifference=function(e){return this.throwIfDisposed(),ah(this,e)};Q.prototype.squaredDifferenceStrict=function(e){return this.throwIfDisposed(),lA(this,e)};Q.prototype.squeeze=function(e){return this.throwIfDisposed(),Fr(this,e)};Q.prototype.stack=function(e,t){this.throwIfDisposed();const n=e instanceof Q?[this,e]:[this,...e];return is(n,t)};Q.prototype.step=function(e){return this.throwIfDisposed(),$a(this,e)};Q.prototype.stridedSlice=function(e,t,n,s,i,o,a,c){return this.throwIfDisposed(),bb(this,e,t,n,s,i,o,a,c)};Q.prototype.subStrict=function(e){return this.throwIfDisposed(),hA(this,e)};Q.prototype.sub=function(e){return this.throwIfDisposed(),Ce(this,e)};Q.prototype.sum=function(e,t){return this.throwIfDisposed(),Ue(this,e,t)};Q.prototype.tan=function(){return this.throwIfDisposed(),wb(this)};Q.prototype.tanh=function(){return this.throwIfDisposed(),Ca(this)};Q.prototype.tile=function(e){return this.throwIfDisposed(),Er(this,e)};Q.prototype.toBool=function(){return this.throwIfDisposed(),ve(this,"bool")};Q.prototype.toFloat=function(){return this.throwIfDisposed(),ve(this,"float32")};Q.prototype.toInt=function(){return this.throwIfDisposed(),ve(this,"int32")};Q.prototype.topk=function(e,t){return this.throwIfDisposed(),Lb(this,e,t)};Q.prototype.transpose=function(e){return this.throwIfDisposed(),Me(this,e)};Q.prototype.unique=function(e){return this.throwIfDisposed(),qd(this,e)};Q.prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Sb(this,e,t)};Q.prototype.unstack=function(e){return this.throwIfDisposed(),Oi(this,e)};Q.prototype.where=function(e,t){return this.throwIfDisposed(),_n(e,this,t)};Q.prototype.zerosLike=function(){return this.throwIfDisposed(),Qe(this)};let ap;function an(){return ap==null&&(ap=AT().epsilon()),ap}function GZ(e){ap=e}function ti(){return"channelsLast"}class Qi extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Qi.prototype)}}class ni extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ni.prototype)}}class j extends Error{constructor(e){super(e);Object.setPrototypeOf(this,j.prototype)}}class ze extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}}class PA extends Error{constructor(e){super(e);Object.setPrototypeOf(this,PA.prototype)}}class RP extends Error{constructor(e){super(e);Object.setPrototypeOf(this,RP.prototype)}}function Oo(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{const n=new Array(t);return n.fill(e),n}}function xs(e,t){if(!e)throw new PA(t)}function zA(e,t){let n=0;for(const s of e)s===t&&n++;return n}function jn(e){return e.length===1?e[0]:e}function Nt(e){return Array.isArray(e)?e:[e]}function VZ(e){const t=Nt(e);let n="";for(const s of t){if(s.id==null)throw new j(`Object ${s} passed to objectListUid without an id`);n!==""&&(n=n+", "),n=`${n}${Math.abs(s.id)}`}return n}function er(e){const t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2"),n=t.replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Eo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}let $s={};function Gb(e){if(e==null)return null;const t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Vb(e){if(e==null||typeof e!="object")return;if(Array.isArray(e))e.forEach(t=>Vb(t));else{const t=Object.keys(e);for(const n of t){const s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:Vb(s))}}}function bh(e,t={},n={},s="object",i=!1){if(typeof e=="string"){const o=e;let a;if(o in n)a=n[o];else if(o in $s)a=$s[o];else if(a=t[o],a==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{const o=e;if(o.className==null||o.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(o)}.
'className' and 'config' must set.`);const a=o.className;let c,h;if(a in n?[c,h]=n[a]:a in $s?[c,h]=$s.className:a in t&&([c,h]=t[a]),c==null)throw new j(`Unknown ${s}: ${a}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(h!=null){const d={};for(const w of Object.keys($s))d[w]=$s[w];for(const w of Object.keys(n))d[w]=n[w];const m=o.config;m.customObjects=d;const y=Object.assign({},$s);for(const w of Object.keys(n))$s[w]=n[w];Vb(o.config);const b=h(c,o.config,n,i);return $s=Object.assign({},y),b}else{const d=Object.assign({},$s);for(const y of Object.keys(n))$s[y]=n[y];const m=new c(o.config);return $s=Object.assign({},d),m}}}function OP(e,t){return e<t?-1:e>t?1:0}function cp(e,t){return-1*OP(e,t)}function YZ(e){switch(e){case"float32":return"float32";default:throw new j(`Invalid dtype: ${e}`)}}function HZ(e,t){if(e==null||t==null)return e===t;if(e.length!==t.length)return!1;for(let n=0;n<e.length;++n)if(e[n]!==t[n])return!1;return!0}function $r(e){if(e==null)return e;const t=[];for(const n of e)t.indexOf(n)===-1&&t.push(n);return t}function EP(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(const t in e)if(e.hasOwnProperty(t))return!1;return!0}function za(e,t,n){if(n==null)return;if(e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Yb(e,t,n=0,s=Infinity){return xs(n>=0),xs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(i=>typeof i===t)}function pn(e,t){Array.isArray(e)?(k(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>pn(n,`element ${s+1} of ${t}`))):k(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${GA(e)}.`)}function GA(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>GA(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function DP(e,t){let n=Vn(),s;const i=(...o)=>{const a=Vn();return a-n<t||(n=a,s=e(...o)),s};return i}function VA(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function qZ(...e){xs(e.length>0,"arrayOfValues is empty");for(const t of e)xs(Array.isArray(t),"one of the values is not an array"),xs(t.length>0,"one of the values is empty");return e.reduce((t,n)=>t.length===0?n.map(s=>[s]):n.map(s=>t.map(i=>[...i,s])).reduce((s,i)=>s.concat(i),[]),[])}function Hb(e,t){return ee(()=>Ln(Ue(X(e,e),t,!0)))}class wh extends go{getConfig(){return{}}}class qb extends wh{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return ee(()=>{const t=Hb(e,this.axis),n=Yn(t,0,this.maxValue);return X(e,_e(n,be(an(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}}qb.className="MaxNorm",me(qb);class jb extends wh{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return ee(()=>_e(e,be(an(),Hb(e,this.axis))))}getConfig(){return{axis:this.axis}}}jb.className="UnitNorm",me(jb);class Kb extends wh{apply(e){return Ri(e)}}Kb.className="NonNeg",me(Kb);class Xb extends wh{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return ee(()=>{const t=Hb(e,this.axis),n=be(X(this.rate,Yn(t,this.minValue,this.maxValue)),X(1-this.rate,t));return X(e,_e(n,be(an(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}}Xb.className="MinMaxNorm",me(Xb);const YA={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function cn(e){return Gb(e)}function HA(e,t={}){return bh(e,ks.getMap().classNameMap,t,"constraint")}function ln(e){if(e==null)return null;if(typeof e=="string"){const t=e in YA?YA[e]:e,n={className:t,config:{}};return HA(n)}else return e instanceof wh?e:HA(e)}function kP(e){return new qb(e)}function FP(e){return new jb(e)}function _P(){return new Kb}function WP(e){return new Xb(e)}var $P=Object.freeze({__proto__:null,maxNorm:kP,unitNorm:FP,nonNeg:_P,minMaxNorm:WP});const UP=["channelsFirst","channelsLast"],BP=["valid","same","causal"],MP=["max","avg"],PP=["sum","mul","concat","ave"],jZ=["temporal"];const Ga=new Map;function Gt(e){za(UP,"DataFormat",e)}function Ts(e){za(BP,"PaddingMode",e)}function qA(e){za(MP,"PoolMode",e)}const Lh=[],jA="/";function Do(e,t){Lh.push(e);try{const n=t();return Lh.pop(),n}catch(n){throw Lh.pop(),n}}function zP(){return Lh.length===0?"":Lh.join(jA)+jA}function KA(e){if(!JA(e))throw new Error("Not a valid tensor name: '"+e+"'");return zP()+e}function XA(e){if(!JA(e))throw new Error("Not a valid tensor name: '"+e+"'");Ga.has(e)||Ga.set(e,0);const t=Ga.get(e);if(Ga.set(e,Ga.get(e)+1),t>0){const n=`${e}_${t}`;return Ga.set(n,1),n}else return e}const GP=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function JA(e){return!!e.match(GP)}function VP(e){return e===parseInt(e.toString(),10)}function Ur(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let i=t;i<n;++i)s*=e[i];return s}function lp(e){return e=Array.isArray(e)?new Float32Array(e):e,ns(e)}function Va(e){return ka(lp(e)).dataSync()[0]}function Br(e){return qn(lp(e)).dataSync()[0]}function YP(e){return Ue(lp(e)).dataSync()[0]}function HP(e){return YP(e)/e.length}function KZ(e){const t=Ce(lp(e),Ne(HP(e))),n=Ue(X(t,t)).dataSync()[0];return n/e.length}function XZ(e){const t=e.slice().sort((i,o)=>i-o),n=Math.floor((t.length-1)/2),s=Math.ceil((t.length-1)/2);return n===s?t[n]:(t[n]+t[s])/2}function si(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);const n=[];for(let s=e;s<t;++s)n.push(s);return n}let ZA="webgl";function JZ(e){TT(e),ZA=e}function ZZ(){return ZA}function QZ(){return!1}function eQ(e){const t=e.shape;return t.length>0?t.reduce((n,s)=>n*s):1}function Sh(e,t){return e.asType(t)}function Ih(e,t=-1){const n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function qP(e,t){return ee(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);const n=Ih(e,1);return Qb(n,[1,t,1])})}function jP(e){const t=[Ur(e.shape)];return e.reshape(t)}function KP(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);const t=[e.shape[0],Ur(e.shape,1)];return e.reshape(t)}function ko(e,t,n){return ee(()=>{switch(e.rank){case 1:return Vd(e,t,n);case 2:return yb(e,[t,0],[n,e.shape[1]]);case 3:return Yd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ih(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return nt(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return nt(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Jb(e,t,n){return ee(()=>{switch(e.rank){case 1:return Vd(e,t,n);case 2:return yb(e,[0,t],[e.shape[0],n]);case 3:return Yd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ih(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function hp(e,t,n,s){return ee(()=>{switch(e.rank){case 1:return Vd(e,t,n);case 2:switch(s){case 1:return ko(e,t,n);case 2:return Jb(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ko(e,t,n);case 2:return Yd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Jb(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ko(e,t,n);case 2:return ih(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ih(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Jb(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Zb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Mt(e,t)}function QA(e,t){switch(e.rank){case 1:return ET([e,t]);case 2:return DT([e,t],0);case 3:return kT([e,t],0);case 4:return FT([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Qb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Er(e,t)}function up(e,t=0,n=1,s,i){return ub(e,t,n,s,i)}function Ei(e,t,n,s){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){const i=e.shape.slice(-1)[0],o=t.shape.slice(-2)[0];if(i!==o)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){const i=!1,o=!1;return ep({a:e,b:t,transposeA:i,transposeB:o,bias:s?ew(e.rank,s,ti()):null,activation:n})}else{const i=e.shape.slice(),o=i.pop();e=e.reshape([-1,o]);const a=t.shape.slice(),c=a.pop(),h=a.pop(),d=[...a,c],m=Array.from({length:t.rank},(L,T)=>T===0?t.rank-2:T<=t.rank-2?T-1:T);t=t.transpose(m).reshape([h,-1]);const y=[...i,...d],b=!1,w=!1;return ep({a:e,b:t,transposeA:b,transposeB:w,bias:s?ew(e.rank,s,ti()):null,activation:n}).reshape(y)}}function tQ(e){return ee(()=>{const t=Qe(e),n=On(e);return _n(Zs(e,t),t,_n(Ss(e,Qe(e)),n,X(-1,n)))})}function nQ(e,t){return ee(()=>{if(e.rank!==1)throw new Error("Only 1D one-hot tensors are supported in the deeplearn backend, at present.");return e=e.toInt(),fo(e,t).toFloat()})}function ev(e,t,n){return ee(()=>(Array.isArray(t)?t=ns(t,"int32"):t=t.toInt(),Oa(e,t,n)))}function xh(e){return X(e,e)}function sQ(e,t){return ee(()=>{if(typeof t=="number"&&(t=Ne(Math.round(t),"int32")),t.dtype!=="int32")throw new ze(`Non-int32 dtype (${t.dtype}) is not supported by pow() yet`);return ei(e,t)})}function ew(e,t,n){const s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?t.reshape([1,s[0],1,1,1]):t.reshape([1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?t.reshape([1,1,1,1,s[0]]):t.reshape([1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?t.reshape([1,s[0],1,1]):t.reshape([1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?t.reshape([1,1,1,s[0]]):t.reshape([1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?t.reshape([1,s[0],1]):t.reshape([1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?t.reshape([1,1,s[0]]):t.reshape([1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Di(e,t,n){return ee(()=>(n==null&&(n=ti()),Gt(n),e.add(ew(e.rank,t,n))))}function XP(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return So(e)}function JP(e){return ee(()=>_e(e,sn(e).add(1)))}function tv(e,t,n,s){return ee(()=>mA(e,t,n,s))}function ZP(e){return ee(()=>{const t=be(.5,X(.2,e));return Yn(t,0,1)})}function Th(e,t,n=!1){return n?e():t()}const QP=["fanIn","fanOut","fanAvg"],ez=["normal","uniform","truncatedNormal"],iQ=["Zeros","Ones","Constant","RandomNormal","RandomUniform","TruncatedNormal","VarianceScaling","Orthogonal","Identity"];function tz(e){za(QP,"FanMode",e)}function nz(e){za(ez,"Distribution",e)}class Us extends go{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}}class tw extends Us{apply(e,t){return ct(e,t)}}tw.className="Zeros",me(tw);class dp extends Us{apply(e,t){return Qs(e,t)}}dp.className="Ones",me(dp);class nw extends Us{constructor(e){super();if(typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return ee(()=>X(Ne(this.value),Qs(e,t)))}getConfig(){return{value:this.value}}}nw.className="Constant",me(nw);class sw extends Us{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return vo(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}}sw.className="RandomUniform",me(sw);class iw extends Us{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return up(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}iw.className="RandomNormal",me(iw);class rw extends Us{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return ch(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}rw.className="TruncatedNormal",me(rw);class ow extends Us{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return ee(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return X(this.gain,Ed(e[0]))})}getConfig(){return{gain:this.gain}}}ow.className="Identity",me(ow);function sz(e,t="channelsLast"){let n,s;if(Gt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){const i=Ur(e,2);n=e[1]*i,s=e[0]*i}else if(t==="channelsLast"){const i=Ur(e,0,e.length-2);n=e[e.length-2]*i,s=e[e.length-1]*i}}else{const i=Ur(e);n=Math.sqrt(i),s=Math.sqrt(i)}return[n,s]}class Kn extends Us{constructor(e){super();if(e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,tz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,nz(this.distribution),this.seed=e.seed}apply(e,t){const n=sz(e),s=n[0],i=n[1];let o=this.scale;if(this.mode==="fanIn"?o/=Math.max(1,s):this.mode==="fanOut"?o/=Math.max(1,i):o/=Math.max(1,(s+i)/2),this.distribution==="normal"){const a=Math.sqrt(o);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return ch(e,0,a,t,this.seed)}else{const a=Math.sqrt(3*o);return vo(e,-a,a,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}}Kn.className="VarianceScaling",me(Kn);class pp extends Kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Kn.className}}pp.className="GlorotUniform",me(pp);class mp extends Kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Kn.className}}mp.className="GlorotNormal",me(mp);class fp extends Kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Kn.className}}fp.className="HeNormal",me(fp);class gp extends Kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Kn.className}}gp.className="HeUniform",me(gp);class yp extends Kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Kn.className}}yp.className="LeCunNormal",me(yp);class bp extends Kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Kn.className}}bp.className="LeCunNormal",me(bp);class aw extends Us{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return ee(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);const n=e[0]>e[1]?[e[1],e[0]]:e,s=up(n,0,1,"float32");let i=AA.gramSchmidt(s);return e[0]>e[1]&&(i=i.transpose()),X(this.gain,i)})}getConfig(){return{gain:this.gain,seed:this.seed}}}aw.className="Orthogonal",me(aw);const nv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function sv(e,t={}){return bh(e,ks.getMap().classNameMap,t,"initializer")}function Vt(e){return Gb(e)}function Ft(e){if(typeof e=="string"){const t=e in nv?nv[e]:e;if(t==="GlorotNormal")return new mp;if(t==="GlorotUniform")return new pp;if(t==="HeNormal")return new fp;if(t==="HeUniform")return new gp;if(t==="LeCunNormal")return new yp;if(t==="LeCunUniform")return new bp;{const n={};return n.className=t,n.config={},sv(n)}}else return e instanceof Us?e:sv(e)}function iz(){return new tw}function rz(){return new dp}function oz(e){return new nw(e)}function az(e){return new sw(e)}function cz(e){return new iw(e)}function lz(e){return new rw(e)}function hz(e){return new ow(e)}function uz(e){return new Kn(e)}function dz(e){return new pp(e)}function pz(e){return new mp(e)}function mz(e){return new fp(e)}function fz(e){return new gp(e)}function gz(e){return new yp(e)}function yz(e){return new bp(e)}function bz(e){return new aw(e)}var wz=Object.freeze({__proto__:null,zeros:iz,ones:rz,constant:oz,randomUniform:az,randomNormal:cz,truncatedNormal:lz,identity:hz,varianceScaling:uz,glorotUniform:dz,glorotNormal:pz,heNormal:mz,heUniform:fz,leCunNormal:gz,leCunUniform:yz,orthogonal:bz});let Lz=0;function iv(){return Lz++}const wp={};function Lp(e=""){return e in wp||(wp[e]=0),wp[e]+=1,e+wp[e].toString()}function cw(e){return Array.isArray(e)&&Array.isArray(e[0])}function Sp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function je(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function St(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Ip(e){let t=0;for(const n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,i)=>s*i);return t}const rv="Variable";class ii{constructor(e,t="float32",n=rv,s=!0,i=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=iv(),n=n==null?rv:n,this.originalName=KA(n),this.name=XA(this.originalName),this.trainable_=s,this.constraint=i,this.val=KT(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Sz(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}}function Sz(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function rQ(e,t,n,s){return new ii(e,t,n,!0,s)}function oQ(e,t,n){return new ii(ct(e),t,n)}function aQ(e,t,n){return new ii(Qe(e),t,n)}function cQ(e,t,n){const s=Qs(e);return new ii(s,t,n)}function lQ(e,t,n){const s=On(e);return new ii(s,t,n)}function hQ(e,t,n){return new ii(Ed(e),t,n)}function uQ(e,t,n,s,i,o="randomUniform"){return new ii(vo(e,t,n,s),s,o)}function dQ(e,t=0,n=1,s,i,o="truncatedNormal"){if(s=s||"float32",s!=="float32"&&s!=="int32")throw new ze(`randomNormal does not support dType ${s}.`);return new ii(ch(e,t,n,s,i),s,o)}function pQ(e,t=0,n=1,s,i,o="randomNormal"){if(s=s||"float32",s!=="float32"&&s!=="int32")throw new ze(`randomNormalVariable does not support dType ${s}.`);return new ii(ub(e,t,n,s,i),s,o)}function mQ(e,t){return e.write(t)}function fQ(e,t){return e.write(be(e.read(),t))}function gQ(e,t){return e.write(Ce(e.read(),t))}function lw(e){return e.map(t=>t.read())}function hw(e){e.forEach(t=>{const n=t[0];n.write(t[1])})}function yQ(e,t){const n=t.map(i=>i.read()),s=ob(e,n);return t.map(i=>s.grads[i.name])}class mn{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}}class ri{constructor(e,t,n,s,i,o,a){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=i,this.outputTensorIndex=a,this.id=iv(),o!=null&&(this.originalName=KA(o),this.name=XA(this.originalName)),this.rank=t.length}}let Iz=0;class xp{constructor(e,t){this.callArgs=t,this.id=Iz++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(const n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){const e=[];for(const t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}}let xz=0;class lt extends go{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=xz++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){const n=this.getClassName();t=er(n)+"_"+Lp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let i=null;e.batchSize!=null&&(i=e.batchSize),n=[i].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new ni(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Qi(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Qi(`Layer ${this.name} is not connected, no input to return.`);return jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Qi(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Qi(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Nt(e),this.inputSpec==null||this.inputSpec.length===0)return;const t=Nt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){const s=e[n],i=t[n];if(i==null)continue;const o=s.rank;if(i.ndim!=null&&o!==i.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${i.ndim}, found ndim=${o}`);if(i.maxNDim!=null&&o>i.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${i.maxNDim}, found ndim=${o}`);if(i.minNDim!=null&&o<i.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${i.minNDim}, found ndim=${o}.`);if(i.dtype!=null&&s.dtype!==i.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${i.dtype}, found dtype=${s.dtype}.`);if(i.axes){const a=s.shape;for(const c in i.axes){const h=Number(c),d=i.axes[c],m=h>=0?a[h]:a[a.length+h];if(d!=null&&[d,null].indexOf(m)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${h} of input shape to have value ${d} but got shape ${a}.`)}}if(i.shape!=null)for(let a=0;a<i.shape.length;++a){const c=i.shape[a],h=s.shape[a];if(c!=null&&h!=null&&c!==h)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${i.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();const n=Nt(e);let s=!0;for(const o of n)if(!(o instanceof ri)){s=!1;break}let i=!0;for(const o of n)if(o instanceof ri){i=!1;break}if(s===i)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return Do(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);const o=[];for(const a of Nt(e))o.push(a.shape);this.build(jn(o)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&i&&(this._refCount=1)}if(this.assertInputCompatibility(e),i){let o=this.call(e,t);const a=Nt(o),c=[];for(let h of a)n.indexOf(h)!==-1&&(h=h.clone()),c.push(h);if(o=jn(c),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}else{const o=Tz(e),a=this.computeOutputShape(o);let c;const h=Az(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?o[0]:o),a!=null&&a.length>0&&Array.isArray(a[0])?c=a.map((d,m)=>new ri(h,d,this,Nt(e),t,this.name,m)):c=new ri(h,a,this,Nt(e),t,this.name),this.addInboundNode(e,c,null,null,o,a,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return c}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape==null)return;if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Qi(`The layer ${this.name} has never been called and thus has no defined output shape.`);const e=[];for(const t of this.inboundNodes){const n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){const t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Qi(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new ni(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Ip(this.weights)}build(e){this.built=!0}getWeights(e=!1){return lw(e?this.trainableWeights:this.weights)}setWeights(e){ee(()=>{const t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;const n=[],s=lw(t);for(let i=0;i<s.length;++i){const o=s[i],a=t[i],c=e[i];if(!ot(o.shape,c.shape))throw new j(`Layer weight shape ${o.shape} not compatible with provided weight shape ${c.shape}`);n.push([a,c])}hw(n)})}addWeight(e,t,n,s,i,o,a){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=Ft("zeros"));const c=s.apply(t,n),h=new ii(c,n,e,o,a);return c.dispose(),i!=null&&this.addLoss(()=>i.apply(h.read())),o==null&&(o=!0),o?this._trainableWeights.push(h):this._nonTrainableWeights.push(h),h}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){if(e==null||Array.isArray(e)&&e.length===0)return;e=Nt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e)}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,i,o,a=null){const c=Nt(e);t=Nt(t),n=Nt(n),s=Nt(s),i=Sp(i),o=Sp(o);const h=[],d=[],m=[];for(const y of c)h.push(y.sourceLayer),d.push(y.nodeIndex),m.push(y.tensorIndex);new xp({outboundLayer:this,inboundLayers:h,nodeIndices:d,tensorIndices:m,inputTensors:c,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:i,outputShapes:o},a);for(let y=0;y<t.length;y++)t[y].sourceLayer=this,t[y].nodeIndex=this.inboundNodes.length-1,t[y].tensorIndex=y}getConfig(){const e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}}function Tz(e){e=Nt(e);const t=[];for(const n of e)t.push(n.shape);return jn(t)}function Az(e){return"float32"}function ov(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{const s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{const i=[];for(let o=0;o<s.inboundLayers.length;o++){const a=s.inputTensors[o],c=s.inboundLayers[o],h=s.nodeIndices[o],d=ov(a,c,h);for(const m of d)i.indexOf(m)===-1&&i.push(m)}return i}}}class Ya extends lt{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Lp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");const n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];const s=new ri(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new xp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}}Ya.className="InputLayer",me(Ya);function av(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;n==null&&(n="float32");const s=new Ya({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}),i=s.inboundNodes[0].outputTensors;return i[0]}async function Mr(e){if(e==null)return;const t=[],n=[],s=[];for(const i in e){const o=e[i];if(typeof o!="number"){const a=o;t.push(a.data()),n.push(i),s.push(a)}}if(t.length>0){const i=await Promise.all(t);for(let o=0;o<i.length;++o)e[n[o]]=i[o][0];He(s)}}function cv(e){if(e==null)return;for(const t in e){const n=e[t];typeof n!="number"&&n.dispose()}}var lv;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(lv||(lv={}));const vz=125;class Ha{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}}class hv{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(const t of this.callbacks)t.setParams(e)}setModel(e){for(const t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(const n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(const t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(const t of this.callbacks)await t.onTrainEnd(e)}}class Nz extends Ha{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});const n=t.size==null?0:t.size;this.seen+=n;for(const s in t){const i=t[s];if(typeof i=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+i*n;else{let o;s in this.totals?o=this.totals[s]:this.totals[s]=0;const a=ee(()=>be(this.totals[s],X(i,n)));this.totals[s]=a,o!=null&&o.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(const n of this.params.metrics){if(this.totals[n]==null)continue;typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:ee(()=>{const s=X(_e(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Nn(t[n])})}}}class uv extends Ha{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(const n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){const e=[],t=[],n=[];for(const i in this.history){const o=this.history[i];for(let a=0;a<o.length;++a)if(typeof o[a]!="number"){const c=o[a];e.push(c.data()),t.push(i),n.push(a)}}const s=await Promise.all(e);for(let i=0;i<s.length;++i){const o=this.history[t[i]][n[i]];o.dispose(),this.history[t[i]][n[i]]=s[i][0]}}}class dv extends Ha{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=vz),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");rd(this.yieldEvery)&&(this.maybeWait=DP(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){const s=[];this.yield!=null&&(await Mr(n),s.push(this.yield(e,t,n))),s.push(ip()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Mr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){const n=[];this.epochEnd!=null&&(await Mr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(ip()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Mr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){const n=[];this.batchEnd!=null&&(await Mr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(ip()):rd(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Mr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Mr(e),await this.trainEnd(e))}}function pv(e,t){if(e==null&&(e={}),e instanceof Ha)return[e];if(Array.isArray(e)&&e[0]instanceof Ha)return e;const n=Nt(e);return n.map(s=>new dv(s,t))}class Bs{constructor(){}static registerCallbackConstructor(e,t){k(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Bs.checkForDuplicate(t),Bs.constructors[e]==null&&(Bs.constructors[e]=[]),Bs.constructors[e].push(t)}static checkForDuplicate(e){for(const t in Bs.constructors){const n=Bs.constructors[+t];n.forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}}static clear(){Bs.constructors={}}static createCallbacks(e){const t=[];for(const n in Bs.constructors){const s=+n;e>=s&&t.push(...Bs.constructors[s])}return t.map(n=>new n)}}Bs.constructors={};function mv(e,t,n,s,i,o,a,c,h){const d=new uv,m=[new Nz,...Bs.createCallbacks(t)];e!=null&&m.push(...e),m.push(d);const y=new hv(m);return y.setParams({epochs:n,initialEpoch:s,samples:i,steps:o,batchSize:a,verbose:t,doValidation:c,metrics:h}),{callbackList:y,history:d}}function oi(e,t={},n=!1){return bh(e,ks.getMap().classNameMap,t,"layer",n)}function Tp(e,t){return ee(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));const n=Ue(xh(e),t,!0),s=Xl(n.shape,an()),i=Ln(_s(n,s));return _e(e,i)})}function tr(e,t){return ee(()=>zt(xh(Ce(t,e)),-1))}function qa(e,t){return ee(()=>zt(sn(Ce(t,e)),-1))}function Pr(e,t){return ee(()=>{const n=Ce(e,t),s=Yn(sn(e),an(),Number.MAX_VALUE),i=sn(_e(n,s));return X(100,zt(i,-1))})}function uw(e,t){return ee(()=>{const n=Yn(t,an(),Number.MAX_VALUE),s=ts(be(1,n)),i=Yn(e,an(),Number.MAX_VALUE),o=ts(be(1,i));return zt(xh(Ce(s,o)),-1)})}function Cz(e,t){return ee(()=>{const n=_s(0,Ce(1,X(e,t)));return zt(xh(n),-1)})}function Rz(e,t){return ee(()=>{const n=_s(0,Ce(1,X(e,t)));return zt(n,-1)})}function Oz(e,t){return ee(()=>{const n=Ue(X(e,t),-1),s=qn(X(Ce(1,e),t),-1);return _s(0,be(1,Ce(s,n)))})}function Ez(e,t){return ee(()=>{const n=Math.log(2),s=Ce(t,e),i=Ce(be(s,Da(X(-2,s))),n);return zt(i,-1)})}function Ah(e,t,n=!1){return ee(()=>{if(n)t=No(t);else{const s=Ue(t,t.shape.length-1,!0);t=_e(t,s)}return t=Yn(t,an(),1-an()),Pt(Ue(X(e.toFloat(),ts(t)),t.shape.length-1))})}function Ap(e,t,n=!1){return ee(()=>{const s=Ra(jP(e)).toInt();t=Yn(t,an(),1-an());const i=t.shape,o=fo(s,i[i.length-1]).reshape(i);return Ah(o,t,n)})}function Dz(e,t){if(!ot(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return ee(()=>{const n=t.relu(),s=t.abs().neg();return n.sub(t.mul(e)).add(s.exp().log1p())})}function vp(e,t){return ee(()=>{let n;return n=Yn(t,an(),1-an()),n=ts(_e(n,Ce(1,n))),zt(Dz(e,n),-1)})}function dw(e,t){return ee(()=>{const n=Yn(e,an(),1),s=Yn(t,an(),1);return Ue(X(e,ts(_e(n,s))),-1)})}function kz(e,t){return ee(()=>{const n=ts(be(an(),t));return zt(Ce(t,X(e,n)),-1)})}function Np(e,t){return ee(()=>{const n=Tp(e,-1),s=Tp(t,-1),i=X(n,s);return Pt(Ue(i,-1))})}const bQ=tr,wQ=tr,LQ=qa,SQ=qa,IQ=Pr,xQ=Pr,TQ=uw,AQ=uw,vQ=dw,NQ=dw,CQ=Np,Cp={meanSquaredError:tr,meanAbsoluteError:qa,meanAbsolutePercentageError:Pr,meanSquaredLogarithmicError:uw,squaredHinge:Cz,hinge:Rz,categoricalHinge:Oz,logcosh:Ez,categoricalCrossentropy:Ah,sparseCategoricalCrossentropy:Ap,binaryCrossentropy:vp,kullbackLeiblerDivergence:dw,poisson:kz,cosineProximity:Np};function pw(e){if(typeof e=="string"){if(e in Cp)return Cp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function mw(e,t){return ee(()=>{const n=X(.5,On(t)),s=Sh(Ss(t,n),e.dtype);return zt(Zs(e,s),-1)})}function fw(e,t){return ee(()=>Sh(Zs(zl(e,-1),zl(t,-1)),"float32"))}function fv(e,t){return ee(()=>Ws(e.equal(1),t.equal(1)).sum().cast("float32"))}function Fz(e,t){return ee(()=>Ws(e.equal(1),t.equal(0)).sum().cast("float32"))}function _z(e,t){return ee(()=>Ws(e.equal(0),t.equal(1)).sum().cast("float32"))}function gv(e,t){return ee(()=>{const n=fv(e,t),s=_z(e,t),i=n.add(s);return _n(Ss(i,0),n.div(i),0).cast("float32")})}function Wz(e,t){return ee(()=>{const n=fv(e,t),s=Fz(e,t),i=n.add(s);return _n(Ss(i,0),n.div(i),0).cast("float32")})}function yv(e,t){return vp(e,t)}function bv(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Zs(e,t).asType("float32")}function RQ(e,t){throw new ze}function OQ(e,t){throw new ze}const $z=tr,Uz=tr,Bz=qa,Mz=qa,Pz=Pr,zz=Pr,gw=Ah,Gz=Np,wv=Ap,Rp={binaryAccuracy:mw,categoricalAccuracy:fw,precision:gv,categoricalCrossentropy:gw,sparseCategoricalCrossentropy:wv,mse:$z,MSE:Uz,mae:Bz,MAE:Mz,mape:Pz,MAPE:zz,cosine:Gz};function Vz(e){if(typeof e=="string"&&e in Rp)return Rp[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function Op(e){if(xs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(const n of Object.keys(Cp))if(Cp[n]===e){t=n;break}if(t!==void 0)return t;for(const n of Object.keys(Rp))if(Rp[n]===e){t=n;break}return t!==void 0?t:e.name}}function Yz(e){const t={Adagrad:()=>Ro.adagrad(.01),Adadelta:()=>Ro.adadelta(1,.95,an()),Adam:()=>Ro.adam(.001,.9,.999,an()),Adamax:()=>Ro.adamax(.002,.9,.999,an(),0),RMSProp:()=>Ro.rmsprop(.001,.9,0,an()),SGD:()=>Ro.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}const Lv=1*1024*1024;function Sv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!yw(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){const s=JSON.stringify(e);s.length>Lv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Lv}.`)}}function yw(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){const t=Object.keys(e);for(const n of t){if(typeof n!="string")return!1;if(!yw(e[n]))return!1}return!0}else if(Array.isArray(e)){for(const t of e)if(!yw(t))return!1;return!0}else return!1;else{const t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Hz(e,t,n,s=console.log){const i=jz(e),o=["Layer (type)","Output shape","Param #"];i?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(m=>Math.floor(t*m)));let a;if(!i){o.push("Receives inputs"),a=[];for(const m in e.nodesByDepth)a.push(...e.nodesByDepth[m])}s("_".repeat(t)),Ep(o,n,s),s("=".repeat(t));const c=e.layers;for(let m=0;m<c.length;++m)i?Kz(c[m],n,s):Xz(c[m],n,a,s),s((m===c.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();const h=qz(e),d=Ip(e.nonTrainableWeights);s(`Total params: ${h+d}`),s(`Trainable params: ${h}`),s(`Non-trainable params: ${d}`),s("_".repeat(t))}function qz(e){let t;return e.collectedTrainableWeights!=null?t=Ip(e.collectedTrainableWeights):t=Ip(e.trainableWeights),t}function jz(e){let t=!0;const n=[],s=[];for(const i in e.nodesByDepth)n.push(e.nodesByDepth[i]);for(const i of n){if(i.length>1||i.length===1&&i[0].inboundLayers.length>1){t=!1;break}s.push(...i)}if(t)for(const i of e.layers){let o=!1;for(const a of i.inboundNodes)if(s.indexOf(a)!==-1)if(o){t=!1;break}else o=!0;if(!t)break}return t}function Ep(e,t,n=console.log){let s="";for(let i=0;i<e.length;++i)i>0&&(s=s.slice(0,s.length-1)+" "),s+=e[i],s=s.slice(0,t[i]),s+=" ".repeat(t[i]-s.length);n(s)}function Kz(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(c){s="multiple"}const i=e.name,o=e.getClassName(),a=[`${i} (${o})`,s,e.countParams().toString()];Ep(a,t,n)}function Xz(e,t,n,s){let i;try{i=JSON.stringify(e.outputShape)}catch(m){i="multiple"}const o=[];for(const m of e.inboundNodes){if(n!=null&&n.length>0&&n.indexOf(m)===-1)continue;for(let y=0;y<m.inboundLayers.length;++y){const b=m.inboundLayers[y].name,w=m.nodeIndices[y],L=m.tensorIndices[y];o.push(`${b}[${w}][${L}]`)}}const a=e.name,c=e.getClassName(),h=o.length===0?"":o[0],d=[`${a} (${c})`,i,e.countParams().toString(),h];Ep(d,t,s);for(let m=1;m<o.length;++m)Ep(["","","",o[m]],t,s)}function Iv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function vh(e,t){if(e===null)return null;if(typeof e=="string")return Eo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){const n=[],s=e.length;for(let i=0;i<s;++i){const o=e[i];Iv(t,i,o)?n.push(o):n.push(vh(o,t))}return n}else{const n={};for(const s of Object.keys(e)){const i=e[s];if(s==="name"&&typeof i=="string")n[s]=i;else{const o=Eo(s);n[o]=vh(i,o)}}return n}}function bw(e,t){if(e==null)return null;if(typeof e=="string")return er(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){const n=[],s=e.length;for(let i=0;i<s;++i){const o=e[i];Iv(t,i,o)?n.push(o):n.push(bw(o,t))}return n}else{const n={};for(const s of Object.keys(e)){const i=e[s],o=er(s);(s==="name"||s==="className")&&typeof i=="string"?n[o]=i:n[o]=bw(i,s)}return n}}const Dp="2.6.0";function Jz(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ve(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}class Fo{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Fo)for(const t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(const t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Jz(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof ri){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{const t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof ri){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{const t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&He(this.id2Mask)}}const ww={},xv={};function Nh(e,t,n,s){const i=n==null?!1:n.training,o=Array.isArray(e),a=o?e:[e],c=a.map(L=>L.name),h=[],d=t.names();for(const L of c)d.indexOf(L)!==-1?h.push(t.getValue(L)):h.push(null);s!=null&&(s.maxNumTensors=-Infinity,s.minNumTensors=Infinity);const m=c.join(",")+"|"+t.names().join(",");let y,b;if(ww[m]==null){const L=Zz(a,t);y=L.sorted,b=L.recipientCounts,ww[m]=y,xv[m]=b}y=ww[m],b={},i||Object.assign(b,xv[m]);const w=new Fo(t);for(let L=0;L<y.length;++L){if(s!=null){const q=Sd().numTensors;q>s.maxNumTensors&&(s.maxNumTensors=q),q<s.minNumTensors&&(s.minNumTensors=q)}const T=y[L],A=T.sourceLayer;if(A instanceof Ya)continue;const N=[],E=[],D=[];let F=!1;for(const q of T.inputs){const J=w.getValue(q),re=w.getMask(q);N.push(J),E.push(re),re!=null&&(F=!0),i||(b[q.name]--,b[q.name]===0&&!t.hasKey(q)&&c.indexOf(q.name)===-1&&!J.isDisposed&&q.sourceLayer.stateful!==!0&&D.push(J))}F&&(n=n||{},n.mask=E[0]);const _=Nt(A.apply(N,n));let B=null;A.supportsMasking&&(B=A.computeMask(N,E));const $=e3(T),H=Array.isArray($)?$:[$];for(let q=0;q<H.length;++q){w.hasKey(H[q])||w.add(H[q],_[q],Array.isArray(B)?B[0]:B);const J=c.indexOf(H[q].name);J!==-1&&(h[J]=_[q])}i||He(D)}return w.disposeMasks(),o?h:h[0]}function Zz(e,t){k(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){const i=Tv(e[0],t);n=i.sorted,s=i.recipientMap}else{const i=new Set;for(const o of e){const{sorted:a,recipientMap:c}=Tv(o,t);for(const h of a)i.has(h.name)||(n.push(h),i.add(h.name));for(const h in c)s[h]==null&&(s[h]=new Set),c[h].forEach(d=>s[h].add(d))}}return{sorted:n,recipientCounts:Qz(s)}}function Qz(e){const t={};for(const n in e)t[n]=e[n].size;return t}function Tv(e,t){const n=new Set,s=[],i={};for(const c of t.names())n.add(c);const o=[],a=[];for(o.push(e);o.length>0;){const c=o[o.length-1];if(n.has(c.name)){o.pop();continue}const h=a[a.length-1]===o.length-1;if(c.inputs.length===0||h)o.pop(),s.push(c),n.add(c.name),h&&a.pop();else{a.push(o.length-1);for(const d of c.inputs){if(i[d.name]==null&&(i[d.name]=new Set),i[d.name].add(c.name),n.has(d.name))continue;o.push(d)}}}return{sorted:s,recipientMap:i}}function e3(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(const i of e.sourceLayer.inboundNodes[s].outputTensors)if(i.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}class ki extends lt{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){const N=this.getClassName().toLowerCase();this.name=Lp(N)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],$r(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(N=>N.name)}`);$r(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(N=>N.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(const N of this.outputs){const E=N.sourceLayer,D=N.nodeIndex,F=N.tensorIndex;this.outputLayers.push(E),this.outputLayersNodeIndices.push(D),this.outputLayersTensorIndices.push(F)}for(const N of this.inputs){const E=N.sourceLayer,D=N.nodeIndex,F=N.tensorIndex;xs(D===0,"input layer has >1 nodes"),xs(F===0,"input layer has >1 tensors"),this.inputLayers.push(E),this.inputLayersNodeIndices.push(D),this.inputLayersTensorIndices.push(F)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let N=0;N<this.inputLayers.length;N++){const E=this.inputLayers[N];if(!(E instanceof Ya))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${N} (0-based) originates from layer type ${E.getClassName()}.`);this.inputNames.push(E.name),this.feedInputShapes.push(E.batchInputShape),this.feedInputNames.push(E.name)}for(const N of this.outputLayers)this.outputNames.push(N.name);this.internalInputShapes=this.inputs.map(N=>N.shape),this.internalOutputShapes=this.outputs.map(N=>N.shape);const t={},n={},s={},i={},o={},a=[],c=(N,E,D,F,_,B)=>{(F==null||_==null||B==null)&&(F=N.sourceLayer,_=N.nodeIndex,B=N.tensorIndex);const $=F.inboundNodes[_];if(D.indexOf($)!==-1)throw new ni(`The tensor ${N.name} at layer "${F.name}" is part of a cycle.`);if(E.indexOf($)!==-1)return;this.containerNodes.add(ki.nodeKey(F,_)),F.id in o||(o[F.id]=Object.keys(o).length),D.indexOf($)===-1&&D.push($);const H=$.inboundLayers.length;for(let q=0;q<H;q++){const J=$.inputTensors[q],re=$.inboundLayers[q],ce=$.nodeIndices[q],ue=$.tensorIndices[q];c(J,E,D,re,ce,ue)}for(E.push($);D.indexOf($)>=0;)D.splice(D.indexOf($),1);a.push($)},h=[],d=[];for(const N of this.outputs)c(N,h,d);const m=a.slice().reverse();for(const N of m){n[N.id]=N,N.id in t||(t[N.id]=0);let E=t[N.id];const D=s[N.outboundLayer.id]==null?0:s[N.outboundLayer.id];E=Math.max(E,D),s[N.outboundLayer.id]=E,i[N.outboundLayer.id]=N.outboundLayer,t[N.id]=E;for(let F=0;F<N.inboundLayers.length;F++){const _=N.inboundLayers[F],B=N.nodeIndices[F],$=_.inboundNodes[B],H=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(E+1,H),n[$.id]=$}}const y={};for(const N in t){const E=t[N];E in y||(y[E]=[]),y[E].push(n[N])}const b={};for(const N in s){const E=s[N];E in b||(b[E]=[]),b[E].push(i[N])}let w=Object.keys(b).map(N=>parseInt(N,10)).sort(cp);this.layers=[];for(const N of w){const E=b[N];E.sort((D,F)=>{const _=o[D.id],B=o[F.id];return _<B?-1:_>B?1:0});for(const D of E)D instanceof ki&&this.internalContainerRefs.push(D),this.layers.push(D)}this.layersByDepth=b,w=Object.keys(y).map(N=>parseInt(N,10)).sort(cp);const L=this.inputs.slice(),T=[];for(const N of w)for(const E of y[N]){const D=E.outboundLayer;if(D!=null){for(const F of E.inputTensors)if(L.indexOf(F)===-1)throw new ni(`Graph disconnected: cannot obtain value for tensor ${F} at layer "${D.name}". The following previous layers were accessed without issue: ${T}`);for(const F of E.outputTensors)L.push(F);T.push(D.name)}}this.nodesByDepth=y;const A=this.layers.map(N=>N.name);for(const N of A){const E=A.filter(D=>D===N).length;if(E!==1)throw new ni(`The name "${N}" is used ${E} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new xp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(N=>null),outputMasks:this.outputs.map(N=>null),inputShapes:this.inputs.map(N=>N.shape),outputShapes:this.outputs.map(N=>N.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();const e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(const t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(const t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(const t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){const e=[];for(const t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){const t=[];for(const n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){const n={};let s=0;for(const o of this.layers)for(const a of o.weights){if(n[a.originalName]!=null)throw new j(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,s++}const i=[];for(const o in e){let a=o;if(n[o]==null){const c=o.split("/"),h=c.slice(0,-2).concat([c[c.length-1]]);a=h.join("/")}if(n[a]!=null)i.push([n[a],e[o]]);else if(t)throw new j(`Provided weight data has no target variable: ${o}`);delete n[a]}if(t){const o=[];for(const a in n)o.push(a);if(o.length>0)throw new j(`${o.length} of ${s} weights are not set: ${o}`)}hw(i)}updatedConfig(){const e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Dp}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){const n=bw(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return ee(()=>{e=Nt(e);const n=new Fo;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Nh(this.outputs,n,t)})}computeMask(e,t){return ee(()=>{e=Nt(e);let n;return t==null?n=Oo(null,e.length):n=Nt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){const t=Sp(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);const n={};for(let a=0;a<t.length;a++){const c=this.inputLayers[a],h=t[a],d=c.name+"_0_0";n[d]=h}const s=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(cp);if(s.length>1)for(const a of s){const c=this.nodesByDepth[a];for(const h of c){const d=h.outboundLayer;if(this.inputLayers.map(L=>L.id).indexOf(d.id)!==-1)continue;const m=[];for(let L=0;L<h.inboundLayers.length;L++){const T=h.inboundLayers[L],A=h.nodeIndices[L],N=h.tensorIndices[L],E=`${T.name}_${A}_${N}`,D=n[E];m.push(D)}const y=d.computeOutputShape(jn(m)),b=Sp(y),w=d.inboundNodes.indexOf(h);for(let L=0;L<b.length;L++){const T=`${d.name}_${w}_${L}`;n[T]=b[L]}}}const i=[],o=[];for(let a=0;a<this.outputLayers.length;a++){const c=this.outputLayers[a],h=this.outputLayersNodeIndices[a],d=this.outputLayersTensorIndices[a],m=`${c.name}_${h}_${d}`;o.push(m)}for(let a=0;a<o.length;a++){const c=o[a];xs(c in n),i.push(n[c])}return jn(i)}runInternalGraph(e,t){t==null&&(t=Oo(null,e.length));const n={};for(let c=0;c<this.inputs.length;++c){const h=this.inputs[c],d=e[c],m=t[c];n[h.id]=[d,m]}const s=Object.keys(this.nodesByDepth).map(c=>parseInt(c,10)).sort(cp);for(const c of s){const h=this.nodesByDepth[c];for(const d of h){const m=d.outboundLayer,y=d.inputTensors,b=d.outputTensors,w=new Array;for(const L of y)L.id in n&&w.push(n[L.id]);if(w.length===y.length){let L={},T,A,N,E;if(d.callArgs!=null&&(L=d.callArgs),w.length===1){const[D,F]=w[0];L.mask==null&&(L.mask=F),N=Nt(m.call(D,L)),E=Nt(m.computeMask(D,F)),T=[D],A=[F]}else T=w.map(D=>D[0]),A=w.map(D=>D[1]),L.mask==null&&(L.mask=A),N=Nt(m.call(T,L)),E=Nt(m.computeMask(T,A));if(m.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let D=0;D<b.length;++D){const F=b[D],_=N[D],B=E[D];n[F.id]=[_,B]}}}}const i=[],o=[],a=[];for(const c of this.outputs){xs(c.id in n,`Could not compute output ${c.name} : ${c.id}`);const[h,d]=n[c.id];a.push(h.shape),i.push(h),o.push(d)}return[i,o,a]}buildNodeConversionMap(e){const t={};let n;for(const s of this.layers){n=s instanceof ki?1:0;for(let i=0;i<s.inboundNodes.length;i++){const o=ki.nodeKey(s,i);this.containerNodes.has(o)&&(t[o]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(const n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return ee(()=>{const e=[];for(const t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){const s=ki.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){const e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(const o of this.layers){const a=o.getClassName(),c=o.getConfig(),h=[];for(let m=0;m<o.inboundNodes.length;m++){const y=o.inboundNodes[m],b=ki.nodeKey(o,m);let w={};if(this.containerNodes.has(b)){if(y.callArgs)try{JSON.stringify(y.callArgs),w=y.callArgs}catch(L){console.warn(`Layer ${o.name} was passed non-serializable keyword arguments: ${y.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),w={}}if(y.inboundLayers.length>0){const L=[];for(let T=0;T<y.inboundLayers.length;T++){const A=y.inboundLayers[T],N=y.nodeIndices[T],E=y.tensorIndices[T],D=ki.nodeKey(A,N);let F=t[D];F==null&&(F=0),L.push([A.name,F,E,w])}h.push(L)}}}const d={};d.name=o.name,d.className=a,d.config=c,d.inboundNodes=h,n.push(d)}e.layers=n;const s=[];for(let o=0;o<this.inputLayers.length;o++){const a=this.inputLayers[o],c=this.inputLayersNodeIndices[o],h=ki.nodeKey(a,c);if(!this.containerNodes.has(h))continue;let d=t[h];d==null&&(d=0);const m=this.inputLayersTensorIndices[o];s.push([a.name,d,m])}e.inputLayers=s;const i=[];for(let o=0;o<this.outputLayers.length;o++){const a=this.outputLayers[o],c=this.outputLayersNodeIndices[o],h=ki.nodeKey(a,c);if(!this.containerNodes.has(h))continue;let d=t[h];d==null&&(d=0);const m=this.outputLayersTensorIndices[o];i.push([a.name,d,m])}return e.outputLayers=i,e}static fromConfig(e,t,n={},s=!1){const i={},o={};function a(T,A){T.name in o?o[T.name].push(A):o[T.name]=[A]}function c(T,A){const N=[];let E;for(const D of A){const F=D[0],_=D[1],B=D[2];if(E=D[3]==null?{}:D[3],!(F in i)){a(T,A);return}const $=i[F];if($.inboundNodes.length<=_){a(T,A);return}const H=$.inboundNodes[_];N.push(H.outputTensors[B])}N.length>0&&T.apply(jn(N),E)}function h(T){const A=T.name,N=oi(T,t.customObjects!=null?t.customObjects:{});N.setFastWeightInitDuringBuild(s),i[A]=N;const E=T.inboundNodes;E.forEach(D=>{if(!(D instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${D}`);a(N,D)})}const d=t.name,m=t.layers;for(const T of m)h(T);for(;!EP(o);)for(const T of m){const A=i[T.name];if(A.name in o){const N=o[A.name];delete o[A.name];for(const E of N)c(A,E)}}const y=[],b=[],w=t.inputLayers;for(const T of w){const A=T[0],N=T[1],E=T[2];xs(A in i);const D=i[A],F=D.inboundNodes[N].outputTensors;y.push(F[E])}const L=t.outputLayers;for(const T of L){const A=T[0],N=T[1],E=T[2];xs(A in i);const D=i[A],F=D.inboundNodes[N].outputTensors;b.push(F[E])}return new e({inputs:y,outputs:b,name:d})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(const e of this.layers)if(e.stateful)return!0;return!1}resetStates(){ee(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}}function Av(e,t,n){const s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(i=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){const i=[];return t.forEach(o=>{o in e?i.push(e[o]):i.push(null)}),i}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function vv(e,t){return Av(e,t,"classWeight")}function EQ(e,t){return Av(e,t,"sampleWeight")}async function Nv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){const i=ee(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){const c=1;return e.argMax(c)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),o=Array.from(await i.data());He(i);const a=[];return o.forEach(c=>{if(n[c]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${c} exists in the data but not in classWeight`);a.push(n[c])}),ns(a,"float32")}else return null}function t3(e,t){return X(e,t)}const n3=32;function Cv(e,t){let n,s;const i=t;n=i.xs,s=i.ys,k(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);const o=Rv("input",e.inputNames,n),a=Rv("output",e.outputNames,s),c=o[0].shape[0];k(o.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${o.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k(a.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let h=0;h<o.length;h++)k(o[h].shape[0]===c,()=>`Batch size mismatch: input ${e.inputNames[h]} has ${o[h].shape[0]}; expected ${c} based on input ${e.inputNames[0]}.`);for(let h=0;h<a.length;h++)k(a[h].shape[0]===c,()=>`Batch size mismatch: output ${e.outputNames[h]} has ${a[h].shape[0]}; expected ${c} based on input ${e.inputNames[0]}.`);return{xs:o,ys:a}}function Rv(e,t,n){if(n instanceof Q)return[n];if(Array.isArray(n))return k(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{const s=[];for(const i of t){if(n[i]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${i}'.`);s.push(n[i])}return s}}function s3(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function i3(e,t,n){const s=n.batchesPerEpoch!=null;if(k(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{const i=n.validationData!=null;let o,a;if(i)if(Ov(n.validationData))k(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{const A=s3(n.validationData);o=A.xs,a=A.ys}const c=e.makeTrainFunction(),h=e.getDedupedMetricsNames();let d;i?d=h.slice().concat(h.map(A=>"val_"+A)):d=h.slice();const m=pv(n.callbacks,n.yieldEvery),y=n.verbose==null?1:n.verbose,{callbackList:b,history:w}=mv(m,y,n.epochs,null,null,r3(t,n),null,i,d);b.setModel(e),e.history=w,await b.onTrainBegin(),e.stopTraining_=!1;let L=n.initialEpoch==null?0:n.initialEpoch,T=await t.iterator();for(;L<n.epochs;){const A={};await b.onEpochBegin(L);let N=0,E=0;for(s||(T=await t.iterator());s?N<n.batchesPerEpoch:!0;){const D=await T.next();if(s&&D.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${N} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(D.value!=null){const{xs:F,ys:_}=Cv(e,D.value),B={};B.batch=E,B.size=F[0].shape[0],await b.onBatchBegin(E,B);const $=[];if(n.classWeight!=null){const J=vv(n.classWeight,e.outputNames);for(let re=0;re<J.length;++re)$.push(await Nv(_[re],null,J[re]))}const H=F.concat(_).concat($),q=c(H);He(H);for(let J=0;J<h.length;++J){const re=h[J],ce=q[J];B[re]=ce,Nn(ce)}await b.onBatchEnd(E,B),cv(B),E++,N++}if(s?N>=n.batchesPerEpoch:D.done){if(i){let F;Ov(n.validationData)?F=Nt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):F=Nt(e.evaluate(o,a,{batchSize:n.validationBatchSize==null?n3:n.validationBatchSize,verbose:0}));for(let _=0;_<e.metricsNames.length;++_)A[`val_${e.metricsNames[_]}`]=F[_]}break}if(e.stopTraining_)break}if(await b.onEpochEnd(L,A),L++,e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function r3(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Ov(e){return typeof e.iterator=="function"}function o3(e){return typeof e.next=="function"}async function a3(e,t,n){n=n||{};const s=n.batches!=null,i=e.testFunction;let o=[];if(n.verbose>0)throw new ze("Verbose mode is not implemented yet.");k(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);const a=o3(t)?t:await t.iterator();let c=0,h=0;for(;s?h<n.batches:!0;){const d=await a.next();if(o=ee(()=>{if(d.value){const{xs:m,ys:y}=Cv(e,d.value),b=m.concat(y),w=ee(()=>i(b));if(He(b),h===0)for(let T=0;T<w.length;++T)o.push(Ne(0));const L=b[0].shape[0];for(let T=0;T<w.length;++T){const A=w[T],N=o[T];o[T]=ee(()=>be(o[T],X(L,A))),h>0&&He(N)}He(w),c+=L,++h}return o}),d.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let d=0;d<o.length;++d){const m=o[d];o[d]=_e(o[d],c),He(m)}return jn(o)}function Lw(e){k(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ch(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ko(s,t,n-t)):ko(e,t,n-t)}function Sw(e,t){return ee(()=>e==null?null:Array.isArray(e)?e.map(n=>Sw(n,t)):ev(e,t.dtype==="int32"?t:t.toInt()))}function Iw(e,t){const n=[];let s=0,i=null;for(;s<e;)i=s+t,i>=e&&(i=e),n.push([s,i]),s=i;return n}async function c3(e,t,n,s,i,o,a,c,h,d,m,y,b,w,L){i==null&&(i=32),o==null&&(o=1),m==null&&(m=!0),b==null&&(b=0);let T=!1;if(h!=null&&d!=null&&(T=!0),L!=null&&(T=!0,w==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");const A=e.checkNumSamples(n,i,w,"steps_per_epoch");let N;A!=null&&(N=si(0,A)),a==null&&(a=1);const{callbackList:E,history:D}=mv(c,a,o,b,A,w,i,T,y);E.setModel(e),e.history=D,await E.onTrainBegin(),e.stopTraining_=!1;for(let F=b;F<o;++F){await E.onEpochBegin(F);const _={};if(w!=null)throw new ze("stepsPerEpoch mode is not implemented yet.");{if(m==="batch")throw new ze("batch shuffling is not implemneted yet");m&&ty(N);const B=ns(N),$=Iw(A,i);for(let H=0;H<$.length;++H){const q={};if(await E.onBatchBegin(H,q),ee(()=>{const J=$[H][0],re=$[H][1],ce=ko(B,J,re-J);q.batch=H,q.size=re-J;const ue=Sw(n,ce),he=t(ue);for(let de=0;de<s.length;++de){const le=s[de],ye=he[de];q[le]=ye,Nn(ye)}if(H===$.length-1&&T){const de=e.testLoop(h,d,i);for(let le=0;le<s.length;++le){const ye=s[le],pe=de[le];Nn(pe),_["val_"+ye]=pe}}}),await E.onBatchEnd(H,q),cv(q),e.stopTraining_)break}B.dispose()}if(await E.onEpochEnd(F,_),e.stopTraining_)break}return await E.onTrainEnd(),await e.history.syncData(),e.history}async function l3(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let i,o,a,c,h,d,m;try{const y=s.batchSize==null?32:s.batchSize;Lw(y);const b=!1,w=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,b,y);i=w[0],o=w[1],m=w[2];let L=!1,T;if(s.validationData!=null&&s.validationData.length>0){if(L=!0,s.validationData.length===2)a=s.validationData[0],c=s.validationData[1];else throw s.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);const $=!0,H=await e.standardizeUserData(a,c,null,null,$,y);h=H[0],d=H[1],T=h.concat(d)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){L=!0;const $=Math.floor(i[0].shape[0]*(1-s.validationSplit)),H=i[0].shape[0];h=Ch(i,$,H),i=Ch(i,0,$),d=Ch(o,$,H),o=Ch(o,0,$),T=h.concat(d)}else s.validationSteps!=null&&(L=!0);const A=i.concat(o).concat(m);e.checkTrainableWeightsConsistency();const N=e.makeTrainFunction(),E=e.getDedupedMetricsNames();let D,F;L?(e.makeTestFunction(),D=e.testFunction,F=E.slice().concat(E.map($=>"val_"+$))):(D=null,T=[],F=E.slice());const _=pv(s.callbacks,s.yieldEvery),B=await c3(e,N,A,E,y,s.epochs,s.verbose,_,D,T,s.shuffle,F,s.initialEpoch,null,null);return B}finally{e.isTraining=!1,_o(i,t),_o(o,n),_o(h,a),_o(d,c),m!=null&&He(m)}}function Ev(e){const t=[];e instanceof Q&&(e=[e]);for(let n=0;n<e.length;++n){const s=e[n];if(s.rank===1)t.push(Ih(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function _o(e,t){if(e==null)return;const n=[];if(t instanceof Q)n.push(t.id);else if(Array.isArray(t))t.forEach(i=>n.push(i.id));else if(t!=null)for(const i in t){const o=t[i];n.push(o.id)}const s=[];if(e instanceof Q)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(i=>{n.indexOf(i.id)===-1&&s.push(i)});else if(e!=null)for(const i in e){const o=e[i];n.indexOf(o.id)===-1&&s.push(o)}s.forEach(i=>{i.isDisposed||i.dispose()})}function h3(e){return e instanceof Q}function xw(e){return Array.isArray(e)}function Dv(e){return!h3(e)&&!xw(e)}function kv(e,t,n,s=!0,i=""){if(t==null||t.length===0){if(e!=null){let a=!1;if(xw(e)&&e.length>0)a=!0;else if(Dv(e)){for(const c in e)if(e.hasOwnProperty(c)){a=!0;break}}else a=!0;if(a)throw new j(`Error when checking model ${i} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(a=>null);let o;if(Dv(e)){e=e,o=[];for(const a of t){if(e[a]==null)throw new j(`No data provided for "${a}". Need data for each key in: ${t}`);o.push(e[a])}}else if(xw(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${i}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);o=e}else{if(e=e,t.length>1)throw new j(`The model ${i} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);o=[e]}if(o=Ev(o),n!=null)for(let a=0;a<t.length;++a){if(n[a]==null)continue;const c=o[a];if(c.shape.length!==n[a].length)throw new j(`Error when checking ${i}: expected ${t[a]} to have ${n[a].length} dimension(s). but got array with shape ${c.shape}`);for(let h=0;h<n[a].length;++h){if(h===0&&!s)continue;const d=c.shape[h],m=n[a][h];if(m!=null&&m>=0&&d!==m)throw new j(`Error when checking ${i}: expected ${t[a]} to have shape [${n[a]}], but got array with shape [${c.shape}].`)}}return o}function u3(e,t,n){const s=$r(e.map(o=>o.shape[0]));s.sort();const i=$r(t.map(o=>o.shape[0]));if(i.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(o=>o.shape))}`);if(i.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(o=>o.shape))}`);if(s.length>0&&i.length>0&&!ot(s,i))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${i[0]} target sample(s).`)}function d3(e,t,n){const s=[tr,vp,Ah];for(let i=0;i<e.length;++i){const o=e[i],a=t[i],c=n[i];if(a==null)continue;if(a===Ah&&o.shape[o.shape.length-1]===1)throw new j(`You are passing a target array of shape ${o.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(a)!==-1){const h=o.shape.slice(1),d=c.slice(1);for(let m=0;m<h.length;++m){const y=h[m],b=d[m];if(b!=null&&y!==b)throw new j(`A target Tensor with shape ${o.shape} was passed for an output of shape ${c}, while using a loss function that expects targets to have the same shape as the output.`)}}}}function Fv(e,t,n,s=!0,i=""){let o;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${i}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);o=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${i} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);o=[e]}if(n!=null)for(let a=0;a<t.length;++a){if(n[a]==null)continue;const c=o[a];if(c.shape.length!==n[a].length)throw new j(`Error when checking ${i}: expected ${t[a]} to have ${n[a].length} dimension(s), but got array with shape ${JSON.stringify(c.shape)}`);for(let h=0;h<n[a].length;++h){if(h===0&&!s)continue;const d=c.shape[h],m=n[a][h];if(m!=null&&m!==d)throw new j(`Error when checking ${i}: expected ${t[a]} to have shape ${JSON.stringify(n[a])} but got array with shape ${JSON.stringify(c.shape)}.`)}}}function p3(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{const s=[];for(const i of t){let o=n.hasOwnProperty(i)?n[i]:[];Array.isArray(o)||(o=[o]),s.push(o)}return s}}const m3="layers-model";class nr extends ki{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Hz(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Yz(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ji))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(const o in e.loss)if(this.outputNames.indexOf(o)===-1)throw new j(`Unknown entry in loss dictionary: "${o}". Only expected the following keys: ${this.outputNames}`);for(const o of this.outputNames)e.loss[o]==null&&console.warn(`Output "${o}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${o} during training`),t.push(pw(e.loss[o]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);const o=e.loss;t=o.map(a=>pw(a))}else{const o=pw(e.loss);this.outputs.forEach(a=>{t.push(o)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let o=0;o<this.outputs.length;++o){const a=this.internalOutputShapes[o],c=this.outputNames[o];this.feedOutputNames.push(c),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[o])}const n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Do("loss",()=>{for(let o=0;o<this.outputs.length;++o){if(n.indexOf(o)!==-1)continue;const a=this.lossFunctions[o];this.outputs.length>1&&(this.metricsTensors.push([a,o]),this.metricsNames.push(this.outputNames[o]+"_loss"))}});const s=p3(e.metrics,this.outputNames),i=(o,a,c)=>{this.outputNames.length>1&&(a=this.outputNames[o]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([c,o])};Do("metric",()=>{for(let o=0;o<this.outputs.length;++o){if(n.indexOf(o)!==-1)continue;const a=s[o],c=h=>{const d="";let m,y,b;for(const w of h){if(typeof w=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(w)!==-1){const T=this.internalOutputShapes[o];T[T.length-1]===1||this.lossFunctions[o]===vp?["accuracy","acc"].indexOf(w)!==-1?y=mw:["crossentropy","ce"].indexOf(w)!==-1&&(y=yv):this.lossFunctions[o]===Ap?["accuracy","acc"].indexOf(w)!==-1?y=bv:["crossentropy","ce"].indexOf(w)!==-1&&(y=wv):["accuracy","acc"].indexOf(w)!==-1?y=fw:["crossentropy","ce"].indexOf(w)!==-1&&(y=gw);let A;["accuracy","acc"].indexOf(w)!==-1?A="acc":["crossentropy","ce"].indexOf(w)!==-1&&(A="ce"),b=y,m=d+A}else{const T=Vz(w);b=T,m=d+Op(w)}let L;Do(m,()=>{L=b}),i(o,m,L)}};c(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){if(this.collectedTrainableWeights==null)return;this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){const s=n.batchSize==null?32:n.batchSize;Lw(s);const i=!0,o=this.standardizeUserDataXY(e,t,i,s);try{const a=o[0].concat(o[1]);this.makeTestFunction();const c=this.testFunction,h=this.testLoop(c,a,s,n.verbose,n.steps);return jn(h)}finally{_o(o[0],e),_o(o[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),a3(this,e,t)}checkNumSamples(e,t,n,s="steps"){let i;if(n!=null){if(i=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?i=e[0].shape[0]:i=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return i}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");const n=Array.isArray(t),s=n?t:[t],i=this.retrieveSymbolicTensors(s),o=new Fo;if(e instanceof Q&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let c=0;c<this.inputs.length;++c)o.add(this.inputs[c],e[c])}else for(const c of this.inputs){const h=e[c.name];if(h==null)throw new j(`No value is provided for the model's input ${c.name}`);o.add(c,h)}const a=Nh(i,o);return n?a:a[0]}retrieveSymbolicTensors(e){const t=Oo(null,e.length);let n=e.length;for(const s of this.layers){const i=Array.isArray(s.output)?s.output:[s.output],o=i.map(a=>a.name);for(let a=0;a<e.length;++a){const c=o.indexOf(e[a]);if(c!==-1&&(t[a]=i[c],n--),n===0)break}if(n===0)break}if(n>0){const s=[];throw t.forEach((i,o)=>{i==null&&s.push(e[o])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return ee(()=>{const s=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");const i=Iw(s,t),o=this.outputs.map(a=>[]);for(let a=0;a<i.length;++a){const c=ee(()=>{const h=i[a][0],d=i[a][1],m=Ch(e,h,d),y=[];if(Array.isArray(m))for(let w=0;w<m.length;++w)y.push({key:this.inputs[w],value:m[w]});else y.push({key:this.inputs[0],value:m});const b=new Fo(y);return Nh(this.outputs,b)});c.forEach((h,d)=>o[d].push(h))}return jn(o.map(a=>Mt(a,0)))})}predict(e,t={}){const n=Ev(e);Fv(n,this.inputNames,this.feedInputShapes,!1);try{const s=t.batchSize==null?32:t.batchSize;return Lw(s),this.predictLoop(n,s)}finally{_o(n,e)}}predictOnBatch(e){Fv(e,this.inputNames,this.feedInputShapes,!0);const t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new ni("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");const i=[];for(let o=0;o<this.feedOutputShapes.length;++o){const a=this.feedOutputShapes[o],c=this.feedLossFns[o];c===Ap?i.push(a.slice(0,a.length-1).concat([1])):i.push(a)}if(e=kv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=kv(t,this.feedOutputNames,i,!1,"target"),u3(e,t,null),d3(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,i=!0,o){const[a,c]=this.standardizeUserDataXY(e,t,i,o);if(n!=null)throw new Error("sample weight is not supported yet.");let h=null;if(s!=null){const d=vv(s,this.outputNames);h=[];for(let m=0;m<d.length;++m)h.push(await Nv(c[m],null,d[m]))}return[a,c,h]}testLoop(e,t,n,s=0,i){return ee(()=>{const o=this.checkNumSamples(t,n,i,"steps"),a=[];if(s>0)throw new ze("Verbose mode is not implemented yet.");if(i!=null)throw new ze("steps mode in testLoop() is not implemented yet");{const c=Iw(o,n),h=ns(si(0,o));for(let d=0;d<c.length;++d){const m=c[d][0],y=c[d][1],b=ko(h,m,y-m),w=Sw(t,b),L=e(w);if(d===0)for(let T=0;T<L.length;++T)a.push(Ne(0));for(let T=0;T<L.length;++T){const A=L[T];a[T]=be(a[T],X(y-m,A))}}for(let d=0;d<a.length;++d)a[d]=_e(a[d],o)}return a})}getDedupedMetricsNames(){const e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){const s=e[n];let i=s;if(zA(e,s)>1){const o=zA(e.slice(0,n),s);i+=`_${o}`}t.push(i)}return t}makeTrainFunction(){return e=>{const t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),o=[],a=()=>{const m=[];for(let L=0;L<this.inputs.length;++L)m.push({key:this.inputs[L],value:n[L]});const y=new Fo(m),b=Nh(this.outputs,y,{training:!0});let w;for(let L=0;L<this.lossFunctions.length;++L){const T=this.lossFunctions[L];let A=T(s[L],b[L]);i[L]!=null&&(A=t3(A,i[L]));const N=zt(A);t.push(N),L===0?w=A:w=be(w,A)}for(let L=0;L<this.metricsTensors.length;++L){let T;if(this.outputs.length>1&&L<this.outputs.length)T=t[L];else{const A=this.metricsTensors[L][0],N=this.metricsTensors[L][1];T=zt(A(s[N],b[N]))}Nn(T),o.push(T)}return w=zt(w),this.calculateLosses().forEach(L=>{w=be(w,L)}),w},c=this.collectedTrainableWeights.map(m=>m.read()),h=!0,d=this.optimizer_.minimize(a,h,c);return[d].concat(o)}}makeTestFunction(){this.testFunction=e=>ee(()=>{const t=[];let n;const s=e.slice(0,this.inputs.length),i=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),o=[];for(let h=0;h<this.inputs.length;++h)o.push({key:this.inputs[h],value:s[h]});const a=new Fo(o),c=Nh(this.outputs,a);for(let h=0;h<this.lossFunctions.length;++h){const d=this.lossFunctions[h],m=zt(d(i[h],c[h]));h===0?n=m:n=be(n,m),t.push(n)}for(let h=0;h<this.metricsTensors.length;++h){const d=this.metricsTensors[h][0],m=this.metricsTensors[h][1],y=zt(d(i[m],c[m]));t.push(y)}return t})}async fit(e,t,n={}){return l3(this,e,t,n)}async fitDataset(e,t){return i3(this,e,t)}async trainOnBatch(e,t){const n=await this.standardizeUserData(e,t),s=n[0],i=n[1],o=this.makeTrainFunction(),a=o(s.concat(i)),c=[];for(const h of a){const d=await h.data();c.push(d[0])}return He(a),jn(c)}getNamedWeights(e){const t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,i=this.getWeights(n);for(let o=0;o<s.length;++o){if(n&&!s[o].trainable)continue;t.push({name:s[o].originalName,tensor:i[o]})}return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){const e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){const t=Sd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Sd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=er(this.loss);else if(Array.isArray(this.loss)){for(const t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>er(t))}else{const t=Object.keys(this.loss);e={};const n=this.loss;for(const s of t)if(typeof n[s]=="string")e[s]=er(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[er(Op(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>er(Op(e)));{const e={};for(const t in this.metrics)e[t]=er(Op(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");const t=vh(e.optimizer_config),n=oi(t);let s;if(typeof e.loss=="string")s=Eo(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(o=>Eo(o));else if(e.loss!=null){s={};for(const o in e.loss)s[o]=Eo(e.loss[o])}let i;if(Array.isArray(e.metrics))i=e.metrics.map(o=>Eo(o));else if(e.metrics!=null){i={};for(const o in e.metrics)i[o]=Eo(e.metrics[o])}this.compile({loss:s,metrics:i,optimizer:n})}async save(e,t){if(typeof e=="string"){const h=wy(e);if(h.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(h.length>1)throw new j(`Found more than one (${h.length}) save handlers for URL '${e}'`);e=h[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");const n=await yy(this.getNamedWeights(t)),s=!1,i=null,o=this.toJSON(i,s),a={modelTopology:o,format:m3,generatedBy:`TensorFlow.js tfjs-layers v${Dp}`,convertedBy:null},c=t==null?!1:t.includeOptimizer;if(c&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();const h="optimizer",{data:d,specs:m}=await yy(await this.optimizer.getWeights(),h);n.specs.push(...m),n.data=dd([n.data,d])}if(this.userDefinedMetadata!=null){const h=!0;Sv(this.userDefinedMetadata,this.name,h),a.userDefinedMetadata=this.userDefinedMetadata}return a.weightData=n.data,a.weightSpecs=n.specs,e.save(a)}setUserDefinedMetadata(e){Sv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}}nr.className="Model",me(nr);class _v extends nr{}_v.className="Functional",me(_v);async function f3(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);const s=vh(n),i=oi(s,t);if(e.weightsManifest!=null){const o=await aT(e.weightsManifest,e.pathPrefix,i.weights.map(c=>c.originalName)),a={};for(const c of i.weights)a[c.originalName]=o[c.originalName];i.loadWeights(a),He(o)}return i}async function g3(e,t){if(t==null&&(t={}),typeof e=="string"){const n=Ly(e,t);if(n.length===0)n.push(fd(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return y3(e,void 0,t)}async function y3(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");const s=await e.load();let i=s.modelTopology;i.model_config!=null&&(i=i.model_config);const o=n.strict==null?!0:n.strict,a=s.weightData!=null&&s.weightSpecs!=null&&o,c=oi(vh(i),t,a),h=s.trainingConfig;if(h!=null&&c.loadTrainingConfig(h),s.userDefinedMetadata!=null&&c.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");const{modelWeights:d,optimizerWeights:m}=b3(s.weightData,s.weightSpecs);c.loadWeights(d,o),c.optimizer!=null&&m.length>0&&await c.optimizer.setWeights(m),He(d),He(m.map(y=>y.tensor))}return c}function b3(e,t){const n=ud(e,t),s={},i=[];return t.forEach(o=>{o.group==="optimizer"?i.push({name:o.name,tensor:n[o.name]}):s[o.name]=n[o.name]}),{modelWeights:s,optimizerWeights:i}}class ja extends nr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Lp("sequential_"),e.layers!=null)for(const t of e.layers)this.add(t)}checkShape(e){const t=e.inboundNodes[0].outputTensors[0].shape;if(t.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){const t=e instanceof ja||e instanceof nr;let n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");const s=av({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=ov(this.outputs[0])}this.inboundNodes=[],new xp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Oo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{const s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{const e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(St(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new ni("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new ni("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new ni("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new ni("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let i,o={};if(t instanceof Array){if(!(t[0].className!=null)||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");i=t}else k(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),i=t.layers,delete t.layers,o=t;const a=new e(o);if(!(a instanceof ja))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(const c of i){const h=void 0,d=oi(c,h,s);s&&d.setFastWeightInitDuringBuild(!0),a.add(d)}return a}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){const e=[];for(const t of this.layers){const n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}}ja.className="Sequential",me(ja);function w3(e){return new nr(e)}function L3(e){return new ja(e)}function S3(e,t){return t==null&&(t={}),g3(e,t)}function Wv(e){return av(e)}function I3(e,t){Bs.registerCallbackConstructor(e,t)}class rs extends go{getConfig(){return{}}}class $v extends rs{apply(e,t=1){return XP(e,t)}}$v.className="elu",me($v);class Uv extends rs{apply(e){return Pd(e)}}Uv.className="selu",me(Uv);class Bv extends rs{apply(e){return Ri(e)}}Bv.className="relu",me(Bv);class Mv extends rs{apply(e){return ee(()=>Io(6,Ri(e)))}}Mv.className="relu6",me(Mv);class Pv extends rs{apply(e){return e}}Pv.className="linear",me(Pv);class zv extends rs{apply(e){return vi(e)}}zv.className="sigmoid",me(zv);class Gv extends rs{apply(e){return ZP(e)}}Gv.className="hardSigmoid",me(Gv);class Vv extends rs{apply(e){return Da(e)}}Vv.className="softplus",me(Vv);class Yv extends rs{apply(e){return JP(e)}}Yv.className="softsign",me(Yv);class Hv extends rs{apply(e){return Ca(e)}}Hv.className="tanh",me(Hv);class Tw extends rs{apply(e,t=-1){return No(e,t)}}Tw.className="softmax",me(Tw);class qv extends rs{apply(e,t=-1){return _d(e,t)}}qv.className="logSoftmax",me(qv);class jv extends rs{apply(e,t=1){return ee(()=>vi(e.mul(t)).mul(e))}}jv.className="swish",me(jv);function zr(e){return e.getClassName()}function Aw(e,t={}){return bh(e,ks.getMap().classNameMap,t,"activation")}function Gr(e){if(e==null){const t={};return t.className="linear",t.config={},Aw(t)}if(typeof e=="string"){const t={};return t.className=e,t.config={},Aw(t)}else return e instanceof rs?e:Aw(e)}function vw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}class Kv extends go{}class Rh extends Kv{constructor(e){super();vw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return ee(()=>{let t=ct([1]);return this.hasL1&&(t=be(t,Ue(X(this.l1,sn(e))))),this.hasL2&&(t=be(t,Ue(X(this.l2,xh(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}}Rh.className="L1L2",me(Rh);function x3(e){return vw(e),new Rh({l1:e!=null?e.l1:null,l2:0})}function T3(e){return vw(e),new Rh({l2:e!=null?e.l2:null,l1:0})}const Xv={l1l2:"L1L2"};function It(e){return Gb(e)}function Jv(e,t={}){return bh(e,ks.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){const t=e in Xv?Xv[e]:e,n={className:t,config:{}};return Jv(n)}else return e instanceof Kv?e:Jv(e)}class Nw extends lt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=je(e);let n=Ri(e);return this.maxValue!=null&&(n=Yn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){const e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}}Nw.className="ReLU",me(Nw);class Cw extends lt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){const n=je(e);return Dd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){const e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}}Cw.className="LeakyReLU",me(Cw);class Rw extends lt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ft(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=ln(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=St(e);const t=e.slice(1);if(this.sharedAxes!=null)for(const s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);const n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new mn({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=je(e),nh(e,this.alpha.read())}getConfig(){const e={alphaInitializer:Vt(this.alphaInitializer),alphaRegularizer:It(this.alphaRegularizer),alphaConstraint:cn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}}Rw.className="PReLU",me(Rw);class Ow extends lt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ze(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){const n=je(e);return So(n)}computeOutputShape(e){return e}getConfig(){const e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}}Ow.className="ELU",me(Ow);class Ew extends lt{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){const n=je(e);return n.mul(Sh(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){const e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}}Ew.className="ThresholdedReLU",me(Ew);class Dw extends lt{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Tw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){const n=je(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){const e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}}Dw.className="Softmax",me(Dw);function Ka(e,t,n){if(typeof e=="number")return Oo(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){const i=e[s];if(!VP(i))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${i}`)}return e}function ai(e,t,n,s,i=1){if(e==null)return e;const o=t+(t-1)*(i-1);let a;return n==="same"?a=e:a=e-o+1,Math.floor((a+s-1)/s)}function kp(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Br([n-t,0]);else if(s==="same")e=e*t;else throw new j(`Unsupport padding mode: ${s}.`);return e}function kw(e,t){return ee(()=>(Gt(t),t==="channelsFirst"?Me(e,[0,2,3,1]):e))}function Zv(e,t){return ee(()=>(Gt(t),t==="channelsFirst"?Me(e,[0,2,3,4,1]):e))}function Qv(e,t,n,s=1,i="valid",o,a=1){return ee(()=>{if(o==null&&(o=ti()),Gt(o),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(o==="channelsFirst"&&(e=Me(e,[0,2,1])),i==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let c=Nd(e,t,s,i==="same"?"same":"valid","NWC",a);return n!=null&&(c=Di(c,n)),c})}function DQ(e,t,n=1,s="valid",i,o=1){return ee(()=>(Gt(i),Qv(e,t,null,n,s,i,o)))}function kQ(e,t,n=[1,1],s="valid",i,o){return ee(()=>(Gt(i),Fw(e,t,null,n,s,i,o)))}function Fw(e,t,n,s=[1,1],i="valid",o,a,c=null){return ee(()=>{if(o==null&&(o=ti()),Gt(o),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let h=kw(e,o);if(i==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return h=vb({x:h,filter:t,strides:s,pad:i==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:n,activation:c}),o==="channelsFirst"&&(h=Me(h,[0,3,1,2])),h})}function FQ(e,t,n=[1,1,1],s="valid",i,o){return ee(()=>(Gt(i),eN(e,t,null,n,s,i,o)))}function eN(e,t,n,s=[1,1,1],i="valid",o,a){return ee(()=>{if(o==null&&(o=ti()),Gt(o),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let c=Zv(e,o);if(i==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return c=Zy(c,t,s,i==="same"?"same":"valid","NDHWC",a),n!=null&&(c=Di(c,n)),o==="channelsFirst"&&(c=Me(c,[0,4,1,2,3])),c})}class _w extends lt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",_w.verifyArgs(t),this.rank=e,pn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ka(t.kernelSize,e,"kernelSize"),this.strides=Ka(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Ts(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Gt(this.dataFormat),this.activation=Gr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ft(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ln(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Ka(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(xs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Yb(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){const e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:zr(this.activation),useBias:this.useBias,biasInitializer:Vt(this.biasInitializer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),biasConstraint:cn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}}class Oh extends _w{constructor(e,t){super(e,t);this.kernel=null,Oh.verifyArgs(t),this.filters=t.filters,pn(this.filters,"filters"),this.kernelInitializer=Ft(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ln(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=St(e);const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);const n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return ee(()=>{e=je(e);let n;const s=this.bias==null?null:this.bias.read(),i=VA(this.activation.getClassName());if(i!=null&&this.rank===2)n=Fw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,i);else{if(this.rank===1)n=Qv(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Fw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=eN(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=St(e);const t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let i=0;i<n.length;++i){const o=ai(n[i],this.kernelSize[i],this.padding,this.strides[i],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[i]);t.push(o)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){const e={filters:this.filters,kernelInitializer:Vt(this.kernelInitializer),kernelRegularizer:It(this.kernelRegularizer),kernelConstraint:cn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}}class Eh extends Oh{constructor(e){super(2,e);Eh.verifyArgs(e)}getConfig(){const e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Yb(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}}Eh.className="Conv2D",me(Eh);class Fp extends Oh{constructor(e){super(3,e);Fp.verifyArgs(e)}getConfig(){const e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}}Fp.className="Conv3D",me(Fp);class Ww extends Eh{constructor(e){super(e);if(this.inputSpec=[new mn({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=St(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");const n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new mn({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return ee(()=>{let n=je(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);const s=n.shape,i=s[0];let o,a;this.dataFormat==="channelsFirst"?(o=2,a=3):(o=1,a=2);const c=s[o],h=s[a],d=this.kernelSize[0],m=this.kernelSize[1],y=this.strides[0],b=this.strides[1],w=kp(c,y,d,this.padding),L=kp(h,b,m,this.padding),T=[i,w,L,this.filters];this.dataFormat!=="channelsLast"&&(n=Me(n,[0,2,3,1]));let A=Cd(n,this.kernel.read(),T,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Me(A,[0,3,1,2])),this.bias!=null&&(A=Di(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=St(e);const t=e.slice();let n,s,i;this.dataFormat==="channelsFirst"?(n=1,s=2,i=3):(n=3,s=1,i=2);const o=this.kernelSize[0],a=this.kernelSize[1],c=this.strides[0],h=this.strides[1];return t[n]=this.filters,t[s]=kp(t[s],c,o,this.padding),t[i]=kp(t[i],h,a,this.padding),t}getConfig(){const e=super.getConfig();return delete e.dilationRate,e}}Ww.className="Conv2DTranspose",me(Ww);class tN extends Oh{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=ln(t.depthwiseConstraint),this.pointwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=ln(t.pointwiseConstraint)}build(e){if(e=St(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);const t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);const n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),i=[];for(let a=0;a<this.rank;++a)i.push(1);i.push(n*this.depthMultiplier,this.filters);const o=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,o,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",i,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,o,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,o,this.biasConstraint):this.bias=null,this.inputSpec=[new mn({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return ee(()=>{e=je(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Me(e,[0,2,3,1])),n=fb(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Di(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Me(n,[0,3,1,2])),n})}getConfig(){const e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Vt(this.depthwiseInitializer),e.pointwiseInitializer=Vt(this.pointwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.pointwiseRegularizer=It(this.pointwiseRegularizer),e.depthwiseConstraint=cn(this.depthwiseConstraint),e.pointwiseConstraint=cn(this.pointwiseConstraint),e}}tN.className="SeparableConv";class $w extends tN{constructor(e){super(2,e)}}$w.className="SeparableConv2D",me($w);class _p extends Oh{constructor(e){super(1,e);_p.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){const e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Yb(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}}_p.className="Conv1D",me(_p);class Uw extends lt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return ee(()=>{if(e=je(e),this.dataFormat==="channelsLast"){const n=hp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return hp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{const n=hp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return hp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){const e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}Uw.className="Cropping2D",me(Uw);class Bw extends lt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){const t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{const t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return ee(()=>{let n=je(e);const s=n.shape;if(this.dataFormat==="channelsFirst"){n=Me(n,[0,2,3,1]);const i=this.size[0]*s[2],o=this.size[1]*s[3],a=n.resizeNearestNeighbor([i,o]);return Me(a,[0,3,1,2])}else{const i=this.size[0]*s[1],o=this.size[1]*s[2];return n.resizeNearestNeighbor([i,o])}})}getConfig(){const e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}Bw.className="UpSampling2D",me(Bw);function A3(e,t,n=[1,1],s="valid",i,o){return ee(()=>{i==null&&(i=ti()),Gt(i);let a=kw(e,i);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return a=wo(a,t,n,s==="same"?"same":"valid","NHWC",o),i==="channelsFirst"&&(a=Me(a,[0,3,1,2])),a})}class Mw extends _w{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ft(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ln(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=St(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);const t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);const n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return ee(()=>{e=je(e);let n=A3(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Di(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=St(e);const t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,i=ai(t,this.kernelSize[0],this.padding,this.strides[0]),o=ai(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,i,o]:[e[0],i,o,s]}getConfig(){const e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Vt(this.depthwiseInitializer),e.depthwiseRegularizer=It(this.depthwiseRegularizer),e.depthwiseConstraint=cn(this.depthwiseRegularizer),e}}Mw.className="DepthwiseConv2D",me(Mw);function nN(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function i(o){return o==null||Array.isArray(o)?o:[o]}return t=i(t),n=i(n),{inputs:e,initialState:t,constants:n}}function sN(e,t,n,s=!1,i,o,a=!1,c=!1){return ee(()=>{const h=t.shape.length;if(h<3)throw new j(`Input should be at least 3D, but is ${h}D.`);const d=[1,0].concat(si(2,h));if(t=Me(t,d),o!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),i!=null&&(i=i.asType("bool").asType("float32"),i.rank===h-1&&(i=Hn(i,-1)),i=Me(i,d)),s&&(t=Is(t,0),i!=null&&(i=Is(i,0)));const m=[];let y,b=n;const w=t.shape[0],L=Oi(t);let T;i!=null&&(T=Oi(i));for(let N=0;N<w;++N){const E=L[N],D=ee(()=>e(E,b));if(i==null)y=D[0],b=D[1];else{const F=ee(()=>{const _=T[N],B=On(_).sub(_),$=D[0].mul(_).add(b[0].mul(B)),H=b.map((q,J)=>D[1][J].mul(_).add(q.mul(B)));return{output:$,newStates:H}});y=F.output,b=F.newStates}c&&m.push(y)}let A;if(c){const N=1;A=is(m,N)}return[y,A,b]})}class Fi extends lt{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Up({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new mn({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){const e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return si(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){cw(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);const n=t[0];let s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){const i=[];for(const o of t)i.push([e[0],o]);return[s].concat(i)}else return s}computeMask(e,t){return ee(()=>{Array.isArray(t)&&(t=t[0]);const n=this.returnSequences?t:null;if(this.returnState){const s=this.states.map(i=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){const e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){const t=null;if(this.numConstants!=null)throw new ze("Constants support is not implemented in RNN yet.");cw(e)&&(e=e[0]),e=e;const n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new mn({shape:[n,null,...s]});const i=[e[0]].concat(e.slice(2));if(t!=null)throw new ze("Constants support is not implemented in RNN yet.");this.cell.build(i);let o;if(Array.isArray(this.cell.stateSize)?o=this.cell.stateSize:o=[this.cell.stateSize],this.stateSpec!=null){if(!ot(this.stateSpec.map(a=>a.shape[a.shape.length-1]),o))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=o.map(a=>new mn({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){ee(()=>{if(!this.stateful)throw new Qi("Cannot call resetStates() on an RNN Layer that is not stateful.");const n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>ct([n,s])):this.states_=[ct([n,this.cell.stateSize])];else if(e==null)He(this.states_),this.keptStates!=null&&(He(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>ct([n,s])):this.states_[0]=ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):He(this.states_);for(let s=0;s<this.states_.length;++s){const i=e[s],o=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,a=[n,o];if(!ot(i.shape,a))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Nn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});const i=nN(e,n,s,this.numConstants);e=i.inputs,n=i.initialState,s=i.constants;let o=[],a=[];if(n!=null){t.initialState=n,o=o.concat(n),this.stateSpec=[];for(const h of n)this.stateSpec.push(new mn({shape:h.shape}));a=a.concat(this.stateSpec)}s!=null&&(t.constants=s,o=o.concat(s),this.numConstants=s.length);const c=o[0]instanceof ri;if(c){const h=[e].concat(o),d=this.inputSpec.concat(a),m=this.inputSpec;this.inputSpec=d;const y=super.apply(h,t);return this.inputSpec=m,y}else return super.apply(e,t)}call(e,t){return ee(()=>{const n=t==null?null:t.mask,s=t==null?null:t.training;let i=t==null?null:t.initialState;e=je(e),i==null&&(this.stateful?i=this.states_:i=this.getInitialState(e));const o=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(i.length!==o)throw new j(`RNN Layer has ${o} state(s) but was passed ${i.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");const a={training:s},c=(w,L)=>{const T=this.cell.call([w].concat(L),a);return[T[0],T.slice(1)]},h=sN(c,e,i,this.goBackwards,n,null,this.unroll,this.returnSequences),d=h[0],m=h[1],y=h[2];this.stateful&&this.resetStates(y,s);const b=this.returnSequences?m:d;return this.returnState?[b].concat(y):b})}getInitialState(e){return ee(()=>{let t=ct(e.shape);return t=Ue(t,[1,2]),t=Ih(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Qb(t,[1,n]):t):this.cell.stateSize>1?[Qb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){const e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);const n=this.cell.getConfig();return this.getClassName()===Fi.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){const s=t.cell,i=oi(s,n);return new e(Object.assign(t,{cell:i}))}}Fi.className="RNN",me(Fi);class Xa extends lt{}class Wp extends Xa{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,pn(this.units,"units"),this.activation=Gr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=Va([1,Br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Va([1,Br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=St(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return ee(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];const s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vr({ones:()=>On(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vr({ones:()=>On(n),rate:this.recurrentDropout,training:s}));let i;const o=this.dropoutMask,a=this.recurrentDropoutMask;o!=null?i=Ei(X(e,o),this.kernel.read()):i=Ei(e,this.kernel.read()),this.bias!=null&&(i=Di(i,this.bias.read())),a!=null&&(n=X(n,a));let c=be(i,Ei(n,this.recurrentKernel.read()));return this.activation!=null&&(c=this.activation.apply(c)),[c,c]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:zr(this.activation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),recurrentInitializer:Vt(this.recurrentInitializer),biasInitializer:Vt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:cn(this.kernelConstraint),recurrentConstraint:cn(this.recurrentConstraint),biasConstraint:cn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}}Wp.className="SimpleRNNCell",me(Wp);class Pw extends Fi{constructor(e){e.cell=new Wp(e),super(e)}call(e,t){return ee(()=>{this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}static fromConfig(e,t){return new e(t)}}Pw.className="SimpleRNN",me(Pw);class $p extends Xa{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,pn(this.units,"units"),this.activation=Gr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Gr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=Va([1,Br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Va([1,Br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=St(e);const t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return ee(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);const n=t.training==null?!1:t.training;let s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vr({ones:()=>On(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vr({ones:()=>On(s),rate:this.recurrentDropout,training:n,count:3}));const i=this.dropoutMask,o=this.recurrentDropoutMask;let a,c,h;0<this.dropout&&this.dropout<1&&(e=X(e,i[0]));let d=Ei(e,this.kernel.read());this.useBias&&(d=Di(d,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=X(s,o[0]));const m=this.recurrentKernel.read(),[y,b]=ss(m,[2*this.units,this.units],m.rank-1),w=Ei(s,y),[L,T,A]=ss(d,3,d.rank-1),[N,E]=ss(w,2,w.rank-1);a=this.recurrentActivation.apply(be(L,N)),c=this.recurrentActivation.apply(be(T,E));const D=Ei(X(c,s),b);h=this.activation.apply(be(A,D));const F=be(X(a,s),X(be(1,Pt(a)),h));return[F,F]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:zr(this.activation),recurrentActivation:zr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),recurrentInitializer:Vt(this.recurrentInitializer),biasInitializer:Vt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:cn(this.kernelConstraint),recurrentConstraint:cn(this.recurrentConstraint),biasConstraint:cn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}}$p.className="GRUCell",me($p);class zw extends Fi{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new $p(e),super(e)}call(e,t){return ee(()=>{this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}}zw.className="GRU",me(zw);class Dh extends Xa{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,pn(this.units,"units"),this.activation=Gr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Gr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=ln(e.kernelConstraint),this.recurrentConstraint=ln(e.recurrentConstraint),this.biasConstraint=ln(e.biasConstraint),this.dropout=Va([1,Br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Va([1,Br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=St(e);const n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){const i=this.biasInitializer,o=this.units;s=new(t=class extends Us{apply(c,h){const d=i.apply([o]),m=new dp().apply([o]),y=i.apply([o*2]);return QA(QA(d,m),y)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return ee(()=>{const n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1];const i=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vr({ones:()=>On(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vr({ones:()=>On(s),rate:this.recurrentDropout,training:n,count:4}));const o=this.dropoutMask,a=this.recurrentDropoutMask;let c,h,d,m;0<this.dropout&&this.dropout<1&&(e=X(e,o[0]));let y=Ei(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=X(s,a[0])),y=be(y,Ei(s,this.recurrentKernel.read())),this.useBias&&(y=Di(y,this.bias.read()));const[b,w,L,T]=ss(y,4,y.rank-1);c=this.recurrentActivation.apply(b),h=this.recurrentActivation.apply(w),d=be(X(h,i),X(c,this.activation.apply(L))),m=this.recurrentActivation.apply(T);const A=X(m,this.activation.apply(d));return[A,A,d]})}getConfig(){const e=super.getConfig(),t={units:this.units,activation:zr(this.activation),recurrentActivation:zr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),recurrentInitializer:Vt(this.recurrentInitializer),biasInitializer:Vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:It(this.kernelRegularizer),recurrentRegularizer:It(this.recurrentRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:cn(this.kernelConstraint),recurrentConstraint:cn(this.recurrentConstraint),biasConstraint:cn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}}Dh.className="LSTMCell",me(Dh);class Gw extends Fi{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Dh(e),super(e)}call(e,t){return ee(()=>{this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}}Gw.className="LSTM",me(Gw);class Up extends Xa{constructor(e){super(e);this.cells=e.cells}get stateSize(){const e=[];for(const t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return ee(()=>{e=e;let n=e.slice(1);const s=[];for(const a of this.cells.slice().reverse())Array.isArray(a.stateSize)?s.push(n.splice(0,a.stateSize.length)):s.push(n.splice(0,1));s.reverse();const i=[];let o;for(let a=0;a<this.cells.length;++a){const c=this.cells[a];n=s[a],a===0?o=[e[0]].concat(n):o=[o[0]].concat(n),o=c.call(o,t),i.push(o.slice(1))}n=[];for(const a of i.slice().reverse())n.push(...a);return[o[0]].concat(n)})}build(e){cw(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Do(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){const e=super.getConfig(),t=i=>({className:i.getClassName(),config:i.getConfig()}),n=this.cells.map(t),s={cells:n};return Object.assign({},e,s)}static fromConfig(e,t,n={}){const s=[];for(const i of t.cells)s.push(oi(i,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];const e=[];for(const t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){const e=[];for(const t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){const t=[];for(const n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){const e=[];for(const t of this.cells)e.push(...t.weights);return lw(e)}setWeights(e){const t=[];for(const n of this.cells){const s=n.weights.length,i=e.splice(s);for(let o=0;o<n.weights.length;++o)t.push([n.weights[o],i[o]])}hw(t)}}Up.className="StackedRNNCells",me(Up);function Vr(e){const{ones:t,rate:n,training:s=!1,count:i=1}=e,o=()=>tv(t(),n),a=()=>Th(o,t,s);if(!i||i<=1)return Nn(a().clone());const c=Array(i).fill(void 0).map(a);return c.map(h=>Nn(h.clone()))}var v3=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var i=0,s=Object.getOwnPropertySymbols(e);i<s.length;i++)t.indexOf(s[i])<0&&Object.prototype.propertyIsEnumerable.call(e,s[i])&&(n[s[i]]=e[s[i]]);return n};class _Q extends Xa{}class iN extends Fi{constructor(e){if(e.unroll)throw new ze("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ze("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new mn({ndim:5})]}call(e,t){return ee(()=>{if(this.cell.dropoutMask!=null&&(He(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(He(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");const n=t==null?null:t.mask,s=t==null?null:t.training,i=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:i})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return ee(()=>{const{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),i=[s[0],...s.slice(2)],o=ct(i);return Array.isArray(t)?Array(t.length).fill(o):[o]})}resetStates(e,t=!1){ee(()=>{if(!this.stateful)throw new Qi("Cannot call resetStates() on an RNN Layer that is not stateful.");const n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),i=[s[0],...s.slice(2)],o=n[0];if(o==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ct(i)):this.states_=[ct(i)];else if(e==null)He(this.states_),this.keptStates!=null&&(He(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ct(i)):this.states_[0]=ct(i);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):He(this.states_);for(let a=0;a<this.states_.length;++a){const c=e[a],h=i;if(!ot(c.shape,h))throw new j(`State ${a} is incompatible with layer ${this.name}: expected shape=${h}, received shape=${c.shape}`);this.states_[a]=c}}this.states_=this.states_.map(a=>Nn(a.clone()))})}computeSingleOutputShape(e){const{dataFormat:t,filters:n,kernelSize:s,padding:i,strides:o,dilationRate:a}=this.cell,c=t==="channelsFirst",h=e[c?3:2],d=e[c?4:3],m=ai(h,s[0],i,o[0],a[0]),y=ai(d,s[1],i,o[1],a[1]),b=[...e.slice(0,2),...c?[n,m,y]:[m,y,n]];return b}}iN.className="ConvRNN2D";class Bp extends Dh{constructor(e){const{filters:t,kernelSize:n,strides:s,padding:i,dataFormat:o,dilationRate:a}=e;super(Object.assign({},e,{units:t}));this.filters=t,pn(this.filters,"filters"),this.kernelSize=Ka(n,2,"kernelSize"),this.kernelSize.forEach(c=>pn(c,"kernelSize")),this.strides=Ka(s||1,2,"strides"),this.strides.forEach(c=>pn(c,"strides")),this.padding=i||"valid",Ts(this.padding),this.dataFormat=o||"channelsLast",Gt(this.dataFormat),this.dilationRate=Ka(a||1,2,"dilationRate"),this.dilationRate.forEach(c=>pn(c,"dilationRate"))}build(e){var t;e=St(e);const n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);const s=e[n],i=4,o=this.kernelSize.concat([s,this.filters*i]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);const a=this.kernelSize.concat([this.filters,this.filters*i]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let c;if(this.unitForgetBias){const h=this.biasInitializer,d=this.filters;c=new(t=class extends Us{apply(y,b){const w=h.apply([d]),L=Qs([d]),T=h.apply([d*2]);return Zb([w,L,T])}},t.className="CustomInit",t)}else c=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*i],null,c,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return ee(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);const n=t.training||!1,s=e[0],i=e[1],o=e[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Vr({ones:()=>On(s),rate:this.dropout,training:n,count:a}));const c=this.dropoutMask,h=(Ie,Se,Ee)=>!Se||!Se[Ee]?Ie:X(Se[Ee],Ie);let d=h(s,c,0),m=h(s,c,1),y=h(s,c,2),b=h(s,c,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Vr({ones:()=>On(i),rate:this.recurrentDropout,training:n,count:a}));const w=this.recurrentDropoutMask;let L=h(i,w,0),T=h(i,w,1),A=h(i,w,2),N=h(i,w,3);const E=3,[D,F,_,B]=ss(this.kernel.read(),a,E),[$,H,q,J]=this.useBias?ss(this.bias.read(),a):[null,null,null,null];d=this.inputConv(d,D,$,this.padding),m=this.inputConv(m,F,H,this.padding),y=this.inputConv(y,_,q,this.padding),b=this.inputConv(b,B,J,this.padding);const[re,ce,ue,he]=ss(this.recurrentKernel.read(),a,E);L=this.recurrentConv(L,re),T=this.recurrentConv(T,ce),A=this.recurrentConv(A,ue),N=this.recurrentConv(N,he);const de=this.recurrentActivation.apply(be(d,L)),le=this.recurrentActivation.apply(be(m,T)),ye=be(X(le,o),X(de,this.activation.apply(be(y,A)))),pe=X(this.recurrentActivation.apply(be(b,N)),this.activation.apply(ye));return[pe,pe,ye]})}getConfig(){const e=super.getConfig(),{units:t}=e,n=v3(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){const i=ji(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Di(i,n,this.dataFormat):i}recurrentConv(e,t){const n=1;return ji(e,t,n,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}}Bp.className="ConvLSTM2DCell",me(Bp);class Vw extends iN{constructor(e){const t=new Bp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}}Vw.className="ConvLSTM2D",me(Vw);class Mp extends lt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;const t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e);if(0<this.rate&&this.rate<1){const s=t.training==null?!1:t.training,i=this.getNoiseShape(n),o=Th(()=>tv(n,this.rate,i,this.seed),()=>n,s);return o}return e})}getConfig(){const e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}}Mp.className="Dropout",me(Mp);class Yw extends Mp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){const t=e.shape;return[t[0],1,t[2]]}}Yw.className="SpatialDropout1D",me(Yw);class Hw extends lt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,pn(this.units,"units"),this.activation=Gr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ln(e.kernelConstraint),this.biasConstraint=ln(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=St(e);const t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=St(e);const t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e),s=VA(this.activation.getClassName());let i;return s!=null?i=Ei(n,this.kernel.read(),s,this.bias?this.bias.read():null):(i=Ei(n,this.kernel.read()),this.bias!=null&&(i=Di(i,this.bias.read())),this.activation!=null&&(i=this.activation.apply(i))),i})}getConfig(){const e={units:this.units,activation:zr(this.activation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),biasInitializer:Vt(this.biasInitializer),kernelRegularizer:It(this.kernelRegularizer),biasRegularizer:It(this.biasRegularizer),activityRegularizer:It(this.activityRegularizer),kernelConstraint:cn(this.kernelConstraint),biasConstraint:cn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}}Hw.className="Dense",me(Hw);class qw extends lt{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=St(e);for(const t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ur(e,1)]}call(e,t){return ee(()=>{this.invokeCallHook(e,t);let n=je(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){const s=[0];for(let i=2;i<n.rank;++i)s.push(i);s.push(1),n=n.transpose(s)}return KP(n)})}getConfig(){const e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);const t=super.getConfig();return Object.assign(e,t),e}}qw.className="Flatten",me(qw);class jw extends lt{constructor(e){super(e);this.supportsMasking=!0,this.activation=Gr(e.activation)}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e);return this.activation.apply(n)})}getConfig(){const e={activation:zr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}}jw.className="Activation",me(jw);class Kw extends lt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return ee(()=>(e=je(e),qP(e,this.n)))}getConfig(){const e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}}Kw.className="RepeatVector",me(Kw);class Xw extends lt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){const n="Total size of new array must be unchanged.",s=t.slice();let i=1,o=null;for(let c=0;c<s.length;++c){const h=s[c];if(this.isUnknown(h))if(o===null)o=c;else throw new j("Can only specifiy one unknown dimension.");else i*=h}const a=Ur(e);if(o!==null){if(i===0||a%i!==0)throw new j(n);s[o]=a/i}else if(a!==i)throw new j(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e),s=n.shape,i=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return n.reshape(i)})}getConfig(){const e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}}Xw.className="Reshape",me(Xw);class Jw extends lt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);const t=si(1,e.dims.length+1);if(!ot(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new mn({ndim:this.dims.length+1})]}computeOutputShape(e){e=St(e);const t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Me(je(e),this.dimsIncludingBatch)}getConfig(){const e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}}Jw.className="Permute",me(Jw);class Zw extends lt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){const n=je(e),s=-1;return Pl(kr(n,this.maskValue),s)}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e),s=-1,i=!0,o=Pl(kr(n,this.maskValue),s,i),a=n.mul(o.asType(n.dtype));return a})}}Zw.className="Masking",me(Zw);class Qw extends lt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Nt(e.inputLength))}this.inputDim=e.inputDim,pn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,pn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ft(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=ln(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return ee(()=>this.maskZero?(e=je(e),kr(e,Qe(e))):null)}computeOutputShape(e){if(e=St(e),this.inputLength==null)return[...e,this.outputDim];const t=Nt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){const i=t[s],o=e[s+1];if(i!=null&&o!=null&&i!==o)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);i==null&&(t[n]=o),n++}}return[e[0],...t,this.outputDim]}call(e,t){return ee(()=>{this.invokeCallHook(e,t);let n=je(e);n.dtype!=="int32"&&(n=Sh(n,"int32"));const s=ev(this.embeddings.read(),n.as1D());return s.reshape(St(this.computeOutputShape(n.shape)))})}getConfig(){const e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Vt(this.embeddingsInitializer),embeddingsRegularizer:It(this.embeddingsRegularizer),activityRegularizer:It(this.activityRegularizer),embeddingsConstraint:cn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}}Qw.className="Embedding",me(Qw);class Wo extends lt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;const n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){const i=e[e.length-t.length+s],o=t[s];if(i==null||o==null||i<0||o<0)n.push(null);else if(i===1)n.push(o);else if(o===1)n.push(i);else{if(i!==o)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(i)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[St(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(const i of e)i!=null&&i[0]!==null&&t.push(i[0]);if(t=$r(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let i=1;i<e.length;++i){const o=e[i]==null?null:e[i].slice(1);n=this.computeElementwiseOpOutputShape(n,o)}const s=e.map(i=>i.length);e.indexOf(null)===-1&&$r(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return ee(()=>{if(e=e,this.reshapeRequired){const n=[],s=e.map(i=>i.rank);if(s.indexOf(null)===-1){const i=Br(s);for(let o of e){const a=o.rank;for(let c=0;c<i-a;++c)o=Ih(o,1);n.push(o)}return this.mergeFunction(n)}else{let i=!1;for(const c of e){const h=c.rank;if(h==null){const d=c.shape,m=d[0],y=d.slice(1).concat([m]);let b=c.reshape([m].concat(Ur(d.slice(1))));b=Me(b,[1,0]),b=b.reshape(y),n.push(b),i=!0}else if(h>1){const d=si(1,h).concat([0]);n.push(Me(c,d)),i=!0}else n.push(c)}let o=this.mergeFunction(n);const a=o.rank;if(i){if(a==null){const c=o.shape,h=c.length,d=c[h-1],m=[d].concat(c.slice(0,c.length-1));o=Me(o.reshape([-1,d]),[1,0]).reshape(m)}else if(a>1){const c=[a-1].concat(si(0,a-1));o=Me(o,c)}}return o}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){const i=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,i)}let n=[];for(const s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=$r(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return ee(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Hn(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Ws(n,t[s]);return n})}}class kh extends Wo{constructor(e){super(e)}mergeFunction(e){return ee(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=be(t,e[n]);return t})}}kh.className="Add",me(kh);function WQ(e){if(Array.isArray(e)){const t=new kh({});return t.apply(e)}else return new kh(e)}class Fh extends Wo{constructor(e){super(e)}mergeFunction(e){return ee(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return t})}}Fh.className="Multiply",me(Fh);function $Q(e){if(Array.isArray(e)){const t=new Fh({});return t.apply(e)}else return new Fh(e)}class _h extends Wo{constructor(e){super(e)}mergeFunction(e){return ee(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=be(t,e[n]);return X(1/e.length,t)})}}_h.className="Average",me(_h);function UQ(e){if(Array.isArray(e)){const t=new _h({});return t.apply(e)}else return new _h(e)}class Wh extends Wo{constructor(e){super(e)}mergeFunction(e){return ee(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=_s(t,e[n]);return t})}}Wh.className="Maximum",me(Wh);function BQ(e){if(Array.isArray(e)){const t=new Wh({});return t.apply(e)}else return new Wh(e)}class $h extends Wo{constructor(e){super(e)}mergeFunction(e){return ee(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Io(t,e[n]);return t})}}$h.className="Minimum",me($h);function MQ(e){if(Array.isArray(e)){const t=new $h({});return t.apply(e)}else return new $h(e)}class Uh extends Wo{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(const s of e)if(s!=null){t=!1;break}if(t)return;const n=[];for(let s=0;s<e.length;++s){const i=e[s].slice();i.splice(this.axis,1);let o=!1;for(const a of n)if(ot(a,i)){o=!0;break}o||n.push(i)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return ee(()=>Zb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");const t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(const i of t.slice(1)){if(n[s]==null||i[s]==null){n[s]=null;break}n[s]+=i[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return ee(()=>{let n=!0;if(t.forEach(o=>{if(o!=null){n=!1;return}}),n)return null;const s=[];for(let o=0;o<e.length;++o)t[o]==null?s.push(On(e[o]).asType("bool")):t[o].rank<e[o].rank?s.push(Hn(t[o],-1)):s.push(t[o]);const i=Mt(s,this.axis);return xd(i,-1,!1)})}getConfig(){const e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}}Uh.className="Concatenate",me(Uh);function PQ(e){if(Array.isArray(e)){const t=new Uh({});return t.apply(e)}else return new Uh(e)}function Bh(e,t){for(;e<0;)e+=t;return e}function N3(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(k(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");const s=e.shape.length,i=t.shape.length;n==null&&(n=[s-1,i-2]);const o=n;return ee(()=>{let a;if(s>i){a=s-i;const h=[];for(let d=0;d<a;++d)h.push(1);t=t.reshape(t.shape.concat(h))}else if(i>s){a=i-s;const h=[];for(let d=0;d<a;++d)h.push(1);e=e.reshape(e.shape.concat(h))}else a=0;let c;if(e.shape.length===2&&t.shape.length===2)o[0]===o[1]?c=e.mul(t).sum(o[0]):c=e.transpose([1,0]).mul(t).sum(o[1]);else{const h=o[0]!==e.shape.length-1,d=o[1]===t.shape.length-1;c=e.matMul(t,h,d)}if(a>0){let h;s>i?h=s+i-3:h=s-1;const d=[];for(let m=h;m<h+a;++m)d.push(m);c=c.squeeze(d)}return c.shape.length===1&&(c=c.expandDims(1)),c})}class eL extends Wo{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");const s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((i,o)=>Bh(i,e[o].shape.length)):s=[Bh(this.axes,t.shape.length),Bh(this.axes,n.shape.length)],this.normalize&&(t=Tp(t,s[0]),n=Tp(n,s[1])),N3(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Bh(this.axes,e.length),Bh(this.axes,t.length)],n}computeOutputShape(e){k(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");const t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");const s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);const i=t.concat(n);return i.length===1&&i.push(1),i}computeMask(e,t){return null}getConfig(){const e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}}eL.className="Dot",me(eL);class tL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e),s=()=>up(n.shape,0,this.stddev).add(n),i=Th(s,()=>n,t.training||!1);return i})}}tL.className="GaussianNoise",me(tL);class nL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return ee(()=>{this.invokeCallHook(e,t);const n=je(e);if(this.rate>0&&this.rate<1){const s=()=>{const i=Math.sqrt(this.rate/(1-this.rate));return n.mul(up(n.shape,1,i))};return Th(s,()=>n,t.training||!1)}return n})}}nL.className="GaussianDropout",me(nL);class sL extends lt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||je(e).shape}computeOutputShape(e){return e}getConfig(){const e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return ee(()=>{if(this.rate<1&&this.rate>0){const n=this._getNoiseShape(e),s=()=>{const i=je(e),o=1.6732632423543772,a=1.0507009873554805,c=-o*a;let h=Ki(vo(n),this.rate);h=Sh(h,"float32");const d=((1-this.rate)*(1+this.rate*c**2))**-.5,m=-d*c*this.rate,y=i.mul(h).add(h.add(-1).mul(c));return y.mul(d).add(m)};return Th(s,()=>je(e),t.training||!1)}return e})}}sL.className="AlphaDropout",me(sL);function Mh(e,t,n,s,i,o=.001){let a;if(e.rank===2)a=CT(e,t,n,s,i,o);else if(e.rank===3)a=RT(e,t,n,s,i,o);else if(e.rank===4)a=OT(e,t,n,s,i,o);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return a}function C3(e,t,n,s,i=.001){return ee(()=>{const o=Ud(e,s),a=o.mean,c=o.variance,h=Mh(e,a,c,n,t,i);return[h,a,c]})}function R3(e,t,n,s,i=.001){return ee(()=>{const o=Ud(e,s),a=o.mean,c=o.variance,h=[];for(const L of si(0,e.rank))s.indexOf(L)!==-1?h.push(1):h.push(e.shape[L]);const d=a.reshape(h),m=c.reshape(h),y=t==null?null:t.reshape(h),b=n==null?null:n.reshape(h),w=Mh(e,d,m,b,y,i);return[w,a,c]})}function O3(e,t,n,s,i=.001){return ot(s.slice().sort(),si(0,e.rank-1))?C3(e,t,n,s,i):R3(e,t,n,s,i)}class iL extends lt{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ft(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ft(e.movingVarianceInitializer||"ones"),this.betaConstraint=ln(e.betaConstraint),this.gammaConstraint=ln(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=St(e);const t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new mn({ndim:e.length,axes:{[t]:n}})];const s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return ee(()=>{const n=t.training==null?!1:t.training,s=je(e),i=s.shape,o=i.length,a=si(0,o),c=this.axis>=0?this.axis:this.axis+o;a.splice(c,1);const h=Oo(1,o);h[c]=i[c];const d=a.slice();d.sort();const m=!ot(d,si(0,o).slice(0,o-1)),y=()=>{if(m){const N=this.movingMean.read().reshape(h),E=this.movingVariance.read().reshape(h),D=this.center?this.beta.read().reshape(h):null,F=this.scale?this.gamma.read().reshape(h):null;return Mh(s,N,E,D,F,this.epsilon)}else return Mh(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return y();const[b,w,L]=O3(s,this.gamma.read(),this.beta.read(),a,this.epsilon),T=(N,E,D)=>{ee(()=>{const F=1-D,_=N.read(),B=_.sub(E).mul(F);N.write(_.sub(B))})},A=()=>{T(this.movingMean,w,this.momentum),T(this.movingVariance,L,this.momentum)};return A(),b})}getConfig(){const e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Vt(this.betaInitializer),gammaInitializer:Vt(this.gammaInitializer),movingMeanInitializer:Vt(this.movingMeanInitializer),movingVarianceInitializer:Vt(this.movingVarianceInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer),betaConstraint:cn(this.betaConstraint),gammaConstraint:cn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}}iL.className="BatchNormalization",me(iL);class rL extends lt{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(const t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=St(e);const t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let i=0;i<this.axis.length;++i)this.axis[i]<0&&(this.axis[i]+=t);for(const i of this.axis)if(i<0||i>=t)throw new Error(`Invalid axis: ${i}`);if(this.axis.length!==$r(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);const n=this.axis.map(i=>e[i]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){const n=je(e),s=n.shape,i=s.length;return ee(()=>{const o=!0;let{mean:a,variance:c}=Ud(n,this.axis,o);const h=Oo(1,i);for(const L of this.axis)h[L]=s[L];const d=L=>L!=null&&L.shape.length!==i&&this.axis!==[i-1]?L.reshape(h):L;let m=d(this.gamma.read()),y=d(this.beta.read());const b=[],w=[];for(let L=0;L<i;++L)this.axis.indexOf(L)!==-1?(b.push(s[L]),w.push(1)):(b.push(1),w.push(s[L]));return a=a.tile(b),c=c.tile(b),m=m.tile(w),y=y.tile(w),Mh(n,a,c,y,m,this.epsilon)})}getConfig(){const e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Vt(this.betaInitializer),gammaInitializer:Vt(this.gammaInitializer),betaRegularizer:It(this.betaRegularizer),gammaRegularizer:It(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}}rL.className="LayerNormalization",me(rL);function zQ(e,t){return ee(()=>{if(e.rank!==3)throw new j(`temporalPadding expects input tensor to be 3-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[1,1]),t.length!==2)throw new j(`temporalPadding expects input padding pattern to be a length-2 array, but received a length-${t.length} array.`);const n=[[0,0],t,[0,0]];return Ci(e,n)})}function E3(e,t,n){return ee(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ti()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Ci(e,s)})}class oL extends lt{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ti():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new mn({ndim:4})]}computeOutputShape(e){e=St(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return ee(()=>E3(je(e),this.padding,this.dataFormat))}getConfig(){const e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}oL.className="ZeroPadding2D",me(oL);function Pp(e,t,n,s,i,o){return ee(()=>{Gt(i),qA(o),Ts(s),n==null&&(n=[1,1]),s==null&&(s="valid"),i==null&&(i=ti()),o==null&&(o="max"),e=kw(e,i);let a;const c=s==="same"?"same":"valid";return o==="max"?a=eh(e,t,n,c):a=Hl(e,t,n,c),i==="channelsFirst"&&(a=Me(a,[0,3,1,2])),a})}function rN(e,t,n,s,i,o){return ee(()=>{Gt(i),qA(o),Ts(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),i==null&&(i=ti()),o==null&&(o="max"),e=Zv(e,i);let a;const c=s==="same"?"same":"valid";return o==="max"?a=cb(e,t,n,c):a=jy(e,t,n,c),i==="channelsFirst"&&(a=Me(a,[0,4,1,2,3])),a})}class oN extends lt{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(pn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);pn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Ts(this.padding),this.inputSpec=[new mn({ndim:3})]}computeOutputShape(e){e=St(e);const t=ai(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return ee(()=>{this.invokeCallHook(e,t),e=Ih(je(e),2);const n=this.poolingFunction(je(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Fr(n,[2])})}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}}class aL extends oN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return Gt(i),Ts(s),Pp(e,t,n,s,i,"max")}}aL.className="MaxPooling1D",me(aL);class cL extends oN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return Gt(i),Ts(s),Pp(e,t,n,s,i,"avg")}}cL.className="AveragePooling1D",me(cL);class aN extends lt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];pn(this.poolSize,"poolSize"),pn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),Ts(this.padding),this.inputSpec=[new mn({ndim:4})]}computeOutputShape(e){e=St(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=ai(t,this.poolSize[0],this.padding,this.strides[0]),n=ai(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return ee(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class lL extends aN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return Gt(i),Ts(s),Pp(e,t,n,s,i,"max")}}lL.className="MaxPooling2D",me(lL);class hL extends aN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return Gt(i),Ts(s),Pp(e,t,n,s,i,"avg")}}hL.className="AveragePooling2D",me(hL);class cN extends lt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];pn(this.poolSize,"poolSize"),pn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),Ts(this.padding),this.inputSpec=[new mn({ndim:5})]}computeOutputShape(e){e=St(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=ai(t,this.poolSize[0],this.padding,this.strides[0]),n=ai(n,this.poolSize[1],this.padding,this.strides[1]),s=ai(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return ee(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){const e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class uL extends cN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return Gt(i),Ts(s),rN(e,t,n,s,i,"max")}}uL.className="MaxPooling3D",me(uL);class dL extends cN{constructor(e){super(e)}poolingFunction(e,t,n,s,i){return Gt(i),Ts(s),rN(e,t,n,s,i,"avg")}}dL.className="AveragePooling3D",me(dL);class lN extends lt{constructor(e){super(e);this.inputSpec=[new mn({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}}class pL extends lN{constructor(e){super(e||{})}call(e,t){return ee(()=>{const n=je(e);return zt(n,1)})}}pL.className="GlobalAveragePooling1D",me(pL);class mL extends lN{constructor(e){super(e||{})}call(e,t){return ee(()=>{const n=je(e);return qn(n,1)})}}mL.className="GlobalMaxPooling1D",me(mL);class hN extends lt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Gt(this.dataFormat),this.inputSpec=[new mn({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){const e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}}class fL extends hN{call(e,t){return ee(()=>{const n=je(e);return this.dataFormat==="channelsLast"?zt(n,[1,2]):zt(n,[2,3])})}}fL.className="GlobalAveragePooling2D",me(fL);class gL extends hN{call(e,t){return ee(()=>{const n=je(e);return this.dataFormat==="channelsLast"?qn(n,[1,2]):qn(n,[2,3])})}}gL.className="GlobalMaxPooling2D",me(gL);class uN extends lt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){const e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){const s=t.layer,i=oi(s,n);delete t.layer;const o={layer:i};return Object.assign(o,t),new e(o)}}class yL extends uN{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=St(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];const t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=St(e);const t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return ee(()=>{e=je(e);const n=(o,a)=>{const c=je(this.layer.call(o,t));return[c,[]]},s=sN(n,e,[],!1,null,null,!1,!0),i=s[1];return i})}}yL.className="TimeDistributed",me(yL);function D3(e){za(PP,"BidirectionalMergeMode",e)}const k3="concat";class bL extends uN{constructor(e){super(e);const t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=oi(n),t.goBackwards=!(t.goBackwards===!0);const s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=oi(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?k3:e.mergeMode,D3(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){const t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,i;return this.returnState&&(i=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(i).concat(i.slice()):[n].concat(i).concat(i.slice()):jn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});const i=nN(e,n,s,this.numConstants);if(e=i.inputs,n=i.initialState,s=i.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);const o=[],a=[];if(n!=null){const h=n.length;if(h%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,o.push(...n);const d=n.map(m=>new mn({shape:m.shape}));this.forwardLayer.stateSpec=d.slice(0,h/2),this.backwardLayer.stateSpec=d.slice(h/2),a.push(...d)}if(s!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");const c=o[0]instanceof ri;for(const h of o)if(h instanceof ri!==c)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(c){const h=[e].concat(o),d=this.inputSpec.concat(a),m=this.inputSpec;this.inputSpec=d;const y=super.apply(h,t);return this.inputSpec=m,y}else return super.apply(e,t)}call(e,t){return ee(()=>{const n=t.initialState;let s,i;if(n==null)s=this.forwardLayer.call(e,t),i=this.backwardLayer.call(e,t);else{const c=n.slice(0,n.length/2),h=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:c})),i=this.backwardLayer.call(e,Object.assign(t,{initialState:h}))}let o;this.returnState&&(Array.isArray(s)&&(o=s.slice(1).concat(i.slice(1))),s=s[0],i=i[0]),this.returnSequences&&(i=Is(i,1));let a;return this.mergeMode==="concat"?a=Zb([s,i]):this.mergeMode==="sum"?a=be(s,i):this.mergeMode==="ave"?a=X(.5,be(s,i)):this.mergeMode==="mul"?a=X(s,i):this.mergeMode==null&&(a=[s,i]),this.returnState?this.mergeMode==null?a.concat(o):[a].concat(o):a})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Do(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Do(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){const s=this.forwardLayer.states,i=s.map(o=>null);return Array.isArray(n)?n.concat(i).concat(i):[n].concat(i).concat(i)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){const e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){const n=oi(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");const s=t;return s.layer=n,new e(s)}}bL.className="Bidirectional",me(bL);function F3(e){return new Ya(e)}function _3(e){return new Ow(e)}function W3(e){return new Nw(e)}function $3(e){return new Cw(e)}function U3(e){return new Rw(e)}function B3(e){return new Dw(e)}function M3(e){return new Ew(e)}function P3(e){return new _p(e)}function z3(e){return new Eh(e)}function G3(e){return new Ww(e)}function V3(e){return new Fp(e)}function Y3(e){return new $w(e)}function H3(e){return new Uw(e)}function q3(e){return new Bw(e)}function j3(e){return new Mw(e)}function K3(e){return new jw(e)}function X3(e){return new Hw(e)}function J3(e){return new Mp(e)}function Z3(e){return new Yw(e)}function Q3(e){return new qw(e)}function eG(e){return new Kw(e)}function tG(e){return new Xw(e)}function nG(e){return new Jw(e)}function sG(e){return new Qw(e)}function iG(e){return new kh(e)}function rG(e){return new _h(e)}function oG(e){return new Uh(e)}function aG(e){return new Wh(e)}function cG(e){return new $h(e)}function lG(e){return new Fh(e)}function hG(e){return new eL(e)}function uG(e){return new iL(e)}function dG(e){return new rL(e)}function pG(e){return new oL(e)}function wL(e){return new cL(e)}function mG(e){return wL(e)}function fG(e){return wL(e)}function LL(e){return new hL(e)}function gG(e){return LL(e)}function yG(e){return LL(e)}function SL(e){return new dL(e)}function bG(e){return SL(e)}function wG(e){return SL(e)}function LG(e){return new pL(e)}function SG(e){return new fL(e)}function dN(e){return new mL(e)}function pN(e){return new gL(e)}function mN(e){return new aL(e)}function fN(e){return new lL(e)}function IG(e){return new uL(e)}function xG(e){return new zw(e)}function TG(e){return new $p(e)}function AG(e){return new Gw(e)}function vG(e){return new Dh(e)}function NG(e){return new Pw(e)}function CG(e){return new Wp(e)}function RG(e){return new Vw(e)}function OG(e){return new Bp(e)}function EG(e){return new Fi(e)}function DG(e){return new Up(e)}function kG(e){return new bL(e)}function FG(e){return new yL(e)}const _G=dN,WG=pN,$G=mN,UG=fN;function BG(e){return new tL(e)}function MG(e){return new nL(e)}function PG(e){return new sL(e)}function zG(e){return new Zw(e)}var GG=Object.freeze({__proto__:null,inputLayer:F3,elu:_3,reLU:W3,leakyReLU:$3,prelu:U3,softmax:B3,thresholdedReLU:M3,conv1d:P3,conv2d:z3,conv2dTranspose:G3,conv3d:V3,separableConv2d:Y3,cropping2D:H3,upSampling2d:q3,depthwiseConv2d:j3,activation:K3,dense:X3,dropout:J3,spatialDropout1d:Z3,flatten:Q3,repeatVector:eG,reshape:tG,permute:nG,embedding:sG,add:iG,average:rG,concatenate:oG,maximum:aG,minimum:cG,multiply:lG,dot:hG,batchNormalization:uG,layerNormalization:dG,zeroPadding2d:pG,averagePooling1d:wL,avgPool1d:mG,avgPooling1d:fG,averagePooling2d:LL,avgPool2d:gG,avgPooling2d:yG,averagePooling3d:SL,avgPool3d:bG,avgPooling3d:wG,globalAveragePooling1d:LG,globalAveragePooling2d:SG,globalMaxPooling1d:dN,globalMaxPooling2d:pN,maxPooling1d:mN,maxPooling2d:fN,maxPooling3d:IG,gru:xG,gruCell:TG,lstm:AG,lstmCell:vG,simpleRNN:NG,simpleRNNCell:CG,convLstm2d:RG,convLstm2dCell:OG,rnn:EG,stackedRNNCells:DG,bidirectional:kG,timeDistributed:FG,globalMaxPool1d:_G,globalMaxPool2d:WG,maxPool1d:$G,maxPool2d:UG,Layer:lt,RNN:Fi,RNNCell:Xa,input:Wv,gaussianNoise:BG,gaussianDropout:MG,alphaDropout:PG,masking:zG});function VG(e,t){return mw(e,t)}function YG(e,t){return yv(e,t)}function HG(e,t){return bv(e,t)}function qG(e,t){return fw(e,t)}function jG(e,t){return gw(e,t)}function KG(e,t){return gv(e,t)}function XG(e,t){return Wz(e,t)}function JG(e,t){return Np(e,t)}function ZG(e,t){return qa(e,t)}function QG(e,t){return Pr(e,t)}function eV(e,t){return Pr(e,t)}function tV(e,t){return Pr(e,t)}function nV(e,t){return tr(e,t)}function sV(e,t){return tr(e,t)}function iV(e,t){return tr(e,t)}var rV=Object.freeze({__proto__:null,binaryAccuracy:VG,binaryCrossentropy:YG,sparseCategoricalAccuracy:HG,categoricalAccuracy:qG,categoricalCrossentropy:jG,precision:KG,recall:XG,cosineProximity:JG,meanAbsoluteError:ZG,meanAbsolutePercentageError:QG,MAPE:eV,mape:tV,meanSquaredError:nV,MSE:sV,mse:iV});var oV=Object.freeze({__proto__:null,modelFromJSON:f3});function aV(e){return new Rh(e)}function cV(e){return x3(e)}function lV(e){return T3(e)}var hV=Object.freeze({__proto__:null,l1l2:aV,l1:cV,l2:lV});class gN extends Ha{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}}function zp(e,t){return e<t}function yN(e,t){return e>t}class bN extends gN{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=zp:this.mode==="max"?this.monitorFunc=yN:this.monitor.indexOf("acc")!==-1?this.monitorFunc=yN:this.monitorFunc=zp,this.monitorFunc===zp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===zp?Infinity:-Infinity}async onEpochEnd(e,t){await Mr(t);const n=this.getMonitorValue(t);if(n==null)return;this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});const t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}}function uV(e){return new bN(e)}const dV={earlyStopping:uV};var ci;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ci||(ci={}));var wN;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(wN||(wN={}));const IL={};function pV(e,t){const n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};IL[e]=n}function LN(e){return IL[e]}function mV(e){delete IL[e]}function R(e,t,n,s){const i=t.inputParams[e];if(i&&i.inputIndexStart!==void 0){const a=i.inputIndexStart,c=i.inputIndexEnd===0?void 0:i.inputIndexEnd===void 0?a+1:i.inputIndexEnd;if(i.type==="tensor")return Xn(t.inputNames[i.inputIndexStart],n,s);if(i.type==="tensors"){const m=t.inputNames.slice(a,c);return m.map(y=>Xn(y,n,s))}const h=Xn(t.inputNames.slice(a)[0],n,s),d=h.dataSync();return i.type==="number"?d[0]:ys(h.shape,d)}const o=t.attrParams[e];return o&&o.value}function Xn(e,t,n){const[s,i]=os(e),o=n.currentContextIds.find(a=>!!t[Gp(s,a)]);return o!==void 0?t[Gp(s,o)][i]:void 0}function fV(e,t,n){return t[Gp(e,n.currentContextId)]}function sr(e,t){const[n,s]=os(e);return[Gp(n,t&&t.currentContextId),s]}function Gp(e,t){return t?`${e}-${t}`:e}function os(e){const t=e.split(":");if(t.length===1)return[e,0];const n=t[0];return[n,Number(t[t.length-1])]}function GQ(e,t){const n=[];for(let s=0;s<e.length;s+=t)n.push(e.slice(s,s+t));return n}function Vp(e,t,n){let s=R("pad",e,t,n);if(s==="explicit"){s=R("explicitPaddings",e,t,n);const i=[[0,0],[0,0],[0,0],[0,0]];for(let o=0;o<4;o++)i[o][0]=s[o*2],i[o][1]=s[o*2+1];return i}return s}function ir(e){return e.kept?e:Cr(e)}const gV=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var yV=Object.freeze({__proto__:null,json:gV});const bV=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"clip_value_min",name:"clipValueMin",type:"number"},{tfName:"clip_value_max",name:"clipValueMax",type:"number"}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"clipValueMin",name:"clipValueMin",type:"number",defaultValue:0},{tfName:"clipValueMax",name:"clipValueMax",type:"number",defaultValue:6}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var wV=Object.freeze({__proto__:null,json:bV});const LV=[{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var SV=Object.freeze({__proto__:null,json:LV});const IV=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var xV=Object.freeze({__proto__:null,json:IV});const TV=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var AV=Object.freeze({__proto__:null,json:TV});const vV=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var NV=Object.freeze({__proto__:null,json:vV});const CV=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var RV=Object.freeze({__proto__:null,json:CV});const OV=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var EV=Object.freeze({__proto__:null,json:OV});const DV=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var kV=Object.freeze({__proto__:null,json:DV});const FV=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var _V=Object.freeze({__proto__:null,json:FV});const WV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var $V=Object.freeze({__proto__:null,json:WV});const UV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var BV=Object.freeze({__proto__:null,json:UV});const MV=[{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var PV=Object.freeze({__proto__:null,json:MV});const zV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool",notSupported:!0}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var GV=Object.freeze({__proto__:null,json:zV});const VV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var YV=Object.freeze({__proto__:null,json:VV});const HV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var qV=Object.freeze({__proto__:null,json:HV});class SN{static get Instance(){return this._instance||(this._instance=new this)}constructor(){const e=[yV,wV,SV,xV,AV,NV,RV,_V,kV,EV,$V,BV,PV,GV,YV,qV],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){const n=e.node,s=[],i=[],o=[],a=n.reduce((L,T)=>(L[T.name]=this.mapNode(T),T.op.startsWith("Placeholder")?s.push(L[T.name]):T.op==="Const"?i.push(L[T.name]):(T.input==null||T.input.length===0)&&o.push(L[T.name]),L),{});let c=[];const h=[];let d={},m={};t!=null&&(d=this.mapSignatureEntries(t.inputs),m=this.mapSignatureEntries(t.outputs));const y=Object.keys(a);y.forEach(L=>{const T=a[L];T.inputNames.forEach(A=>{const[N]=sr(A);T.inputs.push(a[N]),a[N].children.push(T)})}),Object.keys(m).length===0?y.forEach(L=>{const T=a[L];T.children.length===0&&h.push(T)}):Object.keys(m).forEach(L=>{const[T]=sr(L),A=a[T];A!=null&&(A.signatureKey=m[L],h.push(A))}),Object.keys(d).length>0?Object.keys(d).forEach(L=>{const[T]=sr(L),A=a[T];A&&(A.signatureKey=d[L],c.push(A))}):c=s;let b={};e.library!=null&&e.library.function!=null&&(b=e.library.function.reduce((L,T)=>(L[T.signature.name]=this.mapFunction(T),L),{}));const w={nodes:a,inputs:c,outputs:h,weights:i,placeholders:s,signature:t,functions:b};return o.length>0&&(w.initNodes=o),w}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){const t=LN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});const n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,i)=>(s[i.name]={type:i.type,inputIndexStart:i.start,inputIndexEnd:i.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,i)=>{const o=i.type;let a;switch(i.type){case"string":a=xL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=xL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"string[]":a=EL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=EL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"number":a=AL(e.attr,i.tfName,i.defaultValue||0),a===void 0&&!!i.tfDeprecatedName&&(a=AL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"number[]":a=OL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=OL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"bool":a=TL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=TL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"bool[]":a=kL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=kL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"shape":a=RL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=RL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"shape[]":a=DL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=DL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"dtype":a=NL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=NL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"dtype[]":a=CL(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=CL(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"func":a=xN(e.attr,i.tfName,i.defaultValue),a===void 0&&!!i.tfDeprecatedName&&(a=xN(e.attr,i.tfDeprecatedName,i.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${i.type} for op: ${e.op}`)}return s[i.name]={value:a,type:o},s},{})),n}mapFunction(e){const t=e.nodeDef,n=[],s=[];let i={};t!=null&&(i=t.reduce((m,y)=>(m[y.name]=this.mapNode(y),y.op==="Const"&&s.push(m[y.name]),m),{}));const o=[],a=[];e.signature.inputArg.forEach(m=>{const[y]=sr(m.name),b={name:y,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:vL(m.type),type:"dtype"}},children:[]};b.signatureKey=m.name,o.push(b),i[y]=b});const c=Object.keys(i);c.forEach(m=>{const y=i[m];y.inputNames.forEach(b=>{const[w]=sr(b);y.inputs.push(i[w]),i[w].children.push(y)})});const h=e.ret;e.signature.outputArg.forEach(m=>{const[y,b]=sr(h[m.name]),w=i[y];w!=null&&(w.defaultOutput=b,a.push(w))});const d=this.mapArgsToSignature(e);return{nodes:i,inputs:o,outputs:a,weights:s,placeholders:n,signature:d}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}}function jV(e){const t=C().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function IN(e,t){const n=Array.isArray(e)?String.fromCharCode.apply(null,e):jV(e);return t?n:n.toLowerCase()}function xL(e,t,n,s=!1){const i=e[t];return i!=null?IN(i.s,s):n}function TL(e,t,n){const s=e[t];return s?s.b:n}function AL(e,t,n){const s=e[t]||{},i=s.i!=null?s.i:s.f!=null?s.f:n;return typeof i=="number"?i:parseInt(i,10)}function vL(e){typeof e=="string"&&(e=ci[e]);switch(e){case ci.DT_FLOAT:return"float32";case ci.DT_INT32:case ci.DT_INT64:case ci.DT_INT8:case ci.DT_UINT8:return"int32";case ci.DT_BOOL:return"bool";case ci.DT_DOUBLE:return"float32";case ci.DT_STRING:return"string";default:return null}}function xN(e,t,n){const s=e[t];return s&&s.func?s.func.name:n}function NL(e,t,n){const s=e[t];return s&&s.type?vL(s.type):n}function CL(e,t,n){const s=e[t];return s&&s.list&&s.list.type?s.list.type.map(i=>vL(i)):n}function TN(e){return e.unknownRank?void 0:e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function RL(e,t,n){const s=e[t];return s&&s.shape?TN(s.shape):n}function OL(e,t,n){const s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(i=>typeof i=="number"?i:parseInt(i,10)):n}function EL(e,t,n,s=!1){const i=e[t];return i&&i.list&&i.list.s?i.list.s.map(o=>IN(o,s)):n}function DL(e,t,n){const s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(i=>TN(i)):n}function kL(e,t,n){const s=e[t];return s&&s.list&&s.list.b?s.list.b:n}class KV{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,i)=>(s[i]=this.getAttr(i),s),{}))}getInput(e){return Xn(e,this.tensorMap,this.context)}getAttr(e,t){const n=this.node.rawAttrs[e];if(n.tensor!=null)return Xn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return AL(this.node.rawAttrs,e,t);if(n.s!=null)return xL(this.node.rawAttrs,e,t);if(n.b!=null)return TL(this.node.rawAttrs,e,t);if(n.shape!=null)return RL(this.node.rawAttrs,e,t);if(n.type!=null)return NL(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return OL(this.node.rawAttrs,e,t);if(n.list.s!=null)return EL(this.node.rawAttrs,e,t);if(n.list.shape!=null)return DL(this.node.rawAttrs,e,t);if(n.list.b!=null)return kL(this.node.rawAttrs,e,t);if(n.list.type!=null)return CL(this.node.rawAttrs,e,t)}return t}}const XV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[be(R("a",e,t,n),R("b",e,t,n))];case"AddN":return[vT(R("tensors",e,t,n))];case"FloorMod":case"Mod":return[$d(R("a",e,t,n),R("b",e,t,n))];case"Mul":return[X(R("a",e,t,n),R("b",e,t,n))];case"RealDiv":case"Div":return[_e(R("a",e,t,n),R("b",e,t,n))];case"DivNoNan":return[tb(R("a",e,t,n),R("b",e,t,n))];case"FloorDiv":return[Id(R("a",e,t,n),R("b",e,t,n))];case"Sub":return[Ce(R("a",e,t,n),R("b",e,t,n))];case"Minimum":return[Io(R("a",e,t,n),R("b",e,t,n))];case"Maximum":return[_s(R("a",e,t,n),R("b",e,t,n))];case"Pow":return[ei(R("a",e,t,n),R("b",e,t,n))];case"SquaredDifference":return[ah(R("a",e,t,n),R("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VQ="arithmetic";const JV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[sn(R("x",e,t,n))];case"Acos":return[$y(R("x",e,t,n))];case"Acosh":return[Uy(R("x",e,t,n))];case"Asin":return[Py(R("x",e,t,n))];case"Asinh":return[zy(R("x",e,t,n))];case"Atan":return[Gy(R("x",e,t,n))];case"Atan2":return[Vy(R("x",e,t,n),R("y",e,t,n))];case"Atanh":return[Yy(R("x",e,t,n))];case"Ceil":return[Xy(R("x",e,t,n))];case"Complex":return[xi(R("real",e,t,n),R("imag",e,t,n))];case"Cos":return[Kl(R("x",e,t,n))];case"Cosh":return[Rd(R("x",e,t,n))];case"Elu":return[So(R("x",e,t,n))];case"Erf":return[nb(R("x",e,t,n))];case"Exp":return[Ls(R("x",e,t,n))];case"Expm1":return[sb(R("x",e,t,n))];case"Floor":return[Ra(R("x",e,t,n))];case"Log":return[ts(R("x",e,t,n))];case"Log1p":return[kd(R("x",e,t,n))];case"Imag":return[Ea(R("x",e,t,n))];case"Neg":return[Pt(R("x",e,t,n))];case"Reciprocal":return[db(R("x",e,t,n))];case"Real":return[xo(R("x",e,t,n))];case"Relu":return[Ri(R("x",e,t,n))];case"Round":return[mb(R("x",e,t,n))];case"Selu":return[Pd(R("x",e,t,n))];case"Sigmoid":return[vi(R("x",e,t,n))];case"Sin":return[zd(R("x",e,t,n))];case"Sign":return[gb(R("x",e,t,n))];case"Sinh":return[Gd(R("x",e,t,n))];case"Softplus":return[Da(R("x",e,t,n))];case"Sqrt":return[Ln(R("x",e,t,n))];case"Square":return[wt(R("x",e,t,n))];case"Tanh":return[Ca(R("x",e,t,n))];case"Tan":return[wb(R("x",e,t,n))];case"Relu6":case"ClipByValue":return[Yn(R("x",e,t,n),R("clipValueMin",e,t,n),R("clipValueMax",e,t,n))];case"Rsqrt":return[Md(Xn(e.inputNames[0],t,n))];case"Prod":return[Bd(R("x",e,t,n),R("axes",e,t,n))];case"LeakyRelu":return[Dd(R("x",e,t,n),R("alpha",e,t,n))];case"Prelu":return[nh(R("x",e,t,n),R("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},YQ="basic_math";function Ms(e,t,n=""){k(ZV(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ZV(e,t){if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==-1&&t[n]!==-1&&e[n]!==t[n])return!1;return!0}class QV{constructor(e,t,n,s,i,o,a){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=i,this.dynamicSize=o,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=Ne(0),Nn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);const t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);const n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ms(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Nn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return en([],[0].concat(this.elementShape));const n=this.readMany(e);return Ms(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),is(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return en([],[0].concat(this.elementShape));const t=[];for(let s=0;s<this.size();s++)t.push(s);const n=this.readMany(t);return Ms(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Mt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);const n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Oi(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0;const s=e.map(c=>(n+=c,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);const i=n===0?0:t.size/n,o=[];ee(()=>{t=K(t,[1,n,i]);for(let c=0;c<e.length;++c){const h=c===0?0:s[c-1],d=[0,h,0],m=[1,e[c],i];o[c]=K(nt(t,d,m),this.elementShape)}return o});const a=[];for(let c=0;c<e.length;c++)a[c]=c;this.writeMany(a,o)}}class Ph{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(i=>{if(n!==i.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${i.dtype}`);Ms(t,i.shape,"TensorList shape mismatch: "),Nn(i)}),this.idTensor=Ne(0),this.maxNumElements=s,Nn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Ph([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return Ms(e,this.elementShape,"TensorList shape mismatch: "),ee(()=>{const s=this.tensors.map(i=>K(i,e));return is(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");const n=this.tensors.pop();return Ms(n.shape,e,"TensorList shape mismatch: "),K(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ms(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Nn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return Ms(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ms(this.elementShape,t.shape,"TensorList shape mismatch: "),Nn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return Ms(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?en([],[0].concat(this.elementShape)):ee(()=>{const s=e.map(i=>K(this.tensors[i],n));return is(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return Ms(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?en([],[0].concat(this.elementShape)):ee(()=>{const n=this.tensors.map(s=>K(s,t));return Mt(n,0)})}}function eY(e,t,n){const s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);const i=e.shape.slice(1);Ms(i,t,"TensorList shape mismatch: ");const o=Oi(e);return new Ph(o,t,s)}function tY(e,t,n){return new Ph([],e,t,n)}function nY(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);const i=Math.max(...t);if(s!=null&&s!==-1&&i>=s)throw new Error(`Max index must be < array size (${i} vs. ${s})`);const o=new Ph([],n,e.dtype,s),a=Oi(e,0);return t.forEach((c,h)=>{o.setItem(c,a[h])}),o}function sY(e,t,n){let s=0;const i=t.map(h=>(s+=h,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);const o=s===0?0:e.size/s,a=ee(()=>{const h=[];e=K(e,[1,s,o]);for(let d=0;d<t.length;++d){const m=d===0?0:i[d-1],y=[0,m,0],b=[1,t[d],o];h[d]=K(nt(e,y,b),n)}return e.dispose(),h}),c=new Ph([],n,e.dtype,t.length);for(let h=0;h<a.length;h++)c.setItem(h,a[h]);return c}const iY=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{const s=R("thenBranch",e,t,n),i=R("elseBranch",e,t,n),o=R("cond",e,t,n),a=R("args",e,t,n),c=await o.data();return c[0]?n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap):n.functionMap[i].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{const s=R("body",e,t,n),i=R("cond",e,t,n),o=R("args",e,t,n),a=await n.functionMap[i].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap),c=o.map(m=>m.id);let h=await a[0].data();a.forEach(m=>{!m.kept&&c.indexOf(m.id)===-1&&m.dispose()});let d=o;for(;h[0];){const m=d;d=await n.functionMap[s].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);const y=d.map(w=>w.id);m.forEach(w=>{!w.kept&&c.indexOf(w.id)===-1&&y.indexOf(w.id)===-1&&w.dispose()});const b=await n.functionMap[i].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);h=await b[0].data(),b.forEach(w=>{!w.kept&&c.indexOf(w.id)===-1&&y.indexOf(w.id)===-1&&w.dispose()})}return d}case"LoopCond":{const s=R("pred",e,t,n);return[ir(s)]}case"Switch":{const s=R("pred",e,t,n);let i=R("data",e,t,n);return i.kept||(i=ir(i)),(await s.data())[0]?[void 0,i]:[i,void 0]}case"Merge":{const s=e.inputNames.find(i=>Xn(i,t,n)!==void 0);if(s){const i=Xn(s,t,n);return[ir(i)]}return}case"Enter":{const s=R("frameName",e,t,n),i=R("tensor",e,t,n);return n.enterFrame(s),[ir(i)]}case"Exit":{const s=R("tensor",e,t,n);return n.exitFrame(),[ir(s)]}case"NextIteration":{const s=R("tensor",e,t,n);return n.nextIteration(),[ir(s)]}case"TensorArrayV3":{const s=R("size",e,t,n),i=R("dtype",e,t,n),o=R("elementShape",e,t,n),a=R("dynamicSize",e,t,n),c=R("clearAfterRead",e,t,n),h=R("identicalElementShapes",e,t,n),d=R("name",e,t,n),m=new QV(d,i,s,o,h,a,c);return n.addTensorArray(m),[m.idTensor,Ne(1)]}case"TensorArrayWriteV3":{const s=R("tensorArrayId",e,t,n),i=R("index",e,t,n),o=R("tensor",e,t,n),a=n.getTensorArray(s.id);return a.write(i,o),[a.idTensor]}case"TensorArrayReadV3":{const s=R("tensorArrayId",e,t,n),i=R("index",e,t,n),o=n.getTensorArray(s.id);return[o.read(i)]}case"TensorArrayGatherV3":{const s=R("tensorArrayId",e,t,n),i=R("indices",e,t,n),o=R("dtype",e,t,n),a=n.getTensorArray(s.id);return[a.gather(i,o)]}case"TensorArrayScatterV3":{const s=R("tensorArrayId",e,t,n),i=R("indices",e,t,n),o=R("tensor",e,t,n),a=n.getTensorArray(s.id);return a.scatter(i,o),[a.idTensor]}case"TensorArrayConcatV3":{const s=R("tensorArrayId",e,t,n),i=n.getTensorArray(s.id),o=R("dtype",e,t,n);return[i.concat(o)]}case"TensorArraySplitV3":{const s=R("tensorArrayId",e,t,n),i=R("tensor",e,t,n),o=R("lengths",e,t,n),a=n.getTensorArray(s.id);return a.split(o,i),[a.idTensor]}case"TensorArraySizeV3":{const s=R("tensorArrayId",e,t,n),i=n.getTensorArray(s.id);return[Ne(i.size(),"int32")]}case"TensorArrayCloseV3":{const s=R("tensorArrayId",e,t,n),i=n.getTensorArray(s.id);return i.clearAndClose(),[i.idTensor]}case"TensorListSetItem":{const s=R("tensorListId",e,t,n),i=R("index",e,t,n),o=R("tensor",e,t,n),a=n.getTensorList(s.id);return a.setItem(i,o),[a.idTensor]}case"TensorListGetItem":{const s=R("tensorListId",e,t,n),i=R("index",e,t,n),o=R("elementShape",e,t,n),a=R("elementDType",e,t,n),c=n.getTensorList(s.id);return[c.getItem(i,o,a)]}case"TensorListScatterV2":case"TensorListScatter":{const s=R("indices",e,t,n),i=R("tensor",e,t,n),o=R("elementShape",e,t,n),a=R("numElements",e,t,n),c=nY(i,s,o,a);return n.addTensorList(c),[c.idTensor]}case"TensorListReserve":{const s=R("elementShape",e,t,n),i=R("elementDType",e,t,n),o=R("numElements",e,t,n),a=tY(s,i,o);return n.addTensorList(a),[a.idTensor]}case"TensorListGather":{const s=R("tensorListId",e,t,n),i=R("indices",e,t,n),o=R("elementShape",e,t,n),a=R("elementDType",e,t,n),c=n.getTensorList(s.id);return[c.gather(i,a,o)]}case"TensorListStack":{const s=R("tensorListId",e,t,n),i=R("elementShape",e,t,n),o=R("elementDType",e,t,n),a=R("numElements",e,t,n),c=n.getTensorList(s.id);return[c.stack(i,o,a)]}case"TensorListFromTensor":{const s=R("tensor",e,t,n),i=R("elementShape",e,t,n),o=R("elementDType",e,t,n),a=eY(s,i,o);return n.addTensorList(a),[a.idTensor]}case"TensorListConcat":{const s=R("tensorListId",e,t,n),i=n.getTensorList(s.id),o=R("dtype",e,t,n),a=R("elementShape",e,t,n);return[i.concat(o,a)]}case"TensorListPushBack":{const s=R("tensorListId",e,t,n),i=R("tensor",e,t,n),o=n.getTensorList(s.id);return o.pushBack(i),[o.idTensor]}case"TensorListPopBack":{const s=R("tensorListId",e,t,n),i=R("elementShape",e,t,n),o=R("elementDType",e,t,n),a=n.getTensorList(s.id);return[a.popBack(i,o)]}case"TensorListSplit":{const s=R("tensor",e,t,n),i=R("elementShape",e,t,n),o=R("lengths",e,t,n),a=sY(s,o,i);return n.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},HQ="control";function AN(e,t,n){const[s,i]=R("fusedOps",e,t,n),o=s==="biasadd",a=i==="prelu",c=s==="fusedbatchnorm",h=R("numArgs",e,t,n);if(o){if(a&&h!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&h!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(c)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");const d=R("strides",e,t,n),m=Vp(e,t,n),y=R("dataFormat",e,t,n).toUpperCase(),b=R("dilations",e,t,n),[w,L]=R("args",e,t,n);return{stride:d,pad:m,dataFormat:y,dilations:b,biasArg:w,preluArg:L,activationFunc:i}}const rY=(e,t,n)=>{switch(e.op){case"Conv1D":{const s=R("stride",e,t,n),i=R("pad",e,t,n),o=R("dataFormat",e,t,n).toUpperCase(),a=R("dilation",e,t,n);return[Nd(R("x",e,t,n),R("filter",e,t,n),s,i,o,a)]}case"Conv2D":{const s=R("strides",e,t,n),i=Vp(e,t,n),o=R("dataFormat",e,t,n).toUpperCase(),a=R("dilations",e,t,n);return[ji(R("x",e,t,n),R("filter",e,t,n),[s[1],s[2]],i,o,[a[1],a[2]])]}case"_FusedConv2D":{const{stride:s,pad:i,dataFormat:o,dilations:a,biasArg:c,preluArg:h,activationFunc:d}=AN(e,t,n);return[vb({x:R("x",e,t,n),filter:R("filter",e,t,n),strides:[s[1],s[2]],pad:i,dataFormat:o,dilations:[a[1],a[2]],bias:c,activation:d,preluActivationWeights:h})]}case"FusedDepthwiseConv2dNative":{const{stride:s,pad:i,dataFormat:o,dilations:a,biasArg:c,preluArg:h,activationFunc:d}=AN(e,t,n);return[bA({x:R("x",e,t,n),filter:R("filter",e,t,n),strides:[s[1],s[2]],pad:i,dataFormat:o,dilations:[a[1],a[2]],bias:c,activation:d,preluActivationWeights:h})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{const s=R("outputShape",e,t,n),i=R("strides",e,t,n),o=Vp(e,t,n);return[Cd(R("x",e,t,n),R("filter",e,t,n),s,[i[1],i[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{const s=R("strides",e,t,n),i=Vp(e,t,n),o=R("dilations",e,t,n),a=R("dataFormat",e,t,n).toUpperCase();return[wo(R("input",e,t,n),R("filter",e,t,n),[s[1],s[2]],i,a,[o[1],o[2]])]}case"Conv3D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("dataFormat",e,t,n).toUpperCase(),a=R("dilations",e,t,n);return[Zy(R("x",e,t,n),R("filter",e,t,n),[s[1],s[2],s[3]],i,o,[a[1],a[2],a[3]])]}case"AvgPool":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[Hl(R("x",e,t,n),[o[1],o[2]],[s[1],s[2]],i)]}case"MaxPool":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[eh(R("x",e,t,n),[o[1],o[2]],[s[1],s[2]],i)]}case"MaxPoolWithArgmax":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n),a=R("includeBatchInIndex",e,t,n),{result:c,indexes:h}=VT(R("x",e,t,n),[o[1],o[2]],[s[1],s[2]],i,a);return[c,h]}case"AvgPool3D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[jy(R("x",e,t,n),[o[1],o[2],o[3]],[s[1],s[2],s[3]],i)]}case"MaxPool3D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("kernelSize",e,t,n);return[cb(R("x",e,t,n),[o[1],o[2],o[3]],[s[1],s[2],s[3]],i)]}case"Dilation2D":{const s=R("strides",e,t,n),i=R("pad",e,t,n),o=R("dilations",e,t,n),a=s[1],c=s[2],h=o[1],d=o[2];return[eb(R("x",e,t,n),R("filter",e,t,n),[a,c],i,[h,d],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},qQ="convolution";const oY=(e,t,n)=>{switch(e.op){case"Fill":{const s=R("shape",e,t,n),i=R("dtype",e,t,n),o=R("value",e,t,n);return[Xl(s,o,i)]}case"LinSpace":{const s=R("start",e,t,n),i=R("stop",e,t,n),o=R("num",e,t,n);return[PT(s,i,o)]}case"Multinomial":{const s=R("logits",e,t,n),i=R("numSamples",e,t,n),o=R("seed",e,t,n);return[YT(s,i,o)]}case"OneHot":{const s=R("indices",e,t,n),i=R("depth",e,t,n),o=R("onValue",e,t,n),a=R("offValue",e,t,n);return[fo(s,i,o,a)]}case"Ones":return[Qs(R("shape",e,t,n),R("dtype",e,t,n))];case"OnesLike":return[On(R("x",e,t,n))];case"RandomUniform":return[vo(R("shape",e,t,n),R("minval",e,t,n),R("maxval",e,t,n),R("dtype",e,t,n))];case"Range":{const s=R("start",e,t,n),i=R("stop",e,t,n),o=R("step",e,t,n);return[sh(s,i,o,R("dtype",e,t,n))]}case"TruncatedNormal":{const s=R("shape",e,t,n),i=R("mean",e,t,n),o=R("stdDev",e,t,n),a=R("seed",e,t,n);return[ch(s,i,o,R("dtype",e,t,n),a)]}case"Zeros":return[ct(R("shape",e,t,n),R("dtype",e,t,n))];case"ZerosLike":return[Qe(R("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jQ="creation";function FL(e,t,n){const s=R("boxes",e,t,n),i=R("scores",e,t,n),o=R("maxOutputSize",e,t,n),a=R("iouThreshold",e,t,n),c=R("scoreThreshold",e,t,n),h=R("softNmsSigma",e,t,n);return{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}}const aY=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{const{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}=FL(e,t,n),d=await Wr.nonMaxSuppressionWithScoreAsync(s,i,o,a,c,h);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{const{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c}=FL(e,t,n),h=R("padToMaxOutputSize",e,t,n),d=await Wr.nonMaxSuppressionPaddedAsync(s,i,o,a,c,h);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{const{boxes:s,scores:i,maxOutputSize:o,iouThreshold:a,scoreThreshold:c}=FL(e,t,n);return[await Wr.nonMaxSuppressionAsync(s,i,o,a,c)]}case"Where":{const s=ve(R("condition",e,t,n),"bool"),i=[await Ib(s)];return s.dispose(),i}case"ListDiff":return qT(R("x",e,t,n),R("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},KQ="dynamic";const cY=(e,t,n)=>{switch(e.op){case"TopKV2":{const s=R("x",e,t,n),i=R("k",e,t,n),o=R("sorted",e,t,n),a=Lb(s,i,o);return[a.values,a.indices]}case"Unique":{const s=R("x",e,t,n),i=qd(s);return[i.values,i.indices]}case"UniqueV2":{const s=R("x",e,t,n),i=R("axis",e,t,n),o=qd(s,i);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},XQ="evaluation";const lY=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":const s=R("default",e,t,n);return[Xn(e.name,t,n)||s];case"Placeholder":return[Xn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{const d=R("x",e,t,n);return[ir(d)]}case"IdentityN":return R("x",e,t,n).map(d=>ir(d));case"Snapshot":const i=R("x",e,t,n);return[ir(i)];case"Shape":return[ns(R("x",e,t,n).shape,"int32")];case"ShapeN":return R("x",e,t,n).map(d=>ns(d.shape));case"Size":return[Ne(R("x",e,t,n).size,"int32")];case"Rank":return[Ne(R("x",e,t,n).rank,"int32")];case"NoOp":return[Ne(1)];case"Print":const o=R("x",e,t,n),a=R("data",e,t,n),c=R("message",e,t,n),h=R("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(c);for(let d=0;d<a.length;d++)console.log(Array.prototype.slice.call(a[d].dataSync()).slice(0,h));return[o];default:throw TypeError(`Node type ${e.op} is not implemented`)}},JQ="graph";const hY=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{const s=R("images",e,t,n),i=R("size",e,t,n),o=R("alignCorners",e,t,n);return[Wr.resizeBilinear(s,[i[0],i[1]],o)]}case"ResizeNearestNeighbor":{const s=R("images",e,t,n),i=R("size",e,t,n),o=R("alignCorners",e,t,n);return[Wr.resizeNearestNeighbor(s,[i[0],i[1]],o)]}case"CropAndResize":{const s=R("image",e,t,n),i=R("boxes",e,t,n),o=R("boxInd",e,t,n),a=R("cropSize",e,t,n),c=R("method",e,t,n),h=R("extrapolationValue",e,t,n);return[Wr.cropAndResize(s,i,o,a,c,h)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZQ="image";const uY=(e,t,n)=>{switch(e.op){case"Equal":return[Zs(R("a",e,t,n),R("b",e,t,n))];case"NotEqual":return[kr(R("a",e,t,n),R("b",e,t,n))];case"Greater":return[Ss(R("a",e,t,n),R("b",e,t,n))];case"GreaterEqual":return[Ki(R("a",e,t,n),R("b",e,t,n))];case"Less":return[Zl(R("a",e,t,n),R("b",e,t,n))];case"LessEqual":return[Dr(R("a",e,t,n),R("b",e,t,n))];case"LogicalAnd":return[Ws(R("a",e,t,n),R("b",e,t,n))];case"LogicalNot":return[Ql(R("a",e,t,n))];case"LogicalOr":return[Wd(R("a",e,t,n),R("b",e,t,n))];case"Select":case"SelectV2":return[_n(R("condition",e,t,n),R("a",e,t,n),R("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},QQ="logical";const dY=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[at(R("a",e,t,n),R("b",e,t,n),R("transposeA",e,t,n),R("transposeB",e,t,n))];case"Transpose":return[Me(R("x",e,t,n),R("perm",e,t,n))];case"_FusedMatMul":const[s,i]=R("fusedOps",e,t,n),o=s==="biasadd",a=i==="prelu",c=R("numArgs",e,t,n);if(o){if(a&&c!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&c!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}const[h,d]=R("args",e,t,n);return[ep({a:R("a",e,t,n),b:R("b",e,t,n),transposeA:R("transposeA",e,t,n),transposeB:R("transposeB",e,t,n),bias:h,activation:i,preluActivationWeights:d})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eee="matrices";const pY=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[bo(R("x",e,t,n),R("mean",e,t,n),R("variance",e,t,n),R("offset",e,t,n),R("scale",e,t,n),R("epsilon",e,t,n))];case"FusedBatchNormV3":return[bo(R("x",e,t,n),R("mean",e,t,n),R("variance",e,t,n),R("offset",e,t,n),R("scale",e,t,n),R("epsilon",e,t,n))];case"LRN":return[rb(R("x",e,t,n),R("radius",e,t,n),R("bias",e,t,n),R("alpha",e,t,n),R("beta",e,t,n))];case"Softmax":return[No(R("x",e,t,n))];case"LogSoftmax":return[_d(R("x",e,t,n))];case"SparseToDense":return[xb(R("sparseIndices",e,t,n),R("outputShape",e,t,n),R("sparseValues",e,t,n),R("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tee="normalization";const mY=(e,t,n)=>{switch(e.op){case"Max":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[qn(R("x",e,t,n),s,i)]}case"Mean":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[zt(R("x",e,t,n),s,i)]}case"Min":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[ka(R("x",e,t,n),s,i)]}case"Sum":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[Ue(R("x",e,t,n),s,i)]}case"All":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[xd(R("x",e,t,n),s,i)]}case"Any":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[Pl(R("x",e,t,n),s,i)]}case"ArgMax":{const s=R("axis",e,t,n);return[zl(R("x",e,t,n),s)]}case"ArgMin":{const s=R("axis",e,t,n);return[My(R("x",e,t,n),s)]}case"Prod":{const s=R("axis",e,t,n),i=R("keepDims",e,t,n);return[Bd(R("x",e,t,n),s,i)]}case"Cumsum":{const s=R("axis",e,t,n),i=R("exclusive",e,t,n),o=R("reverse",e,t,n);return[Od(R("x",e,t,n),s,i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},nee="reduction";const fY=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{const s=R("n",e,t,n),i=R("axis",e,t,n);let o=R("tensors",e,t,n);return o=o.slice(0,s),[Mt(o,i)]}case"GatherV2":case"Gather":{const s=R("axis",e,t,n),i=R("x",e,t,n),o=R("indices",e,t,n);return[Oa(i,ve(o,"int32"),s)]}case"ReverseV2":case"Reverse":{const s=R("axis",e,t,n),i=R("x",e,t,n);return[Is(i,s)]}case"Slice":{const s=R("begin",e,t,n),i=R("size",e,t,n);return[nt(R("x",e,t,n),s,i)]}case"StridedSlice":{const s=R("begin",e,t,n),i=R("end",e,t,n),o=R("strides",e,t,n),a=R("beginMask",e,t,n),c=R("endMask",e,t,n),h=R("ellipsisMask",e,t,n),d=R("newAxisMask",e,t,n),m=R("shrinkAxisMask",e,t,n),y=R("x",e,t,n);return[bb(y,s,i,o,a,c,h,d,m)]}case"Pack":return ee(()=>{const s=R("axis",e,t,n),i=R("tensors",e,t,n),o=i[0].shape,a=Fr(i[0]).shape,c=i.map(h=>{const d=ot(h.shape,o);if(!d&&!ot(Fr(h).shape,a))throw new Error("the input tensors shape does not match");return d?h:K(h,o)});return[is(c,s)]});case"Unpack":{const s=R("axis",e,t,n),i=R("tensor",e,t,n);return Oi(i,s)}case"Tile":{const s=R("reps",e,t,n);return[Er(R("x",e,t,n),s)]}case"Split":case"SplitV":{const s=R("axis",e,t,n),i=R("numOrSizeSplits",e,t,n),o=R("x",e,t,n);return ss(o,i,s)}case"ScatterNd":{const s=R("indices",e,t,n),i=R("values",e,t,n),o=R("shape",e,t,n);return[dA(s,i,o)]}case"GatherNd":{const s=R("x",e,t,n),i=R("indices",e,t,n);return[pA(s,i)]}case"SparseToDense":{const s=R("sparseIndices",e,t,n),i=R("outputShape",e,t,n),o=R("sparseValues",e,t,n),a=R("defaultValue",e,t,n);return[xb(s,o,i,o.dtype===a.dtype?a:ve(a,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},see="slice_join";const gY=(e,t,n)=>{switch(e.op){case"FFT":return[rh(R("x",e,t,n))];case"IFFT":return[Wa(R("x",e,t,n))];case"RFFT":return[oh(R("x",e,t,n))];case"IRFFT":return[Hd(R("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iee="spectral";const yY=(e,t,n)=>{switch(e.op){case"Cast":return[ve(R("x",e,t,n),R("dtype",e,t,n))];case"ExpandDims":{const s=R("axis",e,t,n);return[Hn(R("x",e,t,n),s)]}case"Squeeze":{const s=R("axis",e,t,n);return[Fr(R("x",e,t,n),s)]}case"Reshape":return[K(R("x",e,t,n),R("shape",e,t,n))];case"PadV2":case"Pad":return[Ci(R("x",e,t,n),R("padding",e,t,n),R("constantValue",e,t,n))];case"SpaceToBatchND":{const s=R("blockShape",e,t,n),i=R("paddings",e,t,n);return[th(R("x",e,t,n),s,i)]}case"BatchToSpaceND":{const s=R("blockShape",e,t,n),i=R("crops",e,t,n);return[ql(R("x",e,t,n),s,i)]}case"DepthToSpace":{const s=R("blockSize",e,t,n),i=R("dataFormat",e,t,n).toUpperCase();return[Qy(R("x",e,t,n),s,i)]}case"BroadcastTo":return[jl(R("x",e,t,n),R("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ree="transformation";function vN(e,t,n){const s=((i,o,a)=>{switch(i.category){case"arithmetic":return ee(()=>XV(i,o,a));case"basic_math":return ee(()=>JV(i,o,a));case"control":return iY(i,o,a);case"convolution":return ee(()=>rY(i,o,a));case"creation":return ee(()=>oY(i,o,a));case"dynamic":return aY(i,o,a);case"evaluation":return ee(()=>cY(i,o,a));case"image":return ee(()=>hY(i,o,a));case"graph":return ee(()=>lY(i,o,a));case"logical":return ee(()=>uY(i,o,a));case"matrices":return ee(()=>dY(i,o,a));case"normalization":return ee(()=>pY(i,o,a));case"reduction":return ee(()=>mY(i,o,a));case"slice_join":return ee(()=>fY(i,o,a));case"spectral":return ee(()=>gY(i,o,a));case"transformation":return ee(()=>yY(i,o,a));case"custom":const c=LN(i.op);if(c&&c.customExecutor)return c.customExecutor(new KV(i,o,a));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return s instanceof Promise?s.then(i=>[].concat(i)):[].concat(s)}class NN{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){const e=[];for(let t=0;t<this.contexts.length-1;t++){const n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;const e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(const t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(const t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}}function CN(e,t,n,s){const i=new Set,o=[];let a=null,c=null;const h=new Set,d=Object.keys(e).map(b=>os(b)[0]);let m=[];s!=null&&(m=s.map(b=>os(b.name)[0]));const y=[...t];for(;y.length>0;){const b=y.pop();if((RN(b)||SY(b))&&(a==null&&(a=b,c=a.children.map(w=>w.name).filter(w=>i.has(w)))),i.add(b.name),n[b.name]!=null)continue;if(d.indexOf(b.name)!==-1)continue;if(m.indexOf(b.name)!==-1)continue;if(b.inputs.length===0){o.push(b.name);continue}b.inputs.forEach(w=>{if(h.has(w.name))return;h.add(w.name),y.push(w)})}return{inputs:e,outputs:t,usedNodes:i,missingInputs:o,dynamicNode:a,syncInputs:c}}function bY(e,t,n){const{usedNodes:s,inputs:i}=n,o=[],a=Object.keys(i).map(m=>os(m)[0]).map(m=>e.nodes[m]),c=e.initNodes;a.forEach(m=>{s.has(m.name)&&o.push(m)}),e.weights.forEach(m=>{s.has(m.name)&&o.push(m)}),c!=null&&c.forEach(m=>{s.has(m.name)&&o.push(m)});const h=new Set,d=[];for(;o.length>0;){const m=o.pop();h.add(m.name),t[m.name]||d.push(m),m.children.forEach(y=>{!h.has(y.name)&&s.has(y.name)&&y.inputs.every(b=>h.has(b.name))&&o.push(y)})}return d}const wY=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],LY=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"];function RN(e){return wY.indexOf(e.op)>=0}function SY(e){return LY.indexOf(e.op)>=0}class _L{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new _L(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){const t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{const t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){const n=e.map(i=>i.name).sort(),s=t.map(i=>i.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){const n=CN(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:i,syncInputs:o}=n;if(i!=null)throw new Error(`This execution contains the node '${i.name}', which has the dynamic op '${i.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${o}]`);if(s.length>0){const a=t.map(h=>h.name),c=Object.keys(e);throw new Error(`Cannot compute the outputs [${a}] from the provided inputs [${c}]. Missing the following inputs: [${s}]`)}return bY(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);const n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);const s=n.map(m=>this.graph.nodes[os(m)[0]]),i=t.map(m=>os(m)[0]);let o=i.map(m=>this.graph.nodes[m]);o.length===0&&(o=this._outputs);const a=this.getCompilationKey(s,o);let c=this.compiledMap.get(a);c==null&&(c=this.compile(e,o),this.compiledMap.set(a,c));const h={},d={};return ee(()=>{const m=new NN(this.weightMap,h,d,this.functionExecutorMap),y=Object.assign({},this.weightMap);Object.keys(e).forEach(L=>{const[T,A]=os(L),N=[];N[A]=e[L],y[T]=N});const b=this.getFrozenTensorIds(y),w={};for(let L=0;L<c.length;L++){const T=c[L];if(!y[T.name]){const A=vN(T,y,m);if(A instanceof Promise)throw new Error(`The execution of the op '${T.op}' returned a promise. Please use model.executeAsync() instead.`);y[T.name]=A,this.checkTensorForDisposal(T.name,T,y,m,b,i,w)}}return this.parent==null&&m.dispose(b),t.map(L=>Xn(L,y,m))})}getFrozenTensorIds(e){const t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,i,o,a){if(t.category==="control"||o.indexOf(e)!==-1)return;n[e].forEach(c=>{c!=null&&(a[c.id]=(a[c.id]||0)+t.children.length)}),t.inputs.forEach(c=>{if(c.category!=="control"){const h=fV(c.name,n,s);h!=null&&h.forEach(d=>{if(d&&!i.has(d.id)){const m=a[d.id];m===1?(d.dispose(),delete a[d.id]):m!=null&&a[d.id]--}})}})}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},i={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));const o=new NN(this.weightMap,s,i,this.functionExecutorMap),a=await this.executeWithControlFlow(e,o,t,n),c=t.map(y=>Xn(y,a,o)),h=c.map(y=>y.id),d=Object.keys(e).map(y=>e[y].id),m=new Set([...h,...d,...this.weightIds]);return Object.keys(a).forEach(y=>{const b=a[y];b.forEach(w=>{w&&!w.isDisposed&&!m.has(w.id)&&w.dispose()})}),this.parent==null&&o.dispose(m),c}async executeFunctionAsync(e,t,n){const s=e.reduce((i,o,a)=>(i[this.inputs[a].name]=o,i),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){const i=Object.keys(e),o=i.map(E=>this.graph.nodes[os(E)[0]]),a=n.map(E=>os(E)[0]),c=a.map(E=>this.graph.nodes[E]),{usedNodes:h,missingInputs:d,dynamicNode:m,syncInputs:y}=CN(e,c,this.weightMap),b=[...o,...this.graph.weights].map(E=>({node:E,contexts:t.currentContext})),w=Object.assign({},this.weightMap);Object.keys(e).forEach(E=>{const[D,F]=os(E),_=[];_[F]=e[E],w[D]=_});const L={},T=this.getFrozenTensorIds(w),A={};for(;b.length>0;){const E=this.processStack(o,b,t,w,A,T,a,L,h);await Promise.all(E)}m==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");const N=c.filter(E=>!RN(E)&&!Xn(E.name,w,t)).map(E=>E.name);if(N.length>0){let E="";throw m!=null&&(E=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${y}]`),new Error(`Cannot compute the outputs [${N}] from the provided inputs [${i}]. Consider providing the following inputs: [${d}]. ${E}`)}return w}processStack(e,t,n,s,i,o,a,c,h){const d=[];for(;t.length>0;){const m=t.pop();n.currentContext=m.contexts;let y="";if(m.node.op==="Enter"&&R("isConstant",m.node,s,n)&&([y]=sr(m.node.name,n)),e.indexOf(m.node)===-1){const b=vN(m.node,s,n);y||([y]=sr(m.node.name,n));const w=n.currentContext;b instanceof Promise?d.push(b.then(L=>(s[y]=L,n.currentContext=w,this.checkTensorForDisposal(y,m.node,s,n,o,a,c),this.processChildNodes(m.node,t,n,s,i,h),L))):(s[y]=b,this.checkTensorForDisposal(y,m.node,s,n,o,a,c),this.processChildNodes(m.node,t,n,s,i,h))}else this.processChildNodes(m.node,t,n,s,i,h)}return d}processChildNodes(e,t,n,s,i,o){e.children.forEach(a=>{const[c]=sr(a.name,n);if(i[c]||!o.has(a.name))return;a.op==="Merge"?a.inputNames.some(h=>!!Xn(h,s,n))&&(i[c]=!0,t.push({contexts:n.currentContext,node:a})):a.inputNames.every(h=>!!Xn(h,s,n))&&(i[c]=!0,t.push({contexts:n.currentContext,node:a}))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{const n=e[t],[s]=os(t),i=this.graph.nodes[s];if(i.attrParams.shape&&i.attrParams.shape.value){const o=i.attrParams.shape.value,a=o.length===n.shape.length&&n.shape.every((c,h)=>o[h]===-1||o[h]===c);k(a,()=>`The shape of dict['${i.name}'] provided in model.execute(dict) must be [${o}], but was [${n.shape}]`)}i.attrParams.dtype&&i.attrParams.dtype.value&&k(n.dtype===i.attrParams.dtype.value,()=>`The dtype of dict['${i.name}'] provided in model.execute(dict) must be ${i.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){const t={};for(const n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){const s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){const t=Object.keys(e).filter(n=>{const[s]=os(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{if(this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null){const n=this._signature.outputs[t];return n.name}return t},{})}checkOutputs(e){e.forEach(t=>{const[n]=os(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}}const IY="?tfjs-format=file",xY="model.json";class ON{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={})}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}findIOHandler(){const e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=fd(e,this.loadOptions);else{const t=Ly(e,this.loadOptions);if(t.length===0)t.push(fd(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");const e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;const t=this.artifacts.modelTopology;let n={};this.artifacts.userDefinedMetadata!=null&&(n=this.artifacts.userDefinedMetadata.signature),this.version=`${t.versions.producer}.${t.versions.minConsumer}`;const s=ud(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new _L(SN.Instance.transformGraph(t,n)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),e.modelInitializer!=null){const i=SN.Instance.transformGraph(e.modelInitializer);this.initializer=new _L(i),this.initializer.weightMap=this.executor.weightMap,this.initializer.execute({},[])}return!0}async save(e,t){if(typeof e=="string"){const n=wy(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Q)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);const n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);const n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose()}}async function TY(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&(e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${xY}${IY}`));const n=new ON(e,t);return await n.load(),n}const EN="2.6.0";function AY(e,t){return Yp(e,t)}function Yp(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);const i=t(e);if(i.recurse&&i.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(i.recurse)if(Ja(e)){const o=Array.isArray(e)?[]:{};s.add(e);for(const a in e){const c=e[a],h=Yp(c,t,n,s);o[a]=h}return s.delete(e),o}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,i.value),i.value}function vY(e,t=kN){return DN(e,t)}function DN(e,t,n=new Set){const s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");const i=t(e);if(i.recurse&&i.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(i.recurse)if(Ja(s)){const o=Array.isArray(s)?[]:{};n.add(s);for(const a in s){const c=e.map(d=>d[a]),h=DN(c,t,n);o[a]=h}return n.delete(s),o}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return i.value}function kN(e){return e===null?null:Ja(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function FN(e,t){const n=new Map;Yp(e,t,n);for(const i of Array.from(n.keys())){const o=n.get(i);if(o instanceof Promise){const a=await o;n.set(i,a)}}const s=Yp(e,t,n);return s}function Ja(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Q))}function NY(e){return e==null||CY(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Q||wn(e)}function CY(e){return e===null||typeof e!="object"&&typeof e!="function"}function RY(e){return AY(e,OY)}function OY(e){return e instanceof Q?{value:e.clone(),recurse:!1}:Ja(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}class _N{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(const t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);const e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");const e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");const t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}}class WL extends _N{constructor(){super(WL.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){const e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}}WL.INITIAL_CAPACITY=32;function WN(e){return new DY(e)}function oee(e){let t=e;return zh(()=>({value:t++,done:!1}))}function zh(e){return new kY(e)}function $N(e,t){return new BN(e,t)}function aee(e,t,n){return $N(zh(e).take(t),n)}function EY(e,t=Yr.FAIL){return new zY(e,t)}class fn{async toArray(){const e=[];let t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){const e=this.prefetch(100),t=[];let n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new MY(this,e)}filter(e){return new UY(this,e)}map(e){return new BY(this,e)}mapAsync(e){return new UN(this,e)}serialMapAsync(e){return new UN(this,e).serial()}flatmap(e){return new PY(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new $Y(this,e,t)}columnMajorBatch(e,t=!0,n=kN){const s=this.rowMajorBatch(e,t);return s.map(i=>vY(i,n))}concatenate(e,t){return new BN(WN([this,e]),t)}take(e){return e<0||e==null?this:new WY(this,e)}skip(e){return e<0||e==null?this:new _Y(this,e)}prefetch(e){return new MN(this,e)}shuffle(e,t){return new GY(this,e,t)}serial(){return new FY(this)}}class DY extends fn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};const e=this.items[this.trav];return this.trav++,{value:RY(e),done:!1}}}class kY extends fn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}}class FY extends fn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}}class _Y extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){const e=await this.upstream.next();if(e.done)return e;He(e.value)}return this.upstream.next()}}class WY extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}}class $Y extends fn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){const e=[];for(;e.length<this.batchSize;){const t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}}class UY extends fn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){const e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;He(e.value)}}}class BY extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){const e=await this.upstream.next();if(e.done)return{value:null,done:!0};const t=Hi(e.value),n=this.transform(e.value),s=Hi(n);for(const i of t)ld(i,s)||i.dispose();return{value:n,done:!1}}}class MY extends fn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}}class UN extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){const e=await this.upstream.next();if(e.done)return{value:null,done:!0};const t=Hi(e.value),n=await this.transform(e.value),s=Hi(n);for(const i of t)ld(i,s)||i.dispose();return{value:n,done:!1}}}class $L extends fn{constructor(){super();this.outputQueue=new WL,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}}class PY extends $L{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){const e=await this.upstream.next();if(e.done)return!1;const t=Hi(e.value),n=this.transform(e.value),s=Hi(n);this.outputQueue.pushAll(n);for(const i of t)ld(i,s)||i.dispose();return!0}}class BN extends fn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){const e="TODO: fill in upstream of chained summaries";return`${e} -> Chained`}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){const n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}const t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}}var Yr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Yr||(Yr={}));class zY extends fn{constructor(e,t=Yr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){const e="TODO: fill in upstream of zip summaries";return`{${e}} -> Zip`}async nextState(e){await e;let t=0,n=0;function s(o){if(o instanceof fn){const a=o.next();return{value:a.then(c=>(t++,c.done&&n++,c.value)),recurse:!1}}else return{value:null,recurse:!0}}const i=await FN(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Yr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Yr.SHORTEST:return{value:null,done:!0};case Yr.LONGEST:default:}return this.count++,{value:i,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}}class MN extends fn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new _N(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){const e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}}class GY extends MN{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=_a(n||Vn().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){const e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}}class Za{constructor(){this.size=null}batch(e,t=!0){const n=this;k(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===Infinity||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),as(async()=>(await n.iterator()).columnMajorBatch(e,t,HY),s)}concatenate(e){const t=this;let n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,as(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){const t=this;let n;return this.size===Infinity?n=Infinity:n=null,as(async()=>(await t.iterator()).filter(s=>ee(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){const t=this;return as(async()=>(await t.iterator()).map(n=>ee(()=>e(n))),this.size)}mapAsync(e){const t=this;return as(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");const t=this;return as(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){const t=this;let n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,as(async()=>{const s=zh(async()=>({value:await t.iterator(),done:!1}));return $N(s.take(e))},n)}skip(e){const t=this;let n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,as(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);const s=this,i=_a(t||Vn().toString());return as(async()=>{let o=i.int32();return n&&(o+=i.int32()),(await s.iterator()).shuffle(e,o.toString())},this.size)}take(e){const t=this;let n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,as(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}}Za.MAX_BUFFER_SIZE=1e4;function as(e,t=null){return new class extends Za{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function VY(e){return as(async()=>WN(e),e.length)}function YY(e){if(!Ja(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(const n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return as(async()=>{const n=await FN(e,s=>{if(s instanceof Za)return{value:s.iterator(),recurse:!1};if(Ja(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return EY(n,Yr.SHORTEST)},t)}function HY(e){if(e===null)return null;const t=e[0];if(NY(t)){const n=qY(e);return{value:n,recurse:!1}}return{value:null,recurse:!0}}function qY(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Q?is(e):en(e)}class PN extends Za{constructor(e){super();this.input=e}async iterator(){const e=await this.input.iterator(),t=e.decodeUTF8(),n=t.split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s));return n}}const Hp='"',Gh=Symbol("out"),zN=Symbol("field"),qp=Symbol("quote"),UL=Symbol("quoteafterquote"),GN=Symbol("quoteinquote");class VN extends Za{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new PN(e),t||(t={}),this.hasHeader=!(t.hasHeader===!1),this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){const e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);const t=this.fullColumnNames.reduce((s,i)=>(s[i]=s[i]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(k(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs)for(const s of Object.keys(this.columnConfigs)){const i=this.fullColumnNames.indexOf(s);if(i===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){const e=await this.base.iterator(),t=await e.next();if(t.done)throw new Error("No data was found for CSV parsing.");const n=t.value,s=this.parseRow(n,!1);return s}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){const t=this.parseRow(e),n={},s={};for(let i=0;i<this.fullColumnNames.length;i++){const o=this.fullColumnNames[i],a=this.columnConfigs?this.columnConfigs[o]:null;if(this.configuredColumnsOnly&&!a)continue;{const c=t[i];let h=null;if(c==="")if(a&&a.default!==void 0)h=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${o} is empty in this line: ${e}`);h=void 0}else{const d=Number(c);if(isNaN(d))a&&a.dtype==="bool"?h=this.getBoolean(c):h=c;else if(!a||!a.dtype)h=d;else switch(a.dtype){case"float32":h=d;break;case"int32":h=Math.floor(d);break;case"bool":h=this.getBoolean(c);break;default:h=d}}a&&a.isLabel?s[o]=h:n[o]=h}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){const n=[];let s=0;const i=e.length;let o=Gh;for(let a=0;a<i;a++)switch(o){case Gh:switch(e.charAt(a)){case Hp:s=a+1,o=qp;break;case this.delimiter:if(s=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),o=Gh;break;default:o=zN,s=a;break}break;case zN:switch(e.charAt(a)){case this.delimiter:n.push(e.substring(s,a)),o=Gh,s=a+1;break;default:}break;case qp:switch(e.charAt(a)){case Hp:o=UL;break;default:}break;case UL:switch(e.charAt(a)){case this.delimiter:n.push(e.substring(s,a-1)),o=Gh,s=a+1;break;case Hp:o=qp;break;default:o=GN;break}break;case GN:switch(e.charAt(a)){case Hp:o=qp;break;default:}break;default:}if(o===UL?n.push(e.substring(s,i-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}}class YN extends fn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;const t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=!(e.includeSpectrogram===!1),this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(C().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");const t=new YN(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");const e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);const t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize);return}async next(){if(this.isClosed)return{value:null,done:!0};let e,t;const n=await this.getAudioData();if(this.includeSpectrogram){const s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){const s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){const e=[],t=[];let n=0;return new Promise(s=>{const i=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(i),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){const t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,i)=>n.set(s,i*t)),n}getTensorFromAudioDataArray(e,t){const n=new Float32Array(we(t));return n.set(e,n.length-e.length),en(n,t)}}class HN extends fn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=ns([0],"int32"),this.webcamConfig.centerCrop){const n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,i=(1-n)/2,o=(1-s)/2,a=i+n,c=s+o;this.cropBox=_r([o,i,c,a],[1,4])}else this.cropBox=_r([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(C().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}const n=new HN(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=uT(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return ee(()=>{const t=e.toFloat().expandDims(0);let n;n=Wr.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");const s=n.shape;return n.reshape(s.slice(1))})}async capture(){return(await this.next()).value}stop(){const e=this.stream.getTracks();e.forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}}class qN{}class jN extends fn{split(e){return new jY(this,e)}}class jY extends jN{constructor(e,t){super();this.upstream=e,this.impl=new KY(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class KY extends $L{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){const e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);const t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(const n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}}class XY extends fn{decodeUTF8(){return new JY(this)}}class JY extends jN{constructor(e){super();this.upstream=e,this.impl=new ZY(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class ZY extends $L{constructor(e){super();if(this.upstream=e,C().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{const{StringDecoder:t}=require("string_decoder");this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){const e=await this.upstream.next();let t;if(e.done)return!1;t=e.value;let n;return C().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}}class KN extends XY{constructor(e,t={}){super();this.file=e,this.options=t,k(e instanceof Uint8Array||(C().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){if(this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size))return{value:null,done:!0};const e=new Promise((t,n)=>{const s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{const i=new FileReader;i.onload=a=>{let c=i.result;if(c instanceof ArrayBuffer&&(c=new Uint8Array(c)),!(c instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(c)},i.onabort=a=>n(new Error("Aborted")),i.onerror=a=>n(new Error(a.type));const o=this.file.slice(this.offset,s);i.readAsArrayBuffer(o)}this.offset=s});return{value:await e,done:!1}}}async function QY(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=eH(e));const i=await $x(n,s);if(i.ok){const o=new Uint8Array(await i.arrayBuffer());return new KN(o,t)}else throw new Error(i.statusText)}const eH=e=>{const t={method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity};return t};function XN(e){return typeof e=="string"&&e.substr(0,7)==="file://"}class JN extends qN{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(XN(this.input)&&C().get("IS_NODE")){const e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new KN(this.input,this.options)}}class ZN extends qN{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return XN(this.url)?new JN(this.url,this.fileOptions).iterator():QY(this.url,this.fileOptions)}}function tH(e,t={}){return new VN(new ZN(e),t)}function nH(e){const t=zh(e);return as(async()=>t)}function sH(e){return as(async()=>{const t=await e();return zh(()=>t.next())})}async function iH(e,t){return HN.create(e,t)}async function rH(e){return YN.create(e)}const QN="2.6.0";var oH=Object.freeze({__proto__:null,array:VY,Dataset:Za,zip:YY,CSVDataset:VN,TextLineDataset:PN,csv:tH,func:nH,generator:sH,microphone:rH,webcam:iH,FileDataSource:JN,URLDataSource:ZN,version_data:QN});function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}const aH=tp,cH=Mb,lH=Pb,hH=zb,uH=jd;function BL(e,t,n,s){if(n==="linear")return e.linear(t);if(n==="relu")return e.relu(t);if(n==="elu")return So(t);if(n==="relu6")return e.relu6(t);if(n==="prelu")return e.prelu(t,s);throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}class dH extends g{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new p(this,Fs())}write(e,t,n){this.firstUse&&(this.firstUse=!1,C().get("IS_NODE")&&Pa(`
============================
Hi there 👋. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));const s={};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){const s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}incRef(e){const t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){const t=this.data.get(e);t.refCount--}}move(e,t,n,s){this.data.set(e,{values:t,dtype:s,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){const{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){const s=this.readSync(n.real.dataId),i=this.readSync(n.imag.dataId);return Zi(s,i)}return this.data.get(e).values}bufferSync(e){const t=this.readSync(e.dataId);let n=t;if(e.dtype==="string")try{n=t.map(s=>Dl(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ze(e.shape,e.dtype,n)}makeOutput(e,t,n){const s=this.write(e,t,n);return Fs().makeTensorFromDataId(s,t,n,this)}disposeData(e){if(this.data.has(e)){const{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){const t=e.dataId;if(this.data.has(t)){const n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){const t=Vn();e();const n=Vn()-t;return{kernelMs:n}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(e,t,n,s){xe(e,"stridedSlice");const i=bd(t,n,s);if(i.some(c=>c===0))return en([],i);const o=Ze(i,e.dtype),a=this.bufferSync(e);for(let c=0;c<o.size;c++){const h=o.indexToLoc(c),d=new Array(h.length);for(let m=0;m<d.length;m++)d[m]=h[m]*s[m]+t[m];o.set(a.get(...d),...h)}return o.toTensor()}diag(e){const t=this.readSync(e.dataId),n=Ze([e.size,e.size],e.dtype),s=n.values;for(let i=0;i<t.length;i++)s[i*e.size+i]=t[i];return n.toTensor()}unstack(e,t){const n=e.shape[t],s=new Array(e.rank-1);let i=0;for(let h=0;h<e.rank;h++)h!==t&&(s[i++]=e.shape[h]);const o=new Array(e.rank).fill(0),a=e.shape.slice();a[t]=1;const c=new Array(n);for(let h=0;h<c.length;h++)o[t]=h,c[h]=nt(e,o,a).reshape(s);return c}reverse(e,t){xe(e,"reverse");const n=Ze(e.shape,e.dtype),s=this.bufferSync(e);for(let i=0;i<n.size;i++){const o=n.indexToLoc(i),a=o.slice();t.forEach(c=>a[c]=e.shape[c]-1-a[c]),n.set(s.get(...a),...o)}return n.toTensor()}neg(e){return xe(e,"neg"),X(Ne(-1),e)}addN(e){xe(e,"addN");const t=e.map(i=>this.readSync(i.dataId)),n=Ze(e[0].shape,e[0].dtype),s=n.values;for(let i=0;i<e.length;i++){const o=t[i];for(let a=0;a<s.length;a++)s[a]+=o[a]}return n.toTensor()}softmax(e,t){const n=ft([t],e.shape),s=qn(e,n),i=Rn(s.shape,n),o=Ce(e,s.reshape(i)),a=Ls(o),c=this.sum(a,n).reshape(i);return _e(a,c)}pow(e,t){return xe([e,t],"pow"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.pow(n,s))}batchMatMul(e,t,n,s){xe([e,t],"matMul");const i=n?e.shape[1]:e.shape[2],o=n?e.shape[2]:e.shape[1],a=s?t.shape[1]:t.shape[2],c=e.shape[0],h=this.readSync(e.dataId),d=this.readSync(t.dataId),[m,y,b]=n?[e.strides[0],1,e.strides[1]]:[e.strides[0],e.strides[1],1],[w,L,T]=s?[1,t.strides[1],t.strides[0]]:[t.strides[1],1,t.strides[0]],A=o*a,N=Ze([c,o,a],e.dtype),E=N.values,D=this.blockSize;for(let F=0;F<c;F++)for(let _=0;_<o;_+=D)for(let B=0;B<a;B+=D)for(let $=0;$<i;$+=D){const H=Math.min(_+D,o),q=Math.min(B+D,a),J=Math.min($+D,i);for(let re=_;re<H;re++)for(let ce=B;ce<q;ce++){let ue=0;for(let he=$;he<J;he++)ue+=h[F*m+re*y+he*b]*d[he*w+ce*L+F*T];E[F*A+(re*a+ce)]+=ue}}return N.toTensor()}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:s,bias:i,activation:o,preluActivationWeights:a}){let c=this.batchMatMul(e,t,n,s);return i&&(c=be(c,i)),o&&(c=BL(this,c,o,a)),c}floorDiv(e,t){xe([e,t],"floorDiv");const n=(i,o)=>Math.floor(i/o),s="int32";return this.broadcastedBinaryOp(e,t,s,n)}sum(e,t){xe(e,"sum"),es("sum",t,e.rank);const[n,s]=Cn(e.shape,t),i=vn(e.dtype,"int32"),o=ct(n,i),a=we(s),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let y=0;for(let b=0;b<a;++b)y+=h[m+b];c[d]=y}return o}prod(e,t){xe(e,"sum");const[n,s]=Cn(e.shape,t),i=vn(e.dtype,"int32"),o=ct(n,i),a=we(s),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let y=1;for(let b=0;b<a;++b)y*=h[m+b];c[d]=y}return o}unsortedSegmentSum(e,t,n){xe(e,"unsortedSegmentSum");const s=[],i=e.rank-t.rank;for(let o=0;o<i;++o)t=t.expandDims(o+1);for(let o=0;o<n;++o){const a=Ne(o,"int32"),c=Zs(a,t).asType("float32"),h=c.mul(e).sum(0);s.push(h)}return is(s)}argMin(e,t){xe(e,"argMin");const n=[t];es("argMin",n,e.rank);const[s,i]=Cn(e.shape,n),o=ct(s,"int32"),a=we(i),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let y=h[m],b=0;for(let w=0;w<a;++w){const L=h[m+w];L<y&&(y=L,b=w)}c[d]=b}return o}argMax(e,t){xe(e,"argMax");const n=[t];es("argMax",n,e.rank);const[s,i]=Cn(e.shape,n),o=ct(s,"int32"),a=we(i),c=this.readSync(o.dataId),h=this.readSync(e.dataId);for(let d=0;d<c.length;++d){const m=d*a;let y=h[m],b=0;for(let w=0;w<a;++w){const L=h[m+w];L>y&&(y=L,b=w)}c[d]=b}return o}cumsum(e,t,n,s){if(xe(e,"cumsum"),t!==e.rank-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${e.rank-1} but got axis=${t}`);const i=vn(e.dtype,"int32"),o=ct(e.shape,i),a=this.readSync(o.dataId),c=this.readSync(e.dataId),h=e.shape[e.rank-1],d=s?(m,y)=>m+h-y-1:(m,y)=>m+y;for(let m=0;m<c.length;m+=h)for(let y=0;y<h;y++){const b=d(m,y);if(y===0)a[b]=n?0:c[b];else{const w=d(m,y-1);a[b]=n?c[w]+a[w]:c[b]+a[w]}}return o}equal(e,t){return xe([e,t],"equal"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n===s?1:0)}notEqual(e,t){return xe([e,t],"notEqual"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n!==s?1:0)}less(e,t){return xe([e,t],"less"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n<s?1:0)}lessEqual(e,t){return xe([e,t],"lessEqual"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n<=s?1:0)}greater(e,t){return xe([e,t],"greater"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n>s?1:0)}greaterEqual(e,t){return xe([e,t],"greaterEqual"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n>=s?1:0)}logicalAnd(e,t){return xe([e,t],"logicalAnd"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n&&s)}logicalOr(e,t){return xe([e,t],"logicalOr"),this.broadcastedBinaryOp(e,t,"bool",(n,s)=>n||s)}select(e,t,n){xe([e,t,n],"select");const s=this.readSync(e.dataId),i=this.readSync(t.dataId),o=this.readSync(n.dataId),a=ct(t.shape,vn(t.dtype,n.dtype)),c=this.readSync(a.dataId);let h=0;const d=e.rank===0||e.rank>1||t.rank===1?1:we(t.shape.slice(1));for(let m=0;m<s.length;m++)for(let y=0;y<d;y++)s[m]===1?c[h++]=i[m]:c[h++]=o[m];return a}where(e){xe([e],"where");const t=this.readSync(e.dataId);return uH(e.shape,t)}topk(e,t,n){xe(e,"topk");const s=this.readSync(e.dataId);return hH(s,e.shape,e.dtype,t,n)}min(e,t){xe(e,"min"),es("min",t,e.rank);const[n,s]=Cn(e.shape,t),i=ct(n,e.dtype),o=we(s),a=this.readSync(i.dataId),c=this.readSync(e.dataId);for(let h=0;h<a.length;++h){const d=h*o;let m=c[d];for(let y=0;y<o;++y){const b=c[d+y];b<m&&(m=b)}a[h]=m}return i}minimum(e,t){return xe([e,t],"minimum"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.min(n,s))}mod(e,t){return xe([e,t],"mod"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>{const i=n%s;return n<0&&s<0||n>=0&&s>=0?i:(i+s)%s})}maximum(e,t){return xe([e,t],"maximum"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.max(n,s))}all(e,t){xe(e,"all"),es("all",t,e.rank);const[n,s]=Cn(e.shape,t),i=ct(n,e.dtype),o=we(s),a=this.readSync(i.dataId),c=this.readSync(e.dataId);for(let h=0;h<a.length;++h){const d=h*o;let m=c[d];for(let y=0;y<o;++y){const b=c[d+y];m=m&&b}a[h]=m}return i}any(e,t){xe(e,"any"),es("any",t,e.rank);const[n,s]=Cn(e.shape,t),i=ct(n,e.dtype),o=we(s),a=this.readSync(i.dataId),c=this.readSync(e.dataId);for(let h=0;h<a.length;++h){const d=h*o;let m=c[d];for(let y=0;y<o;++y){const b=c[d+y];m=m||b}a[h]=m}return i}squaredDifference(e,t){return xe([e,t],"squaredDifference"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>{const i=n-s;return i*i})}linear(e){return e}relu(e){xe(e,"relu");const t=ct(e.shape,e.dtype),n=this.readSync(t.dataId),s=this.readSync(e.dataId);for(let i=0;i<s.length;++i)n[i]=Math.max(0,s[i]);return t}relu6(e){xe(e,"relu");const t=ct(e.shape,e.dtype),n=this.readSync(t.dataId),s=this.readSync(e.dataId);for(let i=0;i<s.length;++i)n[i]=Math.min(Math.max(0,s[i]),6);return t}prelu(e,t){return xe([e,t],"prelu"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>n<0?s*n:n)}eluDer(e,t){xe([e,t],"eluDer");const n=new Float32Array(t.size),s=this.readSync(t.dataId),i=this.readSync(e.dataId);for(let o=0;o<s.length;++o){const a=s[o];a>=1?n[o]=i[o]:n[o]=i[o]*(a+1)}return this.makeOutput(n,t.shape,"float32")}atan2(e,t){return xe([e,t],"atan2"),this.broadcastedBinaryOp(e,t,e.dtype,(n,s)=>Math.atan2(n,s))}fusedConv2d({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){let a=this.conv2d(e,t,n);return s&&(a=be(a,s)),i&&(a=BL(this,a,i,o)),a}conv2d(e,t,n){xe([e,t],"conv2d");const s=n.filterHeight,i=n.filterWidth,o=n.dilationHeight,a=n.dilationWidth,c=n.padInfo.left,h=n.padInfo.top,d=n.dataFormat==="channelsLast",m=Ze(n.outShape,e.dtype),y=e.strides[0],b=d?e.strides[1]:e.strides[2],w=d?e.strides[2]:1,L=d?1:e.strides[1],T=m.strides[0],A=d?m.strides[1]:m.strides[2],N=d?m.strides[2]:1,E=d?1:m.strides[1],D=this.readSync(e.dataId),F=this.readSync(t.dataId),_=m.values;for(let B=0;B<n.batchSize;++B){const $=B*y,H=B*T;for(let q=0;q<n.outHeight;++q){const J=H+q*A,re=q*n.strideHeight-h;for(let ce=0;ce<s;ce++){const ue=re+ce*o;if(ue<0||ue>=n.inHeight)continue;const he=ce*t.strides[0],de=$+ue*b;for(let le=0;le<n.outWidth;++le){const ye=J+le*N,pe=le*n.strideWidth-c;for(let Ie=0;Ie<i;Ie++){const Se=pe+Ie*a;if(Se<0||Se>=n.inWidth)continue;const Ee=he+Ie*t.strides[1],We=de+Se*w;let Oe=Ee;for(let $e=0;$e<n.inChannels;++$e){const Ye=D[We+$e*L];for(let et=0;et<n.outChannels;++et)_[ye+et*E]+=Ye*F[Oe+et];Oe+=n.outChannels}}}}}}return m.toTensor()}conv3d(e,t,n){const s=n.filterDepth,i=n.filterHeight,o=n.filterWidth,a=n.dilationDepth,c=n.dilationHeight,h=n.dilationWidth,d=n.padInfo.front,m=n.padInfo.left,y=n.padInfo.top,b=Ze(n.outShape,e.dtype),w=this.readSync(e.dataId),L=this.readSync(t.dataId),T=b.values;for(let A=0;A<n.batchSize;++A){const N=A*e.strides[0],E=A*b.strides[0];for(let D=0;D<n.outDepth;++D){const F=E+D*b.strides[1],_=D*n.strideDepth-d;for(let B=0;B<s;B++){const $=_+B*a;if($<0||$>=n.inDepth)continue;const H=B*t.strides[0],q=N+$*e.strides[1];for(let J=0;J<n.outHeight;++J){const re=F+J*b.strides[2],ce=J*n.strideHeight-y;for(let ue=0;ue<i;ue++){const he=ce+ue*c;if(he<0||he>=n.inHeight)continue;const de=H+ue*t.strides[1],le=q+he*e.strides[2];for(let ye=0;ye<n.outWidth;++ye){const pe=re+ye*n.outChannels,Ie=ye*n.strideWidth-m;for(let Se=0;Se<o;Se++){const Ee=Ie+Se*h;if(Ee<0||Ee>=n.inWidth)continue;const We=de+Se*t.strides[2],Oe=le+Ee*n.inChannels;let $e=We;for(let Ye=0;Ye<n.inChannels;++Ye){const et=w[Oe+Ye];for(let bt=0;bt<n.outChannels;++bt)T[pe+bt]+=et*L[$e+bt];$e+=n.outChannels}}}}}}}}return b.toTensor()}conv2dDerInput(e,t,n){xe([e,t],"conv2dDerInput");const s=Ze(n.inShape,"float32"),i=s.values,o=this.readSync(e.dataId),a=this.readSync(t.dataId),[c,h,d]=t.strides,{batchSize:m,filterHeight:y,filterWidth:b,inChannels:w,inHeight:L,inWidth:T,outChannels:A,outHeight:N,outWidth:E,strideHeight:D,strideWidth:F,dataFormat:_}=n,B=y-1-n.padInfo.top,$=b-1-n.padInfo.left,H=_==="channelsLast",q=s.strides[0],J=H?s.strides[1]:s.strides[2],re=H?s.strides[2]:1,ce=H?1:s.strides[1],ue=e.strides[0],he=H?e.strides[1]:e.strides[2],de=H?e.strides[2]:1,le=H?1:e.strides[1];for(let ye=0;ye<m;++ye)for(let pe=0;pe<w;++pe)for(let Ie=0;Ie<L;++Ie){const Se=Ie-B,Ee=Math.max(0,Math.ceil(Se/D)),We=Math.min(N,(y+Se)/D);for(let Oe=0;Oe<T;++Oe){const $e=Oe-$,Ye=Math.max(0,Math.ceil($e/F)),et=Math.min(E,(b+$e)/F);let bt=0;for(let un=Ee;un<We;++un){const ls=un*D-Se;for(let Yt=Ye;Yt<et;++Yt){const $n=Yt*F-$e,hi=ue*ye+he*un+de*Yt,vs=c*(y-1-ls)+h*(b-1-$n)+d*pe;for(let hs=0;hs<A;++hs){const zs=o[hi+le*hs],eu=a[vs+hs];bt+=zs*eu}}}const Jt=q*ye+J*Ie+re*Oe+ce*pe;i[Jt]=bt}}return s.toTensor()}conv3dDerInput(e,t,n){const s=Ze(n.inShape,"float32"),i=s.values,[o,a,c,h]=s.strides,d=this.readSync(e.dataId),[m,y,b,w]=e.strides,L=this.readSync(t.dataId),[T,A,N,E]=t.strides,{batchSize:D,filterDepth:F,filterHeight:_,filterWidth:B,inChannels:$,inDepth:H,inHeight:q,inWidth:J,outChannels:re,outDepth:ce,outHeight:ue,outWidth:he,strideDepth:de,strideHeight:le,strideWidth:ye}=n,pe=F-1-n.padInfo.front,Ie=_-1-n.padInfo.top,Se=B-1-n.padInfo.left;for(let Ee=0;Ee<D;++Ee)for(let We=0;We<$;++We)for(let Oe=0;Oe<H;++Oe){const $e=Oe-pe,Ye=Math.max(0,Math.ceil($e/de)),et=Math.min(ce,(F+$e)/de);for(let bt=0;bt<q;++bt){const Jt=bt-Ie,un=Math.max(0,Math.ceil(Jt/le)),ls=Math.min(ue,(_+Jt)/le);for(let Yt=0;Yt<J;++Yt){const $n=Yt-Se,hi=Math.max(0,Math.ceil($n/ye)),vs=Math.min(he,(B+$n)/ye);let hs=0;for(let zs=Ye;zs<et;++zs){const eu=zs*de-$e;for(let uc=un;uc<ls;++uc){const dc=uc*le-Jt;for(let pc=hi;pc<vs;++pc){const aS=pc*ye-$n,cS=m*Ee+y*zs+b*uc+w*pc,EX=T*(F-1-eu)+A*(_-1-dc)+N*(B-1-aS)+E*We;for(let cm=0;cm<re;++cm){const DX=d[cS+cm],kX=L[EX+cm];hs+=DX*kX}}}}i[o*Ee+a*Oe+c*bt+h*Yt+We]=hs}}}return s.toTensor()}conv2dDerFilter(e,t,n){xe([e,t],"conv2dDerFilter");const s=n.strideHeight,i=n.strideWidth,o=n.filterHeight,a=n.filterWidth,c=n.dataFormat==="channelsLast",h=Ze(n.filterShape,"float32"),d=n.padInfo.left,m=n.padInfo.top,y=this.bufferSync(e),b=this.bufferSync(t);for(let w=0;w<o;++w){const L=Math.max(0,Math.ceil((m-w)/s)),T=Math.min(n.outHeight,(n.inHeight+m-w)/s);for(let A=0;A<a;++A){const N=Math.max(0,Math.ceil((d-A)/i)),E=Math.min(n.outWidth,(n.inWidth+d-A)/i);for(let D=0;D<n.inChannels;++D)for(let F=0;F<n.outChannels;++F){let _=0;for(let B=0;B<n.batchSize;++B)for(let $=L;$<T;++$){const H=w+$*s-m;for(let q=N;q<E;++q){const J=A+q*i-d;c?_+=y.get(B,H,J,D)*b.get(B,$,q,F):_+=y.get(B,D,H,J)*b.get(B,F,$,q)}}h.set(_,w,A,D,F)}}}return h.toTensor()}conv3dDerFilter(e,t,n){const s=n.strideDepth,i=n.strideHeight,o=n.strideWidth,a=n.filterDepth,c=n.filterHeight,h=n.filterWidth,d=Ze(n.filterShape,"float32"),m=d.values,[y,b,w,L]=d.strides,T=this.readSync(t.dataId),[A,N,E,D]=t.strides,F=this.readSync(e.dataId),[_,B,$,H]=e.strides,q=n.padInfo.front,J=n.padInfo.left,re=n.padInfo.top;for(let ce=0;ce<a;++ce){const ue=Math.max(0,Math.ceil((q-ce)/s)),he=Math.min(n.outDepth,(n.inDepth+q-ce)/s),de=ce*y;for(let le=0;le<c;++le){const ye=Math.max(0,Math.ceil((re-le)/i)),pe=Math.min(n.outHeight,(n.inHeight+re-le)/i),Ie=le*b+de;for(let Se=0;Se<h;++Se){const Ee=Math.max(0,Math.ceil((J-Se)/o)),We=Math.min(n.outWidth,(n.inWidth+J-Se)/o),Oe=Se*w+Ie;for(let $e=0;$e<n.inChannels;++$e){const Ye=$e*L+Oe;for(let et=0;et<n.outChannels;++et){let bt=0;for(let Jt=0;Jt<n.batchSize;++Jt){const un=Jt*_,ls=Jt*A;for(let Yt=ue;Yt<he;++Yt){const $n=ce+Yt*s-q,hi=$n*B+un,vs=Yt*N+ls;for(let hs=ye;hs<pe;++hs){const zs=le+hs*i-re,eu=zs*$+hi,uc=hs*E+vs;for(let dc=Ee;dc<We;++dc){const pc=Se+dc*o-J,aS=pc*H+eu,cS=dc*D+uc;bt+=F[aS+$e]*T[cS+et]}}}}m[Ye+et]=bt}}}}}return d.toTensor()}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){let a=this.depthwiseConv2D(e,t,n);return s&&(a=be(a,s)),i&&(a=BL(this,a,i,o)),a}depthwiseConv2D(e,t,n){xe([e,t],"depthwiseConv2D");const s=n.filterHeight,i=n.filterWidth,o=n.dilationHeight,a=n.dilationWidth,c=n.padInfo.left,h=n.padInfo.top,d=n.outChannels/n.inChannels,m=Ze(n.outShape,e.dtype),y=this.readSync(e.dataId),b=this.readSync(t.dataId),w=m.values;for(let L=0;L<n.batchSize;++L){const T=L*e.strides[0],A=L*m.strides[0];for(let N=0;N<n.outHeight;++N){const E=A+N*m.strides[1],D=N*n.strideHeight-c;for(let F=0;F<s;++F){const _=D+F*o;if(_<0||_>=n.inHeight)continue;const B=F*t.strides[0],$=T+_*e.strides[1];for(let H=0;H<n.outWidth;++H){const q=E+H*m.strides[2],J=H*n.strideWidth-h;for(let re=0;re<i;++re){const ce=J+re*a;if(ce<0||ce>=n.inWidth)continue;const ue=B+re*t.strides[1],he=$+ce*n.inChannels;let de=q,le=ue;for(let ye=0;ye<n.inChannels;++ye){const pe=y[he+ye];for(let Ie=0;Ie<d;++Ie)w[de+Ie]+=pe*b[le+Ie];de+=d,le+=d}}}}}}return m.toTensor()}depthwiseConv2DDerInput(e,t,n){xe([e,t],"depthwiseConv2DDerInput");const s=Ze(n.inShape,"float32"),i=s.values,[o,a,c]=s.strides,h=this.readSync(e.dataId),[d,m,y]=e.strides,b=this.readSync(t.dataId),[w,L,T]=t.strides,{batchSize:A,filterHeight:N,filterWidth:E,inChannels:D,inHeight:F,inWidth:_,outChannels:B,outHeight:$,outWidth:H,strideHeight:q,strideWidth:J}=n,re=N-1-n.padInfo.top,ce=E-1-n.padInfo.left,ue=B/D;for(let he=0;he<A;++he)for(let de=0;de<D;++de)for(let le=0;le<F;++le){const ye=le-re,pe=Math.max(0,Math.ceil(ye/q)),Ie=Math.min($,(N+ye)/q);for(let Se=0;Se<_;++Se){const Ee=Se-ce,We=Math.max(0,Math.ceil(Ee/J)),Oe=Math.min(H,(E+Ee)/J);let $e=0;for(let Ye=pe;Ye<Ie;++Ye){const et=Ye*q-ye;for(let bt=We;bt<Oe;++bt){const Jt=bt*J-Ee,un=d*he+m*Ye+y*bt,ls=w*(N-1-et)+L*(E-1-Jt)+T*de;for(let Yt=0;Yt<ue;++Yt){const $n=de*ue+Yt,hi=h[un+$n],vs=b[ls+Yt];$e+=hi*vs}}}i[o*he+a*le+c*Se+de]=$e}}return s.toTensor()}depthwiseConv2DDerFilter(e,t,n){xe([e,t],"depthwiseConv2DDerFilter");const s=n.strideHeight,i=n.strideWidth,o=n.filterHeight,a=n.filterWidth,c=Ze(n.filterShape,"float32"),h=n.padInfo.left,d=n.padInfo.top,m=n.outChannels/n.inChannels,y=this.bufferSync(e),b=this.bufferSync(t);for(let w=0;w<o;++w){const L=Math.max(0,Math.ceil((d-w)/s)),T=Math.min(n.outHeight,(n.inHeight+d-w)/s);for(let A=0;A<a;++A){const N=Math.max(0,Math.ceil((h-A)/i)),E=Math.min(n.outWidth,(n.inWidth+h-A)/i);for(let D=0;D<n.outChannels;++D){const F=Math.trunc(D/m),_=D%m;let B=0;for(let $=0;$<n.batchSize;++$)for(let H=L;H<T;++H){const q=w+H*s-d;for(let J=N;J<E;++J){const re=A+J*i-h;B+=y.get($,q,re,F)*b.get($,H,J,D)}}c.set(B,w,A,F,_)}}}return c.toTensor()}tile(e,t){return xe(e,"tile"),lH(this.bufferSync(e),t)}gather(e,t,n){xe([e,t],"gather");const s=e.shape.slice(),i=this.readSync(t.dataId);s[n]=i.length;const o=Ze(s,e.dtype),a=this.bufferSync(e);for(let c=0;c<o.size;++c){const h=o.indexToLoc(c),d=h.slice();d[n]=i[h[n]];const m=a.locToIndex(d);o.values[c]=a.values[m]}return o.toTensor()}batchToSpaceND(e,t,n){xe([e],"batchToSpaceND");const s=t.reduce((d,m)=>d*m),i=fh(e.shape,t,s),o=gh(i.length,t.length),a=yh(e.shape,t,s),c=Rb(n,t.length),h=Ob(a,n,t.length);return Me(e.reshape(i),o).reshape(a).slice(c,h)}pool3d(e,t,n){xe(e,"pool3d");const s=t.strideDepth,i=t.strideHeight,o=t.strideWidth,a=t.dilationDepth,c=t.dilationHeight,h=t.dilationWidth,d=t.effectiveFilterDepth,m=t.effectiveFilterHeight,y=t.effectiveFilterWidth,b=t.padInfo.front,w=t.padInfo.top,L=t.padInfo.left,T=n==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=this.readSync(e.dataId),N=Ze(t.outShape,e.dtype),E=N.values,D=t.outShape[1]*t.outShape[2]*t.outShape[3]*t.outShape[4],F=t.outShape[2]*t.outShape[3]*t.outShape[4],_=t.outShape[3]*t.outShape[4],B=t.outShape[4];for(let $=0;$<t.batchSize;++$){const H=$*D,q=$*e.strides[0];for(let J=0;J<t.inChannels;++J)for(let re=0;re<t.outDepth;++re){const ce=re*s-b;let ue=ce;for(;ue<0;)ue+=a;const he=Math.min(t.inDepth,d+ce),de=H+re*F;for(let le=0;le<t.outHeight;++le){const ye=le*i-w;let pe=ye;for(;pe<0;)pe+=c;const Ie=Math.min(t.inHeight,m+ye),Se=de+le*_;for(let Ee=0;Ee<t.outWidth;++Ee){const We=Ee*o-L;let Oe=We;for(;Oe<0;)Oe+=h;const $e=Math.min(t.inWidth,y+We),Ye=Se+Ee*B;let et=T,bt=0,Jt=0;for(let ls=ue;ls<he;ls+=a){const Yt=q+ls*e.strides[1];for(let $n=pe;$n<Ie;$n+=c){const hi=Yt+$n*e.strides[2];for(let vs=Oe;vs<$e;vs+=h){const hs=hi+vs*e.strides[3],zs=A[hs+J];if(n==="max"&&zs>et?et=zs:n==="avg"&&(bt+=zs,Jt++),isNaN(et))break}if(isNaN(et))break}if(isNaN(et))break}const un=Ye+J;E[un]=n==="avg"?bt/Jt:et}}}}return N.toTensor()}avgPool3d(e,t){return xe(e,"avgPool3d"),this.pool3d(e,t,"avg").toFloat()}avgPool3dBackprop(e,t,n){xe([e,t],"avgPool3dBackprop");const s=n.strideDepth,i=n.strideHeight,o=n.strideWidth,a=n.filterDepth,c=n.filterHeight,h=n.filterWidth,d=n.dilationDepth,m=n.dilationHeight,y=n.dilationWidth,b=n.effectiveFilterDepth,w=n.effectiveFilterHeight,L=n.effectiveFilterWidth,T=b-1-n.padInfo.front,A=L-1-n.padInfo.left,N=w-1-n.padInfo.top,E=Ze(t.shape,"float32"),D=1/(a*c*h),F=this.bufferSync(e);for(let _=0;_<n.batchSize;++_)for(let B=0;B<n.inChannels;++B)for(let $=0;$<n.inDepth;++$)for(let H=0;H<n.inHeight;++H)for(let q=0;q<n.inWidth;++q){const J=$-T,re=H-N,ce=q-A;let ue=0;for(let he=0;he<b;he+=d){const de=(J+he)/s;if(de<0||de>=n.outDepth||Math.floor(de)!==de)continue;for(let le=0;le<w;le+=m){const ye=(re+le)/i;if(ye<0||ye>=n.outHeight||Math.floor(ye)!==ye)continue;for(let pe=0;pe<L;pe+=y){const Ie=(ce+pe)/o;if(Ie<0||Ie>=n.outWidth||Math.floor(Ie)!==Ie)continue;const Se=F.get(_,de,ye,Ie,B);ue+=Se}}}E.set(ue*D,_,$,H,q,B)}return E.toTensor()}maxPool3d(e,t){return xe(e,"maxPool3d"),this.pool3d(e,t,"max").toFloat()}maxPool3dPositions(e,t){const n=Ze(t.outShape,"int32"),s=t.strideDepth,i=t.strideHeight,o=t.strideWidth,a=t.dilationDepth,c=t.dilationHeight,h=t.dilationWidth,d=t.effectiveFilterDepth,m=t.effectiveFilterHeight,y=t.effectiveFilterWidth,b=t.padInfo.front,w=t.padInfo.top,L=t.padInfo.left,T=this.bufferSync(e);for(let A=0;A<t.batchSize;++A)for(let N=0;N<t.inChannels;++N)for(let E=0;E<t.outDepth;++E){const D=E*s-b;let F=D;for(;F<0;)F+=a;const _=Math.min(t.inDepth,d+D);for(let B=0;B<t.outHeight;++B){const $=B*i-w;let H=$;for(;H<0;)H+=c;const q=Math.min(t.inHeight,m+$);for(let J=0;J<t.outWidth;++J){const re=J*o-L;let ce=re;for(;ce<0;)ce+=h;const ue=Math.min(t.inWidth,y+re);let he=Number.NEGATIVE_INFINITY,de=-1;for(let le=F;le<_;le+=a){const ye=le-D;for(let pe=H;pe<q;pe+=c){const Ie=pe-$;for(let Se=ce;Se<ue;Se+=h){const Ee=Se-re,We=T.get(A,le,pe,Se,N);We>=he&&(he=We,de=ye*m*y+Ie*m+Ee)}}}n.set(de,A,E,B,J,N)}}}return n.toTensor()}maxPool3dBackprop(e,t,n,s){xe([t,n],"maxPool3dBackprop");const i=this.maxPool3dPositions(t,s),o=s.strideDepth,a=s.strideHeight,c=s.strideWidth,h=s.dilationDepth,d=s.dilationHeight,m=s.dilationWidth,y=s.effectiveFilterDepth,b=s.effectiveFilterHeight,w=s.effectiveFilterWidth,L=y-1-s.padInfo.front,T=w-1-s.padInfo.left,A=b-1-s.padInfo.top,N=Ze(t.shape,"float32"),E=this.bufferSync(i),D=this.bufferSync(e);for(let F=0;F<s.batchSize;++F)for(let _=0;_<s.inChannels;++_)for(let B=0;B<s.inDepth;++B)for(let $=0;$<s.inHeight;++$)for(let H=0;H<s.inWidth;++H){const q=B-L,J=$-A,re=H-T;let ce=0;for(let ue=0;ue<y;ue+=h){const he=(q+ue)/o;if(he<0||he>=s.outDepth||Math.floor(he)!==he)continue;for(let de=0;de<b;de+=d){const le=(J+de)/a;if(le<0||le>=s.outHeight||Math.floor(le)!==le)continue;for(let ye=0;ye<w;ye+=m){const pe=(re+ye)/c;if(pe<0||pe>=s.outWidth||Math.floor(pe)!==pe)continue;const Ie=y*b*w-1-E.get(F,he,le,pe,_),Se=ue*b*w+de*w+ye,Ee=Ie===Se?1:0;if(Ee===0)continue;const We=D.get(F,he,le,pe,_);ce+=We*Ee}}}N.set(ce,F,B,$,H,_)}return N.toTensor()}resizeBilinear(e,t,n,s){xe(e,"resizeBilinear");const[i,o,a,c]=e.shape,h=this.readSync(e.dataId),d=new Float32Array(we([i,t,n,c])),m=[s&&t>1?o-1:o,s&&n>1?a-1:a],y=[s&&t>1?t-1:t,s&&n>1?n-1:n];let b=0;const w=m[0]/y[0],L=m[1]/y[1];for(let T=0;T<i;T++)for(let A=0;A<t;A++){const N=w*A,E=Math.floor(N),D=N-E,F=Math.min(o-1,Math.ceil(N)),_=T*e.strides[0]+E*e.strides[1],B=T*e.strides[0]+F*e.strides[1];for(let $=0;$<n;$++){const H=L*$,q=Math.floor(H),J=H-q,re=Math.min(a-1,Math.ceil(H)),ce=_+q*e.strides[2],ue=B+q*e.strides[2],he=_+re*e.strides[2],de=B+re*e.strides[2];for(let le=0;le<c;le++){const ye=h[ce+le],pe=h[ue+le],Ie=h[he+le],Se=h[de+le],Ee=ye+(Ie-ye)*J,We=pe+(Se-pe)*J,Oe=Ee+(We-Ee)*D;d[b++]=Oe}}}return en(d,[i,t,n,c])}resizeBilinearBackprop(e,t,n){xe([e,t],"resizeBilinearBackprop");const[s,i,o,a]=t.shape,[,c,h]=e.shape,d=new Float32Array(s*i*o*a),m=[n&&c>1?i-1:i,n&&h>1?o-1:o],y=[n&&c>1?c-1:c,n&&h>1?h-1:h],b=m[0]/y[0],w=m[1]/y[1],L=this.readSync(e.dataId);let T=0;for(let A=0;A<s;A++){const N=A*t.strides[0];for(let E=0;E<c;E++){const D=E*b,F=Math.floor(D),_=Math.min(Math.ceil(D),i-1),B=N+F*t.strides[1],$=N+_*t.strides[1],H=D-F,q=1-H;for(let J=0;J<h;J++){const re=J*w,ce=Math.floor(re),ue=Math.min(Math.ceil(re),o-1),he=re-ce,de=1-he,le=B+ce*t.strides[2],ye=B+ue*t.strides[2],pe=$+ce*t.strides[2],Ie=$+ue*t.strides[2],Se=q*de,Ee=q*he,We=H*de,Oe=H*he;for(let $e=0;$e<a;$e++){const Ye=L[T++];d[le+$e]+=Ye*Se,d[ye+$e]+=Ye*Ee,d[pe+$e]+=Ye*We,d[Ie+$e]+=Ye*Oe}}}}return Ua(d,[s,o,i,a],t.dtype)}resizeNearestNeighbor(e,t,n,s){xe(e,"resizeNearestNeighbor");const[i,o,a,c]=e.shape,h=this.readSync(e.dataId),d=new Float32Array(i*t*n*c),m=[s&&t>1?o-1:o,s&&n>1?a-1:a],y=[s&&t>1?t-1:t,s&&n>1?n-1:n],b=m[0]/y[0],w=m[1]/y[1];let L=0;for(let T=0;T<i;T++){const A=T*e.strides[0];for(let N=0;N<t;N++){const E=b*N,D=Math.min(o-1,s?Math.round(E):Math.floor(E)),F=A+D*e.strides[1];for(let _=0;_<n;_++){const B=w*_,$=Math.min(a-1,s?Math.round(B):Math.floor(B)),H=F+$*e.strides[2];for(let q=0;q<c;q++){const J=h[H+q];d[L++]=J}}}}return en(d,[i,t,n,c],e.dtype)}resizeNearestNeighborBackprop(e,t,n){xe([e,t],"resizeNearestNeighborBackprop");const[s,i,o,a]=t.shape,[,c,h]=e.shape,d=new Float32Array(s*i*o*a),m=this.readSync(e.dataId),y=[n&&c>1?i-1:i,n&&h>1?o-1:o],b=[n&&c>1?c-1:c,n&&h>1?h-1:h],w=y[0]/b[0],L=y[1]/b[1],T=1/w,A=1/L,N=Math.ceil(T)*2+2,E=Math.ceil(A)*2+2;for(let D=0;D<s;D++){const F=D*t.strides[0];for(let _=0;_<i;_++){const B=F+_*t.strides[1],$=Math.floor(_*T),H=Math.floor($-N/2);for(let q=0;q<o;q++){const J=B+q*t.strides[2],re=Math.floor(q*A),ce=Math.floor(re-E/2);for(let ue=0;ue<a;ue++){let he=0;for(let de=0;de<N;de++){const le=de+H;if(le<0||le>=c)continue;const ye=F+le*e.strides[1],pe=le*w,Ie=Math.min(i-1,n?Math.round(pe):Math.floor(pe));if(_!==Ie)continue;for(let Se=0;Se<E;Se++){const Ee=Se+ce;if(Ee<0||Ee>=h)continue;const We=ye+Ee*e.strides[2],Oe=Ee*L,$e=Math.min(o-1,n?Math.round(Oe):Math.floor(Oe));q===$e&&(he+=m[We+ue])}}d[J+ue]=he}}}}return Ua(d,t.shape,t.dtype)}localResponseNormalization4D(e,t,n,s,i){xe(e,"localResponseNormalization4D");const o=e.shape[3],a=o-1,c=this.readSync(e.dataId),h=e.size,d=new Float32Array(h);function m(y){const b=y%o;let w=y-b+Math.max(0,b-t);const L=y-b+Math.min(b+t,a);let T=0;for(;w<=L;w++){const A=c[w];T+=A*A}return T}for(let y=0;y<h;y++){const b=m(y),w=c[y]*Math.pow(n+s*b,-i);d[y]=w}return Ua(d,e.shape)}LRNGrad(e,t,n,s,i,o,a){xe(e,"LRNGrad");const c=e.shape[3],h=this.readSync(e.dataId),d=this.readSync(t.dataId),m=this.readSync(n.dataId),y=new Float32Array(e.size),b=e.size;for(let w=0;w<b;w++){const L=w%c,T=w-L+Math.max(0,L-s),A=w-L+Math.min(c,L+s+1);let N=0;for(let E=T;E<A;E++)N+=Math.pow(d[E],2);N=o*N+i;for(let E=T;E<A;E++){let D=-2*o*a*d[E]*m[w]/N;w===E&&(D+=Math.pow(N,-a)),D*=h[w],y[E]+=D}}return Ua(y,e.shape)}multinomial(e,t,n,s){xe(e,"multinomial");const i=t?e:No(e),o=i.shape[0],a=i.shape[1],c=ct([o,n],"int32"),h=this.readSync(c.dataId),d=this.readSync(i.dataId);for(let m=0;m<o;++m){const y=m*a,b=new Float32Array(a-1);b[0]=d[y];for(let T=1;T<b.length;++T)b[T]=b[T-1]+d[y+T];const w=_a(s.toString()),L=m*n;for(let T=0;T<n;++T){const A=w();h[L+T]=b.length;for(let N=0;N<b.length;N++)if(A<b[N]){h[L+T]=N;break}}}return c}oneHot(e,t,n,s){xe(e,"oneHot");const i=new Float32Array(e.size*t);i.fill(s);const o=this.readSync(e.dataId);for(let a=0;a<e.size;++a)o[a]>=0&&o[a]<t&&(i[a*t+o[a]]=n);return _r(i,[e.size,t],"int32")}nonMaxSuppression(e,t,n,s,i){xe(e,"nonMaxSuppression");const o=this.readSync(e.dataId),a=this.readSync(t.dataId);return aH(o,a,n,s,i)}depthToSpace(e,t,n){k(n==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${n}`),k(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`);const s=e.shape[0],i=e.shape[1],o=e.shape[2],a=e.shape[3],c=i*t,h=o*t,d=a/(t*t),m=this.readSync(e.dataId),y=new Float32Array(s*c*h*d);let b=0;for(let w=0;w<s;++w)for(let L=0;L<c;++L){const T=Math.floor(L/t),A=L%t;for(let N=0;N<h;++N){const E=Math.floor(N/t),D=N%t,F=(A*t+D)*d;for(let _=0;_<d;++_){const B=_+F,$=B+a*(E+o*(T+i*w));y[b++]=m[$]}}}return Ua(y,[s,c,h,d])}broadcastedBinaryOp(e,t,n,s){const i=tt(e.shape,t.shape),o=Ze(i,n),a=this.readSync(e.dataId),c=this.readSync(t.dataId),h=Lo(e.shape,i),d=Lo(t.shape,i),m=o.values;if(h.length+d.length===0)for(let y=0;y<m.length;++y)m[y]=s(a[y%a.length],c[y%c.length]);else{const y=this.bufferSync(e),b=this.bufferSync(t);for(let w=0;w<m.length;++w){const L=o.indexToLoc(w),T=L.slice(-e.rank);h.forEach(D=>T[D]=0);const A=y.locToIndex(T),N=L.slice(-t.rank);d.forEach(D=>N[D]=0);const E=b.locToIndex(N);m[w]=s(a[A],c[E])}}return o.toTensor()}split(e,t,n){return cH(e,t,n)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}cropAndResize(e,t,n,s,i,o){const[a,c,h,d]=e.shape,m=t.shape[0],[y,b]=s,w=Ze([m,y,b,d],"float32"),L=this.readSync(t.dataId),T=this.readSync(n.dataId),A=this.readSync(e.dataId),N=e.strides,E=w.strides;for(let D=0;D<m;D++){const F=D*4,_=L[F],B=L[F+1],$=L[F+2],H=L[F+3],q=T[D];if(q>=a)continue;const J=y>1?($-_)*(c-1)/(y-1):0,re=b>1?(H-B)*(h-1)/(b-1):0;for(let ce=0;ce<y;ce++){const ue=y>1?_*(c-1)+ce*J:.5*(_+$)*(c-1);if(ue<0||ue>c-1){for(let he=0;he<b;he++)for(let de=0;de<d;de++){const le=de+he*E[2]+ce*E[1]+D*E[0];w.values[le]=o}continue}if(i==="bilinear"){const he=Math.floor(ue),de=Math.ceil(ue),le=ue-he;for(let ye=0;ye<b;ye++){const pe=b>1?B*(h-1)+ye*re:.5*(B+H)*(h-1);if(pe<0||pe>h-1){for(let We=0;We<d;We++){const Oe=We+ye*E[2]+ce*E[1]+D*E[0];w.values[Oe]=o}continue}const Ie=Math.floor(pe),Se=Math.ceil(pe),Ee=pe-Ie;for(let We=0;We<d;We++){let Oe=We+Ie*N[2]+he*N[1]+q*N[0];const $e=A[Oe];Oe=We+Se*N[2]+he*N[1]+q*N[0];const Ye=A[Oe];Oe=We+Ie*N[2]+de*N[1]+q*N[0];const et=A[Oe];Oe=We+Se*N[2]+de*N[1]+q*N[0];const bt=A[Oe],Jt=$e+(Ye-$e)*Ee,un=et+(bt-et)*Ee;Oe=We+ye*E[2]+ce*E[1]+D*E[0],w.values[Oe]=Jt+(un-Jt)*le}}}else for(let he=0;he<b;++he){const de=b>1?B*(h-1)+he*re:.5*(B+H)*(h-1);if(de<0||de>h-1){for(let pe=0;pe<d;pe++){const Ie=pe+he*E[2]+ce*E[1]+D*E[0];w.values[Ie]=o}continue}const le=Math.round(de),ye=Math.round(ue);for(let pe=0;pe<d;pe++){const Ie=pe+le*N[2]+ye*N[1]+q*N[0],Se=pe+he*E[2]+ce*E[1]+D*E[0];w.values[Se]=A[Ie]}}}}return w.toTensor()}sparseToDense(e,t,n,s){const{sliceRank:i,numUpdates:o,sliceSize:a,strides:c,outputSize:h}=va(t,e,n),d=!1;return this.scatter(e,t,n,h,a,o,i,c,s,d)}gatherND(e,t){const n=t.shape,s=n[n.length-1],[i,o,a,c]=gd(e,t);if(o===0)return en([],i,e.dtype);const h=new Ar([o,a],e.dtype),d=this.readSync(t.dataId),m=this.readSync(e.dataId);for(let y=0;y<o;y++){const b=[];let w=0;for(let L=0;L<s;L++){const T=d[y*s+L];w+=T*c[L],b.push(T)}if(w<0||w>=e.size/a)throw new Error(`Invalid indices: ${b} does not index into ${e.shape}`);for(let L=0;L<a;L++)h.values[y*a+L]=m[w*a+L]}return h.toTensor().reshape(i)}scatterND(e,t,n){const{sliceRank:s,numUpdates:i,sliceSize:o,strides:a,outputSize:c}=va(t,e,n),h=Ne(0),d=!0;return this.scatter(e,t,n,c,o,i,s,a,h,d)}fill(e,t,n){n=n||ba(t);const s=lo(n,we(e));return s.fill(t),Fs().makeTensor(s,e,n,this)}onesLike(e){if(e.dtype==="string")throw new Error("onesLike is not supported for string tensors");return this.fill(e.shape,1,e.dtype)}zerosLike(e){const t=lo(e.dtype,we(e.shape));return this.makeOutput(t,e.shape,e.dtype)}linspace(e,t,n){return Ub(e,t,n)}scatter(e,t,n,s,i,o,a,c,h,d){const m=[s/i,i],y=this.readSync(e.dataId),b=this.readSync(t.dataId);if(s===0)return en([],n,t.dtype);const w=new Ar(m,t.dtype);w.values.fill(this.readSync(h.dataId)[0]);for(let L=0;L<o;L++){const T=[];let A=0;for(let N=0;N<a;N++){const E=y[L*a+N];T.push(E),A+=E*c[N]}if(A<0||A>=s/i)throw new Error(`Invalid indices: ${T} does not index into ${n}`);for(let N=0;N<i;N++)d?w.values[A*i+N]+=b[L*i+N]:w.values[A*i+N]=t.rank===0?b[0]:b[L*i+N]}return w.toTensor().reshape(n)}}function e0(e){const t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}const pH=e=>{const{x:t}=e.inputs,n=e.backend;let s=new Float32Array(we(t.shape));if(t.dtype!=="complex64"){const i=n.data.get(t.dataId).values;s=e0(i)}else{const i=n.data.get(t.dataId),o=i.complexTensorInfos.real,a=i.complexTensorInfos.imag,c=n.data.get(o.dataId).values,h=n.data.get(a.dataId).values;for(let d=0;d<c.length;d++){const m=c[d],y=h[d];s[d]=Math.hypot(m,y)}}return n.makeOutput(s,t.shape,"float32")},mH={kernelName:ge,backendName:"cpu",kernelFunc:pH};function $o(e){return(t,n,s,i,o)=>{const a=tt(t,n),c=a.length,h=Ot(a),d=we(a),m=bn(o,d),y=t.length,b=n.length,w=Ot(t),L=Ot(n),T=Lo(t,a),A=Lo(n,a);if(T.length+A.length===0)for(let N=0;N<m.length;++N)m[N]=e(s[N%s.length],i[N%i.length]);else for(let N=0;N<m.length;++N){const E=La(N,c,h),D=E.slice(-y);T.forEach($=>D[$]=0);const F=Js(D,y,w),_=E.slice(-b);A.forEach($=>_[$]=0);const B=Js(_,b,L);m[N]=e(s[F],i[B])}return[m,a]}}function li(e){const{inputs:t,backend:n}=e,{real:s,imag:i}=t,o=n.data.get(s.dataId).values,a=n.data.get(i.dataId).values,c=n.makeTensorInfo(s.shape,"complex64"),h=n.data.get(c.dataId);return h.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",o),imag:n.makeTensorInfo(i.shape,"float32",a)},c}const fH={kernelName:hg,backendName:"cpu",kernelFunc:li};function Qa(e){const{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}const gH={kernelName:al,backendName:"cpu",kernelFunc:Qa};function Vh(e){const{inputs:t,backend:n}=e,{input:s}=t,i=n.data.get(s.dataId).complexTensorInfos.real,o=n.data.get(i.dataId).values;return n.makeTensorInfo(i.shape,i.dtype,o)}const yH={kernelName:_g,backendName:"cpu",kernelFunc:Vh};function Yh(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{dtype:o}=s;if(o==="complex64"){if(i.dtype==="complex64")return Qa({inputs:{x:i},backend:n});const a=ct(i.shape),c=Yh({inputs:{x:i},backend:n,attrs:{dtype:"float32"}}),h=li({inputs:{real:c,imag:a},backend:n});return a.dispose(),n.disposeIntermediateTensorInfo(c),h}if(i.dtype==="complex64"){const a=Vh({inputs:{input:i},backend:n}),c=Yh({inputs:{x:a},backend:n,attrs:{dtype:o}});return n.disposeIntermediateTensorInfo(a),c}if(!iy(i.dtype,o)){const a=Qa({inputs:{x:i},backend:n});return{dataId:a.dataId,shape:a.shape,dtype:o}}if(o==="int32"){const a=n.data.get(i.dataId).values,c=Int32Array.from(a);return n.makeTensorInfo(i.shape,"int32",c)}if(o==="bool"){const a=n.data.get(i.dataId).values,c=Tr([0],i.dtype),[h,d]=$o((m,y)=>m!==y?1:0)(i.shape,[],a,c,"bool");return n.makeTensorInfo(d,"bool",h)}throw new Error(`Error in Cast: failed to cast ${i.dtype} to ${o}`)}const bH={kernelName:Jc,backendName:"cpu",kernelFunc:Yh};function ec(e,t,n,s){return n==null?({inputs:i,backend:o})=>{const{a,b:c}=i,h=o;xe([a,c],e);const d=h.data.get(a.dataId).values,m=h.data.get(c.dataId).values,y=s||a.dtype,[b,w]=t(a.shape,c.shape,d,m,y);return h.makeTensorInfo(w,y,b)}:({inputs:i,backend:o})=>{const{a,b:c}=i,h=o;if(a.dtype==="complex64"||c.dtype==="complex64"){const d=Yh({inputs:{x:a},backend:h,attrs:{dtype:"complex64"}}),m=h.data.get(d.dataId),y=m.complexTensorInfos.real,b=m.complexTensorInfos.imag,w=h.data.get(y.dataId).values,L=h.data.get(b.dataId).values,T=Yh({inputs:{x:c},backend:h,attrs:{dtype:"complex64"}}),A=h.data.get(T.dataId),N=A.complexTensorInfos.real,E=A.complexTensorInfos.imag,D=h.data.get(N.dataId).values,F=h.data.get(E.dataId).values,[_,B,$]=n(a.shape,c.shape,w,L,D,F),H=h.makeTensorInfo($,"float32",_),q=h.makeTensorInfo($,"float32",B),J=li({inputs:{real:H,imag:q},backend:h});return h.disposeIntermediateTensorInfo(d),h.disposeIntermediateTensorInfo(T),h.disposeIntermediateTensorInfo(H),h.disposeIntermediateTensorInfo(q),J}else{const d=h.data.get(a.dataId).values,m=h.data.get(c.dataId).values,y=s||a.dtype,[b,w]=t(a.shape,c.shape,d,m,y);return h.makeTensorInfo(w,y,b)}}}function ML(e){return(t,n,s,i,o,a)=>{const c=tt(t,n),h=we(c),d=c.length,m=Ot(c),y=bn("float32",h),b=bn("float32",h),w=Lo(t,c),L=Lo(n,c),T=Zi(s,i),A=Zi(o,a),N=t.length,E=Ot(t),D=n.length,F=Ot(n);if(w.length+L.length===0)for(let _=0;_<y.length;_++){const B=_%T.length,$=_%A.length,H=e(T[B*2],T[B*2+1],A[$*2],A[$*2+1]);y[_]=H.real,b[_]=H.imag}else for(let _=0;_<y.length;_++){const B=La(_,d,m),$=B.slice(-N);w.forEach(ce=>$[ce]=0);const H=Js($,N,E),q=B.slice(-D);L.forEach(ce=>q[ce]=0);const J=Js(q,D,F),re=e(T[H*2],T[H*2+1],A[J*2],A[J*2+1]);y[_]=re.real,b[_]=re.imag}return[y,b,c]}}const t0=$o((e,t)=>e+t),wH=ML((e,t,n,s)=>({real:e+n,imag:t+s})),n0=ec(Te,t0,wH),LH={kernelName:Te,backendName:"cpu",kernelFunc:n0};function tc(e){return(t,n,s)=>{const i=bn(n,t.length);for(let o=0;o<t.length;++o)i[o]=e(t[o],s);return i}}function xt(e,t,n){return({inputs:s,attrs:i,backend:o})=>{const{x:a}=s;if(xe(a,e),a.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");const c=o,h=c.data.get(a.dataId).values,d=we(a.shape),m=n||a.dtype,y=lo(m,d);for(let b=0;b<d;++b)y[b]=t(h[b],i);return c.makeTensorInfo(a.shape,m,y)}}function nc(e,t,n){return({inputs:s,attrs:i,backend:o})=>{const{x:a}=s;if(xe(a,e),a.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");const c=o,h=c.data.get(a.dataId).values,d=n||a.dtype,m=t(h,d,i);return c.makeTensorInfo(a.shape,d,m)}}const s0=tc(e=>Math.ceil(e)),SH=nc(Zc,s0),IH={kernelName:Zc,backendName:"cpu",kernelFunc:SH};const i0=tc(e=>Math.exp(e)),xH=nc(sl,i0),TH={kernelName:sl,backendName:"cpu",kernelFunc:xH};const r0=tc(e=>Math.expm1(e)),AH=nc(il,r0),vH={kernelName:il,backendName:"cpu",kernelFunc:AH};const o0=tc(e=>Math.floor(e)),NH=nc(rl,o0),CH={kernelName:rl,backendName:"cpu",kernelFunc:NH};const a0=tc(e=>Math.log(e)),RH=nc(ul,a0),OH={kernelName:ul,backendName:"cpu",kernelFunc:RH};function c0(e,t,n,s){const i=bn(s,we(n));for(let o=0;o<i.length;++o){const a=o*t;let c=e[a];for(let h=0;h<t;++h){const d=e[a+h];d>c&&(c=d)}i[o]=c}return i}const l0=$o((e,t)=>e*t),EH=ML((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),h0=ec(fl,l0,EH),DH={kernelName:fl,backendName:"cpu",kernelFunc:h0};const u0=tc(e=>1/Math.sqrt(e)),kH=nc(wl,u0),FH={kernelName:wl,backendName:"cpu",kernelFunc:kH};function d0(e,t,n,s,i){const o=Ey(s,t,n),a=we(n),c=Ot(s);if(o){const d=Dy(t,c);return e.subarray(d,d+a)}const h=bn(i,a);for(let d=0;d<a;++d){const m=n.length,y=Ot(n),b=La(d,m,y),w=b.map((T,A)=>T+t[A]),L=Js(w,s.length,c);h[d]=e[L]}return h}function PL(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{begin:o,size:a}=s;xe(i,"slice");const[c,h]=wd(i,o,a);Oy(i,c,h);const d=n.data.get(i.dataId).values,m=d0(d,c,h,i.shape,i.dtype);return n.makeTensorInfo(h,i.dtype,m)}const _H={kernelName:Ku,backendName:"cpu",kernelFunc:PL};const p0=$o((e,t)=>e-t),WH=ML((e,t,n,s)=>({real:e-n,imag:t-s})),m0=ec(vl,p0,WH),$H={kernelName:vl,backendName:"cpu",kernelFunc:m0};function zL(e,t,n,s,i){const o=t.length,a=we(t),c=Ot(t),h=Ot(i),d=bn(n,we(i));for(let m=0;m<a;++m){const y=La(m,o,c),b=new Array(y.length);for(let L=0;L<b.length;L++)b[L]=y[s[L]];const w=Js(b,o,h);d[w]=e[m]}return d}function f0(e,t,n,s){const i=ft(t,n)[0],o=[1,n[0],1];for(let L=0;L<i;L++)o[0]*=n[L];o[1]=n[i];for(let L=i+1;L<n.length;L++)o[2]*=n[L];const a={},c=new Int32Array(n[i]),h=new Ar(o,s,e),d=[],m=o[0]===1&&o[2]===1;for(let L=0;L<n[i];L++){let T;if(m)T=e[L].toString();else{const A=[];for(let N=0;N<o[0];N++)for(let E=0;E<o[2];E++)A.push(h.get(N,L,E));T=A.join(",")}if(a[T]!==void 0)c[L]=a[T];else{const A=Object.keys(a).length;a[T]=A,c[L]=A,d.push(L)}}const y=o.slice();y[1]=Object.keys(a).length;const b=new Ar(y,s);d.forEach((L,T)=>{for(let A=0;A<o[0];A++)for(let N=0;N<o[2];N++)b.set(h.get(A,L,N),A,T,N)});const w=n.slice();return w[i]=y[1],{outputValues:b.values,outputShape:w,indices:c}}var UH=Object.freeze({__proto__:null,simpleAbsImpl:e0,addImpl:t0,ceilImpl:s0,expImpl:i0,expm1Impl:r0,floorImpl:o0,logImpl:a0,maxImpl:c0,multiplyImpl:l0,rsqrtImpl:u0,sliceImpl:d0,subImpl:p0,transposeImpl:zL,uniqueImpl:f0});const BH="2.6.0";Wy("cpu",()=>new dH,1);const MH=xt(fe,e=>Math.acos(e)),PH={kernelName:fe,backendName:"cpu",kernelFunc:MH};const zH=xt(Ae,e=>Math.acosh(e)),GH={kernelName:Ae,backendName:"cpu",kernelFunc:zH};const VH=xt(Dn,e=>Math.asin(e)),YH={kernelName:Dn,backendName:"cpu",kernelFunc:VH};const HH=xt(Tn,e=>Math.asinh(e)),qH={kernelName:Tn,backendName:"cpu",kernelFunc:HH};const jH=xt(An,e=>Math.atan(e)),KH={kernelName:An,backendName:"cpu",kernelFunc:jH};const XH=xt(Ks,e=>Math.atanh(e)),JH={kernelName:Ks,backendName:"cpu",kernelFunc:XH};function GL(e,t,n,s,i,o){const a=i.strideHeight,c=i.strideWidth,h=i.dilationHeight,d=i.dilationWidth,m=i.effectiveFilterHeight,y=i.effectiveFilterWidth,b=i.padInfo.top,w=i.padInfo.left,L=o==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,T=Ze(i.outShape,n),A=T.values,N=i.outShape[1]*i.outShape[2]*i.outShape[3],E=i.outShape[2]*i.outShape[3],D=i.outShape[3];for(let F=0;F<i.batchSize;++F){const _=F*N,B=F*s[0];for(let $=0;$<i.inChannels;++$)for(let H=0;H<i.outHeight;++H){const q=H*a-b,J=Math.max(0,q),re=Math.min(i.inHeight,m+q),ce=_+H*E;for(let ue=0;ue<i.outWidth;++ue){const he=ue*c-w,de=Math.max(0,he),le=Math.min(i.inWidth,y+he);let ye=L,pe=0,Ie=0;for(let Ee=J;Ee<re;Ee+=h){const We=B+Ee*s[1];for(let Oe=de;Oe<le;Oe+=d){const $e=We+Oe*s[2],Ye=e[$e+$];o==="max"&&Ye>ye?ye=Ye:o==="avg"&&(pe+=Ye,Ie++)}if(isNaN(ye))break}const Se=ce+ue*D+$;A[Se]=o==="avg"?pe/Ie:ye}}}return T}function g0(e,t,n,s,i=!1,o=!1){const a=Ze(s.outShape,"int32"),c=s.strideHeight,h=s.strideWidth,d=s.dilationHeight,m=s.dilationWidth,y=s.effectiveFilterHeight,b=s.effectiveFilterWidth,w=s.padInfo.top,L=s.padInfo.left,T=Ze(t,n,e);for(let A=0;A<s.batchSize;++A)for(let N=0;N<s.inChannels;++N)for(let E=0;E<s.outHeight;++E){const D=E*c-w;let F=D;for(;F<0;)F+=d;const _=Math.min(s.inHeight,y+D);for(let B=0;B<s.outWidth;++B){const $=B*h-L;let H=$;for(;H<0;)H+=m;const q=Math.min(s.inWidth,b+$);let J=Number.NEGATIVE_INFINITY,re=-1;for(let ce=F;ce<_;ce+=d){const ue=ce-D;for(let he=H;he<q;he+=m){const de=he-$,le=T.get(A,ce,he,N);le>J&&(J=le,i?re=o?((A*s.inHeight+ce)*s.inWidth+he)*s.inChannels+N:(ce*s.inWidth+he)*s.inChannels+N:re=ue*b+de)}}a.set(re,A,E,B,N)}}return a}function ZH(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;xe(i,"avgPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;k(rn(a,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Fn(i.shape,o,a,d,c,h);let y;if(m.filterWidth===1&&m.filterHeight===1&&ot(m.inShape,m.outShape))y=Qa({inputs:{x:i},backend:n});else{const b=n.data.get(i.dataId).values,w=Ot(i.shape),L=GL(b,i.shape,i.dtype,w,m,"avg");y=n.makeTensorInfo(m.outShape,i.dtype,L.values)}return y}const QH={kernelName:Xs,backendName:"cpu",kernelFunc:ZH};function eq(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o}=t,a=o;xe([i,o],"avgPoolBackprop");const{filterSize:c,strides:h,pad:d}=s,m=Fn(a.shape,c,h,1,d),y=m.strideHeight,b=m.strideWidth,w=m.filterHeight,L=m.filterWidth,T=m.dilationHeight,A=m.dilationWidth,N=m.effectiveFilterHeight,E=m.effectiveFilterWidth,D=E-1-m.padInfo.left,F=N-1-m.padInfo.top,_=Ze(a.shape,"float32"),B=1/(w*L),$=n.data.get(i.dataId).values,H=Ze(i.shape,"float32",$);for(let q=0;q<m.batchSize;++q)for(let J=0;J<m.inChannels;++J)for(let re=0;re<m.inHeight;++re)for(let ce=0;ce<m.inWidth;++ce){const ue=re-F,he=ce-D;let de=0;for(let le=0;le<N;le+=T){const ye=(ue+le)/y;if(ye<0||ye>=m.outHeight||Math.floor(ye)!==ye)continue;for(let pe=0;pe<E;pe+=A){const Ie=(he+pe)/b;if(Ie<0||Ie>=m.outWidth||Math.floor(Ie)!==Ie)continue;const Se=H.get(q,ye,Ie,J);de+=Se}}_.set(de*B,q,re,ce,J)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}const tq={kernelName:ua,backendName:"cpu",kernelFunc:eq};function nq(e){const{inputs:t,backend:n,attrs:s}=e,{x:i,scale:o,offset:a,mean:c,variance:h}=t;k(c.shape.length===h.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k(a==null||c.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k(o==null||c.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([i,c,h,o,a],"batchNorm");let{varianceEpsilon:d}=s;d==null&&(d=.001);const m=n.data.get(i.dataId).values,y=n.data.get(c.dataId).values,b=n.data.get(h.dataId).values,w=o?n.data.get(o.dataId).values:new Float32Array([1]),L=a?n.data.get(a.dataId).values:new Float32Array([0]),T=new Float32Array(m.length),A=L.length,N=w.length,E=b.length,D=y.length;let F=0,_=0,B=0,$=0;for(let H=0;H<m.length;++H)T[H]=L[F++]+(m[H]-y[_++])*w[B++]/Math.sqrt(b[$++]+d),F>=A&&(F=0),_>=D&&(_=0),B>=N&&(B=0),$>=E&&($=0);return n.makeTensorInfo(i.shape,i.dtype,T)}const sq={kernelName:ol,backendName:"cpu",kernelFunc:nq};const iq=xt(Qc,(e,t)=>{const n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),rq={kernelName:Qc,backendName:"cpu",kernelFunc:iq};function jp(e){const{inputs:t,backend:n}=e,{input:s}=t,i=n.data.get(s.dataId).complexTensorInfos.imag,o=n.data.get(i.dataId).values;return n.makeTensorInfo(i.shape,i.dtype,o)}const oq={kernelName:Sg,backendName:"cpu",kernelFunc:jp};function Hr(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{shape:o}=s,a=we(i.shape),c=id(o,a),h=we(c);k(a===h,()=>`The new shape (${c}) has ${h} elements and the old shape (${i.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),n.incRef(i.dataId);const d=n.data.get(i.dataId);if(d.complexTensorInfos!=null){const m=d.complexTensorInfos.real,y=d.complexTensorInfos.imag;m.shape=c,y.shape=c}return{dataId:i.dataId,shape:c,dtype:i.dtype}}const aq={kernelName:yl,backendName:"cpu",kernelFunc:Hr};function Hh(e){const{inputs:t,backend:n,attrs:s}=e,{axis:i}=s,o=ft(i,t[0].shape)[0];let a=Or(t.map(w=>w.shape),o);if(we(a)===0)return n.makeTensorInfo(a,t[0].dtype,[]);const c=t.filter(w=>we(w.shape)>0);if(c.length===1)return c[0];const h=c.map(w=>w.shape);if(Ky(h,o),c[0].dtype==="complex64"){const w=c.map(E=>Vh({inputs:{input:E},backend:n})),L=c.map(E=>jp({inputs:{input:E},backend:n})),T=Hh({inputs:w,backend:n,attrs:{axis:i}}),A=Hh({inputs:L,backend:n,attrs:{axis:i}}),N=li({inputs:{real:T,imag:A},backend:n});return w.forEach(E=>n.disposeIntermediateTensorInfo(E)),L.forEach(E=>n.disposeIntermediateTensorInfo(E)),n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(A),N}const d=c.map(w=>{const L=we(w.shape.slice(o)),T=[-1,L];return Hr({inputs:{x:w},backend:n,attrs:{shape:T}})});a=Or(d.map(w=>w.shape),1);const m=bn(c[0].dtype,we(a));if(d[0].shape[0]===1){let w=0;d.forEach(L=>{const T=n.data.get(L.dataId).values,A=we(L.shape);m.set(T,w),w+=A})}else{let w=0;d.forEach(L=>{const T=n.data.get(L.dataId).values;let A=0;for(let N=0;N<L.shape[0];++N){const E=N*a[1]+w;for(let D=0;D<L.shape[1];++D)m[E+D]=T[A++]}w+=L.shape[1]})}const y=Or(c.map(w=>w.shape),o),b=n.makeTensorInfo(y,t[0].dtype,m);return d.forEach(w=>n.disposeIntermediateTensorInfo(w)),b}const cq={kernelName:$u,backendName:"cpu",kernelFunc:Hh};const lq=xt(da,e=>Math.cos(e)),hq={kernelName:da,backendName:"cpu",kernelFunc:lq};const uq=xt(el,e=>Math.cosh(e)),dq={kernelName:el,backendName:"cpu",kernelFunc:uq};const pq={kernelName:Uu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{x:s,filter:i}=e,{strides:o,pad:a,dilations:c}=n,h=t,d=h.data.get(s.dataId).values,m=s.shape.length,y=h.data.get(i.dataId).values,b=i.shape.length,{batchSize:w,inHeight:L,inWidth:T,inChannels:A,outHeight:N,outWidth:E,padInfo:D,strideHeight:F,strideWidth:_,filterHeight:B,filterWidth:$,dilationHeight:H,dilationWidth:q,outShape:J}=Td(s.shape,i.shape,o,a,"NHWC",c),re=we(J),ce=J.length,ue=lo(s.dtype,re);for(let de=0;de<w;++de)for(let le=0;le<N;++le){const ye=le*F-D.top;for(let pe=0;pe<E;++pe){const Ie=pe*_-D.left;for(let Se=0;Se<A;++Se){let Ee=Number.MIN_SAFE_INTEGER;for(let Oe=0;Oe<B;++Oe){const $e=ye+Oe*H;if($e>=0&&$e<L)for(let Ye=0;Ye<$;++Ye){const et=Ie+Ye*q;if(et>=0&&et<T){const bt=Js([de,$e,et,Se],m,Ot(s.shape)),Jt=Js([Oe,Ye,Se],b,Ot(i.shape)),un=d[bt]+y[Jt];un>Ee&&(Ee=un)}}}const We=Js([de,le,pe,Se],ce,Ot(J));ue[We]=Ee}}}const he=h.write(Tr(ue,s.dtype),J,s.dtype);return{dataId:he,shape:J,dtype:s.dtype}}};const mq={kernelName:Mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{x:s,filter:i,dy:o}=e,{strides:a,pad:c,dilations:h}=n,d=t,m=ys(s.shape,d.data.get(s.dataId).values),y=ys(i.shape,d.data.get(i.dataId).values),{batchSize:b,inHeight:w,inWidth:L,inChannels:T,outHeight:A,outWidth:N,padInfo:E,strideHeight:D,strideWidth:F,filterHeight:_,filterWidth:B,dilationHeight:$,dilationWidth:H,outShape:q}=Td(s.shape,i.shape,a,c,"NHWC",h);k(o.rank===q.length,()=>`Error in ${Mu}, dy must have the same rank as output ${q.length}, but got ${o.rank}`);const J=ys(q,d.data.get(o.dataId).values),re=ay(i.shape,i.dtype);for(let ue=0;ue<b;++ue)for(let he=0;he<A;++he){const de=he*D-E.top;for(let le=0;le<N;++le){const ye=le*F-E.left;for(let pe=0;pe<T;++pe){let Ie=Number.MIN_SAFE_INTEGER,Se=0,Ee=0;for(let We=0;We<_;++We){const Oe=de+We*$;if(Oe>=0&&Oe<w)for(let $e=0;$e<B;++$e){const Ye=ye+$e*H;if(Ye>=0&&Ye<L){const et=m[ue][Oe][Ye][pe]+y[We][$e][pe];et>Ie&&(Ie=et,Se=We,Ee=$e)}}}re[Se][Ee][pe]+=J[ue][he][le][pe]}}}const ce=d.write(Tr(re,s.dtype),i.shape,i.dtype);return{dataId:ce,shape:i.shape,dtype:i.dtype}}};const fq={kernelName:Bu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{x:s,filter:i,dy:o}=e,{strides:a,pad:c,dilations:h}=n,d=t,m=ys(s.shape,d.data.get(s.dataId).values),y=ys(i.shape,d.data.get(i.dataId).values),{batchSize:b,inHeight:w,inWidth:L,inChannels:T,outHeight:A,outWidth:N,padInfo:E,strideHeight:D,strideWidth:F,filterHeight:_,filterWidth:B,dilationHeight:$,dilationWidth:H,outShape:q}=Td(s.shape,i.shape,a,c,"NHWC",h);k(o.rank===q.length,()=>`Error in ${Bu}, dy must have the same rank as output ${q.length}, but got ${o.rank}`);const J=ys(q,d.data.get(o.dataId).values),re=ay(s.shape,s.dtype);for(let ue=0;ue<b;++ue)for(let he=0;he<A;++he){const de=he*D-E.top;for(let le=0;le<N;++le){const ye=le*F-E.left;for(let pe=0;pe<T;++pe){let Ie=Number.MIN_SAFE_INTEGER,Se=de<0?0:de,Ee=ye<0?0:ye;for(let We=0;We<_;++We){const Oe=de+We*$;if(Oe>=0&&Oe<w)for(let $e=0;$e<B;++$e){const Ye=ye+$e*H;if(Ye>=0&&Ye<L){const et=m[ue][Oe][Ye][pe]+y[We][$e][pe];et>Ie&&(Ie=et,Se=Oe,Ee=Ye)}}}re[ue][Se][Ee][pe]+=J[ue][he][le][pe]}}}const ce=d.write(Tr(re,s.dtype),s.shape,s.dtype);return{dataId:ce,shape:s.shape,dtype:s.dtype}}};const gq=$o((e,t)=>e/t),yq=ec(pa,gq),VL={kernelName:pa,backendName:"cpu",kernelFunc:yq};const bq=xt(tl,e=>e>=0?e:Math.exp(e)-1),wq={kernelName:tl,backendName:"cpu",kernelFunc:bq};const Lq=Eb,Sq=Db,Iq=kb,xq=Fb,Tq=_b,Aq=Wb,vq=xt(nl,e=>{const t=Math.sign(e),n=Math.abs(e),s=1/(1+Lq*n);return t*(1-((((Aq*s+Tq)*s+xq)*s+Iq)*s+Sq)*s*Math.exp(-n*n))}),Nq={kernelName:nl,backendName:"cpu",kernelFunc:vq};function y0(e,t,n){const s=e.shape,i=s[0],o=s[1],a=n.data.get(e.dataId),c=a.complexTensorInfos.real,h=a.complexTensorInfos.imag,d=[i,o],m=we(d),y=bn("float32",m),b=bn("float32",m);for(let A=0;A<i;A++){const N=PL({inputs:{x:c},backend:n,attrs:{begin:[A,0],size:[1,o]}}),E=PL({inputs:{x:h},backend:n,attrs:{begin:[A,0],size:[1,o]}}),D=li({inputs:{real:N,imag:E},backend:n}),{real:F,imag:_}=Cq(D,t,n),B=Zi(F,_);for(let $=0;$<o;$++){const H=$b(B,$);y[A*o+$]=H.real,b[A*o+$]=H.imag}n.disposeIntermediateTensorInfo(N),n.disposeIntermediateTensorInfo(E),n.disposeIntermediateTensorInfo(D)}const w=n.makeTensorInfo(d,"float32",y),L=n.makeTensorInfo(d,"float32",b),T=li({inputs:{real:w,imag:L},backend:n});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(L),T}function Cq(e,t,n){const s=we(e.shape),i=n.data.get(e.dataId),o=n.data.get(i.complexTensorInfos.real.dataId).values,a=n.data.get(i.complexTensorInfos.imag.dataId).values;if(Rq(s)){const c=YL(o,a,s,t,n),h=[e.shape[0],e.shape[1]];if(t){const d=n.makeTensorInfo(h,"float32",c.real),m=n.makeTensorInfo(h,"float32",c.imag),y=n.makeTensorInfo([],"float32",_x(s,"float32")),b=Qa({inputs:{x:y},backend:n}),w=VL.kernelFunc({inputs:{a:d,b:y},backend:n}),L=VL.kernelFunc({inputs:{a:m,b},backend:n}),T=n.data.get(w.dataId).values,A=n.data.get(L.dataId).values;return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(L),{real:T,imag:A}}return c}else{const c=Zi(o,a),h=Oq(c,s,t);return vA(h)}}function Rq(e){return(e&e-1)===0}function YL(e,t,n,s,i){if(n===1)return{real:e,imag:t};const o=Zi(e,t),a=n/2,c=NA(o),h=c.real,d=c.imag,m=[h.length],y=i.makeTensorInfo(m,"float32",h),b=i.makeTensorInfo(m,"float32",d),w=li({inputs:{real:y,imag:b},backend:i}),L=CA(o),T=L.real,A=L.imag,N=[T.length],E=i.makeTensorInfo(N,"float32",T),D=i.makeTensorInfo(N,"float32",A),F=li({inputs:{real:E,imag:D},backend:i}),_=YL(h,d,a,s,i),B=_.real,$=_.imag,H=[B.length],q=i.makeTensorInfo(H,"float32",B),J=i.makeTensorInfo(H,"float32",$),re=li({inputs:{real:q,imag:J},backend:i}),ce=YL(T,A,a,s,i),ue=ce.real,he=ce.imag,de=[ue.length],le=i.makeTensorInfo(de,"float32",ue),ye=i.makeTensorInfo(de,"float32",he),pe=li({inputs:{real:le,imag:ye},backend:i}),Ie=OA(n,s),Se=[Ie.real.length],Ee=i.makeTensorInfo(Se,"float32",Ie.real),We=i.makeTensorInfo(Se,"float32",Ie.imag),Oe=li({inputs:{real:Ee,imag:We},backend:i}),$e=h0({inputs:{a:Oe,b:pe},backend:i}),Ye=n0({inputs:{a:re,b:$e},backend:i}),et=m0({inputs:{a:re,b:$e},backend:i}),bt=Vh({inputs:{input:Ye},backend:i}),Jt=Vh({inputs:{input:et},backend:i}),un=jp({inputs:{input:Ye},backend:i}),ls=jp({inputs:{input:et},backend:i}),Yt=Hh({inputs:[bt,Jt],backend:i,attrs:{axis:0}}),$n=Hh({inputs:[un,ls],backend:i,attrs:{axis:0}}),hi=i.data.get(Yt.dataId).values,vs=i.data.get($n.dataId).values;return i.disposeIntermediateTensorInfo(y),i.disposeIntermediateTensorInfo(b),i.disposeIntermediateTensorInfo(w),i.disposeIntermediateTensorInfo(E),i.disposeIntermediateTensorInfo(D),i.disposeIntermediateTensorInfo(F),i.disposeIntermediateTensorInfo(q),i.disposeIntermediateTensorInfo(J),i.disposeIntermediateTensorInfo(re),i.disposeIntermediateTensorInfo(le),i.disposeIntermediateTensorInfo(ye),i.disposeIntermediateTensorInfo(pe),i.disposeIntermediateTensorInfo(Ee),i.disposeIntermediateTensorInfo(We),i.disposeIntermediateTensorInfo(Oe),i.disposeIntermediateTensorInfo($e),i.disposeIntermediateTensorInfo(Ye),i.disposeIntermediateTensorInfo(et),i.disposeIntermediateTensorInfo(bt),i.disposeIntermediateTensorInfo(un),i.disposeIntermediateTensorInfo(Jt),i.disposeIntermediateTensorInfo(ls),i.disposeIntermediateTensorInfo(Yt),i.disposeIntermediateTensorInfo($n),{real:hi,imag:vs}}function Oq(e,t,n){const s=new Float32Array(t*2);for(let i=0;i<t;i++){let o=0,a=0;for(let c=0;c<t;c++){const h=EA(i*c,t,n),d=$b(e,c);o+=d.real*h.real-d.imag*h.imag,a+=d.real*h.imag+d.imag*h.real}n&&(o/=t,a/=t),RA(s,o,a,i)}return s}function Eq(e){const{inputs:t,backend:n}=e,{input:s}=t,i=we(s.shape),o=s.shape[s.shape.length-1],a=i/o,c=Hr({inputs:{x:s},backend:n,attrs:{shape:[a,o]}}),h=y0(c,!1,n),d=Hr({inputs:{x:h},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}const Dq={kernelName:gg,backendName:"cpu",kernelFunc:Eq};const kq={kernelName:Pu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{image:s}=e,i=n,o=bn(s.dtype,we(s.shape)),[a,c,h,d]=s.shape,m=i.data.get(s.dataId).values;for(let b=0;b<a;b++){const w=b*h*c*d;for(let L=0;L<c;L++){const T=L*(h*d);for(let A=0;A<h;A++){const N=A*d;for(let E=0;E<d;E++){const D=[a,L,A,E],F=D[2],_=Math.round(h-F),B=w+T+N+E;let $=m[B];if(_>=0&&_<h){const H=_*d,q=w+T+H+E;$=m[q]}o[B]=$}}}}const y=i.write(o,s.shape,s.dtype);return{dataId:y,shape:s.shape,dtype:s.dtype}}};function Fq(e){const{inputs:t,backend:n}=e,{input:s}=t,i=we(s.shape),o=s.shape[s.shape.length-1],a=i/o,c=Hr({inputs:{x:s},backend:n,attrs:{shape:[a,o]}}),h=y0(c,!0,n),d=Hr({inputs:{x:h},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}const _q={kernelName:Lg,backendName:"cpu",kernelFunc:Fq};const Wq=xt(cl,e=>Number.isFinite(e)?1:0,"bool"),$q={kernelName:cl,backendName:"cpu",kernelFunc:Wq};const Uq=xt(ll,e=>Math.abs(e)===Infinity?1:0,"bool"),Bq={kernelName:ll,backendName:"cpu",kernelFunc:Uq};const Mq=xt(hl,e=>Number.isNaN(e)?1:0,"bool"),Pq={kernelName:hl,backendName:"cpu",kernelFunc:Mq};const zq=xt(dl,e=>Math.log1p(e)),Gq={kernelName:dl,backendName:"cpu",kernelFunc:zq};const Vq=xt(zu,e=>e?0:1,"bool"),Yq={kernelName:zu,backendName:"cpu",kernelFunc:Vq};const Hq={kernelName:pl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{reductionIndices:i,keepDims:o}=t,a=n;let c=s.shape;const h=c.length,d=ft(i,c);let m=d;const y=kn(m,h);let b=a.data.get(s.dataId).values;if(y!=null){const D=new Array(h);for(let F=0;F<D.length;F++)D[F]=c[y[F]];b=zL(b,c,s.dtype,y,D),m=ws(m.length,h),c=D}xe(s,"max"),es("max",m,h);const[w,L]=Cn(c,m),T=we(L),A=c0(b,T,w,s.dtype),N=a.write(A,w,s.dtype);let E=w;if(o){const D=Rn(w,d);E=D}return{dataId:N,shape:E,dtype:s.dtype}}};function qq(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;xe(i,"maxPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;k(rn(a,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Fn(i.shape,o,a,d,c,h);let y;if(m.filterWidth===1&&m.filterHeight===1&&ot(m.inShape,m.outShape))y=Qa({inputs:{x:i},backend:n});else{const b=n.data.get(i.dataId).values,w=Ot(i.shape),L=GL(b,i.shape,i.dtype,w,m,"max");y=n.makeTensorInfo(m.outShape,i.dtype,L.values)}return y}const jq={kernelName:ml,backendName:"cpu",kernelFunc:qq};function Kq(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o,output:a}=t,c=o;xe([o,a],"maxPoolBackprop");const{filterSize:h,strides:d,pad:m,dimRoundingMode:y}=s,b=Fn(c.shape,h,d,1,m,y),w=n.data.get(c.dataId).values,L=Ze(b.outShape,c.dtype,g0(w,c.shape,c.dtype,b).values),T=b.strideHeight,A=b.strideWidth,N=b.dilationHeight,E=b.dilationWidth,D=b.effectiveFilterHeight,F=b.effectiveFilterWidth,_=F-1-b.padInfo.left,B=D-1-b.padInfo.top,$=Ze(c.shape,"float32"),H=n.data.get(i.dataId).values,q=Ze(i.shape,"float32",H);for(let J=0;J<b.batchSize;++J)for(let re=0;re<b.inChannels;++re)for(let ce=0;ce<b.inHeight;++ce)for(let ue=0;ue<b.inWidth;++ue){const he=ce-B,de=ue-_;let le=0;for(let ye=0;ye<D;ye+=N){const pe=(he+ye)/T;if(pe<0||pe>=b.outHeight||Math.floor(pe)!==pe)continue;for(let Ie=0;Ie<F;Ie+=E){const Se=(de+Ie)/A;if(Se<0||Se>=b.outWidth||Math.floor(Se)!==Se)continue;const Ee=D*F-1-L.get(J,pe,Se,re),We=ye*F+Ie,Oe=Ee===We?1:0;if(Oe===0)continue;const $e=q.get(J,pe,Se,re);le+=$e*Oe}}$.set(le,J,ce,ue,re)}return n.makeTensorInfo($.shape,$.dtype,$.values)}const Xq={kernelName:Gu,backendName:"cpu",kernelFunc:Kq};function Jq(e,t,n,s,i){const o=Ot(t),a=GL(e,t,n,o,i,"max"),c=g0(e,t,n,i,!0,s);return[a.values,c.values]}const Zq={kernelName:Vu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{filterSize:i,strides:o,pad:a,includeBatchInIndex:c}=t,h=n;xe(s,"MaxPoolWithArgmax");const d=h.data.get(s.dataId).values,m=Fn(s.shape,i,o,[1,1],a),[y,b]=Jq(d,s.shape,s.dtype,c,m),w=h.write(y,m.outShape,s.dtype),L=h.write(b,m.outShape,s.dtype);return[{dataId:w,shape:m.outShape,dtype:s.dtype},{dataId:L,shape:m.outShape,dtype:"int32"}]}};const Qq=np,e4={kernelName:Hu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,padToMaxOutputSize:h}=n,d=t;xe(s,"NonMaxSuppressionPadded");const m=d.data.get(s.dataId).values,y=d.data.get(i.dataId).values,{selectedIndices:b,validOutputs:w}=Qq(m,y,o,a,c,h);return[b,w]}};const t4=sp,n4={kernelName:qu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}=n,d=t;xe(s,"NonMaxSuppressionWithScore");const m=d.data.get(s.dataId).values,y=d.data.get(i.dataId).values,b=o,w=a,L=c,T=h,{selectedIndices:A,selectedScores:N}=t4(m,y,b,w,L,T);return[A,N]}};const s4=$o((e,t)=>e!==t?1:0),i4=ec(Yu,s4,null,"bool"),r4={kernelName:Yu,backendName:"cpu",kernelFunc:i4};function o4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{paddings:o,constantValue:a}=s;xe(i,"pad");const c=o.map((E,D)=>E[0]+i.shape[D]+E[1]),h=o.map(E=>E[0]),d=n.data.get(i.dataId).values,m=we(i.shape),y=i.shape.length,b=Ot(i.shape),w=we(c),L=c.length,T=Ot(c),A=bn(i.dtype,w);a!==0&&A.fill(a);for(let E=0;E<m;E++){const D=La(E,y,b),F=D.map((B,$)=>B+h[$]),_=Js(F,L,T);A[_]=d[E]}const N=n.write(A,c,i.dtype);return{dataId:N,shape:c,dtype:i.dtype}}const b0={kernelName:ju,backendName:"cpu",kernelFunc:o4};const a4=xt(gl,e=>1/e),c4={kernelName:gl,backendName:"cpu",kernelFunc:a4};const l4={kernelName:ed,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{image:s}=e,{radians:i,fillValue:o,center:a}=t,c=n,h=bn(s.dtype,we(s.shape)),[d,m,y,b]=s.shape,[w,L]=Cb(a,m,y),T=255,A=Math.sin(i),N=Math.cos(i),E=c.data.get(s.dataId).values;for(let F=0;F<d;F++){const _=F*y*m*b;for(let B=0;B<m;B++){const $=B*(y*b);for(let H=0;H<y;H++){const q=H*b;for(let J=0;J<b;J++){const re=[d,B,H,J],ce=re[2],ue=re[1];let he=(ce-w)*N-(ue-L)*A,de=(ce-w)*A+(ue-L)*N;he=Math.round(he+w),de=Math.round(de+L);let le=o;if(typeof o!="number"&&(J===3?le=T:le=o[J]),he>=0&&he<y&&de>=0&&de<m){const pe=de*(y*b),Ie=he*b,Se=_+pe+Ie+J;le=E[Se]}const ye=_+$+q+J;h[ye]=le}}}}const D=c.write(h,s.shape,s.dtype);return{dataId:D,shape:s.shape,dtype:s.dtype}}};const h4=xt(bl,e=>{const t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),u4={kernelName:bl,backendName:"cpu",kernelFunc:h4};const d4=rp,p4=op,m4=xt(Ll,e=>e>=0?p4*e:d4*(Math.exp(e)-1)),f4={kernelName:Ll,backendName:"cpu",kernelFunc:m4};const g4=xt(xl,e=>1/(1+Math.exp(-e))),y4={kernelName:xl,backendName:"cpu",kernelFunc:g4};const b4=xt(Il,e=>e<0?-1:e>0?1:0),w4={kernelName:Il,backendName:"cpu",kernelFunc:b4};const L4=xt(ma,e=>Math.sin(e)),S4={kernelName:ma,backendName:"cpu",kernelFunc:L4};const I4=xt(Sl,e=>Math.sinh(e)),x4={kernelName:Sl,backendName:"cpu",kernelFunc:I4};const T4=11920928955078125e-23,w0=Math.log(T4)+2,A4=xt(Tl,e=>{const t=e>-w0,n=e<w0,s=Math.exp(e);let i;return n?i=s:t?i=e:i=Math.log(1+s),i}),v4={kernelName:Tl,backendName:"cpu",kernelFunc:A4};function L0(e){const{inputs:t,attrs:n,backend:s}=e,{x:i}=t,{perm:o}=n;xe(i,"transpose");const a=i.shape.length,c=new Array(a);for(let y=0;y<c.length;y++)c[y]=i.shape[o[y]];const h=s.data.get(i.dataId).values,d=zL(h,i.shape,i.dtype,o,c),m=s.write(d,c,i.dtype);return{dataId:m,shape:c,dtype:i.dtype}}const N4={kernelName:Cl,backendName:"cpu",kernelFunc:L0};function C4(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{blockShape:o,paddings:a}=s;xe([i],"spaceToBatchND");const c=we(o),h=[[0,0]];h.push(...a);for(let B=1+o.length;B<i.shape.length;++B)h.push([0,0]);const d=b0.kernelFunc({inputs:{x:i},backend:n,attrs:{paddings:h,constantValue:0}}),m=fh(d.shape,o,c,!1),y=gh(m.length,o.length,!1),b=yh(d.shape,o,c,!1),w={x:d},L={shape:m},T=Hr({inputs:w,backend:n,attrs:L}),A={x:T},N={perm:y},E=L0({inputs:A,backend:n,attrs:N}),D={x:E},F={shape:b},_=Hr({inputs:D,backend:n,attrs:F});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(E),_}const R4={kernelName:Xu,backendName:"cpu",kernelFunc:C4};const O4=xt(Al,e=>Math.sqrt(e)),E4={kernelName:Al,backendName:"cpu",kernelFunc:O4};const D4={kernelName:Ju,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{const{x:n}=e,s=t;xe(n,"square");const i=s.data.get(n.dataId).values,o=new Float32Array(i.length);for(let c=0;c<i.length;++c){const h=i[c];o[c]=h*h}const a=s.write(o,n.shape,n.dtype);return{dataId:a,shape:n.shape,dtype:n.dtype}}};const k4=$o((e,t)=>{const n=e-t;return n*n}),F4=ec(fa,k4),_4={kernelName:fa,backendName:"cpu",kernelFunc:F4};const W4=xt(Rl,(e,t)=>{const n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),$4={kernelName:Rl,backendName:"cpu",kernelFunc:W4};const U4=xt(ga,e=>Math.tan(e)),B4={kernelName:ga,backendName:"cpu",kernelFunc:U4};const M4=xt(Nl,e=>Math.tanh(e)),P4={kernelName:Nl,backendName:"cpu",kernelFunc:M4};function z4(e){const{inputs:t,attrs:n,backend:s}=e,{axis:i}=n,{x:o}=t;xe(o,"unique");const a=s.data.get(o.dataId).values,{outputValues:c,outputShape:h,indices:d}=f0(a,i,o.shape,o.dtype);return[s.makeTensorInfo(h,o.dtype,c),s.makeTensorInfo([d.length],"int32",d)]}const G4={kernelName:Zu,backendName:"cpu",kernelFunc:z4};const V4=[mH,PH,GH,LH,YH,qH,KH,JH,QH,tq,sq,bH,IH,rq,fH,cq,hq,dq,pq,fq,mq,VL,wq,Nq,TH,vH,Dq,kq,CH,gH,_q,oq,$q,Bq,Pq,OH,Gq,Yq,jq,Xq,Zq,Hq,DH,e4,n4,r4,b0,yH,c4,aq,l4,u4,FH,f4,y4,w4,S4,x4,_H,v4,R4,E4,D4,_4,$4,$H,B4,P4,N4,G4];for(const e of V4)nd(e);const Uo={},HL={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Y4(e,t){Uo[e]=t}function _i(e){if(!(e in Uo)){const n=q4(e);if(n!==null)Uo[e]=n;else return console.log("Could not get context for WebGL version",e),null}const t=Uo[e];return t.isContextLost()?(delete Uo[e],_i(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Uo[e])}function H4(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function q4(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");const t=H4(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Uo[e]},!1),e===1?t.getContext("webgl",HL)||t.getContext("experimental-webgl",HL):t.getContext("webgl2",HL)}var qh;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(qh||(qh={}));var As;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(As||(As={}));var Sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Sn||(Sn={}));function jh(e,t){return[t,e]}function j4(e,t){return e*t}function cee(e,t){return[t*4,e]}function Kh(e){const t=we(e),n=Math.ceil(t/4);return sd(n)}function lee(e,t){if(e%t!==0)throw new Error(`unpackedSize (${e}) must be a multiple of ${t}`);return e/t}function hee(e,t,n){const s=e.length*n/4;if(t.length<s)throw new Error(`matrix length (${t.length}) must be >= ${s}`);let i=0;for(let o=0;o<e.length;o+=4)for(let a=0;a<n;a++)t[i++]=e[o+a]}function sc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function K4(e,t){const[n,s]=sc(e,t);return n*s*4}function qL(e,t){const n=e;let s,i,o,a,c,h,d,m,y,b;return C().getNumber("WEBGL_VERSION")===2?(s=n.R32F,i=n.R16F,o=n.RGBA16F,a=n.RGBA32F,c=n.RED,d=4,m=1,y=n.HALF_FLOAT,b=n.FLOAT):(s=e.RGBA,i=e.RGBA,o=e.RGBA,a=n.RGBA,c=e.RGBA,d=4,m=4,y=t!=null?t.HALF_FLOAT_OES:null,b=e.FLOAT),h=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:i,internalFormatPackedHalfFloat:o,internalFormatPackedFloat:a,textureFormatFloat:c,downloadTextureFormat:h,downloadUnpackNumChannels:d,defaultNumChannels:m,textureTypeHalfFloat:y,textureTypeFloat:b}}function Re(e,t){const n=t();return C().getBool("DEBUG")&&X4(e),n}function X4(e){const t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+ej(e,t))}const J4=596e-10,Z4=65504;function Q4(e){return!!(C().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||J4<Math.abs(e)&&Math.abs(e)<Z4)}function ej(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Kp(e,t){return rr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function tj(e,t){const n=rr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Re(e,()=>e.shaderSource(n,t)),Re(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function nj(e,t){const n=rr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Re(e,()=>e.shaderSource(n,t)),Re(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw ij(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}const sj=/ERROR: [0-9]+:([0-9]+):/g;function ij(e,t){const n=sj.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}const s=+n[1],i=e.split(`
`),o=i.length.toString().length+2,a=i.map((y,b)=>co((b+1).toString(),o)+y);let c=0;for(let y=0;y<a.length;y++)c=Math.max(a[y].length,c);const h=a.slice(0,s-1),d=a.slice(s-1,s),m=a.slice(s);console.log(h.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${co(d[0],c)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(m.join(`
`))}function rj(e){return rr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function oj(e,t){if(Re(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function jL(e,t){if(Re(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function aj(e,t){const n=rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Re(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Re(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function cj(e,t){const n=rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Re(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Re(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function uee(){return C().getNumber("WEBGL_VERSION")===2?1:4}function lj(e){return rr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function hj(e,t){const n=C().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){const s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){const s=`[${e}x${t}]`,i=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+i+".")}}function uj(e){return rr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function S0(e,t,n,s,i,o,a){const c=e.getAttribLocation(t,n);return c===-1?!1:(Re(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Re(e,()=>e.vertexAttribPointer(c,i,e.FLOAT,!1,o,a)),Re(e,()=>e.enableVertexAttribArray(c)),!0)}function dj(e,t,n){x0(e,n),Re(e,()=>e.activeTexture(e.TEXTURE0+n)),Re(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function dee(e,t){x0(e,t),Re(e,()=>e.activeTexture(e.TEXTURE0+t)),Re(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function pj(e,t,n){return rr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function mj(e,t,n){return e.getUniformLocation(t,n)}function fj(e,t,n,s){Re(e,()=>dj(e,t,s)),Re(e,()=>e.uniform1i(n,s))}function pee(e){Re(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Re(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Re(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function KL(e,t,n){Re(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Re(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function I0(e,t){Re(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Re(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Xp(e){const t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+gj(e,t))}function gj(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function rr(e,t,n){const s=Re(e,()=>t());if(s==null)throw new Error(n);return s}function x0(e,t){const n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){const i=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${i}.`)}}function ic(e,t=2){return we(e.slice(0,e.length-t))}function rc(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function XL(e){let t=[1,1,1];const n=e.length===0||e.length===1&&e[0]===1;return n||(t=[ic(e),...rc(e)]),t}function yj(e,t=!1){let n=C().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(t&&(n=n*2,e=e.map((i,o)=>o>=e.length-2?ny(e[o]):e[o]),e.length===1&&(e=[2,e[0]])),e.length!==2){const i=Sr(e);e=i.newShape}let s=we(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){const i=ic(e);let o=2,a=2;return e.length&&([o,a]=rc(e)),s=i*(o/2)*(a/2),sd(s).map(c=>c*2)}return sd(s)}function Jp(e){return e%2===0}function Zp(e,t){if(e=e.slice(-2),t=t.slice(-2),ot(e,t))return!0;if(!e.length||!t.length)return!0;if(e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){const n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s)return!0;if(Jp(n)&&Jp(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Jp(e[0])&&Jp(t[0])}let Qp,em;function bj(e){if(Qp==null){const t=_i(e);Qp=t.getParameter(t.MAX_TEXTURE_SIZE)}return Qp}function mee(){Qp=null}function fee(){em=null}function wj(e){if(em==null){const t=_i(e);em=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,em)}function Lj(e){if(e===0)return 0;let t;const n=_i(e);return Ps(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ps(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ps(e,t){const n=e.getExtension(t);return n!=null}function T0(e){try{const t=_i(e);if(t!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Sj(e){if(e===0)return!1;const t=_i(e);if(e===1){if(!Ps(t,"OES_texture_float"))return!1}else if(!Ps(t,"EXT_color_buffer_float"))return!1;const n=JL(t);return n}function Ij(e){if(e===0)return!1;const t=_i(e);if(e===1){if(!Ps(t,"OES_texture_float"))return!1;if(!Ps(t,"WEBGL_color_buffer_float"))return!1}else{if(Ps(t,"EXT_color_buffer_float"))return JL(t);const s="EXT_color_buffer_half_float";if(Ps(t,s)){const i=t.getExtension(s);return xj(t,i)}return!1}const n=JL(t);return n}function JL(e){const t=qL(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);const s=1,i=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,i,0,t.textureFormatFloat,t.textureTypeFloat,null);const o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);const a=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(o),a}function xj(e,t){const n=qL(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);const i=1,o=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,i,o,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);const a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);const c=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(a),c}function Tj(e){if(e!==2)return!1;const t=_i(e),n=t.fenceSync!=null;return n}function Xh(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}const Ge=C();Ge.registerFlag("HAS_WEBGL",()=>Ge.getNumber("WEBGL_VERSION")>0),Ge.registerFlag("WEBGL_VERSION",()=>T0(2)?2:T0(1)?1:0),Ge.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1),Ge.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ge.get("WEBGL_VERSION")===2),Ge.registerFlag("WEBGL_CPU_FORWARD",()=>!0),Ge.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1),Ge.registerFlag("WEBGL_PACK",()=>Ge.getBool("HAS_WEBGL")),Ge.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_CLIP",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1),Ge.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_PACK_REDUCE",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_CONV_IM2COL",()=>Ge.getBool("WEBGL_PACK")),Ge.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>bj(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>wj(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{const e=Ge.getNumber("WEBGL_VERSION");return e===0?0:Lj(e)}),Ge.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ge.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Yx()),Ge.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Sj(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ge.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ge.getBool("WEBGL_RENDER_FLOAT32_CAPABLE")),Ge.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Ij(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Tj(Ge.getNumber("WEBGL_VERSION"))),Ge.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>{const e=Ge.getBool("WEBGL_RENDER_FLOAT32_ENABLED");return e?4:0}),Ge.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});const{simpleAbsImpl:Aj,addImpl:vj,ceilImpl:Nj,expImpl:Cj,expm1Impl:Rj,floorImpl:Oj,logImpl:Ej,maxImpl:Dj,multiplyImpl:kj,rsqrtImpl:Fj,sliceImpl:_j,subImpl:Wj,transposeImpl:A0,uniqueImpl:$j}=UH;class Uj{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((i,o)=>`T${o}`);const n=[];this.variableNames.forEach(i=>{n.push(`float v${i} = get${i}AtOutCoords();`)});const s=this.variableNames.map(i=>`v${i}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}}class Bj{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((i,o)=>`T${o}`);const n=[];this.variableNames.forEach(i=>{n.push(`vec4 v${i} = get${i}AtOutCoords();`)});const s=this.variableNames.map(i=>`v${i}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}}class Mj{constructor(e,t,n){this.variableNames=["A"];const{windowSize:s,batchSize:i,outSize:o}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[i,o];const a=t==="max"?">":"<",c=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${c};
float candidate = getA(batch, inIdx);
if (candidate ${a} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}}function v0(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function cs(e,t){return t===1?[e]:v0(e,t)}function Pj(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}function Wn(){let e,t,n,s,i,o,a,c,h,d;return C().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",i="texture",o="outputColor",a="out vec4 outputColor;",c=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,h="",d=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",i="texture2D",o="gl_FragColor",a="",c=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,h=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,d=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:i,output:o,defineOutput:a,defineSpecialNaN:c,defineSpecialInf:h,defineRound:d}}function Bo(e,t,n="index"){const s=Ot(t);return s.map((i,o)=>{const a=`int ${e[o]} = ${n} / ${i}`,c=o===s.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${i}`:`index -= ${e[o]} * ${i}`;return`${a}; ${c};`}).join("")}function tm(e){return e.length===1?`${e[0]}`:`vec${e.length}(${e.join(",")})`}function gee(e,t){if(e.length!==t.length)throw new Error(`Vectors to be dotted must be of the same length -got ${e.length} and ${t.length}`);const n=[],s=Math.floor(e.length/4),i=e.length%4;for(let o=0;o<s;o++){const a=e.slice(o*4,o*4+4),c=t.slice(o*4,o*4+4);n.push(`${tm(a)}, ${tm(c)}`)}if(i!==0){let o=e.slice(s*4),a=t.slice(s*4);o.length===1&&(o=o.map(c=>`float(${c})`),a=a.map(c=>`float(${c})`)),n.push(`${tm(o)}, ${tm(a)}`)}return n.map((o,a)=>`dot(${o})`).join("+")}function ZL(e){const t=Ot(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}const N0=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;const{getBroadcastDims:C0}=Bb;function zj(e,t,n,s){const i=[];e.forEach(L=>{const T=we(L.shapeInfo.logicalShape);L.shapeInfo.isUniform?i.push(`uniform float ${L.name}${T>1?`[${T}]`:""};`):(i.push(`uniform sampler2D ${L.name};`),i.push(`uniform int offset${L.name};`))});const o=i.join(`
`),a=e.map(L=>Gj(L,t,s)).join(`
`),c=t.texShape,h=Wn(),d=Hj(h);let m,y,b=Kj(h);t.isPacked?(m=Vj(t.logicalShape,c),y=jj(h)):(m=Yj(t.logicalShape,c),y=qj(h)),s&&(b+=Qj);const w=[b,d,y,o,m,a,n].join(`
`);return w}function oc(e){const t=e.shapeInfo.logicalShape;switch(t.length){case 0:return uK(e);case 1:return pK(e);case 2:return fK(e);case 3:return yK(e);case 4:return wK(e);case 5:return LK(e);case 6:return SK(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function R0(e){const t=e.shapeInfo.logicalShape;switch(t.length){case 0:return hK(e);case 1:return dK(e);case 2:return mK(e);case 3:return gK(e);default:return bK(e)}}function Gj(e,t,n=!1){let s="";n?s+=R0(e):s+=oc(e);const i=e.shapeInfo.logicalShape,o=t.logicalShape;return i.length<=o.length&&(n?s+=IK(e,t):s+=xK(e,t)),s}function Vj(e,t){switch(e.length){case 0:return O0();case 1:return eK(e,t);case 2:return cK(e,t);case 3:return nK(e,t);default:return iK(e,t)}}function Yj(e,t){switch(e.length){case 0:return O0();case 1:return tK(e,t);case 2:return lK(e,t);case 3:return sK(e,t);case 4:return rK(e,t);case 5:return oK(e,t);case 6:return aK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Hj(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function qj(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function jj(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function Kj(e){const t=`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${Xj}
${Jj}
${Zj}
`;return t}const Xj=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Jj=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Zj=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Qj=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function O0(){return`
int getOutputCoords() {
return 0;
}
`}function eK(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function tK(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function nK(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),i=s*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${i};
index -= b * ${i};
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec3(b, r, c);
}
`}function sK(e,t){const n=Bo(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function iK(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[e.length-1]/2),i=s*Math.ceil(e[e.length-2]/2);let o=i,a="",c="b, r, c";for(let h=2;h<e.length-1;h++)o*=e[e.length-h-1],a=`
int b${h} = index / ${o};
index -= b${h} * ${o};
`+a,c=`b${h}, `+c;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${a}
int b = index / ${i};
index -= b * ${i};
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec${e.length}(${c});
}
`}function rK(e,t){const n=Bo(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function oK(e,t){const n=Bo(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function aK(e,t){const n=Bo(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function cK(e,t){const n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(ot(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;const s=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec2(r, c);
}
`}function lK(e,t){return ot(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Mo(e){return`offset${e}`}function hK(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Wn();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function uK(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;const[s,i]=e.shapeInfo.texShape;if(s===1&&i===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;const[o,a]=e.shapeInfo.texShape,c=Mo(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${o}, ${a}, ${c});
return sampleTexture(${t}, uv);
}
`}function dK(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=Wn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${o.texture2D}(${t}, uv);
}
`}function pK(e){const t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${ac(e)}
}
`;const s=e.shapeInfo.texShape,i=s[0],o=s[1];if(o===1&&i===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;const a=Mo(t);return o===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${i}.0);
return sampleTexture(${t}, uv);
}
`:i===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${i}, ${o}, index + ${a});
return sampleTexture(${t}, uv);
}
`}function mK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=e.shapeInfo.texShape,o=i[0],a=i[1],c=Wn();if(i!=null&&ot(t,i))return`
vec4 ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${o}.0);
return ${c.texture2D}(${n}, uv);
}
`;const h=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],d=Math.ceil(t[1]/2);return`
vec4 ${s}(int row, int col) {
vec2 uv = packedUVfrom2D(${d}, ${h[0]}, ${h[1]}, row, col);
return ${c.texture2D}(${n}, uv);
}
`}function fK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=e.shapeInfo.texShape;if(i!=null&&ot(t,i)){const y=i[0],b=i[1];return`
float ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${b}.0, ${y}.0);
return sampleTexture(${n}, uv);
}
`}const{newShape:o,keptDims:a}=Sr(t),c=o;if(c.length<t.length){const y=cc(e,c),b=["row","col"];return`
${oc(y)}
float ${s}(int row, int col) {
return ${s}(${lc(b,a)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${ac(e)}
}
`;const h=i[0],d=i[1],m=Mo(n);return d===1?`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${m}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${h}.0);
return sampleTexture(${n}, uv);
}
`:h===1?`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${m}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${m};
vec2 uv = uvFromFlat(${h}, ${d}, index);
return sampleTexture(${n}, uv);
}
`}function gK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=e.shapeInfo.texShape,o=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)];if(t[0]===1){const y=t.slice(1),b=[1,2],w=cc(e,y),L=["b","row","col"];return`
${R0(w)}
vec4 ${s}(int b, int row, int col) {
return ${s}(${lc(L,b)});
}
`}const a=o[0],c=o[1],h=Math.ceil(t[2]/2),d=h*Math.ceil(t[1]/2),m=Wn();return`
vec4 ${s}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${c}, ${d}, ${h}, b, row, col);
return ${m.texture2D}(${n}, uv);
}
`}function yK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=t[1]*t[2],o=t[2],{newShape:a,keptDims:c}=Sr(t),h=a;if(h.length<t.length){const L=cc(e,h),T=["row","col","depth"];return`
${oc(L)}
float ${s}(int row, int col, int depth) {
return ${s}(${lc(T,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${i}, ${o}, 1)));
${ac(e)}
}
`;const d=e.shapeInfo.texShape,m=d[0],y=d[1],b=e.shapeInfo.flatOffset;if(y===i&&b==null)return`
float ${s}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${y}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;if(y===o&&b==null)return`
float ${s}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${y}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;const w=Mo(n);return`
float ${s}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth + ${w};
vec2 uv = uvFromFlat(${m}, ${y}, index);
return sampleTexture(${n}, uv);
}
`}function bK(e){const t=e.shapeInfo.logicalShape,n=t.length,s=e.name,i="get"+s.charAt(0).toUpperCase()+s.slice(1),o=e.shapeInfo.texShape,a=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],c=a[0],h=a[1],d=Math.ceil(t[n-1]/2);let m=d*Math.ceil(t[n-2]/2),y="int b, int row, int col",b=`b * ${m} + (row / 2) * ${d} + (col / 2)`;for(let L=2;L<n-1;L++)y=`int b${L}, `+y,m*=t[n-L-1],b=`b${L} * ${m} + `+b;const w=Wn();return`
vec4 ${i}(${y}) {
int index = ${b};
int texR = index / ${h};
int texC = index - texR * ${h};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}, ${c});
return ${w.texture2D}(${s}, uv);
}
`}function wK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=t[3],o=t[2]*i,a=t[1]*o,{newShape:c,keptDims:h}=Sr(t);if(c.length<t.length){const L=cc(e,c),T=["row","col","depth","depth2"];return`
${oc(L)}
float ${s}(int row, int col, int depth, int depth2) {
return ${s}(${lc(T,h)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${o}, ${i}, 1)));
${ac(e)}
}
`;const d=e.shapeInfo.flatOffset,m=e.shapeInfo.texShape,y=m[0],b=m[1];if(b===a&&d==null)return`
float ${s}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${b}.0, ${y}.0);
return sampleTexture(${n}, uv);
}
`;if(b===i&&d==null)return`
float ${s}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${b}.0, ${y}.0);
return sampleTexture(${n}, uv);
}
`;const w=Mo(n);return`
float ${s}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} +
depth * ${i} + depth2;
vec2 uv = uvFromFlat(${y}, ${b}, index + ${w});
return sampleTexture(${n}, uv);
}
`}function LK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),i=t[4],o=t[3]*i,a=t[2]*o,c=t[1]*a,{newShape:h,keptDims:d}=Sr(t);if(h.length<t.length){const T=cc(e,h),A=["row","col","depth","depth2","depth3"];return`
${oc(T)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${lc(A,d)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${a}, ${o}, ${i})) +
depth3;
${ac(e)}
}
`;const m=e.shapeInfo.flatOffset,y=e.shapeInfo.texShape,b=y[0],w=y[1];if(w===c&&m==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${o}, ${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${w}.0, ${b}.0);
return sampleTexture(${n}, uv);
}
`;if(w===i&&m==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${w}.0, ${b}.0);
return sampleTexture(${n}, uv);
}
`;const L=Mo(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${a} + depth * ${o} +
depth2 * ${i} + depth3 + ${L};
vec2 uv = uvFromFlat(${b}, ${w}, index);
return sampleTexture(${n}, uv);
}
`}function SK(e){const t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:i,keptDims:o}=Sr(t);if(i.length<t.length){const A=cc(e,i),N=["row","col","depth","depth2","depth3","depth4"];return`
${oc(A)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${lc(N,o)});
}
`}const a=t[5],c=t[4]*a,h=t[3]*c,d=t[2]*h,m=t[1]*d;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${m}, ${d}, ${h}, ${c})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${ac(e)}
}
`;const y=e.shapeInfo.flatOffset,b=e.shapeInfo.texShape,w=b[0],L=b[1];if(L===m&&y==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${d}, ${h}, ${c}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${L}.0, ${w}.0);
return sampleTexture(${n}, uv);
}
`;if(L===a&&y==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${L}.0, ${w}.0);
return sampleTexture(${n}, uv);
}
`;const T=Mo(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${m} + col * ${d} + depth * ${h} +
depth2 * ${c} + depth3 * ${a} + depth4 + ${T};
vec2 uv = uvFromFlat(${w}, ${L}, index);
return sampleTexture(${n}, uv);
}
`}function ac(e){const t=e.name,n=we(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function IK(e,t){const n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),i="get"+s+"AtOutCoords",o=e.shapeInfo.logicalShape.length,a=t.logicalShape.length,c=C0(e.shapeInfo.logicalShape,t.logicalShape),h=Et(a),d=a-o;let m;const y=["x","y","z","w","u","v"];o===0?m="":a<2&&c.length>=1?m="coords = 0;":m=c.map(E=>`coords.${y[E+d]} = 0;`).join(`
`);let b="";a<2&&o>0?b="coords":b=e.shapeInfo.logicalShape.map((E,D)=>`coords.${y[D+d]}`).join(", ");let w="return outputValue;";const L=we(e.shapeInfo.logicalShape),T=L===1,A=we(t.logicalShape),N=A===1;if(o===1&&!T&&!N)w=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(T&&!N)a===1?w=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:w=`
return vec4(outputValue.x);
`;else if(c.length){const E=o-2,D=o-1;c.indexOf(E)>-1&&c.indexOf(D)>-1?w="return vec4(outputValue.x);":c.indexOf(E)>-1?w="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":c.indexOf(D)>-1&&(w="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${i}() {
${h} coords = getOutputCoords();
${m}
vec4 outputValue = get${s}(${b});
${w}
}
`}function xK(e,t){const n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),i="get"+s+"AtOutCoords",o=t.texShape,a=e.shapeInfo.texShape,c=e.shapeInfo.logicalShape.length,h=t.logicalShape.length;if(!e.shapeInfo.isUniform&&c===h&&e.shapeInfo.flatOffset==null&&ot(a,o))return`
float ${i}() {
return sampleTexture(${n}, resultUV);
}
`;const d=Et(h),m=C0(e.shapeInfo.logicalShape,t.logicalShape),y=h-c;let b;const w=["x","y","z","w","u","v"];c===0?b="":h<2&&m.length>=1?b="coords = 0;":b=m.map(T=>`coords.${w[T+y]} = 0;`).join(`
`);let L="";return h<2&&c>0?L="coords":L=e.shapeInfo.logicalShape.map((T,A)=>`coords.${w[A+y]}`).join(", "),`
float ${i}() {
${d} coords = getOutputCoords();
${b}
return get${s}(${L});
}
`}function Et(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function cc(e,t){const n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function lc(e,t){return t.map(n=>e[n]).join(", ")}class TK{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);const i=e[e.length-1],o=Math.ceil(i/t);this.outputShape=e.slice(0,-1),o>1&&this.outputShape.push(o),s||this.variableNames.push("bestIndicesA");const a=this.outputShape,c=a.length,h=Et(c),d=cs("coords",c);let m,y;if(o===1){y=c+1;const $=Et(y);m=`
${$} sourceLocR = ${$}(${d.join()}, 0);
++${d[c-1]};
${$} sourceLocG = ${$}(${d.join()}, 0);
++${d[c-2]};
${$} sourceLocA = ${$}(${d.join()}, 0);
--${d[c-1]};
${$} sourceLocB = ${$}(${d.join()}, 0);
--${d[c-2]};`}else y=c,m=`
${h} sourceLocR = coords;
++${d[c-1]};
${h} sourceLocG = coords;
++${d[c-2]};
${h} sourceLocA = coords;
--${d[c-1]};
${h} sourceLocB = coords;
--${d[c-2]};`;const b=["x","y","z","w","u","v"].slice(0,y),w="."+b[y-1],L=b.map($=>"int "+$),T=cs("sourceLocR",y-1).concat("inIdx.r"),A=cs("sourceLocG",y-1).concat("inIdx.g"),N=cs("sourceLocB",y-1).concat("inIdx.b"),E=cs("sourceLocA",y-1).concat("inIdx.a"),D=n==="max"?"greaterThan":"lessThan",F=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${T.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${N.join()}),
getBestIndicesAChannel(${E.join()})));`,_=`vec4(
getAChannel(${T.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${N.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${E.join()}) : 0.)`,B=s?"":`
float getBestIndicesAChannel(${L.join()}) {
return getChannel(getBestIndicesA(${b.join()}),
vec2(${b.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${L.join()}) {
return getChannel(getA(${b.join()}),
vec2(${b.slice(-2).join()}));
}
${B}
void main() {
${h} coords = getOutputCoords();
bool hasNextCol = ${d[c-1]} < ${a[c-1]-1};
bool hasNextRow = ${d[c-2]} < ${a[c-2]-1};
${m}
ivec4 srcIdx = ivec4(sourceLocR${w}, sourceLocG${w},
sourceLocB${w}, sourceLocA${w}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${_};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${F}
vec4 candidate = ${_};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${D}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}}class AK{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;const t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,i=e.strideWidth,o=e.dilationHeight,a=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=c-1-e.padInfo.top,m=h-1-e.padInfo.left,y=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${d}, ${m});
const float avgMultiplier = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${c};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${h};
wC+= ${a}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}}class vK{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;const t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,a=e.strideWidth,c=e.dilationDepth,h=e.dilationHeight,d=e.dilationWidth,m=e.effectiveFilterDepth,y=e.effectiveFilterHeight,b=e.effectiveFilterWidth,w=m-1-e.padInfo.front,L=y-1-e.padInfo.top,T=b-1-e.padInfo.left,A=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${w}, ${L}, ${T});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${m};
wD += ${c}) {
float dyD = float(dyDCorner + wD) / ${i}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${y};
wR += ${h}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${b};
wC += ${d}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}}const E0={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"};class D0{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=tt(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}}const k0=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,QL="return a + b;",eS="return a - b;",F0="return a * b;",NK=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,CK=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,yee="return (a - b) * (a - b);",RK="return float(a == b);",OK="return float(a != b);",EK="return float(a < b);",DK="return float(a <= b);",kK="return float(a > b);",FK="return float(a >= b);",_K="return float(a >= 1.0 && b >= 1.0);",WK="return float(a >= 1.0 || b >= 1.0);",$K=k0+`
return max(a, b);
`,UK=k0+`
return min(a, b);
`,BK=`if (b == 0.0) return NAN;
return mod(a, b);`,MK="return (b >= 1.0) ? a : a * (b + 1.0);",_0="return (a < 0.) ? b * a : a;";class hn{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=tt(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}}const nm=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,PK=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,zK=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+nm+`
return result;
`,W0=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`,GK=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,VK=`
return vec4(equal(a, b));
`,YK=`
return vec4(notEqual(a, b));
`,HK=`
return vec4(lessThan(a, b));
`,qK=`
return vec4(lessThanEqual(a, b));
`,jK=`
return vec4(greaterThan(a, b));
`,KK=`
return vec4(greaterThanEqual(a, b));
`,XK=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,JK=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,ZK=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+nm+`
return result;
`,QK=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+nm+`
return result;
`,e5=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+nm+`
return result;
`;class qr{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=tt(t,n);const i=this.outputShape.length;let o="";if(s)if(i===0||we(this.outputShape)===1)o=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else{const a=Et(i);if(o=`
${a} coords = getOutputCoords();
`,i===1)o+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{const c=cs("coords",i);o+=`
bool nextRowOutOfBounds =
(${c[i-2]} + 1) >= ${this.outputShape[i-2]};
bool nextColOutOfBounds =
(${c[i-1]} + 1) >= ${this.outputShape[i-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${o}
setOutput(result);
}
`}}class t5{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,s)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(s,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(s,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}}class n5{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,s)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(s,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(s,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}}class s5{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}}class i5{constructor(e){this.outputShape=[],this.outputShape=Or(e,1),this.variableNames=e.map((o,a)=>`T${a}`);const t=new Array(e.length-1);t[0]=e[0][1];for(let o=1;o<t.length;o++)t[o]=t[o-1]+e[o][1];const n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let o=1;o<t.length;o++){const a=t[o-1];n.push(`else if (yC < ${t[o]}) setOutput(getT${o}(yR, yC-${a}));`)}const s=t.length,i=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${i}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}}class r5{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=Or(e,t);const n=this.outputShape,s=n.length,i=Et(s),o=cs("coords",s),a=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((L,T)=>`T${T}`);const c=new Array(e.length-1);c[0]=e[0][t];for(let L=1;L<c.length;L++)c[L]=c[L-1]+e[L][t];const h=a[t],d=a.slice(-2),m=a.join();let y=`if (${h} < ${c[0]}) {
return getChannel(
getT0(${m}), vec2(${d.join()}));
}`;for(let L=1;L<c.length;L++){const T=c[L-1];y+=`
if (${h} < ${c[L]} && ${h} >= ${c[L-1]}) {
return getChannel(
getT${L}(${sm(a,h,T)}),
vec2(${sm(d,h,T)}));
}`}const b=c.length,w=c[c.length-1];y+=`
return getChannel(
getT${b}(${sm(a,h,w)}),
vec2(${sm(d,h,w)}));`,this.userCode=`
float getValue(${a.map(L=>"int "+L)}) {
${y}
}
void main() {
${i} coords = getOutputCoords();
vec4 result = vec4(getValue(${o}), 0., 0., 0.);
${o[s-1]} = ${o[s-1]} + 1;
if (${o[s-1]} < ${n[s-1]}) {
result.g = getValue(${o});
}
${o[s-2]} = ${o[s-2]} + 1;
if (${o[s-2]} < ${n[s-2]}) {
result.a = getValue(${o});
}
${o[s-1]} = ${o[s-1]} - 1;
if (${o[s-2]} < ${n[s-2]} &&
${o[s-1]} < ${n[s-1]}) {
result.b = getValue(${o});
}
setOutput(result);
}
`}}function sm(e,t,n){const s=e.indexOf(t),i=e.map((o,a)=>a===s?`${o} - ${n}`:o);return i.join()}class o5{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,i=e.padInfo.left,o=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${o}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}}class a5{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,i=e.strideWidth,o=e.dataFormat==="channelsLast",a=t-1-e.padInfo.top,c=n-1-e.padInfo.left,h=o?1:2,d=o?2:3,m=o?3:1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${m}];
ivec2 dyCorner = ivec2(coords[${h}], coords[${d}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${o}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}}class c5{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,i=e.padInfo.front,o=e.padInfo.top,a=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${o};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}}class l5{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,a=e.strideWidth,c=t-1-e.padInfo.front,h=n-1-e.padInfo.top,d=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${c}, ${h}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${i}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}}class h5{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;const t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,i=e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${o} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}}class u5{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;const t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.top,a=n-1-e.padInfo.left,c=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${o}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${c}; dm++) {
int d2 = d1 * ${c} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}}class $0{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;const i=e.padInfo.top,o=e.padInfo.left,a=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,m=e.filterHeight,y=e.filterWidth,b=Math.floor(e.inChannels/4)*4,w=e.inChannels%4,L=e.dataFormat==="channelsLast",T=L?1:2,A=L?2:3,N=L?3:1;let E="",D="";n&&(s?E=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:E=`
float activation(float x) {
${n}
}
`,D="result = activation(result);");const F=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${E}
const ivec2 strides = ivec2(${a}, ${c});
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${N}];
ivec2 xRCCorner =
ivec2(coords[${T}], coords[${A}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${y}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${b}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${L}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${w===1}) {
if (${L}) {
dotProd +=
getX(batch, xR, xC, ${b}) *
getW(wR, wC, ${b}, d2);
} else {
dotProd +=
getX(batch, ${b}, xR, xC) *
getW(wR, wC, ${b}, d2);
}
} else if (${w===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${b}, d2),
getW(wR, wC, ${b} + 1, d2)
);
if (${L}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${b}),
getX(batch, xR, xC, ${b} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${b}, xR, xC),
getX(batch, ${b} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${w===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${b}, d2),
getW(wR, wC, ${b} + 1, d2),
getW(wR, wC, ${b} + 2, d2)
);
if (${L}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${b}),
getX(batch, xR, xC, ${b} + 1),
getX(batch, xR, xC, ${b} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${b}, xR, xC),
getX(batch, ${b} + 1, xR, xC),
getX(batch, ${b} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${F}
${D}
setOutput(result);
}
`}}class d5{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;const t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,i=e.strideDepth,o=e.strideHeight,a=e.strideWidth,c=e.dilationDepth,h=e.dilationHeight,d=e.dilationWidth,m=e.filterDepth,y=e.filterHeight,b=e.filterWidth,w=Math.floor(e.inChannels/4)*4,L=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${i}, ${o}, ${a});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${m}; wF++) {
int xF = xFCorner + wF * ${c};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${y}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${w}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${L===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${w}) *
getW(wF, wR, wC, ${w}, d2);
} else if (${L===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${w}),
getX(batch, xF, xR, xC, ${w} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${w}, d2),
getW(wF, wR, wC, ${w} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${L===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${w}),
getX(batch, xF, xR, xC, ${w} + 1),
getX(batch, xF, xR, xC, ${w} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${w}, d2),
getW(wF, wR, wC, ${w} + 1, d2),
getW(wF, wR, wC, ${w} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}}class U0{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;const i=e.inHeight,o=e.inWidth,a=e.padInfo.top,c=e.padInfo.left,h=e.strideHeight,d=e.strideWidth,m=e.dilationHeight,y=e.dilationWidth,b=e.filterHeight,w=e.filterWidth,L=e.outChannels/e.inChannels;let T="",A="";n&&(s?T=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:T=`
float activation(float x) {
${n}
}
`,A="result = activation(result);");const N=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${T}
const ivec2 strides = ivec2(${h}, ${d});
const ivec2 pads = ivec2(${a}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${L};
int q = d2 - d1 * ${L};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${b}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${i}) {
continue;
}
for (int wC = 0; wC < ${w}; wC++) {
int xC = xCCorner + wC * ${y};
if (xC < 0 || xC >= ${o}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${N}
${A}
setOutput(result);
}
`}}class B0{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;const i=e.inHeight,o=e.inWidth,a=e.padInfo.top,c=e.padInfo.left,h=e.strideHeight,d=e.strideWidth,m=e.dilationHeight,y=e.dilationWidth,b=e.filterHeight,w=e.filterWidth,L=w;let T="int xR; int xC; int xCOffset;";for(let D=0;D<b;D++)for(let F=0;F<w;F++)T+=`
vec4 xTexelR${D}C${F*2} = vec4(0.);
vec4 wR${D}C${F} = vec4(0.);
vec4 xR${D}C${F} = vec4(0.);`;for(let D=0;D<b;D++)for(let F=0;F<L;F++){const _=F*2;if(T+=`
xR = xRCorner + ${D*m};
xC = xCCorner + ${_*y};
`,d===1){if(_<w&&(c%2===1?T+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${i} && xCOffset >= 0 && xCOffset < ${o}) {
xTexelR${D}C${_} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${o}) {
xTexelR${D}C${_}.zw = vec2(0.);
}
} else {
xTexelR${D}C${_} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${i} && xCOffset >= 0 && xCOffset < ${o}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${o}) {
previous.zw = vec2(0.);
}
xR${D}C${_} = vec4(previous.zw, xTexelR${D}C${_}.xy);
} else {
xR${D}C${_} = vec4(0, 0, xTexelR${D}C${_}.xy);
}
`:T+=`
if(xR >= 0 && xR < ${i} && xC >= 0 && xC < ${o}) {
xTexelR${D}C${_} = getX(batch, xR, xC, d1);
} else {
xTexelR${D}C${_} = vec4(0.);
}
xR${D}C${_} = xTexelR${D}C${_};
`,_+1<w)){const B=c%2===0?ny(y):y;y%2===0&&c%2===1||y%2!==0&&c%2!==1?(T+=`
xCOffset = xC + ${c%2} + ${B};
if(xR >= 0 && xR < ${i} &&
xCOffset >= 0 && xCOffset < ${o}) {
xTexelR${D}C${_+2} = getX(batch, xR, xCOffset, d1);
}
`,y>1&&(T+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${i} &&
xCOffset >= 0 && xCOffset < ${o}) {
xTexelR${D}C${_} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${D}C${_} = vec4(0.);
}
`),T+=`
xR${D}C${_+1} = vec4(
xTexelR${D}C${_}.zw, xTexelR${D}C${_+2}.xy);
`):T+=`
xCOffset = xC + ${B};
if(xR >= 0 && xR < ${i} &&
xCOffset >= 0 && xCOffset < ${o}) {
xTexelR${D}C${_+2} = getX(batch, xR, xCOffset, d1);
}
xR${D}C${_+1} = xTexelR${D}C${_+2};
`}}else _<w&&(T+=`
if(xR >= 0 && xR < ${i}) {
`,c%2===1?(T+=`
xCOffset = xC + 1 - ${d};
if(xCOffset >= 0 && xCOffset < ${o}) {
xTexelR${D}C${_} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${D}C${_} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${o}) {
xTexelR${D}C${_+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${D}C${_+2} = vec4(0.);
}
xR${D}C${_} = vec4(
xTexelR${D}C${_}.zw, xTexelR${D}C${_+2}.zw);
`,_+1<w&&(T+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${d};
if(xCOffset >= 0 && xCOffset < ${o}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${D}C${_+1} = vec4(xTexelR${D}C${_+2}.xy, final.xy);
`)):(T+=`
if(xC >= 0 && xC < ${o}) {
xTexelR${D}C${_} = getX(batch, xR, xC, d1);
} else {
xTexelR${D}C${_} = vec4(0.);
}
xCOffset = xC + ${d};
if(xCOffset >= 0 && xCOffset < ${o}) {
xTexelR${D}C${_+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${D}C${_+2} = vec4(0.);
}
xR${D}C${_} = vec4(
xTexelR${D}C${_}.xy, xTexelR${D}C${_+2}.xy);
`,_+1<w&&(T+=`
xR${D}C${_+1} = vec4(
xTexelR${D}C${_}.zw, xTexelR${D}C${_+2}.zw);
`)),T+="}");_<w&&(T+=`
vec4 wTexelR${D}C${_} = getW(${D}, ${_}, d1, q);
wR${D}C${_} = vec4(wTexelR${D}C${_}.xz, wTexelR${D}C${_}.xz);
`,_+1<w&&(T+=`
vec4 wTexelR${D}C${_+1} = getW(${D}, ${_+1}, d1, q);
wR${D}C${_+1} =
vec4(wTexelR${D}C${_+1}.xz, wTexelR${D}C${_+1}.xz);`))}for(let D=0;D<b;D++)for(let F=0;F<w;F++)T+=`dotProd += xR${D}C${F} * wR${D}C${F};`;let A="",N="";n&&(s?A=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:A=`vec4 activation(vec4 x) {
${n}
}`,N="result = activation(result);");const E=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${A}
const ivec2 strides = ivec2(${h}, ${d});
const ivec2 pads = ivec2(${a}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${T}
vec4 result = dotProd;
${E}
${N}
setOutput(result);
}
`}}class p5{constructor(e,t,n,s,i){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];const[o,a,c,h]=e,[d]=t,[m,y]=n;this.outputShape=[d,m,y,h];const b=s==="bilinear"?1:0,[w,L]=[`${a-1}.0`,`${c-1}.0`],[T,A,N]=m>1?[`${(a-1)/(m-1)}`,"(y2-y1) * height_ratio",`y1*${w} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${w}`],[E,D,F]=y>1?[`${(c-1)/(y-1)}`,"(x2-x1) * width_ratio",`x1*${L} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${L}`];this.userCode=`
const float height_ratio = float(${T});
const float width_ratio = float(${E});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${o}) {
return;
}
float height_scale = ${A};
float width_scale = ${D};
float in_y = ${N};
if( in_y < 0.0 || in_y > ${w} ) {
setOutput(float(${i}));
return;
}
float in_x = ${F};
if( in_x < 0.0 || in_x > ${L} ) {
setOutput(float(${i}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${b} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}}class M0{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;const s=e.length,i=t?"0.0":`getX(${P0(s,"coords")})`,o=e[e.length-1];let a="",c="";t?(a=n?`end != ${o-1}`:"end != 0",c=n?"end + 1":"end - 1"):(a=n?`end + pow2 < ${o}`:"end >= pow2",c=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Et(s)} coords = getOutputCoords();
int end = ${z0(s,"coords")};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${a}) {
int idx = ${c};
${z0(s,"coords")} = idx;
val += getX(${P0(s,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}}function P0(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function z0(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}class m5{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=qh.DENSE;const t=Kh(e),n=Wn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Bo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}}class f5{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=qh.DENSE;const t=Kh(e),n=Wn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Bo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}}class g5{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}}class y5{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}}class b5{constructor(e){this.variableNames=["A"],this.outTexUsage=As.DOWNLOAD;const t=Wn();this.outputShape=e,this.userCode=`
${N0}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}}class w5{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=As.DOWNLOAD;const t=Wn();this.outputShape=e,this.userCode=`
${N0}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}}class L5{constructor(e,t,n=!1){this.variableNames=["A"];const s=Wn(),[i,o]=t;this.outputShape=e;let a="result";n&&(a="floor(result * 255. + 0.5)"),this.userCode=`
${ZL(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${o};
int c = imod(flatIndex, ${o});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${o}.0, ${i}.0);
vec4 values = ${s.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${s.output} = vec4(${a}, 0., 0., 0.);
}
`}}class S5{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const s=Wn(),[i,o]=t;this.outputShape=e;let a="",c="result";n&&(c="floor(result * 255. + 0.5)");for(let h=0;h<=1;h++)for(let d=0;d<=1;d++){const m=h*2+d;a+=`
localCoords = coords;
if(localCoords[2] + ${d} < ${e[2]}) {
localCoords[2] += ${d};
if(localCoords[1] + ${h} < ${e[1]}) {
localCoords[1] += ${h};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${o};
c = imod(flatIndex, ${o});
uv = (vec2(c, r) + halfCR) / vec2(${o}.0, ${i}.0);
values = ${s.texture2D}(A, uv);
if(offset == 0) {
result[${m}] = values[0];
} else if(offset == 1) {
result[${m}] = values[1];
} else if(offset == 2) {
result[${m}] = values[2];
} else {
result[${m}] = values[3];
}
}
}
`}this.userCode=`
${ZL(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${s.output} = ${c};
}
`}}const G0={REAL:"return real * expR - imag * expI;",IMAG:"return real * expI + imag * expR;"};class V0{constructor(e,t,n){this.variableNames=["real","imag"];const s=t[1];this.outputShape=t;const i=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,o=n?`${s}.0`:"1.0";this.userCode=`
const float exponentMultiplier = ${i};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${e}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${o};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}}class I5{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}}class x5{constructor(e,t,n){this.variableNames=["A","indices"];const s=e.slice();s[n]=t,this.outputShape=s,this.rank=s.length;const i=Et(this.rank),o=T5(e,n);this.userCode=`
void main() {
${i} resRC = getOutputCoords();
setOutput(getA(${o}));
}
`}}function T5(e,t){const n=e.length;if(n>4)throw Error(`Gather for rank ${n} is not yet supported`);if(n===1)return"int(getIndices(resRC))";const s=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[];for(let o=0;o<e.length;o++)o===t?i.push(`int(getIndices(${s[o]}))`):i.push(`${s[o]}`);return i.join()}class A5{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;const s=Et(t.length),i=Et(n.length),o=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${s} strides = ${s}(${this.strides});
void main() {
${i} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${o};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}}function v5(e){const t=Wn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return tj(e,n)}function N5(e){const t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return aj(e,t)}function C5(e){const t=new Uint16Array([0,1,2,2,1,3]);return cj(e,t)}function Jh(e,t,n,s,i,o){hj(t,n);const a=lj(e),c=e.TEXTURE_2D;return Re(e,()=>e.bindTexture(c,a)),Re(e,()=>e.texParameteri(c,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Re(e,()=>e.texParameteri(c,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Re(e,()=>e.texParameteri(c,e.TEXTURE_MIN_FILTER,e.NEAREST)),Re(e,()=>e.texParameteri(c,e.TEXTURE_MAG_FILTER,e.NEAREST)),Re(e,()=>e.texImage2D(c,0,s,t,n,0,i,o,null)),Re(e,()=>e.bindTexture(e.TEXTURE_2D,null)),a}function Y0(e){return e.internalFormatFloat}function R5(e,t,n,s){const[i,o]=jh(t,n);return Jh(e,i,o,Y0(s),s.textureFormatFloat,e.FLOAT)}function H0(e){return e.internalFormatHalfFloat}function O5(e,t,n,s){const[i,o]=jh(t,n);return Jh(e,i,o,H0(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function q0(e){return e.downloadTextureFormat}function E5(e,t,n,s){const[i,o]=jh(t,n);return Jh(e,i,o,q0(s),e.RGBA,e.UNSIGNED_BYTE)}function j0(e){return e.internalFormatPackedFloat}function D5(e,t,n,s){const[i,o]=sc(t,n);return Jh(e,i,o,j0(s),e.RGBA,e.FLOAT)}function K0(e){return e.internalFormatPackedHalfFloat}function k5(e,t,n,s){const[i,o]=sc(t,n);return Jh(e,i,o,K0(s),e.RGBA,s.textureTypeHalfFloat)}function F5(e,t,n){const s=0,i=3*4,o=3*4+2*4;Re(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n));const a=S0(e,t,"clipSpacePos",n,3,o,s);return a&&S0(e,t,"uv",n,2,o,i)}function _5(e,t,n,s,i,o){Re(e,()=>e.bindTexture(e.TEXTURE_2D,t));let a,c,h;i instanceof Uint8Array?(a=new Uint8Array(n*s*4),c=e.UNSIGNED_BYTE,h=e.RGBA):(a=new Float32Array(n*s*4),c=e.FLOAT,h=o.internalFormatPackedFloat),a.set(i),Re(e,()=>e.texImage2D(e.TEXTURE_2D,0,h,n,s,0,e.RGBA,c,a)),Re(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function W5(e,t,n){Re(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Re(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Re(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Re(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function $5(e,t,n,s){const i=e.createBuffer();Re(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,i));const o=4,a=4,c=o*a*t*n;return Re(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,c,e.STREAM_READ)),Re(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Re(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),i}function U5(e,t,n){const s=e,i=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,i),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),i}function B5(e,t,n,s){const[i,o]=jh(t,n),a=4,c=new Uint8Array(j4(t*n,a));return Re(e,()=>e.readPixels(0,0,i,o,s.downloadTextureFormat,e.UNSIGNED_BYTE,c)),new Float32Array(c.buffer)}function M5(e,t,n,s,i,o,a,c){const h=e,d=new Float32Array(K4(o,a));return h.bindBuffer(h.PIXEL_PACK_BUFFER,t),h.getBufferSubData(h.PIXEL_PACK_BUFFER,0,d),h.bindBuffer(h.PIXEL_PACK_BUFFER,null),d}function P5(e,t,n){const s=new Float32Array(t*n*4);return Re(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}class z5{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];const t=C().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Y4(t,e)):this.gl=_i(t);let n="WEBGL_color_buffer_float";const s="EXT_color_buffer_half_float";if(C().getNumber("WEBGL_VERSION")===1){const i="OES_texture_float",o="OES_texture_half_float";if(this.textureFloatExtension=Kp(this.gl,i),Ps(this.gl,o))this.textureHalfFloatExtension=Kp(this.gl,o);else if(C().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ps(this.gl,s))this.colorBufferHalfFloatExtension=Kp(this.gl,s);else if(C().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ps(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ps(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=N5(this.gl),this.indexBuffer=C5(this.gl),this.framebuffer=uj(this.gl),this.textureConfig=qL(this.gl,this.textureHalfFloatExtension)}get debug(){return C().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");const e=this.gl;Re(e,()=>e.finish()),Re(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Re(e,()=>e.deleteFramebuffer(this.framebuffer)),Re(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Re(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Re(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),R5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),O5(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),E5(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),W5(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),_5(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),k5(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),D5(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(I0(this.gl,this.framebuffer),this.outputTexture=null),Re(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>B5(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,i,o){return M5(this.gl,e,t,n,s,i,o,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return U5(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);const s=$5(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){const e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(C().getBool("WEBGL_FENCE_API_ENABLED")){const s=e,i=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{const o=s.clientWaitSync(i,0,0);return o===s.ALREADY_SIGNALED||o===s.CONDITION_SATISFIED},t=i}else C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>P5(this.gl,t,n))}createProgram(e){this.throwIfDisposed();const t=this.gl,n=nj(t,e),s=v5(t),i=rj(t);return Re(t,()=>t.attachShader(i,s)),Re(t,()=>t.attachShader(i,n)),oj(t,i),this.debug&&jL(t,i),this.vertexAttrsAreBound||(this.setProgram(i),this.vertexAttrsAreBound=F5(t,this.program,this.vertexBuffer)),i}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Re(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&jL(this.gl,this.program),Re(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?pj(this.gl,e,t):mj(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Re(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),fj(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();const[s,i]=sc(t,n);this.setOutputMatrixTextureDriver(e,s,i)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&jL(this.gl,this.program),Xp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();const e=this.gl;this.debug&&this.debugValidate(),Re(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Re(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Kp(this.gl,C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const n=this.gl,s=this.getQueryTimerExtensionWebGL2(),i=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,i),i}const e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){const t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}const e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await sy(()=>this.disposed||this.isQueryAvailable(e,C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){const n=this.gl,s=n.getQueryParameter(e,n.QUERY_RESULT);return s/1e6}else{const n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT);return s/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){const n=this.gl,s=this.getQueryTimerExtensionWebGL2(),i=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),i&&!this.disjoint}else{const n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){const e=G5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){const{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;sy(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),KL(this.gl,e,this.framebuffer),this.debug&&Xp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(KL(this.gl,this.outputTexture,this.framebuffer),this.debug&&Xp(this.gl)):I0(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);const n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();const s=this.gl;KL(s,e,this.framebuffer),this.debug&&Xp(s),this.outputTexture=e,Re(s,()=>s.viewport(0,0,t,n)),Re(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Re(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}}function G5(e){let t=0;for(;t<e.length;++t){const n=e[t]();if(!n)break}return t-1}function V5(e,t,n,s){const i=t.userCode,o=n.map((w,L)=>{const T={logicalShape:w.shape,texShape:w.isUniform?null:w.texData.texShape,isUniform:w.isUniform,isPacked:w.isUniform?!1:w.texData.isPacked,flatOffset:null};return w.texData!=null&&w.texData.slice!=null&&w.texData.slice.flatOffset>0&&(T.flatOffset=w.texData.slice.flatOffset),{name:t.variableNames[L],shapeInfo:T}}),a=o.map(w=>w.shapeInfo),c={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},h=zj(o,c,i,t.packedInputs),d=e.createProgram(h);let m=null;const y=e.getUniformLocation(d,"NAN",!1);C().getNumber("WEBGL_VERSION")===1&&(m=e.getUniformLocation(d,"INFINITY",!1));const b={};for(let w=0;w<t.variableNames.length;w++){const L=t.variableNames[w],T=!1;b[L]=e.getUniformLocation(d,L,T),b[`offset${L}`]=e.getUniformLocation(d,`offset${L}`,T)}return{program:t,source:h,webGLProgram:d,uniformLocations:b,inShapeInfos:a,outShapeInfo:c,infLoc:m,nanLoc:y}}function X0(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{const i=n.logicalShape,o=t[s],a=o.shape;if(!ot(i,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${i} and ${a} must match`);if(n.isUniform&&o.isUniform)return;const c=n.texShape,h=o.isUniform?null:o.texData.texShape;if(!ot(c,h))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${c} and ${h} must match`)})}function Y5(e,t,n,s,i){X0(t.inShapeInfos,n),X0([t.outShapeInfo],[s]);const o=s.texData.texture,a=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(o,a[0],a[1]):e.setOutputMatrixTexture(o,a[0],a[1]),e.setProgram(t.webGLProgram),C().getNumber("WEBGL_VERSION")===1&&(t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity)),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((c,h)=>{const d=t.program.variableNames[h],m=t.uniformLocations[d],y=t.uniformLocations[`offset${d}`];if(m==null)return;if(c.isUniform){if(we(c.shape)<2)e.gl.uniform1f(m,c.uniformValues[0]);else{let b=c.uniformValues;b instanceof Float32Array||(b=new Float32Array(b)),e.gl.uniform1fv(m,b)}return}c.texData.slice!=null&&y!=null&&e.gl.uniform1i(y,c.texData.slice.flatOffset),e.setInputMatrixTexture(c.texData.texture,m,h)}),i!=null&&i(e,t.webGLProgram),e.executeProgram()}function H5(e,t,n){let s="";t.concat(n).forEach(a=>{const c=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,h=a.isUniform?"uniform":a.texData.texShape;s+=`${a.shape}_${h}_${c}`});const i=e.userCode;let o=e.constructor.name;return o+="_"+s+"_"+i,o}class q5{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;const{filterWidth:s,inChannels:i,strideWidth:o,strideHeight:a,padInfo:c,outWidth:h,dilationWidth:d,dilationHeight:m,dataFormat:y}=n,{left:b,top:w}=c,L=i*s,T=Wn(),A=y==="channelsLast",N=A?0:1,E=A?1:2;let D="";for(let F=0;F<=1;F++)for(let _=0;_<=1;_++)D+=`
blockIndex = rc.y + ${_};
pos = rc.x + ${F};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${h})) * ${a} - ${w};
d0 = offsetY + ${m} * (pos / ${L});
if(d0 < ${t[N]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${h}.) * ${o}. - ${b}.);
d1 = offsetX + ${d} * (int(mod(float(pos), ${L}.) / ${i}.));
if(d1 < ${t[E]} && d1 >= 0) {
ch = int(mod(float(pos), ${i}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${F*2+_}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${F*2+_}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${D}
${T.output} = result;
}
`}}class j5{constructor(e,t,n,s,i){this.variableNames=["x"],this.outputShape=[];const o=t,a=e[3]-1;this.outputShape=e;let c;const h=`float(${n}) + float(${s}) * sum`;i===.5?c=`inversesqrt(${h})`:i===1?c=`1.0/(${h})`:c=`exp(log(${h}) * float(-${i}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${o}; j <= ${o}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${a}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${c};
setOutput(val);
}
`}}class K5{constructor(e,t,n,s,i){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=i,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${i})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${i});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}}class X5{constructor(e,t,n,s,i){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;const o=t,a=e[3]-1;this.outputShape=e;let c;const h=`float(${n}) + float(${s}) * sum`;i===.5?c=`inversesqrt(${h})`:i===1?c=`1.0/(${h})`:c=`exp(log(${h}) * float(-${i}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${o};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${o}; j <= ${o}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${c};
setOutput(result);
}
`}}class J5{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;const t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,i=e.effectiveFilterHeight,o=e.effectiveFilterWidth,a=i-1-e.padInfo.top,c=o-1-e.padInfo.left,h=i*o-1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${h} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${o} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}}class Z5{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;const t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,i=e.dilationDepth,o=e.dilationHeight,a=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,m=c-1-e.padInfo.front,y=h-1-e.padInfo.top,b=d-1-e.padInfo.left,w=c*h*d-1;this.userCode=`
const ivec3 pads = ivec3(${m}, ${y}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${a}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${w} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${h} * ${d} +
wR * ${d} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}}class tS{constructor(e,t,n=!1,s=!1,i=!1,o=null,a=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t;const c=n?e[1]:e[2],h=Math.ceil(c/2),d=n?"i * 2, rc.y":"rc.y, i * 2",m=s?"rc.z, i * 2":"i * 2, rc.z",y=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],b=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"];let w="",L="";o&&(a?w=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:w=`vec4 activation(vec4 x) {
${o}
}`,L="result = activation(result);");const T=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.userCode=`
${w}
const float sharedDimension = ${h}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${h}; i++) {
vec4 a = getMatrixA(rc.x, ${d});
vec4 b = getMatrixB(rc.x, ${m});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${y[0]} * ${b[0]});
result += (${y[1]} * ${b[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${T}
${L}
setOutput(result);
}
`}}class Q5{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}}class e8{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}}class t8{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;const t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{const n=cs("rc",t),s=Et(t),i=s8(t,e,n),o=i8(t,e[e.length-1],e[e.length-2],n),a=r8(e,n);this.userCode=`
void main() {
${s} rc = getOutputCoords();
if(${i}) {
setOutput(vec4(0));
} else {
${o}
setOutput(vec4(${a}));
}
}
`}}}function n8(e,t){const n=[];for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=`${s===0?"r":"rp1"}, ${i===0?"c":"cp1"}`;for(let a=2;a<e;a++)o=`${t[t.length-1-a]},`+o;n.push(o)}return n}function s8(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let i=e-2;i<e;i++)s+=`${n[i]} >= ${t[i]}`,i<e-1&&(s+="||");return s}function i8(e,t,n,s){if(e===1)return"";const i=s.slice(-2);return`
int r = ${i[0]};
int c = ${i[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function r8(e,t){const n=e.length,s=n8(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${s[0]}),
cEdge ? 0. : getA(${s[1]}),
rEdge ? 0. : getA(${s[2]}),
rEdge || cEdge ? 0. : getA(${s[3]})`}class o8{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((h,d)=>h[0]+e[d]+h[1]);const s=e.length,i=Et(s),o=t.map(h=>h[0]).join(","),a=t.map((h,d)=>h[0]+e[d]).join(","),c=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${o};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${i} start = ${i}(${o});
${i} end = ${i}(${a});
void main() {
${i} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${i} coords = outC - start;
setOutput(getX(${c}));
}
}
`}}class a8{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((L,T)=>L[0]+e[T]+L[1]);const s=e.length,i=Et(s),o=t.map(L=>L[0]).join(","),a=t.map((L,T)=>L[0]+e[T]).join(","),c=cs("rc",s),h=cs("source",s),d=`${c[s-1]} < ${this.outputShape[s-1]}`,m=s===1?"source":`vec2(${h.slice(-2).join()})`,y=[`${i} rc = outputLoc;`,`${c[s-1]} += 1;
if(${d}) {
`,s===1?"":`}
rc = outputLoc;
${c[s-2]} += 1;
if(${c[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${c[s-1]} += 1;
if(${d}) {`],b=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))";let w="";for(let L=0,T=s===1?2:4;L<T;L++)w+=`
${y[L]}
if (${b}) {
result[${L}] = float(${n});
} else {
${i} source = rc - start;
result[${L}] = getChannel(getX(${h.join()}), ${m});
}
`;w+=s===1?"} ":"}}",this.userCode=`
const ${i} start = ${i}(${o});
const ${i} end = ${i}(${a});
void main() {
${i} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${w}
setOutput(result);
}
`}}class Zh{constructor(e,t,n,s=!1,i=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");const o=e.filterWidth,a=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,m=e.effectiveFilterHeight,y=e.effectiveFilterWidth,b=e.padInfo.top,w=e.padInfo.left;this.outputShape=e.outShape;const L=t==="avg",T=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`;let N="0.0";if(L||(N="-1.0 / 1e-20"),n){const $=">=";this.userCode=`
const ivec2 strides = ivec2(${a}, ${c});
const ivec2 pads = ivec2(${b}, ${w});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${m};
wR += ${h}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${y};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${$} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?i?T:A:`wR * ${y} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}const E="max";let D=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(D="avgValue / count");const F=Math.floor(o/4)*4,_=o%4,B=`
if (${L}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${E}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${a}, ${c});
const ivec2 pads = ivec2(${b}, ${w});
const float initializationValue = ${N};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${N});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${m};
wR += ${h}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${F}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${d}, d),
getValue(batch, xR, xC + 2 * ${d}, d),
getValue(batch, xR, xC + 3 * ${d}, d)
);
${B}
}
int xC = xCCorner + ${F};
if (${_===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${B}
} else if (${_===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${d}, d),
initializationValue,
initializationValue
);
${B}
} else if (${_===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${d}, d),
getValue(batch, xR, xC + 2 * ${d}, d),
initializationValue
);
${B}
}
}
setOutput(${D});
}
`}}class nS{constructor(e,t,n,s=!1,i=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");const o=e.filterWidth,a=e.strideDepth,c=e.strideHeight,h=e.strideWidth,d=e.dilationDepth,m=e.dilationHeight,y=e.dilationWidth,b=e.effectiveFilterDepth,w=e.effectiveFilterHeight,L=e.effectiveFilterWidth,T=e.padInfo.front,A=e.padInfo.top,N=e.padInfo.left;this.outputShape=e.outShape;const E=t==="avg";let D="0.0";if(E||(D="-1.0 / 1e-20"),n){const q=">=";this.userCode=`
const ivec3 strides =
ivec3(${a}, ${c}, ${h});
const ivec3 pads = ivec3(${T}, ${A}, ${N});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${b};
wD += ${d}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${w};
wR += ${m}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${L};
wC += ${y}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${q} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?i?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${w} * ${L} +
wR * ${L} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}const F="max";let _=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");const B=Math.floor(o/4)*4,$=o%4,H=`
if (${E}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${F}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${a}, ${c}, ${h});
const ivec3 pads = ivec3(${T}, ${A}, ${N});
const float initializationValue = ${D};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${D});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${b};
wD += ${d}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${w};
wR += ${m}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${B}; wC += 4) {
int xC = xCCorner + wC * ${y};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${y}, ch),
getValue(batch, xD, xR, xC + 2 * ${y}, ch),
getValue(batch, xD, xR, xC + 3 * ${y}, ch)
);
${H}
}
int xC = xCCorner + ${B};
if (${$===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${H}
} else if (${$===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${y}, ch),
initializationValue,
initializationValue
);
${H}
} else if (${$===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${y}, ch),
getValue(batch, xD, xR, xC + 2 * ${y}, ch),
initializationValue
);
${H}
}
}
setOutput(${_});
}
}
`}}class J0{constructor(e,t){this.variableNames=["x"];const{windowSize:n,batchSize:s,inSize:i,outSize:o}=e;this.outputShape=[s,o];let a="0.0",c="";t==="prod"?a="1.0":t==="min"?(a="1.0 / 1e-20",c="min"):t==="max"&&(a="-1.0 / 1e-20",c="max");let h=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?h="sumValue":t==="prod"?h="prodValue":t==="all"?h="allValue":t==="any"&&(h="anyValue");const d=Math.floor(n/4)*4,m=n%4;let y=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${c}(values, minMaxValue);
}
`,b="vec4";t==="all"?(a="1.0",y=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,b="bvec4"):t==="any"&&(a="0.0",y=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,b="bvec4");let w="";i%n>0&&(w=`
if (inIdx < 0 || inIdx >= ${i}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${a};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${w}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${a});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${d}; i += 4) {
int inIdx = inOffset + i;
${b} values = ${b}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${y}
}
int inIdx = inOffset + ${d};
if (${m===1}) {
${b} values = ${b}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${y}
} else if (${m===2}) {
${b} values = ${b}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${y}
} else if (${m===3}) {
${b} values = ${b}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${y}
}
setOutput(${h});
}
`}}class Z0{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let s=0;s<4;s++){let i="thisRC = rc;";s%2===1&&(i+="thisRC.z += 1;"),s>1&&(i+="thisRC.y += 1;"),n+=`
${i}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${c8(t)}
${ZL(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}}function c8(e){const t=Bo(["r","c","d"],e);return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t}
return ivec3(r, c, d);
}
`}class l8{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t.shape;const[,s,i]=t.shape,[,o,a]=e.shape,c=[n&&o>1?s-1:s,n&&a>1?i-1:i],h=[n&&o>1?o-1:o,n&&a>1?a-1:a],d=c[0]/h[0],m=c[1]/h[1],y=1/d,b=1/m,w=Math.ceil(y)*2+2,L=Math.ceil(b)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${d});
const float widthScale = float(${m});
const float invHeightScale = float(${y});
const float invWidthScale = float(${b});
const int winHeight = int(${w});
const int winWidth = int(${L});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${o}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${i-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}}class h8{constructor(e,t,n,s){this.variableNames=["A"],this.outputShape=[];const[i,o,a,c]=e;this.outputShape=[i,t,n,c];const h=[s&&t>1?o-1:o,s&&n>1?a-1:a],d=[s&&t>1?t-1:t,s&&n>1?n-1:n];this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${h[0]/d[0]},
${h[1]/d[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${a}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(sourceFracIndexRC);
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}}class u8{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];const[i,o,a,c]=e;this.outputShape=[i,t,n,c];const h=[s&&t>1?o-1:o,s&&n>1?a-1:a],d=[s&&t>1?t-1:t,s&&n>1?n-1:n];this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${h[0]/d[0]},
${h[1]/d[1]},
${h[1]/d[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${a}.0,
${a}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC;
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(sourceFracIndexRC);
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${c-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}}class d8{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t.shape;const[,s,i]=t.shape,[,o,a]=e.shape,c=[n&&o>1?s-1:s,n&&a>1?i-1:i],h=[n&&o>1?o-1:o,n&&a>1?a-1:a],d=c[0]/h[0],m=c[1]/h[1],y=1/d,b=1/m,w=Math.ceil(y)*2+2,L=Math.ceil(b)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${d});
const float widthScale = float(${m});
const float invHeightScale = float(${y});
const float invWidthScale = float(${b});
const int winHeight = int(${w});
const int winWidth = int(${L});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${o}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float sourceFracRow =
float(${c[0]}) *
(float(dyR) / float(${h[0]}));
float sourceFracCol =
float(${c[1]}) *
(float(dyC) / float(${h[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${i}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}}class p8{constructor(e,t,n,s){this.variableNames=["A"],this.outputShape=[];const[i,o,a,c]=e;this.outputShape=[i,t,n,c];const h=[s&&t>1?o-1:o,s&&n>1?a-1:a],d=[s&&t>1?t-1:t,s&&n>1?n-1:n],m=s?"0.5":"0.0";this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${h[0]/d[0]},
${h[1]/d[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${a}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}}class m8{constructor(e,t){this.variableNames=["x"];const n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}const s=a=>t.indexOf(a)!==-1&&e[a]!==1?`${e[a]} - coords[${a}] - 1`:`coords[${a}]`,i=e.map((a,c)=>s(c)).join(","),o=Et(n);this.userCode=`
void main() {
${o} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}}class f8{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;const n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;const s=cs("rc",n),i=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,o=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,a=Et(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${i}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${c(s.slice())};
if(${i}){
result.g = ${h(s.slice())};
}
if(${o}) {
result.b = ${d(s.slice())};
if(${i}) {
result.a = ${m(s.slice())};
}
}
setOutput(result);
}
`;function c(w){return y(w)}function h(w){return w[n-1]="("+w[n-1]+" + 1)",y(w)}function d(w){return w[n-2]="("+w[n-2]+" + 1)",y(w)}function m(w){return w[n-1]="("+w[n-1]+" + 1)",w[n-2]="("+w[n-2]+" + 1)",y(w)}function y(w){const L=e.map((N,E)=>b(E,w)),T=L.join(","),A=L.slice(-2).join(",");return`getChannel(getX(${T}), vec2(${A}))`}function b(w,L){return t.indexOf(w)!==-1&&e[w]!==1?`${e[w]} - ${L[w]} - 1`:`${L[w]}`}}}class Q0{constructor(e,t,n,s,i,o,a=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=o;const c=Et(i.length),h=Et(o.length);let d="";n===1?d="i":n===2&&(d="i, j");const m=`getIndices(${d})`;let y="";s===1?y="i":s===2&&(y="i, coords[1]");const b=`getUpdates(${y})`,w=t>1?"strides[j]":"strides";this.userCode=`
${c} strides = ${c}(${i});
void main() {
${h} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${m});
flattenedIndex += index * ${w};
}
if (flattenedIndex == coords[0]) {
sum += ${b};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}}class g8{constructor(e,t){this.variableNames=["x","segmentIds"];const n=e.windowSize,s=e.batchSize,i=e.inSize,o=e.numSegments,a=o*Math.ceil(i/n);this.outputShape=[s,a];const c="0.0",h="sumValue",d=Math.floor(n/4)*4,m=n%4,y=`
sumValue += dot(values, segFilter);
`;let b="";i%n>0&&(b=`
if (inIdx < 0 || inIdx >= ${i}) {
return initializationValue;
}
`);let w="";i%n>0&&(w=`
if (inIdx < 0 || inIdx >= ${i}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${c};
float getValue(int batch, int inIdx) {
${b}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${w}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${o})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${o})));
float sumValue = 0.0;
for (int i = 0; i < ${d}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${y}
}
int inIdx = inOffset + ${d};
if (${m===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${y}
} else if (${m===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${y}
} else if (${m===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${y}
}
setOutput(${h});
}
`}}class y8{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,i;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)i="resRC",s="resRC";else{const a=["resRC.x","resRC.y","resRC.z","resRC.w"],c=[],h=[];for(let d=0;d<t.length;d++)h.push(`${a[d]}`),d<e&&c.push(`${a[d]}`);s=c.join(),i=h.join()}const o=Et(n);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${i}));
} else {
setOutput(getB(${i}));
}
}
`}}class b8{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;const t=Et(this.rank),n=`uniform int start[${this.rank}];`,s=w8(this.rank);let i;const o=e.map((a,c)=>`sourceLoc.${sS[c]} = start[${c}] + coords.${sS[c]};`);i=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${o.join(`
`)}
`,this.userCode=`
${n}
void main() {
${i}
setOutput(getSource(${s}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{if(this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null))return;t.gl.uniform1iv(this.startLoc,e)}}}const sS=["x","y","z","w","u","v"];function w8(e){if(e===1)return"sourceLoc";if(e<=6)return sS.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}class L8{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;const t=Et(this.rank),n=cs("coords",this.rank),s=cs("sourceLoc",this.rank),i=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,o=`getChannel(getSource(${s.join()}), ${i})`,a=`
result.x = ${o};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${o};
--${s[this.rank-1]};
}
`,c=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${o};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${o};
}
}
`,h=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((d,m)=>`start[${m}]`).join()});`:e.map((d,m)=>`${s[m]} = ${n[m]} + start[${m}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${h}
vec4 result = vec4(0.);
${a}
${c}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{if(this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null))return;t.gl.uniform1iv(this.startLoc,e)}}}class S8{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;const s=n.length,i=Et(n.length),o=Et(n.length);let a="";if(s===1)a="coords * strides + begin";else{let c=0;a=n.map((h,d)=>(c++,n.length===1?`coords * strides[${d}] + begin[${d}]`:`coords[${c-1}] * strides[${d}] + begin[${d}]`)).join(",")}this.userCode=`
${i} begin = ${i}(${e});
${i} strides = ${i}(${t});
void main() {
${o} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}}class I8{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){const s=tC(t,n),i=nC(e,s,n);i in this.freeTextures||(this.freeTextures[i]=[]),i in this.usedTextures||(this.usedTextures[i]=[]);const o=eC(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[i].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=o,this.log();const c=this.freeTextures[i].shift();return this.usedTextures[i].push(c),c}let a;return s===Sn.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Sn.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Sn.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[i].push(a),this.numUsedTextures++,this._numBytesAllocated+=o,this.log(),a}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;const i=tC(n,s),o=nC(t,i,s);o in this.freeTextures||(this.freeTextures[o]=[]);const a=eC(t,i,this.gpgpu.gl,this.gpgpu.textureConfig,s),c=C().get("WEBGL_DELETE_TEXTURE_THRESHOLD");c!==-1&&this._numBytesAllocated>c?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=a):(this.freeTextures[o].push(e),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;const h=this.usedTextures[o],d=h.indexOf(e);if(d<0)throw new Error("Cannot release a texture that was never provided by this texture manager");h.splice(d,1),this.log()}log(){if(!this.logEnabled)return;const e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);const t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null)return;for(const e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(const e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}function x8(e,t){const n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function eC(e,t,n,s,i){const o=T8(t,s);let a;if(i){const[h,d]=sc(e[0],e[1]);a=h*d}else{const[h,d]=jh(e[0],e[1]);a=h*d}const c=x8(n,o);return a*c}function T8(e,t){switch(e){case Sn.PACKED_2X2_FLOAT32:return j0(t);case Sn.PACKED_2X2_FLOAT16:return K0(t);case Sn.UNPACKED_FLOAT32:return Y0(t);case Sn.UNPACKED_FLOAT16:return H0(t);case Sn.PACKED_4X1_UNSIGNED_BYTE:return q0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function A8(e){return C().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Sn.PACKED_2X2_FLOAT32:Sn.UNPACKED_FLOAT32:e?Sn.PACKED_2X2_FLOAT16:Sn.UNPACKED_FLOAT16}function tC(e,t){if(e===As.UPLOAD)return Sn.PACKED_2X2_FLOAT32;if(e===As.RENDER||e==null)return A8(t);if(e===As.DOWNLOAD||e===As.PIXELS)return Sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function nC(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}class v8{constructor(e,t){this.variableNames=["A"];const n=new Array(e.length);for(let o=0;o<n.length;o++)n[o]=e[o]*t[o];this.outputShape=n,this.rank=n.length;const s=Et(this.rank),i=N8(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${i}));
}
`}}function N8(e){const t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;const n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let i=0;i<e.length;i++)s.push(`imod(${n[i]}, ${e[i]})`);return s.join()}class st{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}}const or="if (isnan(x)) return x;",C8="return x;",sC="return abs(x);",iC=or+`
return (x < 0.0) ? 0.0 : x;
`,rC=or+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,oC="return (x >= 0.0) ? x : (exp(x) - 1.0);",R8=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${rp};
float scale = ${op};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`;function O8(e=0){return or+`
return x > 0.0 ? 1.0 : float(${e});
`}const aC="return -x;",cC="return ceil(x);",lC="return floor(x);",E8=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,D8="return float(isnan(x));",k8="return float(isinf(x));",F8="return float(!isnan(x) && !isinf(x));",_8=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,hC="return exp(x);",uC="return exp(x) - 1.0;",W8=`if (x < 0.0) return NAN;
return log(x);`,$8="return log(1.0 + x);",U8="return sqrt(x);",B8="return inversesqrt(x);",M8="return 1.0 / (1.0 + exp(-1.0 * x));",P8=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,z8=or+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,G8=or+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,V8=or+`
return atan(x);
`,Y8=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,H8=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,q8=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,j8=or+"return log(x + sqrt(x * x + 1.0));",K8=or+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,X8=or+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,J8=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${Eb};
float a1 = ${Db};
float a2 = ${kb};
float a3 = ${Fb};
float a4 = ${_b};
float a5 = ${Wb};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Z8="return 1.0 / x;",Q8="return float(!(x >= 1.0));",e6="return float(int(x));",im="return x;";const t6="return x;",n6=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,dC=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,pC=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,mC=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`;class Qh{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}}class s6{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;const t=e.length,n=cs("rc",t),s=Et(t),i=Pj(t,n),o=n.slice(-2),a=t<=1?"rc":`vec2(${o.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${i});
setOutput(getChannel(packedInput, ${a}));
}
`}}const{segment_util:fC}=Bb,i6=Mb,r6=Pb,o6=zb,a6=jd,c6=1e-7,l6=1e-4,rm={};function h6(e){return e in rm||(rm[e]={}),rm[e]}function om(e,t=!1){if(e==="linear")return t?t6:C8;if(e==="relu")return t?dC:iC;if(e==="elu")return t?mC:oC;if(e==="relu6")return t?pC:rC;if(e==="prelu")return t?W0:_0;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}const u6=128,d6=600;function p6(){return C().global.screen==null?1024:C().global.screen.height*C().global.screen.width*window.devicePixelRatio*d6/1024/1024}const gC=1e3;class m6 extends g{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!C().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){const t=_i(C().getNumber("WEBGL_VERSION"));this.binaryCache=h6(C().getNumber("WEBGL_VERSION")),this.gpgpu=new z5(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new I8(this.gpgpu),this.numMBBeforeWarning=p6(),this.texData=new p(this,Fs())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((C().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||C().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");const s={};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:As.UPLOAD,refCount:1}),s}incRef(e){const t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){const t=this.texData.get(e);t.refCount--}}move(e,t,n,s){if(C().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:As.UPLOAD,refCount:1})}disposeIntermediateTensorInfo(e){const t=e.dataId;if(this.texData.has(t)){const n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){const t=this.texData.get(e),{values:n,dtype:s,complexTensors:i,slice:o,shape:a,isPacked:c}=t;if(o!=null){let y;c?y=new Qh(a,im):y=new st(a,im);const b=this.runWebGLProgram(y,[{dataId:e,shape:a,dtype:s}],s),w=this.readSync(b.dataId);return this.disposeIntermediateTensorInfo(b),w}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;const h=this.activeTimers!=null;let d;h&&(d=Vn());let m;if(s==="complex64"){const y=i.real.dataSync(),b=i.imag.dataSync();m=Zi(y,b)}else m=this.getValuesFromTexture(e);return h&&(this.downloadWaitMs+=Vn()-d),this.convertAndCacheOnCPU(e,m)}async read(e){if(this.pendingRead.has(e)){const w=this.pendingRead.get(e);return new Promise(L=>w.push(L))}const t=this.texData.get(e),{values:n,shape:s,slice:i,dtype:o,complexTensors:a,isPacked:c}=t;if(i!=null){let w;c?w=new Qh(s,im):w=new st(s,im);const L=this.runWebGLProgram(w,[{dataId:e,shape:s,dtype:o}],o),T=this.read(L.dataId);return this.disposeIntermediateTensorInfo(L),T}if(n!=null)return this.convertAndCacheOnCPU(e);if(!C().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&C().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let h=null,d;if(o!=="complex64"&&C().get("WEBGL_BUFFER_SUPPORTED")){d=this.decode(e);const w=this.texData.get(d.dataId);h=this.gpgpu.createBufferFromTexture(w.texture,...Kh(s))}this.pendingRead.set(e,[]),o!=="complex64"&&await this.gpgpu.createAndWaitForFence();let m;if(o==="complex64"){const w=await Promise.all([a.real.data(),a.imag.data()]),L=w[0],T=w[1];m=Zi(L,T)}else if(h==null)m=this.getValuesFromTexture(e);else{const w=we(s);m=this.gpgpu.downloadFloat32MatrixFromBuffer(h,w)}d!=null&&this.disposeIntermediateTensorInfo(d);const y=this.convertAndCacheOnCPU(e,m),b=this.pendingRead.get(e);return this.pendingRead.delete(e),b.forEach(w=>w(y)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),y}checkNumericalProblems(e){if(e==null)return;for(let t=0;t<e.length;t++){const n=e[t];if(!Q4(n))throw C().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){const{shape:t,dtype:n,isPacked:s}=this.texData.get(e),i=we(t);if(C().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){const y=this.decode(e),b=this.texData.get(y.dataId),w=this.gpgpu.downloadMatrixFromPackedTexture(b.texture,...Kh(t)).subarray(0,i);return this.disposeIntermediateTensorInfo(y),w}const o=C().getBool("WEBGL_PACK")&&s===!0,a=o?XL(t):t,c=o?new w5(a):new b5(a),h=this.runWebGLProgram(c,[{shape:a,dtype:n,dataId:e}],"float32"),d=this.texData.get(h.dataId),m=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(d.texture,d.texShape[0],d.texShape[1]).subarray(0,i);return this.disposeIntermediateTensorInfo(h),m}async time(e){const t=this.activeTimers,n=[];let s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();const i=Yi(this.activeTimers.map(c=>c.query)).filter(c=>c!=null),o=Yi(this.activeTimers.map(c=>c.name)).filter(c=>c!=null);this.activeTimers=t,s&&(this.programTimersStack=null);const a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){const c=await Promise.all(i);a.kernelMs=Ox(c),a.getExtraProfileInfo=()=>c.map((h,d)=>({name:o[d],ms:h})).map(h=>`${h.name}: ${h.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:Vn(),endMs:null}}endTimer(e){return C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=Vn(),e)}async getQueryTime(e){if(C().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);const t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;this.releaseGPUData(e);const{complexTensors:t}=this.texData.get(e);t!=null&&(t.real.dispose(),t.imag.dispose()),this.texData.delete(e)}releaseGPUData(e){const{texture:t,dtype:n,texShape:s,usage:i,isPacked:o,slice:a}=this.texData.get(e),c=a&&a.origDataId||e,h=this.dataRefCount.get(c);h>1?this.dataRefCount.set(c,h-1):(this.dataRefCount.delete(c),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,i,o)));const d=this.texData.get(e);d.texture=null,d.texShape=null,d.isPacked=!1,d.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return C().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Fs().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=u6){const n=this.getCPUBackend();return!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(s=>this.texData.get(s.dataId).texture==null&&we(s.shape)<t)}getGPGPUContext(){return this.gpgpu}complex(e,t){const n=this.makeOutput(e.shape,"complex64"),s=this.texData.get(n.dataId);return s.complexTensors={real:Fs().keep(e.clone()),imag:Fs().keep(t.clone())},n}real(e){const t=this.texData.get(e.dataId);return t.complexTensors.real.clone()}imag(e){const t=this.texData.get(e.dataId);return t.complexTensors.imag.clone()}slice(e,t,n){if(this.shouldExecuteOnCPU([e])){const o=_j(this.texData.get(e.dataId).values,t,n,e.shape,e.dtype);return this.makeOutput(n,e.dtype,o)}if(we(n)===0)return en([],n,e.dtype);const{isPacked:s}=this.texData.get(e.dataId),i=Ey(e.shape,t,n);if(s||!i){const o=C().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new L8(n):new b8(n),a=o.getCustomSetupFunc(t);return this.compileAndRun(o,[e],null,a)}return this.uploadToGPU(e.dataId),this.shallowSlice(e,t,n)}shallowSlice(e,t,n){const s=this.texData.get(e.dataId),i=this.makeOutput(n,e.dtype),o=this.texData.get(i.dataId);Object.assign(o,s),o.shape=n,o.dtype=e.dtype;let a=Dy(t,e.strides);s.slice&&(a+=s.slice.flatOffset),o.slice={flatOffset:a,origDataId:s.slice&&s.slice.origDataId||e.dataId};const c=this.dataRefCount.get(o.slice.origDataId)||1;return this.dataRefCount.set(o.slice.origDataId,c+1),i}stridedSlice(e,t,n,s){const i=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.stridedSlice(e,t,n,s));if(i)return i;const o=bd(t,n,s);if(o.some(c=>c===0))return en([],o);const a=new S8(t,s,o);return this.compileAndRun(a,[e])}reverse(e,t){const n=C().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new f8(e.shape,t):new m8(e.shape,t);return this.compileAndRun(n,[e])}concat(e,t){if(e[0].dtype==="complex64"){const a=e.map(h=>xo(h)),c=e.map(h=>Ea(h));return xi(this.concat(a,t),this.concat(c,t))}if(e.length===1)return e[0];if(e.length>C().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){const a=Math.floor(e.length/2),c=this.concat(e.slice(0,a),t),h=this.concat(e.slice(a),t);return this.concat([c,h],t)}if(C().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].rank>1){const a=new r5(e.map(c=>c.shape),t);return this.compileAndRun(a,e)}const n=Or(e.map(a=>a.shape),t),s=e.map(a=>a.as2D(-1,we(a.shape.slice(t)))),i=new i5(s.map(a=>a.shape)),o=this.compileAndRun(i,s);return o.reshape(n)}neg(e){const t=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.neg(e));if(t)return t;if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,aC,e.dtype);const n=new st(e.shape,aC);return this.compileAndRun(n,[e])}batchMatMul(e,t,n,s){const i=n?e.shape[2]:e.shape[1],o=s?t.shape[1]:t.shape[2],a=n?e.shape[1]:e.shape[2],[c,,]=e.shape;if((i===1||o===1)&&a>gC){n&&(e=Me(e,[0,2,1])),s&&(t=Me(t,[0,2,1]));const m=o===1?e:e.as3D(c,a,1),y=o===1?2:1,b=o===1?t.as3D(c,1,a):t;return this.multiply(m,b).sum(y,!0)}const h=vn(e.dtype,t.dtype),d=new tS(e.shape,[c,i,o],n,s);return this.compileAndRun(d,[e,t],h)}fusedBatchMatMul({a:e,b:t,transposeA:n,transposeB:s,bias:i,activation:o,preluActivationWeights:a}){const c=n?e.shape[2]:e.shape[1],h=s?t.shape[1]:t.shape[2],[d,,]=e.shape,m=vn(e.dtype,t.dtype),y=i!=null,b=a!=null,w=o?om(o,!0):null,L=new tS(e.shape,[d,c,h],n,s,y,w,b),T=[e,t];return i&&T.push(i),a&&T.push(a),this.compileAndRun(L,T,m)}multiply(e,t){if(e.dtype==="complex64"){const i=this.texData.get(e.dataId),o=this.texData.get(t.dataId),a=new D0(E0.REAL,e.shape,t.shape),c=new D0(E0.IMAG,e.shape,t.shape),h=[this.makeComplexComponentTensorInfo(e,i.complexTensors.real),this.makeComplexComponentTensorInfo(e,i.complexTensors.imag),this.makeComplexComponentTensorInfo(t,o.complexTensors.real),this.makeComplexComponentTensorInfo(t,o.complexTensors.imag)],d=this.compileAndRun(a,h),m=this.compileAndRun(c,h),y=this.complex(d,m);return d.dispose(),m.dispose(),y}const n=vn(e.dtype,t.dtype);if(this.shouldExecuteOnCPU([e,t])){const i=this.texData.get(e.dataId),o=this.texData.get(t.dataId),[a,c]=kj(e.shape,t.shape,i.values,o.values,n);return this.makeOutput(c,n,a)}if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,F0,e.dtype);const s=new hn(F0,e.shape,t.shape);return this.compileAndRun(s,[e,t],e.dtype)}localResponseNormalization4D(e,t,n,s,i){const o=C().getBool("WEBGL_PACK_NORMALIZATION")?new X5(e.shape,t,n,s,i):new j5(e.shape,t,n,s,i);return this.compileAndRun(o,[e])}LRNGrad(e,t,n,s,i,o,a){const c=new K5(t.shape,s,i,o,a);return this.compileAndRun(c,[t,n,e])}tile(e,t){if(e.dtype==="string"){const s=this.readSync(e.dataId),i=s.map(a=>Dl(a)),o=Ze(e.shape,e.dtype,i);return r6(o,t)}const n=new v8(e.shape,t);return this.compileAndRun(n,[e])}pad(e,t,n){const s=C().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new a8(e.shape,t,n):new o8(e.shape,t,n);return this.compileAndRun(s,[e])}gather(e,t,n){const s=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.gather(e,t,n));if(s)return s;const i=new x5(e.shape,t.size,n);return this.compileAndRun(i,[e,t])}batchToSpaceND(e,t,n){k(e.rank<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");const s=t.reduce((d,m)=>d*m),i=fh(e.shape,t,s),o=gh(i.length,t.length),a=yh(e.shape,t,s),c=Rb(n,t.length),h=Ob(a,n,t.length);return Me(e.reshape(i),o).reshape(a).slice(c,h)}spaceToBatchND(e,t,n){k(e.rank<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");const s=t.reduce((m,y)=>m*y),i=[[0,0]];i.push(...n);for(let m=1+t.length;m<e.shape.length;++m)i.push([0,0]);const o=e.pad(i),a=fh(o.shape,t,s,!1),c=gh(a.length,t.length,!1),h=yh(o.shape,t,s,!1),d=Me(o.reshape(a),c);return K(d,h)}reduce(e,t,n){const s=e.shape[0],i=e.shape[1],o=Jl(i),a=Math.ceil(i/o),c={windowSize:o,inSize:i,batchSize:s,outSize:a},h=new J0(c,t),d=this.compileAndRun(h,[e],n);return d.shape[1]===1?d:this.reduce(d,t,n)}argReduce(e,t,n=null){let s=e.shape[0],i=e.shape[1];n!=null&&(s=n.shape[0],i=n.shape[1]);const o=Jl(i),a={windowSize:o,inSize:i,batchSize:s,outSize:Math.ceil(i/o)},c=new Mj(a,t,n==null),h=[e];n!=null&&h.push(n);const d=this.compileAndRun(c,h,"int32");return d.shape[1]===1?d:this.argReduce(e,t,d)}argReducePacked(e,t,n=null){const s=n!=null?n.shape:e.shape,i=s[s.length-1],o=Jl(i),a=new TK(s,o,t,n==null),c=n==null?[e]:[e,n],h=this.compileAndRun(a,c,"int32");return h.rank===e.rank?this.argReducePacked(e,t,h):h}sum(e,t){es("sum",t,e.rank);const[n,s]=Cn(e.shape,t),i=we(s),o=e.as2D(-1,i),a=cd(e.dtype);return this.reduce(o,"sum",a).reshape(n)}prod(e,t){const n=this.tryRunOnCpuOrThrow([e],()=>this.cpuBackend.prod(e,t));if(n)return n;const[s,i]=Cn(e.shape,t),o=we(i),a=e.as2D(-1,o),c=cd(e.dtype);return this.reduce(a,"prod",c).reshape(s)}unsortedSegmentSum(e,t,n){let s=0;const i=kn([s],e.rank);let o=e;i!=null&&(o=Me(e,i),s=ws(1,e.rank)[0]);const a=fC.computeOutShape(o.shape,s,n),c=we([o.shape[s]]),h=o.as2D(-1,c),d=cd(e.dtype);let m=this.segOpCompute(h,"unsortedSegmentSum",t,d,n).reshape(a);return i!=null&&(m=Me(m,Ml(i))),m}segOpCompute(e,t,n,s,i){const o=e.shape[0],a=e.shape[1],c=fC.segOpComputeOptimalWindowSize(a,i),h={windowSize:c,inSize:a,batchSize:o,numSegments:i},d=new g8(h,t),m=this.compileAndRun(d,[e,n],s);return m.shape[1]===i?m:(n=sh(0,i).tile([a/c]),this.segOpCompute(m,t,n,s,i))}argMinMaxReduce(e,t,n){const s=[t];if(es("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.rank),!C().getBool("WEBGL_PACK_REDUCE")||e.rank<=2){const[i,o]=Cn(e.shape,s),a=we(o),c=e.as2D(-1,a);return this.argReduce(c,n).reshape(i)}return this.argReducePacked(e,n)}argMin(e,t){return this.argMinMaxReduce(e,t,"min")}argMax(e,t){return this.argMinMaxReduce(e,t,"max")}cumsum(e,t,n,s){if(t!==e.rank-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${e.rank-1} but got axis=${t}`);const i=e.shape[t];let o=e;for(let a=0;a<=Math.ceil(Math.log2(i))-1;a++){const c=new M0(e.shape,!1,s),h=c.getCustomSetupFunc(a),d=o;o=this.compileAndRun(c,[o],o.dtype,h),d.dispose()}if(n){const a=new M0(e.shape,n,s),c=o;o=this.compileAndRun(a,[o]),c.dispose()}return o}equal(e,t){if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,VK,"bool");const n=new hn(RK,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}notEqual(e,t){if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,YK,"bool");const n=new hn(OK,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}less(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.less(e,t));if(n)return n;if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,HK,"bool");const s=new hn(EK,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}lessEqual(e,t){if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,qK,"bool");const n=new hn(DK,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}greater(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.greater(e,t));if(n)return n;if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,jK,"bool");const s=new hn(kK,e.shape,t.shape);return this.compileAndRun(s,[e,t],"bool")}greaterEqual(e,t){if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,KK,"bool");const n=new hn(FK,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}logicalNot(e){const t=new st(e.shape,Q8);return this.compileAndRun(t,[e])}logicalAnd(e,t){if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,XK,"bool");const n=new hn(_K,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}logicalOr(e,t){if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,JK,"bool");const n=new hn(WK,e.shape,t.shape);return this.compileAndRun(n,[e,t],"bool")}select(e,t,n){const s=new y8(e.rank,t.shape,t.rank);return this.compileAndRun(s,[e,t,n],vn(t.dtype,n.dtype))}where(e){Pa("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");const t=e.dataSync();return a6(e.shape,t)}topk(e,t,n){const s=e.dataSync();return o6(s,e.shape,e.dtype,t,n)}min(e,t){es("min",t,e.rank);const[n,s]=Cn(e.shape,t),i=we(s),o=e.as2D(-1,i);return this.reduce(o,"min",o.dtype).reshape(n)}minimum(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.minimum(e,t));if(n)return n;const s=C().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qr(QK,e.shape,t.shape):new hn(UK,e.shape,t.shape);return this.compileAndRun(s,[e,t])}mod(e,t){const n=C().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qr(e5,e.shape,t.shape):new hn(BK,e.shape,t.shape);return this.compileAndRun(n,[e,t])}maximum(e,t){const n=this.tryRunOnCpuOrThrow([e,t],()=>this.cpuBackend.maximum(e,t));if(n)return n;const s=C().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qr(ZK,e.shape,t.shape):new hn($K,e.shape,t.shape);return this.compileAndRun(s,[e,t])}all(e,t){es("all",t,e.rank);const[n,s]=Cn(e.shape,t),i=we(s),o=e.as2D(-1,i);return this.reduce(o,"all",o.dtype).reshape(n)}any(e,t){es("any",t,e.rank);const[n,s]=Cn(e.shape,t),i=we(s),o=e.as2D(-1,i);return this.reduce(o,"any",o.dtype).reshape(n)}floorDiv(e,t){const n=NK,s="int32";if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,PK,s);const i=new hn(n,e.shape,t.shape);return this.compileAndRun(i,[e,t],s)}add(e,t){if(e.dtype==="complex64"&&t.dtype==="complex64")return this.complexSeparableBinaryOp(e,t,QL);const n=vn(e.dtype,t.dtype);if(this.shouldExecuteOnCPU([e,t])){const i=this.texData.get(e.dataId),o=this.texData.get(t.dataId),[a,c]=vj(e.shape,t.shape,i.values,o.values,n);return this.makeOutput(c,n,a)}if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,QL,n);const s=new hn(QL,e.shape,t.shape);return this.compileAndRun(s,[e,t],n)}packedUnaryOp(e,t,n){const s=new Qh(e.shape,t);return this.compileAndRun(s,[e],n)}packedBinaryOp(e,t,n,s,i=!1){const o=new qr(n,e.shape,t.shape,i);return this.compileAndRun(o,[e,t],s)}complexSeparableBinaryOp(e,t,n){const s=this.texData.get(e.dataId),i=this.texData.get(t.dataId),[o,a]=[[s.complexTensors.real,i.complexTensors.real],[s.complexTensors.imag,i.complexTensors.imag]].map(h=>{const[d,m]=h,y=this.makeComplexComponentTensorInfo(e,d),b=this.makeComplexComponentTensorInfo(t,m),w=new hn(n,e.shape,t.shape);return this.compileAndRun(w,[y,b],vn(d.dtype,m.dtype))}),c=this.complex(o,a);return o.dispose(),a.dispose(),c}makeComplexComponentTensorInfo(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}addN(e){if(e.length===1)return e[0];if(e.length>C().get("WEBGL_MAX_TEXTURES_IN_SHADER")){const o=Math.floor(e.length/2),a=this.addN(e.slice(0,o)),c=this.addN(e.slice(o));return this.addN([a,c])}const t=e.map(o=>o.dtype).reduce((o,a)=>vn(o,a)),n=e.map(o=>o.shape),s=C().getBool("WEBGL_PACK"),i=s?new Bj(e[0].shape,n):new Uj(e[0].shape,n);return this.compileAndRun(i,e,t)}subtract(e,t){if(e.dtype==="complex64"&&t.dtype==="complex64")return this.complexSeparableBinaryOp(e,t,eS);const n=vn(e.dtype,t.dtype);if(this.shouldExecuteOnCPU([e,t])){const i=this.texData.get(e.dataId),o=this.texData.get(t.dataId),[a,c]=Wj(e.shape,t.shape,i.values,o.values,n);return this.makeOutput(c,n,a)}if(C().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(e,t,eS,e.dtype);const s=new hn(eS,e.shape,t.shape);return this.compileAndRun(s,[e,t],n)}pow(e,t){const n=C().getBool("WEBGL_PACK_BINARY_OPERATIONS"),s=n?new qr(zK,e.shape,t.shape):new hn(CK,e.shape,t.shape),i=vn(e.dtype,t.dtype);return this.compileAndRun(s,[e,t],i)}ceil(e){if(this.shouldExecuteOnCPU([e])){const n=Nj(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,cC,e.dtype);const t=new st(e.shape,cC);return this.compileAndRun(t,[e])}floor(e){if(this.shouldExecuteOnCPU([e])){const n=Oj(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,lC,e.dtype);const t=new st(e.shape,lC);return this.compileAndRun(t,[e])}sign(e){const t=new st(e.shape,E8);return this.compileAndRun(t,[e])}isNaN(e){const t=new st(e.shape,D8);return this.compileAndRun(t,[e],"bool")}isInf(e){const t=new st(e.shape,k8);return this.compileAndRun(t,[e],"bool")}isFinite(e){const t=new st(e.shape,F8);return this.compileAndRun(t,[e],"bool")}round(e){const t=new st(e.shape,_8);return this.compileAndRun(t,[e])}exp(e){if(this.shouldExecuteOnCPU([e])){const n=Cj(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,hC,e.dtype);const t=new st(e.shape,hC);return this.compileAndRun(t,[e])}expm1(e){if(this.shouldExecuteOnCPU([e])){const n=Rj(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,uC,e.dtype);const t=new st(e.shape,uC);return this.compileAndRun(t,[e])}softmax(e,t){const n=ft([t],e.shape),s=qn(e,n),i=Rn(s.shape,n),o=this.subtract(e,s.reshape(i)),a=this.exp(o),c=this.sum(a,n).reshape(i);return _e(a,c)}log(e){if(this.shouldExecuteOnCPU([e])){const n=Ej(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,n6,e.dtype);const t=new st(e.shape,W8);return this.compileAndRun(t,[e])}log1p(e){const t=new st(e.shape,$8);return this.compileAndRun(t,[e])}sqrt(e){const t=new st(e.shape,U8);return this.compileAndRun(t,[e])}rsqrt(e){if(this.shouldExecuteOnCPU([e])){const n=Fj(this.texData.get(e.dataId).values,e.dtype);return this.makeOutput(e.shape,e.dtype,n)}const t=new st(e.shape,B8);return this.compileAndRun(t,[e])}reciprocal(e){const t=new st(e.shape,Z8);return this.compileAndRun(t,[e])}relu(e){let t;return C().getBool("WEBGL_PACK")?t=new Qh(e.shape,dC):t=new st(e.shape,iC),this.compileAndRun(t,[e])}relu6(e){let t;return C().getBool("WEBGL_PACK")?t=new Qh(e.shape,pC):t=new st(e.shape,rC),this.compileAndRun(t,[e])}prelu(e,t){const n=C().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qr(W0,e.shape,t.shape):new hn(_0,e.shape,t.shape);return this.compileAndRun(n,[e,t])}elu(e){if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,mC,e.dtype);const t=new st(e.shape,oC);return this.compileAndRun(t,[e])}eluDer(e,t){const n=C().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qr(GK,e.shape,t.shape):new hn(MK,e.shape,t.shape);return this.compileAndRun(n,[e,t])}selu(e){const t=new st(e.shape,R8);return this.compileAndRun(t,[e])}int(e){const t=new st(e.shape,e6);return this.compileAndRun(t,[e],"int32")}clip(e,t,n){let s;C().getBool("WEBGL_PACK_CLIP")?s=new n5(e.shape):s=new t5(e.shape);const i=s.getCustomSetupFunc(t,n);return this.compileAndRun(s,[e],null,i)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){const n=Aj(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(C().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,sC,e.dtype);const t=new st(e.shape,sC);return this.compileAndRun(t,[e])}complexAbs(e){const t=this.texData.get(e.dataId),n=new s5(e.shape),s=[this.makeComplexComponentTensorInfo(e,t.complexTensors.real),this.makeComplexComponentTensorInfo(e,t.complexTensors.imag)];return this.compileAndRun(n,s)}sigmoid(e){const t=new st(e.shape,M8);return this.compileAndRun(t,[e])}softplus(e){const t=new st(e.shape,P8);return this.compileAndRun(t,[e])}asin(e){const t=new st(e.shape,z8);return this.compileAndRun(t,[e])}acos(e){const t=new st(e.shape,G8);return this.compileAndRun(t,[e])}atan(e){const t=new st(e.shape,V8);return this.compileAndRun(t,[e])}sinh(e){const t=new st(e.shape,Y8);return this.compileAndRun(t,[e])}cosh(e){const t=new st(e.shape,H8);return this.compileAndRun(t,[e])}tanh(e){const t=new st(e.shape,q8);return this.compileAndRun(t,[e])}asinh(e){const t=new st(e.shape,j8);return this.compileAndRun(t,[e])}acosh(e){const t=new st(e.shape,K8);return this.compileAndRun(t,[e])}atanh(e){const t=new st(e.shape,X8);return this.compileAndRun(t,[e])}erf(e){const t=new st(e.shape,J8);return this.compileAndRun(t,[e])}step(e,t){const n=new st(e.shape,O8(t));return this.compileAndRun(n,[e])}conv2dByMatMul(e,t,n,s,i,o){const a=e.shape,c=this.texData.get(e.dataId),h=n.inChannels,d=a[0]*a[1]*a[2],m=n.outChannels,y=n.dataFormat==="channelsLast",b=!1,w=!1,L=(d===1||m===1)&&h>gC,T=a[2]%2!==0&&!!c.isPacked;if(L||!C().getBool("WEBGL_LAZILY_UNPACK")||!C().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!T){const B=y?a[0]*a[1]*a[2]:a[0]*a[2]*a[3],$=K(e,[1,B,n.inChannels]),H=K(t,[1,n.inChannels,n.outChannels]),q=this.fusedBatchMatMul({a:$,b:H,transposeA:b,transposeB:w,bias:s,activation:i,preluActivationWeights:o});return K(q,n.outShape)}const A=y?a[0]*a[1]*(a[2]+1):a[0]*a[2]*(a[3]+1),N={dataId:e.dataId,shape:[1,A,n.inChannels],dtype:e.dtype},E=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k(Zp(c.shape,N.shape),()=>`packed reshape ${c.shape} to ${N.shape} isn't free`);const D=K(t,[1,n.inChannels,n.outChannels]),F=this.fusedBatchMatMul({a:N,b:D,transposeA:b,transposeB:w,bias:s,activation:i,preluActivationWeights:o}),_=this.texData.get(F.dataId);return k(_.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=E,_.shape=n.outShape,Fs().makeTensorFromDataId(F.dataId,n.outShape,F.dtype)}conv2dWithIm2Row(e,t,n,s,i,o){const{filterWidth:a,filterHeight:c,inChannels:h,outWidth:d,outHeight:m,dataFormat:y}=n,b=y==="channelsLast",w=a*c*h,L=m*d,T=[w,L],A=!0,N=!1,E=e.squeeze([0]),D=t.reshape([1,w,-1]),F=new q5(T,E.shape,n),_=this.compileAndRun(F,[E]).reshape([1,T[0],T[1]]),B=s!=null,$=o!=null,H=i?om(i,!0):null,q=new tS(_.shape,[1,L,n.outChannels],A,N,B,H,$),J=[_,D];s&&J.push(s),$&&J.push(o);const re=this.compileAndRun(q,J);return b?re.reshape([1,m,d,n.outChannels]):re.reshape([1,n.outChannels,m,d])}fusedConv2d({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){if(n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return this.conv2dByMatMul(e,t,n,s,i,o);if(C().getBool("WEBGL_CONV_IM2COL")&&e.shape[0]===1)return this.conv2dWithIm2Row(e,t,n,s,i,o);const a=s!=null,c=o!=null,h=i?om(i,!1):null,d=new $0(n,a,h,c),m=[e,t];return s&&m.push(s),o&&m.push(o),this.compileAndRun(d,m)}conv2d(e,t,n){if(n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return this.conv2dByMatMul(e,t,n);if(C().getBool("WEBGL_CONV_IM2COL")&&e.shape[0]===1)return this.conv2dWithIm2Row(e,t,n);const s=new $0(n);return this.compileAndRun(s,[e,t])}conv2dDerInput(e,t,n){const s=new a5(n);return this.compileAndRun(s,[e,t])}conv2dDerFilter(e,t,n){const s=new o5(n);return this.compileAndRun(s,[e,t])}fusedDepthwiseConv2D({input:e,filter:t,convInfo:n,bias:s,activation:i,preluActivationWeights:o}){const a=C().getBool("WEBGL_PACK_DEPTHWISECONV")&&n.strideWidth<=2&&n.outChannels/n.inChannels===1,c=i?om(i,a):null,h=[e,t],d=s!=null,m=o!=null;d&&h.push(s),m&&h.push(o);let y;return a?(y=new B0(n,d,c,m),this.compileAndRun(y,h)):(y=new U0(n,d,c,m),this.compileAndRun(y,h))}depthwiseConv2D(e,t,n){let s;return C().getBool("WEBGL_PACK_DEPTHWISECONV")&&n.strideWidth<=2&&n.outChannels/n.inChannels===1?(s=new B0(n),this.compileAndRun(s,[e,t])):(s=new U0(n),this.compileAndRun(s,[e,t]))}depthwiseConv2DDerInput(e,t,n){const s=new u5(n);return this.compileAndRun(s,[e,t])}depthwiseConv2DDerFilter(e,t,n){const s=new h5(n);return this.compileAndRun(s,[e,t])}conv3d(e,t,n){const s=new d5(n);return this.compileAndRun(s,[e,t])}conv3dDerInput(e,t,n){const s=new l5(n);return this.compileAndRun(s,[e,t])}conv3dDerFilter(e,t,n){const s=new c5(n);return this.compileAndRun(s,[e,t])}cast(e,t){return DA(e,t,this)}unstack(e,t){const n=e.shape[t],s=new Array(e.rank-1);let i=0;for(let h=0;h<e.rank;h++)h!==t&&(s[i++]=e.shape[h]);const o=new Array(e.rank).fill(0),a=e.shape.slice();a[t]=1;const c=new Array(n);for(let h=0;h<c.length;h++)o[t]=h,c[h]=this.slice(e,o,a).reshape(s);return c}avgPool3d(e,t){const n=new nS(t,"avg",!1);return this.compileAndRun(n,[e],"float32")}avgPool3dBackprop(e,t,n){const s=new vK(n);return this.compileAndRun(s,[e],t.dtype)}maxPool3d(e,t){const n=new nS(t,"max",!1);return this.compileAndRun(n,[e],"float32")}maxPool3dBackprop(e,t,n,s){const i=!0,o=new nS(s,"max",i),a=this.compileAndRun(o,[t]),c=new Z5(s),h=this.compileAndRun(c,[e,a],t.dtype);return a.dispose(),h}resizeBilinear(e,t,n,s){const i=C().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new u8(e.shape,t,n,s):new h8(e.shape,t,n,s);return this.compileAndRun(i,[e],"float32")}resizeBilinearBackprop(e,t,n){const s=new l8(e,t,n);return this.compileAndRun(s,[e])}resizeNearestNeighbor(e,t,n,s){const i=new p8(e.shape,t,n,s);return this.compileAndRun(i,[e])}resizeNearestNeighborBackprop(e,t,n){const s=new d8(e,t,n);return this.compileAndRun(s,[e])}multinomial(e,t,n,s){const i=t?e:No(e),o=i.shape[0],a=i.shape[1],c=new Q5(o,a,n),h=c.getCustomSetupFunc(s);return this.compileAndRun(c,[i],"int32",h)}oneHot(e,t,n,s){const i=new e8(e.size,t,n,s);return this.compileAndRun(i,[e])}diag(e){const t=new y5(e.size);return this.compileAndRun(t,[e])}cropAndResize(e,t,n,s,i,o){const a=new p5(e.shape,t.shape,s,i,o);return this.compileAndRun(a,[e,t,n],"float32")}depthToSpace(e,t,n){k(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`);const s=e.shape[0],i=n==="NHWC"?e.shape[1]:e.shape[2],o=n==="NHWC"?e.shape[2]:e.shape[3],a=n==="NHWC"?e.shape[3]:e.shape[1],c=i*t,h=o*t,d=a/(t*t),m=n==="NHWC"?[s,c,h,d]:[s,d,c,h],y=new g5(m,t,n);return this.compileAndRun(y,[e])}split(e,t,n){return i6(e,t,n)}scatterND(e,t,n){const{sliceRank:s,numUpdates:i,sliceSize:o,strides:a,outputSize:c}=va(t,e,n),h=[c/o,o],d=e.reshape([i,s]),m=t.reshape([i,o]);if(c===0)return kA(en([]),n);const y=Ne(0),b=new Q0(i,s,d.rank,m.rank,a,h),w=this.compileAndRun(b,[m,d,y]);return w.reshape(n)}sparseToDense(e,t,n,s){const{sliceRank:i,numUpdates:o,strides:a,outputSize:c}=va(t,e,n),h=!1,d=new Q0(o,i,e.rank,t.rank,a,[c,1],h),m=this.compileAndRun(d,[t,e,s]);return m.reshape(n)}fft(e){const t=!1;return this.fftImpl(e,t)}ifft(e){const t=!0;return this.fftImpl(e,t)}fftImpl(e,t){const n=this.texData.get(e.dataId),s=new V0(G0.REAL,e.shape,t),i=new V0(G0.IMAG,e.shape,t),o=[this.makeComplexComponentTensorInfo(e,n.complexTensors.real),this.makeComplexComponentTensorInfo(e,n.complexTensors.imag)],a=this.compileAndRun(s,o),c=this.compileAndRun(i,o),h=this.complex(a,c).as2D(e.shape[0],e.shape[1]);return a.dispose(),c.dispose(),h}gatherND(e,t){const n=t.shape,s=n[n.length-1],[i,o,a,c]=gd(e,t),h=t.reshape([o,s]),d=e.reshape([e.size/a,a]),m=new A5(s,c,[o,a]),y=this.compileAndRun(m,[d,h]);return y.reshape(i)}fill(e,t,n){if(n=n||ba(t),n==="string"){const s=lo(n,we(e));return s.fill(t),Fs().makeTensor(s,e,n,this)}else{const s=new I5(e,t),i=s.getCustomSetupFunc(t);return this.compileAndRun(s,[],n,i)}}onesLike(e){if(e.dtype==="string")throw new Error("onesLike is not supported under string dtype");return this.fill(e.shape,1,e.dtype)}zerosLike(e){return this.fill(e.shape,e.dtype==="string"?"":0,e.dtype)}linspace(e,t,n){return Ub(e,t,n)}makeTensorInfo(e,t,n){const s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){const{dataId:s}=this.makeTensorInfo(e,t,n);return Fs().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){const t=new s6(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){const t=new t8(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){const n=[ic(e.shape),...rc(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},i=[ic(t),...rc(t)],o=new Z0(i,n),a=!0,c=this.runWebGLProgram(o,[s],e.dtype,null,a);return{dataId:c.dataId,shape:t,dtype:c.dtype}}decode(e){const t=this.texData.get(e),{isPacked:n,shape:s,dtype:i}=t,o=XL(s);let a;n?a=new f5(o):a=new m5(o);const c=!0,h=this.runWebGLProgram(a,[{shape:o,dtype:i,dataId:e}],i,null,c);return{dtype:i,shape:s,dataId:h.dataId}}runWebGLProgram(e,t,n,s,i=!1){const o=this.makeTensorInfo(e.outputShape,n),a=this.texData.get(o.dataId);if(e.packedOutput&&(a.isPacked=!0),e.outPackingScheme===qh.DENSE){const L=Kh(e.outputShape);a.texShape=L.map(T=>T*2)}if(e.outTexUsage!=null&&(a.usage=e.outTexUsage),we(o.shape)===0)return a.values=bn(o.dtype,0),o;const c=[],h=t.map(L=>{if(L.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let T=this.texData.get(L.dataId);if(T.texture==null){if(!e.packedInputs&&we(L.shape)<=C().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:L.shape,texData:null,isUniform:!0,uniformValues:T.values};e.packedInputs&&(T.isPacked=!0,T.shape=L.shape)}else if(!!T.isPacked!==!!e.packedInputs)L=T.isPacked?this.unpackTensor(L):this.packTensor(L),c.push(L),T=this.texData.get(L.dataId);else if(T.isPacked&&!Zp(T.shape,L.shape)){const A=L,N=L.shape;L.shape=T.shape,L=this.packedReshape(L,N),c.push(L),T=this.texData.get(L.dataId),A.shape=N}return this.uploadToGPU(L.dataId),{shape:L.shape,texData:T,isUniform:!1}});this.uploadToGPU(o.dataId);const d={shape:o.shape,texData:a,isUniform:!1},m=H5(e,h,d),y=this.getAndSaveBinary(m,()=>V5(this.gpgpu,e,h,d)),b=this.activeTimers!=null;let w;if(b&&(w=this.startTimer()),Y5(this.gpgpu,y,h,d,s),c.forEach(L=>this.disposeIntermediateTensorInfo(L)),b&&(w=this.endTimer(w),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(w)})),!C().getBool("WEBGL_LAZILY_UNPACK")&&a.isPacked&&i===!1){const L=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),L}return o}compileAndRun(e,t,n,s,i=!1){n=n||t[0].dtype;const o=this.runWebGLProgram(e,t,n,s,i);return Fs().makeTensorFromDataId(o.dataId,o.shape,o.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){if(this.disposed)return;if(!C().getBool("IS_TEST")){const e=Object.keys(this.binaryCache);e.forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]})}this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=ee(()=>{if(!C().get("WEBGL_RENDER_FLOAT32_ENABLED")){const e=C().getBool("DEBUG");C().set("DEBUG",!1);const t=this.abs(Ne(1e-8)).dataSync()[0];if(C().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?c6:l6}uploadToGPU(e){const t=this.texData.get(e),{shape:n,dtype:s,values:i,texture:o,usage:a,isPacked:c}=t;if(o!=null)return;const h=this.activeTimers!=null;let d;h&&(d=Vn());let m=t.texShape;if(m==null&&(m=yj(n,c),t.texShape=m),i!=null){const y=XL(n);let b,w=m[1],L=m[0];const T=i instanceof Uint8Array;c?([w,L]=sc(m[0],m[1]),b=new S5(y,[L,w],T)):b=new L5(y,[L,w],T);const A=this.makeTensorInfo([L,w],s);T?this.texData.get(A.dataId).usage=As.PIXELS:this.texData.get(A.dataId).usage=As.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),w,L,i);const N=!0,E=this.runWebGLProgram(b,[A],s,null,N),D=this.texData.get(E.dataId);t.texture=D.texture,t.texShape=D.texShape,t.isPacked=D.isPacked,t.usage=D.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(E.dataId),t.values=null,h&&(this.uploadWaitMs+=Vn()-d)}else{const y=this.acquireTexture(m,a,s,c);t.texture=y}}convertAndCacheOnCPU(e,t){const n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=f6(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){const i=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${i} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*ry(t)}tryRunOnCpuOrThrow(e,t){if(this.shouldExecuteOnCPU(e))try{return t()}catch(n){if(C().getBool("IS_TEST"))throw new Error("CPU forwarding failed")}return null}}function f6(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){const n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}const g6="2.6.0";function y6(){C().set("WEBGL_FORCE_F16_TEXTURES",!0)}fy()&&Wy("webgl",()=>new m6,2);const bee={forceHalfFloat:y6},yC="if (isnan(x)) return x;",b6=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,w6=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function am(e){return({inputs:t,backend:n})=>{const{x:s}=t,i=n,o=new st(s.shape,e);return i.runWebGLProgram(o,[s],s.dtype)}}function iS(e,t,n,s){return({inputs:i,backend:o})=>{const{a,b:c}=i,h=o,d=C().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qr(t,a.shape,c.shape,!!n):new hn(e,a.shape,c.shape),m=s||a.dtype,y=h.runWebGLProgram(d,[a,c],m);return y}}const L6=b6+`
return atan(a, b);
`,S6=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+w6+`
return result;
`,I6=iS(L6,S6),x6={kernelName:Li,backendName:"webgl",kernelFunc:I6};function rS(e){const{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}const T6={kernelName:al,backendName:"webgl",kernelFunc:rS};function A6(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;Xh(i,"avgPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;k(rn(a,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Fn(i.shape,o,a,d,c,h);if(m.filterWidth===1&&m.filterHeight===1&&ot(m.inShape,m.outShape))return rS({inputs:{x:i},backend:n});const y=new Zh(m,"avg",!1);return n.runWebGLProgram(y,[i],"float32")}const v6={kernelName:Xs,backendName:"webgl",kernelFunc:A6};function N6(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o}=t,a=o;Xh([i,o],"avgPoolBackprop");const{filterSize:c,strides:h,pad:d}=s,m=Fn(a.shape,c,h,1,d),y=new AK(m);return n.runWebGLProgram(y,[i],a.dtype)}const C6={kernelName:ua,backendName:"webgl",kernelFunc:N6};class R6{constructor(e,t,n,s,i,o){this.outputShape=[],this.variableNames=["x","mean","variance"],tt(e,t),tt(e,n);let a="0.0";s!=null&&(tt(e,s),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let c="1.0";i!=null&&(tt(e,i),this.variableNames.push("scale"),c="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${a};
float scale = ${c};
float inv = scale * inversesqrt(variance + float(${o}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}}class O6{constructor(e,t,n,s,i,o){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],tt(e,t),tt(e,n);let a="vec4(0.0)";s!=null&&(tt(e,s),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let c="vec4(1.0)";i!=null&&(tt(e,i),this.variableNames.push("scale"),c="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${a};
vec4 scale = ${c};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${o}));
setOutput((x - mean) * inv + offset);
}
`}}const E6=({inputs:e,backend:t,attrs:n})=>{const{x:s,mean:i,variance:o,offset:a,scale:c}=e;k(i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k(c==null||i.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:h}=n;h==null&&(h=.001);const d=[s,i,o];let m=null;a!=null&&(m=a.shape,d.push(a));let y=null;c!=null&&(y=c.shape,d.push(c));const b=C().getBool("WEBGL_PACK_NORMALIZATION")?new O6(s.shape,i.shape,o.shape,m,y,h):new R6(s.shape,i.shape,o.shape,m,y,h),w=t.runWebGLProgram(b,d,d[0].dtype);return w},D6={kernelName:ol,backendName:"webgl",kernelFunc:E6};const k6=yC+`
return cos(x);
`,F6=am(k6),_6={kernelName:da,backendName:"webgl",kernelFunc:F6};const W6=`
if (a == b) {
return 1.0;
};
return a / b;`,$6=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,U6=iS(W6,$6,!0),B6={kernelName:pa,backendName:"webgl",kernelFunc:U6};class M6{constructor(e){this.variableNames=["Image"],this.outputShape=[];const t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}}const P6={kernelName:Pu,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{const{image:n}=e,s=t,i=new M6(n.shape),o=s.runWebGLProgram(i,[n],n.dtype);return o}};class z6{constructor(e){this.variableNames=["A"];const t=Wn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}}class G6{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;const t=Wn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}}const V6={kernelName:Qu,backendName:"webgl",kernelFunc:Y6};let hc;function Y6(e){const{inputs:t,backend:n,attrs:s}=e;let{pixels:i}=t;const{numChannels:o}=s,a=typeof HTMLVideoElement!="undefined"&&i instanceof HTMLVideoElement,c=typeof HTMLImageElement!="undefined"&&i instanceof HTMLImageElement,[h,d]=a?[i.videoWidth,i.videoHeight]:[i.width,i.height],m=[d,h],y=[d,h,o];(c||a)&&(hc==null&&(hc=document.createElement("canvas").getContext("2d")),hc.canvas.width=h,hc.canvas.height=d,hc.drawImage(i,0,0,h,d),i=hc.canvas);const b=n.makeTensorInfo(m,"int32");n.texData.get(b.dataId).usage=As.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(b.dataId),i);const w=C().getBool("WEBGL_PACK")?new G6(y):new z6(y),L=n.runWebGLProgram(w,[b],"int32");return n.disposeData(b.dataId),L}function H6(e){const t=[];for(;t.length===0||t[t.length-1].outSize!==1;){const n=t.length?t[t.length-1].outSize:e[1],s=Jl(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function q6(e,t,n,s){const i=H6(e.shape);let o=e;for(let a=0;a<i.length;a++){const{inSize:c,windowSize:h,outSize:d}=i[a],m=new J0({windowSize:h,inSize:c,batchSize:e.shape[0],outSize:d},n),y=o;o=s.runWebGLProgram(m,[o],t),y.dataId!==e.dataId&&s.disposeData(y.dataId)}return o}function j6(e,t,n){const s=[ic(e.shape),...rc(e.shape)],i={dtype:e.dtype,shape:s,dataId:e.dataId},o=[ic(t),...rc(t)],a=new Z0(o,s),c=!0,h=n.runWebGLProgram(a,[i],e.dtype,null,c);return{dataId:h.dataId,shape:t,dtype:h.dtype}}function oS(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t,{shape:o}=s,a=n,c=we(i.shape),h=id(o,c),d=we(h);k(c===d,()=>`The new shape (${h}) has ${d} elements and the old shape (${i.shape}) has ${c} elements. The new shape and old shape must have the same number of elements.`);const m=a.texData.get(i.dataId);return m.isPacked&&!Zp(i.shape,h)&&!(m.texture!==null&&Zp(m.shape,h))?j6(i,h,a):(a.incRef(i.dataId),{dataId:i.dataId,shape:h,dtype:i.dtype})}const K6={kernelName:yl,backendName:"webgl",kernelFunc:oS};function X6(e,t,n,s){const i=we(t),o=we(e.shape),a=o/i,c=oS({inputs:{x:e},attrs:{shape:[a,i]},backend:s}),h=q6(c,e.dtype,"max",s),d=oS({inputs:{x:h},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(c),s.disposeIntermediateTensorInfo(h),d}class J6{constructor(e,t){this.variableNames=["A"];const n=new Array(e.length);for(let o=0;o<n.length;o++)n[o]=e[t[o]];this.outputShape=n,this.rank=n.length;const s=Et(this.rank),i=Z6(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${i}));
}
`}}function Z6(e){const t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);const n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let i=0;i<e.length;i++)s[e[i]]=n[i];return s.join()}class Q6{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;const n=new Array(e.length);for(let d=0;d<n.length;d++)n[d]=e[t[d]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);const s=Et(this.rank),i=v0("rc",this.rank),o=new Array(this.rank);for(let d=0;d<t.length;d++)o[t[d]]=i[d];const a=`vec2(${o.slice(-2).join()})`,c=`++${i[this.rank-1]} < ${n[this.rank-1]}`,h=`getChannel(getA(${o.join()}), ${a})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${h};
if(${c}) {
result[1] = ${h};
}
--${i[this.rank-1]};
if(++${i[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${h};
if(${c}) {
result[3] = ${h};
}
}
setOutput(result);
}
`}}function bC(e,t,n){const s=C().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Q6(e.shape,t):new J6(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}const eX={kernelName:pl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{reductionIndices:i,keepDims:o}=t,a=n,c=s.shape.length,h=ft(i,s.shape);let d=h;const m=kn(d,c),y=m!=null,b=a.shouldExecuteOnCPU([s]);let w=s;if(y){if(b){const E=a.texData.get(w.dataId),D=E.values,F=new Array(c);for(let $=0;$<F.length;$++)F[$]=s.shape[m[$]];const _=A0(D,s.shape,s.dtype,m,F);w=a.makeTensorInfo(F,s.dtype);const B=a.texData.get(w.dataId);B.values=_}else w=bC(s,m,a);d=ws(d.length,c)}es("max",d,c);const[L,T]=Cn(w.shape,d);let A=L;o&&(A=Rn(L,h));let N;if(b){const E=a.texData.get(w.dataId),D=E.values,F=Dj(D,we(T),A,s.dtype);N=a.makeTensorInfo(A,s.dtype);const _=a.texData.get(N.dataId);_.values=F}else N=X6(w,T,A,a);return y&&a.disposeIntermediateTensorInfo(w),N}};function tX(e){const{inputs:t,backend:n,attrs:s}=e,{x:i}=t;Xh(i,"maxPool");const{filterSize:o,strides:a,pad:c,dimRoundingMode:h}=s,d=1;k(rn(a,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${d}'`);const m=Fn(i.shape,o,a,d,c,h);if(m.filterWidth===1&&m.filterHeight===1&&ot(m.inShape,m.outShape))return rS({inputs:{x:i},backend:n});const y=new Zh(m,"max",!1);return n.runWebGLProgram(y,[i],i.dtype)}const nX={kernelName:ml,backendName:"webgl",kernelFunc:tX};function sX(e){const{inputs:t,backend:n,attrs:s}=e,{dy:i,input:o,output:a}=t,c=o;Xh([o,a],"maxPoolBackprop");const{filterSize:h,strides:d,pad:m,dimRoundingMode:y}=s,b=Fn(c.shape,h,d,1,m,y),w=!0,L=new Zh(b,"max",w),T=n.runWebGLProgram(L,[c],c.dtype),A=new J5(b),N=n.runWebGLProgram(A,[i,T],c.dtype);return n.disposeIntermediateTensorInfo(T),N}const iX={kernelName:Gu,backendName:"webgl",kernelFunc:sX};function rX(e,t,n,s){let i=new Zh(n,"max",!1);const o=s.runWebGLProgram(i,[e],"float32");i=new Zh(n,"max",!0,!0,t);const a=s.runWebGLProgram(i,[e],"float32");return[o,a]}const oX={kernelName:Vu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{filterSize:i,strides:o,pad:a,includeBatchInIndex:c}=t,h=n;k(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);const d=[1,1];k(rn(o,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);const m=Fn(s.shape,i,o,d,a),[y,b]=rX(s,c,m,h);return[y,b]}};const aX={kernelName:Og,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:n})=>{Pa("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c}=n,h=t,d=h.readSync(s.dataId),m=h.readSync(i.dataId),y=o,b=a,w=c;return tp(d,m,y,b,w)}};const cX=np,lX={kernelName:Hu,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:n})=>{Pa("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,padToMaxOutputSize:h}=n,d=t,m=d.readSync(s.dataId),y=d.readSync(i.dataId),{selectedIndices:b,validOutputs:w}=cX(m,y,o,a,c,h);return[b,w]}};const hX=sp,uX={kernelName:qu,backendName:"webgl",kernelFunc:({inputs:e,backend:t,attrs:n})=>{Pa("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");const{boxes:s,scores:i}=e,{maxOutputSize:o,iouThreshold:a,scoreThreshold:c,softNmsSigma:h}=n,d=t,m=d.readSync(s.dataId),y=d.readSync(i.dataId),b=o,w=a,L=c,T=h,{selectedIndices:A,selectedScores:N}=hX(m,y,b,w,L,T);return[A,N]}};class dX{constructor(e,t,n,s){this.variableNames=["Image"],this.outputShape=[];const i=e[1],o=e[2],a=Math.sin(t).toFixed(3),c=Math.cos(t).toFixed(3);this.outputShape=e;const[h,d]=Cb(s,i,o),m=h.toFixed(3),y=d.toFixed(3);let b="";typeof n=="number"?b=`float outputValue = ${n.toFixed(2)};`:b=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${m}) * ${c} - (float(y) - ${y}) * ${a};
float coordYFloat = (float(x) - ${m}) * ${a} + (float(y) - ${y}) * ${c};
int coordX = int(round(coordXFloat + ${m}));
int coordY = int(round(coordYFloat + ${y}));
${b}
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${i}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}}const pX={kernelName:ed,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{image:s}=e,{radians:i,fillValue:o,center:a}=t,c=n,h=new dX(s.shape,i,o,a),d=c.runWebGLProgram(h,[s],s.dtype);return d}};const mX=yC+`
return sin(x);
`,fX=am(mX),gX={kernelName:ma,backendName:"webgl",kernelFunc:fX};const yX="return x * x;",bX=am(yX),wX={kernelName:Ju,backendName:"webgl",kernelFunc:bX};const wC="return (a - b) * (a - b);",LX=iS(wC,wC),SX={kernelName:fa,backendName:"webgl",kernelFunc:LX};const IX="return tan(x);",xX=am(IX),TX={kernelName:ga,backendName:"webgl",kernelFunc:xX};const AX={kernelName:Cl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{const{x:s}=e,{perm:i}=t,o=n,a=s.shape.length,c=new Array(a);for(let d=0;d<c.length;d++)c[d]=s.shape[i[d]];let h;if(o.shouldExecuteOnCPU([s])){const d=o.texData.get(s.dataId),m=d.values,y=A0(m,s.shape,s.dtype,i,c);h=o.makeTensorInfo(c,s.dtype);const b=o.texData.get(h.dataId);b.values=y}else h=bC(s,i,o);return h}};function vX(e){const{inputs:t,attrs:n,backend:s}=e,{axis:i}=n,{x:o}=t;Xh(o,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");const a=s.readSync(o.dataId),{outputValues:c,outputShape:h,indices:d}=$j(a,i,o.shape,o.dtype);return[s.makeTensorInfo(h,o.dtype,c),s.makeTensorInfo([d.length],"int32",d)]}const NX={kernelName:Zu,backendName:"webgl",kernelFunc:vX};const CX=[x6,v6,C6,D6,_6,B6,P6,V6,T6,eX,nX,iX,oX,aX,lX,uX,K6,pX,gX,wX,SX,TX,AX,NX];for(const e of CX)nd(e);const RX="2.6.0";const OX={"tfjs-core":xT,"tfjs-backend-cpu":BH,"tfjs-backend-webgl":g6,"tfjs-data":QN,"tfjs-layers":Dp,"tfjs-converter":EN,tfjs:RX};r.Abs=ge,r.Acos=fe,r.Acosh=Ae,r.AdadeltaOptimizer=lh,r.AdagradOptimizer=hh,r.AdamOptimizer=uh,r.AdamaxOptimizer=dh,r.Add=Te,r.AddN=Ve,r.All=rt,r.Any=vt,r.ArgMax=$t,r.ArgMin=Kt,r.Asin=Dn,r.Asinh=Tn,r.Atan=An,r.Atan2=Li,r.Atanh=Ks,r.AvgPool=Xs,r.AvgPool3D=Xc,r.AvgPool3DBackprop=ex,r.AvgPoolBackprop=ua,r.BatchMatMul=ag,r.BatchToSpaceND=cg,r.BroadcastTo=lg,r.Callback=gN,r.CallbackList=hv,r.Cast=Jc,r.Ceil=Zc,r.ClipByValue=Qc,r.Complex=hg,r.Concat=$u,r.Conv2D=ug,r.Conv2DBackpropFilter=tx,r.Conv2DBackpropInput=dg,r.Conv3D=pg,r.Conv3DBackpropFilterV2=nx,r.Conv3DBackpropInputV2=sx,r.Cos=da,r.Cosh=el,r.CropAndResize=ix,r.Cumsum=mg,r.CustomCallback=dv,r.DataStorage=p,r.DepthToSpace=rx,r.DepthwiseConv2dNative=fg,r.DepthwiseConv2dNativeBackpropFilter=ox,r.DepthwiseConv2dNativeBackpropInput=ax,r.Diag=cx,r.Dilation2D=Uu,r.Dilation2DBackpropFilter=Mu,r.Dilation2DBackpropInput=Bu,r.Div=pa,r.EarlyStopping=bN,r.Elu=tl,r.EluGrad=lx,r.Environment=S,r.Equal=hx,r.Erf=nl,r.Exp=sl,r.Expm1=il,r.FFT=gg,r.Fill=ux,r.FlipLeftRight=Pu,r.Floor=rl,r.FloorDiv=yg,r.FromPixels=Qu,r.FusedBatchNorm=ol,r.FusedConv2D=Xg,r.FusedDepthwiseConv2D=Jg,r.GatherNd=dx,r.GatherV2=bg,r.GraphModel=ON,r.Greater=px,r.GreaterEqual=wg,r.History=uv,r.IFFT=Lg,r.Identity=al,r.Imag=Sg,r.InputSpec=mn,r.IsFinite=cl,r.IsInf=ll,r.IsNan=hl,r.KernelBackend=g,r.LRN=xg,r.LRNBackprop=wx,r.LayerVariable=ii,r.LayersModel=nr,r.Less=mx,r.LessEqual=fx,r.LinSpace=gx,r.Log=ul,r.Log1p=dl,r.LogSoftmax=Ig,r.LogicalAnd=yx,r.LogicalNot=zu,r.LogicalOr=bx,r.Max=pl,r.MaxPool=ml,r.MaxPool3D=Ag,r.MaxPool3DBackprop=Lx,r.MaxPoolBackprop=Gu,r.MaxPoolWithArgmax=Vu,r.Maximum=Tg,r.Mean=cD,r.Min=vg,r.Minimum=Ng,r.Mod=Cg,r.MomentumOptimizer=ph,r.Multiply=fl,r.Negate=Rg,r.NonMaxSuppressionV3=Og,r.NonMaxSuppressionV4=Hu,r.NonMaxSuppressionV5=qu,r.NotEqual=Yu,r.OP_SCOPE_SUFFIX=jx,r.OneHot=Dg,r.OnesLike=Eg,r.Optimizer=Ji,r.PadV2=ju,r.Pool=lD,r.Pow=kg,r.Prelu=Fg,r.Prod=Sx,r.RMSPropOptimizer=mh,r.RNN=Fi,r.Range=Ix,r.Real=_g,r.Reciprocal=gl,r.Relu=Wg,r.Relu6=Bg,r.Reshape=yl,r.ResizeBilinear=Ug,r.ResizeBilinearGrad=Tx,r.ResizeNearestNeighbor=$g,r.ResizeNearestNeighborGrad=xx,r.Reverse=Mg,r.RotateWithOffset=ed,r.Round=bl,r.Rsqrt=wl,r.SGDOptimizer=Ma,r.ScatterNd=Ax,r.SelectV2=Pg,r.Selu=Ll,r.Sequential=ja,r.Sigmoid=xl,r.Sign=Il,r.Sin=ma,r.Sinh=Sl,r.Slice=Ku,r.Softmax=Vg,r.Softplus=Tl,r.SpaceToBatchND=Xu,r.SparseToDense=vx,r.SplitV=Gg,r.Sqrt=Al,r.Square=Ju,r.SquaredDifference=fa,r.Step=Rl,r.StridedSlice=Nx,r.Sub=vl,r.Sum=zg,r.SymbolicTensor=ri,r.Tan=ga,r.Tanh=Nl,r.Tensor=Q,r.TensorBuffer=Ar,r.Tile=Yg,r.TopK=Cx,r.Transpose=Cl,r.Unique=Zu,r.Unpack=Hg,r.UnsortedSegmentSum=qg,r.Variable=Wl,r.ZerosLike=jg,r._FusedMatMul=Kg,r.abs=sn,r.acos=$y,r.acosh=Uy,r.add=be,r.addN=vT,r.addStrict=nA,r.all=xd,r.any=Pl,r.argMax=zl,r.argMin=My,r.asin=Py,r.asinh=zy,r.atan=Gy,r.atan2=Vy,r.atanh=Yy,r.avgPool=Hl,r.avgPool3d=jy,r.backend=AT,r.backend_util=Bb,r.basicLSTMCell=kF,r.batchNorm=bo,r.batchNorm2d=CT,r.batchNorm3d=RT,r.batchNorm4d=OT,r.batchToSpaceND=ql,r.booleanMaskAsync=V$,r.broadcastTo=jl,r.browser=Wk,r.buffer=Ze,r.callbacks=dV,r.cast=ve,r.ceil=Xy,r.clipByValue=Yn,r.clone=Cr,r.complex=xi,r.concat=Mt,r.concat1d=ET,r.concat2d=DT,r.concat3d=kT,r.concat4d=FT,r.constraints=$P,r.conv1d=Nd,r.conv2d=ji,r.conv2dTranspose=Cd,r.conv3d=Zy,r.conv3dTranspose=e_,r.copyRegisteredKernels=dD,r.cos=Kl,r.cosh=Rd,r.cosineWindow=Tb,r.cumsum=Od,r.customGrad=Ni,r.data=oH,r.deprecationWarn=nn,r.depthToSpace=Qy,r.depthwiseConv2d=wo,r.deregisterOp=mV,r.device_util=WD,r.diag=a_,r.dilation2d=eb,r.disableDeprecationWarnings=Kk,r.dispose=He,r.disposeVariables=Xk,r.div=_e,r.divNoNan=tb,r.divStrict=sA,r.dot=WT,r.dropout=mA,r.elu=So,r.enableDebugMode=jk,r.enableProdMode=qk,r.enclosingPowerOfTwo=fA,r.engine=Fs,r.env=C,r.equal=Zs,r.equalStrict=XT,r.erf=nb,r.exp=Ls,r.expandDims=Hn,r.expm1=sb,r.eye=Ed,r.fft=rh,r.fill=Xl,r.findBackend=nF,r.findBackendFactory=sF,r.floor=Ra,r.floorDiv=Id,r.fused=xU,r.gather=Oa,r.gatherND=pA,r.gather_util=$k,r.getBackend=eF,r.getGradient=Qg,r.getKernel=Zg,r.getKernelsForBackend=td,r.grad=B_,r.grads=M_,r.greater=Ss,r.greaterEqual=Ki,r.greaterEqualStrict=JT,r.greaterStrict=ZT,r.ifft=Wa,r.imag=Ea,r.image=Wr,r.inTopKAsync=gU,r.initializers=wz,r.input=Wv,r.io=vk,r.irfft=Hd,r.isFinite=UT,r.isInf=BT,r.isNaN=MT,r.keep=Nn,r.kernel_impls=DB,r.layers=GG,r.leakyRelu=Dd,r.less=Zl,r.lessEqual=Dr,r.lessEqualStrict=QT,r.lessStrict=eA,r.linalg=AA,r.linspace=PT,r.loadGraphModel=TY,r.loadLayersModel=S3,r.localResponseNormalization=rb,r.log=ts,r.log1p=kd,r.logSigmoid=zT,r.logSoftmax=_d,r.logSumExp=ab,r.logicalAnd=Ws,r.logicalNot=Ql,r.logicalOr=Wd,r.logicalXor=GT,r.losses=RB,r.matMul=at,r.math=kk,r.max=qn,r.maxPool=eh,r.maxPool3d=cb,r.maxPoolWithArgmax=VT,r.maximum=_s,r.maximumStrict=iA,r.mean=zt,r.memory=Sd,r.metrics=rV,r.min=ka,r.minimum=Io,r.minimumStrict=rA,r.mod=$d,r.modStrict=oA,r.model=w3,r.models=oV,r.moments=Ud,r.movingAverage=cU,r.mul=X,r.mulStrict=aA,r.multiRNNCell=uW,r.multinomial=YT,r.neg=Pt,r.nextFrame=ip,r.norm=Kd,r.notEqual=kr,r.notEqualStrict=tA,r.oneHot=fo,r.ones=Qs,r.onesLike=On,r.op=P,r.outerProduct=yW,r.pad=Ci,r.pad1d=LW,r.pad2d=IW,r.pad3d=TW,r.pad4d=vW,r.pool=HT,r.pow=ei,r.powStrict=cA,r.prelu=nh,r.print=sT,r.prod=Bd,r.profile=Jk,r.rand=_W,r.randomGamma=KW,r.randomNormal=ub,r.randomUniform=vo,r.range=sh,r.ready=Qk,r.real=xo,r.reciprocal=db,r.registerBackend=Wy,r.registerCallbackConstructor=I3,r.registerGradient=Rx,r.registerKernel=nd,r.registerOp=pV,r.regularizers=hV,r.relu=Ri,r.relu6=pb,r.removeBackend=tF,r.reshape=K,r.reverse=Is,r.reverse1d=s$,r.reverse2d=r$,r.reverse3d=a$,r.reverse4d=l$,r.rfft=oh,r.round=mb,r.rsqrt=Md,r.scalar=Ne,r.scatterND=dA,r.scatter_util=Uk,r.selu=Pd,r.separableConv2d=fb,r.sequential=L3,r.serialization=Bk,r.setBackend=TT,r.setPlatform=iF,r.setdiff1dAsync=qT,r.sigmoid=vi,r.sign=gb,r.signal=CB,r.sin=zd,r.sinh=Gd,r.slice=nt,r.slice1d=Vd,r.slice2d=yb,r.slice3d=Yd,r.slice4d=ih,r.slice_util=ST,r.softmax=No,r.softplus=Da,r.spaceToBatchND=th,r.sparseToDense=xb,r.spectral=NB,r.split=ss,r.sqrt=Ln,r.square=wt,r.squaredDifference=ah,r.squaredDifferenceStrict=lA,r.squeeze=Fr,r.stack=is,r.step=$a,r.stridedSlice=bb,r.sub=Ce,r.subStrict=hA,r.sum=Ue,r.sumOutType=cd,r.tan=wb,r.tanh=Ca,r.tensor=en,r.tensor1d=ns,r.tensor2d=_r,r.tensor3d=hT,r.tensor4d=Ua,r.tensor5d=_$,r.tensor6d=W$,r.tensor_util=DD,r.test_util=Hk,r.tidy=ee,r.tile=Er,r.time=Zk,r.topk=Lb,r.train=Ro,r.transpose=Me,r.truncatedNormal=ch,r.unique=qd,r.unregisterGradient=uD,r.unregisterKernel=hD,r.unsortedSegmentSum=Sb,r.unstack=Oi,r.upcastType=vn,r.util=wD,r.valueAndGrad=P_,r.valueAndGrads=z_,r.variable=KT,r.variableGrads=ob,r.version=OX,r.version_converter=EN,r.version_core=xT,r.version_layers=Dp,r.where=_n,r.whereAsync=Ib,r.zeros=ct,r.zerosLike=Qe,Object.defineProperty(r,"__esModule",{value:!0})})});var AC=lS(($X,TC)=>{hm($X,{isNodejs:()=>UX});function UX(){return typeof global=="object"&&!0&&typeof TC!="undefined"&&typeof process!="undefined"&&!!process.version}});function cr(r,l,u=!1){if(r.beginPath(),l.slice(1).forEach(({x:p,y:g},f)=>{const I=l[f];r.moveTo(I.x,I.y),r.lineTo(p,g)}),u){const p=l[l.length-1],g=l[0];if(!p||!g)return;r.moveTo(p.x,p.y),r.lineTo(g.x,g.y)}r.stroke()}class us{constructor(r,l){if(!ui(r)||!ui(l))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:r,height:l})}`);this._width=r,this._height=l}get width(){return this._width}get height(){return this._height}reverse(){return new us(1/this.width,1/this.height)}}const hS={};hm(hS,{computeReshapedDimensions:()=>pS,getCenterPoint:()=>Go,isDimensions:()=>pm,isEven:()=>dm,isFloat:()=>dS,isTensor:()=>Po,isTensor1D:()=>BX,isTensor2D:()=>uS,isTensor3D:()=>lr,isTensor4D:()=>Ns,isValidNumber:()=>ui,isValidProbablitiy:()=>fc,range:()=>Wi,round:()=>zo});const vC=Ke(Xe());function Po(r,l){return r instanceof vC.Tensor&&r.shape.length===l}function BX(r){return Po(r,1)}function uS(r){return Po(r,2)}function lr(r){return Po(r,3)}function Ns(r){return Po(r,4)}function dS(r){return r%1!==0}function dm(r){return r%2===0}function zo(r,l=2){const u=Math.pow(10,l);return Math.floor(r*u)/u}function pm(r){return r&&r.width&&r.height}function pS({width:r,height:l},u){const p=u/Math.max(l,r);return new us(Math.round(r*p),Math.round(l*p))}function Go(r){return r.reduce((l,u)=>l.add(u),new Je(0,0)).div(new Je(r.length,r.length))}function Wi(r,l,u){return Array(r).fill(0).map((p,g)=>l+g*u)}function ui(r){return!!r&&r!==Infinity&&r!==-Infinity&&!isNaN(r)||r===0}function fc(r){return ui(r)&&0<=r&&r<=1}class Je{constructor(r,l){this._x=r,this._y=l}get x(){return this._x}get y(){return this._y}add(r){return new Je(this.x+r.x,this.y+r.y)}sub(r){return new Je(this.x-r.x,this.y-r.y)}mul(r){return new Je(this.x*r.x,this.y*r.y)}div(r){return new Je(this.x/r.x,this.y/r.y)}abs(){return new Je(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(Math.pow(this.x,2)+Math.pow(this.y,2))}floor(){return new Je(Math.floor(this.x),Math.floor(this.y))}}class Ct{static isRect(r){return!!r&&[r.x,r.y,r.width,r.height].every(ui)}static assertIsValidBox(r,l,u=!1){if(!Ct.isRect(r))throw new Error(`${l} - invalid box: ${JSON.stringify(r)}, expected object with properties x, y, width, height`);if(!u&&(r.width<0||r.height<0))throw new Error(`${l} - width (${r.width}) and height (${r.height}) must be positive numbers`)}constructor(r,l=!0){const u=r||{},p=[u.left,u.top,u.right,u.bottom].every(ui),g=[u.x,u.y,u.width,u.height].every(ui);if(!g&&!p)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(u)}`);const[f,I,S,x]=g?[u.x,u.y,u.width,u.height]:[u.left,u.top,u.right-u.left,u.bottom-u.top];Ct.assertIsValidBox({x:f,y:I,width:S,height:x},"Box.constructor",l),this._x=f,this._y=I,this._width=S,this._height=x}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Je(this.left,this.top)}get topRight(){return new Je(this.right,this.top)}get bottomLeft(){return new Je(this.left,this.bottom)}get bottomRight(){return new Je(this.right,this.bottom)}round(){const[r,l,u,p]=[this.x,this.y,this.width,this.height].map(g=>Math.round(g));return new Ct({x:r,y:l,width:u,height:p})}floor(){const[r,l,u,p]=[this.x,this.y,this.width,this.height].map(g=>Math.floor(g));return new Ct({x:r,y:l,width:u,height:p})}toSquare(){let{x:r,y:l,width:u,height:p}=this;const g=Math.abs(u-p);return u<p&&(r-=g/2,u+=g),p<u&&(l-=g/2,p+=g),new Ct({x:r,y:l,width:u,height:p})}rescale(r){const l=pm(r)?r.width:r,u=pm(r)?r.height:r;return new Ct({x:this.x*l,y:this.y*u,width:this.width*l,height:this.height*u})}pad(r,l){let[u,p,g,f]=[this.x-r/2,this.y-l/2,this.width+r,this.height+l];return new Ct({x:u,y:p,width:g,height:f})}clipAtImageBorders(r,l){const{x:u,y:p,right:g,bottom:f}=this,I=Math.max(u,0),S=Math.max(p,0),x=g-I,v=f-S,O=Math.min(x,r-I),C=Math.min(v,l-S);return new Ct({x:I,y:S,width:O,height:C}).floor()}shift(r,l){const{width:u,height:p}=this,g=this.x+r,f=this.y+l;return new Ct({x:g,y:f,width:u,height:p})}padAtBorders(r,l){const u=this.width+1,p=this.height+1;let g=1,f=1,I=u,S=p,x=this.left,v=this.top,O=this.right,C=this.bottom;return O>l&&(I=-O+l+u,O=l),C>r&&(S=-C+r+p,C=r),x<1&&(S=2-x,x=1),v<1&&(S=2-v,v=1),{dy:f,edy:S,dx:g,edx:I,y:v,ey:C,x,ex:O,w:u,h:p}}calibrate(r){return new Ct({left:this.left+r.left*this.width,top:this.top+r.top*this.height,right:this.right+r.right*this.width,bottom:this.bottom+r.bottom*this.height}).toSquare().round()}}class tu extends Ct{constructor(r,l,u,p,g=!1){super({left:r,top:l,right:u,bottom:p},g)}}class gc{constructor(r,l,u,p,g){this._imageDims=new us(g.width,g.height),this._score=r,this._classScore=l,this._className=u,this._box=new Ct(p).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new Ct(this._box).rescale(this.imageDims.reverse())}forSize(r,l){return new gc(this.score,this.classScore,this.className,this.relativeBox,{width:r,height:l})}}class Ht extends gc{constructor(r,l,u){super(r,r,"",l,u)}forSize(r,l){const{score:u,relativeBox:p,imageDims:g}=super.forSize(r,l);return new Ht(u,p,g)}}function mS(r,l,u=!0){const p=Math.max(0,Math.min(r.right,l.right)-Math.max(r.left,l.left)),g=Math.max(0,Math.min(r.bottom,l.bottom)-Math.max(r.top,l.top)),f=p*g;return u?f/(r.area+l.area-f):f/Math.min(r.area,l.area)}function fS(r){const l=r.map(S=>S.x),u=r.map(S=>S.y),p=l.reduce((S,x)=>x<S?x:S,Infinity),g=u.reduce((S,x)=>x<S?x:S,Infinity),f=l.reduce((S,x)=>S<x?x:S,0),I=u.reduce((S,x)=>S<x?x:S,0);return new tu(p,g,f,I)}function gS(r,l,u,p=!0){let g=l.map((I,S)=>({score:I,boxIndex:S})).sort((I,S)=>I.score-S.score).map(I=>I.boxIndex);const f=[];for(;g.length>0;){const I=g.pop();f.push(I);const S=g,x=[];for(let v=0;v<S.length;v++){const O=S[v],C=r[I],U=r[O];x.push(mS(C,U,p))}g=g.filter((v,O)=>x[O]<=u)}return f}const $i=Ke(Xe());function di(r,l){return $i.tidy(()=>{const[u,p,g]=l,f=$i.fill([...r.shape.slice(0,3),1],u,"float32"),I=$i.fill([...r.shape.slice(0,3),1],p,"float32"),S=$i.fill([...r.shape.slice(0,3),1],g,"float32"),x=$i.concat([f,I,S],3);return $i.sub(r,x)})}const jr=Ke(Xe());function yS(r,l=!1){return jr.tidy(()=>{const[u,p]=r.shape.slice(1);if(u===p)return r;const g=Math.abs(u-p),f=Math.round(g*(l?.5:1)),I=u>p?2:1,S=U=>{const G=r.shape.slice();return G[I]=U,jr.fill(G,0,"float32")},x=S(f),v=g-x.shape[I],O=l&&v?S(v):null,C=[O,r,x].filter(U=>!!U).map(U=>jr.cast(U,"float32"));return jr.concat(C,I)})}function MX(r){const l=r.slice();for(let u=l.length-1;u>0;u--){const p=Math.floor(Math.random()*(u+1)),g=l[u];l[u]=l[p],l[p]=g}return l}function nu(r){return 1/(1+Math.exp(-r))}function PX(r){return Math.log(r/(1-r))}class su extends Ct{constructor(r,l,u,p,g=!1){super({x:r,y:l,width:u,height:p},g)}}const zX=.5,GX=.43,VX=.45;class Gs{constructor(r,l,u=new Je(0,0)){const{width:p,height:g}=l;this._imgDims=new us(p,g),this._shift=u,this._positions=r.map(f=>f.mul(new Je(p,g)).add(u))}get shift(){return new Je(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(r=>r.sub(this._shift).div(new Je(this.imageWidth,this.imageHeight)))}forSize(r,l){return new this.constructor(this.relativePositions,{width:r,height:l})}shiftBy(r,l){return new this.constructor(this.relativePositions,this._imgDims,new Je(r,l))}shiftByPoint(r){return this.shiftBy(r.x,r.y)}align(r,l={}){if(r){const g=r instanceof Ht?r.box.floor():new Ct(r);return this.shiftBy(g.x,g.y).align(null,l)}const{useDlibAlignment:u,minBoxPadding:p}=Object.assign({},{useDlibAlignment:!1,minBoxPadding:.2},l);return u?this.alignDlib():this.alignMinBbox(p)}alignDlib(){const r=this.getRefPointsForAlignment(),[l,u,p]=r,g=O=>p.sub(O).magnitude(),f=(g(l)+g(u))/2,I=Math.floor(f/VX),S=Go(r),x=Math.floor(Math.max(0,S.x-zX*I)),v=Math.floor(Math.max(0,S.y-GX*I));return new su(x,v,Math.min(I,this.imageWidth+x),Math.min(I,this.imageHeight+v))}alignMinBbox(r){const l=fS(this.positions);return l.pad(l.width*r,l.height*r)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}}class YX extends Gs{getRefPointsForAlignment(){const r=this.positions;return[r[0],r[1],Go([r[3],r[4]])]}}class iu extends Gs{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Go)}}class mm{constructor(r,l){this._label=r,this._distance=l}get label(){return this._label}get distance(){return this._distance}toString(r=!0){return`${this.label}${r?` (${zo(this.distance)})`:""}`}}class fm extends Ct{static assertIsValidLabeledBox(r,l){if(Ct.assertIsValidBox(r,l),!ui(r.label))throw new Error(`${l} - expected property label (${r.label}) to be a number`)}constructor(r,l){super(r);this._label=l}get label(){return this._label}}class Vo{constructor(r,l){if(!(typeof r=="string"))throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(l)||l.some(u=>!(u instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=r,this._descriptors=l}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(r=>Array.from(r))}}static fromJSON(r){const l=r.descriptors.map(u=>new Float32Array(u));return new Vo(r.label,l)}}class HX extends fm{static assertIsValidPredictedBox(r,l){if(fm.assertIsValidLabeledBox(r,l),!fc(r.score)||!fc(r.classScore))throw new Error(`${l} - expected properties score (${r.score}) and (${r.classScore}) to be a number between [0, 1]`)}constructor(r,l,u,p){super(r,l);this._score=u,this._classScore=p}get score(){return this._score}get classScore(){return this._classScore}}function Ui(r){return r.detection instanceof Ht}function Yo(r,l){const u={detection:l};return Object.assign({},r,u)}function bS(){const r=window.fetch||function(){throw new Error("fetch - missing fetch implementation for browser environment")},l=function(){throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:r,readFile:l}}function gm(r){let l="";if(!r)try{r=require("fs")}catch(p){l=p.toString()}const u=r?function(p){return new Promise((g,f)=>{r.readFile(p,function(I,S){return I?f(I):g(S)})})}:function(){throw new Error(`readFile - failed to require fs in nodejs environment with error: ${l}`)};return{readFile:u}}function wS(){const r=global.Canvas||global.HTMLCanvasElement,l=global.Image||global.HTMLImageElement,u=function(){if(r)return new r;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},p=function(){if(l)return new l;throw new Error("createImageElement - missing Image implementation for nodejs environment")},g=global.fetch||function(){throw new Error("fetch - missing fetch implementation for nodejs environment")},f=gm();return{Canvas:r||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:l||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:u,createImageElement:p,fetch:g,...f}}function LS(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}const SS=Ke(AC());let gn;function qX(){if(!gn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return gn}function IS(r){gn=r}function xS(){if(LS())return IS(bS());if(SS.isNodejs())return IS(wS())}function jX(r){if(gn||xS(),!gn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");const{Canvas:l=gn.Canvas,Image:u=gn.Image}=r;gn.Canvas=l,gn.Image=u,gn.createCanvasElement=r.createCanvasElement||(()=>new l),gn.createImageElement=r.createImageElement||(()=>new u),gn.ImageData=r.ImageData||gn.ImageData,gn.Video=r.Video||gn.Video,gn.fetch=r.fetch||gn.fetch,gn.readFile=r.readFile||gn.readFile}const gt={getEnv:qX,setEnv:IS,initialize:xS,createBrowserEnv:bS,createFileSystem:gm,createNodejsEnv:wS,monkeyPatch:jX,isBrowser:LS,isNodejs:SS.isNodejs};xS();function Ho(r){return!gt.isNodejs()&&typeof r=="string"?document.getElementById(r):r}function Jn(r){const{Canvas:l,CanvasRenderingContext2D:u}=gt.getEnv();if(r instanceof u)return r;const p=Ho(r);if(!(p instanceof l))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");const g=p.getContext("2d");if(!g)throw new Error("resolveContext2d - canvas 2d context is null");return g}var Bi;(function(r){r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT"})(Bi||(Bi={}));class ym{constructor(r={}){const{anchorPosition:l,backgroundColor:u,fontColor:p,fontSize:g,fontStyle:f,padding:I}=r;this.anchorPosition=l||Bi.TOP_LEFT,this.backgroundColor=u||"rgba(0, 0, 0, 0.5)",this.fontColor=p||"rgba(255, 255, 255, 1)",this.fontSize=g||14,this.fontStyle=f||"Georgia",this.padding=I||4}}class yc{constructor(r,l,u={}){this.text=typeof r=="string"?[r]:r instanceof yc?r.text:r,this.anchor=l,this.options=new ym(u)}measureWidth(r){const{padding:l}=this.options;return this.text.map(u=>r.measureText(u).width).reduce((u,p)=>u<p?p:u,0)+2*l}measureHeight(){const{fontSize:r,padding:l}=this.options;return this.text.length*r+2*l}getUpperLeft(r,l){const{anchorPosition:u}=this.options,p=u===Bi.BOTTOM_RIGHT||u===Bi.TOP_RIGHT,g=u===Bi.BOTTOM_LEFT||u===Bi.BOTTOM_RIGHT,f=this.measureWidth(r),I=this.measureHeight(),S=p?this.anchor.x-f:this.anchor.x,x=g?this.anchor.y-I:this.anchor.y;if(l){const{width:v,height:O}=l,C=Math.max(Math.min(S,v-f),0),U=Math.max(Math.min(x,O-I),0);return{x:C,y:U}}return{x:S,y:x}}draw(r){const l=Ho(r),u=Jn(l),{backgroundColor:p,fontColor:g,fontSize:f,fontStyle:I,padding:S}=this.options;u.font=`${f}px ${I}`;const x=this.measureWidth(u),v=this.measureHeight();u.fillStyle=p;const O=this.getUpperLeft(u,l);u.fillRect(O.x,O.y,x,v),u.fillStyle=g,this.text.forEach((C,U)=>{const G=S+O.x,ne=S+O.y+(U+1)*f;u.fillText(C,G,ne)})}}class NC{constructor(r={}){const{boxColor:l,lineWidth:u,label:p,drawLabelOptions:g}=r;this.boxColor=l||"rgba(0, 0, 255, 1)",this.lineWidth=u||2,this.label=p;const f={anchorPosition:Bi.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new ym(Object.assign({},f,g))}}class TS{constructor(r,l={}){this.box=new Ct(r),this.options=new NC(l)}draw(r){const l=Jn(r),{boxColor:u,lineWidth:p}=this.options,{x:g,y:f,width:I,height:S}=this.box;l.strokeStyle=u,l.lineWidth=p,l.strokeRect(g,f,I,S);const{label:x}=this.options;x&&new yc([x],{x:g-p/2,y:f},this.options.drawLabelOptions).draw(r)}}function KX(r,l){const u=Array.isArray(l)?l:[l];u.forEach(p=>{const g=p instanceof Ht?p.score:Ui(p)?p.detection.score:void 0,f=p instanceof Ht?p.box:Ui(p)?p.detection.box:new Ct(p),I=g?`${zo(g)}`:void 0;new TS(f,{label:I}).draw(r)})}function ru(r){const{Image:l,Video:u}=gt.getEnv();return r instanceof l&&r.complete||r instanceof u&&r.readyState>=3}function AS(r){return new Promise((l,u)=>{if(r instanceof gt.getEnv().Canvas||ru(r))return l(null);function p(f){if(!f.currentTarget)return;f.currentTarget.removeEventListener("load",p),f.currentTarget.removeEventListener("error",g),l(f)}function g(f){if(!f.currentTarget)return;f.currentTarget.removeEventListener("load",p),f.currentTarget.removeEventListener("error",g),u(f)}r.addEventListener("load",p),r.addEventListener("error",g)})}function vS(r){return new Promise((l,u)=>{if(!(r instanceof Blob))return u("bufferToImage - expected buf to be of type: Blob");const p=new FileReader;p.onload=()=>{if(typeof p.result!="string")return u("bufferToImage - expected reader.result to be a string, in onload");const g=gt.getEnv().createImageElement();g.onload=()=>l(g),g.onerror=u,g.src=p.result},p.onerror=u,p.readAsDataURL(r)})}function qo(r){const{Image:l,Video:u}=gt.getEnv();return r instanceof l?new us(r.naturalWidth,r.naturalHeight):r instanceof u?new us(r.videoWidth,r.videoHeight):new us(r.width,r.height)}function bc({width:r,height:l}){const{createCanvasElement:u}=gt.getEnv(),p=u();return p.width=r,p.height=l,p}function ou(r,l){const{ImageData:u}=gt.getEnv();if(!(r instanceof u)&&!ru(r))throw new Error("createCanvasFromMedia - media has not finished loading yet");const{width:p,height:g}=l||qo(r),f=bc({width:p,height:g});return r instanceof u?Jn(f).putImageData(r,0,0):Jn(f).drawImage(r,0,0,p,g),f}const bm=Ke(Xe());async function NS(r,l){const u=l||gt.getEnv().createCanvasElement(),[p,g,f]=r.shape.slice(Ns(r)?1:0),I=bm.tidy(()=>r.as3D(p,g,f).toInt());return await bm.browser.toPixels(I,u),I.dispose(),u}function wm(r){const{Image:l,Canvas:u,Video:p}=gt.getEnv();return r instanceof l||r instanceof u||r instanceof p}const XX=1e-7,JX=1e-4;class CC{time(r){return se("time")}read(r){return se("read")}readSync(r){return se("readSync")}numDataIds(){return se("numDataIds")}disposeData(r){return se("disposeData")}write(r,l,u){return se("write")}move(r,l,u,p){return se("move")}memory(){return se("memory")}floatPrecision(){return se("floatPrecision")}epsilon(){return this.floatPrecision()===32?XX:JX}batchMatMul(r,l,u,p){return se("batchMatMul")}fusedBatchMatMul({a:r,b:l,transposeA:u,transposeB:p,bias:g,activation:f,preluActivationWeights:I}){return se("fusedBatchMatMul")}slice(r,l,u){return se("slice")}stridedSlice(r,l,u,p){return se("stridedSlice")}unstack(r,l){return se("unstack")}reverse(r,l){return se("reverse")}concat(r,l){return se("concat")}neg(r){return se("neg")}add(r,l){return se("add")}addN(r){return se("addN")}subtract(r,l){return se("subtract")}multiply(r,l){return se("multiply")}realDivide(r,l){return se("realDivide")}floorDiv(r,l){return se("floorDiv")}sum(r,l){return se("sum")}prod(r,l){return se("prod")}unsortedSegmentSum(r,l,u){return se("unsortedSegmentSum")}argMin(r,l){return se("argMin")}argMax(r,l){return se("argMax")}equal(r,l){return se("equal")}notEqual(r,l){return se("notEqual")}less(r,l){return se("less")}lessEqual(r,l){return se("lessEqual")}greater(r,l){return se("greater")}greaterEqual(r,l){return se("greaterEqual")}logicalNot(r){return se("logicalNot")}logicalAnd(r,l){return se("logicalAnd")}logicalOr(r,l){return se("logicalOr")}where(r){return se("where")}select(r,l,u){return se("select")}topk(r,l,u){return se("topk")}min(r,l){return se("min")}minimum(r,l){return se("minimum")}mod(r,l){return se("mod")}max(r,l){return se("max")}maximum(r,l){return se("maximum")}all(r,l){return se("all")}any(r,l){return se("any")}squaredDifference(r,l){return se("squaredDifference")}ceil(r){return se("ceil")}floor(r){return se("floor")}round(r){return se("round")}sign(r){return se("sign")}isNaN(r){return se("isNaN")}isInf(r){return se("isInf")}isFinite(r){return se("isFinite")}pow(r,l){return se("pow")}exp(r){return se("exp")}expm1(r){return se("expm1")}softmax(r,l){return se("softmax")}log(r){return se("log")}log1p(r){return se("log1p")}sqrt(r){return se("sqrt")}rsqrt(r){return se("rsqrt")}square(r){return se("square")}reciprocal(r){return se("reciprocal")}relu(r){return se("relu")}relu6(r){return se("relu6")}prelu(r,l){return se("prelu")}elu(r){return se("elu")}eluDer(r,l){return se("eluDer")}selu(r){return se("selu")}int(r){return se("int")}clip(r,l,u){return se("clip")}abs(r){return se("abs")}complexAbs(r){return se("complexAbs")}sigmoid(r){return se("sigmoid")}softplus(r){return se("softplus")}sin(r){return se("sin")}cos(r){return se("cos")}tan(r){return se("tan")}asin(r){return se("asin")}acos(r){return se("acos")}atan(r){return se("atan")}atan2(r,l){return se("atan2")}sinh(r){return se("sinh")}cosh(r){return se("cosh")}tanh(r){return se("tanh")}asinh(r){return se("asinh")}acosh(r){return se("acosh")}atanh(r){return se("atanh")}erf(r){return se("erf")}step(r,l){return se("step")}fusedConv2d({input:r,filter:l,convInfo:u,bias:p,activation:g,preluActivationWeights:f}){return se("fusedConv2d")}conv2d(r,l,u){return se("conv2d")}conv2dDerInput(r,l,u){return se("conv2dDerInput")}conv2dDerFilter(r,l,u){return se("conv2dDerFilter")}fusedDepthwiseConv2D({input:r,filter:l,convInfo:u,bias:p,activation:g,preluActivationWeights:f}){return se("fusedDepthwiseConv2D")}depthwiseConv2D(r,l,u){return se("depthwiseConv2D")}depthwiseConv2DDerInput(r,l,u){return se("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(r,l,u){return se("depthwiseConv2DDerFilter")}conv3d(r,l,u){return se("conv3d")}conv3dDerInput(r,l,u){return se("conv3dDerInput")}conv3dDerFilter(r,l,u){return se("conv3dDerFilter")}maxPool(r,l){return se("maxPool")}maxPoolBackprop(r,l,u,p){return se("maxPoolBackprop")}avgPool(r,l){return se("avgPool")}avgPoolBackprop(r,l,u){return se("avgPoolBackprop")}avgPool3d(r,l){return se("avgPool3d")}avgPool3dBackprop(r,l,u){return se("avgPool3dBackprop")}maxPool3d(r,l){return se("maxPool3d")}maxPool3dBackprop(r,l,u,p){return se("maxPool3dBackprop")}reshape(r,l){return se("reshape")}cast(r,l){return se("cast")}tile(r,l){return se("tile")}pad(r,l,u){return se("pad")}transpose(r,l){return se("transpose")}gather(r,l,u){return se("gather")}gatherND(r,l){return se("gatherND")}scatterND(r,l,u){return se("scatterND")}batchToSpaceND(r,l,u){return se("batchToSpaceND")}spaceToBatchND(r,l,u){return se("spaceToBatchND")}resizeBilinear(r,l,u,p){return se("resizeBilinear")}resizeBilinearBackprop(r,l,u){return se("resizeBilinearBackprop")}resizeNearestNeighbor(r,l,u,p){return se("resizeNearestNeighbor")}resizeNearestNeighborBackprop(r,l,u){return se("resizeNearestNeighborBackprop")}batchNorm(r,l,u,p,g,f){return se("batchNorm")}localResponseNormalization4D(r,l,u,p,g){return se("localResponseNormalization4D")}LRNGrad(r,l,u,p,g,f,I){return se("LRNGrad")}multinomial(r,l,u,p){return se("multinomial")}oneHot(r,l,u,p){return se("oneHot")}cumsum(r,l,u,p){return se("cumsum")}nonMaxSuppression(r,l,u,p,g){return se("nonMaxSuppression")}fft(r){return se("fft")}ifft(r){return se("ifft")}complex(r,l){return se("complex")}real(r){return se("real")}imag(r){return se("imag")}cropAndResize(r,l,u,p,g,f){return se("cropAndResize")}depthToSpace(r,l,u){return se("depthToSpace")}split(r,l,u){return se("split")}sparseToDense(r,l,u,p){return se("sparseToDense")}diag(r){return se("diag")}fill(r,l,u){return se("fill")}onesLike(r){return se("onesLike")}zerosLike(r){return se("zerosLike")}linspace(r,l,u){return se("linspace")}dispose(){return se("dispose")}}function se(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}const RC="tfjsflags";class OC{constructor(r){this.global=r,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(r,l){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${l}.`),this.platformName=r,this.platform=l}registerFlag(r,l,u){if(this.flagRegistry[r]={evaluationFn:l,setHook:u},this.urlFlags[r]!=null){const p=this.urlFlags[r];console.warn(`Setting feature override from URL ${r}: ${p}.`),this.set(r,p)}}async getAsync(r){return r in this.flags?this.flags[r]:(this.flags[r]=await this.evaluateFlag(r),this.flags[r])}get(r){if(r in this.flags)return this.flags[r];const l=this.evaluateFlag(r);if(l instanceof Promise)throw new Error(`Flag ${r} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[r]=l,this.flags[r]}getNumber(r){return this.get(r)}getBool(r){return this.get(r)}getFlags(){return this.flags}get features(){return this.flags}set(r,l){if(this.flagRegistry[r]==null)throw new Error(`Cannot set flag ${r} as it has not been registered.`);this.flags[r]=l,this.flagRegistry[r].setHook!=null&&this.flagRegistry[r].setHook(l)}evaluateFlag(r){if(this.flagRegistry[r]==null)throw new Error(`Cannot evaluate flag '${r}': no evaluation function found.`);return this.flagRegistry[r].evaluationFn()}setFlags(r){this.flags=Object.assign({},r)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;const r=ZX(this.global.location.search);if(RC in r){const l=r[RC].split(",");l.forEach(u=>{const[p,g]=u.split(":");this.urlFlags[p]=QX(p,g)})}}}function ZX(r){const l={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(u,...p)=>(e7(l,p[0],p[1]),p.join("="))),l}function e7(r,l,u){r[decodeURIComponent(l)]=decodeURIComponent(u||"")}function QX(r,l){if(l=l.toLowerCase(),l==="true"||l==="false")return l==="true";if(`${+l}`===l)return+l;throw new Error(`Could not parse value flag value ${l} for flag ${r}.`)}function Cs(){return EC}let EC=null;function DC(r){EC=r}let CS;function RS(){if(CS==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");CS=r}return CS}function t7(){const r=RS();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function OS(r,l){const u=t7();if(u.has(r))return u.get(r);{const p=l();return u.set(r,p),u.get(r)}}const Lm="Abs",kC="Acos",FC="Acosh",wc="Add",_C="AddN",WC="ArgMax",$C="ArgMin",UC="Asin",BC="Asinh",MC="Atan",PC="Atanh",zC="Atan2",GC="AvgPool",VC="AvgPoolBackprop",YC="AvgPool3D",HC="AvgPool3DBackprop",Sm="BatchMatMul",Im="BatchToSpaceND",xm="BroadcastTo",Lc="Cast",qC="Ceil",jC="ClipByValue",KC="Complex",Tm="Concat",Am="Conv2D",XC="Conv2DBackpropFilter",vm="Conv2DBackpropInput",JC="Conv3D",ZC="Conv3DBackpropFilterV2",QC="Conv3DBackpropInputV2",Nm="Cos",Cm="Cosh",Rm="Cumsum",e2="CropAndResize",t2="DepthwiseConv2dNative",n2="DepthwiseConv2dNativeBackpropFilter",s2="DepthwiseConv2dNativeBackpropInput",i2="Dilation2D",r2="Dilation2DBackpropInput",o2="Dilation2DBackpropFilter",Om="Div",a2="Elu",c2="EluGrad",l2="Erf",h2="Equal",Em="Exp",u2="Expm1",d2="FFT",p2="Fill",m2="FlipLeftRight",Dm="Floor",km="FloorDiv",f2="FusedBatchNorm",Fm="GatherV2",g2="Greater",_m="GreaterEqual",Wm="Identity",y2="IFFT",b2="Imag",w2="IsFinite",L2="IsInf",S2="IsNan",I2="Less",x2="LessEqual",$m="Log",Um="Log1p",T2="LogicalAnd",A2="LogicalNot",v2="LogSoftmax",N2="LRN",C2="LRNBackprop",Bm="Max",Mm="Maximum",R2="MaxPool",O2="MaxPoolBackprop",E2="MaxPool3D",D2="MaxPool3DBackprop",Pm="Min",zm="Minimum",k2="Mod",Gm="Multiply",Vm="Negate",F2="NotEqual",_2="NonMaxSuppressionV3",W2="NonMaxSuppressionV4",$2="NonMaxSuppressionV5",U2="OnesLike",B2="OneHot",Ym="PadV2",Hm="Pow",M2="Prelu",P2="Range",z2="Real",G2="Reciprocal",qm="Relu",jm="Reshape",Km="ResizeNearestNeighbor",V2="ResizeNearestNeighborGrad",Xm="ResizeBilinear",Y2="ResizeBilinearGrad",H2="Relu6",Jm="Reverse",q2="Round",Zm="Rsqrt",Qm="SelectV2",j2="Selu",ef="Slice",tf="Sin",nf="Sinh",K2="Sign",sf="Sigmoid",X2="Softplus",rf="Sqrt",of="Sum",af="SpaceToBatchND",cf="SplitV",J2="Softmax",lf="SquaredDifference",Z2="Square",hf="Sub",Q2="Tan",eR="Tanh",uf="Tile",df="Transpose",pf="Unpack",mf="UnsortedSegmentSum",ff="ZerosLike",gf="Step",ES="FromPixels",tR="RotateWithOffset";const nR=OS("kernelRegistry",()=>new Map),DS=OS("gradRegistry",()=>new Map);function yf(r,l){const u=n7(r,l);return nR.get(u)}function kS(r){return DS.get(r)}function FS(r){const l=nR.entries(),u=[];for(;;){const{done:p,value:g}=l.next();if(p)break;const[f,I]=g,[S]=f.split("_");S===r&&u.push(I)}return u}function sR(r){const{kernelName:l}=r;DS.has(l)&&(Cs().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${l}'`)),DS.set(l,r)}function n7(r,l){return`${l}_${r}`}function Z(r,l){if(!r)throw new Error(typeof l=="string"?l:l())}function Zt(r,l,u=""){Z(jo(r,l),()=>u+` Shapes ${r} and ${l} must match`)}function Sc(r){Z(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ic(r,l=[],u=!1){if(l==null&&(l=[]),Array.isArray(r)||Rs(r)&&!u)for(let p=0;p<r.length;++p)Ic(r[p],l,u);else l.push(r);return l}function qt(r){if(r.length===0)return 1;let l=r[0];for(let u=1;u<r.length;u++)l*=r[u];return l}function jo(r,l){if(r===l)return!0;if(r==null||l==null)return!1;if(r.length!==l.length)return!1;for(let u=0;u<r.length;u++)if(r[u]!==l[u])return!1;return!0}function Qt(r){return r%1===0}function xc(r,l){return l<=r.length?r:r+" ".repeat(l-r.length)}function iR(r,l){let u=1,p=-1;for(let f=0;f<r.length;++f)if(r[f]>=0)u*=r[f];else if(r[f]===-1){if(p!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${p} and dim ${f}`);p=f}else if(r[f]<0)throw Error(`Shapes can not be < 0. Found ${r[f]} at dim ${f}`);if(p===-1){if(l>0&&l!==u)throw Error(`Size(${l}) must match the product of shape ${r}`);return r}if(u===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(l%u!==0)throw Error(`The implicit shape can't be a fractional number. Got ${l} / ${u}`);const g=r.slice();return g[p]=l/u,g}function ht(r,l){const u=l.length;return r=r==null?l.map((p,g)=>g):[].concat(r),Z(r.every(p=>p>=-u&&p<u),()=>`All values in axis param must be in range [-${u}, ${u}) but got axis ${r}`),Z(r.every(p=>Qt(p)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(p=>p<0?u+p:p)}function rR(r,l){const u=[],p=[],g=l!=null&&Array.isArray(l)&&l.length===0,f=l==null||g?null:ht(l,r).sort();let I=0;for(let S=0;S<r.length;++S){if(f!=null){if(f[I]===S&&r[S]!==1)throw new Error(`Can't squeeze axis ${S} since its dim '${r[S]}' is not 1`);(f[I]==null||f[I]>S)&&r[S]===1&&(u.push(r[S]),p.push(S)),f[I]<=S&&I++}r[S]!==1&&(u.push(r[S]),p.push(S))}return{newShape:u,keptDims:p}}function oR(r,l){let u=null;if(r==null||r==="float32")u=new Float32Array(l);else if(r==="int32")u=new Int32Array(l);else if(r==="bool")u=new Uint8Array(l);else if(r==="string")u=new Array(l);else throw new Error(`Unknown data type ${r}`);return u}function s7(r,l){for(let u=0;u<r.length;u++){const p=r[u];if(isNaN(p)||!isFinite(p))throw Error(`A tensor of type ${l} being uploaded contains ${p}.`)}}function aR(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function Rs(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function cR(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function lR(r){if(r==null)return 0;let l=0;return r.forEach(u=>l+=u.length),l}function au(r){return typeof r=="string"||r instanceof String}function i7(r){return typeof r=="boolean"}function r7(r){return typeof r=="number"}function cu(r){return Array.isArray(r)?cu(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":r7(r)?"float32":au(r)?"string":i7(r)?"bool":"float32"}function _S(r){return!!(r&&r.constructor&&r.call&&r.apply)}function lu(r){const l=r.length;if(l<2)return[];const u=new Array(l-1);u[l-2]=r[l-1];for(let p=l-3;p>=0;--p)u[p]=u[p+1]*r[p+1];return u}function bf(r,l){if(l==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=Ic(r)),Cs().getBool("DEBUG")&&s7(r,l),o7(r,l))return r;if(l==null||l==="float32"||l==="complex64")return new Float32Array(r);if(l==="int32")return new Int32Array(r);if(l==="bool"){const u=new Uint8Array(r.length);for(let p=0;p<u.length;++p)Math.round(r[p])!==0&&(u[p]=1);return u}else throw new Error(`Unknown data type ${l}`)}function hR(r,l,u){const p=new Array;if(l.length===1){const g=l[0];for(let f=0;f<g;f++)p[f]=u[r+f]}else{const g=l[0],f=l.slice(1),I=f.reduce((S,x)=>S*x);for(let S=0;S<g;S++)p[S]=hR(r+S*I,f,u)}return p}function WS(r,l){if(r.length===0)return l[0];const u=r.reduce((p,g)=>p*g);if(u===0)return[];if(u!==l.length)throw new Error(`[${r}] does not match the input size ${l.length}.`);return hR(0,r,l)}function o7(r,l){return r instanceof Float32Array&&l==="float32"||r instanceof Int32Array&&l==="int32"||r instanceof Uint8Array&&l==="bool"}function wf(r,l){const u=Ko(r,l);for(let p=0;p<u.length;p++)u[p]=1;return u}function Ko(r,l){if(l==null||l==="float32"||l==="complex64")return new Float32Array(r);if(l==="int32")return new Int32Array(r);if(l==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${l}`)}function $S(){return Cs().platform.now()}function Lf(r){r.forEach(l=>{Z(Number.isInteger(l)&&l>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function uR(r,l="utf-8"){return l=l||"utf-8",Cs().platform.encode(r,l)}function US(r,l="utf-8"){return l=l||"utf-8",Cs().platform.decode(r,l)}class dR{constructor(r,l){this.backendTimer=r,this.logger=l,l==null&&(this.logger=new c7)}profileKernel(r,l,u){let p;const g=()=>{p=u()},f=this.backendTimer.time(g);for(let S=0;S<p.length;S++){const x=p[S];x.data().then(v=>{a7(v,x.dtype,r)})}const I={kernelName:r,outputs:p,inputs:l,timeMs:f.then(S=>S.kernelMs),extraInfo:f.then(S=>S.getExtraProfileInfo!=null?S.getExtraProfileInfo():"")};return I}logKernelProfile(r){const{kernelName:l,outputs:u,timeMs:p,inputs:g,extraInfo:f}=r;u.forEach(I=>{Promise.all([I.data(),p,f]).then(S=>{this.logger.logKernelProfile(l,I,S[0],S[1],g,S[2])})})}}function a7(r,l,u){if(l!=="float32")return!1;for(let p=0;p<r.length;p++){const g=r[p];if(isNaN(g)||!isFinite(g))return console.warn(`Found ${g} in the result of '${u}'`),!0}return!1}class c7{logKernelProfile(r,l,u,p,g,f){const I=typeof p=="number"?xc(`${p}ms`,9):p.error,S=xc(r,25),x=l.rank,v=l.size,O=xc(l.shape.toString(),14);let C="";for(const U in g){const G=g[U];if(G!=null){const ne=G.shape||l.shape,te=ne.length;C+=`${U}: ${te}D ${te>0?ne:""} `}}console.log(`%c${S} %c${I} %c${x}D ${O} %c${v} %c${C} %c${f}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function pR(r,l,u){const p={},g={};for(let x=0;x<l.length;x++)p[l[x].id]=!0;for(let x=0;x<r.length;x++){const v=r[x],O=v.inputs;for(const C in O){const U=O[C];let G=!1;for(let ne=0;ne<l.length;ne++)if(p[U.id]){v.outputs.forEach(te=>p[te.id]=!0),G=!0,g[v.id]=!0;break}if(G)break}}const f={};f[u.id]=!0;const I={};for(let x=r.length-1;x>=0;x--){const v=r[x],O=v.inputs;for(let C=0;C<v.outputs.length;C++)if(f[v.outputs[C].id]){for(const U in O)f[O[U].id]=!0,I[v.id]=!0;break}}const S=[];for(let x=0;x<r.length;x++){const v=r[x];if(g[v.id]&&I[v.id]){const O={};for(const U in v.inputs){const G=v.inputs[U];p[G.id]&&(O[U]=G)}const C=Object.assign({},v);C.inputs=O,C.outputs=v.outputs,S.push(C)}}return S}function mR(r,l,u,p){for(let g=l.length-1;g>=0;g--){const f=l[g],I=[];if(f.outputs.forEach(x=>{const v=r[x.id];v!=null?I.push(v):I.push(null)}),f.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${f.kernelName}.`);const S=f.gradient(I);for(const x in f.inputs){if(!(x in S))throw new Error(`Cannot backprop through input ${x}. Available gradients found: ${Object.keys(S)}.`);const v=u(()=>S[x]());if(v.dtype!=="float32")throw new Error(`Error in gradient for op ${f.kernelName}. The gradient of input ${x} must have 'float32' dtype, but has '${v.dtype}'`);const O=f.inputs[x];if(!jo(v.shape,O.shape))throw new Error(`Error in gradient for op ${f.kernelName}. The gradient of input '${x}' has shape '${v.shape}', which does not match the shape of the input '${O.shape}'`);if(r[O.id]==null)r[O.id]=v;else{const C=r[O.id];r[O.id]=p(C,v),C.dispose()}}}}const fR=20,hu=3,BS=7;function gR(r,l,u,p){const g=lu(l),f=l7(r,l,u,g),I=l.length,S=Sf(r,l,u,g,f),x=["Tensor"];return p&&(x.push(` dtype: ${u}`),x.push(` rank: ${I}`),x.push(` shape: [${l}]`),x.push(" values:")),x.push(S.map(v=>" "+v).join(`
`)),x.join(`
`)}function l7(r,l,u,p){const g=qt(l),f=p[p.length-1],I=new Array(f).fill(0),S=l.length,x=u==="complex64"?du(r):r;if(S>1)for(let v=0;v<g/f;v++){const O=v*f;for(let C=0;C<f;C++)I[C]=Math.max(I[C],uu(x[O+C],0,u).length)}return I}function uu(r,l,u){let p;return Array.isArray(r)?p=`${parseFloat(r[0].toFixed(BS))} + ${parseFloat(r[1].toFixed(BS))}j`:au(r)?p=`'${r}'`:u==="bool"?p=yR(r):p=parseFloat(r.toFixed(BS)).toString(),xc(p,l)}function yR(r){return r===0?"false":"true"}function Sf(r,l,u,p,g,f=!0){const I=u==="complex64"?2:1,S=l[0],x=l.length;if(x===0){if(u==="complex64"){const te=du(r);return[uu(te[0],0,u)]}return u==="bool"?[yR(r[0])]:[r[0].toString()]}if(x===1){if(S>fR){const oe=hu*I;let ge=Array.from(r.slice(0,oe)),fe=Array.from(r.slice((S-hu)*I,S*I));return u==="complex64"&&(ge=du(ge),fe=du(fe)),["["+ge.map((Ae,Te)=>uu(Ae,g[Te],u)).join(", ")+", ..., "+fe.map((Ae,Te)=>uu(Ae,g[S-hu+Te],u)).join(", ")+"]"]}const te=u==="complex64"?du(r):Array.from(r);return["["+te.map((oe,ge)=>uu(oe,g[ge],u)).join(", ")+"]"]}const v=l.slice(1),O=p.slice(1),C=p[0]*I,U=[];if(S>fR){for(let te=0;te<hu;te++){const oe=te*C,ge=oe+C;U.push(...Sf(r.slice(oe,ge),v,u,O,g,!1))}U.push("...");for(let te=S-hu;te<S;te++){const oe=te*C,ge=oe+C;U.push(...Sf(r.slice(oe,ge),v,u,O,g,te===S-1))}}else for(let te=0;te<S;te++){const oe=te*C,ge=oe+C;U.push(...Sf(r.slice(oe,ge),v,u,O,g,te===S-1))}const G=x===2?",":"";U[0]="["+U[0]+G;for(let te=1;te<U.length-1;te++)U[te]=" "+U[te]+G;let ne=`,
`;for(let te=2;te<x;te++)ne+=`
`;return U[U.length-1]=" "+U[U.length-1]+"]"+(f?"":ne),U}function du(r){const l=[];for(let u=0;u<r.length;u+=2)l.push([r[u],r[u+1]]);return l}class bR{constructor(r,l,u){if(this.dtype=l,this.shape=r.slice(),this.size=qt(r),u!=null){const p=u.length;Z(p===this.size,()=>`Length of values '${p}' does not match the size inferred by the shape '${this.size}'.`)}if(l==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=u||oR(l,this.size),this.strides=lu(r)}set(r,...l){l.length===0&&(l=[0]),Z(l.length===this.rank,()=>`The number of provided coordinates (${l.length}) must match the rank (${this.rank})`);const u=this.locToIndex(l);this.values[u]=r}get(...r){r.length===0&&(r=[0]);let l=0;for(const p of r){if(p<0||p>=this.shape[l]){const g=`Requested out of range element at ${r}. Buffer shape=${this.shape}`;throw new Error(g)}l++}let u=r[r.length-1];for(let p=0;p<r.length-1;++p)u+=this.strides[p]*r[p];return this.values[u]}locToIndex(r){if(this.rank===0)return 0;if(this.rank===1)return r[0];let l=r[r.length-1];for(let u=0;u<r.length-1;++u)l+=this.strides[u]*r[u];return l}indexToLoc(r){if(this.rank===0)return[];if(this.rank===1)return[r];const l=new Array(this.shape.length);for(let u=0;u<l.length-1;++u)l[u]=Math.floor(r/this.strides[u]),r-=l[u]*this.strides[u];return l[l.length-1]=r,l}get rank(){return this.shape.length}toTensor(){return Mi().makeTensor(this.values,this.shape,this.dtype)}}let Mi=null,Tc=null,h7=null;function wR(r){Mi=r}function LR(r){Tc=r}function SR(r){h7=r}class In{constructor(r,l,u,p){this.kept=!1,this.isDisposedInternal=!1,this.shape=r.slice(),this.dtype=l||"float32",this.size=qt(r),this.strides=lu(r),this.dataId=u,this.id=p,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){const r=await this.data();return Tc.buffer(this.shape,this.dtype,r)}bufferSync(){return Tc.buffer(this.shape,this.dtype,this.dataSync())}async array(){const r=await this.data();return WS(this.shape,r)}arraySync(){return WS(this.shape,this.dataSync())}async data(){this.throwIfDisposed();const r=Mi().read(this.dataId);if(this.dtype==="string"){const l=await r;try{return l.map(u=>US(u))}catch(u){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return r}dataSync(){this.throwIfDisposed();const r=Mi().readSync(this.dataId);if(this.dtype==="string")try{return r.map(l=>US(l))}catch(l){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return r}async bytes(){this.throwIfDisposed();const r=await Mi().read(this.dataId);return this.dtype==="string"?r:new Uint8Array(r.buffer)}dispose(){if(this.isDisposed)return;Mi().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(r=!1){return Tc.print(this,r)}clone(){return this.throwIfDisposed(),Tc.clone(this)}toString(r=!1){const l=this.dataSync();return gR(l,this.shape,this.dtype,r)}cast(r){return this.throwIfDisposed(),Tc.cast(this,r)}variable(r=!0,l,u){return this.throwIfDisposed(),Mi().makeVariable(this,r,l,u)}}Object.defineProperty(In,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});class If extends In{constructor(r,l,u,p){super(r.shape,r.dtype,r.dataId,p);this.trainable=l,this.name=u}assign(r){if(r.dtype!==this.dtype)throw new Error(`dtype of the new value (${r.dtype}) and previous value (${this.dtype}) must match`);if(!jo(r.shape,this.shape))throw new Error(`shape of the new value (${r.shape}) and previous value (${this.shape}) must match`);Mi().disposeTensor(this),this.dataId=r.dataId,Mi().incRef(this,null)}dispose(){Mi().disposeVariable(this),this.isDisposedInternal=!0}}Object.defineProperty(If,Symbol.hasInstance,{value:r=>r instanceof In&&r.assign!=null&&r.assign instanceof Function});var IR;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(IR||(IR={}));var MS;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(MS||(MS={}));var PS;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(PS||(PS={}));var zS;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(zS||(zS={}));var GS;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(GS||(GS={}));const u7={float32:zS,int32:MS,bool:PS,complex64:GS};function xR(r,l){if(r==="string"||l==="string"){if(r==="string"&&l==="string")return"string";throw new Error(`Can not upcast ${r} with ${l}`)}return u7[r][l]}function mt(r,l){if(r.dtype===l.dtype)return[r,l];const u=xR(r.dtype,l.dtype);return[r.cast(u),l.cast(u)]}function xf(r){const l=[],u=new Set;return TR(r,l,u),l}function TR(r,l,u){if(r==null)return;if(r instanceof In){l.push(r);return}if(!d7(r))return;const p=r;for(const g in p){const f=p[g];u.has(f)||(u.add(f),TR(f,l,u))}}function d7(r){return Array.isArray(r)||typeof r=="object"}class AR{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(const r in this.registeredVariables)this.registeredVariables[r].dispose()}}class pu{constructor(r){this.ENV=r,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new AR}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;const r=this.getSortedBackends();for(let l=0;l<r.length;l++){const u=r[l],p=await this.initializeBackend(u).success;if(p){await this.setBackend(u);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){const{name:r,asyncInit:l}=this.initializeBackendsAndReturnBest();if(l)throw new Error(`The highest priority backend '${r}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(r)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(r){if(!(r in this.registry))if(r in this.registryFactory){const{asyncInit:l}=this.initializeBackend(r);if(l)return null}else return null;return this.registry[r]}findBackendFactory(r){return r in this.registryFactory?this.registryFactory[r].factory:null}registerBackend(r,l,u=1){return r in this.registryFactory?(console.warn(`${r} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[r]={factory:l,priority:u},!0)}async setBackend(r){if(this.registryFactory[r]==null)throw new Error(`Backend name '${r}' not found in registry`);if(this.backendName=r,this.registry[r]==null){this.backendInstance=null;const{success:l,asyncInit:u}=this.initializeBackend(r),p=u?await l:l;if(!p)return!1}return this.backendInstance=this.registry[r],this.setupRegisteredKernels(),this.profiler=new dR(this.backendInstance),!0}setupRegisteredKernels(){const r=FS(this.backendName);r.forEach(l=>{l.setupFunc!=null&&l.setupFunc(this.backendInstance)})}disposeRegisteredKernels(r){const l=FS(r);l.forEach(u=>{u.disposeFunc!=null&&u.disposeFunc(this.registry[r])})}initializeBackend(r){const l=this.registryFactory[r];if(l==null)throw new Error(`Cannot initialize backend ${r}, no registration found.`);try{const u=l.factory();if(u&&!(u instanceof CC)&&typeof u.then=="function"){const p=++this.pendingBackendInitId,g=u.then(f=>p<this.pendingBackendInitId?!1:(this.registry[r]=f,this.pendingBackendInit=null,!0)).catch(f=>(p<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${r} failed`),console.warn(f.stack||f.message)),!1));return this.pendingBackendInit=g,{success:g,asyncInit:!0}}else return this.registry[r]=u,{success:!0,asyncInit:!1}}catch(u){return console.warn(`Initialization of backend ${r} failed`),console.warn(u.stack||u.message),{success:!1,asyncInit:!1}}}removeBackend(r){if(!(r in this.registryFactory))throw new Error(`${r} backend not found in registry`);this.backendName===r&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,r in this.registry&&(this.disposeRegisteredKernels(r),this.registry[r].dispose(),delete this.registry[r]),delete this.registryFactory[r],this.backendName===r&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((r,l)=>this.registryFactory[l].priority-this.registryFactory[r].priority)}initializeBackendsAndReturnBest(){const r=this.getSortedBackends();for(let l=0;l<r.length;l++){const u=r[l],{success:p,asyncInit:g}=this.initializeBackend(u);if(g||p)return{name:u,asyncInit:g}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(r,l){const u=this.state.tensorInfo.get(l),p=u.backend,g=this.readSync(l);p.disposeData(l),u.backend=r,r.move(l,g,u.shape,u.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(r,l){let u=null;if(l==null){if(typeof r!="function")throw new Error("Please provide a function to tidy()");l=r}else{if(typeof r!="string"&&!(r instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof l!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");u=r}let p;return this.scopedRun(()=>this.startScope(u),()=>this.endScope(p),()=>(p=l(),p instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),p))}scopedRun(r,l,u){r();try{const p=u();return l(),p}catch(p){throw l(),p}}nextTensorId(){return pu.nextTensorId++}nextVariableId(){return pu.nextVariableId++}clone(r){const l=this.makeTensorFromDataId(r.dataId,r.shape,r.dtype),u={x:r},p=f=>({x:()=>{const I="float32",S={x:f},x={dtype:I};return Y.runKernelFunc(v=>v.cast(f,I),S,null,Lc,x)}}),g=[];return this.addTapeNode(this.state.activeScope.name,u,[l],p,g,{}),l}runKernel(r,l,u,p,g){const f=null,I=null;return this.runKernelFunc(f,l,I,r,u,p,g)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(r,l,u){const p=this.backend.numDataIds();let g=0;u.forEach(S=>{g+=S.dtype==="complex64"?3:1});const f=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],I=p-l-g-f;if(I>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${I} data ids) after running '${r}'`)}runKernelFunc(r,l,u,p,g,f,I){let S,x=[];const v=this.isTapeOn();p==null&&(p=this.state.activeScope!=null?this.state.activeScope.name:"");const O=this.state.numBytes,C=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let U;const G=yf(p,this.backendName);let ne;if(G!=null)U=()=>{const oe=this.backend.numDataIds();ne=G.kernelFunc({inputs:l,attrs:g,backend:this.backend});const ge=Array.isArray(ne)?ne:[ne];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,oe,ge);const fe=ge.map(({dataId:Ae,shape:Te,dtype:Ve})=>this.makeTensorFromDataId(Ae,Te,Ve));if(v){let Ae=this.getTensorsForGradient(p,l,fe);if(Ae==null){I==null&&(I=[]);const Te=fe.filter((Ve,rt)=>I[rt]);Ae=(f||[]).slice().concat(Te)}x=this.saveTensorsForBackwardMode(Ae)}return fe};else{const oe=ge=>{if(!v)return;x=ge.map(fe=>this.keep(this.clone(fe)))};U=()=>{const ge=this.backend.numDataIds();ne=this.tidy(()=>r(this.backend,oe));const fe=Array.isArray(ne)?ne:[ne];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,ge,fe),fe}}let te;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?S=U():(te=this.profiler.profileKernel(p,l,()=>U()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(te),S=te.outputs)}),v&&this.addTapeNode(p,l,S,u,x,g),this.state.profiling&&this.state.activeProfile.kernels.push({name:p,bytesAdded:this.state.numBytes-O,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-C,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(oe=>l[oe]!=null?l[oe].shape:null),outputShapes:S.map(oe=>oe.shape),kernelTimeMs:te.timeMs,extraInfo:te.extraInfo}),Array.isArray(ne)?S:S[0]}saveTensorsForBackwardMode(r){const l=r.map(u=>this.keep(this.clone(u)));return l}getTensorsForGradient(r,l,u){const p=kS(r);if(p!=null){const g=p.inputsToSave||[],f=p.outputsToSave||[];let I;p.saveAllInputs?(Z(Array.isArray(l),()=>"saveAllInputs is true, expected inputs to be an array."),I=Object.keys(l).map(x=>l[x])):I=g.map(x=>l[x]);const S=u.filter((x,v)=>f[v]);return I.concat(S)}return null}makeTensor(r,l,u,p){if(r==null)throw new Error("Values passed to engine.makeTensor() are null");u=u||"float32",p=p||this.backend;let g=r;u==="string"&&au(r[0])&&(g=r.map(S=>uR(S)));const f=p.write(g,l,u),I=new In(l,u,f,this.nextTensorId());if(this.incRef(I,p),u==="string"){const S=this.state.tensorInfo.get(f),x=lR(g);this.state.numBytes+=x-S.bytes,S.bytes=x}return I}makeTensorFromDataId(r,l,u,p){u=u||"float32";const g=new In(l,u,r,this.nextTensorId());return this.incRef(g,p),g}makeVariable(r,l=!0,u,p){u=u||this.nextVariableId().toString(),p!=null&&p!==r.dtype&&(r=r.cast(p));const g=new If(r,l,u,this.nextTensorId());if(this.state.registeredVariables[g.name]!=null)throw new Error(`Variable with name ${g.name} was already registered`);return this.state.registeredVariables[g.name]=g,this.incRef(g,this.backend),g}incRef(r,l){const u=this.state.tensorInfo.has(r.dataId)?this.state.tensorInfo.get(r.dataId).refCount:0;if(this.state.numTensors++,r.dtype==="string"&&this.state.numStringTensors++,u===0){this.state.numDataBuffers++;let p=0;r.dtype!=="complex64"&&r.dtype!=="string"&&(p=r.size*cR(r.dtype)),this.state.tensorInfo.set(r.dataId,{backend:l||this.backend,dtype:r.dtype,shape:r.shape,bytes:p,refCount:0}),this.state.numBytes+=p}this.state.tensorInfo.get(r.dataId).refCount++,r instanceof If||this.track(r)}disposeTensor(r){if(!this.state.tensorInfo.has(r.dataId))return;this.state.numTensors--,r.dtype==="string"&&this.state.numStringTensors--;const l=this.state.tensorInfo.get(r.dataId),u=l.refCount;u<=1?(r.dtype!=="complex64"&&(this.state.numBytes-=l.bytes),this.state.numDataBuffers--,l.backend.disposeData(r.dataId),this.state.tensorInfo.delete(r.dataId)):this.state.tensorInfo.get(r.dataId).refCount--}disposeVariables(){for(const r in this.state.registeredVariables){const l=this.state.registeredVariables[r];this.disposeVariable(l)}}disposeVariable(r){this.disposeTensor(r),this.state.registeredVariables[r.name]!=null&&delete this.state.registeredVariables[r.name]}memory(){const r=this.backend.memory();return r.numTensors=this.state.numTensors,r.numDataBuffers=this.state.numDataBuffers,r.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(r.unreliable=!0,r.reasons==null&&(r.reasons=[]),r.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),r}async profile(r){this.state.profiling=!0;const l=this.state.numBytes,u=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await r(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(p=>p.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-l,this.state.activeProfile.newTensors=this.state.numTensors-u;for(const p of this.state.activeProfile.kernels)p.kernelTimeMs=await p.kernelTimeMs,p.extraInfo=await p.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(r,l,u,p,g,f){const I={id:this.state.nextTapeNodeId++,kernelName:r,inputs:l,outputs:u,saved:g},S=kS(r);S!=null&&(p=S.gradFunc),p!=null&&(I.gradient=x=>(x=x.map((v,O)=>{if(v==null){const C=u[O],U=Ko(C.size,C.dtype);return this.makeTensor(U,C.shape,C.dtype)}return v}),p(x.length>1?x:x[0],g,f))),this.state.activeTape.push(I)}keep(r){return r.kept=!0,r}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(r){const l={track:[],name:"unnamed scope",id:this.state.nextScopeId++};r&&(l.name=r),this.state.scopeStack.push(l),this.state.activeScope=l}endScope(r){const l=xf(r),u=new Set(l.map(g=>g.id));for(let g=0;g<this.state.activeScope.track.length;g++){const f=this.state.activeScope.track[g];!f.kept&&!u.has(f.id)&&f.dispose()}const p=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],l.forEach(g=>{!g.kept&&g.scopeId===p.id&&this.track(g)})}gradients(r,l,u,p=!1){if(Z(l.length>0,()=>"gradients() received an empty list of xs."),u!=null&&u.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${u.dtype}'`);const g=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",r));Z(g instanceof In,()=>"The result y returned by f() must be a tensor.");const f=pR(this.state.activeTape,l,g);if(!p&&f.length===0&&l.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{const I={};I[g.id]=u==null?p7(g.shape):u,mR(I,f,x=>this.tidy(x),m7);const S=l.map(x=>I[x.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(x=>{for(const v of x.saved)v.dispose()}),this.state.activeTape=null),{value:g,grads:S}})}customGrad(r){return Z(_S(r),()=>"The f passed in customGrad(f) must be a function."),(...l)=>{Z(l.every(g=>g instanceof In),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let u;const p={};return l.forEach((g,f)=>{p[f]=g}),this.runKernelFunc((g,f)=>(u=r(...l,f),Z(u.value instanceof In,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),Z(_S(u.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),u.value),p,(g,f)=>{const I=u.gradFunc(g,f),S=Array.isArray(I)?I:[I];Z(S.length===l.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),Z(S.every(v=>v instanceof In),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");const x={};return S.forEach((v,O)=>{x[O]=()=>v}),x})}}readSync(r){const l=this.state.tensorInfo.get(r);return l.backend.readSync(r)}read(r){const l=this.state.tensorInfo.get(r);return l.backend.read(r)}async time(r){const l=$S(),u=await this.backend.time(r);return u.wallMs=$S()-l,u}track(r){return this.state.activeScope!=null&&(r.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(r)),r}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new AR;for(const r in this.registry)this.disposeRegisteredKernels(r),this.registry[r].dispose(),delete this.registry[r];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}}pu.nextTensorId=0;pu.nextVariableId=0;function p7(r){const l=wf(qt(r),"float32");return Y.makeTensor(l,r,"float32")}function VS(){const r=RS();if(r._tfengine==null){const l=new OC(r);r._tfengine=new pu(l)}return DC(r._tfengine.ENV),wR(()=>r._tfengine),r._tfengine}const Y=VS();function m7(r,l){const u={a:r,b:l};return Y.runKernelFunc((p,g)=>{const f=p.add(r,l);return g([r,l]),f},u,null,wc)}function vR(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}const hr=Cs();hr.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});hr.registerFlag("IS_BROWSER",()=>vR());hr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");hr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));hr.registerFlag("PROD",()=>!1);hr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>hr.getBool("DEBUG"));hr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);hr.registerFlag("IS_TEST",()=>!1);function ur(r,l){let u=r;if(Rs(r))return l==="string"?[]:[r.length];if(!Array.isArray(r))return[];const p=[];for(;Array.isArray(u)||Rs(u)&&l!=="string";)p.push(u.length),u=u[0];return Array.isArray(r)&&Cs().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&NR(r,p,[]),p}function NR(r,l,u){if(u=u||[],!Array.isArray(r)&&!Rs(r)){Z(l.length===0,()=>`Element arr[${u.join("][")}] is a primitive, but should be an array/TypedArray of ${l[0]} elements`);return}Z(l.length>0,()=>`Element arr[${u.join("][")}] should be a primitive, but is an array of ${r.length} elements`),Z(r.length===l[0],()=>`Element arr[${u.join("][")}] should have ${l[0]} elements, but has ${r.length} elements`);const p=l.slice(1);for(let g=0;g<r.length;++g)NR(r[g],p,u.concat(g))}function CR(r,l,u,p){if(r==null)return;if(r!=="numeric"&&r!==l||r==="numeric"&&l==="string")throw new Error(`Argument '${u}' passed to '${p}' must be ${r} tensor, but got ${l} tensor`)}function M(r,l,u,p="numeric"){if(r instanceof In)return CR(p,r.dtype,l,u),r;let g=cu(r);if(g!=="string"&&["bool","int32","float32"].indexOf(p)>=0&&(g=p),CR(p,g,l,u),r==null||!Rs(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){const x=r==null?"null":r.constructor.name;throw new Error(`Argument '${l}' passed to '${u}' must be a Tensor or TensorLike, but got '${x}'`)}const f=ur(r,g);!Rs(r)&&!Array.isArray(r)&&(r=[r]);const I=!0,S=g!=="string"?bf(r,g):Ic(r,[],I);return Y.makeTensor(S,f,g)}function Tf(r,l,u,p="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${l} passed to ${u} must be a \`Tensor[]\` or \`TensorLike[]\``);const g=r;return g.map((f,I)=>M(f,`${l}[${I}]`,u),p)}const RR="__op";function z(r){const l=Object.keys(r);if(l.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${l.length} keys.`);let u=l[0];const p=r[u];u.endsWith("_")&&(u=u.substring(0,u.length-1)),u=u+RR;const g=(...f)=>{Y.startScope(u);try{const I=p(...f);return I instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),Y.endScope(I),I}catch(I){throw Y.endScope(null),I}};return Object.defineProperty(g,"name",{value:u,configurable:!0}),g}function f7(r,l){const u=M(r,"real","complex"),p=M(l,"imag","complex");Zt(u.shape,p.shape,`real and imag shapes, ${u.shape} and ${p.shape}, must match in call to tf.complex().`);const g=I=>I.complex(u,p),f={real:u,imag:p};return Y.runKernelFunc(g,f,null,KC)}const Pi=z({complex_:f7});function zi(r,l,u,p){if(p==null&&(p=cu(r)),p==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Rs(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(l!=null){Lf(l);const g=qt(l),f=qt(u);Z(g===f,()=>`Based on the provided shape, [${l}], the tensor should have ${g} values but has ${f}`);for(let I=0;I<u.length;++I){const S=u[I],x=I===u.length-1?S!==qt(l.slice(I)):!0;Z(u[I]===l[I]||!x,()=>`Error creating a new Tensor. Inferred shape (${u}) does not match the provided shape (${l}). `)}}return!Rs(r)&&!Array.isArray(r)&&(r=[r]),l=l||u,r=p!=="string"?bf(r,p):Ic(r,[],!0),Y.makeTensor(r,l,p)}function YS(r,l,u){const p=ur(r,u);return zi(r,l,p,u)}function mu(r,l="float32",u){return l=l||"float32",Lf(r),new bR(r,l,u)}function g7(r,l){const u=M(r,"x","cast");if(!aR(l))throw new Error(`Failed to cast to unknown dtype ${l}`);if(l==="string"&&u.dtype!=="string"||l!=="string"&&u.dtype==="string")throw new Error("Only strings can be casted to strings");const p={x:u},g={dtype:l};return Y.runKernelFunc(f=>f.cast(u,l),p,null,Lc,g)}const Le=z({cast_:g7});function y7(r){const l=M(r,"x","clone",null),u=()=>Y.makeTensorFromDataId(l.dataId,l.shape,l.dtype),p={x:l};return Y.runKernelFunc(u,p,null,Wm)}const pi=z({clone_:y7});function HS(r,l=!1){console.log(r.toString(l))}VS();const b7={buffer:mu,cast:Le,clone:pi,print:HS};LR(b7);function w7(r,l){const u=M(r,"x","reshape",null),p={x:u},g={shape:l},f=(I,S)=>(l=iR(l,u.size),Z(u.size===qt(l),()=>"new shape and old shape must have the same number of elements."),S([u]),I.reshape(u,l));return Y.runKernelFunc(f,p,null,jm,g)}const ie=z({reshape_:w7});function L7(r,l,u=!1,p=!1){let g=M(r,"a","matMul"),f=M(l,"b","matMul");[g,f]=mt(g,f),Z(g.rank>=2&&f.rank>=2&&g.rank===f.rank,()=>`Error in matMul: inputs must have the same rank of at least 2, got ranks ${g.rank} and ${f.rank}.`);const I=u?g.shape[g.rank-2]:g.shape[g.rank-1],S=p?f.shape[f.rank-1]:f.shape[f.rank-2],x=u?g.shape[g.rank-1]:g.shape[g.rank-2],v=p?f.shape[f.rank-2]:f.shape[f.rank-1],O=g.shape.slice(0,-2),C=f.shape.slice(0,-2),U=qt(O),G=qt(C);Z(jo(O,C),()=>`Error in matMul: outer dimensions (${O}) and (${C}) of Tensors with shapes ${g.shape} and ${f.shape} must match.`),Z(I===S,()=>`Error in matMul: inner shapes (${I}) and (${S}) of Tensors with shapes ${g.shape} and ${f.shape} and transposeA=${u} and transposeB=${p} must match.`);const ne=g.shape.slice(0,-2).concat([x,v]),te=u?ie(g,[U,I,x]):ie(g,[U,x,I]),oe=p?ie(f,[G,v,S]):ie(f,[G,S,v]),ge=(Ve,rt)=>(rt([te,oe]),Ve.batchMatMul(te,oe,u,p)),fe={a:te,b:oe},Ae={transposeA:u,transposeB:p},Te=Y.runKernelFunc(ge,fe,null,Sm,Ae);return ie(Te,ne)}const dn=z({matMul_:L7});function S7(r,l){const u=M(r,"x","transpose");if(l==null&&(l=u.shape.map((f,I)=>I).reverse()),Z(u.rank===l.length,()=>`Error in transpose: rank of input ${u.rank} must match length of perm ${l}.`),l.forEach(f=>{Z(f>=0&&f<u.rank,()=>`All entries in 'perm' must be between 0 and ${u.rank-1} but got ${l}`)}),u.rank<=1)return u.clone();const p={x:u},g={perm:l};return Y.runKernelFunc(f=>f.transpose(u,l),p,null,df,g)}const Wt=z({transpose_:S7});function qS(r,l,u){if(Sc(r),l!=null&&l.length!==3)throw new Error("tensor3d() requires shape to have three numbers");const p=ur(r,u);if(p.length!==3&&p.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(p.length===1&&l==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return zi(r,l,p,u)}const jS={};hm(jS,{fromPixels:()=>T7,toPixels:()=>x7});let Ac;function I7(r,l=3){if(l>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let u=!1,p=!1,g=!1,f=!1,I=!1;if(r.data instanceof Uint8Array)u=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)p=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)g=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)f=!0;else if(r.getContext!=null)I=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(g){const G=2;if(g&&r.readyState<G)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}const S=yf(ES,Y.backendName);if(S!=null){const G={pixels:r},ne={numChannels:l};return Y.runKernel(ES,G,ne)}const[x,v]=g?[r.videoWidth,r.videoHeight]:[r.width,r.height];let O;I?O=r.getContext("2d").getImageData(0,0,x,v).data:p||u?O=r.data:(f||g)&&(Ac==null&&(Ac=document.createElement("canvas").getContext("2d")),Ac.canvas.width=x,Ac.canvas.height=v,Ac.drawImage(r,0,0,x,v),O=Ac.getImageData(0,0,x,v).data);let C;if(l===4)C=new Int32Array(O);else{const G=x*v;C=new Int32Array(G*l);for(let ne=0;ne<G;ne++)for(let te=0;te<l;++te)C[ne*l+te]=O[ne*4+te]}const U=[v,x,l];return qS(C,U,"int32")}async function x7(r,l){let u=M(r,"img","toPixels");if(!(r instanceof In)){const v=u;u=Le(v,"int32"),v.dispose()}if(u.rank!==2&&u.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${u.rank}.`);const[p,g]=u.shape.slice(0,2),f=u.rank===2?1:u.shape[2];if(f>4||f===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${f}`);if(u.dtype!=="float32"&&u.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${u.dtype}. Please use float32 or int32 tensors.`);const I=await u.data(),S=u.dtype==="float32"?255:1,x=new Uint8ClampedArray(g*p*4);for(let v=0;v<p*g;++v){const O=[0,0,0,255];for(let U=0;U<f;U++){const G=I[v*f+U];if(u.dtype==="float32"){if(G<0||G>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${G}.`)}else if(u.dtype==="int32"&&(G<0||G>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${G}.`);f===1?(O[0]=G*S,O[1]=G*S,O[2]=G*S):O[U]=G*S}const C=v*4;x[C+0]=Math.round(O[0]),x[C+1]=Math.round(O[1]),x[C+2]=Math.round(O[2]),x[C+3]=Math.round(O[3])}if(l!=null){l.width=g,l.height=p;const v=l.getContext("2d"),O=new ImageData(x,g,p);v.putImageData(O,0,0)}return u!==r&&u.dispose(),x}const T7=z({fromPixels_:I7});function OR(r,l,u){const p=r.shape.length;Z(p===l.length,()=>`Error in slice${p}D: Length of begin ${l} must match the rank of the array (${p}).`),Z(p===u.length,()=>`Error in slice${p}D: Length of size ${u} must match the rank of the array (${p}).`);for(let g=0;g<p;++g)Z(l[g]+u[g]<=r.shape[g],()=>`Error in slice${p}D: begin[${g}] + size[${g}] (${l[g]+u[g]}) would overflow input.shape[${g}] (${r.shape[g]})`)}function Af(r,l,u){let p;const g=r.shape.length;typeof l=="number"?p=[l,...new Array(g-1).fill(0)]:l.length<g?p=l.concat(new Array(g-l.length).fill(0)):p=l.slice(),p.forEach(I=>{Z(I!==-1,()=>"slice() does not support negative begin indexing.")});let f;return u==null?f=new Array(g).fill(-1):typeof u=="number"?f=[u,...new Array(g-1).fill(-1)]:u.length<g?f=u.concat(new Array(g-u.length).fill(-1)):f=u,f=f.map((I,S)=>I>=0?I:(Z(I===-1,()=>`Negative size values should be exactly -1 but got ${I} for the slice() size at index ${S}.`),r.shape[S]-p[S])),[p,f]}function A7(r){Cs().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}SR(A7);function ER(r,l){return Y.tidy(r,l)}function DR(r){const l=xf(r);l.forEach(u=>u.dispose())}function v7(r,l){let u=M(r,"a","add"),p=M(l,"b","add");[u,p]=mt(u,p);const g=(I,S)=>{const x=I.add(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,wc)}const Lt=z({add_:v7});function N7(r,l){let u=M(r,"a","floorDiv"),p=M(l,"b","floorDiv");[u,p]=mt(u,p);const g=(I,S)=>{const x=I.floorDiv(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,km)}const KS=z({floorDiv_:N7});function C7(r,l){let u=M(r,"a","div"),p=M(l,"b","div");if([u,p]=mt(u,p),u.dtype==="int32"&&p.dtype==="int32")return KS(u,p);const g=(S,x)=>{const v=S.realDivide(u,p);return x([u,p]),v},f={a:u,b:p},I={};return Y.runKernelFunc(g,f,null,Om,I)}const Pe=z({div_:C7});function R7(r,l){let u=M(r,"a","mul"),p=M(l,"b","mul");[u,p]=mt(u,p);const g=(I,S)=>{const x=I.multiply(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,Gm)}const ae=z({mul_:R7});function O7(r){const l=M(r,"x","abs"),u={x:l};return Y.runKernelFunc((p,g)=>(g([l]),l.dtype==="complex64"?p.complexAbs(l):p.abs(l)),u,null,Lm)}const Un=z({abs_:O7});function E7(r,l){for(let u=0;u<r.length;++u)if(r[r.length-u-1]!==l-1-u)return!1;return!0}function D7(r,l,u){const p=r.length+l.length,g=[];let f=0,I=0;for(let S=0;S<p;S++)u.indexOf(S)===-1?g.push(r[f++]):g.push(l[I++]);return g}function kR(r,l){const u=[],p=r.length;for(let f=0;f<p;f++)l.indexOf(f)===-1&&u.push(r[f]);const g=l.map(f=>r[f]);return[u,g]}function Zn(r,l){const u=l.map(p=>1);return D7(r,u,l)}function ds(r,l){if(E7(r,l))return null;const u=[];for(let p=0;p<l;++p)r.indexOf(p)===-1&&u.push(p);return r.forEach(p=>u.push(p)),u}function vc(r){return r.map((l,u)=>[u,l]).sort((l,u)=>l[1]-u[1]).map(l=>l[0])}function Kr(r,l){const u=[];for(let p=l-r;p<l;++p)u.push(p);return u}function Nf(r,l,u,p,g,f,I="channelsLast"){const[S,x]=vf(l);let v;if(I==="channelsLast")v=[S,x,r[3],r[3]];else if(I==="channelsFirst")v=[S,x,r[1],r[1]];else throw new Error(`Unknown dataFormat ${I}`);return dr(r,v,u,p,g,f,!1,I)}function Cf(r,l,u,p,g,f,I="NDHWC"){const[S,x,v]=XS(l);let O,C;if(I==="NDHWC")C="channelsLast",O=[S,x,v,r[4],r[4]];else if(I==="NCDHW")C="channelsFirst",O=[S,x,v,r[1],r[1]];else throw new Error(`Unknown dataFormat ${I}`);return fu(r,O,u,p,g,!1,C,f)}function dr(r,l,u,p,g,f,I=!1,S="channelsLast"){let[x,v,O,C]=[-1,-1,-1,-1];if(S==="channelsLast")[x,v,O,C]=r;else if(S==="channelsFirst")[x,C,v,O]=r;else throw new Error(`Unknown dataFormat ${S}`);const[U,G,,ne]=l,[te,oe]=vf(u),[ge,fe]=vf(p),Ae=Nc(U,ge),Te=Nc(G,fe),{padInfo:Ve,outHeight:rt,outWidth:vt}=k7(g,v,O,te,oe,Ae,Te,f,S),$t=I?ne*C:ne;let Kt;return S==="channelsFirst"?Kt=[x,$t,rt,vt]:S==="channelsLast"&&(Kt=[x,rt,vt,$t]),{batchSize:x,dataFormat:S,inHeight:v,inWidth:O,inChannels:C,outHeight:rt,outWidth:vt,outChannels:$t,padInfo:Ve,strideHeight:te,strideWidth:oe,filterHeight:U,filterWidth:G,effectiveFilterHeight:Ae,effectiveFilterWidth:Te,dilationHeight:ge,dilationWidth:fe,inShape:r,outShape:Kt,filterShape:l}}function fu(r,l,u,p,g,f=!1,I="channelsLast",S){let[x,v,O,C,U]=[-1,-1,-1,-1,-1];if(I==="channelsLast")[x,v,O,C,U]=r;else if(I==="channelsFirst")[x,U,v,O,C]=r;else throw new Error(`Unknown dataFormat ${I}`);const[G,ne,te,,oe]=l,[ge,fe,Ae]=XS(u),[Te,Ve,rt]=XS(p),vt=Nc(G,Te),$t=Nc(ne,Ve),Kt=Nc(te,rt),{padInfo:Dn,outDepth:Tn,outHeight:An,outWidth:Ks}=F7(g,v,O,C,ge,fe,Ae,vt,$t,Kt,S),Li=f?oe*U:oe;let Xs;return I==="channelsFirst"?Xs=[x,Li,Tn,An,Ks]:I==="channelsLast"&&(Xs=[x,Tn,An,Ks,Li]),{batchSize:x,dataFormat:I,inDepth:v,inHeight:O,inWidth:C,inChannels:U,outDepth:Tn,outHeight:An,outWidth:Ks,outChannels:Li,padInfo:Dn,strideDepth:ge,strideHeight:fe,strideWidth:Ae,filterDepth:G,filterHeight:ne,filterWidth:te,effectiveFilterDepth:vt,effectiveFilterHeight:$t,effectiveFilterWidth:Kt,dilationDepth:Te,dilationHeight:Ve,dilationWidth:rt,inShape:r,outShape:Xs,filterShape:l}}function _7(r,l,u,p,g){p==null&&(p=FR(r,l,u));const f=r[0],I=r[1],S=Xo((f-l+2*p)/u+1,g);Z(Qt(S),()=>`The output # of rows (${S}) must be an integer. Change the stride and/or zero pad parameters`);const x=Xo((I-l+2*p)/u+1,g);return Z(Qt(x),()=>`The output # of columns (${x}) must be an integer. Change the stride and/or zero pad parameters`),[S,x]}function W7(r,l,u,p,g,f){g==null&&(g=FR(r,l,p));const I=r[0],S=r[1],x=r[2],v=Xo((I-l+2*g)/p+1,f);Z(Qt(v),()=>`The output # of depths (${v}) must be an integer. Change the stride and/or zero pad parameters`);const O=Xo((S-l+2*g)/p+1,f);Z(Qt(O),()=>`The output # of rows (${O}) must be an integer. Change the stride and/or zero pad parameters`);const C=Xo((x-l+2*g)/p+1,f);return Z(Qt(C),()=>`The output # of columns (${C}) must be an integer. Change the stride and/or zero pad parameters`),[v,O,C,u]}function FR(r,l,u,p=1){const g=Nc(l,p);return Math.floor((r[0]*(u-1)-u+g)/2)}function vf(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function XS(r){return typeof r=="number"?[r,r,r]:r}function Nc(r,l){return l<=1?r:r+(r-1)*(l-1)}function k7(r,l,u,p,g,f,I,S,x){let v,O,C;if(typeof r=="number"){const U=r===0?"VALID":"NUMBER";v={top:r,bottom:r,left:r,right:r,type:U};const G=_7([l,u],f,p,r,S);O=G[0],C=G[1]}else if(r==="same"){O=Math.ceil(l/p),C=Math.ceil(u/g);const U=Math.max(0,(O-1)*p+f-l),G=Math.max(0,(C-1)*g+I-u),ne=Math.floor(U/2),te=U-ne,oe=Math.floor(G/2),ge=G-oe;v={top:ne,bottom:te,left:oe,right:ge,type:"SAME"}}else if(r==="valid")v={top:0,bottom:0,left:0,right:0,type:"VALID"},O=Math.ceil((l-f+1)/p),C=Math.ceil((u-I+1)/g);else if(typeof r=="object"){const U=x==="channelsLast"?r[1][0]:r[2][0],G=x==="channelsLast"?r[1][1]:r[2][1],ne=x==="channelsLast"?r[2][0]:r[3][0],te=x==="channelsLast"?r[2][1]:r[3][1],oe=U===0&&G===0&&ne===0&&te===0?"VALID":"EXPLICIT";v={top:U,bottom:G,left:ne,right:te,type:oe},O=Xo((l-f+U+G)/p+1,S),C=Xo((u-I+ne+te)/g+1,S)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:v,outHeight:O,outWidth:C}}function F7(r,l,u,p,g,f,I,S,x,v,O){let C,U,G,ne;if(typeof r=="number"){const te=r===0?"VALID":"NUMBER";C={top:r,bottom:r,left:r,right:r,front:r,back:r,type:te};const oe=W7([l,u,p,1],S,1,g,r,O);U=oe[0],G=oe[1],ne=oe[2]}else if(r==="same"){U=Math.ceil(l/g),G=Math.ceil(u/f),ne=Math.ceil(p/I);const te=(U-1)*g+S-l,oe=(G-1)*f+x-u,ge=(ne-1)*I+v-p,fe=Math.floor(te/2),Ae=te-fe,Te=Math.floor(oe/2),Ve=oe-Te,rt=Math.floor(ge/2),vt=ge-rt;C={top:Te,bottom:Ve,left:rt,right:vt,front:fe,back:Ae,type:"SAME"}}else if(r==="valid")C={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},U=Math.ceil((l-S+1)/g),G=Math.ceil((u-x+1)/f),ne=Math.ceil((p-v+1)/I);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:C,outDepth:U,outHeight:G,outWidth:ne}}function Xo(r,l){if(!l)return r;switch(l){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${l}`)}}function Xr(r){const[l,u,p]=vf(r);return l===1&&u===1&&p===1}function Jr(r,l){return Xr(r)||Xr(l)}function Cc(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function _R(r,l){const u=r[0].length;r.forEach((g,f)=>{Z(g.length===u,()=>`Error in concat${u}D: rank of tensors[${f}] must be the same as the rank of the rest (${u})`)}),Z(l>=0&&l<u,()=>`Error in concat${u}D: axis must be between 0 and ${u-1}.`);const p=r[0];r.forEach((g,f)=>{for(let I=0;I<u;I++)Z(I===l||g[I]===p[I],()=>`Error in concat${u}D: Shape of tensors[${f}] (${g}) does not match the shape of the rest (${p}) along the non-concatenated axis ${f}.`)})}function WR(r,l){const u=r[0].slice();for(let p=1;p<r.length;p++)u[l]+=r[p][l];return u}function $7(r,l=0){Z(r.length>=1,()=>"Pass at least one tensor to concat");let u=Tf(r,"tensors","concat");u[0].dtype==="complex64"&&u.forEach(I=>{if(I.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${I.dtype}. `)});const p=(I,S)=>{const x=ht(l,u[0].shape)[0],v=WR(u.map(U=>U.shape),x);if(qt(v)===0)return YS([],v);if(u=u.filter(U=>U.size>0),u.length===1)return u[0];const O=u.map(U=>U.shape);_R(O,x);const C=I.concat(u,x);return S(u),C},g=u,f={axis:l};return Y.runKernelFunc(p,g,null,Tm,f)}const yn=z({concat_:$7});function U7(r){const l=M(r,"x","sigmoid"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.sigmoid(l);return g([f]),f},u,null,sf)}const JS=z({sigmoid_:U7});function B7(r,l,u){const p=M(r,"x","slice");if(p.rank===0)throw new Error("Slicing scalar is not possible");const g=(S,x)=>{const[v,O]=Af(p,l,u);return OR(p,v,O),x([p]),S.slice(p,v,O)},f={x:p},I={begin:l,size:u};return Y.runKernelFunc(g,f,null,ef,I)}const Tt=z({slice_:B7});function M7(r,l,u){const p=M(r,"x","batchToSpaceND"),g=l.reduce((x,v)=>x*v);Z(p.rank>=1+l.length,()=>`input rank is ${p.rank} but should be > than blockShape.length ${l.length}`),Z(u.length===l.length,()=>`crops.length is ${u.length} but should be equal to blockShape.length ${l.length}`),Z(p.shape[0]%g===0,()=>`input tensor batch is ${p.shape[0]} but is not divisible by the product of the elements of blockShape ${l.join(" * ")} === ${g}`);const f=x=>x.batchToSpaceND(p,l,u),I={x:p},S={blockShape:l,crops:u};return Y.runKernelFunc(f,I,null,Im,S)}const ZS=z({batchToSpaceND_:M7});function P7(r,l){let u=M(r,"broadcastTo","x");const p=u.shape;if(l.some(O=>!(O>0)||O%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${l}].`);if(l.length<u.rank)throw new Error(`broadcastTo(): shape.length=${l.length} < input.rank=${u.rank}.`);if(l.length>u.rank){const O=u.shape.slice();for(;O.length<l.length;)O.unshift(1);u=ie(u,O)}const g=u.shape,f=Array.from(l);for(let O=l.length-1;O>=0;O--)if(g[O]===l[O])f[O]=1;else if(u.shape[O]!==1)throw new Error(`broadcastTo(): [${p}] cannot be broadcast to [${l}].`);const I=f.map((O,C)=>O>1?C:-1).filter(O=>O>=0);if(I.length===0)return pi(u);const S=O=>O.tile(u,f),x={x:u},v={shape:l,inputShape:g};return Y.runKernelFunc(S,x,null,xm,v)}const Rf=z({broadcastTo_:P7});function z7(r,l,u,p,g="NHWC",f=[1,1],I){const S=M(r,"x","conv2d"),x=M(l,"filter","conv2d");let v=S,O=!1;S.rank===3&&(O=!0,v=ie(S,[1,S.shape[0],S.shape[1],S.shape[2]])),Z(v.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${v.rank}.`),Z(x.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${x.rank}.`),I!=null&&Z(Qt(p),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${I} but got pad ${p}.`);const C=g==="NHWC"?v.shape[3]:v.shape[1];Z(C===x.shape[2],()=>`Error in conv2d: depth of input (${C}) must match input depth for filter ${x.shape[2]}.`),Z(Jr(u,f),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);const U=(oe,ge)=>{const fe=Cc(g),Ae=dr(v.shape,x.shape,u,f,p,I,!1,fe),Te=oe.conv2d(v,x,Ae);return ge([v,x]),Te},G={x:v,filter:x},ne={strides:u,pad:p,dataFormat:g,dilations:f,dimRoundingMode:I},te=Y.runKernelFunc(U,G,null,Am,ne);return O?ie(te,[te.shape[1],te.shape[2],te.shape[3]]):te}const QS=z({conv2d_:z7});function G7(r,l,u,p,g,f="NHWC",I){Z(r.length===l.rank,()=>`Length of inShape (${r.length}) and rank of dy (${l.rank}) must match`);let S=r,x=l,v=!1;l.rank===3&&(v=!0,x=ie(l,[1,l.shape[0],l.shape[1],l.shape[2]]),S=[1,r[0],r[1],r[2]]),Z(S.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${S.length}.`),Z(x.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${x.rank}`),Z(u.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${u.rank}`);const O=f==="NHWC"?S[3]:S[1],C=f==="NHWC"?x.shape[3]:x.shape[1];Z(O===u.shape[2],()=>`Error in conv2dDerInput: depth of input (${O}) must match input depth for filter ${u.shape[2]}.`),Z(C===u.shape[3],()=>`Error in conv2dDerInput: depth of output (${C}) must match output depth for filter ${u.shape[3]}.`),I!=null&&Z(Qt(g),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${I} but got pad ${g}.`);const U=(oe,ge)=>{const fe=1,Ae=Cc(f),Te=dr(S,u.shape,p,fe,g,I,!1,Ae),Ve=oe.conv2dDerInput(x,u,Te);return ge([x,u]),Ve},G={dy:x,filter:u},ne={strides:p,pad:g,dataFormat:f,dimRoundingMode:I,inputShape:S},te=Y.runKernelFunc(U,G,null,vm,ne);return v?ie(te,[te.shape[1],te.shape[2],te.shape[3]]):te}const $R=z({conv2DBackpropInput_:G7});function V7(r,l,u,p,g){Z(r.length===l.rank,()=>`Length of inShape (${r.length}) and rank of dy (${l.rank}) must match`);let f=r,I=l,S=!1;l.rank===4&&(S=!0,I=ie(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),f=[1,r[0],r[1],r[2],r[3]]);const x=f[4],v=I.shape[4];Z(f.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${f.length}.`),Z(I.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${I.rank}`),Z(u.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${u.rank}`),Z(x===u.shape[3],()=>`Error in conv3dDerInput: depth of input (${x}) must match input depth for filter ${u.shape[3]}.`),Z(v===u.shape[4],()=>`Error in conv3dDerInput: depth of output (${v}) must match output depth for filter ${u.shape[4]}.`);const O=ne=>{const te=1,oe=fu(f,u.shape,p,te,g);return ne.conv3dDerInput(I,u,oe)},C={dy:I},U={pad:g},G=Y.runKernelFunc(O,C,null,QC,U);return S?ie(G,[G.shape[1],G.shape[2],G.shape[3],G.shape[4]]):G}const UR=z({conv3DBackpropInput_:V7});function Y7(r){const l=M(r,"x","cos"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.cos(l);return g([l]),f},u,null,Nm)}const gu=z({cos_:Y7});function H7(r){const l=M(r,"x","cosh"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.cosh(l);return g([l]),f},u,null,Cm)}const eI=z({cosh_:H7});function q7(r,l=0,u=!1,p=!1){const g=M(r,"x","cumsum"),f=(x,v)=>{const O=ds([l],g.rank);let C=g;O!=null&&(C=Wt(g,O));const U=Kr(1,g.rank)[0];let G=x.cumsum(C,U,u,p);if(v([g]),O!=null){const ne=vc(O);G=Wt(G,ne)}return G},I={x:g},S={axis:l,exclusive:u,reverse:p};return Y.runKernelFunc(f,I,null,Rm,S)}const tI=z({cumsum_:q7});function At(r,l){const u=[];for(let p=0;p<l.length;p++){const g=r[r.length-p-1],f=l.length-p-1,I=l[f];(g==null||g===1&&I>1)&&u.unshift(f)}return u}function it(r,l){const u=[],p=Math.max(r.length,l.length);for(let g=0;g<p;g++){let f=r[r.length-g-1];f==null&&(f=1);let I=l[l.length-g-1];if(I==null&&(I=1),f===1)u.unshift(I);else if(I===1)u.unshift(f);else if(f!==I){const S=`Operands could not be broadcast together with shapes ${r} and ${l}.`;throw Error(S)}else u.unshift(f)}return u}function j7(r,l){let u=M(r,"a","equal"),p=M(l,"b","equal");[u,p]=mt(u,p),it(u.shape,p.shape);const g=I=>I.equal(u,p),f={a:u,b:p};return Y.runKernelFunc(g,f,null,h2)}const nI=z({equal_:j7});function K7(r,l,u){const p=M(l,"a","where"),g=M(u,"b","where"),f=M(r,"condition","where","bool"),I=it(p.shape,g.shape),S=Rf(p,I),x=Rf(g,I);f.rank===1&&Z(f.shape[0]===p.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),f.rank!==1&&Zt(f.shape,x.shape,"Error in where: ");const v=(C,U)=>{const G=C.select(f,S,x);return U([f]),G},O={condition:f,t:S,e:x};return Y.runKernelFunc(v,O,null,Qm)}const Bn=z({where_:K7});function X7(r){const l=M(r,"x","zerosLike"),u={x:l};return Y.runKernelFunc(p=>p.zerosLike(l),u,null,ff)}const qe=z({zerosLike_:X7});function J7(r){const l=M(r,"x","exp"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.exp(l);return g([f]),f},u,null,Em)}const Mn=z({exp_:J7});function Z7(r,l=0){const u=null,p=M(r,"x","expandDims",u);Z(l<=p.rank,()=>"Axis must be <= rank of the tensor");const g=p.shape.slice();return l<0&&(Z(-(p.rank+1)<=l,()=>`Axis must be in the interval [${-(p.rank+1)}, ${p.rank}]`),l=p.rank+l+1),g.splice(l,0,1),ie(p,g)}const Os=z({expandDims_:Z7});function Q7(r,l){const u=null,p=M(r,"x","tile",u);Z(p.rank===l.length,()=>`Error in transpose: rank of input ${p.rank} must match length of reps ${l}.`);const g=(x,v)=>{const O=x.tile(p,l);return v([p]),O},f=[p],I={x:p},S={reps:l};return Y.runKernelFunc(g,I,null,uf,S,f)}const Jo=z({tile_:Q7});function eJ(r,l,u,p="float32"){l==null&&(l=r);const g=mu([r,l],p),f=r<=l?r:l;for(let S=0;S<f;++S)g.set(1,S,S);const I=ie(g.toTensor(),[r,l]);if(u==null)return I;if(u.length===1)return Jo(Os(I,0),[u[0],1,1]);if(u.length===2)return Jo(Os(Os(I,0),0),[u[0],u[1],1,1]);if(u.length===3)return Jo(Os(Os(Os(I,0),0),0),[u[0],u[1],u[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${u.length}D.`)}const sI=z({eye_:eJ});function iI(r,l,u){const p={shape:r,value:l,dtype:u};return Y.runKernelFunc(g=>g.fill(r,l,u),{},null,p2,p)}function tJ(r){const l=M(r,"x","floor"),u={x:l};return Y.runKernelFunc(p=>p.floor(l),u,null,Dm)}const rI=z({floor_:tJ});function BR(r,l,u){const p=r.shape[u],g=[];let f=1,I=1;for(let S=0;S<u;S++)g.push(r.shape[S]),f*=r.shape[S];for(let S=0;S<l.rank;S++)g.push(l.shape[S]);for(let S=u+1;S<r.rank;S++)g.push(r.shape[S]),I*=r.shape[S];return{batchSize:f,sliceSize:I,dimSize:p,outputShape:g}}function nJ(r,l,u=0){const p=M(r,"x","gather"),g=M(l,"indices","gather","int32"),f={x:p,indices:g},I={axis:u},S=(x,v)=>{const O=ht(u,p.shape)[0],C=BR(p,g,O),U=x.gather(p,ie(g,[g.size]),O);return v([p,g]),ie(U,C.outputShape)};return Y.runKernelFunc(S,f,null,Fm,I)}const oI=z({gather_:nJ});function sJ(r,l){let u=M(r,"a","greater"),p=M(l,"b","greater");[u,p]=mt(u,p),it(u.shape,p.shape);const g=I=>I.greater(u,p),f={a:u,b:p};return Y.runKernelFunc(g,f,null,g2)}const mi=z({greater_:sJ});function iJ(r,l){let u=M(r,"a","greaterEqual"),p=M(l,"b","greaterEqual");[u,p]=mt(u,p),it(u.shape,p.shape);const g=(I,S)=>{const x=I.greaterEqual(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,_m)}const pr=z({greaterEqual_:iJ});function rJ(r){const l=M(r,"input","imag"),u=g=>g.imag(l),p={input:l};return Y.runKernelFunc(u,p,null,b2)}const yu=z({imag_:rJ});function oJ(r,l){let u=M(r,"a","maximum"),p=M(l,"b","maximum");[u,p]=mt(u,p),u.dtype==="bool"&&(u=Le(u,"int32"),p=Le(p,"int32")),it(u.shape,p.shape);const g=(I,S)=>{const x=I.maximum(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,Mm)}const aI=z({maximum_:oJ});function ke(r,l){if((Rs(r)&&l!=="string"||Array.isArray(r))&&l!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(l==="string"&&Rs(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");const u=[],p=[];return zi(r,u,p,l)}function aJ(r,l){let u=M(r,"a","less"),p=M(l,"b","less");[u,p]=mt(u,p),it(u.shape,p.shape);const g=I=>I.less(u,p),f={a:u,b:p};return Y.runKernelFunc(g,f,null,I2)}const cI=z({less_:aJ});function cJ(r,l){let u=M(r,"a","lessEqual"),p=M(l,"b","lessEqual");[u,p]=mt(u,p),it(u.shape,p.shape);const g=(I,S)=>{const x=I.lessEqual(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,x2)}const mr=z({lessEqual_:cJ});function lJ(r){const l=M(r,"x","log"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.log(l);return g([l]),f},u,null,$m)}const Zr=z({log_:lJ});function hJ(r){const l=M(r,"x","log1p"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.log1p(l);return g([l]),f},u,null,Um)}const lI=z({log1p_:hJ});function Of(r){return Y.customGrad(r)}function uJ(r){const l=M(r,"x","neg"),u={x:l};return Y.runKernelFunc(p=>p.neg(l),u,null,Vm)}const yt=z({neg_:uJ});function dJ(r,l=null,u=!1){const p=M(r,"x","max"),g=(S,x)=>{const v=ht(l,p.shape);let O=v;const C=ds(O,p.rank);let U=p;C!=null&&(U=Wt(p,C),O=Kr(O.length,U.rank));const G=S.max(U,O);C!=null&&U.dispose();let ne=G;if(u){const te=Zn(ne.shape,ht(l,p.shape));ne=ie(ne,te),G.dispose()}return x([p,ne]),ne},f={x:p},I={reductionIndices:l,keepDims:u};return Y.runKernelFunc(g,f,null,Bm,I)}const Zo=z({max_:dJ});function pJ(r,l){let u=M(r,"a","sub"),p=M(l,"b","sub");[u,p]=mt(u,p);const g=(I,S)=>{const x=I.subtract(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,hf)}const Be=z({sub_:pJ});function mJ(r,l=null,u=!1){let p=M(r,"x","sum");p.dtype==="bool"&&(p=Le(p,"int32"));const g=(S,x)=>{x([p]);const v=ht(l,p.shape),O=ds(v,p.rank);let C=v,U=p;O!=null&&(U=Wt(p,O),C=Kr(C.length,p.rank));let G=S.sum(U,C);if(u){const ne=Zn(G.shape,v);G=ie(G,ne)}return G},f={x:p},I={axis:l,keepDims:u};return Y.runKernelFunc(g,f,null,of,I)}const Fe=z({sum_:mJ});function fJ(r,l=null,u=!1){const p=M(r,"x","logSumExp"),g=ht(l,p.shape),f=Zo(p,g,!0),I=Be(p,f),S=Mn(I),x=Fe(S,g),v=Zr(x),O=Lt(ie(f,v.shape),v);if(u){const C=Zn(O.shape,g);return ie(O,C)}return O}const hI=z({logSumExp_:fJ});function gJ(r,l){const u=M(r,"a","logicalAnd","bool"),p=M(l,"b","logicalAnd","bool");it(u.shape,p.shape);const g={a:u,b:p};return Y.runKernelFunc(f=>f.logicalAnd(u,p),g,null,T2)}const Qo=z({logicalAnd_:gJ});function yJ(r){const l=M(r,"x","logicalNot","bool"),u={x:l};return Y.runKernelFunc(p=>p.logicalNot(l),u,null,A2)}const uI=z({logicalNot_:yJ});function Es(r,l="float32"){if(l==="complex64"){const p=Es(r,"float32"),g=Es(r,"float32");return Pi(p,g)}const u=Ko(qt(r),l);return Y.makeTensor(u,r,l)}function Gi(r,l="float32"){if(l==="complex64"){const p=Gi(r,"float32"),g=Es(r,"float32");return Pi(p,g)}const u=wf(qt(r),l);return Y.makeTensor(u,r,l)}function bJ(r,l=null,u=!1){const p=M(r,"x","mean"),g=ht(l,p.shape),f=kR(p.shape,g),I=f[1],S=qt(I),x=Of(v=>{const O=ke(S),C=O.dtype===v.dtype?v:Le(v,O.dtype),U=Pe(C,O),G=Fe(U,l,u),ne=te=>{const oe=v.shape.slice();g.forEach(Ae=>{oe[Ae]=1});const ge=ie(te,oe),fe=Pe(ae(ge,Gi(v.shape,"float32")),S);return fe};return{value:G,gradFunc:ne}});return x(p)}const dI=z({mean_:bJ});function wJ(r,l=null,u=!1){const p=M(r,"x","min"),g=(S,x)=>{const v=ht(l,p.shape);let O=v;const C=ds(O,p.rank);let U=p;C!=null&&(U=Wt(p,C),O=Kr(O.length,p.rank));const G=S.min(U,O);C!=null&&U.dispose();let ne=G;if(u){const te=Zn(ne.shape,v);ne=ie(G,te),G.dispose()}return x([p,ne]),ne},f={x:p},I={axis:l,keepDims:u};return Y.runKernelFunc(g,f,null,Pm,I)}const Ef=z({min_:wJ});function LJ(r,l){let u=M(r,"a","minimum"),p=M(l,"b","minimum");[u,p]=mt(u,p),u.dtype==="bool"&&(u=Le(u,"int32"),p=Le(p,"int32")),it(u.shape,p.shape);const g=(I,S)=>{const x=I.minimum(u,p);return S([u,p]),x},f={a:u,b:p};return Y.runKernelFunc(g,f,null,zm)}const pI=z({minimum_:LJ});function SJ(r){const l=M(r,"x","square"),u={},p=[l],g=[];return Y.runKernelFunc((f,I)=>(I([l]),f.square(l)),{x:l},null,"Square",u,p,g)}const ut=z({square_:SJ});function IJ(r,l){let u=M(r,"a","notEqual"),p=M(l,"b","notEqual");[u,p]=mt(u,p),it(u.shape,p.shape);const g=I=>I.notEqual(u,p),f={a:u,b:p};return Y.runKernelFunc(g,f,null,F2)}const mI=z({notEqual_:IJ});function xJ(r){const l=M(r,"input","real"),u=g=>g.real(l),p={input:l};return Y.runKernelFunc(u,p,null,z2)}const Rc=z({real_:xJ});function TJ(r,l,u=0){const p=M(r,"x","pad");if(p.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");const g=(S,x)=>(x([p]),S.pad(p,l,u)),f={paddings:l,constantValue:u},I={x:p};return Y.runKernelFunc(g,I,null,Ym,f)}const fI=z({pad_:TJ});function AJ(r,l,u){const p=M(r,"x","spaceToBatchND");Z(p.rank>=1+l.length,()=>`input rank ${p.rank} should be > than [blockShape] ${l.length}`),Z(u.length===l.length,()=>`paddings.shape[0] ${u.length} must be equal to [blockShape] ${l.length}`),Z(p.shape.reduce((S,x,v)=>v>0&&v<=l.length?S&&(x+u[v-1][0]+u[v-1][1])%l[v-1]===0:S,!0),()=>`input spatial dimensions ${p.shape.slice(1)} with paddings ${u.toString()} must be divisible by blockShapes ${l.toString()}`);const g=S=>S.spaceToBatchND(p,l,u),f={x:p},I={blockShape:l,paddings:u};return Y.runKernelFunc(g,f,null,af,I)}const gI=z({spaceToBatchND_:AJ});function vJ(r,l){let u=M(r,"base","pow"),p=M(l,"exp","pow");[u,p]=mt(u,p);const g={a:u,b:p},f=(I,S)=>{const x=I.pow(u,p);return S([u,p,x]),x};return Y.runKernelFunc(f,g,null,Hm)}const ea=z({pow_:vJ});function Qr(r,l){Sc(r);const u=ur(r,l);if(u.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");const p=null;return zi(r,p,u,l)}function Df(r,l,u=1,p="float32"){if(u===0)throw new Error("Cannot have a step of zero");const g=()=>{const I=r===l,S=r<l&&u<0,x=l<r&&u>1;if(I||S||x)return Es([0],p);const v=Math.abs(Math.ceil((l-r)/u)),O=Ko(v,p);l<r&&u===1&&(u=-1),O[0]=r;for(let C=1;C<O.length;C++)O[C]=O[C-1]+u;return Qr(O,p)},f={start:r,stop:l,step:u,dtype:p};return Y.runKernelFunc(g,{},null,P2,f)}function NJ(r){const l=M(r,"x","relu"),u=(g,f)=>(f([l]),l.dtype==="bool"?Le(l,"int32"):g.relu(l)),p={x:l};return Y.runKernelFunc(u,p,null,qm)}const bu=z({relu_:NJ});function CJ(r,l){const u=M(r,"x","reverse"),p=I=>{const S=ht(l,u.shape);if(u.rank===0)return pi(u);const x=I.reverse(u,S);return ie(x,u.shape)},g={x:u},f={dims:l};return Y.runKernelFunc(p,g,null,Jm,f)}const Oc=z({reverse_:CJ});function RJ(r){const l=M(r,"x","rsqrt"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.rsqrt(l);return g([l]),f},u,null,Zm)}const yI=z({rsqrt_:RJ});function OJ(r){const l=M(r,"x","sin"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.sin(l);return g([l]),f},u,null,tf)}const bI=z({sin_:OJ});function EJ(r){const l=M(r,"x","sinh"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.sinh(l);return g([l]),f},u,null,nf)}const wI=z({sinh_:EJ});function DJ(r){Z(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);const l={input:r};return Y.runKernelFunc(u=>{const p=r.shape[r.shape.length-1],g=r.size/p,f=r.as2D(g,p),I=u.fft(f);return I.reshape(r.shape)},l,null,d2)}const wu=z({fft_:DJ});function kJ(r){Z(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);const l={input:r};return Y.runKernelFunc(u=>{const p=r.shape[r.shape.length-1],g=r.size/p,f=ie(r,[g,p]),I=u.ifft(f);return ie(I,r.shape)},l,null,y2)}const Ec=z({ifft_:kJ});function FJ(r){const l=r.shape[r.shape.length-1],u=r.size/l;let p;if(l<=2){const g=ie(r,[u,l]);p=Ec(g)}else{const g=[u,2*(l-1)],f=ie(Rc(r),[u,l]),I=ie(yu(r),[u,l]),S=Oc(Tt(f,[0,1],[u,l-2]),1),x=ae(Oc(Tt(I,[0,1],[u,l-2]),1),ke(-1)),v=yn([f,S],1),O=yn([I,x],1),C=ie(Pi(v,O),[g[0],g[1]]);p=Ec(C)}if(p=Rc(p),r.rank===3&&r.shape[0]!==0){const g=p,f=r.shape[0];p=ie(p,[f,p.shape[0]/f,p.shape[1]]),g.dispose()}return p}const LI=z({irfft_:FJ});function MR(r,l,u=0){let p=[];if(typeof l=="number")Z(r.shape[u]%l===0,()=>"Number of splits must evenly divide the axis."),p=new Array(l).fill(r.shape[u]/l);else{const g=l.reduce((I,S)=>(S===-1&&(I+=1),I),0);Z(g<=1,()=>"There should be only one negative value in split array.");const f=l.indexOf(-1);if(f!==-1){const I=l.reduce((S,x)=>x>0?S+x:S);l[f]=r.shape[u]-I}Z(r.shape[u]===l.reduce((I,S)=>I+S),()=>"The sum of sizes must match the size of the axis dimension."),p=l}return p}function _J(r,l,u=0){const p=M(r,"x","split"),g=(S,x)=>{const v=ht(u,p.shape)[0],O=MR(p,l,v);return S.split(p,O,v)},f={x:p},I={numOrSizeSplits:l,axis:u};return Y.runKernelFunc(g,f,null,cf,I)}const eo=z({split_:_J});function WJ(r,l){Z(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let u=r.shape[r.shape.length-1];const p=r.size/u;let g;if(l!=null&&l<u){const ne=r.shape.map(oe=>0),te=r.shape.map(oe=>oe);te[r.shape.length-1]=l,g=Tt(r,ne,te),u=l}else if(l!=null&&l>u){const ne=r.shape.map(te=>te);ne[r.shape.length-1]=l-u,g=yn([r,Es(ne)],r.shape.length-1),u=l}else g=r;const f=qe(g),I=ie(Pi(g,f),[p,u]),S=wu(I),x=Math.floor(u/2)+1,v=Rc(S),O=yu(S),C=eo(v,[x,u-x],v.shape.length-1),U=eo(O,[x,u-x],O.shape.length-1),G=g.shape.slice();return G[g.shape.length-1]=x,ie(Pi(C[0],U[0]),G)}const Lu=z({rfft_:WJ});function $J(r){const l=M(r,"x","sqrt"),u={x:l};return Y.runKernelFunc((p,g)=>{const f=p.sqrt(l);return g([l]),f},u,null,rf)}const ps=z({sqrt_:$J});function UJ(r,l){let u=M(r,"a","squaredDifference"),p=M(l,"b","squaredDifference");[u,p]=mt(u,p),it(u.shape,p.shape);const g=(S,x)=>{const v=S.squaredDifference(u,p);return x([u,p]),v},f={a:u,b:p},I={};return Y.runKernelFunc(g,f,null,lf,I)}const SI=z({squaredDifference_:UJ});function BJ(r,l){const u=M(r,"x","squeeze");return ie(u,rR(u.shape,l).newShape)}const II=z({squeeze_:BJ});function MJ(r,l=0){const u=Tf(r,"tensors","stack");if(Z(u.length>=1,()=>"Pass at least one tensor to tf.stack"),u.length===1)return Os(u[0],l);const p=u[0].rank,g=u[0].shape,f=u[0].dtype;Z(l<=p,()=>"Axis must be <= rank of the tensor"),u.forEach(S=>{Zt(g,S.shape,"All tensors passed to stack must have matching shapes"),Z(f===S.dtype,()=>"All tensors passed to stack must have matching dtypes")});const I=u.map(S=>Os(S,l));return yn(I,l)}const Vs=z({stack_:MJ});function PJ(r,l=0){const u=M(r,"x","step"),p={x:u},g={alpha:l};return Y.runKernelFunc(f=>f.step(u,l),p,null,gf,g)}const ta=z({step_:PJ});function na(r,l,u){if(Sc(r),l!=null&&l.length!==2)throw new Error("tensor2d() requires shape to have two numbers");const p=ur(r,u);if(p.length!==2&&p.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(p.length===1&&l==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return zi(r,l,p,u)}function zJ(r,l,u){const p=M(r,"x","unsortedSegmentSum"),g=M(l,"segmentIds","unsortedSegmentSum","int32");Z(Qt(u),()=>"numSegments must be of dtype int");const f={x:p,segmentIds:g},I={numSegments:u},S=(x,v)=>{const O=x.unsortedSegmentSum(p,g,u);return v([g]),O};return Y.runKernelFunc(S,f,null,mf,I)}const xI=z({unsortedSegmentSum_:zJ});function GJ(r,l=0){const u=M(r,"x","unstack");Z(l>=-u.shape.length&&l<u.shape.length,()=>`Axis = ${l} is not in [-${u.shape.length}, ${u.shape.length})`),l<0&&(l+=u.shape.length);const p={value:u},g={axis:l},f=I=>I.unstack(u,l);return Y.runKernelFunc(f,p,null,pf,g)}const Su=z({unstack_:GJ});function VJ(r,l="euclidean",u=null,p=!1){r=M(r,"x","norm");const g=PR(r,l,u);let f=g.shape;if(p){const I=ht(u,r.shape);f=Zn(g.shape,I)}return ie(g,f)}function PR(r,l,u=null){if(r.rank===0)return Un(r);if(r.rank!==1&&u===null)return PR(ie(r,[-1]),l,u);if(r.rank===1||typeof u=="number"||Array.isArray(u)&&u.length===1){if(l===1)return Fe(Un(r),u);if(l===Infinity)return Zo(Un(r),u);if(l===-Infinity)return Ef(Un(r),u);if(l==="euclidean"||l===2)return ps(Fe(ea(Un(r),ke(2,"int32")),u));throw new Error(`Error in norm: invalid ord value: ${l}`)}if(Array.isArray(u)&&u.length===2){if(l===1)return Zo(Fe(Un(r),u[0]),u[1]-1);if(l===Infinity)return Zo(Fe(Un(r),u[1]),u[0]);if(l===-Infinity)return Ef(Fe(Un(r),u[1]),u[0]);if(l==="fro"||l==="euclidean")return ps(Fe(ut(r),u));throw new Error(`Error in norm: invalid ord value: ${l}`)}throw new Error(`Error in norm: invalid axis: ${u}`)}const kf=z({norm_:VJ});function zR(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function Ff(r,l,u){const p=1-r%2,g=new Float32Array(r);for(let f=0;f<r;++f){const I=2*Math.PI*f/(r+p-1);g[f]=l-u*Math.cos(I)}return Qr(g,"float32")}function YJ(r,l,u,p,g,f="NHWC",I){let S=r;r.rank===3&&(S=ie(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let x=l;x.rank===3&&(x=ie(l,[1,l.shape[0],l.shape[1],l.shape[2]])),Z(S.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${S.shape}.`),Z(x.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${x.shape}.`),Z(u.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${u}.`);const v=f==="NHWC"?S.shape[3]:S.shape[1],O=f==="NHWC"?x.shape[3]:x.shape[1];Z(v===u[2],()=>`Error in conv2dDerFilter: depth of input ${v}) must match input depth in filter (${u[2]}.`),Z(O===u[3],()=>`Error in conv2dDerFilter: depth of dy (${O}) must match output depth for filter (${u[3]}).`),I!=null&&Z(Qt(g),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${I} but got pad ${g}.`);const C=ne=>{const te=1,oe=Cc(f),ge=dr(S.shape,u,p,te,g,I,!1,oe);return ne.conv2dDerFilter(S,x,ge)},U={x:S,dy:x},G={strides:p,pad:g,dataFormat:f,dimRoundingMode:I};return Y.runKernelFunc(C,U,null,XC,G)}const _f=z({conv2DBackpropFilter_:YJ});function HJ(r,l,u,p){let g=r;r.rank===3&&(g=ie(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let f=l;f.rank===3&&(f=ie(l,[1,l.shape[0],l.shape[1],l.shape[2]]));const I=x=>x.depthwiseConv2DDerFilter(g,f,p),S={x:g,dy:f};return Y.runKernelFunc(I,S,null,n2)}const GR=z({depthwiseConv2dNativeBackpropFilter_:HJ});function qJ(r,l,u,p){let g=l,f=!1;l.rank===3&&(f=!0,g=ie(l,[1,l.shape[0],l.shape[1],l.shape[2]]));const I=v=>v.depthwiseConv2DDerInput(g,u,p),S={dy:g},x=Y.runKernelFunc(I,S,null,s2);return f?ie(x,[x.shape[1],x.shape[2],x.shape[3]]):x}const VR=z({depthwiseConv2dNativeBackpropInput_:qJ});function jJ(r){return Ff(r,.54,.46)}const YR=z({hammingWindow_:jJ});function KJ(r){return Ff(r,.5,.5)}const Wf=z({hannWindow_:KJ});function XJ(r,l,u,p=!1,g=0){let f=0;const I=[];for(;f+l<=r.size;)I.push(Tt(r,f,l)),f+=u;if(p)for(;f<r.size;){const S=f+l-r.size,x=yn([Tt(r,f,l-S),iI([S],g)]);I.push(x),f+=u}return I.length===0?na([],[0,l]):ie(yn(I),[I.length,l])}const $f=z({frame_:XJ});function JJ(r,l,u,p,g=Wf){p==null&&(p=zR(l));const f=$f(r,l,u),I=ae(f,g(l)),S=[];for(let x=0;x<f.shape[0];x++)S.push(Lu(Tt(I,[x,0],[1,l]),p));return yn(S)}const HR=z({stft_:JJ});function ZJ(r,l,u,p,g,f){const I=M(r,"image","cropAndResize"),S=M(l,"boxes","cropAndResize","float32"),x=M(u,"boxInd","cropAndResize","int32");g=g||"bilinear",f=f||0;const v=S.shape[0];Z(I.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${I.rank}.`),Z(S.rank===2&&S.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${v},4] but had shape ${S.shape}.`),Z(x.rank===1&&x.shape[0]===v,()=>`Error in cropAndResize: boxInd must be have size [${v}] but had shape ${S.shape}.`),Z(p.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${p.length}.`),Z(p[0]>=1&&p[1]>=1,()=>`cropSize must be atleast [1,1], but was ${p}`),Z(g==="bilinear"||g==="nearest",()=>`method must be bilinear or nearest, but was ${g}`);const O=ne=>ne.cropAndResize(I,S,x,p,g,f),C={image:I,boxes:S,boxInd:x},U={method:g,extrapolationValue:f,cropSize:p},G=Y.runKernelFunc(O,C,null,e2,U);return G}const qR=z({cropAndResize_:ZJ});function QJ(r){const l=M(r,"image","flipLeftRight","float32");Z(l.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${l.rank}.`);const u={image:l},p=Y.runKernel(m2,u,{});return p}const jR=z({flipLeftRight_:QJ});function e9(r,l,u=0,p=.5){const g=M(r,"image","rotateWithOffset","float32");Z(g.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${g.rank}.`);const f={image:g},I={radians:l,fillValue:u,center:p},S=Y.runKernel(tR,f,I);return S}const KR=z({rotateWithOffset_:e9});function Ys(r,l,u,p,g,f){p==null&&(p=.5),g==null&&(g=Number.NEGATIVE_INFINITY),f==null&&(f=0);const I=r.shape[0];return u=Math.min(u,I),Z(0<=p&&p<=1,()=>`iouThreshold must be in [0, 1], but was '${p}'`),Z(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),Z(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),Z(l.rank===1,()=>"scores must be a 1D tensor"),Z(l.shape[0]===I,()=>`scores has incompatible shape with boxes. Expected ${I}, but was ${l.shape[0]}`),Z(0<=f&&f<=1,()=>`softNmsSigma must be in [0, 1], but was '${f}'`),{maxOutputSize:u,iouThreshold:p,scoreThreshold:g,softNmsSigma:f}}function t9(r,l,u,p=.5,g=Number.NEGATIVE_INFINITY){const f=M(r,"boxes","nonMaxSuppression"),I=M(l,"scores","nonMaxSuppression"),S=Ys(f,I,u,p,g);u=S.maxOutputSize,p=S.iouThreshold,g=S.scoreThreshold;const x={maxOutputSize:u,iouThreshold:p,scoreThreshold:g};return Y.runKernelFunc(v=>v.nonMaxSuppression(f,I,u,p,g),{boxes:f,scores:I},null,_2,x)}const XR=z({nonMaxSuppression_:t9});function JR(r,l,u){const p=n9(r,l,u),g=p<0?-(p+1):p;r.splice(g,0,l)}function n9(r,l,u){return i9(r,l,u||s9)}function s9(r,l){return r>l?1:r<l?-1:0}function i9(r,l,u){let p=0,g=r.length,f=0,I=!1;for(;p<g;){f=p+(g-p>>>1);const S=u(l,r[f]);S>0?p=f+1:(g=f,I=!S)}return I?p:-p-1}function ZR(r,l,u,p,g){return TI(r,l,u,p,g,0).selectedIndices}function QR(r,l,u,p,g,f){return TI(r,l,u,p,g,0,!1,f,!0)}function eO(r,l,u,p,g,f){return TI(r,l,u,p,g,f,!0)}function TI(r,l,u,p,g,f,I=!1,S=!1,x=!1){const v=[];for(let oe=0;oe<l.length;oe++)l[oe]>g&&v.push({score:l[oe],boxIndex:oe,suppressBeginIndex:0});v.sort(tO);const O=f>0?-.5/f:0,C=[],U=[];for(;C.length<u&&v.length>0;){const oe=v.pop(),{score:ge,boxIndex:fe,suppressBeginIndex:Ae}=oe;if(ge<g)break;let Te=!1;for(let Ve=C.length-1;Ve>=Ae;--Ve){const rt=r9(r,fe,C[Ve]);if(rt>=p){Te=!0;break}if(oe.score=oe.score*o9(p,O,rt),oe.score<=g)break}oe.suppressBeginIndex=C.length,Te||(oe.score===ge?(C.push(fe),U.push(oe.score)):oe.score>g&&JR(v,oe,tO))}const G=C.length,ne=u-G;S&&ne>0&&(C.push(...new Array(ne).fill(0)),U.push(...new Array(ne).fill(0)));const te={selectedIndices:Qr(C,"int32")};return I&&(te.selectedScores=Qr(U,"float32")),x&&(te.validOutputs=ke(G,"int32")),te}function r9(r,l,u){const p=r.subarray(l*4,l*4+4),g=r.subarray(u*4,u*4+4),f=Math.min(p[0],p[2]),I=Math.min(p[1],p[3]),S=Math.max(p[0],p[2]),x=Math.max(p[1],p[3]),v=Math.min(g[0],g[2]),O=Math.min(g[1],g[3]),C=Math.max(g[0],g[2]),U=Math.max(g[1],g[3]),G=(S-f)*(x-I),ne=(C-v)*(U-O);if(G<=0||ne<=0)return 0;const te=Math.max(f,v),oe=Math.max(I,O),ge=Math.min(S,C),fe=Math.min(x,U),Ae=Math.max(ge-te,0)*Math.max(fe-oe,0);return Ae/(G+ne-Ae)}function o9(r,l,u){const p=Math.exp(l*u*u);return u<=r?p:0}function tO(r,l){return r.score-l.score||r.score===l.score&&l.boxIndex-r.boxIndex}async function a9(r,l,u,p=.5,g=Number.NEGATIVE_INFINITY){const f=M(r,"boxes","nonMaxSuppressionAsync"),I=M(l,"scores","nonMaxSuppressionAsync"),S=Ys(f,I,u,p,g);u=S.maxOutputSize,p=S.iouThreshold,g=S.scoreThreshold;const x=await Promise.all([f.data(),I.data()]),v=x[0],O=x[1],C=ZR(v,O,u,p,g);return f!==r&&f.dispose(),I!==l&&I.dispose(),C}const nO=a9;function c9(r,l,u,p=.5,g=Number.NEGATIVE_INFINITY,f=0){const I=M(r,"boxes","nonMaxSuppression"),S=M(l,"scores","nonMaxSuppression"),x=Ys(I,S,u,p,g,f);u=x.maxOutputSize,p=x.iouThreshold,g=x.scoreThreshold,f=x.softNmsSigma;const v={boxes:I,scores:S},O={maxOutputSize:u,iouThreshold:p,scoreThreshold:g,softNmsSigma:f},C=Y.runKernel($2,v,O);return{selectedIndices:C[0],selectedScores:C[1]}}const sO=z({nonMaxSuppressionWithScore_:c9});async function l9(r,l,u,p=.5,g=Number.NEGATIVE_INFINITY,f=0){const I=M(r,"boxes","nonMaxSuppressionAsync"),S=M(l,"scores","nonMaxSuppressionAsync"),x=Ys(I,S,u,p,g,f);u=x.maxOutputSize,p=x.iouThreshold,g=x.scoreThreshold,f=x.softNmsSigma;const v=await Promise.all([I.data(),S.data()]),O=v[0],C=v[1],U=eO(O,C,u,p,g,f);return I!==r&&I.dispose(),S!==l&&S.dispose(),U}const iO=l9;function h9(r,l,u,p=.5,g=Number.NEGATIVE_INFINITY,f=!1){const I=M(r,"boxes","nonMaxSuppression"),S=M(l,"scores","nonMaxSuppression"),x=Ys(I,S,u,p,g,null),v=x.maxOutputSize,O=x.iouThreshold,C=x.scoreThreshold,U={boxes:I,scores:S},G={maxOutputSize:v,iouThreshold:O,scoreThreshold:C,padToMaxOutputSize:f},ne=Y.runKernel(W2,U,G);return{selectedIndices:ne[0],validOutputs:ne[1]}}const rO=z({nonMaxSuppressionPadded_:h9});async function u9(r,l,u,p=.5,g=Number.NEGATIVE_INFINITY,f=!1){const I=M(r,"boxes","nonMaxSuppressionAsync"),S=M(l,"scores","nonMaxSuppressionAsync"),x=Ys(I,S,u,p,g,null),v=x.maxOutputSize,O=x.iouThreshold,C=x.scoreThreshold,[U,G]=await Promise.all([I.data(),S.data()]),ne=QR(U,G,v,O,C,f);return I!==r&&I.dispose(),S!==l&&S.dispose(),ne}const oO=u9;function d9(r,l,u=!1){const p=M(r,"images","resizeBilinear");Z(p.rank===3||p.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${p.rank}.`),Z(l.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${l}.`);let g=p,f=!1;p.rank===3&&(f=!0,g=ie(p,[1,p.shape[0],p.shape[1],p.shape[2]]));const[I,S]=l,x=(U,G)=>(G([g]),U.resizeBilinear(g,I,S,u)),v={images:g},O={alignCorners:u,size:l},C=Y.runKernelFunc(x,v,null,Xm,O);return f?ie(C,[C.shape[1],C.shape[2],C.shape[3]]):C}const aO=z({resizeBilinear_:d9});function p9(r,l,u=!1){const p=M(r,"images","resizeNearestNeighbor");Z(p.rank===3||p.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${p.rank}.`),Z(l.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${l}.`),Z(p.dtype==="float32"||p.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let g=p,f=!1;p.rank===3&&(f=!0,g=ie(p,[1,p.shape[0],p.shape[1],p.shape[2]]));const[I,S]=l,x={images:g},v={alignCorners:u,size:l},O=(U,G)=>(G([g]),U.resizeNearestNeighbor(g,I,S,u)),C=Y.runKernelFunc(O,x,null,Km,v);return f?ie(C,[C.shape[1],C.shape[2],C.shape[3]]):C}const cO=z({resizeNearestNeighbor_:p9});function m9(r,l,u){Z(l%1===0,()=>`bandPart(): numLower must be an integer, got ${l}.`),Z(u%1===0,()=>`bandPart(): numUpper must be an integer, got ${u}.`);const p=M(r,"a","bandPart");Z(p.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${p.rank}.`);const g=p.shape,[f,I]=p.shape.slice(-2);if(!(l<=f))throw new Error(`bandPart(): numLower (${l}) must not be greater than the number of rows (${f}).`);if(!(u<=I))throw new Error(`bandPart(): numUpper (${u}) must not be greater than the number of columns (${I}).`);l<0&&(l=f),u<0&&(u=I);const S=ie(Df(0,f,1,"int32"),[-1,1]),x=Df(0,I,1,"int32"),v=Be(S,x),O=Qo(mr(v,ke(+l,"int32")),pr(v,ke(-u,"int32"))),C=Es([f,I],p.dtype);return ie(Vs(Su(ie(p,[-1,f,I])).map(U=>Bn(O,U,C))),g)}const lO=z({bandPart_:m9});function f9(r){let l;if(Array.isArray(r)){l=!1,Z(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");const g=r[0].shape[0];for(let f=1;f<r.length;++f)Z(r[f].shape[0]===g,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[f].shape[0]} vs. ${g})`)}else l=!0,r=eo(r,r.shape[0],0).map(g=>II(g,[0]));Z(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);const u=[],p=r;for(let g=0;g<r.length;++g)u.push(Y.tidy(()=>{let f=p[g];if(g>0)for(let I=0;I<g;++I){const S=ae(Fe(ae(u[I],f)),u[I]);f=Be(f,S)}return Pe(f,kf(f,"euclidean"))}));return l?Vs(u,0):u}const hO=z({gramSchmidt_:f9});function g9(r,l=!1){if(Z(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return uO(r,l);{const u=r.shape.slice(0,r.shape.length-2).reduce((x,v)=>x*v),p=Su(ie(r,[u,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),g=[],f=[];p.forEach(x=>{const[v,O]=uO(x,l);g.push(v),f.push(O)});const I=ie(Vs(g,0),r.shape),S=ie(Vs(f,0),r.shape);return[I,S]}}function uO(r,l=!1){return Y.tidy(()=>{Z(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);const u=r.shape[0],p=r.shape[1];let g=sI(u),f=pi(r);const I=na([[1]],[1,1]);let S=pi(I);const x=u>=p?p:u;for(let v=0;v<x;++v){const O=f,C=S,U=g;[S,f,g]=Y.tidy(()=>{const G=Tt(f,[v,v],[u-v,1]),ne=kf(G),te=Tt(f,[v,v],[1,1]),oe=Bn(mi(te,0),na([[-1]]),na([[1]])),ge=Be(te,ae(oe,ne)),fe=Pe(G,ge);fe.shape[0]===1?S=pi(I):S=yn([I,Tt(fe,[1,0],[fe.shape[0]-1,fe.shape[1]])],0);const Ae=yt(Pe(dn(oe,ge),ne)),Te=Tt(f,[v,0],[u-v,p]),Ve=ae(Ae,S),rt=Wt(S);if(v===0)f=Be(Te,dn(Ve,dn(rt,Te)));else{const Kt=Be(Te,dn(Ve,dn(rt,Te)));f=yn([Tt(f,[0,0],[v,p]),Kt],0)}const vt=Wt(Ve),$t=Tt(g,[0,v],[u,g.shape[1]-v]);if(v===0)g=Be($t,dn(dn($t,S),vt));else{const Kt=Be($t,dn(dn($t,S),vt));g=yn([Tt(g,[0,0],[u,v]),Kt],1)}return[S,f,g]}),DR([O,C,U])}return!l&&u>p&&(g=Tt(g,[0,0],[u,p]),f=Tt(f,[0,0],[p,p])),[g,f]})}const dO=z({qr_:g9});var jt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(jt||(jt={}));function y9(r,l,u=jt.SUM_BY_NONZERO_WEIGHTS){const p=M(r,"losses","computeWeightedLoss");let g=null;l!=null&&(g=M(l,"weights","computeWeightedLoss"));const f=g==null?p:ae(p,g);if(u===jt.NONE)return f;if(u===jt.SUM)return Fe(f);if(u===jt.MEAN){if(g==null)return dI(f);{const I=p.size/g.size,S=Pe(Fe(f),Fe(g));return I>1?Pe(S,ke(I)):S}}if(u===jt.SUM_BY_NONZERO_WEIGHTS){if(g==null)return Pe(Fe(f),ke(p.size));{const I=ae(g,Gi(p.shape)),S=Le(Fe(mI(I,ke(0))),"float32");return Pe(Fe(f),S)}}throw Error(`Unknown reduction: ${u}`)}const xn=z({computeWeightedLoss_:y9});function b9(r,l,u,p=jt.SUM_BY_NONZERO_WEIGHTS){const g=M(r,"labels","absoluteDifference"),f=M(l,"predictions","absoluteDifference");let I=null;u!=null&&(I=M(u,"weights","absoluteDifference")),Zt(g.shape,f.shape,"Error in absoluteDifference: ");const S=Un(Be(g,f));return xn(S,I,p)}const pO=z({absoluteDifference_:b9});function w9(r,l,u,p,g=jt.SUM_BY_NONZERO_WEIGHTS){const f=M(r,"labels","cosineDistance"),I=M(l,"predictions","cosineDistance");let S=null;p!=null&&(S=M(p,"weights","cosineDistance")),Zt(f.shape,I.shape,"Error in cosineDistance: ");const x=ke(1),v=Be(x,Fe(ae(f,I),u,!0));return xn(v,S,g)}const mO=z({cosineDistance_:w9});function L9(r,l,u,p=jt.SUM_BY_NONZERO_WEIGHTS){let g=M(r,"labels","hingeLoss");const f=M(l,"predictions","hingeLoss");let I=null;u!=null&&(I=M(u,"weights","hingeLoss")),Zt(g.shape,f.shape,"Error in hingeLoss: ");const S=ke(1);g=Be(ae(ke(2),g),S);const x=bu(Be(S,ae(g,f)));return xn(x,I,p)}const fO=z({hingeLoss_:L9});function S9(r,l,u,p=1,g=jt.SUM_BY_NONZERO_WEIGHTS){const f=M(r,"labels","huberLoss"),I=M(l,"predictions","huberLoss");let S=null;u!=null&&(S=M(u,"weights","huberLoss")),Zt(f.shape,I.shape,"Error in huberLoss: ");const x=ke(p),v=Un(Be(I,f)),O=pI(v,x),C=Be(v,O),U=Lt(ae(ke(.5),ut(O)),ae(x,C));return xn(U,S,g)}const gO=z({huberLoss_:S9});function I9(r,l,u,p=1e-7,g=jt.SUM_BY_NONZERO_WEIGHTS){const f=M(r,"labels","logLoss"),I=M(l,"predictions","logLoss");let S=null;u!=null&&(S=M(u,"weights","logLoss")),Zt(f.shape,I.shape,"Error in logLoss: ");const x=ke(1),v=ke(p),O=yt(ae(f,Zr(Lt(I,v)))),C=ae(Be(x,f),Zr(Lt(Be(x,I),v))),U=Be(O,C);return xn(U,S,g)}const yO=z({logLoss_:I9});function x9(r,l,u,p=jt.SUM_BY_NONZERO_WEIGHTS){const g=M(r,"labels","meanSquaredError"),f=M(l,"predictions","meanSquaredError");let I=null;u!=null&&(I=M(u,"weights","meanSquaredError")),Zt(g.shape,f.shape,"Error in meanSquaredError: ");const S=SI(g,f);return xn(S,I,p)}const bO=z({meanSquaredError_:x9});function T9(r,l){const u=M(r,"labels","sigmoidCrossEntropyWithLogits"),p=M(l,"logits","sigmoidCrossEntropyWithLogits");Zt(u.shape,p.shape,"Error in sigmoidCrossEntropyWithLogits: ");const g=bu(p),f=ae(p,u),I=lI(Mn(yt(Un(p))));return Lt(Be(g,f),I)}function A9(r,l,u,p=0,g=jt.SUM_BY_NONZERO_WEIGHTS){let f=M(r,"multiClassLabels","sigmoidCrossEntropy");const I=M(l,"logits","sigmoidCrossEntropy");let S=null;if(u!=null&&(S=M(u,"weights","sigmoidCrossEntropy")),Zt(f.shape,I.shape,"Error in sigmoidCrossEntropy: "),p>0){const v=ke(p),O=ke(1),C=ke(.5);f=Lt(ae(f,Be(O,v)),ae(C,v))}const x=T9(f,I);return xn(x,S,g)}const wO=z({sigmoidCrossEntropy_:A9});function v9(r,l,u=-1){if(u===-1&&(u=l.rank-1),u!==l.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${l.rank} and dim was ${u}`);const p=Of((g,f,I)=>{const S=!0,x=hI(f,[u],S),v=Be(Le(f,"float32"),x);I([g,v]);const O=yt(ae(v,g)),C=Fe(O,[u]),U=(G,ne)=>{const[te,oe]=ne,ge=Zn(G.shape,[u]);return[ae(ie(G,ge),Be(Le(te,"float32"),Mn(oe))),ae(ie(G,ge),Be(Mn(oe),Le(te,"float32")))]};return{value:C,gradFunc:U}});return p(r,l)}function N9(r,l,u,p=0,g=jt.SUM_BY_NONZERO_WEIGHTS){let f=M(r,"onehotLabels","softmaxCrossEntropy");const I=M(l,"logits","softmaxCrossEntropy");let S=null;if(u!=null&&(S=M(u,"weights","softmaxCrossEntropy")),Zt(f.shape,I.shape,"Error in softmaxCrossEntropy: "),p>0){const v=ke(p),O=ke(1),C=ke(f.shape[1]);f=Lt(ae(f,Be(O,v)),Pe(v,C))}const x=v9(f,I);return xn(x,S,g)}const LO=z({softmaxCrossEntropy_:N9});const ITe={fft:wu,ifft:Ec,rfft:Lu,irfft:LI},NTe={hammingWindow:YR,hannWindow:Wf,frame:$f,stft:HR},SO={flipLeftRight:jR,resizeNearestNeighbor:cO,resizeBilinear:aO,rotateWithOffset:KR,cropAndResize:qR,nonMaxSuppression:XR,nonMaxSuppressionAsync:nO,nonMaxSuppressionWithScore:sO,nonMaxSuppressionWithScoreAsync:iO,nonMaxSuppressionPadded:rO,nonMaxSuppressionPaddedAsync:oO},zTe={bandPart:lO,gramSchmidt:hO,qr:dO},ZTe={absoluteDifference:pO,computeWeightedLoss:xn,cosineDistance:mO,hingeLoss:fO,huberLoss:gO,logLoss:yO,meanSquaredError:bO,sigmoidCrossEntropy:wO,softmaxCrossEntropy:LO};const IO=1.7580993408473768,xO=1.0507009873554805;const TO={kernelName:Lm,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,ta(Le(u,"float32"),-1))}}};const AO={kernelName:kC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=ut(Le(u,"float32")),g=ps(Be(ke(1),p));return yt(Pe(r,g))}}}};const vO={kernelName:FC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=ps(Be(ut(Le(u,"float32")),1));return Pe(r,p)}}}};const NO={kernelName:wc,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{let S=r;const x=At(u.shape,g);return x.length>0&&(S=Fe(S,x)),ie(S,u.shape)},I=()=>{let S=r;const x=At(p.shape,g);return x.length>0&&(S=Fe(S,x)),ie(S,p.shape)};return{a:f,b:I}}};const CO={kernelName:_C,saveAllInputs:!0,gradFunc:(r,l)=>{const u={};return l.forEach((p,g)=>{u[g]=()=>r.clone()}),u}};const RO={kernelName:WC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>qe(u)}}};const OO={kernelName:$C,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>qe(u)}}};const EO={kernelName:UC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,ps(Be(ke(1),ut(Le(u,"float32")))))}}};const DO={kernelName:BC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=ps(Lt(ke(1),ut(Le(u,"float32"))));return Pe(r,p)}}}};const kO={kernelName:zC,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{const S=Lt(ut(u),ut(p));let x=ae(r,Pe(p,S));const v=At(u.shape,g);return v.length>0&&(x=Fe(x,v)),ie(x,u.shape)},I=()=>{const S=Lt(ut(u),ut(p));let x=yt(ae(r,Pe(u,S)));const v=At(p.shape,g);return v.length>0&&(x=Fe(x,v)),ie(x,p.shape)};return{a:f,b:I}}};const FO={kernelName:MC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,Lt(ut(Le(u,"float32")),1))}}};const _O={kernelName:PC,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,Be(ke(1),ut(Le(u,"float32"))))}}};function C9(r,l,u,p,g=[1,1,1],f,I){const S=M(r,"dy","avgPool3dBackprop"),x=M(l,"input","avgPool3dBackprop");let v=S,O=x,C=!1;x.rank===4&&(C=!0,v=ie(S,[1,S.shape[0],S.shape[1],S.shape[2],S.shape[3]]),O=ie(x,[1,x.shape[0],x.shape[1],x.shape[2],x.shape[3]])),Z(v.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${v.rank}.`),Z(O.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${O.rank}.`),Z(Jr(p,g),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${p} and dilations '${g}'`),I!=null&&Z(Qt(f),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${I} but got pad ${f}.`);const U=oe=>{const ge=Cf(O.shape,u,p,g,f,I);return oe.avgPool3dBackprop(v,O,ge)},G={dy:v,input:O},ne={filterSize:u,strides:p,dilations:g,pad:f,dimRoundingMode:I},te=Y.runKernelFunc(U,G,null,HC,ne);return C?ie(te,[te.shape[1],te.shape[2],te.shape[3],te.shape[4]]):te}const WO=z({avgPool3dBackprop_:C9});const $O={kernelName:YC,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{filterSize:g,strides:f,dilations:I,pad:S,dimRoundingMode:x}=u,v=I==null?[1,1,1]:I;return{x:()=>WO(r,p,g,f,v,S,x)}}};function R9(r,l,u,p,g){const f=M(r,"dy","avgPoolBackprop"),I=M(l,"input","avgPoolBackprop");Z(I.rank===f.rank,()=>`Rank of input (${I.rank}) does not match rank of dy (${f.rank})`);let S=I,x=f,v=!1;I.rank===3&&(v=!0,S=ie(I,[1,I.shape[0],I.shape[1],I.shape[2]]),x=ie(f,[1,f.shape[0],f.shape[1],f.shape[2]])),Z(x.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${x.rank}.`),Z(S.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${S.rank}.`);const O=ne=>{const te=Nf(S.shape,u,p,1,g);return ne.avgPoolBackprop(x,S,te)},C={dy:x,input:S},U={filterSize:u,strides:p,pad:g},G=Y.runKernelFunc(O,C,null,VC,U);return v?ie(G,[G.shape[1],G.shape[2],G.shape[3]]):G}const UO=z({avgPoolBackprop_:R9});const BO={kernelName:GC,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{filterSize:g,strides:f,pad:I}=u;return{x:()=>UO(r,p,g,f,I)}}};const MO={kernelName:Sm,inputsToSave:["a","b"],gradFunc:(r,l,u)=>{const[p,g]=l,{transposeA:f,transposeB:I}=u;return!f&&!I?{a:()=>dn(r,g,!1,!0),b:()=>dn(p,r,!0,!1)}:!f&&I?{a:()=>dn(r,g,!1,!1),b:()=>dn(r,p,!0,!1)}:f&&!I?{a:()=>dn(g,r,!1,!0),b:()=>dn(p,r,!1,!1)}:{a:()=>dn(g,r,!0,!0),b:()=>dn(r,p,!0,!0)}}};const PO={kernelName:Im,gradFunc:(r,l,u)=>{const{blockShape:p,crops:g}=u;return{x:()=>gI(r,p,g)}}};const zO={kernelName:xm,gradFunc:(r,l,u)=>{const p=u,g=p.inputShape,f=p.shape,I=Array.from(f);for(let x=g.length-1;x>=0;x--)if(g[x]===f[x])I[x]=1;else if(g[x]!==1)throw new Error(`broadcastTo(): [${g}] cannot be broadcast to [${f}].`);const S=[];for(let x=0;x<I.length;x++)I[x]>1&&S.push(x);return{x:()=>Fe(r,S,!0)}}};const GO={kernelName:Lc,gradFunc:r=>({x:()=>r.clone()})};const VO={kernelName:qC,gradFunc:r=>({x:()=>qe(r)})};const YO={kernelName:jC,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{clipValueMin:g,clipValueMax:f}=u;return{x:()=>Bn(Qo(pr(p,g),mr(p,f)),r,qe(r))}}};const HO={kernelName:Tm,saveAllInputs:!0,gradFunc:(r,l,u)=>{const p=l.map(x=>x.shape),{axis:g}=u,f=ht(g,l[0].shape)[0],I=p.map(x=>x[f]),S=eo(r,I,f);return S.map(x=>()=>x)}};const qO={kernelName:Am,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const[p,g]=l,{dilations:f,strides:I,pad:S,dataFormat:x}=u;return Z(Xr(f),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${f}'`),{x:()=>$R(p.shape,r,g,I,S,x),filter:()=>_f(p,r,g.shape,I,S,x)}}};const jO={kernelName:vm,inputsToSave:["dy","filter"],gradFunc:(r,l,u)=>{const[p,g]=l,{strides:f,pad:I,dataFormat:S,dimRoundingMode:x}=u;return{dy:()=>QS(r,g,f,I,S,1,x),filter:()=>_f(r,p,g.shape,f,I,S,x)}}};function O9(r,l,u,p,g){let f=r;r.rank===4&&(f=ie(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let I=l;I.rank===4&&(I=ie(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),Z(f.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${f.shape}.`),Z(I.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${I.shape}.`),Z(u.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${u}.`),Z(f.shape[4]===u[3],()=>`Error in conv3dDerFilter: depth of input ${f.shape[4]}) must match input depth in filter (${u[3]}.`),Z(I.shape[4]===u[4],()=>`Error in conv3dDerFilter: depth of dy (${I.shape[4]}) must match output depth for filter (${u[4]}).`);const S=O=>{const C=1,U=fu(f.shape,u,p,C,g);return O.conv3dDerFilter(f,I,U)},x={x:f,y:I},v={strides:p,pad:g};return Y.runKernelFunc(S,x,null,ZC,v)}const KO=z({conv3DBackpropFilter_:O9});const XO={kernelName:JC,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const{dilations:p,strides:g,pad:f}=u;Z(Xr(p),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${p}'`);const[I,S]=l;return{x:()=>UR(I.shape,r,S,g,f),filter:()=>KO(I,r,S.shape,g,f)}}};const JO={kernelName:Nm,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(yt(bI(Le(u,"float32"))),r)}}};const ZO={kernelName:Cm,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(wI(Le(u,"float32")),r)}}};const QO={kernelName:Rm,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{axis:g,exclusive:f,reverse:I}=u;return{x:()=>{const S=ds([g],p.rank);let x=tI(r,g,f,!I);return S!=null&&(x=Wt(x,S)),x}}}};const e1={kernelName:t2,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const{dilations:p,strides:g,pad:f,dimRoundingMode:I}=u,S=p==null?[1,1]:p;Z(Xr(S),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${S}'`);const[x,v]=l;Z(x.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${x.rank}.`),Z(v.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${v.rank}.`),Z(x.shape[3]===v.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${x.shape[3]}) must match the inChannels dimension in filter ${v.shape[2]}.`),Z(Jr(g,S),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${g} and dilations '${S}'.`),I!=null&&Z(Qt(f),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${I} but got pad ${f}.`);const O=dr(x.shape,v.shape,g,S,f,I,!0);return{x:()=>VR(x.shape,r,v,O),filter:()=>GR(x,r,v.shape,O)}}};const t1={kernelName:i2,inputsToSave:["x","filter"],gradFunc:(r,l,u)=>{const[p,g]=l,f={x:p,filter:g,dy:r},I={x:p,filter:g,dy:r};return{x:()=>Y.runKernel(r2,f,u),filter:()=>Y.runKernel(o2,I,u)}}};const n1={kernelName:Om,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{const S=Pe(r,Le(p,"float32")),x=At(u.shape,g);return x.length>0?ie(Fe(S,x),u.shape):S},I=()=>{let S=ae(r,Le(u,"float32"));const x=At(p.shape,g);x.length>0&&(S=ie(Fe(S,x),p.shape));const v=ut(p);return yt(Pe(S,Le(v,"float32")))};return{a:f,b:I}}};const s1={kernelName:a2,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l,p=f=>f.eluDer(r,u),g={dy:r,y:u};return{x:()=>Y.runKernelFunc(p,g,null,c2)}}};const i1={kernelName:l2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l,p=ae(Mn(yt(ut(u))),2/Math.sqrt(Math.PI));return{x:()=>ae(r,p)}}};const r1={kernelName:Em,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,u)}}};const o1={kernelName:u2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,Mn(u))}}};const a1={kernelName:Dm,gradFunc:r=>({x:()=>qe(r)})};const c1={kernelName:km,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{const S=Pe(r,Le(p,"float32")),x=At(u.shape,g);return x.length>0?ie(Fe(S,x),u.shape):S},I=()=>{let S=ae(r,Le(u,"float32"));const x=At(p.shape,g);x.length>0&&(S=ie(Fe(S,x),p.shape));const v=ut(p);return yt(Pe(S,Le(v,"float32")))};return{a:f,b:I}}};const l1={kernelName:f2,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,l,u)=>{const{varianceEpsilon:p}=u,[g,f,I,S]=l,x=S==null?ke(1):S,v=At(f.shape,g.shape),O=[];if(f.rank===1){for(let Te=0;Te<g.shape.length-1;++Te)O.push(g.shape[Te]);O.push(1)}const C=Be(g,f),U=ae(r,x),G=yI(Lt(I,ke(p))),ne=ae(ae(ae(G,G),G),ke(-.5)),te=()=>f.rank===1?ie(ae(ae(r,Jo(ie(G,[1,1,1,f.shape[0]]),O)),x),g.shape):ie(ae(ae(r,G),x),g.shape),oe=()=>{let Te=ae(ae(G,ke(-1)),U);return f.rank===1&&(Te=Fe(Te,v)),ie(Te,f.shape)},ge=()=>{let Te=ae(ae(ne,C),U);return f.rank===1&&(Te=Fe(Te,v)),ie(Te,f.shape)},fe=()=>{const Te=ae(C,G);let Ve=ae(r,Te);return f.rank===1&&(Ve=Fe(Ve,v)),ie(Ve,f.shape)},Ae=()=>{let Te=r;return f.rank===1&&(Te=Fe(Te,v)),ie(Te,f.shape)};return{x:te,mean:oe,variance:ge,scale:fe,offset:Ae}}};const d1={kernelName:Fm,inputsToSave:["x","indices"],gradFunc:(r,l,u)=>{const[p,g]=l,{axis:f}=u,I=ht(f,p.shape)[0],S=()=>{const x=p.shape,v=g.size,O=x.slice(0,I),C=O.length,U=x.slice(f,x.length).slice(1),G=U.length,ne=h1(0,C),te=h1(C+1,C+1+G),oe=u1([O,[v],U]),ge=ie(r,oe),fe=ie(g,[v]),Ae=u1([[C],ne,te]),Te=Wt(ge,Ae);let Ve=xI(Te,fe,p.shape[I]);const rt=vc(Ae);return Ve=Wt(Ve,rt),Ve};return{x:S,indices:()=>g}}};function h1(r,l){const u=[];for(let p=r;p<l;++p)u.push(p);return u}function u1(r){const l=[];for(let u=0;u<r.length;++u)for(let p=0;p<r[u].length;++p)l.push(r[u][p]);return l}const p1={kernelName:_m,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l;return{a:()=>qe(u),b:()=>qe(p)}}};const m1={kernelName:Wm,gradFunc:r=>({x:()=>Le(r,"float32")})};const f1={kernelName:w2,gradFunc:r=>({x:()=>qe(r)})};const g1={kernelName:L2,gradFunc:r=>({x:()=>qe(r)})};const y1={kernelName:S2,gradFunc:r=>({x:()=>qe(r)})};const b1={kernelName:Um,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,Lt(u,1))}}};const w1={kernelName:$m,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,Le(u,"float32"))}}};const L1={kernelName:v2,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p]=l,{axis:g}=u;return{logits:()=>{const f=!0,I=Mn(p);return Be(r,ae(Fe(r,g,f),I))}}}};function E9(r,l,u,p=5,g=1,f=1,I=.5){const S=O=>O.LRNGrad(u,r,l,p,g,f,I),x={x:r,y:l,dy:u},v={depthRadius:p,bias:g,alpha:f,beta:I};return Y.runKernelFunc(S,x,null,C2,v)}const S1=z({localResponseNormalizationBackprop_:E9});const I1={kernelName:N2,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p,g]=l,{depthRadius:f,bias:I,alpha:S,beta:x}=u;return{x:()=>S1(p,g,r,f,I,S,x)}}};function Uf(r,l,u,p,g){return l.rank<u.rank&&(l=ie(l,Zn(l.shape,p))),r.rank<u.rank&&(r=ie(r,Zn(r.shape,p))),{x:()=>{const f=ae(r,Le(nI(u,l),r.dtype));return g==null?f:Wt(f,g)}}}const AI={kernelName:Bm,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const p=u,{reductionIndices:g}=p,[f,I]=l,S=ht(g,f.shape),x=ds(S,f.rank),v=Uf(r,I,f,S,x);return{x:()=>{let O=v.x();return x!=null&&(O=Wt(O)),O}}}};const x1={kernelName:Mm,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=()=>ae(r,Le(pr(u,p),"float32")),f=()=>ae(r,Le(cI(u,p),"float32"));return{a:g,b:f}}};function D9(r,l,u,p,g,f=[1,1,1],I,S){const x=M(r,"dy","maxPool3dBackprop"),v=M(l,"input","maxPool3dBackprop"),O=M(u,"output","maxPool3dBackprop");let C=x,U=v,G=O,ne=!1;v.rank===4&&(ne=!0,C=ie(x,[1,x.shape[0],x.shape[1],x.shape[2],x.shape[3]]),U=ie(v,[1,v.shape[0],v.shape[1],v.shape[2],v.shape[3]]),G=ie(O,[1,O.shape[0],O.shape[1],O.shape[2],O.shape[3]])),Z(C.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${C.rank}.`),Z(U.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${U.rank}.`),Z(G.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${G.rank}.`),Z(Jr(g,f),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${g} and dilations '${f}'`),S!=null&&Z(Qt(I),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${S} but got pad ${I}.`);const te=Ae=>{const Te=Cf(U.shape,p,g,f,I,S);return Ae.maxPool3dBackprop(C,U,G,Te)},oe={dy:C,input:U,output:G},ge={filterSize:p,strides:g,dilations:f,pad:I,dimRoundingMode:S},fe=Y.runKernelFunc(te,oe,null,D2,ge);return ne?ie(fe,[fe.shape[1],fe.shape[2],fe.shape[3],fe.shape[4]]):fe}const T1=z({maxPool3dBackprop_:D9});const A1={kernelName:E2,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p,g]=l,{filterSize:f,strides:I,dilations:S,pad:x,dimRoundingMode:v}=u,O=S==null?[1,1,1]:S;return{x:()=>T1(r,p,g,f,I,O,x,v)}}};function k9(r,l,u,p,g,f,I){const S=M(r,"dy","maxPoolBackprop"),x=M(l,"input","maxPoolBackprop"),v=M(u,"output","maxPoolBackprop");Z(x.rank===S.rank,()=>`Rank of input (${x.rank}) does not match rank of dy (${S.rank})`),Z(S.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${S.rank}.`),Z(x.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${x.rank}.`),I!=null&&Z(Qt(f),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${I} but got pad ${f}.`);const O=G=>{const ne=Nf(x.shape,p,g,1,f,I);return G.maxPoolBackprop(S,x,v,ne)},C={dy:S,input:x,output:v},U={filterSize:p,strides:g,pad:f,dimRoundingMode:I};return Y.runKernelFunc(O,C,null,O2,U)}const v1=z({maxPoolBackprop_:k9});const N1={kernelName:R2,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p,g]=l,{filterSize:f,strides:I,pad:S}=u;return{x:()=>v1(r,p,g,f,I,S)}}};const C1={kernelName:Pm,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,l,u)=>{const p=u,{axis:g}=p,[f,I]=l,S=ht(g,f.shape),x=ds(S,f.rank),v=Uf(r,I,f,S,x);return{x:()=>{let O=v.x();return x!=null&&(O=Wt(O)),O}}}};const R1={kernelName:zm,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=()=>ae(r,Le(mr(u,p),"float32")),f=()=>ae(r,Le(mi(u,p),"float32"));return{a:g,b:f}}};const O1={kernelName:k2,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{const S=At(u.shape,g);return S.length>0?ie(Fe(r,S),u.shape):r},I=()=>{const S=ae(r,yt(rI(Pe(u,p)))),x=At(p.shape,g);return x.length>0?ie(Fe(S,x),p.shape):S};return{a:f,b:I}}};const E1={kernelName:Gm,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{const S=ae(r,Le(p,"float32")),x=At(u.shape,g);return x.length>0?ie(Fe(S,x),u.shape):S},I=()=>{const S=ae(r,Le(u,"float32")),x=At(p.shape,g);return x.length>0?ie(Fe(S,x),p.shape):S};return{a:f,b:I}}};const D1={kernelName:Vm,gradFunc:r=>({x:()=>yt(r)})};const k1={kernelName:B2,inputsToSave:["indices"],gradFunc:(r,l)=>{const u=l[0];return{indices:()=>Es(u.shape,"float32")}}};const F1={kernelName:U2,gradFunc:r=>({x:()=>qe(r)})};const vI={kernelName:Ym,inputsToSave:["x"],gradFunc:(r,l,u)=>{const p=l[0],{paddings:g}=u,f=g.map(I=>I[0]);return{x:()=>Tt(r,f,p.shape)}}};const _1={kernelName:Hm,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,l)=>{const[u,p,g]=l,f=u,I=p,S=it(f.shape,I.shape),x=()=>{const O=Le(I,"float32");let C=ae(r,ae(O,ea(f,Be(O,ke(1)))));const U=At(f.shape,S);return U.length>0&&(C=Fe(C,U)),ie(C,f.shape)},v=()=>{const O=mi(f,0),C=Bn(O,Zr(f),qe(f));let U=ae(r,ae(g,C));const G=At(I.shape,S);return G.length>0&&(U=Fe(U,G)),ie(U,I.shape)};return{a:x,b:v}}};const W1={kernelName:M2,inputsToSave:["x","alpha"],gradFunc:(r,l)=>{const[u,p]=l,g=mi(u,0);return{x:()=>Bn(g,r,ae(r,p)),alpha:()=>{let f=Bn(g,qe(r),ae(r,u));const I=At(p.shape,r.shape);return I.length>0&&(f=Fe(f,I)),ie(f,p.shape)}}}};const $1={kernelName:G2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,yt(ut(u)))}}};const U1={kernelName:H2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l,p=ae(mr(u,6),ta(u));return{x:()=>ae(r,Le(p,"float32"))}}};const B1={kernelName:qm,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,Le(ta(u),"float32"))}}};const M1={kernelName:jm,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ie(r,u.shape)}}};const P1={kernelName:Xm,inputsToSave:["images"],gradFunc:(r,l,u)=>{const[p]=l,g=S=>{const{alignCorners:x}=u;return S.resizeBilinearBackprop(r,p,x)},f={images:p},I=()=>Y.runKernelFunc(g,f,null,Y2,u);return{images:I}}};const z1={kernelName:Km,inputsToSave:["images"],gradFunc:(r,l,u)=>{const[p]=l,g=S=>{const{alignCorners:x}=u;return S.resizeNearestNeighborBackprop(r,p,x)},f={images:p},I=()=>Y.runKernelFunc(g,f,null,V2,u);return{images:I}}};const G1={kernelName:Jm,gradFunc:(r,l,u)=>{const{dims:p}=u,g=ht(p,r.shape);return{x:()=>Oc(r,g)}}};const V1={kernelName:q2,gradFunc:r=>({x:()=>qe(r)})};const Y1={kernelName:Zm,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>yt(Pe(r,ae(ea(u,1.5),2)))}}};const H1={kernelName:Qm,inputsToSave:["condition"],gradFunc:(r,l)=>{const[u]=l;return{condition:()=>Le(qe(u),"float32"),t:()=>ae(r,Le(u,r.dtype)),e:()=>ae(r,Le(uI(u),r.dtype))}}};const q1={kernelName:j2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>{const p=mi(u,ke(0)),g=ke(IO),f=ke(xO),I=ae(r,f),S=ae(ae(r,g),Mn(Le(u,"float32")));return Bn(p,I,S)}}}};const j1={kernelName:sf,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,ae(u,Be(ke(1),u)))}}};const K1={kernelName:K2,gradFunc:r=>({x:()=>qe(r)})};const X1={kernelName:tf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(gu(Le(u,"float32")),r)}}};const J1={kernelName:nf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(eI(Le(u,"float32")),r)}}};const Z1={kernelName:ef,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{begin:g,size:f}=u,I=p.shape,[S,x]=Af(p,g,f),v=[];for(let O=0;O<r.rank;O++)v.push([S[O],I[O]-S[O]-x[O]]);return{x:()=>fI(r,v)}}};const Q1={kernelName:J2,outputsToSave:[!0],gradFunc:(r,l,u)=>{const[p]=l,{dim:g}=u,f=!0,I=ae(r,p);return{logits:()=>Be(I,ae(Fe(I,[g],f),p))}}};const eE={kernelName:X2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,JS(u))}}};const NI={kernelName:af,gradFunc:(r,l,u)=>{const{blockShape:p,paddings:g}=u;return{x:()=>ZS(r,p,g)}}};const CI={kernelName:cf,gradFunc:(r,l,u)=>{const{axis:p}=u;return{x:()=>yn(r,p)}}};const tE={kernelName:rf,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,ae(ps(Le(u,"float32")),2))}}};const nE={kernelName:Z2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(r,ae(Le(u,"float32"),2))}}};const sE={kernelName:lf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=ke(2),f=()=>ae(r,ae(g,Be(u,p))),I=()=>ae(r,ae(g,Be(p,u)));return{a:f,b:I}}};const iE={kernelName:gf,gradFunc:r=>({x:()=>qe(r)})};const rE={kernelName:hf,inputsToSave:["a","b"],gradFunc:(r,l)=>{const[u,p]=l,g=it(u.shape,p.shape),f=()=>{let S=r;const x=At(u.shape,g);return x.length>0&&(S=Fe(S,x)),ie(S,u.shape)},I=()=>{let S=r;const x=At(p.shape,g);return x.length>0&&(S=Fe(S,x)),ie(yt(S),p.shape)};return{a:f,b:I}}};const oE={kernelName:of,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,g=p.shape.slice(),{axis:f}=u,I=ht(f,p.shape);I.forEach(v=>{g[v]=1});const S=ie(r,g),x=ae(S,Gi(p.shape,"float32"));return{x:()=>x}}};const aE={kernelName:Q2,inputsToSave:["x"],gradFunc:(r,l)=>{const[u]=l;return{x:()=>Pe(r,ut(gu(u)))}}};const cE={kernelName:eR,outputsToSave:[!0],gradFunc:(r,l)=>{const[u]=l;return{x:()=>ae(Be(ke(1),ut(u)),r)}}};const lE={kernelName:uf,inputsToSave:["x"],gradFunc:(r,l,u)=>{const[p]=l,{reps:g}=u,f=()=>{let I=qe(p);if(p.rank===1)for(let S=0;S<g[0];++S)I=Lt(I,Tt(r,[S*p.shape[0]],[p.shape[0]]));else if(p.rank===2)for(let S=0;S<g[0];++S)for(let x=0;x<g[1];++x)I=Lt(I,Tt(r,[S*p.shape[0],x*p.shape[1]],[p.shape[0],p.shape[1]]));else if(p.rank===3)for(let S=0;S<g[0];++S)for(let x=0;x<g[1];++x)for(let v=0;v<g[2];++v)I=Lt(I,Tt(r,[S*p.shape[0],x*p.shape[1],v*p.shape[2]],[p.shape[0],p.shape[1],p.shape[2]]));else if(p.rank===4)for(let S=0;S<g[0];++S)for(let x=0;x<g[1];++x)for(let v=0;v<g[2];++v)for(let O=0;O<g[3];++O)I=Lt(I,Tt(r,[S*p.shape[0],x*p.shape[1],v*p.shape[2],O*p.shape[3]],[p.shape[0],p.shape[1],p.shape[2],p.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${p.rank} tensors yet.`);return I};return{x:f}}};const hE={kernelName:df,gradFunc:(r,l,u)=>{const p=u,{perm:g}=p,f=vc(g);return{x:()=>Wt(r,f)}}};const uE={kernelName:pf,gradFunc:(r,l,u)=>{const p=u,{axis:g}=p;return{value:()=>Vs(r,g)}}};const dE={kernelName:mf,inputsToSave:["segmentIds"],gradFunc:(r,l)=>{const[u]=l,p=()=>F9(r,u);return{x:p}}};function F9(r,l){const u=aI(l,qe(l)),p=oI(r,u);let g=pr(l,ke(0,"int32"));const f=p.rank-g.rank;for(let S=0;S<f;++S)g=Os(g,S+1);g=Qo(g,Gi(p.shape,"bool"));const I=qe(p);return Bn(g,p,I)}const pE={kernelName:ff,gradFunc:r=>({x:()=>qe(r)})};const _9=[TO,AO,vO,NO,CO,RO,OO,EO,DO,kO,FO,_O,$O,BO,MO,PO,zO,GO,VO,YO,HO,jO,qO,XO,JO,ZO,QO,e1,t1,n1,s1,i1,r1,o1,c1,a1,l1,d1,p1,m1,f1,g1,y1,b1,w1,L1,I1,AI,AI,x1,A1,N1,C1,R1,O1,E1,D1,k1,F1,vI,vI,_1,W1,$1,U1,B1,M1,P1,z1,G1,V1,Y1,H1,q1,j1,K1,X1,J1,Z1,Q1,eE,NI,NI,CI,CI,tE,sE,nE,iE,rE,oE,aE,cE,lE,hE,uE,dE,pE];for(const r of _9)sR(r);function RI(r,l,u=!1){const{Image:p,Canvas:g}=gt.getEnv();if(!(r instanceof p||r instanceof g))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");const f=qo(r),I=l/Math.max(f.height,f.width),S=I*f.width,x=I*f.height,v=bc({width:l,height:l}),O=r instanceof g?r:ou(r),C=Math.abs(S-x)/2,U=u&&S<x?C:0,G=u&&x<S?C:0;return Jn(v).drawImage(O,U,G,S,x),v}class to{constructor(r,l=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(r))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${r}`);this._treatAsBatchInput=l,this._batchSize=r.length,r.forEach((u,p)=>{if(lr(u)){this._imageTensors[p]=u,this._inputDimensions[p]=u.shape;return}if(Ns(u)){const f=u.shape[0];if(f!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${f} passed, but not supported in input array`);this._imageTensors[p]=u,this._inputDimensions[p]=u.shape.slice(1);return}const g=u instanceof gt.getEnv().Canvas?u:ou(u);this._canvases[p]=g,this._inputDimensions[p]=[g.height,g.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return Wi(this.batchSize,0,1).map((r,l)=>this.getReshapedInputDimensions(l))}getInput(r){return this.canvases[r]||this.imageTensors[r]}getInputDimensions(r){return this._inputDimensions[r]}getInputHeight(r){return this._inputDimensions[r][0]}getInputWidth(r){return this._inputDimensions[r][1]}getReshapedInputDimensions(r){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");const l=this.getInputWidth(r),u=this.getInputHeight(r);return pS({width:l,height:u},this.inputSize)}toBatchTensor(r,l=!0){return this._inputSize=r,ER(()=>{const u=Wi(this.batchSize,0,1).map(g=>{const f=this.getInput(g);if(f instanceof In){let I=Ns(f)?f:f.expandDims();return I=yS(I,l),(I.shape[1]!==r||I.shape[2]!==r)&&(I=SO.resizeBilinear(I,[r,r])),I.as3D(r,r,3)}if(f instanceof gt.getEnv().Canvas)return jS.fromPixels(RI(f,r,l));throw new Error(`toBatchTensor - at batchIdx ${g}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${f}`)}),p=Vs(u.map(g=>Le(g,"float32"))).as4D(this.batchSize,r,r,3);return p})}}async function Rt(r){if(r instanceof to)return r;let l=Array.isArray(r)?r:[r];if(!l.length)throw new Error("toNetInput - empty array passed as input");const u=g=>Array.isArray(r)?` at input index ${g}:`:"",p=l.map(Ho);return p.forEach((g,f)=>{if(!wm(g)&&!lr(g)&&!Ns(g))throw typeof l[f]=="string"?new Error(`toNetInput -${u(f)} string passed, but could not resolve HTMLElement for element id ${l[f]}`):new Error(`toNetInput -${u(f)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(Ns(g)){const I=g.shape[0];if(I!==1)throw new Error(`toNetInput -${u(f)} tf.Tensor4D with batchSize ${I} passed, but not supported in input array`)}}),await Promise.all(p.map(g=>wm(g)&&AS(g))),new to(p,Array.isArray(r))}async function Dc(r,l){const{Canvas:u}=gt.getEnv();let p=r;if(!(r instanceof u)){const I=await Rt(r);if(I.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");const S=I.getInput(0);p=S instanceof u?S:await NS(S)}const g=Jn(p),f=l.map(I=>I instanceof Ht?I.forSize(p.width,p.height).box.floor():I).map(I=>I.clipAtImageBorders(p.width,p.height));return f.map(({x:I,y:S,width:x,height:v})=>{const O=bc({width:x,height:v});return Jn(O).putImageData(g.getImageData(I,S,x,v),0,0),O})}const Bf=Ke(Xe());async function kc(r,l){if(!lr(r)&&!Ns(r))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(Ns(r)&&r.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Bf.tidy(()=>{const[u,p,g]=r.shape.slice(Ns(r)?1:0),f=l.map(S=>S instanceof Ht?S.forSize(p,u).box:S).map(S=>S.clipAtImageBorders(p,u)),I=f.map(({x:S,y:x,width:v,height:O})=>Bf.slice3d(r.as3D(u,p,g),[x,S,0],[O,v,g]));return I})}async function sa(r,l){const u=gt.getEnv().fetch,p=await u(r,l);if(!(p.status<400))throw new Error(`failed to fetch: (${p.status}) ${p.statusText}, from url: ${p.url}`);return p}async function W9(r){const l=await sa(r),u=await l.blob();if(!u.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${u.type}, for url: ${l.url}`);return vS(u)}async function OI(r){return(await sa(r)).json()}async function $9(r){return new Float32Array(await(await sa(r)).arrayBuffer())}function Mf(r,l){const u=`${l}-weights_manifest.json`;if(!r)return{modelBaseUri:"",manifestUri:u};if(r==="/")return{modelBaseUri:"/",manifestUri:`/${u}`};const p=r.startsWith("http://")?"http://":r.startsWith("https://")?"https://":"";r=r.replace(p,"");const g=r.split("/").filter(S=>S),f=r.endsWith(".json")?g[g.length-1]:u;let I=p+(r.endsWith(".json")?g.slice(0,g.length-1):g).join("/");return I=r.startsWith("/")?`/${I}`:I,{modelBaseUri:I,manifestUri:I==="/"?`/${f}`:`${I}/${f}`}}const mE=Ke(Xe());async function EI(r,l){const{manifestUri:u,modelBaseUri:p}=Mf(r,l);let g=await OI(u);return mE.io.loadWeights(g,p)}function U9(r,l,u=!1){const{width:p,height:g}=u?qo(l):l;return r.width=p,r.height=g,{width:p,height:g}}const fr=Ke(Xe());class En{constructor(r){this._name=r;this._params=void 0;this._paramMappings=[]}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(r){const{obj:l,objProp:u}=this.traversePropertyPath(r);return l[u]}reassignParamFromPath(r,l){const{obj:u,objProp:p}=this.traversePropertyPath(r);u[p].dispose(),u[p]=l}getParamList(){return this._paramMappings.map(({paramPath:r})=>({path:r,tensor:this.getParamFromPath(r)}))}getTrainableParams(){return this.getParamList().filter(r=>r.tensor instanceof fr.Variable)}getFrozenParams(){return this.getParamList().filter(r=>!(r.tensor instanceof fr.Variable))}variable(){this.getFrozenParams().forEach(({path:r,tensor:l})=>{this.reassignParamFromPath(r,l.variable())})}freeze(){this.getTrainableParams().forEach(({path:r,tensor:l})=>{const u=fr.tensor(l.dataSync());l.dispose(),this.reassignParamFromPath(r,u)})}dispose(r=!0){this.getParamList().forEach(l=>{if(r&&l.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${l.path}`);l.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:r})=>Array.from(r.dataSync())).reduce((r,l)=>r.concat(l)))}async load(r){if(r instanceof Float32Array){this.extractWeights(r);return}await this.loadFromUri(r)}async loadFromUri(r){if(r&&typeof r!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);const l=await EI(r,this.getDefaultModelName());this.loadFromWeightMap(l)}async loadFromDisk(r){if(r&&typeof r!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);const{readFile:l}=gt.getEnv(),{manifestUri:u,modelBaseUri:p}=Mf(r,this.getDefaultModelName()),g=x=>Promise.all(x.map(v=>l(v).then(O=>O.buffer))),f=fr.io.weightsLoaderFactory(g),I=JSON.parse((await l(u)).toString()),S=await f(I,p);this.loadFromWeightMap(S)}loadFromWeightMap(r){const{paramMappings:l,params:u}=this.extractParamsFromWeigthMap(r);this._paramMappings=l,this._params=u}extractWeights(r){const{paramMappings:l,params:u}=this.extractParams(r);this._paramMappings=l,this._params=u}traversePropertyPath(r){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");const l=r.split("/").reduce((g,f)=>{if(!g.nextObj.hasOwnProperty(f))throw new Error(`traversePropertyPath - object does not have property ${f}, for path ${r}`);return{obj:g.nextObj,objProp:f,nextObj:g.nextObj[f]}},{nextObj:this.params}),{obj:u,objProp:p}=l;if(!u||!p||!(u[p]instanceof fr.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${r}`);return{obj:u,objProp:p}}}const Fc=Ke(Xe());function Qn(r,l,u){return Fc.tidy(()=>{let p=Fc.separableConv2d(r,l.depthwise_filter,l.pointwise_filter,u,"same");return p=Fc.add(p,l.bias),p})}const Dt=Ke(Xe());function Pf(r,l,u=!1){return Dt.tidy(()=>{const p=Dt.relu(u?Dt.add(Dt.conv2d(r,l.conv0.filters,[2,2],"same"),l.conv0.bias):Qn(r,l.conv0,[2,2])),g=Qn(p,l.conv1,[1,1]),f=Dt.relu(Dt.add(p,g)),I=Qn(f,l.conv2,[1,1]);return Dt.relu(Dt.add(p,Dt.add(g,I)))})}function Iu(r,l,u=!1,p=!0){return Dt.tidy(()=>{const g=Dt.relu(u?Dt.add(Dt.conv2d(r,l.conv0.filters,p?[2,2]:[1,1],"same"),l.conv0.bias):Qn(r,l.conv0,p?[2,2]:[1,1])),f=Qn(g,l.conv1,[1,1]),I=Dt.relu(Dt.add(g,f)),S=Qn(I,l.conv2,[1,1]),x=Dt.relu(Dt.add(g,Dt.add(f,S))),v=Qn(x,l.conv3,[1,1]);return Dt.relu(Dt.add(g,Dt.add(f,Dt.add(S,v))))})}const no=Ke(Xe());function ia(r,l,u="same",p=!1){return no.tidy(()=>{const g=no.add(no.conv2d(r,l.filters,[1,1],u),l.bias);return p?no.relu(g):g})}function Pn(r,l){Object.keys(r).forEach(u=>{l.some(p=>p.originalPath===u)||r[u].dispose()})}const zf=Ke(Xe());function _c(r,l){return function(u,p,g,f){const I=zf.tensor4d(r(u*p*g*g),[g,g,u,p]),S=zf.tensor1d(r(p));return l.push({paramPath:`${f}/filters`},{paramPath:`${f}/bias`}),{filters:I,bias:S}}}const Gf=Ke(Xe());function Vf(r,l){return function(u,p,g){const f=Gf.tensor2d(r(u*p),[u,p]),I=Gf.tensor1d(r(p));return l.push({paramPath:`${g}/weights`},{paramPath:`${g}/bias`}),{weights:f,bias:I}}}class DI{constructor(r,l,u){this.depthwise_filter=r;this.pointwise_filter=l;this.bias=u}}const xu=Ke(Xe());function Wc(r,l){return function(u,p,g){const f=xu.tensor4d(r(3*3*u),[3,3,u,1]),I=xu.tensor4d(r(u*p),[1,1,u,p]),S=xu.tensor1d(r(p));return l.push({paramPath:`${g}/depthwise_filter`},{paramPath:`${g}/pointwise_filter`},{paramPath:`${g}/bias`}),new DI(f,I,S)}}function $c(r){return function(l){const u=r(`${l}/depthwise_filter`,4),p=r(`${l}/pointwise_filter`,4),g=r(`${l}/bias`,1);return new DI(u,p,g)}}function ms(r,l){return function(u,p,g){const f=r[u];if(!Po(f,p))throw new Error(`expected weightMap[${u}] to be a Tensor${p}D, instead have ${f}`);return l.push({originalPath:u,paramPath:g||u}),f}}function zn(r){let l=r;function u(g){const f=l.slice(0,g);return l=l.slice(g),f}function p(){return l}return{extractWeights:u,getRemainingWeights:p}}function Yf(r,l){const u=_c(r,l),p=Wc(r,l);function g(I,S,x,v=!1){const O=v?u(I,S,3,`${x}/conv0`):p(I,S,`${x}/conv0`),C=p(S,S,`${x}/conv1`),U=p(S,S,`${x}/conv2`);return{conv0:O,conv1:C,conv2:U}}function f(I,S,x,v=!1){const{conv0:O,conv1:C,conv2:U}=g(I,S,x,v),G=p(S,S,`${x}/conv3`);return{conv0:O,conv1:C,conv2:U,conv3:G}}return{extractDenseBlock3Params:g,extractDenseBlock4Params:f}}function fE(r){const l=[],{extractWeights:u,getRemainingWeights:p}=zn(r),{extractDenseBlock4Params:g}=Yf(u,l),f=g(3,32,"dense0",!0),I=g(32,64,"dense1"),S=g(64,128,"dense2"),x=g(128,256,"dense3");if(p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{paramMappings:l,params:{dense0:f,dense1:I,dense2:S,dense3:x}}}function Hf(r){return function(l){const u=r(`${l}/filters`,4),p=r(`${l}/bias`,1);return{filters:u,bias:p}}}function qf(r,l){const u=ms(r,l),p=Hf(u),g=$c(u);function f(S,x=!1){const v=x?p(`${S}/conv0`):g(`${S}/conv0`),O=g(`${S}/conv1`),C=g(`${S}/conv2`);return{conv0:v,conv1:O,conv2:C}}function I(S,x=!1){const v=x?p(`${S}/conv0`):g(`${S}/conv0`),O=g(`${S}/conv1`),C=g(`${S}/conv2`),U=g(`${S}/conv3`);return{conv0:v,conv1:O,conv2:C,conv3:U}}return{extractDenseBlock3Params:f,extractDenseBlock4Params:I}}function gE(r){const l=[],{extractDenseBlock4Params:u}=qf(r,l),p={dense0:u("dense0",!0),dense1:u("dense1"),dense2:u("dense2"),dense3:u("dense3")};return Pn(r,l),{params:p,paramMappings:l}}const so=Ke(Xe());class jf extends En{constructor(){super("FaceFeatureExtractor")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("FaceFeatureExtractor - load model before inference");return so.tidy(()=>{const u=so.cast(r.toBatchTensor(112,!0),"float32"),p=[122.782,117.001,104.298],g=di(u,p).div(so.scalar(255));let f=Iu(g,l.dense0,!0);return f=Iu(f,l.dense1),f=Iu(f,l.dense2),f=Iu(f,l.dense3),f=so.avgPool(f,[7,7],[2,2],"valid"),f})}async forward(r){return this.forwardInput(await Rt(r))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeigthMap(r){return gE(r)}extractParams(r){return fE(r)}}const Uc=Ke(Xe());function Tu(r,l){return Uc.tidy(()=>Uc.add(Uc.matMul(r,l.weights),l.bias))}function yE(r,l,u){const p=[],{extractWeights:g,getRemainingWeights:f}=zn(r),I=Vf(g,p),S=I(l,u,"fc");if(f().length!==0)throw new Error(`weights remaing after extract: ${f().length}`);return{paramMappings:p,params:{fc:S}}}function bE(r){const l=[],u=ms(r,l);function p(f){const I=u(`${f}/weights`,2),S=u(`${f}/bias`,1);return{weights:I,bias:S}}const g={fc:p("fc")};return Pn(r,l),{params:g,paramMappings:l}}function Kf(r){const l={},u={};return Object.keys(r).forEach(p=>{const g=p.startsWith("fc")?u:l;g[p]=r[p]}),{featureExtractorMap:l,classifierMap:u}}const wE=Ke(Xe());class Xf extends En{constructor(r,l){super(r);this._faceFeatureExtractor=l}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(r){const{params:l}=this;if(!l)throw new Error(`${this._name} - load model before inference`);return wE.tidy(()=>{const u=r instanceof to?this.faceFeatureExtractor.forwardInput(r):r;return Tu(u.as2D(u.shape[0],-1),l.fc)})}dispose(r=!0){this.faceFeatureExtractor.dispose(r),super.dispose(r)}loadClassifierParams(r){const{params:l,paramMappings:u}=this.extractClassifierParams(r);this._params=l,this._paramMappings=u}extractClassifierParams(r){return yE(r,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeigthMap(r){const{featureExtractorMap:l,classifierMap:u}=Kf(r);return this.faceFeatureExtractor.loadFromWeightMap(l),bE(u)}extractParams(r){const l=this.getClassifierChannelsIn(),u=this.getClassifierChannelsOut(),p=u*l+u,g=r.slice(0,r.length-p),f=r.slice(r.length-p);return this.faceFeatureExtractor.extractWeights(g),this.extractClassifierParams(f)}}const kI=["neutral","happy","sad","angry","fearful","disgusted","surprised"];class ra{constructor(r){if(r.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${r.length}`);kI.forEach((l,u)=>{this[l]=r[u]})}asSortedArray(){return kI.map(r=>({expression:r,probability:this[r]})).sort((r,l)=>l.probability-r.probability)}}const Bc=Ke(Xe());class FI extends Xf{constructor(r=new jf){super("FaceExpressionNet",r)}forwardInput(r){return Bc.tidy(()=>Bc.softmax(this.runNet(r)))}async forward(r){return this.forwardInput(await Rt(r))}async predictExpressions(r){const l=await Rt(r),u=await this.forwardInput(l),p=await Promise.all(Bc.unstack(u).map(async f=>{const I=await f.data();return f.dispose(),I}));u.dispose();const g=p.map(f=>new ra(f));return l.isBatchInput?g:g[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}}function _I(r){return r.expressions instanceof ra}function Jf(r,l){const u={expressions:l};return Object.assign({},r,u)}function B9(r,l,u=.1,p){const g=Array.isArray(l)?l:[l];g.forEach(f=>{const I=f instanceof ra?f:_I(f)?f.expressions:void 0;if(!I)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");const S=I.asSortedArray(),x=S.filter(C=>C.probability>u),v=Ui(f)?f.detection.box.bottomLeft:p||new Je(0,0),O=new yc(x.map(C=>`${C.expression} (${zo(C.probability)})`),v);O.draw(r)})}function oa(r){return Ui(r)&&r.landmarks instanceof Gs&&r.unshiftedLandmarks instanceof Gs&&r.alignedRect instanceof Ht}function Mc(r,l){const{box:u}=r.detection,p=l.shiftBy(u.x,u.y),g=p.align(),{imageDims:f}=r.detection,I=new Ht(r.detection.score,g.rescale(f.reverse()),f),S={landmarks:p,unshiftedLandmarks:l,alignedRect:I};return Object.assign({},r,S)}class LE{constructor(r={}){const{drawLines:l=!0,drawPoints:u=!0,lineWidth:p,lineColor:g,pointSize:f,pointColor:I}=r;this.drawLines=l,this.drawPoints=u,this.lineWidth=p||1,this.pointSize=f||2,this.lineColor=g||"rgba(0, 255, 255, 1)",this.pointColor=I||"rgba(255, 0, 255, 1)"}}class SE{constructor(r,l={}){this.faceLandmarks=r,this.options=new LE(l)}draw(r){const l=Jn(r),{drawLines:u,drawPoints:p,lineWidth:g,lineColor:f,pointSize:I,pointColor:S}=this.options;if(u&&this.faceLandmarks instanceof iu&&(l.strokeStyle=f,l.lineWidth=g,cr(l,this.faceLandmarks.getJawOutline()),cr(l,this.faceLandmarks.getLeftEyeBrow()),cr(l,this.faceLandmarks.getRightEyeBrow()),cr(l,this.faceLandmarks.getNose()),cr(l,this.faceLandmarks.getLeftEye(),!0),cr(l,this.faceLandmarks.getRightEye(),!0),cr(l,this.faceLandmarks.getMouth(),!0)),p){l.strokeStyle=S,l.fillStyle=S;const x=v=>{l.beginPath(),l.arc(v.x,v.y,I,0,2*Math.PI),l.fill()};this.faceLandmarks.positions.forEach(x)}}}function M9(r,l){const u=Array.isArray(l)?l:[l];u.forEach(p=>{const g=p instanceof Gs?p:oa(p)?p.landmarks:void 0;if(!g)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new SE(g).draw(r)})}const WI={};hm(WI,{AnchorPosition:()=>Bi,DrawBox:()=>TS,DrawBoxOptions:()=>NC,DrawFaceLandmarks:()=>SE,DrawFaceLandmarksOptions:()=>LE,DrawTextField:()=>yc,DrawTextFieldOptions:()=>ym,drawContour:()=>cr,drawDetections:()=>KX,drawFaceExpressions:()=>B9,drawFaceLandmarks:()=>M9});function P9(r,l){const u=_c(r,l),p=Wc(r,l);function g(I,S,x){const v=p(I,S,`${x}/separable_conv0`),O=p(S,S,`${x}/separable_conv1`),C=u(I,S,1,`${x}/expansion_conv`);return{separable_conv0:v,separable_conv1:O,expansion_conv:C}}function f(I,S){const x=p(I,I,`${S}/separable_conv0`),v=p(I,I,`${S}/separable_conv1`),O=p(I,I,`${S}/separable_conv2`);return{separable_conv0:x,separable_conv1:v,separable_conv2:O}}return{extractConvParams:u,extractSeparableConvParams:p,extractReductionBlockParams:g,extractMainBlockParams:f}}function IE(r,l){const u=[],{extractWeights:p,getRemainingWeights:g}=zn(r),{extractConvParams:f,extractSeparableConvParams:I,extractReductionBlockParams:S,extractMainBlockParams:x}=P9(p,u),v=f(3,32,3,"entry_flow/conv_in"),O=S(32,64,"entry_flow/reduction_block_0"),C=S(64,128,"entry_flow/reduction_block_1"),U={conv_in:v,reduction_block_0:O,reduction_block_1:C},G={};Wi(l,0,1).forEach(ge=>{G[`main_block_${ge}`]=x(128,`middle_flow/main_block_${ge}`)});const ne=S(128,256,"exit_flow/reduction_block"),te=I(256,512,"exit_flow/separable_conv"),oe={reduction_block:ne,separable_conv:te};if(g().length!==0)throw new Error(`weights remaing after extract: ${g().length}`);return{paramMappings:u,params:{entry_flow:U,middle_flow:G,exit_flow:oe}}}function z9(r,l){const u=ms(r,l),p=Hf(u),g=$c(u);function f(S){const x=g(`${S}/separable_conv0`),v=g(`${S}/separable_conv1`),O=p(`${S}/expansion_conv`);return{separable_conv0:x,separable_conv1:v,expansion_conv:O}}function I(S){const x=g(`${S}/separable_conv0`),v=g(`${S}/separable_conv1`),O=g(`${S}/separable_conv2`);return{separable_conv0:x,separable_conv1:v,separable_conv2:O}}return{extractConvParams:p,extractSeparableConvParams:g,extractReductionBlockParams:f,extractMainBlockParams:I}}function xE(r,l){const u=[],{extractConvParams:p,extractSeparableConvParams:g,extractReductionBlockParams:f,extractMainBlockParams:I}=z9(r,u),S=p("entry_flow/conv_in"),x=f("entry_flow/reduction_block_0"),v=f("entry_flow/reduction_block_1"),O={conv_in:S,reduction_block_0:x,reduction_block_1:v},C={};Wi(l,0,1).forEach(te=>{C[`main_block_${te}`]=I(`middle_flow/main_block_${te}`)});const U=f("exit_flow/reduction_block"),G=g("exit_flow/separable_conv"),ne={reduction_block:U,separable_conv:G};return Pn(r,u),{params:{entry_flow:O,middle_flow:C,exit_flow:ne},paramMappings:u}}const tn=Ke(Xe());function TE(r,l,u){return tn.add(tn.conv2d(r,l.filters,u,"same"),l.bias)}function $I(r,l,u=!0){let p=u?tn.relu(r):r;return p=Qn(p,l.separable_conv0,[1,1]),p=Qn(tn.relu(p),l.separable_conv1,[1,1]),p=tn.maxPool(p,[3,3],[2,2],"same"),p=tn.add(p,TE(r,l.expansion_conv,[2,2])),p}function G9(r,l){let u=Qn(tn.relu(r),l.separable_conv0,[1,1]);return u=Qn(tn.relu(u),l.separable_conv1,[1,1]),u=Qn(tn.relu(u),l.separable_conv2,[1,1]),u=tn.add(u,r),u}class AE extends En{constructor(r){super("TinyXception");this._numMainBlocks=r}forwardInput(r){const{params:l}=this;if(!l)throw new Error("TinyXception - load model before inference");return tn.tidy(()=>{const u=tn.cast(r.toBatchTensor(112,!0),"float32"),p=[122.782,117.001,104.298],g=di(u,p).div(tn.scalar(256));let f=tn.relu(TE(g,l.entry_flow.conv_in,[2,2]));return f=$I(f,l.entry_flow.reduction_block_0,!1),f=$I(f,l.entry_flow.reduction_block_1),Wi(this._numMainBlocks,0,1).forEach(I=>{f=G9(f,l.middle_flow[`main_block_${I}`])}),f=$I(f,l.exit_flow.reduction_block),f=tn.relu(Qn(f,l.exit_flow.separable_conv,[1,1])),f})}async forward(r){return this.forwardInput(await Rt(r))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeigthMap(r){return xE(r,this._numMainBlocks)}extractParams(r){return IE(r,this._numMainBlocks)}}function vE(r){const l=[],{extractWeights:u,getRemainingWeights:p}=zn(r),g=Vf(u,l),f=g(512,1,"fc/age"),I=g(512,2,"fc/gender");if(p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{paramMappings:l,params:{fc:{age:f,gender:I}}}}function NE(r){const l=[],u=ms(r,l);function p(f){const I=u(`${f}/weights`,2),S=u(`${f}/bias`,1);return{weights:I,bias:S}}const g={fc:{age:p("fc/age"),gender:p("fc/gender")}};return Pn(r,l),{params:g,paramMappings:l}}var gr;(function(r){r.FEMALE="female",r.MALE="male"})(gr||(gr={}));const Vi=Ke(Xe());class UI extends En{constructor(r=new AE(2)){super("AgeGenderNet");this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(r){const{params:l}=this;if(!l)throw new Error(`${this._name} - load model before inference`);return Vi.tidy(()=>{const u=r instanceof to?this.faceFeatureExtractor.forwardInput(r):r,p=Vi.avgPool(u,[7,7],[2,2],"valid").as2D(u.shape[0],-1),g=Tu(p,l.fc.age).as1D(),f=Tu(p,l.fc.gender);return{age:g,gender:f}})}forwardInput(r){return Vi.tidy(()=>{const{age:l,gender:u}=this.runNet(r);return{age:l,gender:Vi.softmax(u)}})}async forward(r){return this.forwardInput(await Rt(r))}async predictAgeAndGender(r){const l=await Rt(r),u=await this.forwardInput(l),p=Vi.unstack(u.age),g=Vi.unstack(u.gender),f=p.map((S,x)=>({ageTensor:S,genderTensor:g[x]})),I=await Promise.all(f.map(async({ageTensor:S,genderTensor:x})=>{const v=(await S.data())[0],O=(await x.data())[0],C=O>.5,U=C?gr.MALE:gr.FEMALE,G=C?O:1-O;return S.dispose(),x.dispose(),{age:v,gender:U,genderProbability:G}}));return u.age.dispose(),u.gender.dispose(),l.isBatchInput?I:I[0]}getDefaultModelName(){return"age_gender_model"}dispose(r=!0){this.faceFeatureExtractor.dispose(r),super.dispose(r)}loadClassifierParams(r){const{params:l,paramMappings:u}=this.extractClassifierParams(r);this._params=l,this._paramMappings=u}extractClassifierParams(r){return vE(r)}extractParamsFromWeigthMap(r){const{featureExtractorMap:l,classifierMap:u}=Kf(r);return this.faceFeatureExtractor.loadFromWeightMap(l),NE(u)}extractParams(r){const l=512*1+1+(512*2+2),u=r.slice(0,r.length-l),p=r.slice(r.length-l);return this.faceFeatureExtractor.extractWeights(u),this.extractClassifierParams(p)}}const fs=Ke(Xe());class Zf extends Xf{postProcess(r,l,u){const p=u.map(({width:f,height:I})=>{const S=l/Math.max(I,f);return{width:f*S,height:I*S}}),g=p.length;return fs.tidy(()=>{const f=(O,C)=>fs.stack([fs.fill([68],O,"float32"),fs.fill([68],C,"float32")],1).as2D(1,136).as1D(),I=(O,C)=>{const{width:U,height:G}=p[O];return C(U,G)?Math.abs(U-G)/2:0},S=O=>I(O,(C,U)=>C<U),x=O=>I(O,(C,U)=>U<C),v=r.mul(fs.fill([g,136],l,"float32")).sub(fs.stack(Array.from(Array(g),(O,C)=>f(S(C),x(C))))).div(fs.stack(Array.from(Array(g),(O,C)=>f(p[C].width,p[C].height))));return v})}forwardInput(r){return fs.tidy(()=>{const l=this.runNet(r);return this.postProcess(l,r.inputSize,r.inputDimensions.map(([u,p])=>({height:u,width:p})))})}async forward(r){return this.forwardInput(await Rt(r))}async detectLandmarks(r){const l=await Rt(r),u=fs.tidy(()=>fs.unstack(this.forwardInput(l))),p=await Promise.all(u.map(async(g,f)=>{const I=Array.from(await g.data()),S=I.filter((v,O)=>dm(O)),x=I.filter((v,O)=>!dm(O));return new iu(Array(68).fill(0).map((v,O)=>new Je(S[O],x[O])),{height:l.getInputHeight(f),width:l.getInputWidth(f)})}));return u.forEach(g=>g.dispose()),l.isBatchInput?p:p[0]}getClassifierChannelsOut(){return 136}}class Au extends Zf{constructor(r=new jf){super("FaceLandmark68Net",r)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}}function CE(r){const l=[],{extractDenseBlock3Params:u}=qf(r,l),p={dense0:u("dense0",!0),dense1:u("dense1"),dense2:u("dense2")};return Pn(r,l),{params:p,paramMappings:l}}function RE(r){const l=[],{extractWeights:u,getRemainingWeights:p}=zn(r),{extractDenseBlock3Params:g}=Yf(u,l),f=g(3,32,"dense0",!0),I=g(32,64,"dense1"),S=g(64,128,"dense2");if(p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{paramMappings:l,params:{dense0:f,dense1:I,dense2:S}}}const io=Ke(Xe());class OE extends En{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("TinyFaceFeatureExtractor - load model before inference");return io.tidy(()=>{const u=io.cast(r.toBatchTensor(112,!0),"float32"),p=[122.782,117.001,104.298],g=di(u,p).div(io.scalar(255));let f=Pf(g,l.dense0,!0);return f=Pf(f,l.dense1),f=Pf(f,l.dense2),f=io.avgPool(f,[14,14],[2,2],"valid"),f})}async forward(r){return this.forwardInput(await Rt(r))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeigthMap(r){return CE(r)}extractParams(r){return RE(r)}}class BI extends Zf{constructor(r=new OE){super("FaceLandmark68TinyNet",r)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}}class V9 extends Au{}const Qf=Ke(Xe());function EE(r,l){return Qf.add(Qf.mul(r,l.weights),l.biases)}const Pc=Ke(Xe());function MI(r,l,u,p,g="same"){const{filters:f,bias:I}=l.conv;let S=Pc.conv2d(r,f,u,g);return S=Pc.add(S,I),S=EE(S,l.scale),p?Pc.relu(S):S}function DE(r,l){return MI(r,l,[1,1],!0)}function PI(r,l){return MI(r,l,[1,1],!1)}function eg(r,l){return MI(r,l,[2,2],!0,"valid")}const gs=Ke(Xe());function Y9(r,l){function u(S,x,v){const O=r(S),C=O.length/(x*v*v);if(dS(C))throw new Error(`depth has to be an integer: ${C}, weights.length: ${O.length}, numFilters: ${x}, filterSize: ${v}`);return gs.tidy(()=>gs.transpose(gs.tensor4d(O,[x,C,v,v]),[2,3,1,0]))}function p(S,x,v,O){const C=u(S,x,v),U=gs.tensor1d(r(x));return l.push({paramPath:`${O}/filters`},{paramPath:`${O}/bias`}),{filters:C,bias:U}}function g(S,x){const v=gs.tensor1d(r(S)),O=gs.tensor1d(r(S));return l.push({paramPath:`${x}/weights`},{paramPath:`${x}/biases`}),{weights:v,biases:O}}function f(S,x,v,O){const C=p(S,x,v,`${O}/conv`),U=g(x,`${O}/scale`);return{conv:C,scale:U}}function I(S,x,v,O,C=!1){const U=f((C?.5:1)*S,x,v,`${O}/conv1`),G=f(S,x,v,`${O}/conv2`);return{conv1:U,conv2:G}}return{extractConvLayerParams:f,extractResidualLayerParams:I}}function kE(r){const{extractWeights:l,getRemainingWeights:u}=zn(r),p=[],{extractConvLayerParams:g,extractResidualLayerParams:f}=Y9(l,p),I=g(4704,32,7,"conv32_down"),S=f(9216,32,3,"conv32_1"),x=f(9216,32,3,"conv32_2"),v=f(9216,32,3,"conv32_3"),O=f(36864,64,3,"conv64_down",!0),C=f(36864,64,3,"conv64_1"),U=f(36864,64,3,"conv64_2"),G=f(36864,64,3,"conv64_3"),ne=f(147456,128,3,"conv128_down",!0),te=f(147456,128,3,"conv128_1"),oe=f(147456,128,3,"conv128_2"),ge=f(589824,256,3,"conv256_down",!0),fe=f(589824,256,3,"conv256_1"),Ae=f(589824,256,3,"conv256_2"),Te=f(589824,256,3,"conv256_down_out"),Ve=gs.tidy(()=>gs.transpose(gs.tensor2d(l(256*128),[128,256]),[1,0]));if(p.push({paramPath:"fc"}),u().length!==0)throw new Error(`weights remaing after extract: ${u().length}`);const rt={conv32_down:I,conv32_1:S,conv32_2:x,conv32_3:v,conv64_down:O,conv64_1:C,conv64_2:U,conv64_3:G,conv128_down:ne,conv128_1:te,conv128_2:oe,conv256_down:ge,conv256_1:fe,conv256_2:Ae,conv256_down_out:Te,fc:Ve};return{params:rt,paramMappings:p}}function H9(r,l){const u=ms(r,l);function p(I){const S=u(`${I}/scale/weights`,1),x=u(`${I}/scale/biases`,1);return{weights:S,biases:x}}function g(I){const S=u(`${I}/conv/filters`,4),x=u(`${I}/conv/bias`,1),v=p(I);return{conv:{filters:S,bias:x},scale:v}}function f(I){return{conv1:g(`${I}/conv1`),conv2:g(`${I}/conv2`)}}return{extractConvLayerParams:g,extractResidualLayerParams:f}}function FE(r){const l=[],{extractConvLayerParams:u,extractResidualLayerParams:p}=H9(r,l),g=u("conv32_down"),f=p("conv32_1"),I=p("conv32_2"),S=p("conv32_3"),x=p("conv64_down"),v=p("conv64_1"),O=p("conv64_2"),C=p("conv64_3"),U=p("conv128_down"),G=p("conv128_1"),ne=p("conv128_2"),te=p("conv256_down"),oe=p("conv256_1"),ge=p("conv256_2"),fe=p("conv256_down_out"),Ae=r.fc;if(l.push({originalPath:"fc",paramPath:"fc"}),!uS(Ae))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${Ae}`);const Te={conv32_down:g,conv32_1:f,conv32_2:I,conv32_3:S,conv64_down:x,conv64_1:v,conv64_2:O,conv64_3:C,conv128_down:U,conv128_1:G,conv128_2:ne,conv256_down:te,conv256_1:oe,conv256_2:ge,conv256_down_out:fe,fc:Ae};return Pn(r,l),{params:Te,paramMappings:l}}const Gn=Ke(Xe());function fi(r,l){let u=DE(r,l.conv1);return u=PI(u,l.conv2),u=Gn.add(u,r),u=Gn.relu(u),u}function vu(r,l){let u=eg(r,l.conv1);u=PI(u,l.conv2);let p=Gn.avgPool(r,2,2,"valid");const g=Gn.zeros(p.shape),f=p.shape[3]!==u.shape[3],I=p.shape[1]!==u.shape[1]||p.shape[2]!==u.shape[2];if(I){const S=[...u.shape];S[1]=1;const x=Gn.zeros(S);u=Gn.concat([u,x],1);const v=[...u.shape];v[2]=1;const O=Gn.zeros(v);u=Gn.concat([u,O],2)}return p=f?Gn.concat([p,g],3):p,u=Gn.add(p,u),u=Gn.relu(u),u}const Ds=Ke(Xe());class Nu extends En{constructor(){super("FaceRecognitionNet")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("FaceRecognitionNet - load model before inference");return Ds.tidy(()=>{const u=Ds.cast(r.toBatchTensor(150,!0),"float32"),p=[122.782,117.001,104.298],g=di(u,p).div(Ds.scalar(256));let f=eg(g,l.conv32_down);f=Ds.maxPool(f,3,2,"valid"),f=fi(f,l.conv32_1),f=fi(f,l.conv32_2),f=fi(f,l.conv32_3),f=vu(f,l.conv64_down),f=fi(f,l.conv64_1),f=fi(f,l.conv64_2),f=fi(f,l.conv64_3),f=vu(f,l.conv128_down),f=fi(f,l.conv128_1),f=fi(f,l.conv128_2),f=vu(f,l.conv256_down),f=fi(f,l.conv256_1),f=fi(f,l.conv256_2),f=vu(f,l.conv256_down_out);const I=f.mean([1,2]),S=Ds.matMul(I,l.fc);return S})}async forward(r){return this.forwardInput(await Rt(r))}async computeFaceDescriptor(r){const l=await Rt(r),u=Ds.tidy(()=>Ds.unstack(this.forwardInput(l))),p=await Promise.all(u.map(g=>g.data()));return u.forEach(g=>g.dispose()),l.isBatchInput?p:p[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeigthMap(r){return FE(r)}extractParams(r){return kE(r)}}function q9(r){const l=new Nu;return l.extractWeights(r),l}function tg(r,l){const u={descriptor:l};return Object.assign({},r,u)}function j9(r){return typeof r.age=="number"}function ng(r,l){const u={age:l};return Object.assign({},r,u)}function K9(r){return(r.gender===gr.MALE||r.gender===gr.FEMALE)&&fc(r.genderProbability)}function sg(r,l,u){const p={gender:l,genderProbability:u};return Object.assign({},r,p)}const gi=Ke(Xe());function X9(r,l){function u(x,v){const O=gi.tensor4d(r(3*3*x),[3,3,x,1]),C=gi.tensor1d(r(x)),U=gi.tensor1d(r(x)),G=gi.tensor1d(r(x)),ne=gi.tensor1d(r(x));return l.push({paramPath:`${v}/filters`},{paramPath:`${v}/batch_norm_scale`},{paramPath:`${v}/batch_norm_offset`},{paramPath:`${v}/batch_norm_mean`},{paramPath:`${v}/batch_norm_variance`}),{filters:O,batch_norm_scale:C,batch_norm_offset:U,batch_norm_mean:G,batch_norm_variance:ne}}function p(x,v,O,C,U){const G=gi.tensor4d(r(x*v*O*O),[O,O,x,v]),ne=gi.tensor1d(r(v));return l.push({paramPath:`${C}/filters`},{paramPath:`${C}/${U?"batch_norm_offset":"bias"}`}),{filters:G,bias:ne}}function g(x,v,O,C){const{filters:U,bias:G}=p(x,v,O,C,!0);return{filters:U,batch_norm_offset:G}}function f(x,v,O){const C=u(x,`${O}/depthwise_conv`),U=g(x,v,1,`${O}/pointwise_conv`);return{depthwise_conv:C,pointwise_conv:U}}function I(){const x=g(3,32,3,"mobilenetv1/conv_0"),v=f(32,64,"mobilenetv1/conv_1"),O=f(64,128,"mobilenetv1/conv_2"),C=f(128,128,"mobilenetv1/conv_3"),U=f(128,256,"mobilenetv1/conv_4"),G=f(256,256,"mobilenetv1/conv_5"),ne=f(256,512,"mobilenetv1/conv_6"),te=f(512,512,"mobilenetv1/conv_7"),oe=f(512,512,"mobilenetv1/conv_8"),ge=f(512,512,"mobilenetv1/conv_9"),fe=f(512,512,"mobilenetv1/conv_10"),Ae=f(512,512,"mobilenetv1/conv_11"),Te=f(512,1024,"mobilenetv1/conv_12"),Ve=f(1024,1024,"mobilenetv1/conv_13");return{conv_0:x,conv_1:v,conv_2:O,conv_3:C,conv_4:U,conv_5:G,conv_6:ne,conv_7:te,conv_8:oe,conv_9:ge,conv_10:fe,conv_11:Ae,conv_12:Te,conv_13:Ve}}function S(){const x=g(1024,256,1,"prediction_layer/conv_0"),v=g(256,512,3,"prediction_layer/conv_1"),O=g(512,128,1,"prediction_layer/conv_2"),C=g(128,256,3,"prediction_layer/conv_3"),U=g(256,128,1,"prediction_layer/conv_4"),G=g(128,256,3,"prediction_layer/conv_5"),ne=g(256,64,1,"prediction_layer/conv_6"),te=g(64,128,3,"prediction_layer/conv_7"),oe=p(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),ge=p(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),fe=p(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),Ae=p(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),Te=p(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),Ve=p(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),rt=p(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),vt=p(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$t=p(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Kt=p(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Dn=p(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Tn=p(128,18,1,"prediction_layer/box_predictor_5/class_predictor"),An={box_encoding_predictor:oe,class_predictor:ge},Ks={box_encoding_predictor:fe,class_predictor:Ae},Li={box_encoding_predictor:Te,class_predictor:Ve},Xs={box_encoding_predictor:rt,class_predictor:vt},ua={box_encoding_predictor:$t,class_predictor:Kt},Xc={box_encoding_predictor:Dn,class_predictor:Tn};return{conv_0:x,conv_1:v,conv_2:O,conv_3:C,conv_4:U,conv_5:G,conv_6:ne,conv_7:te,box_predictor_0:An,box_predictor_1:Ks,box_predictor_2:Li,box_predictor_3:Xs,box_predictor_4:ua,box_predictor_5:Xc}}return{extractMobilenetV1Params:I,extractPredictionLayerParams:S}}function _E(r){const l=[],{extractWeights:u,getRemainingWeights:p}=zn(r),{extractMobilenetV1Params:g,extractPredictionLayerParams:f}=X9(u,l),I=g(),S=f(),x=gi.tensor3d(u(5118*4),[1,5118,4]),v={extra_dim:x};if(l.push({paramPath:"output_layer/extra_dim"}),p().length!==0)throw new Error(`weights remaing after extract: ${p().length}`);return{params:{mobilenetv1:I,prediction_layer:S,output_layer:v},paramMappings:l}}function J9(r,l){const u=ms(r,l);function p(v,O,C){const U=u(`${v}/Conv2d_${O}_pointwise/weights`,4,`${C}/filters`),G=u(`${v}/Conv2d_${O}_pointwise/convolution_bn_offset`,1,`${C}/batch_norm_offset`);return{filters:U,batch_norm_offset:G}}function g(v){const O=`mobilenetv1/conv_${v}`,C=`MobilenetV1/Conv2d_${v}_depthwise`,U=`${O}/depthwise_conv`,G=`${O}/pointwise_conv`,ne=u(`${C}/depthwise_weights`,4,`${U}/filters`),te=u(`${C}/BatchNorm/gamma`,1,`${U}/batch_norm_scale`),oe=u(`${C}/BatchNorm/beta`,1,`${U}/batch_norm_offset`),ge=u(`${C}/BatchNorm/moving_mean`,1,`${U}/batch_norm_mean`),fe=u(`${C}/BatchNorm/moving_variance`,1,`${U}/batch_norm_variance`);return{depthwise_conv:{filters:ne,batch_norm_scale:te,batch_norm_offset:oe,batch_norm_mean:ge,batch_norm_variance:fe},pointwise_conv:p("MobilenetV1",v,G)}}function f(){return{conv_0:p("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:g(1),conv_2:g(2),conv_3:g(3),conv_4:g(4),conv_5:g(5),conv_6:g(6),conv_7:g(7),conv_8:g(8),conv_9:g(9),conv_10:g(10),conv_11:g(11),conv_12:g(12),conv_13:g(13)}}function I(v,O){const C=u(`${v}/weights`,4,`${O}/filters`),U=u(`${v}/biases`,1,`${O}/bias`);return{filters:C,bias:U}}function S(v){const O=I(`Prediction/BoxPredictor_${v}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${v}/box_encoding_predictor`),C=I(`Prediction/BoxPredictor_${v}/ClassPredictor`,`prediction_layer/box_predictor_${v}/class_predictor`);return{box_encoding_predictor:O,class_predictor:C}}function x(){return{conv_0:p("Prediction",0,"prediction_layer/conv_0"),conv_1:p("Prediction",1,"prediction_layer/conv_1"),conv_2:p("Prediction",2,"prediction_layer/conv_2"),conv_3:p("Prediction",3,"prediction_layer/conv_3"),conv_4:p("Prediction",4,"prediction_layer/conv_4"),conv_5:p("Prediction",5,"prediction_layer/conv_5"),conv_6:p("Prediction",6,"prediction_layer/conv_6"),conv_7:p("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:S(0),box_predictor_1:S(1),box_predictor_2:S(2),box_predictor_3:S(3),box_predictor_4:S(4),box_predictor_5:S(5)}}return{extractMobilenetV1Params:f,extractPredictionLayerParams:x}}function WE(r){const l=[],{extractMobilenetV1Params:u,extractPredictionLayerParams:p}=J9(r,l),g=r["Output/extra_dim"];if(l.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!lr(g))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${g}`);const f={mobilenetv1:u(),prediction_layer:p(),output_layer:{extra_dim:g}};return Pn(r,l),{params:f,paramMappings:l}}const ro=Ke(Xe());function Hs(r,l,u){return ro.tidy(()=>{let p=ro.conv2d(r,l.filters,u,"same");return p=ro.add(p,l.batch_norm_offset),ro.clipByValue(p,0,6)})}const yr=Ke(Xe()),Z9=.0010000000474974513;function Q9(r,l,u){return yr.tidy(()=>{let p=yr.depthwiseConv2d(r,l.filters,u,"same");return p=yr.batchNorm(p,l.batch_norm_mean,l.batch_norm_variance,l.batch_norm_offset,l.batch_norm_scale,Z9),yr.clipByValue(p,0,6)})}function eZ(r){return[2,4,6,12].some(l=>l===r)?[2,2]:[1,1]}function $E(r,l){return yr.tidy(()=>{let u,p=Hs(r,l.conv_0,[2,2]);const g=[l.conv_1,l.conv_2,l.conv_3,l.conv_4,l.conv_5,l.conv_6,l.conv_7,l.conv_8,l.conv_9,l.conv_10,l.conv_11,l.conv_12,l.conv_13];if(g.forEach((f,I)=>{const S=I+1,x=eZ(S);p=Q9(p,f.depthwise_conv,x),p=Hs(p,f.pointwise_conv,[1,1]),S===11&&(u=p)}),u===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:p,conv11:u}})}function UE(r,l,u,p,g){const f=r.shape[0],I=Math.min(u,f),S=l.map((O,C)=>({score:O,boxIndex:C})).filter(O=>O.score>g).sort((O,C)=>C.score-O.score),x=O=>O<=p?1:0,v=[];return S.forEach(O=>{if(v.length>=I)return;const C=O.score;for(let U=v.length-1;U>=0;--U){const G=tZ(r,O.boxIndex,v[U]);if(G===0)continue;if(O.score*=x(G),O.score<=g)break}C===O.score&&v.push(O.boxIndex)}),v}function tZ(r,l,u){const p=r.arraySync(),g=Math.min(p[l][0],p[l][2]),f=Math.min(p[l][1],p[l][3]),I=Math.max(p[l][0],p[l][2]),S=Math.max(p[l][1],p[l][3]),x=Math.min(p[u][0],p[u][2]),v=Math.min(p[u][1],p[u][3]),O=Math.max(p[u][0],p[u][2]),C=Math.max(p[u][1],p[u][3]),U=(I-g)*(S-f),G=(O-x)*(C-v);if(U<=0||G<=0)return 0;const ne=Math.max(g,x),te=Math.max(f,v),oe=Math.min(I,O),ge=Math.min(S,C),fe=Math.max(oe-ne,0)*Math.max(ge-te,0);return fe/(U+G-fe)}const De=Ke(Xe());function nZ(r){const l=De.unstack(De.transpose(r,[1,0])),u=[De.sub(l[2],l[0]),De.sub(l[3],l[1])],p=[De.add(l[0],De.div(u[0],De.scalar(2))),De.add(l[1],De.div(u[1],De.scalar(2)))];return{sizes:u,centers:p}}function sZ(r,l){const{sizes:u,centers:p}=nZ(r),g=De.unstack(De.transpose(l,[1,0])),f=De.div(De.mul(De.exp(De.div(g[2],De.scalar(5))),u[0]),De.scalar(2)),I=De.add(De.mul(De.div(g[0],De.scalar(10)),u[0]),p[0]),S=De.div(De.mul(De.exp(De.div(g[3],De.scalar(5))),u[1]),De.scalar(2)),x=De.add(De.mul(De.div(g[1],De.scalar(10)),u[1]),p[1]);return De.transpose(De.stack([De.sub(I,f),De.sub(x,S),De.add(I,f),De.add(x,S)]),[1,0])}function BE(r,l,u){return De.tidy(()=>{const p=r.shape[0];let g=sZ(De.reshape(De.tile(u.extra_dim,[p,1,1]),[-1,4]),De.reshape(r,[-1,4]));g=De.reshape(g,[p,g.shape[0]/p,4]);const f=De.sigmoid(De.slice(l,[0,0,1],[-1,-1,-1]));let I=De.slice(f,[0,0,0],[-1,-1,1]);I=De.reshape(I,[p,I.shape[1]]);const S=De.unstack(g),x=De.unstack(I);return{boxes:S,scores:x}})}const Cu=Ke(Xe());function aa(r,l){return Cu.tidy(()=>{const u=r.shape[0],p=Cu.reshape(ia(r,l.box_encoding_predictor),[u,-1,1,4]),g=Cu.reshape(ia(r,l.class_predictor),[u,-1,3]);return{boxPredictionEncoding:p,classPrediction:g}})}const Ru=Ke(Xe());function ME(r,l,u){return Ru.tidy(()=>{const p=Hs(r,u.conv_0,[1,1]),g=Hs(p,u.conv_1,[2,2]),f=Hs(g,u.conv_2,[1,1]),I=Hs(f,u.conv_3,[2,2]),S=Hs(I,u.conv_4,[1,1]),x=Hs(S,u.conv_5,[2,2]),v=Hs(x,u.conv_6,[1,1]),O=Hs(v,u.conv_7,[2,2]),C=aa(l,u.box_predictor_0),U=aa(r,u.box_predictor_1),G=aa(g,u.box_predictor_2),ne=aa(I,u.box_predictor_3),te=aa(x,u.box_predictor_4),oe=aa(O,u.box_predictor_5),ge=Ru.concat([C.boxPredictionEncoding,U.boxPredictionEncoding,G.boxPredictionEncoding,ne.boxPredictionEncoding,te.boxPredictionEncoding,oe.boxPredictionEncoding],1),fe=Ru.concat([C.classPrediction,U.classPrediction,G.classPrediction,ne.classPrediction,te.classPrediction,oe.classPrediction],1);return{boxPredictions:ge,classPredictions:fe}})}class yi{constructor({minConfidence:r,maxResults:l}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=r||.5,this._maxResults=l||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}}const bi=Ke(Xe());class zc extends En{constructor(){super("SsdMobilenetv1")}forwardInput(r){const{params:l}=this;if(!l)throw new Error("SsdMobilenetv1 - load model before inference");return bi.tidy(()=>{const u=bi.cast(r.toBatchTensor(512,!1),"float32"),p=bi.sub(bi.mul(u,bi.scalar(.007843137718737125)),bi.scalar(1)),g=$E(p,l.mobilenetv1),{boxPredictions:f,classPredictions:I}=ME(g.out,g.conv11,l.prediction_layer);return BE(f,I,l.output_layer)})}async forward(r){return this.forwardInput(await Rt(r))}async locateFaces(r,l={}){const{maxResults:u,minConfidence:p}=new yi(l),g=await Rt(r),{boxes:f,scores:I}=this.forwardInput(g),S=f[0],x=I[0];for(let fe=1;fe<f.length;fe++)f[fe].dispose(),I[fe].dispose();const v=Array.from(await x.data()),O=.5,C=UE(S,v,u,O,p),U=g.getReshapedInputDimensions(0),G=g.inputSize,ne=G/U.width,te=G/U.height,oe=S.arraySync(),ge=C.map(fe=>{const[Ae,Te]=[Math.max(0,oe[fe][0]),Math.min(1,oe[fe][2])].map(vt=>vt*te),[Ve,rt]=[Math.max(0,oe[fe][1]),Math.min(1,oe[fe][3])].map(vt=>vt*ne);return new Ht(v[fe],new su(Ve,Ae,rt-Ve,Te-Ae),{height:g.getInputHeight(0),width:g.getInputWidth(0)})});return S.dispose(),x.dispose(),ge}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeigthMap(r){return WE(r)}extractParams(r){return _E(r)}}function PE(r){const l=new zc;return l.extractWeights(r),l}function iZ(r){return PE(r)}class rZ extends zc{}const zE=.4,GE=[new Je(.738768,.874946),new Je(2.42204,2.65704),new Je(4.30971,7.04493),new Je(10.246,4.59428),new Je(12.6868,11.8741)],VE=[new Je(1.603231,2.094468),new Je(6.041143,7.080126),new Je(2.882459,3.518061),new Je(4.266906,5.178857),new Je(9.041765,10.66308)],YE=[117.001,114.697,97.404],HE="tiny_yolov2_model",qE="tiny_yolov2_separable_conv_model";const ig=r=>typeof r=="number";function zI(r){if(!r)throw new Error(`invalid config: ${r}`);if(typeof r.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${r.withSeparableConvs}`);if(!ig(r.iouThreshold)||r.iouThreshold<0||r.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${r.iouThreshold}`);if(!Array.isArray(r.classes)||!r.classes.length||!r.classes.every(l=>typeof l=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(r.classes)}`);if(!Array.isArray(r.anchors)||!r.anchors.length||!r.anchors.map(l=>l||{}).every(l=>ig(l.x)&&ig(l.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(r.anchors)}`);if(r.meanRgb&&(!Array.isArray(r.meanRgb)||r.meanRgb.length!==3||!r.meanRgb.every(ig)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(r.meanRgb)}`)}const qs=Ke(Xe());function Gc(r){return qs.tidy(()=>{const l=qs.mul(r,qs.scalar(.10000000149011612));return qs.add(qs.relu(qs.sub(r,l)),l)})}const js=Ke(Xe());function br(r,l){return js.tidy(()=>{let u=js.pad(r,[[0,0],[1,1],[1,1],[0,0]]);return u=js.conv2d(u,l.conv.filters,[1,1],"valid"),u=js.sub(u,l.bn.sub),u=js.mul(u,l.bn.truediv),u=js.add(u,l.conv.bias),Gc(u)})}const oo=Ke(Xe());function wr(r,l){return oo.tidy(()=>{let u=oo.pad(r,[[0,0],[1,1],[1,1],[0,0]]);return u=oo.separableConv2d(u,l.depthwise_filter,l.pointwise_filter,[1,1],"valid"),u=oo.add(u,l.bias),Gc(u)})}const GI=Ke(Xe());function oZ(r,l){const u=_c(r,l);function p(I,S){const x=GI.tensor1d(r(I)),v=GI.tensor1d(r(I));return l.push({paramPath:`${S}/sub`},{paramPath:`${S}/truediv`}),{sub:x,truediv:v}}function g(I,S,x){const v=u(I,S,3,`${x}/conv`),O=p(S,`${x}/bn`);return{conv:v,bn:O}}const f=Wc(r,l);return{extractConvParams:u,extractConvWithBatchNormParams:g,extractSeparableConvParams:f}}function jE(r,l,u,p){const{extractWeights:g,getRemainingWeights:f}=zn(r),I=[],{extractConvParams:S,extractConvWithBatchNormParams:x,extractSeparableConvParams:v}=oZ(g,I);let O;if(l.withSeparableConvs){const[C,U,G,ne,te,oe,ge,fe,Ae]=p,Te=l.isFirstLayerConv2d?S(C,U,3,"conv0"):v(C,U,"conv0"),Ve=v(U,G,"conv1"),rt=v(G,ne,"conv2"),vt=v(ne,te,"conv3"),$t=v(te,oe,"conv4"),Kt=v(oe,ge,"conv5"),Dn=fe?v(ge,fe,"conv6"):void 0,Tn=Ae?v(fe,Ae,"conv7"):void 0,An=S(Ae||fe||ge,5*u,1,"conv8");O={conv0:Te,conv1:Ve,conv2:rt,conv3:vt,conv4:$t,conv5:Kt,conv6:Dn,conv7:Tn,conv8:An}}else{const[C,U,G,ne,te,oe,ge,fe,Ae]=p,Te=x(C,U,"conv0"),Ve=x(U,G,"conv1"),rt=x(G,ne,"conv2"),vt=x(ne,te,"conv3"),$t=x(te,oe,"conv4"),Kt=x(oe,ge,"conv5"),Dn=x(ge,fe,"conv6"),Tn=x(fe,Ae,"conv7"),An=S(Ae,5*u,1,"conv8");O={conv0:Te,conv1:Ve,conv2:rt,conv3:vt,conv4:$t,conv5:Kt,conv6:Dn,conv7:Tn,conv8:An}}if(f().length!==0)throw new Error(`weights remaing after extract: ${f().length}`);return{params:O,paramMappings:I}}function aZ(r,l){const u=ms(r,l);function p(S){const x=u(`${S}/sub`,1),v=u(`${S}/truediv`,1);return{sub:x,truediv:v}}function g(S){const x=u(`${S}/filters`,4),v=u(`${S}/bias`,1);return{filters:x,bias:v}}function f(S){const x=g(`${S}/conv`),v=p(`${S}/bn`);return{conv:x,bn:v}}const I=$c(u);return{extractConvParams:g,extractConvWithBatchNormParams:f,extractSeparableConvParams:I}}function KE(r,l){const u=[],{extractConvParams:p,extractConvWithBatchNormParams:g,extractSeparableConvParams:f}=aZ(r,u);let I;if(l.withSeparableConvs){const S=l.filterSizes&&l.filterSizes.length||9;I={conv0:l.isFirstLayerConv2d?p("conv0"):f("conv0"),conv1:f("conv1"),conv2:f("conv2"),conv3:f("conv3"),conv4:f("conv4"),conv5:f("conv5"),conv6:S>7?f("conv6"):void 0,conv7:S>8?f("conv7"):void 0,conv8:p("conv8")}}else I={conv0:g("conv0"),conv1:g("conv1"),conv2:g("conv2"),conv3:g("conv3"),conv4:g("conv4"),conv5:g("conv5"),conv6:g("conv6"),conv7:g("conv7"),conv8:p("conv8")};return Pn(r,u),{params:I,paramMappings:u}}var VI;(function(r){r[r.XS=224]="XS",r[r.SM=320]="SM",r[r.MD=416]="MD",r[r.LG=608]="LG"})(VI||(VI={}));class Lr{constructor({inputSize:r,scoreThreshold:l}={}){this._name="TinyYolov2Options";if(this._inputSize=r||416,this._scoreThreshold=l||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}}const kt=Ke(Xe());class Vc extends En{constructor(r){super("TinyYolov2");zI(r),this._config=r}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(r,l){let u=br(r,l.conv0);return u=kt.maxPool(u,[2,2],[2,2],"same"),u=br(u,l.conv1),u=kt.maxPool(u,[2,2],[2,2],"same"),u=br(u,l.conv2),u=kt.maxPool(u,[2,2],[2,2],"same"),u=br(u,l.conv3),u=kt.maxPool(u,[2,2],[2,2],"same"),u=br(u,l.conv4),u=kt.maxPool(u,[2,2],[2,2],"same"),u=br(u,l.conv5),u=kt.maxPool(u,[2,2],[1,1],"same"),u=br(u,l.conv6),u=br(u,l.conv7),ia(u,l.conv8,"valid",!1)}runMobilenet(r,l){let u=this.config.isFirstLayerConv2d?Gc(ia(r,l.conv0,"valid",!1)):wr(r,l.conv0);return u=kt.maxPool(u,[2,2],[2,2],"same"),u=wr(u,l.conv1),u=kt.maxPool(u,[2,2],[2,2],"same"),u=wr(u,l.conv2),u=kt.maxPool(u,[2,2],[2,2],"same"),u=wr(u,l.conv3),u=kt.maxPool(u,[2,2],[2,2],"same"),u=wr(u,l.conv4),u=kt.maxPool(u,[2,2],[2,2],"same"),u=wr(u,l.conv5),u=kt.maxPool(u,[2,2],[1,1],"same"),u=l.conv6?wr(u,l.conv6):u,u=l.conv7?wr(u,l.conv7):u,ia(u,l.conv8,"valid",!1)}forwardInput(r,l){const{params:u}=this;if(!u)throw new Error("TinyYolov2 - load model before inference");return kt.tidy(()=>{let p=kt.cast(r.toBatchTensor(l,!1),"float32");return p=this.config.meanRgb?di(p,this.config.meanRgb):p,p=p.div(kt.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(p,u):this.runTinyYolov2(p,u)})}async forward(r,l){return await this.forwardInput(await Rt(r),l)}async detect(r,l={}){const{inputSize:u,scoreThreshold:p}=new Lr(l),g=await Rt(r),f=await this.forwardInput(g,u),I=kt.tidy(()=>kt.unstack(f)[0].expandDims()),S={width:g.getInputWidth(0),height:g.getInputHeight(0)},x=await this.extractBoxes(I,g.getReshapedInputDimensions(0),p);f.dispose(),I.dispose();const v=x.map(te=>te.box),O=x.map(te=>te.score),C=x.map(te=>te.classScore),U=x.map(te=>this.config.classes[te.label]),G=gS(v.map(te=>te.rescale(u)),O,this.config.iouThreshold,!0),ne=G.map(te=>new gc(O[te],C[te],U[te],v[te],S));return ne}getDefaultModelName(){return""}extractParamsFromWeigthMap(r){return KE(r,this.config)}extractParams(r){const l=this.config.filterSizes||Vc.DEFAULT_FILTER_SIZES,u=l?l.length:void 0;if(u!==7&&u!==8&&u!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${u} filterSizes in config`);return jE(r,this.config,this.boxEncodingSize,l)}async extractBoxes(r,l,u){const{width:p,height:g}=l,f=Math.max(p,g),I=f/p,S=f/g,x=r.shape[1],v=this.config.anchors.length,[O,C,U]=kt.tidy(()=>{const oe=r.reshape([x,x,v,this.boxEncodingSize]),ge=oe.slice([0,0,0,0],[x,x,v,4]),fe=oe.slice([0,0,0,4],[x,x,v,1]),Ae=this.withClassScores?kt.softmax(oe.slice([0,0,0,5],[x,x,v,this.config.classes.length]),3):kt.scalar(0);return[ge,fe,Ae]}),G=[],ne=await C.array(),te=await O.array();for(let oe=0;oe<x;oe++)for(let ge=0;ge<x;ge++)for(let fe=0;fe<v;fe++){const Ae=nu(ne[oe][ge][fe][0]);if(!u||Ae>u){const Te=(ge+nu(te[oe][ge][fe][0]))/x*I,Ve=(oe+nu(te[oe][ge][fe][1]))/x*S,rt=Math.exp(te[oe][ge][fe][2])*this.config.anchors[fe].x/x*I,vt=Math.exp(te[oe][ge][fe][3])*this.config.anchors[fe].y/x*S,$t=Te-rt/2,Kt=Ve-vt/2,Dn={row:oe,col:ge,anchor:fe},{classScore:Tn,label:An}=this.withClassScores?await this.extractPredictedClass(U,Dn):{classScore:1,label:0};G.push({box:new tu($t,Kt,$t+rt,Kt+vt),score:Ae,classScore:Ae*Tn,label:An,...Dn})}}return O.dispose(),C.dispose(),U.dispose(),G}async extractPredictedClass(r,l){const{row:u,col:p,anchor:g}=l,f=await r.array();return Array(this.config.classes.length).fill(0).map((I,S)=>f[u][p][g][S]).map((I,S)=>({classScore:I,label:S})).reduce((I,S)=>I.classScore>S.classScore?I:S)}}Vc.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];class Ou extends Vc{constructor(r=!0){const l=Object.assign({},{withSeparableConvs:r,iouThreshold:zE,classes:["face"]},r?{anchors:VE,meanRgb:YE}:{anchors:GE,withClassScores:!0});super(l)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(r,l){const u=await this.detect(r,l);return u.map(p=>new Ht(p.score,p.relativeBox,{width:p.imageWidth,height:p.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?qE:HE}extractParamsFromWeigthMap(r){return super.extractParamsFromWeigthMap(r)}}function cZ(r,l=!0){const u=new Ou(l);return u.extractWeights(r),u}class YI extends Lr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}}class wi{async then(r){return r(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}}const HI=Ke(Xe());async function ca(r,l,u,p,g=({alignedRect:f})=>f){const f=r.map(x=>oa(x)?g(x):x.detection),I=p||(l instanceof HI.Tensor?await kc(l,f):await Dc(l,f)),S=await u(I);return I.forEach(x=>x instanceof HI.Tensor&&x.dispose()),S}async function Yc(r,l,u,p,g){return ca([r],l,async f=>u(f[0]),p,g)}const XE=.4,JE=[new Je(1.603231,2.094468),new Je(6.041143,7.080126),new Je(2.882459,3.518061),new Je(4.266906,5.178857),new Je(9.041765,10.66308)],ZE=[117.001,114.697,97.404];class Eu extends Vc{constructor(){const r={withSeparableConvs:!0,iouThreshold:XE,classes:["face"],anchors:JE,meanRgb:ZE,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(r)}get anchors(){return this.config.anchors}async locateFaces(r,l){const u=await this.detect(r,l);return u.map(p=>new Ht(p.score,p.relativeBox,{width:p.imageWidth,height:p.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeigthMap(r){return super.extractParamsFromWeigthMap(r)}}const pt={ssdMobilenetv1:new zc,tinyFaceDetector:new Eu,tinyYolov2:new Ou,faceLandmark68Net:new Au,faceLandmark68TinyNet:new BI,faceRecognitionNet:new Nu,faceExpressionNet:new FI,ageGenderNet:new UI},QE=(r,l)=>pt.ssdMobilenetv1.locateFaces(r,l),lZ=(r,l)=>pt.tinyFaceDetector.locateFaces(r,l),hZ=(r,l)=>pt.tinyYolov2.locateFaces(r,l),eD=r=>pt.faceLandmark68Net.detectLandmarks(r),uZ=r=>pt.faceLandmark68TinyNet.detectLandmarks(r),dZ=r=>pt.faceRecognitionNet.computeFaceDescriptor(r),pZ=r=>pt.faceExpressionNet.predictExpressions(r),mZ=r=>pt.ageGenderNet.predictAgeAndGender(r),tD=r=>pt.ssdMobilenetv1.load(r),fZ=r=>pt.tinyFaceDetector.load(r),gZ=r=>pt.tinyYolov2.load(r),yZ=r=>pt.faceLandmark68Net.load(r),bZ=r=>pt.faceLandmark68TinyNet.load(r),wZ=r=>pt.faceRecognitionNet.load(r),LZ=r=>pt.faceExpressionNet.load(r),SZ=r=>pt.ageGenderNet.load(r),IZ=tD,xZ=QE,TZ=eD;class nD extends wi{constructor(r,l,u){super();this.parentTask=r;this.input=l;this.extractedFaces=u}}class Fu extends nD{async run(){const r=await this.parentTask,l=await ca(r,this.input,async u=>await Promise.all(u.map(p=>pt.faceExpressionNet.predictExpressions(p))),this.extractedFaces);return r.map((u,p)=>Jf(u,l[p]))}withAgeAndGender(){return new Du(this,this.input)}}class _u extends nD{async run(){const r=await this.parentTask;if(!r)return;const l=await Yc(r,this.input,u=>pt.faceExpressionNet.predictExpressions(u),this.extractedFaces);return Jf(r,l)}withAgeAndGender(){return new ku(this,this.input)}}class jc extends Fu{withAgeAndGender(){return new Hc(this,this.input)}withFaceDescriptors(){return new la(this,this.input)}}class Kc extends _u{withAgeAndGender(){return new qc(this,this.input)}withFaceDescriptor(){return new ha(this,this.input)}}class sD extends wi{constructor(r,l,u){super();this.parentTask=r;this.input=l;this.extractedFaces=u}}class Du extends sD{async run(){const r=await this.parentTask,l=await ca(r,this.input,async u=>await Promise.all(u.map(p=>pt.ageGenderNet.predictAgeAndGender(p))),this.extractedFaces);return r.map((u,p)=>{const{age:g,gender:f,genderProbability:I}=l[p];return ng(sg(u,f,I),g)})}withFaceExpressions(){return new Fu(this,this.input)}}class ku extends sD{async run(){const r=await this.parentTask;if(!r)return;const{age:l,gender:u,genderProbability:p}=await Yc(r,this.input,g=>pt.ageGenderNet.predictAgeAndGender(g),this.extractedFaces);return ng(sg(r,u,p),l)}withFaceExpressions(){return new _u(this,this.input)}}class Hc extends Du{withFaceExpressions(){return new jc(this,this.input)}withFaceDescriptors(){return new la(this,this.input)}}class qc extends ku{withFaceExpressions(){return new Kc(this,this.input)}withFaceDescriptor(){return new ha(this,this.input)}}class qI extends wi{constructor(r,l){super();this.parentTask=r;this.input=l}}class la extends qI{async run(){const r=await this.parentTask,l=await ca(r,this.input,u=>Promise.all(u.map(p=>pt.faceRecognitionNet.computeFaceDescriptor(p))),null,u=>u.landmarks.align(null,{useDlibAlignment:!0}));return l.map((u,p)=>tg(r[p],u))}withFaceExpressions(){return new jc(this,this.input)}withAgeAndGender(){return new Hc(this,this.input)}}class ha extends qI{async run(){const r=await this.parentTask;if(!r)return;const l=await Yc(r,this.input,u=>pt.faceRecognitionNet.computeFaceDescriptor(u),null,u=>u.landmarks.align(null,{useDlibAlignment:!0}));return tg(r,l)}withFaceExpressions(){return new Kc(this,this.input)}withAgeAndGender(){return new qc(this,this.input)}}const Wu=Ke(Xe());class jI extends wi{constructor(r,l,u){super();this.parentTask=r;this.input=l;this.useTinyLandmarkNet=u}get landmarkNet(){return this.useTinyLandmarkNet?pt.faceLandmark68TinyNet:pt.faceLandmark68Net}}class KI extends jI{async run(){const r=await this.parentTask,l=r.map(g=>g.detection),u=this.input instanceof Wu.Tensor?await kc(this.input,l):await Dc(this.input,l),p=await Promise.all(u.map(g=>this.landmarkNet.detectLandmarks(g)));return u.forEach(g=>g instanceof Wu.Tensor&&g.dispose()),r.map((g,f)=>Mc(g,p[f]))}withFaceExpressions(){return new jc(this,this.input)}withAgeAndGender(){return new Hc(this,this.input)}withFaceDescriptors(){return new la(this,this.input)}}class XI extends jI{async run(){const r=await this.parentTask;if(!r)return;const{detection:l}=r,u=this.input instanceof Wu.Tensor?await kc(this.input,[l]):await Dc(this.input,[l]),p=await this.landmarkNet.detectLandmarks(u[0]);return u.forEach(g=>g instanceof Wu.Tensor&&g.dispose()),Mc(r,p)}withFaceExpressions(){return new Kc(this,this.input)}withAgeAndGender(){return new qc(this,this.input)}withFaceDescriptor(){return new ha(this,this.input)}}class JI extends wi{constructor(r,l=new yi){super();this.input=r;this.options=l}}class rg extends JI{async run(){const{input:r,options:l}=this,u=l instanceof YI?p=>pt.tinyFaceDetector.locateFaces(p,l):l instanceof yi?p=>pt.ssdMobilenetv1.locateFaces(p,l):l instanceof Lr?p=>pt.tinyYolov2.locateFaces(p,l):null;if(!u)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return u(r)}runAndExtendWithFaceDetections(){return new Promise(async r=>{const l=await this.run();return r(l.map(u=>Yo({},u)))})}withFaceLandmarks(r=!1){return new KI(this.runAndExtendWithFaceDetections(),this.input,r)}withFaceExpressions(){return new Fu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Du(this.runAndExtendWithFaceDetections(),this.input)}}class ZI extends JI{async run(){const r=await new rg(this.input,this.options);let l=r[0];return r.forEach(u=>{u.score>l.score&&(l=u)}),l}runAndExtendWithFaceDetection(){return new Promise(async r=>{const l=await this.run();return r(l?Yo({},l):void 0)})}withFaceLandmarks(r=!1){return new XI(this.runAndExtendWithFaceDetection(),this.input,r)}withFaceExpressions(){return new _u(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ku(this.runAndExtendWithFaceDetection(),this.input)}}function AZ(r,l=new yi){return new ZI(r,l)}function og(r,l=new yi){return new rg(r,l)}async function iD(r,l){return console.warn("allFacesSsdMobilenetv1 is deprecated and will be removed soon, use the high level api instead"),await og(r,new yi(l?{minConfidence:l}:{})).withFaceLandmarks().withFaceDescriptors()}async function vZ(r,l={}){return console.warn("allFacesTinyYolov2 is deprecated and will be removed soon, use the high level api instead"),await og(r,new Lr(l)).withFaceLandmarks().withFaceDescriptors()}const NZ=iD;function QI(r,l){if(r.length!==l.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");const u=Array.from(r),p=Array.from(l);return Math.sqrt(u.map((g,f)=>g-p[f]).reduce((g,f)=>g+Math.pow(f,2),0))}class rD{constructor(r,l=.6){this._distanceThreshold=l;const u=Array.isArray(r)?r:[r];if(!u.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let p=1;const g=()=>`person ${p++}`;this._labeledDescriptors=u.map(f=>{if(f instanceof Vo)return f;if(f instanceof Float32Array)return new Vo(g(),[f]);if(f.descriptor&&f.descriptor instanceof Float32Array)return new Vo(g(),[f.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(r,l){return l.map(u=>QI(u,r)).reduce((u,p)=>u+p,0)/(l.length||1)}matchDescriptor(r){return this.labeledDescriptors.map(({descriptors:l,label:u})=>new mm(u,this.computeMeanDistance(r,l))).reduce((l,u)=>l.distance<u.distance?l:u)}findBestMatch(r){const l=this.matchDescriptor(r);return l.distance<this.distanceThreshold?l:new mm("unknown",l.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(r=>r.toJSON())}}static fromJSON(r){const l=r.labeledDescriptors.map(u=>Vo.fromJSON(u));return new rD(l,r.distanceThreshold)}}function CZ(r){const l=new Eu;return l.extractWeights(r),l}function oD(r,l){const{width:u,height:p}=new us(l.width,l.height);if(u<=0||p<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:u,height:p})}`);if(Array.isArray(r))return r.map(g=>oD(g,{width:u,height:p}));if(oa(r)){const g=r.detection.forSize(u,p),f=r.unshiftedLandmarks.forSize(g.box.width,g.box.height);return Mc(Yo(r,g),f)}return Ui(r)?Yo(r,r.detection.forSize(u,p)):r instanceof Gs||r instanceof Ht?r.forSize(u,p):r}var aD="0.8.3";const RZ=Ke(Xe()),OZ=typeof process!="undefined",EZ=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",DZ={faceapi:aD,node:OZ,browser:EZ};export{UI as AgeGenderNet,tu as BoundingBox,Ct as Box,wi as ComposableTask,la as ComputeAllFaceDescriptorsTask,qI as ComputeFaceDescriptorsTaskBase,ha as ComputeSingleFaceDescriptorTask,KI as DetectAllFaceLandmarksTask,rg as DetectAllFacesTask,jI as DetectFaceLandmarksTaskBase,JI as DetectFacesTaskBase,XI as DetectSingleFaceLandmarksTask,ZI as DetectSingleFaceTask,us as Dimensions,kI as FACE_EXPRESSION_LABELS,Ht as FaceDetection,rZ as FaceDetectionNet,FI as FaceExpressionNet,ra as FaceExpressions,Au as FaceLandmark68Net,BI as FaceLandmark68TinyNet,V9 as FaceLandmarkNet,Gs as FaceLandmarks,YX as FaceLandmarks5,iu as FaceLandmarks68,mm as FaceMatch,rD as FaceMatcher,Nu as FaceRecognitionNet,gr as Gender,fm as LabeledBox,Vo as LabeledFaceDescriptors,to as NetInput,En as NeuralNetwork,gc as ObjectDetection,Je as Point,HX as PredictedBox,su as Rect,zc as SsdMobilenetv1,yi as SsdMobilenetv1Options,Eu as TinyFaceDetector,YI as TinyFaceDetectorOptions,Ou as TinyYolov2,Lr as TinyYolov2Options,VI as TinyYolov2SizeType,NZ as allFaces,iD as allFacesSsdMobilenetv1,vZ as allFacesTinyYolov2,AS as awaitMediaLoaded,vS as bufferToImage,dZ as computeFaceDescriptor,bc as createCanvas,ou as createCanvasFromMedia,iZ as createFaceDetectionNet,q9 as createFaceRecognitionNet,PE as createSsdMobilenetv1,CZ as createTinyFaceDetector,cZ as createTinyYolov2,og as detectAllFaces,eD as detectFaceLandmarks,uZ as detectFaceLandmarksTiny,TZ as detectLandmarks,AZ as detectSingleFace,WI as draw,gt as env,QI as euclideanDistance,ng as extendWithAge,tg as extendWithFaceDescriptor,Yo as extendWithFaceDetection,Jf as extendWithFaceExpressions,Mc as extendWithFaceLandmarks,sg as extendWithGender,kc as extractFaceTensors,Dc as extractFaces,W9 as fetchImage,OI as fetchJson,$9 as fetchNetWeights,sa as fetchOrThrow,Jn as getContext2dOrThrow,qo as getMediaDimensions,NS as imageTensorToCanvas,RI as imageToSquare,PX as inverseSigmoid,mS as iou,wm as isMediaElement,ru as isMediaLoaded,j9 as isWithAge,Ui as isWithFaceDetection,_I as isWithFaceExpressions,oa as isWithFaceLandmarks,K9 as isWithGender,SZ as loadAgeGenderModel,IZ as loadFaceDetectionModel,LZ as loadFaceExpressionModel,yZ as loadFaceLandmarkModel,bZ as loadFaceLandmarkTinyModel,wZ as loadFaceRecognitionModel,tD as loadSsdMobilenetv1Model,fZ as loadTinyFaceDetectorModel,gZ as loadTinyYolov2Model,EI as loadWeightMap,xZ as locateFaces,U9 as matchDimensions,fS as minBbox,pt as nets,gS as nonMaxSuppression,di as normalize,yS as padToSquare,mZ as predictAgeAndGender,pZ as recognizeFaceExpressions,oD as resizeResults,Ho as resolveInput,MX as shuffleArray,nu as sigmoid,QE as ssdMobilenetv1,RZ as tf,lZ as tinyFaceDetector,hZ as tinyYolov2,Rt as toNetInput,hS as utils,zI as validateConfig,DZ as version};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.esm.js.map