4937 lines
1.2 MiB
4937 lines
1.2 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var faceapi=(()=>{var pb=Object.defineProperty;var P$=Object.getOwnPropertyDescriptor;var O$=Object.getOwnPropertyNames;var L$=Object.prototype.hasOwnProperty;var z$=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var hh=(e,t)=>{for(var n in t)pb(e,n,{get:t[n],enumerable:!0})},B$=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of O$(t))!L$.call(e,r)&&r!==n&&pb(e,r,{get:()=>t[r],enumerable:!(a=P$(t,r))||a.enumerable});return e};var W$=e=>B$(pb({},"__esModule",{value:!0}),e);var Dpe={};hh(Dpe,{AgeGenderNet:()=>wd,BoundingBox:()=>Ao,Box:()=>lt,ComposableTask:()=>wa,ComputeAllFaceDescriptorsTask:()=>Ur,ComputeFaceDescriptorsTaskBase:()=>Nd,ComputeSingleFaceDescriptorTask:()=>Gr,DetectAllFaceLandmarksTask:()=>Cd,DetectAllFacesTask:()=>bp,DetectFaceLandmarksTaskBase:()=>Td,DetectFacesTaskBase:()=>Ed,DetectSingleFaceLandmarksTask:()=>_d,DetectSingleFaceTask:()=>Ad,Dimensions:()=>yn,FACE_EXPRESSION_LABELS:()=>o1,FaceDetection:()=>bt,FaceDetectionNet:()=>m1,FaceExpressionNet:()=>vd,FaceExpressions:()=>Br,FaceLandmark68Net:()=>zo,FaceLandmark68TinyNet:()=>kd,FaceLandmarkNet:()=>c1,FaceLandmarks:()=>ra,FaceLandmarks5:()=>q0,FaceLandmarks68:()=>Fo,FaceMatch:()=>rp,FaceMatcher:()=>$d,FaceRecognitionNet:()=>Bo,Gender:()=>Ig,LabeledBox:()=>sp,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>on,ObjectDetection:()=>Or,Point:()=>Pe,PredictedBox:()=>K0,Rect:()=>$o,SsdMobilenetv1:()=>Es,SsdMobilenetv1Options:()=>va,TinyFaceDetector:()=>Ho,TinyFaceDetectorOptions:()=>Sd,TinyYolov2:()=>Uo,TinyYolov2Options:()=>ar,allFaces:()=>Ape,allFacesSsdMobilenetv1:()=>WA,allFacesTinyYolov2:()=>Epe,awaitMediaLoaded:()=>t1,bufferToImage:()=>n1,computeFaceDescriptor:()=>fpe,createCanvas:()=>Po,createCanvasFromMedia:()=>gd,createFaceDetectionNet:()=>lpe,createFaceRecognitionNet:()=>Jue,createSsdMobilenetv1:()=>TA,createTinyFaceDetector:()=>$pe,createTinyYolov2:()=>cpe,detectAllFaces:()=>Fg,detectFaceLandmarks:()=>zA,detectFaceLandmarksTiny:()=>mpe,detectLandmarks:()=>Cpe,detectSingleFace:()=>_pe,draw:()=>u1,env:()=>et,euclideanDistance:()=>y1,extendWithAge:()=>Cg,extendWithFaceDescriptor:()=>Tg,extendWithFaceDetection:()=>Do,extendWithFaceExpressions:()=>xg,extendWithFaceLandmarks:()=>mp,extendWithGender:()=>_g,extractFaceTensors:()=>lp,extractFaces:()=>op,fetchImage:()=>Oue,fetchJson:()=>s1,fetchNetWeights:()=>Lue,fetchOrThrow:()=>zr,fetchVideo:()=>zue,getContext2dOrThrow:()=>qn,getMediaDimensions:()=>Mo,imageTensorToCanvas:()=>a1,imageToSquare:()=>r1,inverseSigmoid:()=>Aue,iou:()=>U0,isMediaElement:()=>cg,isMediaLoaded:()=>fd,isWithAge:()=>Zue,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>l1,isWithFaceLandmarks:()=>Lo,isWithGender:()=>Que,loadAgeGenderModel:()=>Spe,loadFaceDetectionModel:()=>Npe,loadFaceExpressionModel:()=>Ipe,loadFaceLandmarkModel:()=>vpe,loadFaceLandmarkTinyModel:()=>wpe,loadFaceRecognitionModel:()=>kpe,loadSsdMobilenetv1Model:()=>BA,loadTinyFaceDetectorModel:()=>bpe,loadTinyYolov2Model:()=>xpe,loadWeightMap:()=>i1,locateFaces:()=>Tpe,matchDimensions:()=>Bue,minBbox:()=>G0,nets:()=>tt,nonMaxSuppression:()=>H0,normalize:()=>tr,padToSquare:()=>j0,predictAgeAndGender:()=>ype,recognizeFaceExpressions:()=>gpe,resizeResults:()=>VA,resolveInput:()=>Ro,shuffleArray:()=>Eue,sigmoid:()=>dd,ssdMobilenetv1:()=>LA,tf:()=>Le,tinyFaceDetector:()=>dpe,tinyYolov2:()=>hpe,toNetInput:()=>xt,utils:()=>V0,validateConfig:()=>f1,version:()=>Fpe});var Le={};hh(Le,{Abs:()=>Ml,Acos:()=>Pl,Acosh:()=>Ol,AdadeltaOptimizer:()=>Tf,AdagradOptimizer:()=>Cf,AdamOptimizer:()=>_f,AdamaxOptimizer:()=>Ef,Add:()=>ys,AddN:()=>vi,All:()=>Ll,Any:()=>zl,ArgMax:()=>wi,ArgMin:()=>mc,Asin:()=>Bl,Asinh:()=>Wl,Atan:()=>Vl,Atan2:()=>Gl,Atanh:()=>Ul,AvgPool:()=>ki,AvgPool3D:()=>fc,AvgPool3DGrad:()=>ym,AvgPoolGrad:()=>gm,BackendWasm:()=>tA,BatchMatMul:()=>Ii,BatchToSpaceND:()=>Hl,Bincount:()=>bm,BroadcastArgs:()=>xm,BroadcastTo:()=>EI,Callback:()=>FN,CallbackList:()=>P2,Cast:()=>Si,Ceil:()=>Ni,ClipByValue:()=>bs,Complex:()=>vm,ComplexAbs:()=>gc,Concat:()=>jl,Conv2D:()=>Ti,Conv2DBackpropFilter:()=>wm,Conv2DBackpropInput:()=>Ci,Conv3D:()=>yc,Conv3DBackpropFilterV2:()=>km,Conv3DBackpropInputV2:()=>Im,Cos:()=>_i,Cosh:()=>Ei,CropAndResize:()=>Kl,Cumprod:()=>ql,Cumsum:()=>Ai,CustomCallback:()=>L2,DataStorage:()=>hm,DenseBincount:()=>Sm,DepthToSpace:()=>Xl,DepthwiseConv2dNative:()=>$i,DepthwiseConv2dNativeBackpropFilter:()=>Nm,DepthwiseConv2dNativeBackpropInput:()=>Tm,Diag:()=>Cm,Dilation2D:()=>bc,Dilation2DBackpropFilter:()=>Bh,Dilation2DBackpropInput:()=>zh,ENV:()=>Ex,EarlyStopping:()=>DN,Einsum:()=>_m,Elu:()=>Di,EluGrad:()=>Em,Environment:()=>CI,Equal:()=>Jl,Erf:()=>Yl,Exp:()=>Ri,ExpandDims:()=>Zl,Expm1:()=>Ql,FFT:()=>Am,Fill:()=>xc,FlipLeftRight:()=>eu,Floor:()=>Mi,FloorDiv:()=>Pi,FromPixels:()=>Wh,FusedBatchNorm:()=>Oi,FusedConv2D:()=>ai,FusedDepthwiseConv2D:()=>ri,GPGPUContext:()=>Rh,GatherNd:()=>nu,GatherV2:()=>tu,GraphModel:()=>aT,Greater:()=>au,GreaterEqual:()=>Li,History:()=>O2,IFFT:()=>$m,Identity:()=>zi,Imag:()=>Fm,InputSpec:()=>Bt,IsFinite:()=>ru,IsInf:()=>su,IsNan:()=>iu,KernelBackend:()=>hc,LRN:()=>kc,LRNGrad:()=>Rm,LayerVariable:()=>E2,LayersModel:()=>Er,LeakyRelu:()=>Bi,Less:()=>ou,LessEqual:()=>lu,LinSpace:()=>Dm,Log:()=>Wi,Log1p:()=>uu,LogSoftmax:()=>AI,LogicalAnd:()=>pu,LogicalNot:()=>vc,LogicalOr:()=>wc,MathBackendWebGL:()=>eg,Max:()=>Vi,MaxPool:()=>Gi,MaxPool3D:()=>Ic,MaxPool3DGrad:()=>Pm,MaxPoolGrad:()=>Mm,MaxPoolWithArgmax:()=>Om,Maximum:()=>Ui,Mean:()=>Hi,Min:()=>ji,Minimum:()=>qi,MirrorPad:()=>Ki,Mod:()=>cu,MomentumOptimizer:()=>Af,Multinomial:()=>Lm,Multiply:()=>Xi,Neg:()=>du,NonMaxSuppressionV3:()=>mu,NonMaxSuppressionV4:()=>fu,NonMaxSuppressionV5:()=>gu,NotEqual:()=>hu,OP_SCOPE_SUFFIX:()=>BI,OneHot:()=>Yi,OnesLike:()=>yu,Optimizer:()=>Dr,OptimizerConstructors:()=>Yr,Pack:()=>bu,PadV2:()=>Ji,Pool:()=>PF,Pow:()=>Zi,Prelu:()=>Qi,Prod:()=>eo,RMSPropOptimizer:()=>$f,RNN:()=>yr,Range:()=>Sc,Rank:()=>_b,Real:()=>zm,RealDiv:()=>Fi,Reciprocal:()=>xu,Reduction:()=>In,Relu:()=>to,Relu6:()=>ao,Reshape:()=>vu,ResizeBilinear:()=>no,ResizeBilinearGrad:()=>Wm,ResizeNearestNeighbor:()=>Nc,ResizeNearestNeighborGrad:()=>Bm,Reverse:()=>ro,RotateWithOffset:()=>Pu,Round:()=>so,Rsqrt:()=>io,SGDOptimizer:()=>jc,ScatterNd:()=>wu,Select:()=>ku,Selu:()=>Iu,Sequential:()=>_l,Sigmoid:()=>lo,Sign:()=>Tu,Sin:()=>oo,Sinh:()=>Nu,Slice:()=>Su,Softmax:()=>co,Softplus:()=>Cu,SpaceToBatchND:()=>_u,SparseFillEmptyRows:()=>Tc,SparseReshape:()=>Au,SparseSegmentMean:()=>Cc,SparseSegmentSum:()=>_c,SparseToDense:()=>Vm,SplitV:()=>Eu,Sqrt:()=>uo,Square:()=>Ec,SquaredDifference:()=>ho,Step:()=>vs,StridedSlice:()=>$u,StringNGrams:()=>Um,StringSplit:()=>Gm,StringToHashBucketFast:()=>Hm,Sub:()=>mo,Sum:()=>po,SymbolicTensor:()=>Ua,Tan:()=>fo,Tanh:()=>go,Tensor:()=>Ae,TensorBuffer:()=>jt,Tile:()=>xs,TopK:()=>Fu,Transform:()=>Du,Transpose:()=>yo,Unique:()=>jm,Unpack:()=>Ru,UnsortedSegmentSum:()=>Ac,Variable:()=>is,ZerosLike:()=>Mu,_FusedMatMul:()=>ni,abs:()=>zt,acos:()=>Hx,acosh:()=>jx,add:()=>J,addN:()=>xS,all:()=>Zm,any:()=>tc,argMax:()=>oi,argMin:()=>qx,asin:()=>Kx,asinh:()=>Xx,atan:()=>Yx,atan2:()=>Jx,atanh:()=>Zx,avgPool:()=>ga,avgPool3d:()=>ev,backend:()=>bS,backend_util:()=>_,basicLSTMCell:()=>_M,batchNorm:()=>Ar,batchNorm2d:()=>IS,batchNorm3d:()=>SS,batchNorm4d:()=>NS,batchToSpaceND:()=>Oc,bincount:()=>tv,booleanMaskAsync:()=>R3,broadcastArgs:()=>TS,broadcastTo:()=>bl,broadcast_util:()=>Ou,browser:()=>bo,buffer:()=>He,callbacks:()=>c6,cast:()=>oe,ceil:()=>nv,clipByValue:()=>nn,clone:()=>_r,complex:()=>os,concat:()=>Qe,concat1d:()=>CS,concat2d:()=>_S,concat3d:()=>ES,concat4d:()=>AS,constraints:()=>F2,conv1d:()=>Qm,conv2d:()=>Rt,conv2dTranspose:()=>ef,conv3d:()=>rv,conv3dTranspose:()=>FS,copyRegisteredKernels:()=>BF,cos:()=>Lc,cosh:()=>tf,cosineWindow:()=>Av,cumprod:()=>nc,cumsum:()=>nf,customGrad:()=>cr,data:()=>rT,denseBincount:()=>DS,deprecationWarn:()=>Gx,depthToSpace:()=>sv,depthwiseConv2d:()=>Is,deregisterOp:()=>m6,device_util:()=>Rc,diag:()=>sP,dilation2d:()=>iv,disableDeprecationWarnings:()=>BR,dispose:()=>Re,disposeVariables:()=>WR,div:()=>fe,divNoNan:()=>ov,dot:()=>RS,dropout:()=>t2,einsum:()=>MS,elu:()=>Lu,enableDebugMode:()=>zR,enableProdMode:()=>LR,enclosingPowerOfTwo:()=>n2,engine:()=>sr,env:()=>X,equal:()=>ea,erf:()=>lv,exp:()=>gn,expandDims:()=>mn,expm1:()=>uv,eye:()=>pv,fft:()=>Gc,fill:()=>_n,findBackend:()=>KR,findBackendFactory:()=>XR,floor:()=>zu,floorDiv:()=>Jm,forceHalfFloat:()=>I_,fused:()=>us,gather:()=>ui,gatherND:()=>e2,gather_util:()=>Lx,getBackend:()=>jR,getGradient:()=>Tb,getKernel:()=>Vh,getKernelsForBackend:()=>Uh,getThreadsCount:()=>gue,gpgpu_util:()=>t_,grad:()=>RP,grads:()=>MP,greater:()=>Gn,greaterEqual:()=>Ss,ifft:()=>Nl,imag:()=>af,image:()=>Ln,inTopKAsync:()=>H3,initializers:()=>D2,input:()=>Z2,io:()=>Qt,irfft:()=>bf,isFinite:()=>PS,isInf:()=>OS,isNaN:()=>cv,keep:()=>en,kernel_impls:()=>gr,layers:()=>R2,leakyRelu:()=>zc,less:()=>rf,lessEqual:()=>Ns,linalg:()=>d2,linspace:()=>LS,loadGraphModel:()=>yH,loadLayersModel:()=>wU,localResponseNormalization:()=>dv,log:()=>ta,log1p:()=>Bc,logSigmoid:()=>BS,logSoftmax:()=>of,logSumExp:()=>fv,logicalAnd:()=>_a,logicalNot:()=>Wc,logicalOr:()=>lf,logicalXor:()=>GS,losses:()=>Cz,matMul:()=>De,math:()=>eS,max:()=>Ta,maxPool:()=>Pt,maxPool3d:()=>gv,maxPoolWithArgmax:()=>HS,maximum:()=>fr,mean:()=>Et,memory:()=>jh,meshgrid:()=>aO,metrics:()=>EN,min:()=>ac,minimum:()=>Bu,mirrorPad:()=>yv,mod:()=>bv,model:()=>xU,models:()=>AN,moments:()=>uf,movingAverage:()=>O3,mul:()=>z,multiRNNCell:()=>cO,multinomial:()=>jS,neg:()=>St,nextFrame:()=>Dv,norm:()=>wf,notEqual:()=>ci,oneHot:()=>Il,ones:()=>Zn,onesLike:()=>na,op:()=>B,outerProduct:()=>gO,pad:()=>ya,pad1d:()=>xO,pad2d:()=>wO,pad3d:()=>IO,pad4d:()=>NO,pool:()=>qS,pow:()=>$r,prelu:()=>Uc,print:()=>YI,prod:()=>pf,profile:()=>VR,rand:()=>RO,randomGamma:()=>LO,randomNormal:()=>KS,randomUniform:()=>Wu,range:()=>Sl,ready:()=>HR,real:()=>rc,reciprocal:()=>wv,registerBackend:()=>Ym,registerCallbackConstructor:()=>kU,registerGradient:()=>$I,registerKernel:()=>$c,registerOp:()=>h6,regularizers:()=>$N,relu:()=>Xe,relu6:()=>cf,removeBackend:()=>qR,reshape:()=>W,reverse:()=>aa,reverse1d:()=>qO,reverse2d:()=>XO,reverse3d:()=>JO,reverse4d:()=>QO,rfft:()=>Hc,round:()=>df,rsqrt:()=>hf,scalar:()=>we,scatterND:()=>QS,scatter_util:()=>zx,selu:()=>mf,separableConv2d:()=>vo,sequential:()=>vU,serialization:()=>se,setBackend:()=>GR,setPlatform:()=>YR,setThreadsCount:()=>fue,setWasmPath:()=>hue,setWasmPaths:()=>mue,setWebGLContext:()=>NC,setdiff1dAsync:()=>XS,sigmoid:()=>ma,sign:()=>kv,signal:()=>Tz,sin:()=>ff,sinh:()=>gf,slice:()=>Ge,slice1d:()=>yf,slice2d:()=>Iv,slice3d:()=>Vu,slice4d:()=>sc,slice_util:()=>qt,softmax:()=>Ja,softplus:()=>xo,spaceToBatchND:()=>Vc,sparse:()=>Lp,sparseToDense:()=>Ev,spectral:()=>Nz,split:()=>zn,sqrt:()=>un,square:()=>ut,squaredDifference:()=>xf,squeeze:()=>dr,stack:()=>Mt,step:()=>Uu,stridedSlice:()=>Sv,string:()=>Ch,sub:()=>ce,sum:()=>be,sumOutType:()=>Km,tan:()=>Nv,tanh:()=>li,tensor:()=>Qn,tensor1d:()=>qe,tensor2d:()=>Ha,tensor3d:()=>Xm,tensor4d:()=>Za,tensor5d:()=>N3,tensor6d:()=>T3,tensor_util:()=>Ga,test_util:()=>fS,tidy:()=>O,tile:()=>On,time:()=>UR,topk:()=>Tv,train:()=>Gs,transpose:()=>$e,truncatedNormal:()=>vf,unique:()=>Kh,unregisterGradient:()=>zF,unregisterKernel:()=>LF,unsortedSegmentSum:()=>Cv,unstack:()=>mt,upcastType:()=>fa,util:()=>k,valueAndGrad:()=>PP,valueAndGrads:()=>OP,variable:()=>YS,variableGrads:()=>zS,version:()=>Cue,version_converter:()=>bH,version_core:()=>OR,version_layers:()=>tw,version_wasm:()=>yue,version_webgl:()=>C9,webgl:()=>_9,webgl_util:()=>SC,where:()=>fn,whereAsync:()=>_v,zeros:()=>kt,zerosLike:()=>Ke});var V$=Object.create,Sx=Object.defineProperty,U$=Object.getOwnPropertyDescriptor,G$=Object.getOwnPropertyNames,H$=Object.getPrototypeOf,j$=Object.prototype.hasOwnProperty,ft=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)Sx(e,n,{get:t[n],enumerable:!0})},q$=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of G$(t))!j$.call(e,r)&&r!==n&&Sx(e,r,{get:()=>t[r],enumerable:!(a=U$(t,r))||a.enumerable});return e},bi=(e,t,n)=>(n=e!=null?V$(H$(e)):{},q$(t||!e||!e.__esModule?Sx(n,"default",{value:e,enumerable:!0}):n,e)),K$=ft((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,V){this.low=S|0,this.high=M|0,this.unsigned=!!V}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var V,j,q;return M?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(V=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=V),V)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(V=u(S,S<0?-1:0,!1),q&&(s[S]=V),V))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?v:x;if(M){if(S<0)return v;if(S>=g)return $}else{if(S<=-y)return P;if(S+1>=y)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,V){return new a(S,M,V)}a.fromBits=u;var p=Math.pow;function d(S,M,V){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(V=M,M=!1):M=!!M,V=V||10,V<2||36<V)throw RangeError("radix");var j;if((j=S.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return d(S.substring(1),M,V).neg();for(var q=l(p(V,8)),K=x,Q=0;Q<S.length;Q+=8){var ee=Math.min(8,S.length-Q),re=parseInt(S.substring(Q,Q+ee),V);if(ee<8){var Z=l(p(V,ee));K=K.mul(Z).add(l(re))}else K=K.mul(q),K=K.add(l(re))}return K.unsigned=M,K}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,b=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var w=o(1);a.ONE=w;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var $=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=$;var P=u(0,-2147483648,!1);a.MIN_VALUE=P;var F=a.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(S),V=this.div(M),j=V.mul(M).sub(this);return V.toString(S)+j.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var q=l(p(S,6),this.unsigned),K=this,Q="";;){var ee=K.div(q),re=K.sub(ee.mul(q)).toInt()>>>0,Z=re.toString(S);if(K=ee,K.isZero())return Z+Q;for(;Z.length<6;)Z="0"+Z;Q=""+Z+Q}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},F.eq=F.equals,F.notEquals=function(S){return!this.eq(S)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(S){return this.comp(S)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(S){return this.comp(S)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(S){return this.comp(S)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(S){return this.comp(S)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),V=S.isNegative();return M&&!V?-1:!M&&V?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(w)},F.neg=F.negate,F.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,V=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Q=S.high&65535,ee=S.low>>>16,re=S.low&65535,Z=0,ie=0,ae=0,le=0;return le+=q+re,ae+=le>>>16,le&=65535,ae+=j+ee,ie+=ae>>>16,ae&=65535,ie+=V+Q,Z+=ie>>>16,ie&=65535,Z+=M+K,Z&=65535,u(ae<<16|le,Z<<16|ie,this.unsigned)},F.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},F.sub=F.subtract,F.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(P))return S.isOdd()?P:x;if(S.eq(P))return this.isOdd()?P:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Q=S.high>>>16,ee=S.high&65535,re=S.low>>>16,Z=S.low&65535,ie=0,ae=0,le=0,ue=0;return ue+=K*Z,le+=ue>>>16,ue&=65535,le+=q*Z,ae+=le>>>16,le&=65535,le+=K*re,ae+=le>>>16,le&=65535,ae+=j*Z,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*ee,ie+=ae>>>16,ae&=65535,ie+=V*Z+j*re+q*ee+K*Q,ie&=65535,u(le<<16|ue,ie<<16|ae,this.unsigned)},F.mul=F.multiply,F.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var V,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(P)){if(S.eq(w)||S.eq(C))return P;if(S.eq(P))return w;var K=this.shr(1);return V=K.div(S).shl(1),V.eq(x)?S.isNegative()?w:C:(j=this.sub(S.mul(V)),q=V.add(j.div(S)),q)}else if(S.eq(P))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){V=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Q=Math.ceil(Math.log(V)/Math.LN2),ee=Q<=48?1:p(2,Q-48),re=l(V),Z=re.mul(S);Z.isNegative()||Z.gt(j);)V-=ee,re=l(V,this.unsigned),Z=re.mul(S);re.isZero()&&(re=w),q=q.add(re),j=j.sub(Z)}return q},F.div=F.divide,F.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},F.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},F.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},F.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var V=this.low;return u(V>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},F.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,V){return V?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),X$=ft(()=>{}),Y$=ft(()=>{}),J$=ft((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=d.toString();for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Z$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),eF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hI=ft(()=>{}),aF=ft((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),p=a.pow(2,o),d=p*2,c=s-1,h;function m(w,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[w,v(n)]:w==null?x():w,3),E),P=new f(E),F=function(){for(var S=P.g(i),M=u,V=0;S<p;)S=(S+V)*s,M*=s,V=P.g(1);for(;S>=d;)S/=2,M/=2,V>>>=1;return(S+V)/M};return F.int32=function(){return P.g(4)|0},F.quick=function(){return P.g(4)/4294967296},F.double=F,b(v(P.S),n),(T.pass||C||function(S,M,V,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),V?(a[l]=S,M):S})(F,$,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(w){var T,C=w.length,E=this,$=0,P=E.i=E.j=0,F=E.S=[];for(C||(w=[C++]);$<s;)F[$]=$++;for($=0;$<s;$++)F[$]=F[P=c&P+w[$%C]+(T=F[$])],F[P]=T;(E.g=function(S){for(var M,V=0,j=E.i,q=E.j,K=E.S;S--;)M=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return E.i=j,E.j=q,V})(s)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function y(w,T){var C=[],E=typeof w,$;if(T&&E=="object")for($ in w)try{C.push(y(w[$],T-1))}catch(P){}return C.length?C:E=="string"?w:w+"\0"}function b(w,T){for(var C=w+"",E,$=0;$<C.length;)T[c&$]=c&(E^=T[c&$]*19)+C.charCodeAt($++);return v(T)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(s):(w=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(w)),v(w)}catch(E){var T=r.navigator,C=T&&T.plugins;return[+new Date,r,C,r.screen,v(n)]}}function v(w){return String.fromCharCode.apply(0,w)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=hI()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),mI=ft((e,t)=>{var n=J$(),a=Z$(),r=Q$(),s=eF(),i=tF(),o=nF(),l=aF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),rF=ft((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),iF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),oF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uF=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pF=ft((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(w,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[w,v(a)]:w==null?x():w,3),E),P=new f(E),F=function(){for(var S=P.g(i),M=u,V=0;S<p;)S=(S+V)*s,M*=s,V=P.g(1);for(;S>=d;)S/=2,M/=2,V>>>=1;return(S+V)/M};return F.int32=function(){return P.g(4)|0},F.quick=function(){return P.g(4)/4294967296},F.double=F,b(v(P.S),a),(T.pass||C||function(S,M,V,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),V?(r[l]=S,M):S})(F,$,"global"in T?T.global:this==r,T.state)}function f(w){var T,C=w.length,E=this,$=0,P=E.i=E.j=0,F=E.S=[];for(C||(w=[C++]);$<s;)F[$]=$++;for($=0;$<s;$++)F[$]=F[P=c&P+w[$%C]+(T=F[$])],F[P]=T;(E.g=function(S){for(var M,V=0,j=E.i,q=E.j,K=E.S;S--;)M=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return E.i=j,E.j=q,V})(s)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function y(w,T){var C=[],E=typeof w,$;if(T&&E=="object")for($ in w)try{C.push(y(w[$],T-1))}catch(P){}return C.length?C:E=="string"?w:w+"\0"}function b(w,T){for(var C=w+"",E,$=0;$<C.length;)T[c&$]=c&(E^=T[c&$]*19)+C.charCodeAt($++);return v(T)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),v(w)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,v(a)]}}function v(w){return String.fromCharCode.apply(0,w)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=hI()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),fI=ft((e,t)=>{var n=rF(),a=sF(),r=iF(),s=oF(),i=lF(),o=uF(),l=pF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),gI=ft(()=>{}),Nx=ft(()=>{}),Ph=ft(()=>{}),cF=ft(()=>{}),dF=ft(()=>{}),hF=ft(()=>{}),mF=ft((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=xn&&Ra(Te.buffer),Dd}function i(){return Te.buffer!=xn&&Ra(Te.buffer),Rd}function o(){return Te.buffer!=xn&&Ra(Te.buffer),vp}function l(){return Te.buffer!=xn&&Ra(Te.buffer),Md}function u(){return Te.buffer!=xn&&Ra(Te.buffer),Pd}function p(){return Te.buffer!=xn&&Ra(Te.buffer),Od}function d(){return Te.buffer!=xn&&Ra(Te.buffer),Ld}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",w=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function $(N){return c.locateFile?c.locateFile(N,E):E+N}var P,F,S,M;function V(N){N instanceof Ap||Z("exiting due to exception: "+N)}var j,q,K;if(T){w?E=Ph().dirname(E)+"/":E=__dirname+"/",K=()=>{q||(j=Nx(),q=Ph())},P=function(D,U){return K(),D=q.normalize(D),j.readFileSync(D,U?void 0:"utf8")},S=D=>{var U=P(D,!0);return U.buffer||(U=new Uint8Array(U)),U},F=(D,U,Y)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,he){pe?Y(pe):U(he.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof Ap))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,U)=>{if(Ps())throw process.exitCode=D,U;V(U),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=cF()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},w&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),F=(N,D,U)=>{var Y=new XMLHttpRequest;Y.open("GET",N,!0),Y.responseType="arraybuffer",Y.onload=()=>{if(Y.status==200||Y.status==0&&Y.response){D(Y.response);return}U()},Y.onerror=U,Y.send(null)}),M=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=dF().performance);var Q=console.log.bind(console),ee=console.warn.bind(console);T&&(K(),Q=N=>j.writeSync(1,N+`
|
|
`),ee=N=>j.writeSync(2,N+`
|
|
`));var re=c.print||Q,Z=c.printErr||ee;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(N){ae.shown||(ae.shown={}),ae.shown[N]||(ae.shown[N]=1,Z(N))}function le(N,D){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Y={parameters:[],results:D[0]=="v"?[]:[U[D[0]]]},pe=1;pe<D.length;++pe)Y.parameters.push(U[D[pe]]);return new WebAssembly.Function(Y,N)}var he=[1,0,1,96],ve=D.slice(0,1),Ce=D.slice(1),_t={i:127,j:126,f:125,d:124};he.push(Ce.length);for(var pe=0;pe<Ce.length;++pe)he.push(_t[Ce[pe]]);ve=="v"?he.push(0):he=he.concat([1,_t[ve]]),he[1]=he.length-2;var La=new Uint8Array([0,97,115,109,1,0,0,0].concat(he,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),za=new WebAssembly.Module(La),dh=new WebAssembly.Instance(za,{e:{f:N}}),$p=dh.exports.f;return $p}var ue=[],ke;function ye(){if(ue.length)return ue.pop();try{la.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return la.length-1}function Ie(N,D){for(var U=N;U<N+D;U++){var Y=tl(U);Y&&ke.set(Y,U)}}var Ee=0,Fe=N=>{Ee=N},Be=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,nt;c.wasmBinary&&(nt=c.wasmBinary);var at=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Zo("no native wasm support detected");var Te,gt,ct=!1,bn;function Yt(N,D){N||Zo(D)}function Dn(N){var D=c["_"+N];return D}function Ut(N,D,U,Y,pe){var he={string:function(ua){var ll=0;if(ua!=null&&ua!==0){var L1=(ua.length<<2)+1;ll=ol(L1),Rs(ua,ll,L1)}return ll},array:function(ua){var ll=ol(ua.length);return kr(ua,ll),ll}};function ve(ua){return D==="string"?oa(ua):D==="boolean"?Boolean(ua):ua}var Ce=Dn(N),_t=[],La=0;if(Y)for(var za=0;za<Y.length;za++){var dh=he[U[za]];dh?(La===0&&(La=lb()),_t[za]=dh(Y[za])):_t[za]=Y[za]}var $p=Ce.apply(null,_t);function M$(ua){return La!==0&&lh(La),ve(ua)}return $p=M$($p),$p}function Jt(N,D,U,Y){U=U||[];var pe=U.every(function(ve){return ve==="number"}),he=D!=="string";return he&&pe&&!Y?Dn(N):function(){return Ut(N,D,U,arguments,Y)}}var Da=1;function Rn(N){var D=new TextDecoder(N);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),D.decode.call(D,U))}var Gt=typeof TextDecoder!="undefined"?new Rn("utf8"):void 0;function ia(N,D,U){for(var Y=D+U,pe=D;N[pe]&&!(pe>=Y);)++pe;if(pe-D>16&&N.subarray&&Gt)return Gt.decode(N.subarray(D,pe));for(var he="";D<pe;){var ve=N[D++];if(!(ve&128)){he+=String.fromCharCode(ve);continue}var Ce=N[D++]&63;if((ve&224)==192){he+=String.fromCharCode((ve&31)<<6|Ce);continue}var _t=N[D++]&63;if((ve&240)==224?ve=(ve&15)<<12|Ce<<6|_t:ve=(ve&7)<<18|Ce<<12|_t<<6|N[D++]&63,ve<65536)he+=String.fromCharCode(ve);else{var La=ve-65536;he+=String.fromCharCode(55296|La>>10,56320|La&1023)}}return he}function oa(N,D){return N?ia(i(),N,D):""}function Hr(N,D,U,Y){if(!(Y>0))return 0;for(var pe=U,he=U+Y-1,ve=0;ve<N.length;++ve){var Ce=N.charCodeAt(ve);if(Ce>=55296&&Ce<=57343){var _t=N.charCodeAt(++ve);Ce=65536+((Ce&1023)<<10)|_t&1023}if(Ce<=127){if(U>=he)break;D[U++]=Ce}else if(Ce<=2047){if(U+1>=he)break;D[U++]=192|Ce>>6,D[U++]=128|Ce&63}else if(Ce<=65535){if(U+2>=he)break;D[U++]=224|Ce>>12,D[U++]=128|Ce>>6&63,D[U++]=128|Ce&63}else{if(U+3>=he)break;D[U++]=240|Ce>>18,D[U++]=128|Ce>>12&63,D[U++]=128|Ce>>6&63,D[U++]=128|Ce&63}}return D[U]=0,U-pe}function Rs(N,D,U){return Hr(N,i(),D,U)}function Fd(N){for(var D=0,U=0;U<N.length;++U){var Y=N.charCodeAt(U);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|N.charCodeAt(++U)&1023),Y<=127?++D:Y<=2047?D+=2:Y<=65535?D+=3:D+=4}return D}var jr=typeof TextDecoder!="undefined"?new Rn("utf-16le"):void 0;function kr(N,D){s().set(N,D)}function xp(N,D,U){for(var Y=0;Y<N.length;++Y)s()[D++>>0]=N.charCodeAt(Y);U||(s()[D>>0]=0)}function Yo(N,D){return N%D>0&&(N+=D-N%D),N}var xn,Dd,Rd,vp,Md,Pd,b1,Od,Ld;C&&(xn=c.buffer);function Ra(N){xn=N,c.HEAP8=Dd=new Int8Array(N),c.HEAP16=vp=new Int16Array(N),c.HEAP32=Pd=new Int32Array(N),c.HEAPU8=Rd=new Uint8Array(N),c.HEAPU16=Md=new Uint16Array(N),c.HEAPU32=b1=new Uint32Array(N),c.HEAPF32=Od=new Float32Array(N),c.HEAPF64=Ld=new Float64Array(N)}var zd=c.INITIAL_MEMORY||16777216;if(C)Te=c.wasmMemory,xn=c.buffer;else if(c.wasmMemory)Te=c.wasmMemory;else if(Te=new WebAssembly.Memory({initial:zd/65536,maximum:32768,shared:!0}),!(Te.buffer instanceof SharedArrayBuffer))throw Z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Te&&(xn=Te.buffer),zd=xn.byteLength,Ra(xn);var la,Jo=[],qr=[],Dg=[],Bd=[],Ms=!1,Rg=!1,Wd=0;function Ps(){return at||Wd>0}function vn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)x1(c.preRun.shift());Hd(Jo)}function wp(){Ms=!0,!C&&Hd(qr)}function Mg(){C||(_e.terminateAllThreads(),Rg=!0)}function Pg(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)kp(c.postRun.shift());Hd(Bd)}}function x1(N){Jo.unshift(N)}function v1(N){qr.unshift(N)}function kp(N){Bd.unshift(N)}var Kr=0,Vd=null,Ma=null;function Ip(N){Kr++,c.monitorRunDependencies&&c.monitorRunDependencies(Kr)}function w1(N){if(Kr--,c.monitorRunDependencies&&c.monitorRunDependencies(Kr),Kr==0&&(Vd!==null&&(clearInterval(Vd),Vd=null),Ma)){var D=Ma;Ma=null,D()}}c.preloadedImages={},c.preloadedAudios={};function Zo(N){C?postMessage({cmd:"onAbort",arg:N}):c.onAbort&&c.onAbort(N),N="Aborted("+N+")",Z(N),ct=!0,bn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw m(D),D}var Og="data:application/octet-stream;base64,";function Sp(N){return N.startsWith(Og)}function Ud(N){return N.startsWith("file://")}var wn;wn="tfjs-backend-wasm-threaded-simd.wasm",Sp(wn)||(wn=$(wn));function Gd(N){try{if(N==wn&&nt)return new Uint8Array(nt);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(D){Zo(D)}}function Qo(){if(!nt&&(v||w)){if(typeof fetch=="function"&&!Ud(wn))return fetch(wn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+wn+"'";return N.arrayBuffer()}).catch(function(){return Gd(wn)});if(F)return new Promise(function(N,D){F(wn,function(U){N(new Uint8Array(U))},D)})}return Promise.resolve().then(function(){return Gd(wn)})}function Lg(){var N={env:ah,wasi_snapshot_preview1:ah};function D(ve,Ce){var _t=ve.exports;if(c.asm=_t,Hg(c.asm.emscripten_tls_init),la=c.asm.__indirect_function_table,v1(c.asm.__wasm_call_ctors),gt=Ce,!C){var La=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(za){_e.loadWasmModuleToWorker(za,function(){--La||w1("wasm-instantiate")})})}}C||Ip("wasm-instantiate");function U(ve){D(ve.instance,ve.module)}function Y(ve){return Qo().then(function(Ce){return WebAssembly.instantiate(Ce,N)}).then(function(Ce){return Ce}).then(ve,function(Ce){Z("failed to asynchronously prepare wasm: "+Ce),Zo(Ce)})}function pe(){return!nt&&typeof WebAssembly.instantiateStreaming=="function"&&!Sp(wn)&&!Ud(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(ve){var Ce=WebAssembly.instantiateStreaming(ve,N);return Ce.then(U,function(_t){return Z("wasm streaming compile failed: "+_t),Z("falling back to ArrayBuffer instantiation"),Y(U)})}):Y(U)}if(c.instantiateWasm)try{var he=c.instantiateWasm(N,D);return he}catch(ve){return Z("Module.instantiateWasm callback failed with error: "+ve),!1}return pe().catch(m),{}}var k1,I1,zg={};function Hd(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var U=D.func;typeof U=="number"?D.arg===void 0?tl(U)():tl(U)(D.arg):U(D.arg===void 0?null:D.arg)}}function el(N){var D=lb(),U=N();return lh(D),U}function UA(N){return N}function S1(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(U){var Y=U;return U===Y?U:Y+" ["+U+"]"})}function Bg(N){u()[N>>2]=0;var D=_e.pthreads[N];delete _e.pthreads[N],D.worker.terminate(),ob(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function Wg(N){var D=_e.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function jd(N){var D=_e.pthreads[N];if(D){u()[N>>2]=0;var U=D.worker;_e.returnWorkerToPool(U)}}function qd(N){F$(N)}function Vg(N){if(N instanceof Ap||N=="unwind")return bn;x(1,N)}var _e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){C?_e.initWorker():_e.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)_e.allocateUnusedWorker()},initWorker:function(){at=!1},pthreads:{},setExitStatus:function(N){bn=N},terminateAllThreads:function(){for(var N in _e.pthreads){var D=_e.pthreads[N];D&&D.worker&&_e.returnWorkerToPool(D.worker)}for(var U=0;U<_e.unusedWorkers.length;++U){var Y=_e.unusedWorkers[U];Y.terminate()}_e.unusedWorkers=[]},returnWorkerToPool:function(N){_e.runWithoutMainThreadQueuedCalls(function(){delete _e.pthreads[N.pthread.threadInfoStruct],_e.unusedWorkers.push(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(N),1),ob(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[O1>>2]=0;try{N()}finally{u()[O1>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in _e.tlsInitFunctions)_e.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=U=>{var Y=U.data,pe=Y.cmd;if(N.pthread&&(_e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=oh()){var he=_e.pthreads[Y.targetThread];he?he.worker.postMessage(Y,Y.transferList):Z('Internal error! Worker sent a message "'+pe+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?F1():pe==="spawnThread"?Xd(Y):pe==="cleanupThread"?jd(Y.thread):pe==="killThread"?Bg(Y.thread):pe==="cancelThread"?Wg(Y.thread):pe==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):pe==="print"?re("Thread "+Y.threadId+": "+Y.text):pe==="printErr"?Z("Thread "+Y.threadId+": "+Y.text):pe==="alert"?alert("Thread "+Y.threadId+": "+Y.text):Y.target==="setimmediate"?N.postMessage(Y):pe==="onAbort"?c.onAbort&&c.onAbort(Y.arg):Z("worker sent an unknown command "+pe),_e.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Y="worker sent an error!";throw Z(Y+" "+U.filename+":"+U.lineno+": "+U.message),U},T&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Te,wasmModule:gt})},allocateUnusedWorker:function(){var N=$("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.pop()}};function Ug(){var N=oh(),D=u()[N+44>>2],U=u()[N+48>>2],Y=D-U;P1(D,Y),lh(D)}c.establishStackSpace=Ug;function Kd(N){if(C)return zs(1,0,N);try{qd(N)}catch(D){Vg(D)}}var Os=[];function tl(N){var D=Os[N];return D||(N>=Os.length&&(Os.length=N+1),Os[N]=D=la.get(N)),D}function Gg(N,D){return tl(N)(D)}c.invokeEntryPoint=Gg;function N1(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function Hg(N,D,U){_e.tlsInitFunctions.push(N)}function T1(N,D){la.set(N,D),Os[N]=D}var Ls;T?Ls=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:C?Ls=()=>performance.now()-c.__performance_now_clock_drift:Ls=()=>performance.now();var jg=!0;function qg(N){return u()[$1()>>2]=N,N}function Kg(N,D){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&jg)U=Ls();else return qg(28),-1;return u()[D>>2]=U/1e3|0,u()[D+4>>2]=U%1e3*1e3*1e3|0,0}function Xg(N,D){return Kg(N,D)}function Yg(N){D1(N,!w,1,!v),_e.threadInit()}function Jg(N){C?postMessage({cmd:"cleanupThread",thread:N}):jd(N)}function Xd(N){var D=_e.getNewWorker();if(!D)return 6;_e.runningWorkers.push(D);var U=_e.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=U;var Y={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{Y.time=performance.now(),D.postMessage(Y,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function Zg(N,D,U,Y){if(typeof SharedArrayBuffer=="undefined")return Z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],he=0;if(C&&(pe.length===0||he))return R1(687865856,N,D,U,Y);if(he)return he;var ve={startRoutine:U,pthread_ptr:N,arg:Y,transferList:pe};return C?(ve.cmd="spawnThread",postMessage(ve,pe),0):Xd(ve)}function Qg(){return 2097152}function ey(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=_e.pthreads[N],Y=U&&U.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function ty(){Zo("")}function ny(){T||w||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Yd(){return 2147483648}function ay(N,D,U){i().copyWithin(N,D,D+U)}function ry(){return T?hF().cpus().length:navigator.hardwareConcurrency}function zs(N,D){var U=arguments.length-2,Y=arguments;return el(function(){for(var pe=U,he=ol(pe*8),ve=he>>3,Ce=0;Ce<U;Ce++){var _t=Y[2+Ce];d()[ve+Ce]=_t}return M1(N,pe,he,D)})}var Np=[];function sy(N,D,U){Np.length=D;for(var Y=U>>3,pe=0;pe<D;pe++)Np[pe]=d()[Y+pe];var he=N<0,ve=he?zg[-N-1]:Sy[N];return ve.apply(null,Np)}function iy(N){try{return Te.grow(N-xn.byteLength+65535>>>16),Ra(Te.buffer),1}catch(D){}}function oy(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var U=Yd();if(N>U)return!1;for(var Y=1;Y<=4;Y*=2){var pe=D*(1+.2/Y);pe=Math.min(pe,N+100663296);var he=Math.min(U,Yo(Math.max(N,pe),65536)),ve=iy(he);if(ve)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ve.eventHandlers.length-1;N>=0;--N)Ve._removeHandler(N);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(Dg.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,U){function Y(ve,Ce){if(ve.length!=Ce.length)return!1;for(var _t in ve)if(ve[_t]!=Ce[_t])return!1;return!0}for(var pe in Ve.deferredCalls){var he=Ve.deferredCalls[pe];if(he.targetFunction==N&&Y(he.argsList,U))return}Ve.deferredCalls.push({targetFunction:N,precedence:D,argsList:U}),Ve.deferredCalls.sort(function(ve,Ce){return ve.precedence<Ce.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Ve.deferredCalls.length;++D)Ve.deferredCalls[D].targetFunction==N&&(Ve.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Ve.inEventHandler&&Ve.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ve.canPerformEventHandlerRequests())for(var N=0;N<Ve.deferredCalls.length;++N){var D=Ve.deferredCalls[N];Ve.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var U=0;U<Ve.eventHandlers.length;++U)Ve.eventHandlers[U].target==N&&(!D||D==Ve.eventHandlers[U].eventTypeString)&&Ve._removeHandler(U--)},_removeHandler:function(N){var D=Ve.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Ve.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(Y){++Ve.inEventHandler,Ve.currentEventHandler=N,Ve.runDeferredCalls(),N.handlerFunc(Y),Ve.runDeferredCalls(),--Ve.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Ve.eventHandlers.push(N),Ve.registerRemoveEventListeners();else for(var U=0;U<Ve.eventHandlers.length;++U)Ve.eventHandlers[U].target==N.target&&Ve.eventHandlers[U].eventTypeString==N.eventTypeString&&Ve._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(N,D,U,Y,pe){el(function(){var he=ol(12);u()[he>>2]=U,u()[he+4>>2]=Y,u()[he+8>>2]=pe,ib(N,637534208,D,Y,he)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ly(N){var D=Fd(N)+1,U=sb(D);return Rs(N,U,D),U}function uy(N,D,U,Y){el(function(){var pe=ol(12),he=0;D&&(he=ly(D)),u()[pe>>2]=he,u()[pe+4>>2]=U,u()[pe+8>>2]=Y,ib(N,657457152,0,he,pe)})}function py(N,D,U,Y){D=D?oa(D):"",uy(N,D,U,Y)}function cy(N){return N>2?oa(N):N}var dy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function hy(N){N=cy(N);var D=dy[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function Tp(N){return hy(N)}function Jd(N,D,U){var Y=Tp(N);if(!Y)return-4;if(Y.canvasSharedPtr&&(u()[Y.canvasSharedPtr>>2]=D,u()[Y.canvasSharedPtr+4>>2]=U),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var pe=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var he=Y.GLctxObject.GLctx.getParameter(2978);pe=he[0]===0&&he[1]===0&&he[2]===Y.width&&he[3]===Y.height}Y.width=D,Y.height=U,pe&&Y.GLctxObject.GLctx.viewport(0,0,D,U)}else if(Y.canvasSharedPtr){var ve=u()[Y.canvasSharedPtr+8>>2];return py(ve,N,D,U),1}else return-4;return 0}function Zd(N,D,U){return C?zs(2,1,N,D,U):Jd(N,D,U)}function my(N,D,U){var Y=Tp(N);return Y?Jd(N,D,U):Zd(N,D,U)}function fy(){throw"unwind"}function gy(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(U,Y){D.vertexAttribDivisorANGLE(U,Y)},N.drawArraysInstanced=function(U,Y,pe,he){D.drawArraysInstancedANGLE(U,Y,pe,he)},N.drawElementsInstanced=function(U,Y,pe,he,ve){D.drawElementsInstancedANGLE(U,Y,pe,he,ve)},1}function yy(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(U){D.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){D.bindVertexArrayOES(U)},N.isVertexArray=function(U){return D.isVertexArrayOES(U)},1}function by(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(U,Y){D.drawBuffersWEBGL(U,Y)},1}function xy(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Ct={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){Ct.lastError||(Ct.lastError=N)},getNewId:function(N){for(var D=Ct.counter++,U=N.length;U<D;U++)N[U]=null;return D},getSource:function(N,D,U,Y){for(var pe="",he=0;he<D;++he){var ve=Y?u()[Y+he*4>>2]:-1;pe+=oa(u()[U+he*4>>2],ve<0?void 0:ve)}return pe},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(pe,he){var ve=N.getContextSafariWebGL2Fixed(pe,he);return pe=="webgl"==ve instanceof WebGLRenderingContext?ve:null});var U=N.getContext("webgl",D);if(!U)return 0;var Y=Ct.registerContext(U,D);return Y},registerContext:function(N,D){var U=sb(8);u()[U+4>>2]=oh();var Y={handle:U,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Y),Ct.contexts[U]=Y,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&Ct.initExtensions(Y),U},makeContextCurrent:function(N){return Ct.currentContext=Ct.contexts[N],c.ctx=nh=Ct.currentContext&&Ct.currentContext.GLctx,!(N&&!nh)},getContext:function(N){return Ct.contexts[N]},deleteContext:function(N){Ct.currentContext===Ct.contexts[N]&&(Ct.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(Ct.contexts[N].GLctx.canvas),Ct.contexts[N]&&Ct.contexts[N].GLctx.canvas&&(Ct.contexts[N].GLctx.canvas.GLctxObject=void 0),A1(Ct.contexts[N].handle),Ct.contexts[N]=null},initExtensions:function(N){if(N||(N=Ct.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;gy(D),yy(D),by(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),xy(D);var U=D.getSupportedExtensions()||[];U.forEach(function(Y){!Y.includes("lose_context")&&!Y.includes("debug")&&D.getExtension(Y)})}}},vy=["default","low-power","high-performance"];function wy(N,D){var U=D>>2,Y=u()[U+6],pe={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:vy[Y],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},he=Tp(N);if(!he||pe.explicitSwapControl)return 0;var ve=Ct.createContext(he,pe);return ve}function ky(N,D){return wy(N,D)}var nl={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var U=nl.buffers[N];D===0||D===10?((N===1?re:Z)(ia(U,0)),U.length=0):U.push(D)},varargs:void 0,get:function(){nl.varargs+=4;var N=u()[nl.varargs-4>>2];return N},getStr:function(N){var D=oa(N);return D},get64:function(N,D){return N}};function Qd(N){return C?zs(3,1,N):0}function eh(N,D,U,Y,pe){if(C)return zs(4,1,N,D,U,Y,pe)}function th(N,D,U,Y){if(C)return zs(5,1,N,D,U,Y);for(var pe=0,he=0;he<U;he++){var ve=u()[D>>2],Ce=u()[D+4>>2];D+=8;for(var _t=0;_t<Ce;_t++)nl.printChar(N,i()[ve+_t]);pe+=Ce}return u()[Y>>2]=pe,0}function Iy(N){Fe(N)}_e.init();var nh,Sy=[null,Kd,Zd,Qd,eh,th],C1=!1,ah={__clock_gettime:Xg,__emscripten_init_main_thread_js:Yg,__emscripten_thread_cleanup:Jg,__pthread_create_js:Zg,_emscripten_default_pthread_stack_size:Qg,_emscripten_notify_thread_queue:ey,abort:ty,emscripten_check_blocking_allowed:ny,emscripten_get_heap_max:Yd,emscripten_get_now:Ls,emscripten_memcpy_big:ay,emscripten_num_logical_cores:ry,emscripten_receive_on_main_thread_js:sy,emscripten_resize_heap:oy,emscripten_set_canvas_element_size:my,emscripten_unwind_to_js_event_loop:fy,emscripten_webgl_create_context:ky,exit:qd,fd_close:Qd,fd_seek:eh,fd_write:th,memory:Te||c.wasmMemory,setTempRet0:Iy},_1=Lg(),Ny=c.___wasm_call_ctors=function(){return(Ny=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Ty=c._init=function(){return(Ty=c._init=c.asm.init).apply(null,arguments)},Cy=c._init_with_threads_count=function(){return(Cy=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},_y=c._get_threads_count=function(){return(_y=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},Ey=c._register_tensor=function(){return(Ey=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},Ay=c._dispose_data=function(){return(Ay=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},$y=c._dispose=function(){return($y=c._dispose=c.asm.dispose).apply(null,arguments)},Fy=c._Abs=function(){return(Fy=c._Abs=c.asm.Abs).apply(null,arguments)},Dy=c._Add=function(){return(Dy=c._Add=c.asm.Add).apply(null,arguments)},Ry=c._AddN=function(){return(Ry=c._AddN=c.asm.AddN).apply(null,arguments)},My=c._All=function(){return(My=c._All=c.asm.All).apply(null,arguments)},Py=c._Any=function(){return(Py=c._Any=c.asm.Any).apply(null,arguments)},Oy=c._ArgMax=function(){return(Oy=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Ly=c._AvgPool=function(){return(Ly=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},zy=c._BatchMatMul=function(){return(zy=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},By=c._Ceil=function(){return(By=c._Ceil=c.asm.Ceil).apply(null,arguments)},Wy=c._ClipByValue=function(){return(Wy=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Vy=c._Conv2D=function(){return(Vy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},Uy=c._Conv2DBackpropInput=function(){return(Uy=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Gy=c._Cos=function(){return(Gy=c._Cos=c.asm.Cos).apply(null,arguments)},Hy=c._Cosh=function(){return(Hy=c._Cosh=c.asm.Cosh).apply(null,arguments)},jy=c._CropAndResize=function(){return(jy=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},qy=c._Cumprod=function(){return(qy=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Ky=c._Cumsum=function(){return(Ky=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Xy=c._DepthToSpace=function(){return(Xy=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},Yy=c._DepthwiseConv2dNative=function(){return(Yy=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},Jy=c._Elu=function(){return(Jy=c._Elu=c.asm.Elu).apply(null,arguments)},Zy=c._Equal=function(){return(Zy=c._Equal=c.asm.Equal).apply(null,arguments)},Qy=c._Exp=function(){return(Qy=c._Exp=c.asm.Exp).apply(null,arguments)},eb=c._FlipLeftRight=function(){return(eb=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},rh=c._Floor=function(){return(rh=c._Floor=c.asm.Floor).apply(null,arguments)},sh=c._FloorDiv=function(){return(sh=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},Cp=c._FusedBatchNorm=function(){return(Cp=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},tb=c._FusedConv2D=function(){return(tb=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},nb=c._FusedDepthwiseConv2D=function(){return(nb=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},al=c._Gather=function(){return(al=c._Gather=c.asm.Gather).apply(null,arguments)},_p=c._GatherNd=function(){return(_p=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},Ep=c._Greater=function(){return(Ep=c._Greater=c.asm.Greater).apply(null,arguments)},E1=c._GreaterEqual=function(){return(E1=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},rl=c._LeakyRelu=function(){return(rl=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},sl=c._Less=function(){return(sl=c._Less=c.asm.Less).apply(null,arguments)},ab=c._LessEqual=function(){return(ab=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},G=c._Log=function(){return(G=c._Log=c.asm.Log).apply(null,arguments)},te=c._LogicalAnd=function(){return(te=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},de=c._Max=function(){return(de=c._Max=c.asm.Max).apply(null,arguments)},Se=c._MaxPool=function(){return(Se=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Ze=c._Maximum=function(){return(Ze=c._Maximum=c.asm.Maximum).apply(null,arguments)},rt=c._Mean=function(){return(rt=c._Mean=c.asm.Mean).apply(null,arguments)},Ue=c._Min=function(){return(Ue=c._Min=c.asm.Min).apply(null,arguments)},We=c._Minimum=function(){return(We=c._Minimum=c.asm.Minimum).apply(null,arguments)},Lt=c._MirrorPad=function(){return(Lt=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Pa=c._Multiply=function(){return(Pa=c._Multiply=c.asm.Multiply).apply(null,arguments)},Oa=c._Neg=function(){return(Oa=c._Neg=c.asm.Neg).apply(null,arguments)},il=c._NonMaxSuppressionV3=function(){return(il=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Bs=c._NonMaxSuppressionV4=function(){return(Bs=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},rb=c._NonMaxSuppressionV5=function(){return(rb=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},Mn=c._NotEqual=function(){return(Mn=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Xr=c._OneHot=function(){return(Xr=c._OneHot=c.asm.OneHot).apply(null,arguments)},ih=c._PadV2=function(){return(ih=c._PadV2=c.asm.PadV2).apply(null,arguments)},GA=c._Pow=function(){return(GA=c._Pow=c.asm.Pow).apply(null,arguments)},HA=c._Prelu=function(){return(HA=c._Prelu=c.asm.Prelu).apply(null,arguments)},jA=c._Prod=function(){return(jA=c._Prod=c.asm.Prod).apply(null,arguments)},qA=c._RealDiv=function(){return(qA=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},KA=c._Relu=function(){return(KA=c._Relu=c.asm.Relu).apply(null,arguments)},XA=c._Relu6=function(){return(XA=c._Relu6=c.asm.Relu6).apply(null,arguments)},YA=c._ResizeBilinear=function(){return(YA=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},JA=c._Reverse=function(){return(JA=c._Reverse=c.asm.Reverse).apply(null,arguments)},ZA=c._RotateWithOffset=function(){return(ZA=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},QA=c._Round=function(){return(QA=c._Round=c.asm.Round).apply(null,arguments)},e$=c._Rsqrt=function(){return(e$=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},t$=c._ScatterNd=function(){return(t$=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},n$=c._SelectV2=function(){return(n$=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},a$=c._Sigmoid=function(){return(a$=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},r$=c._Sin=function(){return(r$=c._Sin=c.asm.Sin).apply(null,arguments)},s$=c._Softmax=function(){return(s$=c._Softmax=c.asm.Softmax).apply(null,arguments)},i$=c._SparseFillEmptyRows=function(){return(i$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},o$=c._SparseReshape=function(){return(o$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},l$=c._SparseSegmentReduction=function(){return(l$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},u$=c._Sqrt=function(){return(u$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},p$=c._Square=function(){return(p$=c._Square=c.asm.Square).apply(null,arguments)},c$=c._SquaredDifference=function(){return(c$=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},d$=c._Step=function(){return(d$=c._Step=c.asm.Step).apply(null,arguments)},h$=c._StridedSlice=function(){return(h$=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},m$=c._Sub=function(){return(m$=c._Sub=c.asm.Sub).apply(null,arguments)},f$=c._Sum=function(){return(f$=c._Sum=c.asm.Sum).apply(null,arguments)},g$=c._Tan=function(){return(g$=c._Tan=c.asm.Tan).apply(null,arguments)},y$=c._Tanh=function(){return(y$=c._Tanh=c.asm.Tanh).apply(null,arguments)},b$=c._Tile=function(){return(b$=c._Tile=c.asm.Tile).apply(null,arguments)},x$=c._TopK=function(){return(x$=c._TopK=c.asm.TopK).apply(null,arguments)},v$=c._Transform=function(){return(v$=c._Transform=c.asm.Transform).apply(null,arguments)},w$=c._Transpose=function(){return(w$=c._Transpose=c.asm.Transpose).apply(null,arguments)},k$=c.__FusedMatMul=function(){return(k$=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},sb=c._malloc=function(){return(sb=c._malloc=c.asm.malloc).apply(null,arguments)},A1=c._free=function(){return(A1=c._free=c.asm.free).apply(null,arguments)},I$=c._emscripten_tls_init=function(){return(I$=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},$1=c.___errno_location=function(){return($1=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},oh=c._pthread_self=function(){return(oh=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},F1=c._emscripten_main_thread_process_queued_calls=function(){return(F1=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},S$=c.__emscripten_thread_crashed=function(){return(S$=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},D1=c.__emscripten_thread_init=function(){return(D1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},N$=c._emscripten_current_thread_process_queued_calls=function(){return(N$=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},T$=c._emscripten_main_browser_thread_id=function(){return(T$=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},C$=c._emscripten_sync_run_in_main_thread_2=function(){return(C$=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},R1=c._emscripten_sync_run_in_main_thread_4=function(){return(R1=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},M1=c._emscripten_run_in_main_runtime_thread_js=function(){return(M1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},ib=c._emscripten_dispatch_to_thread_=function(){return(ib=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},ob=c.__emscripten_thread_free_data=function(){return(ob=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},_$=c.__emscripten_thread_exit=function(){return(_$=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},E$=c._memalign=function(){return(E$=c._memalign=c.asm.memalign).apply(null,arguments)},P1=c._emscripten_stack_set_limits=function(){return(P1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},lb=c.stackSave=function(){return(lb=c.stackSave=c.asm.stackSave).apply(null,arguments)},lh=c.stackRestore=function(){return(lh=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},ol=c.stackAlloc=function(){return(ol=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},A$=c.dynCall_iijjiiii=function(){return(A$=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},$$=c.dynCall_jiji=function(){return($$=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},O1=c.__emscripten_allow_main_runtime_queued_calls=21464;c.cwrap=Jt,c.keepRuntimeAlive=Ps,c.PThread=_e,c.PThread=_e,c.wasmMemory=Te,c.ExitStatus=Ap;var uh;function Ap(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ma=function N(){uh||ub(),uh||(Ma=N)};function ub(N){if(N=N||y,Kr>0)return;if(C){h(c),wp(),postMessage({cmd:"loaded"});return}if(vn(),Kr>0)return;function D(){uh||(uh=!0,c.calledRun=!0,!ct&&(wp(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Pg()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=ub;function F$(N,D){if(bn=N,!D&&C)throw Kd(N),"unwind";Ps()||Mg(),D$(N)}function D$(N){bn=N,Ps()||(_e.terminateAllThreads(),c.onExit&&c.onExit(N),ct=!0),x(N,new Ap(N))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();ub();var ph;f&&(ph={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var ch;if(typeof WasmBackendModule!="undefined")ch=WasmBackendModule;else if(typeof r!="undefined")ch=r;else throw new Error("Could not find wasm module in post.js");if(ph){var R$=ch._dispose;ch._dispose=function(){R$(),ph.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),ph.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),fF=ft((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,te){i=G,o=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,te)=>{throw te},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(G){return s.locateFile?s.locateFile(G,g):g+G}var b,x,v,w;function T(G){G instanceof _p||F("exiting due to exception: "+G)}var C,E,$;f?(m?g=Ph().dirname(g)+"/":g=__dirname+"/",$=()=>{E||(C=Nx(),E=Ph())},b=function(G,te){return $(),G=E.normalize(G),C.readFileSync(G,te?void 0:"utf8")},v=G=>{var te=b(G,!0);return te.buffer||(te=new Uint8Array(te)),te},x=(G,te,de)=>{$(),G=E.normalize(G),C.readFile(G,function(Se,Ze){Se?de(Se):te(Ze.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof _p))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,te)=>{if(vp())throw process.exitCode=G,te;T(te),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.send(null),te.responseText},m&&(v=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),x=(G,te,de)=>{var Se=new XMLHttpRequest;Se.open("GET",G,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){te(Se.response);return}de()},Se.onerror=de,Se.send(null)},w=G=>document.title=G);var P=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var S=4;function M(G){M.shown||(M.shown={}),M.shown[G]||(M.shown[G]=1,F(G))}function V(G,te){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:te[0]=="v"?[]:[de[te[0]]]},Ze=1;Ze<te.length;++Ze)Se.parameters.push(de[te[Ze]]);return new WebAssembly.Function(Se,G)}var rt=[1,0,1,96],Ue=te.slice(0,1),We=te.slice(1),Lt={i:127,j:126,f:125,d:124};rt.push(We.length);for(var Ze=0;Ze<We.length;++Ze)rt.push(Lt[We[Ze]]);Ue=="v"?rt.push(0):rt=rt.concat([1,Lt[Ue]]),rt[1]=rt.length-2;var Pa=new Uint8Array([0,97,115,109,1,0,0,0].concat(rt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Oa=new WebAssembly.Module(Pa),il=new WebAssembly.Instance(Oa,{e:{f:G}}),Bs=il.exports.f;return Bs}var j=[],q;function K(){if(j.length)return j.pop();try{jr.grow(1)}catch(G){throw G instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":G}return jr.length-1}function Q(G,te){for(var de=G;de<G+te;de++){var Se=Ip(de);Se&&q.set(Se,de)}}var ee=0,re=G=>{ee=G},Z;s.wasmBinary&&(Z=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ms("no native wasm support detected");var ae,le=!1,ue;function ke(G,te){G||Ms(te)}function ye(G){var te=s["_"+G];return te}function Ie(G,te,de,Se,Ze){var rt={string:function(Mn){var Xr=0;if(Mn!=null&&Mn!==0){var ih=(Mn.length<<2)+1;Xr=Cp(ih),at(Mn,Xr,ih)}return Xr},array:function(Mn){var Xr=Cp(Mn.length);return ct(Mn,Xr),Xr}};function Ue(Mn){return te==="string"?st(Mn):te==="boolean"?Boolean(Mn):Mn}var We=ye(G),Lt=[],Pa=0;if(Se)for(var Oa=0;Oa<Se.length;Oa++){var il=rt[de[Oa]];il?(Pa===0&&(Pa=rh()),Lt[Oa]=il(Se[Oa])):Lt[Oa]=Se[Oa]}var Bs=We.apply(null,Lt);function rb(Mn){return Pa!==0&&sh(Pa),Ue(Mn)}return Bs=rb(Bs),Bs}function Ee(G,te,de,Se){de=de||[];var Ze=de.every(function(Ue){return Ue==="number"}),rt=te!=="string";return rt&&Ze&&!Se?ye(G):function(){return Ie(G,te,de,arguments,Se)}}var Fe=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function je(G,te,de){for(var Se=te+de,Ze=te;G[Ze]&&!(Ze>=Se);)++Ze;if(Ze-te>16&&G.subarray&&Be)return Be.decode(G.subarray(te,Ze));for(var rt="";te<Ze;){var Ue=G[te++];if(!(Ue&128)){rt+=String.fromCharCode(Ue);continue}var We=G[te++]&63;if((Ue&224)==192){rt+=String.fromCharCode((Ue&31)<<6|We);continue}var Lt=G[te++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|We<<6|Lt:Ue=(Ue&7)<<18|We<<12|Lt<<6|G[te++]&63,Ue<65536)rt+=String.fromCharCode(Ue);else{var Pa=Ue-65536;rt+=String.fromCharCode(55296|Pa>>10,56320|Pa&1023)}}return rt}function st(G,te){return G?je(Jt,G,te):""}function nt(G,te,de,Se){if(!(Se>0))return 0;for(var Ze=de,rt=de+Se-1,Ue=0;Ue<G.length;++Ue){var We=G.charCodeAt(Ue);if(We>=55296&&We<=57343){var Lt=G.charCodeAt(++Ue);We=65536+((We&1023)<<10)|Lt&1023}if(We<=127){if(de>=rt)break;te[de++]=We}else if(We<=2047){if(de+1>=rt)break;te[de++]=192|We>>6,te[de++]=128|We&63}else if(We<=65535){if(de+2>=rt)break;te[de++]=224|We>>12,te[de++]=128|We>>6&63,te[de++]=128|We&63}else{if(de+3>=rt)break;te[de++]=240|We>>18,te[de++]=128|We>>12&63,te[de++]=128|We>>6&63,te[de++]=128|We&63}}return te[de]=0,de-Ze}function at(G,te,de){return nt(G,Jt,te,de)}function Te(G){for(var te=0,de=0;de<G.length;++de){var Se=G.charCodeAt(de);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|G.charCodeAt(++de)&1023),Se<=127?++te:Se<=2047?te+=2:Se<=65535?te+=3:te+=4}return te}var gt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function ct(G,te){Ut.set(G,te)}function bn(G,te,de){for(var Se=0;Se<G.length;++Se)Ut[te++>>0]=G.charCodeAt(Se);de||(Ut[te>>0]=0)}function Yt(G,te){return G%te>0&&(G+=te-G%te),G}var Dn,Ut,Jt,Da,Rn,Gt,ia,oa,Hr;function Rs(G){Dn=G,s.HEAP8=Ut=new Int8Array(G),s.HEAP16=Da=new Int16Array(G),s.HEAP32=Gt=new Int32Array(G),s.HEAPU8=Jt=new Uint8Array(G),s.HEAPU16=Rn=new Uint16Array(G),s.HEAPU32=ia=new Uint32Array(G),s.HEAPF32=oa=new Float32Array(G),s.HEAPF64=Hr=new Float64Array(G)}var Fd=s.INITIAL_MEMORY||16777216,jr,kr=[],xp=[],Yo=[],xn=!1,Dd=!1,Rd=0;function vp(){return ie||Rd>0}function Md(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ld(s.preRun.shift());kp(kr)}function Pd(){xn=!0,kp(xp)}function b1(){Dd=!0}function Od(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)zd(s.postRun.shift());kp(Yo)}function Ld(G){kr.unshift(G)}function Ra(G){xp.unshift(G)}function zd(G){Yo.unshift(G)}var la=0,Jo=null,qr=null;function Dg(G){la++,s.monitorRunDependencies&&s.monitorRunDependencies(la)}function Bd(G){if(la--,s.monitorRunDependencies&&s.monitorRunDependencies(la),la==0&&(Jo!==null&&(clearInterval(Jo),Jo=null),qr)){var te=qr;qr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ms(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",F(G),le=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(G);throw o(te),te}var Rg="data:application/octet-stream;base64,";function Wd(G){return G.startsWith(Rg)}function Ps(G){return G.startsWith("file://")}var vn;vn="tfjs-backend-wasm.wasm",Wd(vn)||(vn=y(vn));function wp(G){try{if(G==vn&&Z)return new Uint8Array(Z);if(v)return v(G);throw"both async and sync fetching of the wasm failed"}catch(te){Ms(te)}}function Mg(){if(!Z&&(h||m)){if(typeof fetch=="function"&&!Ps(vn))return fetch(vn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+vn+"'";return G.arrayBuffer()}).catch(function(){return wp(vn)});if(x)return new Promise(function(G,te){x(vn,function(de){G(new Uint8Array(de))},te)})}return Promise.resolve().then(function(){return wp(vn)})}function Pg(){var G={env:el,wasi_snapshot_preview1:el};function te(Ue,We){var Lt=Ue.exports;s.asm=Lt,ae=s.asm.memory,Rs(ae.buffer),jr=s.asm.__indirect_function_table,Ra(s.asm.__wasm_call_ctors),Bd("wasm-instantiate")}Dg("wasm-instantiate");function de(Ue){te(Ue.instance)}function Se(Ue){return Mg().then(function(We){return WebAssembly.instantiate(We,G)}).then(function(We){return We}).then(Ue,function(We){F("failed to asynchronously prepare wasm: "+We),Ms(We)})}function Ze(){return!Z&&typeof WebAssembly.instantiateStreaming=="function"&&!Wd(vn)&&!Ps(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(Ue){var We=WebAssembly.instantiateStreaming(Ue,G);return We.then(de,function(Lt){return F("wasm streaming compile failed: "+Lt),F("falling back to ArrayBuffer instantiation"),Se(de)})}):Se(de)}if(s.instantiateWasm)try{var rt=s.instantiateWasm(G,te);return rt}catch(Ue){return F("Module.instantiateWasm callback failed with error: "+Ue),!1}return Ze().catch(o),{}}var x1,v1;function kp(G){for(;G.length>0;){var te=G.shift();if(typeof te=="function"){te(s);continue}var de=te.func;typeof de=="number"?te.arg===void 0?Ip(de)():Ip(de)(te.arg):de(te.arg===void 0?null:te.arg)}}function Kr(G){return G}function Vd(G){var te=/\b_Z[\w\d_]+/g;return G.replace(te,function(de){var Se=de;return de===Se?de:Se+" ["+de+"]"})}var Ma=[];function Ip(G){var te=Ma[G];return te||(G>=Ma.length&&(Ma.length=G+1),Ma[G]=te=jr.get(G)),te}function w1(){var G=new Error;if(!G.stack){try{throw new Error}catch(te){G=te}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function Zo(G,te){jr.set(G,te),Ma[G]=te}function Og(){Ms("")}function Sp(){return 2147483648}function Ud(G,te,de){Jt.copyWithin(G,te,te+de)}function wn(G){try{return ae.grow(G-Dn.byteLength+65535>>>16),Rs(ae.buffer),1}catch(te){}}function Gd(G){var te=Jt.length;G=G>>>0;var de=Sp();if(G>de)return!1;for(var Se=1;Se<=4;Se*=2){var Ze=te*(1+.2/Se);Ze=Math.min(Ze,G+100663296);var rt=Math.min(de,Yt(Math.max(G,Ze),65536)),Ue=wn(rt);if(Ue)return!0}return!1}var Qo={mappings:{},buffers:[null,[],[]],printChar:function(G,te){var de=Qo.buffers[G];te===0||te===10?((G===1?P:F)(je(de,0)),de.length=0):de.push(te)},varargs:void 0,get:function(){Qo.varargs+=4;var G=Gt[Qo.varargs-4>>2];return G},getStr:function(G){var te=st(G);return te},get64:function(G,te){return G}};function Lg(G){return 0}function k1(G,te,de,Se,Ze){}function I1(G,te,de,Se){for(var Ze=0,rt=0;rt<de;rt++){var Ue=Gt[te>>2],We=Gt[te+4>>2];te+=8;for(var Lt=0;Lt<We;Lt++)Qo.printChar(G,Jt[Ue+Lt]);Ze+=We}return Gt[Se>>2]=Ze,0}function zg(G){re(G)}var Hd=!1,el={abort:Og,emscripten_get_heap_max:Sp,emscripten_memcpy_big:Ud,emscripten_resize_heap:Gd,fd_close:Lg,fd_seek:k1,fd_write:I1,setTempRet0:zg},UA=Pg(),S1=s.___wasm_call_ctors=function(){return(S1=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Bg=s._init=function(){return(Bg=s._init=s.asm.init).apply(null,arguments)},Wg=s._init_with_threads_count=function(){return(Wg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},jd=s._get_threads_count=function(){return(jd=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},qd=s._register_tensor=function(){return(qd=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Vg=s._dispose_data=function(){return(Vg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},_e=s._dispose=function(){return(_e=s._dispose=s.asm.dispose).apply(null,arguments)},Ug=s._Abs=function(){return(Ug=s._Abs=s.asm.Abs).apply(null,arguments)},Kd=s._Add=function(){return(Kd=s._Add=s.asm.Add).apply(null,arguments)},Os=s._AddN=function(){return(Os=s._AddN=s.asm.AddN).apply(null,arguments)},tl=s._All=function(){return(tl=s._All=s.asm.All).apply(null,arguments)},Gg=s._Any=function(){return(Gg=s._Any=s.asm.Any).apply(null,arguments)},N1=s._ArgMax=function(){return(N1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Hg=s._AvgPool=function(){return(Hg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},T1=s._BatchMatMul=function(){return(T1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Ls=s._Ceil=function(){return(Ls=s._Ceil=s.asm.Ceil).apply(null,arguments)},jg=s._ClipByValue=function(){return(jg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},qg=s._Conv2D=function(){return(qg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Kg=s._Conv2DBackpropInput=function(){return(Kg=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Xg=s._Cos=function(){return(Xg=s._Cos=s.asm.Cos).apply(null,arguments)},Yg=s._Cosh=function(){return(Yg=s._Cosh=s.asm.Cosh).apply(null,arguments)},Jg=s._CropAndResize=function(){return(Jg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Xd=s._Cumprod=function(){return(Xd=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Zg=s._Cumsum=function(){return(Zg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Qg=s._DepthToSpace=function(){return(Qg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},ey=s._DepthwiseConv2dNative=function(){return(ey=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},ty=s._Elu=function(){return(ty=s._Elu=s.asm.Elu).apply(null,arguments)},ny=s._Equal=function(){return(ny=s._Equal=s.asm.Equal).apply(null,arguments)},Yd=s._Exp=function(){return(Yd=s._Exp=s.asm.Exp).apply(null,arguments)},ay=s._FlipLeftRight=function(){return(ay=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},ry=s._Floor=function(){return(ry=s._Floor=s.asm.Floor).apply(null,arguments)},zs=s._FloorDiv=function(){return(zs=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Np=s._FusedBatchNorm=function(){return(Np=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},sy=s._FusedConv2D=function(){return(sy=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},iy=s._FusedDepthwiseConv2D=function(){return(iy=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},oy=s._Gather=function(){return(oy=s._Gather=s.asm.Gather).apply(null,arguments)},Ve=s._GatherNd=function(){return(Ve=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},ly=s._Greater=function(){return(ly=s._Greater=s.asm.Greater).apply(null,arguments)},uy=s._GreaterEqual=function(){return(uy=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},py=s._LeakyRelu=function(){return(py=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},cy=s._Less=function(){return(cy=s._Less=s.asm.Less).apply(null,arguments)},dy=s._LessEqual=function(){return(dy=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},hy=s._Log=function(){return(hy=s._Log=s.asm.Log).apply(null,arguments)},Tp=s._LogicalAnd=function(){return(Tp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Jd=s._Max=function(){return(Jd=s._Max=s.asm.Max).apply(null,arguments)},Zd=s._MaxPool=function(){return(Zd=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},my=s._Maximum=function(){return(my=s._Maximum=s.asm.Maximum).apply(null,arguments)},fy=s._Mean=function(){return(fy=s._Mean=s.asm.Mean).apply(null,arguments)},gy=s._Min=function(){return(gy=s._Min=s.asm.Min).apply(null,arguments)},yy=s._Minimum=function(){return(yy=s._Minimum=s.asm.Minimum).apply(null,arguments)},by=s._MirrorPad=function(){return(by=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},xy=s._Multiply=function(){return(xy=s._Multiply=s.asm.Multiply).apply(null,arguments)},Ct=s._Neg=function(){return(Ct=s._Neg=s.asm.Neg).apply(null,arguments)},vy=s._NonMaxSuppressionV3=function(){return(vy=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},wy=s._NonMaxSuppressionV4=function(){return(wy=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},ky=s._NonMaxSuppressionV5=function(){return(ky=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},nl=s._NotEqual=function(){return(nl=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Qd=s._OneHot=function(){return(Qd=s._OneHot=s.asm.OneHot).apply(null,arguments)},eh=s._PadV2=function(){return(eh=s._PadV2=s.asm.PadV2).apply(null,arguments)},th=s._Pow=function(){return(th=s._Pow=s.asm.Pow).apply(null,arguments)},Iy=s._Prelu=function(){return(Iy=s._Prelu=s.asm.Prelu).apply(null,arguments)},nh=s._Prod=function(){return(nh=s._Prod=s.asm.Prod).apply(null,arguments)},Sy=s._RealDiv=function(){return(Sy=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},C1=s._Relu=function(){return(C1=s._Relu=s.asm.Relu).apply(null,arguments)},ah=s._Relu6=function(){return(ah=s._Relu6=s.asm.Relu6).apply(null,arguments)},_1=s._ResizeBilinear=function(){return(_1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Ny=s._Reverse=function(){return(Ny=s._Reverse=s.asm.Reverse).apply(null,arguments)},Ty=s._RotateWithOffset=function(){return(Ty=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Cy=s._Round=function(){return(Cy=s._Round=s.asm.Round).apply(null,arguments)},_y=s._Rsqrt=function(){return(_y=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Ey=s._ScatterNd=function(){return(Ey=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Ay=s._SelectV2=function(){return(Ay=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},$y=s._Sigmoid=function(){return($y=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Fy=s._Sin=function(){return(Fy=s._Sin=s.asm.Sin).apply(null,arguments)},Dy=s._Softmax=function(){return(Dy=s._Softmax=s.asm.Softmax).apply(null,arguments)},Ry=s._SparseFillEmptyRows=function(){return(Ry=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},My=s._SparseReshape=function(){return(My=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Py=s._SparseSegmentReduction=function(){return(Py=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Oy=s._Sqrt=function(){return(Oy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Ly=s._Square=function(){return(Ly=s._Square=s.asm.Square).apply(null,arguments)},zy=s._SquaredDifference=function(){return(zy=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},By=s._Step=function(){return(By=s._Step=s.asm.Step).apply(null,arguments)},Wy=s._StridedSlice=function(){return(Wy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Vy=s._Sub=function(){return(Vy=s._Sub=s.asm.Sub).apply(null,arguments)},Uy=s._Sum=function(){return(Uy=s._Sum=s.asm.Sum).apply(null,arguments)},Gy=s._Tan=function(){return(Gy=s._Tan=s.asm.Tan).apply(null,arguments)},Hy=s._Tanh=function(){return(Hy=s._Tanh=s.asm.Tanh).apply(null,arguments)},jy=s._Tile=function(){return(jy=s._Tile=s.asm.Tile).apply(null,arguments)},qy=s._TopK=function(){return(qy=s._TopK=s.asm.TopK).apply(null,arguments)},Ky=s._Transform=function(){return(Ky=s._Transform=s.asm.Transform).apply(null,arguments)},Xy=s._Transpose=function(){return(Xy=s._Transpose=s.asm.Transpose).apply(null,arguments)},Yy=s.__FusedMatMul=function(){return(Yy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Jy=s._malloc=function(){return(Jy=s._malloc=s.asm.malloc).apply(null,arguments)},Zy=s._free=function(){return(Zy=s._free=s.asm.free).apply(null,arguments)},Qy=s.___errno_location=function(){return(Qy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},eb=s._emscripten_main_thread_process_queued_calls=function(){return(eb=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},rh=s.stackSave=function(){return(rh=s.stackSave=s.asm.stackSave).apply(null,arguments)},sh=s.stackRestore=function(){return(sh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Cp=s.stackAlloc=function(){return(Cp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},tb=s.dynCall_iijjiiii=function(){return(tb=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},nb=s.dynCall_jiji=function(){return(nb=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Ee;var al;function _p(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}qr=function G(){al||Ep(),al||(qr=G)};function Ep(G){if(G=G||p,la>0||(Md(),la>0))return;function te(){al||(al=!0,s.calledRun=!0,!le&&(Pd(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Od()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Ep;function E1(G){ue=G,vp()||(s.onExit&&s.onExit(G),le=!0),c(G,new _p(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Ep();var rl;l&&(rl={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var sl;if(typeof r!="undefined")sl=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")sl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(rl){var ab=sl._dispose;sl._dispose=function(){ab(),rl.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),rl.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),hm=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},hc=class{refCount(e){return pa("refCount")}incRef(e){return pa("incRef")}timerAvailable(){return!0}time(e){return pa("time")}read(e){return pa("read")}readSync(e){return pa("readSync")}readToGPU(e,t){return pa("readToGPU")}numDataIds(){return pa("numDataIds")}disposeData(e,t){return pa("disposeData")}write(e,t,n){return pa("write")}move(e,t,n,a,r){return pa("move")}memory(){return pa("memory")}floatPrecision(){return pa("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return pa("dispose")}};function pa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function yI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Oh(e,t,n)}function gF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,Oh(e,n,a),Oh(t,n,a)}function Yp(e,t,n){return Math.max(e,Math.min(t,n))}function yF(e){return e%2===0?e:e+1}function Oh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function bF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function xF(e,t){let n=Math.random();return t*n+(1-n)*e}function vF(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function R(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Tn(e,t,n=""){R(gs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function xi(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)ti(e[a],t,n);else t.push(e);return t}function wt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function wF(e){return e.length===0}function gs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function vl(e){return e%1===0}function kF(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function IF(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function SF(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return yI(t),t}function jp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function NF(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function TF(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ea(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>vl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function bI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ea(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function xI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function vI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function wI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function kI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function CF(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Nb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function II(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Qr(e){return typeof e=="string"||e instanceof String}function SI(e){return typeof e=="boolean"}function NI(e){return typeof e=="number"}function mm(e){return Array.isArray(e)?mm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":NI(e)?"float32":Qr(e)?"string":SI(e)?"bool":"float32"}function ss(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Lh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Rl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function TI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=TI(e+l*o,i,n,a)}return r}function fl(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return TI(0,e,t,n)}function Tx(e,t){let n=fm(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function fm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function _F(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return fl(e,new Float32Array(n));if(t==="int32")return fl(e,new Int32Array(n));if(t==="bool")return fl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Cx(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function EF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function AF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function _x(e){return e&&e.then&&typeof e.then=="function"}var z1="tfjsflags",CI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=$F,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(_x(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);z1 in e&&e[z1].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=DF(n,a)})}};function $F(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(FF(t,a[0],a[1]),a.join("="))),t}function FF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function DF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Ex}var Ex=null;function RF(e){Ex=e}var cb;function _I(){if(cb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");cb=e}return cb}function MF(){let e=_I();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ax(e,t){let n=MF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Ml="Abs",Pl="Acos",Ol="Acosh",ys="Add",vi="AddN",Ll="All",zl="Any",wi="ArgMax",mc="ArgMin",Bl="Asin",Wl="Asinh",Vl="Atan",Ul="Atanh",Gl="Atan2",ki="AvgPool",gm="AvgPoolGrad",fc="AvgPool3D",ym="AvgPool3DGrad",Ii="BatchMatMul",Hl="BatchToSpaceND",bm="Bincount",EI="BroadcastTo",xm="BroadcastArgs",Si="Cast",Ni="Ceil",bs="ClipByValue",vm="Complex",gc="ComplexAbs",jl="Concat",Ti="Conv2D",wm="Conv2DBackpropFilter",Ci="Conv2DBackpropInput",yc="Conv3D",km="Conv3DBackpropFilterV2",Im="Conv3DBackpropInputV2",_i="Cos",Ei="Cosh",ql="Cumprod",Ai="Cumsum",Kl="CropAndResize",Sm="DenseBincount",Xl="DepthToSpace",$i="DepthwiseConv2dNative",Nm="DepthwiseConv2dNativeBackpropFilter",Tm="DepthwiseConv2dNativeBackpropInput",Cm="Diag",bc="Dilation2D",zh="Dilation2DBackpropInput",Bh="Dilation2DBackpropFilter",Fi="RealDiv",_m="Einsum",Di="Elu",Em="EluGrad",Yl="Erf",Jl="Equal",Ri="Exp",Zl="ExpandDims",Ql="Expm1",Am="FFT",xc="Fill",eu="FlipLeftRight",Mi="Floor",Pi="FloorDiv",Oi="FusedBatchNorm",tu="GatherV2",nu="GatherNd",au="Greater",Li="GreaterEqual",zi="Identity",$m="IFFT",Fm="Imag",ru="IsFinite",su="IsInf",iu="IsNan",Bi="LeakyRelu",ou="Less",lu="LessEqual",Dm="LinSpace",Wi="Log",uu="Log1p",pu="LogicalAnd",vc="LogicalNot",wc="LogicalOr",AI="LogSoftmax",kc="LRN",Rm="LRNGrad",Vi="Max",Ui="Maximum",Gi="MaxPool",Mm="MaxPoolGrad",Ic="MaxPool3D",Pm="MaxPool3DGrad",Om="MaxPoolWithArgmax",Hi="Mean",ji="Min",qi="Minimum",Ki="MirrorPad",cu="Mod",Lm="Multinomial",Xi="Multiply",du="Neg",hu="NotEqual",mu="NonMaxSuppressionV3",fu="NonMaxSuppressionV4",gu="NonMaxSuppressionV5",yu="OnesLike",Yi="OneHot",bu="Pack",Ji="PadV2",PF="Pool",Zi="Pow",Qi="Prelu",eo="Prod",Sc="Range",zm="Real",xu="Reciprocal",to="Relu",vu="Reshape",Nc="ResizeNearestNeighbor",Bm="ResizeNearestNeighborGrad",no="ResizeBilinear",Wm="ResizeBilinearGrad",ao="Relu6",ro="Reverse",so="Round",io="Rsqrt",wu="ScatterNd",ku="Select",Iu="Selu",Su="Slice",oo="Sin",Nu="Sinh",Tu="Sign",lo="Sigmoid",Cu="Softplus",uo="Sqrt",po="Sum",_u="SpaceToBatchND",Eu="SplitV",co="Softmax",Tc="SparseFillEmptyRows",Au="SparseReshape",Cc="SparseSegmentMean",_c="SparseSegmentSum",Vm="SparseToDense",ho="SquaredDifference",Ec="Square",$u="StridedSlice",Um="StringNGrams",Gm="StringSplit",Hm="StringToHashBucketFast",mo="Sub",fo="Tan",go="Tanh",xs="Tile",Fu="TopK",Du="Transform",yo="Transpose",jm="Unique",Ru="Unpack",Ac="UnsortedSegmentSum",Mu="ZerosLike",vs="Step",Wh="FromPixels",Pu="RotateWithOffset",ni="_FusedMatMul",ai="FusedConv2D",ri="FusedDepthwiseConv2D";function Zr(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function OF(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var wl=Ax("kernelRegistry",()=>new Map),Jp=Ax("gradRegistry",()=>new Map);function Vh(e,t){let n=$x(e,t);return wl.get(n)}function Tb(e){return Jp.get(e)}function Uh(e){let t=wl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function $c(e){let{kernelName:t,backendName:n}=e,a=$x(t,n);wl.has(a)&&Zr(`The kernel '${t}' for backend '${n}' is already registered`),wl.set(a,e)}function $I(e){let{kernelName:t}=e;Jp.has(t)&&X().getBool("DEBUG")&&Zr(`Overriding the gradient for '${t}'`),Jp.set(t,e)}function LF(e,t){let n=$x(e,t);if(!wl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);wl.delete(n)}function zF(e){if(!Jp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Jp.delete(e)}function BF(e,t){Uh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});$c(a)})}function $x(e,t){return`${t}_${e}`}var k={};Me(k,{arraysEqual:()=>gs,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Cx,assertNonNull:()=>xi,assertShapesMatch:()=>Tn,bytesFromStringArray:()=>II,bytesPerElement:()=>Nb,checkConversionForErrors:()=>wI,clamp:()=>Yp,computeStrides:()=>Rl,createScalarValue:()=>jF,createShuffledIndices:()=>SF,decodeString:()=>Gh,distSquared:()=>vF,encodeString:()=>Dc,fetch:()=>KF,fingerPrint64:()=>HF,flatten:()=>ti,getArrayFromDType:()=>vI,getTypedArrayFromDType:()=>xI,hasEncodingLoss:()=>CF,hexToLong:()=>Fc,indexToLoc:()=>AF,inferDtype:()=>mm,inferFromImplicitShape:()=>TF,isBoolean:()=>SI,isFunction:()=>ss,isInt:()=>vl,isNumber:()=>NI,isPromise:()=>_x,isScalarShape:()=>wF,isString:()=>Qr,isTypedArray:()=>hn,isValidDtype:()=>kI,locToIndex:()=>EF,makeOnesTypedArray:()=>Tx,makeZerosNestedTypedArray:()=>_F,makeZerosTypedArray:()=>fm,nearestDivisor:()=>Lh,nearestLargerEven:()=>yF,now:()=>Zp,parseAxisParam:()=>Ea,randUniform:()=>xF,repeatedTry:()=>NF,rightPad:()=>jp,shuffle:()=>yI,shuffleCombo:()=>gF,sizeFromShape:()=>wt,sizeToSquarishShape:()=>IF,squeezeShape:()=>bI,sum:()=>bF,swap:()=>Oh,tanh:()=>kF,toNestedArray:()=>fl,toTypedArray:()=>qm});var B1=bi(K$()),Hs=B1.default||B1;function Fc(e){return Hs.fromString(e,!0,16)}var FI=Fc("c3a5c85c97cb3127"),Us=Fc("b492b66fbe98f273"),kn=Fc("9ae16a3b2f90404f");function Cb(e){return e.xor(e.shru(47))}function DI(e,t,n){let a=e.slice(t,t+n);return Hs.fromBytes(Array.from(a),!0,!0)}function yt(e,t){return DI(e,t,8)}function W1(e,t){return DI(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ns(e,t,n=Fc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function WF(e,t,n,a,r,s){r=r.add(e),s=Zt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Zt(r,44)),[r.add(a),s.add(i)]}function mh(e,t,n,a){return WF(yt(e,t),yt(e,t+8),yt(e,t+16),yt(e,t+24),n,a)}function VF(e,t=e.length){if(t>=8){let n=kn.add(t*2),a=yt(e,0).add(kn),r=yt(e,t-8),s=Zt(r,37).mul(n).add(a),i=Zt(a,25).add(r).mul(n);return ns(s,i,n)}if(t>=4){let n=kn.add(t*2),a=W1(e,0);return ns(a.shl(3).add(t),W1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Cb(kn.mul(s).xor(FI.mul(i))).mul(kn)}return kn}function UF(e,t=e.length){let n=kn.add(t*2),a=yt(e,0).mul(Us),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(kn);return ns(Zt(a.add(r),43).add(Zt(s,30)).add(i),a.add(Zt(r.add(kn),18)).add(s),n)}function GF(e,t=e.length){let n=kn.add(t*2),a=yt(e,0).mul(kn),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(kn),o=Zt(a.add(r),43).add(Zt(s,30)).add(i),l=ns(o,a.add(Zt(r.add(kn),18)).add(s),n),u=yt(e,16).mul(n),p=yt(e,24),d=o.add(yt(e,t-32)).mul(n),c=l.add(yt(e,t-24)).mul(n);return ns(Zt(u.add(p),43).add(Zt(d,30)).add(c),u.add(Zt(p.add(a),18)).add(d),n)}function HF(e,t=e.length){let n=Hs.fromNumber(81,!0);if(t<=32)return t<=16?VF(e,t):UF(e,t);if(t<=64)return GF(e,t);let a=n,r=n.mul(Us).add(113),s=Cb(r.mul(kn).add(113)).mul(kn),i=[Hs.UZERO,Hs.UZERO],o=[Hs.UZERO,Hs.UZERO];a=a.mul(kn).add(yt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(Us),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(Us),a=a.xor(o[1]),r=r.add(i[0]).add(yt(e,l+40)),s=Zt(s.add(o[0]),33).mul(Us),i=mh(e,l,i[1].mul(Us),a.add(o[0])),o=mh(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Us.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(d),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(yt(e,l+40))),s=Zt(s.add(o[0]),33).mul(d),i=mh(e,l,i[1].mul(d),a.add(o[0])),o=mh(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],ns(ns(i[0],o[0],d).add(Cb(r).mul(FI)).add(s),ns(i[1],o[1],d).add(a),d)}function jF(e,t){return t==="string"?Dc(e):qm([e],t)}function qF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function qm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),X().getBool("DEBUG")&&wI(e,t),qF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Zp(){return X().platform.now()}function KF(e,t){return X().platform.fetch(e,t)}function Dc(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function Gh(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var XF=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new JF)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Zp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Zp()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{YF(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function YF(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var JF=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?jp(`${a}ms`,9):a.error,o=jp(e,25),l=t.rank,u=t.size,p=jp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function ZF(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function QF(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!gs(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var V1=20,Fp=3,db=7;function eD(e,t,n,a){let r=Rl(t),s=tD(e,t,n,r),i=t.length,o=Nh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function tD(e,t,n,a){let r=wt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Op(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Pp(l[p+d],0,n).length)}return i}function Pp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(db))} + ${parseFloat(e[1].toFixed(db))}j`:Qr(e)?a=`'${e}'`:n==="bool"?a=RI(e):a=parseFloat(e.toFixed(db)).toString(),jp(a,t)}function RI(e){return e===0?"false":"true"}function Nh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Op(e);return[Pp(f[0],0,n)]}return n==="bool"?[RI(e[0])]:[e[0].toString()]}if(l===1){if(o>V1){let g=Fp*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Fp)*i,o*i));return n==="complex64"&&(y=Op(y),b=Op(b)),["["+y.map((x,v)=>Pp(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>Pp(x,r[o-Fp+v],n)).join(", ")+"]"]}let f=n==="complex64"?Op(e):Array.from(e);return["["+f.map((g,y)=>Pp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>V1){for(let f=0;f<Fp;f++){let g=f*d,y=g+d;c.push(...Nh(e.slice(g,y),u,n,p,r,!1))}c.push("...");for(let f=o-Fp;f<o;f++){let g=f*d,y=g+d;c.push(...Nh(e.slice(g,y),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,y=g+d;c.push(...Nh(e.slice(g,y),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Op(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=wt(e),n!=null){let a=n.length;R(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||vI(t,this.size),this.strides=Rl(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ba().makeTensor(this.values,this.shape,this.dtype)}},Ba=null,dl=null,nD=null;function aD(e){Ba=e}function rD(e){dl=e}function sD(e){nD=e}var Ae=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=wt(e),this.strides=Rl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return dl.buffer(this.shape,this.dtype,e)}bufferSync(){return dl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return fl(this.shape,e,this.dtype==="complex64")}arraySync(){return fl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ba().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Gh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Ba().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Ba().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Gh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ba().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ba().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return dl.print(this,e)}clone(){return this.throwIfDisposed(),dl.clone(this)}toString(e=!1){let t=this.dataSync();return eD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),dl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ba().makeVariable(this,e,t,n)}};Object.defineProperty(Ae,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ne(){return Ax("Tensor",()=>Ae)}ne();var is=class extends Ae{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!gs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ba().disposeTensor(this),this.dataId=e.dataId,Ba().incRef(this,null)}dispose(){Ba().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(is,Symbol.hasInstance,{value:e=>e instanceof Ae&&e.assign!=null&&e.assign instanceof Function});var Ga={};Me(Ga,{assertTypesMatch:()=>MI,getTensorsInContainer:()=>Fx,isTensorInList:()=>oD,makeTypesMatch:()=>$t});var _b;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(_b||(_b={}));var Eb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Eb||(Eb={}));var Ab;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Ab||(Ab={}));var $b;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})($b||($b={}));var Fb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Fb||(Fb={}));var iD={float32:$b,int32:Eb,bool:Ab,complex64:Fb};function fa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return iD[e][t]}function Km(e){return fa(e,"int32")}function $t(e,t){if(e.dtype===t.dtype)return[e,t];let n=fa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function MI(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function oD(e,t){return t.some(n=>n.id===e.id)}function Fx(e){let t=[];return PI(e,t,new Set),t}function PI(e,t,n){if(e==null)return;if(e instanceof Ae){t.push(e);return}if(!lD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),PI(s,t,n))}}function lD(e){return Array.isArray(e)||typeof e=="object"}function hb(e){return e.kernelName!=null}var U1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Qp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new U1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Zr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new XF(this.backendInstance),!0}setupRegisteredKernels(){Uh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Uh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof hc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Zr(`Initialization of backend ${e} failed`),Zr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Zr(`Initialization of backend ${e} failed`),Zr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Qp.nextTensorId++}nextVariableId(){return Qp.nextVariableId++}clone(e){let t=L.runKernel(zi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernel(Si,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,Vh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=hb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(hb(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Vh(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:T,dtype:C}=v;return this.makeTensorFromDataId(w,T,C)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=hb(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Tb(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Qr(e[0])&&(r=e.map(o=>Dc(o)));let s=a.write(r,t,n),i=new Ae(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=II(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ae(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new is(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Nb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof is||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Nb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Tb(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=fm(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Fx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(r instanceof Ae,()=>"The result y returned by f() must be a tensor.");let s=ZF(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?uD(r.shape):n,QF(i,s,l=>this.tidy(l),pD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return R(ss(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(i=>i instanceof Ae),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),R(n.value instanceof Ae,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(ss(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];R(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(u.every(d=>d instanceof Ae),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Zp(),n=await this.backend.time(e);return n.wallMs=Zp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new U1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Qp.nextTensorId=0;Qp.nextVariableId=0;function uD(e){let t=Tx(wt(e),"float32");return L.makeTensor(t,e,"float32")}function OI(){let e=_I();if(e._tfengine==null){let t=new CI(e);e._tfengine=new Qp(t)}return RF(e._tfengine.ENV),aD(()=>e._tfengine),e._tfengine}var L=OI();function pD(e,t){let n={a:e,b:t};return L.runKernel(ys,n)}var Rc={};Me(Rc,{isBrowser:()=>LI,isMobile:()=>hD,mockIsMobile:()=>dD});function cD(){return typeof navigator!="undefined"&&navigator!=null}var Db;function dD(e){Db=e}function hD(e){if(Db!==void 0)return Db;if(e||cD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function LI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ca=X();Ca.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ca.registerFlag("IS_BROWSER",()=>LI());Ca.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ca.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ca.registerFlag("PROD",()=>!1);Ca.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ca.getBool("DEBUG"));Ca.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ca.registerFlag("IS_TEST",()=>!1);Ca.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ca.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Ca.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function pr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&zI(e,a,[]),a}function zI(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)zI(e[r],a,n.concat(r))}function G1(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function A(e,t,n,a="numeric"){if(e instanceof Ae)return G1(a,e.dtype,t,n),e;let r=mm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),G1(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=pr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?qm(e,r):ti(e,[],!0);return L.makeTensor(i,s,r)}function ec(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>A(r,`${t}[${s}]`,n,a))}var BI="__op";function B(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+BI;let r=(...s)=>{L.startScope(n);try{let i=a(...s);return _x(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function mD(e,t){let n=A(e,"real","complex"),a=A(t,"imag","complex");Tn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return L.runKernel(vm,r)}var os=B({complex_:mD});function ws(e,t,n,a){if(a==null&&(a=mm(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Cx(t);let r=wt(t),s=wt(n);R(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==wt(t.slice(i)):!0;R(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?qm(e,a):ti(e,[],!0),L.makeTensor(e,t,a)}function Qn(e,t,n){let a=pr(e,n);return ws(e,t,a,n)}var Rb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Hh=4;async function fD(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+Hh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=Hh,m.set(y,f),f+=y.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:gD(s),specs:n}}function WI(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=wt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Rb[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=kD()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=wt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Hh))[0];r+=Hh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Rb[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<h.length;y++)h[y]=p[y*2],m[y]=p[y*2+1];let f=Qn(h,l,"float32"),g=Qn(m,l,"float32");n[i]=os(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=Qn(p,l,o))}return n}function gD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Dx=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function H1(e){return Dx?Buffer.byteLength(e):new Blob([e]).size}function yD(e){if(Dx)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function bD(e){if(Dx){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Rx(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function j1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function VI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Mx(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Mc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:H1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:H1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function xD(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function vD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function wD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function kD(){let e=xD(),t=vD(),n=wD();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Dt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Dt.instance==null&&(Dt.instance=new Dt),Dt.instance}static registerSaveRouter(e){Dt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Dt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Dt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Dt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Dt.getInstance().loadRouters:Dt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},ID=e=>Dt.registerSaveRouter(e),SD=e=>Dt.registerLoadRouter(e),ND=e=>Dt.getSaveHandlers(e),TD=(e,t)=>Dt.getLoadHandlers(e,t),Mb="tensorflowjs",Pb=1,Xs="models_store",es="model_info_store";function UI(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ob(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(es,{keyPath:"modelPath"})}var si=class{constructor(e){if(this.indexedDB=UI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Mb,Pb);r.onupgradeneeded=()=>Ob(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Mc(t),o=s.transaction(es,"readwrite"),l=o.objectStore(es),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Xs,"readwrite");let d=p.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(es);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};si.URL_SCHEME="indexeddb://";var GI=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(si.URL_SCHEME)?CD(e.slice(si.URL_SCHEME.length)):null;Dt.registerSaveRouter(GI);Dt.registerLoadRouter(GI);function CD(e){return new si(e)}function _D(e){return e.startsWith(si.URL_SCHEME)?e.slice(si.URL_SCHEME.length):e}var ED=class{constructor(){this.indexedDB=UI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Mb,Pb);n.onupgradeneeded=()=>Ob(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(es,"readonly"),s=r.objectStore(es).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=_D(e),new Promise((t,n)=>{let a=this.indexedDB.open(Mb,Pb);a.onupgradeneeded=()=>Ob(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(es,"readwrite"),i=s.objectStore(es),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Xs,"readwrite");let d=l.objectStore(Xs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Tr="/",hl="tensorflowjs_models",HI="info",AD="model_topology",$D="weight_specs",FD="weight_data",DD="model_metadata";function jI(e){return{info:[hl,e,HI].join(Tr),topology:[hl,e,AD].join(Tr),weightSpecs:[hl,e,$D].join(Tr),weightData:[hl,e,FD].join(Tr),modelMetadata:[hl,e,DD].join(Tr)}}function qI(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function RD(e){let t=e.split(Tr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Tr)}function MD(e){return e.startsWith(ii.URL_SCHEME)?e.slice(ii.URL_SCHEME.length):e}var ii=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=jI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Mc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,yD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw qI(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=bD(s),t}};ii.URL_SCHEME="localstorage://";var KI=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ii.URL_SCHEME)?PD(e.slice(ii.URL_SCHEME.length)):null;Dt.registerSaveRouter(KI);Dt.registerLoadRouter(KI);function PD(e){return new ii(e)}var OD=class{constructor(){R(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=hl+Tr,n=Tr+HI;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=RD(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=MD(e);let t=jI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return qI(t),n}},gl="://",ca=class{constructor(){this.managers={}}static getInstance(){return ca.instance==null&&(ca.instance=new ca),ca.instance}static registerManager(e,t){R(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(gl)&&(e=e.slice(0,e.indexOf(gl))),R(e.length>0,()=>"scheme must not be an empty string.");let n=ca.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Th(e){if(e.indexOf(gl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ca.getSchemes().join(",")}`);return{scheme:e.split(gl)[0],path:e.split(gl)[1]}}async function XI(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Dt.getLoadHandlers(e);R(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Dt.getSaveHandlers(t);R(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Th(e).scheme,l=Th(e).path,u=o===Th(e).scheme,p=await r.load();n&&u&&await ca.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await ca.getManager(o).removeModel(l),d.modelArtifactsInfo}async function LD(){let e=ca.getSchemes(),t={};for(let n of e){let a=await ca.getManager(n).listModels();for(let r in a){let s=n+gl+r;t[s]=a[r]}}return t}async function zD(e){let t=Th(e);return ca.getManager(t.scheme).removeModel(t.path)}async function BD(e,t){return XI(e,t,!1)}async function WD(e,t){return XI(e,t,!0)}var VD=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new VD);try{ca.registerManager(ii.URL_SCHEME,new OD)}catch(e){}try{ca.registerManager(si.URL_SCHEME,new ED)}catch(e){}}var UD={importFetch:()=>X$()},mb,GD=class{constructor(){this.util=Y$(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(mb==null&&(mb=UD.importFetch()),mb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&!X().get("IS_BROWSER")&&X().setPlatform("node",new GD);function He(e,t="float32",n){return t=t||"float32",Cx(e),new jt(e,t,n)}function HD(e,t){let n=A(e,"x","cast");if(!kI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return L.runKernel(Si,a,r)}var oe=B({cast_:HD});function jD(e){let t={x:A(e,"x","clone","string_or_numeric")};return L.runKernel(zi,t)}var _r=B({clone_:jD});function YI(e,t=!1){console.log(e.toString(t))}OI();var qD={buffer:He,cast:oe,clone:_r,print:YI};rD(qD);var Qt={};Me(Qt,{browserFiles:()=>eR,browserHTTPRequest:()=>sR,concatenateArrayBuffers:()=>Rx,copyModel:()=>BD,decodeWeights:()=>WI,encodeWeights:()=>fD,fromMemory:()=>oR,getLoadHandlers:()=>TD,getModelArtifactsForJSON:()=>Mx,getModelArtifactsInfoForJSON:()=>Mc,getSaveHandlers:()=>ND,http:()=>Ox,isHTTPScheme:()=>Lb,listModels:()=>LD,loadWeights:()=>tR,moveModel:()=>WD,registerLoadRouter:()=>SD,registerSaveRouter:()=>ID,removeModel:()=>zD,weightsLoaderFactory:()=>ZI,withSaveHandler:()=>lR});var KD="model",XD=".json",YD=".weights.bin";function q1(e){return new Promise(t=>setTimeout(t)).then(e)}var kl=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(kl.URL_SCHEME)&&(e=e.slice(kl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=KD),this.modelJsonFileName=e+XD,this.weightDataFileName=e+YD}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=VI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await q1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await q1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Mc(e)}}}};kl.URL_SCHEME="downloads://";var JD=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Mx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Rx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>j1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=j1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},ZD=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(kl.URL_SCHEME)?QD(e.slice(kl.URL_SCHEME.length)):null;Dt.registerSaveRouter(ZD);function QD(e="model"){return new kl(e)}function eR(e){return new JD(e)}function K1(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){R(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),R(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),R(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function JI(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await K1(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await K1(i,t.onProgress,o,l)}async function tR(e,t="",n,a){return ZI(r=>JI(r,{requestInit:a}))(e,t,n)}function ZI(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Rb[y]*wt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,w)=>{v===g.name&&(x(),i[w]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(p[c+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=WI(v,[x.manifestEntry]);for(let T in w)d[T]=w[T]}),c+=m}),d}}var nR="application/octet-stream",aR="application/json",Px=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=VI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:aR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:nR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Mc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Mx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=rR(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await JI(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Rx(l)]}};Px.URL_SCHEME_REGEX=/^https?:\/\//;function rR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Lb(e){return e.match(Px.URL_SCHEME_REGEX)!=null}var QI=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Lb(a)):n=Lb(e),n)return Ox(e,t)}return null};Dt.registerSaveRouter(QI);Dt.registerLoadRouter(QI);function Ox(e,t){return new Px(e,t)}function sR(e,t){return Ox(e,t)}var fb=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},iR=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function oR(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new fb(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new fb({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new fb({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function lR(e){return new iR(e)}var eS={};Me(eS,{confusionMatrix:()=>hR});function uR(e,t,n=!1,a=!1){let r=A(e,"a","matMul"),s=A(t,"b","matMul");[r,s]=$t(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return L.runKernel(Ii,i,o)}var De=B({matMul_:uR});function pR(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:A(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return L.runKernel(Yi,r,s)}var Il=B({oneHot_:pR});function cR(e,t){let n=A(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{R(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return L.runKernel(yo,a,r)}var $e=B({transpose_:cR});function dR(e,t,n){let a=A(e,"labels","confusionMatrix"),r=A(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),R(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),R(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Il(oe(a,"int32"),n),i=Il(oe(r,"int32"),n),o=$e(s),l=De(o,i);return oe(l,"int32")}var hR=B({confusionMatrix_:dR}),Ou={};Me(Ou,{assertAndGetBroadcastShape:()=>ht,getBroadcastDims:()=>tS,getReductionAxes:()=>Wt});function tS(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ht(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var bo={};Me(bo,{fromPixels:()=>vR,fromPixelsAsync:()=>bR,toPixels:()=>xR});function Xm(e,t,n){if(xi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=pr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}var Ws;function nS(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(Vh(Wh,L.backendName)!=null){let c={pixels:e},h={numChannels:t};return L.runKernel(Wh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Ws==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ws=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ws=document.createElement("canvas").getContext("2d");Ws.canvas.width=l,Ws.canvas.height=u,Ws.drawImage(e,0,0,l,u),p=Ws.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Xm(d,[u,l,t],"int32")}function mR(e){return e!=null&&e.data instanceof Uint8Array}function fR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function gR(e){return e!=null&&e.width!==0&&e.height!==0}function yR(e){return fR()&&!(e instanceof ImageBitmap)&&gR(e)&&!mR(e)}async function bR(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&yR(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return nS(n,t)}async function xR(e,t){let n=A(e,"img","toPixels");if(!(e instanceof Ae)){let u=n;n=oe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var vR=B({fromPixels_:nS}),Lx={};Me(Lx,{prepareAndValidate:()=>aS});function aS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(wt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...Rl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var zx={};Me(zx,{calculateShapes:()=>rS,validateInput:()=>Wx,validateUpdateShape:()=>Bx});function Bx(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Wx(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Bx(n,t,e)}function rS(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=wt(t.shape)/o,u=[...Rl(n.slice(0,r)),1],p=wt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var qt={};Me(qt,{assertParamsValid:()=>kR,computeFlatOffset:()=>CR,computeOutShape:()=>SR,getNormalizedAxes:()=>NR,isSliceContinous:()=>TR,maskToAxes:()=>IR,parseSliceParams:()=>hS,sliceInfo:()=>_R,startForAxis:()=>cS,startIndicesWithElidedDims:()=>lS,stopForAxis:()=>dS,stopIndicesWithElidedDims:()=>uS,stridesForAxis:()=>pS,stridesWithElidedDims:()=>sS});var zb=-2,wR=-1;function kR(e,t,n){let a=e.shape.length;R(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),R(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)R(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function IR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function SR(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function sS(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function iS(e,t,n){return n<=e?n:n-(t-1)}function oS(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function NR(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=lS(i,h,m,a,e),d=uS(o,h,m,r,e),c=sS(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=cS(i,a,s,e,h,l),d[h]=dS(o,r,s,e,h,l),c[h]=pS(s,h,l);return{begin:p,end:d,strides:c}}function lS(e,t,n,a,r){let s=[...r],i=oS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=iS(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function uS(e,t,n,a,r){let s=[...r],i=oS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=iS(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Yp(0,s[o],r[o])}return s}function pS(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function cS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Yp(0,i,l-1),i}function dS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Yp(0,i,l):i=Yp(-1,i,l-1),i}function TR(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function CR(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function hS(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{R(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(R(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function _R(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b<d.dims;b++)p&&(1<<b&o)!==0&&d.numAddAxisAfterEllipsis++,1<<b&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};ER(d,c);let h=!0,m=!0,f=!0,g=[],y=[];for(let b=0;b<e.length;++b){if(c.strides[b]===0)throw Error(`strides[${b}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<b),v=e[b];if(v===-1){g.push(x?1:-1);continue}let w=[c.beginMask&1<<b,c.endMask&1<<b],T=[c.strides[b]>0?0:-1,c.strides[b]>0?v:v-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let C=!!(c.beginMask&1<<b&&c.endMask&1<<b);if(c.beginValid&&c.endValid){if(x){let F=c.begin[b]<0?v+c.begin[b]:c.begin[b];if(c.begin[b]=F,c.end[b]=c.begin[b]+1,F<0||F>=v)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=X1(c.begin[b],0,c.strides[b],v,w,T),c.end[b]=X1(c.end[b],1,c.strides[b],v,w,T);let P=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===v;h=h&&P,m=m&&(b===0&&c.strides[b]===1||P)}else h=h&&c.strides[b]===1&&C,m=m&&(b===0&&c.strides[b]===1||C);let E,$=!1;if(c.beginValid&&c.endValid?(E=c.end[b]-c.begin[b],$=!0):x?(E=1,$=!0):C&&v>=0&&(c.strides[b]<0?E=-v:E=v,$=!0),$){let P;E===0||E<0!=c.strides[b]<0?P=0:P=Math.trunc(E/c.strides[b])+(E%c.strides[b]!==0?1:0),g.push(P)}else g.push(-1)}for(let b=0;b<c.finalShapeGatherIndices.length;++b){let x=c.finalShapeGatherIndices[b];x>=0?y.push(g[x]):x===zb&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==zb),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function ER(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(zb),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(wR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function X1(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var se={};Me(se,{Serializable:()=>mS,SerializationMap:()=>js,registerClass:()=>ks});var mS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},js=class{constructor(){this.classNameMap={}}static getMap(){return js.instance==null&&(js.instance=new js),js.instance}static register(e){js.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ks(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),js.register(e)}var fS={};Me(fS,{TEST_EPSILON_FLOAT16:()=>gS,encodeStrings:()=>yS,expectArrayBuffersEqual:()=>PR,expectArraysClose:()=>$R,expectArraysEqual:()=>DR,expectNumbersClose:()=>RR,expectPromiseToFail:()=>FR,expectValuesInRange:()=>MR,testEpsilon:()=>Vx});var AR=.001,gS=.1;function $R(e,t,n){return n==null&&(n=Vx()),Bb(e,t,(a,r)=>Ux(a,r,n))}function Vx(){return L.backend.floatPrecision()===32?AR:gS}function Bb(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=pr(e),o=pr(t);if(!gs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:ti(e),s=hn(t)?t:ti(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function FR(e,t){e().then(()=>t.fail(),()=>t())}function DR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Qr(e)||Qr(e[0])||Qr(t)||Qr(t[0])?Bb(e,n,(a,r)=>a==r):Bb(e,t,(a,r)=>Ux(a,r,0))}function RR(e,t,n){if(n==null&&(n=Vx()),!Ux(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Ux(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function MR(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function PR(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function yS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?yS(n):e[t]=Dc(n)}return e}var OR="3.16.0";function LR(){X().set("PROD",!0)}function zR(){X().set("DEBUG",!0)}function BR(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Gx(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}sD(Gx);function WR(){L.disposeVariables()}function sr(){return L}function jh(){return L.memory()}function VR(e){return L.profile(e)}function O(e,t){return L.tidy(e,t)}function Re(e){Fx(e).forEach(t=>t.dispose())}function en(e){return L.keep(e)}function UR(e){return L.time(e)}function GR(e){return L.setBackend(e)}function HR(){return L.ready()}function jR(){return L.backendName}function qR(e){L.removeBackend(e)}function KR(e){return L.findBackend(e)}function XR(e){return L.findBackendFactory(e)}function Ym(e,t,n=1){return L.registerBackend(e,t,n)}function bS(){return L.backend}function YR(e,t){X().setPlatform(e,t)}function JR(e,t){let n=A(e,"a","add"),a=A(t,"b","add");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(ys,r)}var J=B({add_:JR});function ZR(e,t){let n=A(e,"a","floorDiv"),a=A(t,"b","floorDiv");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Pi,r)}var Jm=B({floorDiv_:ZR});function QR(e,t){let n=A(e,"a","div"),a=A(t,"b","div");if([n,a]=$t(n,a),n.dtype==="int32"&&a.dtype==="int32")return Jm(n,a);let r={a:n,b:a},s={};return L.runKernel(Fi,r,s)}var fe=B({div_:QR});function eM(e,t){let n=A(e,"a","mul"),a=A(t,"b","mul");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Xi,r)}var z=B({mul_:eM});function tM(e){let t=A(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(gc,n)}else{let n={x:t};return L.runKernel(Ml,n)}}var zt=B({abs_:tM});function nM(e){let t={x:A(e,"x","acos")};return L.runKernel(Pl,t)}var Hx=B({acos_:nM});function aM(e){let t={x:A(e,"x","acosh")};return L.runKernel(Ol,t)}var jx=B({acosh_:aM});function rM(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>A(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!gs(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return L.runKernel(vi,a)}var xS=B({addN_:rM});function sM(e,t=null,n=!1){let a={x:A(e,"x","all","bool")},r={axis:t,keepDims:n};return L.runKernel(Ll,a,r)}var Zm=B({all_:sM});function iM(e,t=null,n=!1){let a={x:A(e,"x","any","bool")},r={axis:t,keepDims:n};return L.runKernel(zl,a,r)}var tc=B({any_:iM});function oM(e,t=0){let n={x:A(e,"x","argMax")},a={axis:t};return L.runKernel(wi,n,a)}var oi=B({argMax_:oM});function lM(e,t=0){let n={x:A(e,"x","argMin")},a={axis:t};return L.runKernel(mc,n,a)}var qx=B({argMin_:lM});function uM(e){let t={x:A(e,"x","asin")};return L.runKernel(Bl,t)}var Kx=B({asin_:uM});function pM(e){let t={x:A(e,"x","asinh")};return L.runKernel(Wl,t)}var Xx=B({asinh_:pM});function cM(e){let t={x:A(e,"x","atan")};return L.runKernel(Vl,t)}var Yx=B({atan_:cM});function dM(e,t){let n=A(e,"a","atan2"),a=A(t,"b","atan2");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Gl,r)}var Jx=B({atan2_:dM});function hM(e){let t={x:A(e,"x","atanh")};return L.runKernel(Ul,t)}var Zx=B({atanh_:hM});function mM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=kS(r);return Pc(e,o,n,s,a,null,null,l)}function vS(e,t,n,a,r,s,i="channelsLast"){let[o,l]=qh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Pc(e,u,n,a,r,s,!1,i)}function fM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Wb(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return wS(e,p,n,a,r,!1,d,s)}function Pc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=qh(n),[y,b]=qh(a),x=yl(c,y),v=yl(h,b),{padInfo:w,outHeight:T,outWidth:C}=bM(r,u,p,f,g,x,v,s,o),E=i?m*d:m,$;return o==="channelsFirst"?$=[l,E,T,C]:o==="channelsLast"&&($=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:w,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:$,filterShape:t}}function wS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Wb(n),[v,w,T]=Wb(a),C=yl(h,v),E=yl(m,w),$=yl(f,T),{padInfo:P,outDepth:F,outHeight:S,outWidth:M}=xM(r,u,p,d,y,b,x,C,E,$,o),V=s?g*c:g,j;return i==="channelsFirst"?j=[l,V,F,S,M]:i==="channelsLast"&&(j=[l,F,S,M,V]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:F,outHeight:S,outWidth:M,outChannels:V,padInfo:P,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:$,dilationDepth:v,dilationHeight:w,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function gM(e,t,n,a,r){a==null&&(a=Qx(e,t,n));let s=e[0],i=e[1],o=Zs((s-t+2*a)/n+1,r),l=Zs((i-t+2*a)/n+1,r);return[o,l]}function yM(e,t,n,a,r,s){r==null&&(r=Qx(e,t,a));let i=e[0],o=e[1],l=e[2],u=Zs((i-t+2*r)/a+1,s),p=Zs((o-t+2*r)/a+1,s),d=Zs((l-t+2*r)/a+1,s);return[u,p,d,n]}function Qx(e,t,n,a=1){let r=yl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function qh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Wb(e){return typeof e=="number"?[e,e,e]:e}function yl(e,t){return t<=1?e:e+(e-1)*(t-1)}function bM(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=gM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=Zs((t-s+c+h)/a+1,o),d=Zs((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function xM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=yM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),w=g-v,T=Math.floor(y/2),C=y-T;d={top:v,bottom:w,left:T,right:C,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function Zs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ls(e){let[t,n,a]=qh(e);return t===1&&n===1&&a===1}function mr(e,t){return ls(e)||ls(t)}function kS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Cn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")R(vl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{R(vl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function vM(e,t){let n={x:A(e,"x","reshape","string_or_numeric")},a={shape:t};return L.runKernel(vu,n,a)}var W=B({reshape_:vM});function wM(e,t,n,a,r){let s=A(e,"x","avgPool","float32"),i=1;R(mr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Cn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(ki,u,p);return d=oe(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ga=B({avgPool_:wM});function kM(e,t,n,a,r,s="NDHWC"){let i=A(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Cn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(fc,u,p);return d=oe(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ev=B({avgPool3d_:kM});function IM(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=ec(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return _r(n[0]);let a=n,r={axis:t};return L.runKernel(jl,a,r)}var Qe=B({concat_:IM});function SM(e){let t={x:A(e,"x","sigmoid","float32")};return L.runKernel(lo,t)}var ma=B({sigmoid_:SM});function NM(e,t,n){let a=A(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return L.runKernel(Su,r,s)}var Ge=B({slice_:NM});function TM(e){let t={x:A(e,"x","tanh","float32")};return L.runKernel(go,t)}var li=B({tanh_:TM});function CM(e,t,n,a,r,s){let i=A(e,"forgetBias","basicLSTMCell"),o=A(t,"lstmKernel","basicLSTMCell"),l=A(n,"lstmBias","basicLSTMCell"),u=A(a,"data","basicLSTMCell"),p=A(r,"c","basicLSTMCell"),d=A(s,"h","basicLSTMCell"),c=Qe([u,d],1),h=De(c,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Ge(m,[0,0],y),x=Ge(m,[0,g],y),v=Ge(m,[0,g*2],y),w=Ge(m,[0,g*3],y),T=J(z(ma(b),li(x)),z(p,ma(J(i,v)))),C=z(li(T),ma(w));return[T,C]}var _M=B({basicLSTMCell_:CM});function EM(e,t,n){let a=A(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);R(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return L.runKernel(Hl,s,i)}var Oc=B({batchToSpaceND_:EM});function AM(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function $M(e,t,n,a,r,s){s==null&&(s=.001);let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;a!=null&&(p=A(a,"offset","batchNorm")),R(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:AM(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=L.runKernel(Oi,d,c);return W(h,i.shape)}var Ar=B({batchNorm_:$M});function FM(e,t,n,a,r,s){let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;return a!=null&&(p=A(a,"offset","batchNorm")),R(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),R(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Ar(i,o,l,p,u,s)}var IS=B({batchNorm2d_:FM});function DM(e,t,n,a,r,s){let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;return a!=null&&(p=A(a,"offset","batchNorm")),R(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),R(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Ar(i,o,l,p,u,s)}var SS=B({batchNorm3d_:DM});function RM(e,t,n,a,r,s){let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;return a!=null&&(p=A(a,"offset","batchNorm")),R(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),R(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Ar(i,o,l,p,u,s)}var NS=B({batchNorm4d_:RM});function MM(e,t,n){let a=A(e,"x","bincount"),r=A(t,"weights","bincount");R(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return L.runKernel(bm,s,i)}var tv=B({bincount_:MM});function PM(e,t){let n=A(e,"s0","broadcastArgs","int32"),a=A(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return L.runKernel(xm,r)}var TS=B({broadcastArgs_:PM});function OM(e,t){let n=A(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return _r(n);let i={x:n},o={reps:s};return L.runKernel(xs,i,o)}var bl=B({broadcastTo_:OM});function LM(e){let t={x:A(e,"x","ceil","float32")};return L.runKernel(Ni,t)}var nv=B({ceil_:LM});function zM(e,t,n){let a=A(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return L.runKernel(bs,r,s)}var nn=B({clipByValue_:zM});function BM(e){return Qe(e,0)}var CS=B({concat1d_:BM});function WM(e,t){return Qe(e,t)}var _S=B({concat2d_:WM});function VM(e,t){return Qe(e,t)}var ES=B({concat3d_:VM});function UM(e,t){return Qe(e,t)}var AS=B({concat4d_:UM});function GM(e,t,n,a,r="NHWC",s=[1,1],i){let o=A(e,"x","conv2d","float32"),l=A(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Cn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Ti,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=B({conv2d_:GM});function HM(e,t,n,a,r="NWC",s=1,i){let o=A(e,"x","conv1d"),l=A(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),R(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),R(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Cn("conv1d",a,i),R(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),R(mr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),R(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Qm=B({conv1d_:HM});function jM(e,t,n,a,r,s="NHWC",i){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),R(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),R(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];R(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Cn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=L.runKernel(Ci,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var av=B({conv2DBackpropInput_:jM});function qM(e,t,n,a,r,s){let i=A(e,"x","conv2dTranspose"),o=A(t,"filter","conv2dTranspose");return av(n,i,o,a,r,"NHWC",s)}var ef=B({conv2dTranspose_:qM});function KM(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=A(e,"x","conv3d"),o=A(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),R(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),R(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),R(mr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=L.runKernel(yc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var rv=B({conv3d_:KM});function XM(e,t,n,a,r){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];R(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),R(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),R(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=L.runKernel(Im,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var $S=B({conv3DBackpropInput_:XM});function YM(e,t,n,a,r){let s=A(e,"x","conv3dTranspose"),i=A(t,"filter","conv3dTranspose");return $S(n,s,i,a,r)}var FS=B({conv3dTranspose_:YM});function JM(e){let t={x:A(e,"x","cos","float32")};return L.runKernel(_i,t)}var Lc=B({cos_:JM});function ZM(e){let t={x:A(e,"x","cosh","float32")};return L.runKernel(Ei,t)}var tf=B({cosh_:ZM});function QM(e,t=0,n=!1,a=!1){let r={x:A(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(ql,r,s)}var nc=B({cumprod_:QM});function eP(e,t=0,n=!1,a=!1){let r={x:A(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Ai,r,s)}var nf=B({cumsum_:eP});function tP(e,t,n,a=!1){let r=A(e,"x","denseBincount"),s=A(t,"weights","denseBincount");R(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),R(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return L.runKernel(Sm,i,o)}var DS=B({denseBincount_:tP});function nP(e,t,n="NHWC"){let a=A(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return L.runKernel(Xl,o,l)}var sv=B({depthToSpace_:nP});function aP(e,t,n,a,r="NHWC",s=[1,1],i){let o=A(e,"x","depthwiseConv2d","float32"),l=A(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Cn("depthwiseConv2d",a,i);let d={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=L.runKernel($i,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Is=B({depthwiseConv2d_:aP});function rP(e){let t={x:A(e,"x","diag")};return L.runKernel(Cm,t)}var sP=B({diag_:rP});function iP(e,t,n,a,r=[1,1],s="NHWC"){let i=A(e,"x","dilation2d"),o=A(t,"filter","dilation2d");R(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),R(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),R(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=L.runKernel(bc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var iv=B({dilation2d_:iP});function oP(e,t){let n=A(e,"a","equal","string_or_numeric"),a=A(t,"b","equal","string_or_numeric");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Jl,r)}var ea=B({equal_:oP});function lP(e,t,n){let a=A(t,"a","where"),r=A(n,"b","where"),s=A(e,"condition","where","bool"),i=ht(ht(s.shape,a.shape),r.shape),o=bl(s,i),l=bl(a,i),u=bl(r,i),p={condition:o,t:l,e:u};return L.runKernel(ku,p)}var fn=B({where_:lP});function uP(e){let t={x:A(e,"x","zerosLike")};return L.runKernel(Mu,t)}var Ke=B({zerosLike_:uP});function pP(e,t){let n=A(e,"a","div"),a=A(t,"b","div");[n,a]=$t(n,a);let r=fe(n,a),s=Ke(r),i=ea(a,s);return fn(i,s,r)}var ov=B({divNoNan_:pP});function cP(e,t){let n=A(e,"t1","dot"),a=A(t,"t2","dot");R((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(R(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=De(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=De(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=De(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return De(n,i)}}var RS=B({dot_:cP});function dP(e,...t){let n=t.map((r,s)=>A(r,`tensors${s}`,"einsum")),a={equation:e};return L.runKernel(_m,n,a)}var MS=B({einsum_:dP});function hP(e){let t={x:A(e,"x","elu","float32")};return L.runKernel(Di,t)}var Lu=B({elu_:hP});function mP(e){let t=A(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=oe(t,"float32"));let n={x:t};return L.runKernel(Yl,n)}var lv=B({erf_:mP});function fP(e){let t={x:A(e,"x","exp")};return L.runKernel(Ri,t)}var gn=B({exp_:fP});function gP(e,t=0){let n=A(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return L.runKernel(Zl,a,r)}var mn=B({expandDims_:gP});function yP(e){let t={x:A(e,"x","expm1")};return L.runKernel(Ql,t)}var uv=B({expm1_:yP});function bP(e,t){let n=A(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return L.runKernel(xs,a,r)}var On=B({tile_:bP});function xP(e,t,n,a="float32"){t==null&&(t=e);let r=He([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return On(mn(i,0),[n[0],1,1]);if(n.length===2)return On(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return On(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var pv=B({eye_:xP});function _n(e,t,n){let a={shape:e,value:t,dtype:n};return L.runKernel(xc,{},a)}function vP(e){let t={x:A(e,"x","floor","float32")};return L.runKernel(Mi,t)}var zu=B({floor_:vP});function wP(e,t,n=0,a=0){let r=A(e,"x","gather"),s=A(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return L.runKernel(tu,i,o)}var ui=B({gather_:wP});function kP(e,t){let n=A(e,"a","greater","string_or_numeric"),a=A(t,"b","greater","string_or_numeric");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(au,r)}var Gn=B({greater_:kP});function IP(e,t){let n=A(e,"a","greaterEqual","string_or_numeric"),a=A(t,"b","greaterEqual","string_or_numeric");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Li,r)}var Ss=B({greaterEqual_:IP});function SP(e){let t={input:A(e,"input","imag")};return L.runKernel(Fm,t)}var af=B({imag_:SP});function NP(e){let t={x:A(e,"x","isFinite")};return L.runKernel(ru,t)}var PS=B({isFinite_:NP});function TP(e){let t={x:A(e,"x","isInf")};return L.runKernel(su,t)}var OS=B({isInf_:TP});function CP(e){let t={x:A(e,"x","isNaN")};return L.runKernel(iu,t)}var cv=B({isNaN_:CP});function _P(e,t=.2){let n={x:A(e,"x","leakyRelu")},a={alpha:t};return L.runKernel(Bi,n,a)}var zc=B({leakyRelu_:_P});function EP(e,t){let n=A(e,"a","less","string_or_numeric"),a=A(t,"b","less","string_or_numeric");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(ou,r)}var rf=B({less_:EP});function AP(e,t){let n=A(e,"a","lessEqual","string_or_numeric"),a=A(t,"b","lessEqual","string_or_numeric");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(lu,r)}var Ns=B({lessEqual_:AP});function LS(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return L.runKernel(Dm,{},a)}function $P(e,t=5,n=1,a=1,r=.5){let s=A(e,"x","localResponseNormalization");R(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),R(vl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=L.runKernel(kc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var dv=B({localResponseNormalization_:$P});function FP(e){let t={x:A(e,"x","log","float32")};return L.runKernel(Wi,t)}var ta=B({log_:FP});function DP(e){let t={x:A(e,"x","log1p")};return L.runKernel(uu,t)}var Bc=B({log1p_:DP});function RP(e){return R(ss(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=A(t,"x","tf.grad","string_or_numeric"),r=n!=null?A(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(a),[a],r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),sf(i),i[0]})}}function MP(e){return R(ss(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=ec(t,"args","tf.grads","string_or_numeric"),r=n!=null?A(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...a),a,r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),sf(i),i})}}function PP(e){return R(ss(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof Ae,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=L.gradients(()=>e(t),[t],n);return sf(a),{grad:a[0],value:r}}}function OP(e){return R(ss(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(r=>r instanceof Ae),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=L.gradients(()=>e(...t),t,n);return n!=null&&Tn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),sf(a.grads),a}}function zS(e,t){R(ss(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(u=>u instanceof is),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);R(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function cr(e){return L.customGrad(e)}function sf(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function LP(e){let t={x:A(e,"x","neg")};return L.runKernel(du,t)}var St=B({neg_:LP});function zP(e){let t={x:A(e,"x","softplus")};return L.runKernel(Cu,t)}var xo=B({softplus_:zP});function BP(e){let t=A(e,"x","logSigmoid");return cr(n=>({value:St(xo(St(n))),gradFunc:a=>z(a,ma(St(n)))}))(t)}var BS=B({logSigmoid_:BP});function WP(e,t=null,n=!1){let a={x:A(e,"x","max")},r={reductionIndices:t,keepDims:n};return L.runKernel(Vi,a,r)}var Ta=B({max_:WP});function VP(e,t){let n=A(e,"a","sub"),a=A(t,"b","sub");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(mo,r)}var ce=B({sub_:VP});function UP(e,t=null,n=!1){let a=A(e,"x","sum");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(po,r,s)}var be=B({sum_:UP});function GP(e,t=-1){let n=A(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return cr((a,r)=>{let s=Ta(a,t,!0),i=ce(a,s),o=ce(oe(i,"float32"),ta(be(gn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=gn(p);return ce(l,z(be(l,t,d),c))}}})(n)}var of=B({logSoftmax_:GP});function hv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function WS(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function VS(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function pi(e,t){let n=t.map(a=>1);return WS(e,n,t)}function HP(e,t,n){R(hv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function US(e,t){if(hv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function mv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function jP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function qP(e,t=null,n=!1){let a=A(e,"x","logSumExp"),r=Ea(t,a.shape),s=Ta(a,r,!0),i=ce(a,s),o=gn(i),l=be(o,r),u=ta(l),p=J(W(s,u.shape),u);if(n){let d=pi(p.shape,r);return W(p,d)}return p}var fv=B({logSumExp_:qP});function KP(e,t){let n=A(e,"a","logicalAnd","bool"),a=A(t,"b","logicalAnd","bool");ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(pu,r)}var _a=B({logicalAnd_:KP});function XP(e){let t={x:A(e,"x","logicalNot","bool")};return L.runKernel(vc,t)}var Wc=B({logicalNot_:XP});function YP(e,t){let n=A(e,"a","logicalOr","bool"),a=A(t,"b","logicalOr","bool");ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(wc,r)}var lf=B({logicalOr_:YP});function JP(e,t){let n=A(e,"a","logicalXor","bool"),a=A(t,"b","logicalXor","bool");return ht(n.shape,a.shape),_a(lf(e,t),Wc(_a(e,t)))}var GS=B({logicalXor_:JP});function ZP(e,t,n,a,r){let s=A(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),R(mr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Cn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Gi,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pt=B({maxPool_:ZP});function QP(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=A(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Cn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(Ic,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var gv=B({maxPool3d_:QP});function eO(e,t,n,a,r=!1){let s={x:A(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=L.runKernel(Om,s,i);return{result:o[0],indexes:o[1]}}var HS=B({maxPoolWithArgmax_:eO});function tO(e,t){let n=A(e,"a","maximum"),a=A(t,"b","maximum");[n,a]=$t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Ui,r)}var fr=B({maximum_:tO});function nO(e,t=null,n=!1){let a={x:A(e,"x","mean")},r={axis:t,keepDims:n};return L.runKernel(Hi,a,r)}var Et=B({mean_:nO});function kt(e,t="float32"){if(t==="complex64"){let a=kt(e,"float32"),r=kt(e,"float32");return os(a,r)}let n=fm(wt(e),t);return L.makeTensor(n,e,t)}function Zn(e,t="float32"){if(t==="complex64"){let a=Zn(e,"float32"),r=kt(e,"float32");return os(a,r)}let n=Tx(wt(e),t);return L.makeTensor(n,e,t)}function aO(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=A(e,"x","meshgrid",e instanceof Ae?e.dtype:"float32");if(t===void 0)return[a];let r=A(t,"y","meshgrid",t instanceof Ae?t.dtype:"float32"),s=wt(a.shape),i=wt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[De(Zn([i,1],a.dtype),a),De(r,Zn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[De(a,Zn([1,i],a.dtype)),De(Zn([s,1],r.dtype),r)])}function rO(e,t=null,n=!1){let a={x:A(e,"x","min")},r={axis:t,keepDims:n};return L.runKernel(ji,a,r)}var ac=B({min_:rO});function sO(e,t){let n=A(e,"a","minimum"),a=A(t,"b","minimum");[n,a]=$t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(qi,r)}var Bu=B({minimum_:sO});function iO(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=A(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)R(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),R(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return L.runKernel(Ki,i,s)}var yv=B({mirrorPad_:iO});function oO(e,t){let n=A(e,"a","mod"),a=A(t,"b","mod");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(cu,r)}var bv=B({mod_:oO});function lO(e){let t=A(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var ut=B({square_:lO});function uO(e,t=null,n=!1){e=A(e,"x","moments");let a=Ea(t,e.shape),r=Et(e,a,n),s=r.shape;n||(s=pi(r.shape,a));let i=ut(ce(oe(e,"float32"),W(r,s))),o=Et(i,a,n);return{mean:r,variance:o}}var uf=B({moments_:uO});function pO(e,t,n,a){let r=A(t,"data","multiRNNCell"),s=ec(n,"c","multiRNNCell"),i=ec(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var cO=B({multiRNNCell_:pO});function dO(e,t,n,a=!1){let r=A(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=L.runKernel(Lm,o,l);return i===1?W(u,[u.size]):u}var jS=B({multinomial_:dO});function hO(e,t){let n=A(e,"a","notEqual","string_or_numeric"),a=A(t,"b","notEqual","string_or_numeric");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(hu,r)}var ci=B({notEqual_:hO});function mO(e){let t={x:A(e,"x","onesLike")};return L.runKernel(yu,t)}var na=B({onesLike_:mO});function fO(e,t){let n=A(e,"v1","outerProduct"),a=A(t,"v2","outerProduct");R(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return De(r,s)}var gO=B({outerProduct_:fO});function yO(e,t,n=0){let a=A(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return L.runKernel(Ji,s,r)}var ya=B({pad_:yO});function bO(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ya(e,[t],n)}var xO=B({pad1d_:bO});function vO(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var wO=B({pad2d_:vO});function kO(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var IO=B({pad3d_:kO});function SO(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var NO=B({pad4d_:SO});function TO(e,t,n){let a=A(e,"x","spaceToBatchND");R(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return L.runKernel(_u,r,s)}var Vc=B({spaceToBatchND_:TO});function CO(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=A(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(mr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=vS(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=EO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=_O([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:Vc(l,d,m),b=(n==="avg"?()=>ga(y,t,s,g,i):()=>Pt(y,t,s,g,i))(),x=h?b:Oc(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function _O(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function EO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var qS=B({pool_:CO});function AO(e,t){let n=A(e,"base","pow"),a=A(t,"exp","pow");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Zi,r)}var $r=B({pow_:AO});function $O(e,t){let n=A(e,"x","prelu"),a=A(t,"alpha","prelu"),r={x:n,alpha:a};return L.runKernel(Qi,r)}var Uc=B({prelu_:$O});function FO(e,t=null,n=!1){let a=A(e,"x","prod");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(eo,r,s)}var pf=B({prod_:FO});function DO(e,t,n){let a=wt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return L.makeTensor(r,e,n)}var RO=B({rand_:DO}),xv=bi(mI()),vv=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=xv.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},MO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=xv.alea(r.toString()),this.randn=new vv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},PO=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=xv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function OO(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new MO(t,n,a,r),i=He(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var LO=B({randomGamma_:OO});function zO(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new vv(t,n,a,!1,r),i=He(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var KS=B({randomNormal_:zO});function BO(e,t=0,n=1,a="float32",r){let s=He(e,a),i=new PO(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Wu=B({randomUniform_:BO});function Sl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return L.runKernel(Sc,{},r)}function WO(e){let t={input:A(e,"input","real")};return L.runKernel(zm,t)}var rc=B({real_:WO});function VO(e){let t={x:A(e,"x","reciprocal")};return L.runKernel(xu,t)}var wv=B({reciprocal_:VO});function UO(e){let t={x:A(e,"x","relu")};return L.runKernel(to,t)}var Xe=B({relu_:UO});function GO(e){let t={x:A(e,"x","relu6")};return L.runKernel(ao,t)}var cf=B({relu6_:GO});function HO(e,t){let n={x:A(e,"x","reverse")},a={dims:t};return L.runKernel(ro,n,a)}var aa=B({reverse_:HO});function jO(e){let t=A(e,"x","reverse");return R(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),aa(t,0)}var qO=B({reverse1d_:jO});function KO(e,t){let n=A(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),aa(n,t)}var XO=B({reverse2d_:KO});function YO(e,t){let n=A(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),aa(n,t)}var JO=B({reverse3d_:YO});function ZO(e,t){let n=A(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),aa(n,t)}var QO=B({reverse4d_:ZO});function e3(e){let t={x:A(e,"x","round")};return L.runKernel(so,t)}var df=B({round_:e3});function t3(e){let t={x:A(e,"x","rsqrt","float32")};return L.runKernel(io,t)}var hf=B({rsqrt_:t3});function we(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ws(e,[],[],t)}function n3(e){let t={x:A(e,"x","selu")};return L.runKernel(Iu,t)}var mf=B({selu_:n3});function a3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=A(e,"x","separableConv2d"),l=A(t,"depthwiseFilter","separableConv2d"),u=A(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),R(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];R(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Is(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var vo=B({separableConv2d_:a3});async function r3(e,t){let n=A(e,"x","setdiff1d"),a=A(t,"y","setdiff1d");R(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],n.dtype),u=new jt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var XS=r3;function s3(e){let t={x:A(e,"x","sign")};return L.runKernel(Tu,t)}var kv=B({sign_:s3});function i3(e){let t={x:A(e,"x","sin","float32")};return L.runKernel(oo,t)}var ff=B({sin_:i3});function o3(e){let t={x:A(e,"x","sinh")};return L.runKernel(Nu,t)}var gf=B({sinh_:o3});function l3(e,t,n){let a=A(e,"x","slice1d");return R(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Ge(a,[t],[n])}var yf=B({slice1d_:l3});function u3(e,t,n){let a=A(e,"x","slice2d");return R(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Ge(a,t,n)}var Iv=B({slice2d_:u3});function p3(e,t,n){let a=A(e,"x","slice3d");return R(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Ge(a,t,n)}var Vu=B({slice3d_:p3});function c3(e,t,n){let a=A(e,"x","slice4d");return R(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Ge(a,t,n)}var sc=B({slice4d_:c3});function d3(e,t=-1){let n=A(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return L.runKernel(co,a,r)}var Ja=B({softmax_:d3});function h3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Am,t)}var Gc=B({fft_:h3});function m3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel($m,t)}var Nl=B({ifft_:m3});function f3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=Nl(r)}else{let r=[n,2*(t-1)],s=W(rc(e),[n,t]),i=W(af(e),[n,t]),o=aa(Ge(s,[0,1],[n,t-2]),1),l=z(aa(Ge(i,[0,1],[n,t-2]),1),we(-1)),u=Qe([s,o],1),p=Qe([i,l],1),d=W(os(u,p),[r[0],r[1]]);a=Nl(d)}if(a=rc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var bf=B({irfft_:f3});function g3(e,t,n=0){let a={x:A(e,"x","split")},r={numOrSizeSplits:t,axis:n};return L.runKernel(Eu,a,r)}var zn=B({split_:g3});function y3(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Ge(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,kt(m)],e.shape.length-1),n=t}else r=e;let s=Ke(r),i=W(os(r,s),[a,n]),o=Gc(i),l=Math.floor(n/2)+1,u=rc(o),p=af(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(os(d[0],c[0]),h)}var Hc=B({rfft_:y3});function b3(e){let t={x:A(e,"x","sqrt","float32")};return L.runKernel(uo,t)}var un=B({sqrt_:b3});function x3(e,t){let n=A(e,"a","squaredDifference"),a=A(t,"b","squaredDifference");[n,a]=$t(n,a),ht(n.shape,a.shape);let r={a:n,b:a},s={};return L.runKernel(ho,r,s)}var xf=B({squaredDifference_:x3});function v3(e,t){let n=A(e,"x","squeeze");return W(n,bI(n.shape,t).newShape)}var dr=B({squeeze_:v3});function w3(e,t=0){let n=ec(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return L.runKernel(bu,a,r)}var Mt=B({stack_:w3});function k3(e,t=0){let n={x:A(e,"x","step")},a={alpha:t};return L.runKernel(vs,n,a)}var Uu=B({step_:k3});function I3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:A(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel($u,u,p)}var Sv=B({stridedSlice_:I3});function S3(e){let t={x:A(e,"x","tan","float32")};return L.runKernel(fo,t)}var Nv=B({tan_:S3});function qe(e,t){xi(e);let n=pr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ws(e,null,n,t)}function Ha(e,t,n){if(xi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=pr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ws(e,t,a,n)}function Za(e,t,n){if(xi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=pr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function N3(e,t,n){if(xi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=pr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function T3(e,t,n){if(xi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=pr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ws(e,t,a,n)}function C3(e,t=1,n=!0){let a=A(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=L.runKernel(Fu,s,i);return{values:o,indices:l}}var Tv=B({topk_:C3});function _3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new vv(t,n,a,!0,r),i=He(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vf=B({truncatedNormal_:_3});function E3(e,t=0){let n=A(e,"x","unique","string_or_numeric");R(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=L.runKernel(jm,a,r);return{values:s,indices:i}}var Kh=B({unique_:E3});function A3(e,t,n){let a=A(e,"x","unsortedSegmentSum"),r=A(t,"segmentIds","unsortedSegmentSum","int32");R(vl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return L.runKernel(Ac,s,i)}var Cv=B({unsortedSegmentSum_:A3});function $3(e,t=0){let n=A(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return L.runKernel(Ru,a,r)}var mt=B({unstack_:$3});function YS(e,t=!0,n,a){return L.makeVariable(e,t,n,a)}function JS(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=He(e,"int32"),r=He([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function F3(e){let t=A(e,"condition","whereAsync","bool"),n=await t.data(),a=JS(t.shape,n);return e!==t&&t.dispose(),a}var _v=F3;async function D3(e,t,n){let a=A(e,"tensor","boolMask"),r=A(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;R(i>0,()=>"mask cannot be scalar"),Tn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await _v(d),h=dr(c,[1]),m=ui(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var R3=D3;function M3(e,t="euclidean",n=null,a=!1){e=A(e,"x","norm");let r=ZS(e,t,n),s=r.shape;if(a){let i=Ea(n,e.shape);s=pi(r.shape,i)}return W(r,s)}function ZS(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return ZS(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return be(zt(e),n);if(t===1/0)return Ta(zt(e),n);if(t===-1/0)return ac(zt(e),n);if(t==="euclidean"||t===2)return un(be($r(zt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Ta(be(zt(e),n[0]),n[1]-1);if(t===1/0)return Ta(be(zt(e),n[1]),n[0]);if(t===-1/0)return ac(be(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return un(be(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var wf=B({norm_:M3});function P3(e,t,n,a,r=!0){let s=A(e,"v","movingAverage"),i=A(t,"x","movingAverage"),o=A(n,"decay","movingAverage");MI(s,i),R(gs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=we(1),u=ce(l,o),p=z(ce(i,s),u);if(r){R(a!=null,()=>"When using zeroDebias: true, step is required.");let d=A(a,"step","movingAverage");p=fe(p,ce(l,$r(o,d)))}return J(s,p)}var O3=B({movingAverage_:P3});function L3(e,t,n){let a=A(e,"indices","scatterND","int32"),r=A(t,"updates","scatterND");Wx(r,a,n);let s={indices:a,updates:r},i={shape:n};return L.runKernel(wu,s,i)}var QS=B({scatterND_:L3});function z3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function B3(e,t,n,a=0){let r=A(e,"sparseIndices","sparseToDense","int32"),s=A(t,"sparseValues","sparseToDense"),i=A(a,"defaultValue","sparseToDense",s.dtype);z3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(Vm,o,l)}var Ev=B({sparseToDense_:B3});function W3(e,t){let n=A(t,"indices","gatherND","int32"),a={params:A(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(nu,a)}var e2=B({gatherND_:W3});function V3(e,t){if(t==null)return e.shape.slice();if(gs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function U3(e,t,n,a){let r=A(e,"x","dropout");if(R(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ae?r.clone():r;let s=V3(r,n),i=1-t,o=fe(zu(J(Wu(s,0,1,"float32",a),i)),i);return z(r,o)}var t2=B({dropout_:U3});function n2(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Av(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return qe(r,"float32")}async function G3(e,t,n=1){let a=A(e,"predictions","inTopK"),r=A(t,"targets","inTopK");R(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),R(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Tn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];R(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=xI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Qn(p,r.shape,"bool")}var H3=G3,us={};Me(us,{conv2d:()=>K3,depthwiseConv2d:()=>Z3,matMul:()=>eL});function j3(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),R(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];R(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),R(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Cn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(wm,d,c)}var $v=B({conv2DBackpropFilter_:j3});function kf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Uu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function If(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=be(n,a)),W(n,e.shape)}function Sf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Lu(e);if(t==="relu6")return cf(e);if(t==="prelu")return Uc(e,n);if(t==="leakyrelu")return zc(e,a);if(t==="sigmoid")return ma(e);throw new Error(`Unknown fused activation ${t}.`)}var Nf=(e,t)=>!(e>0)||t==="linear";function q3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",Nf(L.state.gradientDepth,l)===!1){let w=Rt(e,t,n,a,r,s,i);return o!=null&&(w=J(w,o)),Sf(w,l,u,p)}let d=A(e,"x","conv2d","float32"),c=A(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Cn("fused conv2d",a,i),R(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),R(mr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Pc(h.shape,c.shape,n,s,a,i),g;o!=null&&(g=A(o,"bias","fused conv2d"),[g]=$t(g,d),ht(f.outShape,g.shape));let y;u!=null&&(y=A(u,"prelu weights","fused conv2d"));let b=(w,T)=>{let[C,E,$,P]=T,F=kf(w,$,l);R(ls(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let S=av(E.shape,F,C,n,a),M=$v(E,F,C.shape,n,a),V=[S,M];if(P!=null){let j=If(P,F);V.push(j)}return V},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((w,T,C)=>{let E=L.runKernel(ai,x,v);return C([T,w,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:b}})(h,c):cr((w,T,C,E)=>{let $=L.runKernel(ai,x,v);return E([T,w,$,C]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,c,g)}var K3=B({fusedConv2d_:q3});function X3(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(Nm,u,p)}var a2=B({depthwiseConv2dNativeBackpropFilter_:X3});function Y3(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=L.runKernel(Tm,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var r2=B({depthwiseConv2dNativeBackpropInput_:Y3});function J3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(Nf(L.state.gradientDepth,l)===!1){let w=Is(e,t,n,a,r,s,i);return o!=null&&(w=J(w,o)),Sf(w,l,u,p)}let d=A(e,"x","depthwiseConv2d","float32"),c=A(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),R(mr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Cn("fused depthwiseConv2d",a,i);let f=Pc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=A(o,"bias","fused conv2d"),[g]=$t(g,d),ht(f.outShape,g.shape));let y;u!=null&&(y=A(u,"prelu weights","fused depthwiseConv2d"));let b=(w,T)=>{R(ls(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,$,P]=T,F=kf(w,$,l),S=r2(E.shape,F,C,n,a,s,i),M=a2(E,F,C.shape,n,a,s,i);if(P!=null){let V=If(g,F);return[S,M,V]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((w,T,C)=>{let E=L.runKernel(ri,x,v);return C([T,w,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:b}})(h,c):cr((w,T,C,E)=>{let $=L.runKernel(ri,x,v);return E([T,w,$,C]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,c,g)}var Z3=B({fusedDepthwiseConv2d_:J3});function Q3({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Nf(L.state.gradientDepth,s)===!1){let P=De(e,t,n,a);return r!=null&&(P=J(P,r)),Sf(P,s,i,o)}let l=A(e,"a","fused matMul"),u=A(t,"b","fused matMul");[l,u]=$t(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=wt(m),y=wt(f);R(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=ht(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),v=a?W(u,[y,h,d]):W(u,[y,d,h]),w;r!=null&&(w=A(r,"bias","fused matMul"),[w]=$t(w,l),ht(b,w.shape));let T;i!=null&&(T=A(i,"prelu weights","fused matMul"));let C=(P,F)=>{let[S,M,V,j]=F,q=kf(W(P,V.shape),V,s),K,Q;if(!n&&!a?(K=De(q,M,!1,!0),Q=De(S,q,!0,!1)):!n&&a?(K=De(q,M,!1,!1),Q=De(q,S,!0,!1)):n&&!a?(K=De(M,q,!1,!0),Q=De(S,q,!1,!1)):(K=De(M,q,!0,!0),Q=De(q,S,!0,!0)),r!=null){let ee=If(j,q);return[K,Q,ee]}else return[K,Q]},E={a:x,b:v,bias:w,preluActivationWeights:T},$={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?cr((P,F,S)=>{let M=L.runKernel(ni,E,$);return S([P,F,M]),{value:W(M,b),gradFunc:C}})(x,v):cr((P,F,S,M)=>{let V=L.runKernel(ni,E,$);return M([P,F,V,S]),{value:W(V,b),gradFunc:C}})(x,v,w)}var eL=B({fusedMatMul_:Q3});function tL(e){return Av(e,.54,.46)}var nL=B({hammingWindow_:tL});function aL(e){return Av(e,.5,.5)}var s2=B({hannWindow_:aL});function rL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ge(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([Ge(e,s,t-o),_n([o],r)]);i.push(l),s+=n}return i.length===0?Ha([],[0,t]):W(Qe(i),[i.length,t])}var i2=B({frame_:rL});function sL(e,t,n,a,r=s2){a==null&&(a=n2(t));let s=i2(e,t,n),i=z(s,r(t));return Hc(i,a)}var iL=B({stft_:sL});function oL(e,t,n,a,r="bilinear",s=0){let i=A(e,"image","cropAndResize"),o=A(t,"boxes","cropAndResize","float32"),l=A(n,"boxInd","cropAndResize","int32"),u=o.shape[0];R(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),R(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),R(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),R(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),R(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return L.runKernel(Kl,p,d)}var lL=B({cropAndResize_:oL});function uL(e){let t=A(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(eu,n,{})}var pL=B({flipLeftRight_:uL});function cL(e){let t=A(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,On(t,r)}var dL=B({grayscaleToRGB_:cL});function hL(e,t,n=0,a=.5){let r=A(e,"image","rotateWithOffset","float32");R(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return L.runKernel(Pu,s,i)}var mL=B({rotateWithOffset_:hL});function Gu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),R(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),R(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function fL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=A(e,"boxes","nonMaxSuppression","float32"),i=A(t,"scores","nonMaxSuppression","float32"),o=Gu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return L.runKernel(mu,{boxes:s,scores:i},l)}var gL=B({nonMaxSuppression_:fL});function yL(e,t,n){let a=bL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function bL(e,t,n){return vL(e,t,n||xL)}function xL(e,t){return e>t?1:e<t?-1:0}function vL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function o2(e,t,n,a,r){return Fv(e,t,n,a,r,0)}function l2(e,t,n,a,r,s){return Fv(e,t,n,a,r,0,!1,s,!0)}function u2(e,t,n,a,r,s){return Fv(e,t,n,a,r,s,!0)}function Fv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Y1);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let w=d.length-1;w>=x;--w){let T=wL(e,b,d[w]);if(T>=a){v=!0;break}if(g.score=g.score*kL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,v||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&yL(u,g,Y1))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function wL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function kL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function Y1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function IL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=A(e,"boxes","nonMaxSuppressionAsync"),i=A(t,"scores","nonMaxSuppressionAsync"),o=Gu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=o2(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),qe(d,"int32")}var SL=IL;function NL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=A(e,"boxes","nonMaxSuppression"),o=A(t,"scores","nonMaxSuppression"),l=Gu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=L.runKernel(gu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var TL=B({nonMaxSuppressionWithScore_:NL});async function CL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=A(e,"boxes","nonMaxSuppressionAsync"),o=A(t,"scores","nonMaxSuppressionAsync"),l=Gu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=u2(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(c,"int32"),selectedScores:qe(h)}}var _L=CL;function EL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=A(e,"boxes","nonMaxSuppression"),o=A(t,"scores","nonMaxSuppression"),l=Gu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=L.runKernel(fu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var AL=B({nonMaxSuppressionPadded_:EL});async function $L(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=A(e,"boxes","nonMaxSuppressionAsync"),o=A(t,"scores","nonMaxSuppressionAsync"),l=Gu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=l2(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(m,"int32"),validOutputs:we(f,"int32")}}var FL=$L;function DL(e,t,n=!1,a=!1){let r=A(e,"images","resizeBilinear");R(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(no,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var p2=B({resizeBilinear_:DL});function RL(e,t,n=!1,a=!1){let r=A(e,"images","resizeNearestNeighbor");R(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(Nc,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var c2=B({resizeNearestNeighbor_:RL});function ML(e,t="binary",n=!1,a=.5){let r=A(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(qe([a]),255),p,d,c,h;if(R(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),R(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),R(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),y=z(c,o);h=J(J(f,g),y)}else h=e;if(t==="otsu"){let f=tv(oe(df(h),"int32"),Qn([]),256);u=PL(f,l)}let m=n?Ns(h,u):Gn(h,u);return oe(z(m,255),"int32")}function PL(e,t){let n=qe([-1]),a=qe([0]),r=qe([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Ge(e,0,d+1),i=Ge(e,d+1),u=fe(be(s),t),p=fe(be(i),t);let c=be(z(s,Sl(0,s.size)));o=fe(c,be(s));let h=_n(i.shape,s.size),m=J(Sl(0,i.size),h),f=z(i,m);l=fe(be(f),be(i));let g=ce(o,l),y=ce(o,l),b=z(u,p);r=z(z(b,g),y);let x=Gn(r,a);a=fn(x,r,a),n=fn(x,qe([d]),n)}return n}var OL=B({threshold_:ML});function LL(e,t,n="nearest",a="constant",r=0,s){let i=A(e,"image","transform","float32"),o=A(t,"transforms","transform","float32");R(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return L.runKernel(Du,l,u)}var zL=B({transform_:LL});function BL(e,t,n){R(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=A(e,"a","bandPart");R(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(Sl(0,s,1,"int32"),[-1,1]),l=Sl(0,i,1,"int32"),u=ce(o,l),p=_a(Ns(u,we(+t,"int32")),Ss(u,we(-n,"int32"))),d=kt([s,i],a.dtype);return W(Mt(mt(W(a,[-1,s,i])).map(c=>fn(p,c,d))),r)}var WL=B({bandPart_:BL});function VL(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)R(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>dr(r,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(be(z(n[i],s)),n[i]);s=ce(s,o)}return fe(s,wf(s,"euclidean"))}));return t?Mt(n,0):n}var UL=B({gramSchmidt_:VL});function GL(e,t=!1){if(R(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return J1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=mt(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=J1(l,t);r.push(u),s.push(p)});let i=W(Mt(r,0),e.shape),o=W(Mt(s,0),e.shape);return[i,o]}}function J1(e,t=!1){return L.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=pv(n),s=_r(e),i=Ha([[1]],[1,1]),o=_r(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=L.tidy(()=>{let h=Ge(s,[u,u],[n-u,1]),m=wf(h),f=Ge(s,[u,u],[1,1]),g=fn(Gn(f,0),Ha([[-1]]),Ha([[1]])),y=ce(f,z(g,m)),b=fe(h,y);b.shape[0]===1?o=_r(i):o=Qe([i,Ge(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=St(fe(De(g,y),m)),v=Ge(s,[u,0],[n-u,a]),w=z(x,o),T=$e(o);if(u===0)s=ce(v,De(w,De(T,v)));else{let $=ce(v,De(w,De(T,v)));s=Qe([Ge(s,[0,0],[u,a]),$],0)}let C=$e(w),E=Ge(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ce(E,De(De(E,o),C));else{let $=ce(E,De(De(E,o),C));r=Qe([Ge(r,[0,0],[n,u]),$],1)}return[o,s,r]}),Re([p,d,c])}return!t&&n>a&&(r=Ge(r,[0,0],[n,a]),s=Ge(s,[0,0],[a,a])),[r,s]})}var HL=B({qr_:GL}),In;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(In||(In={}));function jL(e,t,n=In.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=A(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===In.NONE)return s;if(n===In.SUM)return be(s);if(n===In.MEAN){if(r==null)return Et(s);{let i=a.size/r.size,o=fe(be(s),be(r));return i>1?fe(o,we(i)):o}}if(n===In.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(be(s),we(a.size));{let i=z(r,Zn(a.shape)),o=oe(be(ci(i,we(0))),"float32");return fe(be(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Fr=B({computeWeightedLoss_:jL});function qL(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"labels","absoluteDifference"),s=A(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=A(n,"weights","absoluteDifference")),Tn(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ce(r,s));return Fr(o,i,a)}var KL=B({absoluteDifference_:qL});function XL(e,t,n,a,r=In.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","cosineDistance"),i=A(t,"predictions","cosineDistance"),o=null;a!=null&&(o=A(a,"weights","cosineDistance")),Tn(s.shape,i.shape,"Error in cosineDistance: ");let l=we(1),u=ce(l,be(z(s,i),n,!0));return Fr(u,o,r)}var YL=B({cosineDistance_:XL});function JL(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"labels","hingeLoss"),s=A(t,"predictions","hingeLoss"),i=null;n!=null&&(i=A(n,"weights","hingeLoss")),Tn(r.shape,s.shape,"Error in hingeLoss: ");let o=we(1);r=ce(z(we(2),r),o);let l=Xe(ce(o,z(r,s)));return Fr(l,i,a)}var ZL=B({hingeLoss_:JL});function QL(e,t,n,a=1,r=In.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","huberLoss"),i=A(t,"predictions","huberLoss"),o=null;n!=null&&(o=A(n,"weights","huberLoss")),Tn(s.shape,i.shape,"Error in huberLoss: ");let l=we(a),u=zt(ce(i,s)),p=Bu(u,l),d=ce(u,p),c=J(z(we(.5),ut(p)),z(l,d));return Fr(c,o,r)}var ez=B({huberLoss_:QL});function tz(e,t,n,a=1e-7,r=In.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","logLoss"),i=A(t,"predictions","logLoss"),o=null;n!=null&&(o=A(n,"weights","logLoss")),Tn(s.shape,i.shape,"Error in logLoss: ");let l=we(1),u=we(a),p=St(z(s,ta(J(i,u)))),d=z(ce(l,s),ta(J(ce(l,i),u))),c=ce(p,d);return Fr(c,o,r)}var nz=B({logLoss_:tz});function az(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"labels","meanSquaredError"),s=A(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=A(n,"weights","meanSquaredError")),Tn(r.shape,s.shape,"Error in meanSquaredError: ");let o=xf(r,s);return Fr(o,i,a)}var rz=B({meanSquaredError_:az});function sz(e,t){let n=A(e,"labels","sigmoidCrossEntropyWithLogits"),a=A(t,"logits","sigmoidCrossEntropyWithLogits");Tn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=z(a,n),i=Bc(gn(St(zt(a))));return J(ce(r,s),i)}function iz(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"multiClassLabels","sigmoidCrossEntropy"),i=A(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=A(n,"weights","sigmoidCrossEntropy")),Tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=we(a),p=we(1),d=we(.5);s=J(z(s,ce(p,u)),z(d,u))}let l=sz(s,i);return Fr(l,o,r)}var oz=B({sigmoidCrossEntropy_:iz});function lz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return cr((a,r,s)=>{let i=fv(r,[n],!0),o=ce(oe(r,"float32"),i);s([a,o]);let l=St(z(o,a));return{value:be(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=pi(u.shape,[n]);return[z(W(u,h),ce(oe(d,"float32"),gn(c))),z(W(u,h),ce(gn(c),oe(d,"float32")))]}}})(e,t)}function uz(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"onehotLabels","softmaxCrossEntropy"),i=A(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=A(n,"weights","softmaxCrossEntropy")),Tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=we(a),p=we(1),d=we(s.shape[1]);s=J(z(s,ce(p,u)),fe(u,d))}let l=lz(s,i);return Fr(l,o,r)}var pz=B({softmaxCrossEntropy_:uz});function cz(e,t,n,a){let r=A(e,"indices","sparseFillEmptyRows","int32"),s=A(t,"values","sparseFillEmptyRows"),i=A(n,"denseShape","sparseFillEmptyRows","int32"),o=A(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=L.runKernel(Tc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var dz=B({sparseFillEmptyRows_:cz});function hz(e,t,n){let a=A(e,"inputIndices","sparseReshape","int32"),r=A(t,"inputShape","sparseReshape","int32"),s=A(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=L.runKernel(Au,i);return{outputIndices:o[0],outputShape:o[1]}}var mz=B({sparseReshape_:hz});function fz(e,t,n){let a=A(e,"data","sparseSegmentMean"),r=A(t,"indices","sparseSegmentMean","int32"),s=A(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Cc,i)}var gz=B({sparseSegmentMean_:fz});function yz(e,t,n){let a=A(e,"data","sparseSegmentSum"),r=A(t,"indices","sparseSegmentSum","int32"),s=A(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(_c,i)}var bz=B({sparseSegmentSum_:yz});function xz(e,t,n,a,r,s,i,o){let l=A(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=A(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=L.runKernel(Um,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var vz=B({stringNGrams_:xz});function wz(e,t,n=!0){let a=A(e,"input","stringSplit","string"),r=A(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=L.runKernel(Gm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var kz=B({stringSplit_:wz});function Iz(e,t){let n=A(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Hm,r,a)}var Sz=B({stringToHashBucketFast_:Iz}),Nz={fft:Gc,ifft:Nl,rfft:Hc,irfft:bf},Tz={hammingWindow:nL,hannWindow:s2,frame:i2,stft:iL},Ln={flipLeftRight:pL,grayscaleToRGB:dL,resizeNearestNeighbor:c2,resizeBilinear:p2,rotateWithOffset:mL,cropAndResize:lL,nonMaxSuppression:gL,nonMaxSuppressionAsync:SL,nonMaxSuppressionWithScore:TL,nonMaxSuppressionWithScoreAsync:_L,nonMaxSuppressionPadded:AL,nonMaxSuppressionPaddedAsync:FL,threshold:OL,transform:zL},d2={bandPart:WL,gramSchmidt:UL,qr:HL},Cz={absoluteDifference:KL,computeWeightedLoss:Fr,cosineDistance:YL,hingeLoss:ZL,huberLoss:ez,logLoss:nz,meanSquaredError:rz,sigmoidCrossEntropy:oz,softmaxCrossEntropy:pz},Lp={sparseFillEmptyRows:dz,sparseReshape:mz,sparseSegmentMean:gz,sparseSegmentSum:bz},Ch={stringNGrams:vz,stringSplit:kz,stringToHashBucketFast:Sz},Dr=class extends mS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Re(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return zS(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Dr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Tf=class extends Dr{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;O(()=>{let l=J(z(i,this.rho),z(ut(s),1-this.rho)),u=z(fe(un(J(o,this.epsilon)),un(J(i,this.epsilon))),s),p=J(z(o,this.rho),z(ut(u),1-this.rho));i.assign(l),o.assign(p);let d=J(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Tf.className="Adadelta";ks(Tf);var Cf=class extends Dr{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:O(()=>_n(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;O(()=>{let i=J(s,ut(r));s.assign(i);let o=J(z(fe(r,un(J(i,L.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Cf.className="Adagrad";ks(Cf);var _f=class extends Dr{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],O(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=ce(1,this.accBeta2);t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:O(()=>Ke(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:O(()=>Ke(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=J(z(u,this.beta1),z(l,1-this.beta1)),c=J(z(p,this.beta2),z(ut(l),1-this.beta2)),h=fe(d,n),m=fe(c,a);u.assign(d),p.assign(c);let f=J(z(fe(h,J(un(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),O(()=>{this.accBeta1.assign($r(this.beta1,this.iterations_+1)),this.accBeta2.assign($r(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};_f.className="Adam";ks(_f);var Ef=class extends Dr{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],O(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=fe(-this.learningRate,J(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ke(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ke(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=J(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=zt(l),m=fr(c,h);u.assign(d),p.assign(m);let f=J(z(fe(a,n),fe(d,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Ef.className="Adamax";ks(Ef);var jc=class extends Dr{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=L.registeredVariables[t];O(()=>{let s=J(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=en(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};jc.className="SGD";ks(jc);var Af=class extends jc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&O(()=>{let i,o=J(z(this.m,r),s);this.useNesterov?i=J(z(this.c,J(s,z(o,this.m))),a):i=J(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Af.className="Momentum";ks(Af);var $f=class extends Dr{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;O(()=>{let l=J(z(i,this.decay),z(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=J(z(u,this.decay),z(s,1-this.decay)),d=fe(z(s,this.learningRate),un(ce(l,J(ut(p),this.epsilon)))),c=J(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=ce(a,c);a.assign(h)}else{let u=J(z(i,this.decay),z(ut(s),1-this.decay)),p=J(z(o,this.momentum),fe(z(s,this.learningRate),un(J(u,this.epsilon))));i.assign(u),o.assign(p);let d=ce(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};$f.className="RMSProp";ks($f);var Yr=class{static sgd(e){return new jc(e)}static momentum(e,t,n=!1){return new Af(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new $f(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new _f(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Tf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Ef(e,t,n,a,r)}static adagrad(e,t=.1){return new Cf(e,t)}},Gs={sgd:Yr.sgd,momentum:Yr.momentum,adadelta:Yr.adadelta,adagrad:Yr.adagrad,rmsprop:Yr.rmsprop,adamax:Yr.adamax,adam:Yr.adam},_z=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Dv(){return new Promise(e=>_z(()=>e()))}var _={};Me(_,{ERF_A1:()=>zz,ERF_A2:()=>Bz,ERF_A3:()=>Wz,ERF_A4:()=>Vz,ERF_A5:()=>Uz,ERF_P:()=>Lz,PARALLELIZE_THRESHOLD:()=>Rv,SELU_SCALE:()=>m2,SELU_SCALEALPHA:()=>h2,applyActivation:()=>Sf,assertAndGetBroadcastShape:()=>ht,assertAxesAreInnerMostDims:()=>HP,assertParamsConsistent:()=>Ez,assignToTypedArray:()=>Xz,axesAreInnerMostDims:()=>hv,calculateShapes:()=>rS,checkEinsumDimSizes:()=>tB,checkPadOnDimRoundingMode:()=>Cn,combineLocations:()=>WS,complexWithEvenIndex:()=>jz,complexWithOddIndex:()=>qz,computeConv2DInfo:()=>Pc,computeConv3DInfo:()=>wS,computeDefaultPad:()=>Qx,computeDilation2DInfo:()=>mM,computeOptimalWindowSize:()=>$z,computeOutAndReduceShapes:()=>VS,computeOutShape:()=>Az,computePool2DInfo:()=>vS,computePool3DInfo:()=>fM,convertConv2DDataFormat:()=>kS,decodeEinsumEquation:()=>Qz,eitherStridesOrDilationsAreOne:()=>mr,expandShapeToKeepDim:()=>pi,exponent:()=>Jz,exponents:()=>Yz,fromStringArrayToUint8:()=>kB,fromUint8ToStringArray:()=>wB,getAxesPermutation:()=>US,getBroadcastDims:()=>tS,getComplexWithIndex:()=>Kz,getEinsumComputePath:()=>nB,getEinsumPermutation:()=>eB,getFusedBiasGradient:()=>If,getFusedDyActivation:()=>kf,getImageCenter:()=>Fz,getInnerMostAxes:()=>jP,getPermuted:()=>Rz,getReductionAxes:()=>Wt,getReshaped:()=>Dz,getReshapedPermuted:()=>Mz,getSliceBeginCoords:()=>Pz,getSliceSize:()=>Oz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>iB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>oB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>lB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>cB,getSparseReshapeInputOutputMismatchErrorMessage:()=>hB,getSparseReshapeInputOutputMultipleErrorMessage:()=>dB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>uB,getSparseReshapeNegativeOutputDimErrorMessage:()=>pB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>yB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>mB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>fB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>gB,getUndoAxesPermutation:()=>mv,isIdentityPermutation:()=>aB,log:()=>OF,mergeRealAndImagArrays:()=>Gz,prepareAndValidate:()=>aS,prepareSplitSize:()=>sB,segment_util:()=>f2,shouldFuse:()=>Nf,slice_util:()=>qt,splitRealAndImagArrays:()=>Hz,tupleValuesAreOne:()=>ls,upcastType:()=>fa,validateInput:()=>Wx,validateUpdateShape:()=>Bx,warn:()=>Zr});function Ez(e,t){let n=e[0].length;e.forEach((r,s)=>{R(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)R(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function Az(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Rv=30;function $z(e){return e<=Rv?e:Lh(e,Math.floor(Math.sqrt(e)))}function Fz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function Dz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function Rz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Mz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function Pz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function Oz(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var h2=1.7580993408473768,m2=1.0507009873554805,Lz=.3275911,zz=.254829592,Bz=-.284496736,Wz=1.421413741,Vz=-1.453152027,Uz=1.061405429;function Gz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function Hz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function jz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function qz(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Kz(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function Xz(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function Yz(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function Jz(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var gb="->",Zz=/->/g,Z1=",",Q1="...";function Qz(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Zz,"").length)/gb.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${gb}").`);let[a,r]=e.split(gb);R(a.indexOf(Q1)===-1,()=>`The ellipsis notation ("${Q1}") is not supported yet.`);let s=a.split(Z1),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==Z1&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function eB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function tB(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:R(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function nB(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=rB(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function aB(e){return e.every((t,n)=>t===n)}function rB(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function sB(e,t,n=0){let a=[];if(typeof t=="number")R(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);R(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}R(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function iB(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function oB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function lB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function uB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function pB(e,t){return`size ${e} must be non-negative, not ${t}`}function cB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function dB(e,t){let n=wt(e),a=wt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function hB(e,t){let n=wt(e),a=wt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function mB(){return"segment ids must be >= 0"}function fB(){return"segment ids are not increasing"}function gB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function yB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var f2={};Me(f2,{collectGatherOpShapeInfo:()=>vB,computeOutShape:()=>xB,segOpComputeOptimalWindowSize:()=>bB});function bB(e,t){let n=!1,a;for(e<=Rv?(a=e,n=!0):a=Lh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Lh(e,a+1);return a}function xB(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function vB(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function wB(e){try{return e.map(t=>Gh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function kB(e){return e.map(t=>Dc(t))}var gr={};Me(gr,{nonMaxSuppressionV3Impl:()=>o2,nonMaxSuppressionV4Impl:()=>l2,nonMaxSuppressionV5Impl:()=>u2,whereImpl:()=>JS});var g2={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Uu(oe(n,"float32"),-1))}}},IB={kernelName:Pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(oe(n,"float32")),r=un(ce(we(1),a));return St(fe(e,r))}}}},SB={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(ce(ut(oe(n,"float32")),1));return fe(e,a)}}}},NB={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}},TB={kernelName:vi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},CB={kernelName:wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},_B={kernelName:mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},EB={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,un(ce(we(1),ut(oe(n,"float32")))))}}},AB={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(J(we(1),ut(oe(n,"float32"))));return fe(e,a)}}}},$B={kernelName:Gl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=J(ut(n),ut(a)),i=z(e,fe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=be(i,o)),W(i,n.shape)},b:()=>{let s=J(ut(n),ut(a)),i=St(z(e,fe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=be(i,o)),W(i,a.shape)}}}},FB={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(ut(oe(n,"float32")),1))}}},DB={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ce(we(1),ut(oe(n,"float32"))))}}};function RB(e,t,n,a,r,s){let i=A(e,"dy","avgPool3dGrad"),o=A(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),R(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Cn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=L.runKernel(ym,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var MB=B({avgPool3dGrad_:RB}),PB={kernelName:fc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>MB(e,a,r,s,i,o)}}};function OB(e,t,n,a,r){let s=A(e,"dy","avgPoolGrad"),i=A(t,"input","avgPoolGrad");R(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),R(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=L.runKernel(gm,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var LB=B({avgPoolGrad_:OB}),zB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>LB(e,a,r,s,i)}}},BB={kernelName:Ii,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>De(e,r,!1,!0),b:()=>De(a,e,!0,!1)}:!s&&i?{a:()=>De(e,r,!1,!1),b:()=>De(e,a,!0,!1)}:s&&!i?{a:()=>De(r,e,!1,!0),b:()=>De(a,e,!1,!1)}:{a:()=>De(r,e,!0,!0),b:()=>De(e,a,!0,!0)}}},WB={kernelName:Hl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Vc(e,a,r)}}},VB={kernelName:EI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>be(e,o,!0)}}},UB={kernelName:Si,gradFunc:e=>({x:()=>e.clone()})},GB={kernelName:Ni,gradFunc:e=>({x:()=>Ke(e)})},HB={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>fn(_a(Ss(a,r),Ns(a,s)),e,Ke(e))}}},jB={kernelName:gc,inputsToSave:["x"],gradFunc:g2.gradFunc},qB={kernelName:jl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ea(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},KB={kernelName:Ti,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return R(ls(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>av(a.shape,e,r,i,o,l),filter:()=>$v(a,e,r.shape,i,o,l)}}},XB={kernelName:Ci,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>$v(e,a,r.shape,s,i,o,l)}}};function YB(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),R(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),R(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return L.runKernel(km,o,l)}var JB=B({conv3DBackpropFilter_:YB}),ZB={kernelName:yc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;R(ls(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>$S(i.shape,e,o,r,s),filter:()=>JB(i,e,o.shape,r,s)}}},QB={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(St(ff(oe(n,"float32"))),e)}}},eW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(gf(oe(n,"float32")),e)}}},tW={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=US([r],a.rank),l=nf(e,r,s,!i);return o!=null&&(l=$e(l,o)),l}}}},nW={kernelName:$i,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;R(ls(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),R(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),R(mr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Cn("depthwiseConv2d",s,i),{x:()=>r2(l.shape,e,u,r,s,o,i),filter:()=>a2(l,e,u.shape,r,s,o,i)}}},aW={kernelName:bc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>L.runKernel(zh,s,n),filter:()=>L.runKernel(Bh,i,n)}}},rW={kernelName:Di,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>L.runKernel(Em,a)}}},sW={kernelName:Yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(gn(St(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},iW={kernelName:Ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},oW={kernelName:Zl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},lW={kernelName:Ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,gn(n))}}},uW={kernelName:Mi,gradFunc:e=>({x:()=>Ke(e)})},pW={kernelName:Pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=ut(a);return St(fe(s,oe(o,"float32")))}}}},cW={kernelName:Oi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?we(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=ce(r,s),c=z(e,l),h=hf(J(i,we(a))),m=z(z(z(h,h),h),we(-.5));return{x:()=>s.rank===1?W(z(z(e,On(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,we(-1)),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=be(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=be(f,u)),W(f,s.shape)}}}},dW={kernelName:tu,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ea(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=ek(0,p),m=ek(p+1,p+1+c),f=tk([u,[l],d]),g=W(e,f),y=W(r,[l]),b=tk([[p],h,m]),x=$e(g,b),v=Cv(x,y,a.shape[i]),w=mv(b);return v=$e(v,w),v},indices:()=>r}}};function ek(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function tk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var hW={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ke(n),b:()=>Ke(a)}}},mW={kernelName:zi,gradFunc:e=>({x:()=>oe(e,"float32")})},fW={kernelName:ru,gradFunc:e=>({x:()=>Ke(e)})},gW={kernelName:su,gradFunc:e=>({x:()=>Ke(e)})},yW={kernelName:iu,gradFunc:e=>({x:()=>Ke(e)})},bW={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Gn(a,0);return{x:()=>fn(s,e,z(e,r))}}},xW={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(n,1))}}},vW={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,oe(n,"float32"))}}},wW={kernelName:AI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=gn(a);return ce(e,z(be(e,r,!0),s))}}}};function kW(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return L.runKernel(Rm,o,l)}var IW=B({localResponseNormalizationBackprop_:kW}),SW={kernelName:kc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>IW(a,r,e,s,i,o,l)}}};function y2(e,t,n,a){return t.rank<n.rank&&(t=W(t,pi(t.shape,a))),e.rank<n.rank&&(e=W(e,pi(e.shape,a))),{x:()=>z(e,oe(ea(n,t),e.dtype))}}var nk={kernelName:Vi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ea(r,s.shape),l=y2(e,i,s,o);return{x:()=>l.x()}}},NW={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,oe(Ss(n,a),"float32")),b:()=>z(e,oe(rf(n,a),"float32"))}}};function TW(e,t,n,a,r,s,i){let o=A(e,"dy","maxPool3dGrad"),l=A(t,"input","maxPool3dGrad"),u=A(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),R(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Cn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=L.runKernel(Pm,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var CW=B({maxPool3dGrad_:TW}),_W={kernelName:Ic,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>CW(e,a,r,s,i,o,l)}}};function EW(e,t,n,a,r,s,i){let o=A(e,"dy","maxPoolGrad"),l=A(t,"input","maxPoolGrad"),u=A(n,"output","maxPoolGrad");R(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),R(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),R(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Cn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return L.runKernel(Mm,p,d)}var AW=B({maxPoolGrad_:EW}),$W={kernelName:Gi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>AW(e,a,r,s,i,o)}}},FW={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ea(r,a.shape),i=VS(a.shape,s)[1],o=wt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return fe(z(u,Zn(a.shape,"float32")),o)}}}},DW={kernelName:ji,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ea(r,s.shape),l=y2(e,i,s,o);return{x:()=>l.x()}}},RW={kernelName:qi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,oe(Ns(n,a),"float32")),b:()=>z(e,oe(Gn(n,a),"float32"))}}},MW={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ge(e,s,a.shape)}}},PW={kernelName:cu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?W(be(e,s),n.shape):e},b:()=>{let s=z(e,St(zu(fe(n,a)))),i=Wt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},OW={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=z(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Wt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},LW={kernelName:du,gradFunc:e=>({x:()=>St(e)})},zW={kernelName:Yi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>kt(n.shape,"float32")}}},BW={kernelName:yu,gradFunc:e=>({x:()=>Ke(e)})},WW={kernelName:bu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return mt(e,a).map(r=>()=>r)}},ak={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ge(e,s,a.shape)}}},VW={kernelName:Zi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ht(s.shape,i.shape);return{a:()=>{let l=oe(i,"float32"),u=z(e,z(l,$r(s,ce(l,we(1))))),p=Wt(s.shape,o);return p.length>0&&(u=be(u,p)),W(u,s.shape)},b:()=>{let l=Gn(s,0),u=fn(l,ta(s),Ke(s)),p=z(e,z(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=be(p,d)),W(p,i.shape)}}}},UW={kernelName:Qi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Gn(n,0);return{x:()=>fn(r,e,z(e,a)),alpha:()=>{let s=fn(r,Ke(e),z(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}};function GW(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=nc(e,n,!0,!1),i=nc(e,n,!0,!0),o=z(s,i);return z(r,o)}function HW(e,t,n){let a=e.shape.length,r=a-n.length,s=_.getAxesPermutation(n,a),i=e;s!=null&&(i=$e(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=GW(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=_.getUndoAxesPermutation(s);p=$e(p,d)}return p}var jW={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>HW(a,e,s)}}},qW={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=z(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=ut(a);return St(fe(s,oe(o,"float32")))}}}},KW={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,St(ut(n)))}}},XW={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(Ns(n,6),Uu(n));return{x:()=>z(e,oe(a,"float32"))}}},YW={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,oe(Uu(n),"float32"))}}},JW={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},ZW={kernelName:no,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Wm,r,n)}}},QW={kernelName:Nc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Bm,r,n)}}},e4={kernelName:ro,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ea(a,e.shape);return{x:()=>aa(e,r)}}},t4={kernelName:so,gradFunc:e=>({x:()=>Ke(e)})},n4={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(fe(e,z($r(n,1.5),2)))}}},a4={kernelName:ku,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>oe(Ke(n),"float32"),t:()=>z(e,oe(n,e.dtype)),e:()=>z(e,oe(Wc(n),e.dtype))}}},r4={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Gn(n,we(0)),r=we(h2),s=we(m2),i=z(e,s),o=z(z(e,r),gn(oe(n,"float32")));return fn(a,i,o)}}}},s4={kernelName:lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ce(we(1),n)))}}},i4={kernelName:Tu,gradFunc:e=>({x:()=>Ke(e)})},o4={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Lc(oe(n,"float32")),e)}}},l4={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(tf(oe(n,"float32")),e)}}},u4={kernelName:Su,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=hS(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ya(e,u)}}},p4={kernelName:co,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>ce(i,z(be(i,[r],s),a))}}},c4={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ma(n))}}},rk={kernelName:_u,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Oc(e,a,r)}}},sk={kernelName:Eu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},d4={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,z(un(oe(n,"float32")),2))}}},h4={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(oe(n,"float32"),2))}}},m4={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=we(2);return{a:()=>z(e,z(r,ce(n,a))),b:()=>z(e,z(r,ce(a,n)))}}},f4={kernelName:vs,gradFunc:e=>({x:()=>Ke(e)})},g4={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ht(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=be(s,i)),W(St(s),a.shape)}}}},y4={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ea(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Zn(a.shape,"float32"));return{x:()=>o}}},b4={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ut(Lc(n)))}}},x4={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ce(we(1),ut(n)),e)}}},v4={kernelName:xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ke(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,Ge(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,Ge(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,Ge(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=J(s,Ge(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},w4={kernelName:yo,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=mv(r);return{x:()=>$e(e,s)}}},k4={kernelName:Ru,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Mt(e,r)}}},I4={kernelName:Ac,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>S4(e,n)}}};function S4(e,t){let n=fr(t,Ke(t)),a=ui(e,n),r=Ss(t,we(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=_a(r,Zn(a.shape,"bool"));let i=Ke(a);return fn(r,a,i)}var N4={kernelName:Mu,gradFunc:e=>({x:()=>Ke(e)})},T4=[g2,IB,SB,NB,TB,CB,_B,EB,AB,$B,FB,DB,PB,zB,BB,WB,VB,UB,GB,HB,jB,qB,XB,KB,ZB,QB,eW,tW,nW,aW,qW,rW,sW,iW,oW,lW,pW,uW,cW,dW,hW,mW,fW,gW,yW,bW,xW,vW,wW,SW,nk,nk,NW,_W,$W,FW,DW,RW,MW,PW,OW,LW,zW,BW,WW,ak,ak,VW,UW,jW,KW,XW,YW,JW,ZW,QW,e4,t4,n4,a4,r4,s4,i4,o4,l4,u4,p4,c4,rk,rk,sk,sk,d4,m4,h4,f4,g4,y4,b4,x4,v4,w4,k4,I4,N4];for(let e of T4)$I(e);ne().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};ne().prototype.acos=function(){return this.throwIfDisposed(),Hx(this)};ne().prototype.acosh=function(){return this.throwIfDisposed(),jx(this)};ne().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};ne().prototype.all=function(e,t){return this.throwIfDisposed(),Zm(this,e,t)};ne().prototype.any=function(e,t){return this.throwIfDisposed(),tc(this,e,t)};ne().prototype.argMax=function(e){return this.throwIfDisposed(),oi(this,e)};ne().prototype.argMin=function(e){return this.throwIfDisposed(),qx(this,e)};ne().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),W(this,[])};ne().prototype.asType=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};ne().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};ne().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};ne().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};ne().prototype.asin=function(){return this.throwIfDisposed(),Kx(this)};ne().prototype.asinh=function(){return this.throwIfDisposed(),Xx(this)};ne().prototype.atan=function(){return this.throwIfDisposed(),Yx(this)};ne().prototype.atan2=function(e){return this.throwIfDisposed(),Jx(this,e)};ne().prototype.atanh=function(){return this.throwIfDisposed(),Zx(this)};ne().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ga(this,e,t,n,a)};ne().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Oc(this,e,t)};ne().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Ar(this,e,t,n,a,r)};ne().prototype.broadcastTo=function(e){return this.throwIfDisposed(),bl(this,e)};ne().prototype.cast=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.ceil=function(){return this.throwIfDisposed(),nv(this)};ne().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),nn(this,e,t)};ne().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ae&&(e=[e]),Qe([this,...e],t)};ne().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Qm(this,e,t,n,a,r,s)};ne().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),ef(this,e,t,n,a,r)};ne().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};ne().prototype.cos=function(){return this.throwIfDisposed(),Lc(this)};ne().prototype.cosh=function(){return this.throwIfDisposed(),tf(this)};ne().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),nc(this,e,t,n)};ne().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),nf(this,e,t,n)};ne().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),sv(this,e,t)};ne().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Is(this,e,t,n,a,r,s)};ne().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),iv(this,e,t,n,a,r)};ne().prototype.divNoNan=function(e){return this.throwIfDisposed(),ov(this,e)};ne().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ne().prototype.dot=function(e){return this.throwIfDisposed(),RS(this,e)};ne().prototype.elu=function(){return this.throwIfDisposed(),Lu(this)};ne().prototype.equal=function(e){return this.throwIfDisposed(),ea(this,e)};ne().prototype.erf=function(){return this.throwIfDisposed(),lv(this)};ne().prototype.exp=function(){return this.throwIfDisposed(),gn(this)};ne().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};ne().prototype.expm1=function(){return this.throwIfDisposed(),uv(this)};ne().prototype.fft=function(){return this.throwIfDisposed(),Gc(this)};ne().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.floor=function(){return this.throwIfDisposed(),zu(this)};ne().prototype.floorDiv=function(e){return this.throwIfDisposed(),Jm(this,e)};ne().prototype.gather=function(e,t){return this.throwIfDisposed(),ui(this,e,t)};ne().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ss(this,e)};ne().prototype.greater=function(e){return this.throwIfDisposed(),Gn(this,e)};ne().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};ne().prototype.irfft=function(){return this.throwIfDisposed(),bf(this)};ne().prototype.isFinite=function(){return this.throwIfDisposed(),PS(this)};ne().prototype.isInf=function(){return this.throwIfDisposed(),OS(this)};ne().prototype.isNaN=function(){return this.throwIfDisposed(),cv(this)};ne().prototype.leakyRelu=function(e){return this.throwIfDisposed(),zc(this,e)};ne().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ns(this,e)};ne().prototype.less=function(e){return this.throwIfDisposed(),rf(this,e)};ne().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),dv(this,e,t,n,a)};ne().prototype.logSigmoid=function(){return this.throwIfDisposed(),BS(this)};ne().prototype.logSoftmax=function(e){return this.throwIfDisposed(),of(this,e)};ne().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),fv(this,e,t)};ne().prototype.log=function(){return this.throwIfDisposed(),ta(this)};ne().prototype.log1p=function(){return this.throwIfDisposed(),Bc(this)};ne().prototype.logicalAnd=function(e){return this.throwIfDisposed(),_a(this,e)};ne().prototype.logicalNot=function(){return this.throwIfDisposed(),Wc(this)};ne().prototype.logicalOr=function(e){return this.throwIfDisposed(),lf(this,e)};ne().prototype.logicalXor=function(e){return this.throwIfDisposed(),GS(this,e)};ne().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),De(this,e,t,n)};ne().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Pt(this,e,t,n,a)};ne().prototype.max=function(e,t){return this.throwIfDisposed(),Ta(this,e,t)};ne().prototype.maximum=function(e){return this.throwIfDisposed(),fr(this,e)};ne().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};ne().prototype.min=function(e,t){return this.throwIfDisposed(),ac(this,e,t)};ne().prototype.minimum=function(e){return this.throwIfDisposed(),Bu(this,e)};ne().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),yv(this,e,t)};ne().prototype.mod=function(e){return this.throwIfDisposed(),bv(this,e)};ne().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};ne().prototype.neg=function(){return this.throwIfDisposed(),St(this)};ne().prototype.norm=function(e,t,n){return this.throwIfDisposed(),wf(this,e,t,n)};ne().prototype.notEqual=function(e){return this.throwIfDisposed(),ci(this,e)};ne().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Il(this,e,t,n)};ne().prototype.onesLike=function(){return this.throwIfDisposed(),na(this)};ne().prototype.pad=function(e,t){return this.throwIfDisposed(),ya(this,e,t)};ne().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),qS(this,e,t,n,a,r,s)};ne().prototype.pow=function(e){return this.throwIfDisposed(),$r(this,e)};ne().prototype.prelu=function(e){return this.throwIfDisposed(),Uc(this,e)};ne().prototype.prod=function(e,t){return this.throwIfDisposed(),pf(this,e,t)};ne().prototype.reciprocal=function(){return this.throwIfDisposed(),wv(this)};ne().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};ne().prototype.relu6=function(){return this.throwIfDisposed(),cf(this)};ne().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};ne().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};ne().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),p2(this,e,t,n)};ne().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),c2(this,e,t,n)};ne().prototype.reverse=function(e){return this.throwIfDisposed(),aa(this,e)};ne().prototype.rfft=function(){return this.throwIfDisposed(),Hc(this)};ne().prototype.round=function(){return this.throwIfDisposed(),df(this)};ne().prototype.rsqrt=function(){return this.throwIfDisposed(),hf(this)};ne().prototype.selu=function(){return this.throwIfDisposed(),mf(this)};ne().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),vo(this,e,t,n,a,r,s)};ne().prototype.sigmoid=function(){return this.throwIfDisposed(),ma(this)};ne().prototype.sign=function(){return this.throwIfDisposed(),kv(this)};ne().prototype.sin=function(){return this.throwIfDisposed(),ff(this)};ne().prototype.sinh=function(){return this.throwIfDisposed(),gf(this)};ne().prototype.slice=function(e,t){return this.throwIfDisposed(),Ge(this,e,t)};ne().prototype.softmax=function(e){return this.throwIfDisposed(),Ja(this,e)};ne().prototype.softplus=function(){return this.throwIfDisposed(),xo(this)};ne().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Vc(this,e,t)};ne().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};ne().prototype.sqrt=function(){return this.throwIfDisposed(),un(this)};ne().prototype.square=function(){return this.throwIfDisposed(),ut(this)};ne().prototype.squaredDifference=function(e){return this.throwIfDisposed(),xf(this,e)};ne().prototype.squeeze=function(e){return this.throwIfDisposed(),dr(this,e)};ne().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ae?[this,e]:[this,...e];return Mt(n,t)};ne().prototype.step=function(e){return this.throwIfDisposed(),Uu(this,e)};ne().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Sv(this,e,t,n,a,r,s,i,o)};ne().prototype.sub=function(e){return this.throwIfDisposed(),ce(this,e)};ne().prototype.sum=function(e,t){return this.throwIfDisposed(),be(this,e,t)};ne().prototype.tan=function(){return this.throwIfDisposed(),Nv(this)};ne().prototype.tanh=function(){return this.throwIfDisposed(),li(this)};ne().prototype.tile=function(e){return this.throwIfDisposed(),On(this,e)};ne().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};ne().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};ne().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};ne().prototype.topk=function(e,t){return this.throwIfDisposed(),Tv(this,e,t)};ne().prototype.transpose=function(e){return this.throwIfDisposed(),$e(this,e)};ne().prototype.unique=function(e){return this.throwIfDisposed(),Kh(this,e)};ne().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Cv(this,e,t)};ne().prototype.unstack=function(e){return this.throwIfDisposed(),mt(this,e)};ne().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};ne().prototype.zerosLike=function(){return this.throwIfDisposed(),Ke(this)};var Ir=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ir.prototype)}},Va=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Va.prototype)}},H=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,H.prototype)}},Oe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Oe.prototype)}},b2=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,b2.prototype)}},x2=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function di(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ir(e,t){if(!e)throw new b2(t)}function ik(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Pn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Sr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function qs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ka={};function Mv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Vb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Vb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Vb(a))}}}function qc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ka)i=ka[s];else if(i=t[s],i==null)throw new H(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new H(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ka?[o,l]=ka.className:i in t&&([o,l]=t[i]),o==null)throw new H(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ka))u[h]=ka[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},ka);for(let h of Object.keys(n))ka[h]=n[h];Vb(s.config);let c=l(o,s.config,n,r);return ka=Object.assign({},d),c}else{let u=Object.assign({},ka);for(let d of Object.keys(n))ka[d]=n[d];let p=new o(s.config);return ka=Object.assign({},u),p}}}function C4(e,t){return e<t?-1:e>t?1:0}function fh(e,t){return-1*C4(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function _4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function wo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Pv(e,t,n=0,a=1/0){return ir(n>=0),ir(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function tn(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>tn(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${v2(e)}.`)}function v2(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>v2(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function E4(e,t,n){let a=n!=null?n():k.now(),r;return(...s)=>{let i=n!=null?n():k.now();return i-a<t||(a=i,r=e(...s)),r}}function w2(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var A4=0;function k2(){return A4++}var gh={};function Ff(e=""){return e in gh||(gh[e]=0),gh[e]+=1,e+gh[e].toString()}var $4=["channelsFirst","channelsLast"],F4=["nearest","bilinear"],D4=["valid","same","causal"],R4=["max","avg"],M4=["sum","mul","concat","ave"],ul=new Map;function Ot(e){wo($4,"DataFormat",e)}function P4(e){wo(F4,"InterpolationFormat",e)}function ba(e){wo(D4,"PaddingMode",e)}function I2(e){wo(R4,"PoolMode",e)}var qp=[],ok="/";function Qs(e,t){qp.push(e);try{let n=t();return qp.pop(),n}catch(n){throw qp.pop(),n}}function O4(){return qp.length===0?"":qp.join(ok)+ok}function S2(e){if(!T2(e))throw new Error("Not a valid tensor name: '"+e+"'");return O4()+e}function N2(e){if(!T2(e))throw new Error("Not a valid tensor name: '"+e+"'");ul.has(e)||ul.set(e,0);let t=ul.get(e);if(ul.set(e,ul.get(e)+1),t>0){let n=`${e}_${t}`;return ul.set(n,1),n}else return e}var L4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function T2(e){return!!e.match(L4)}function z4(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function Tl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ps(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ka(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var yb;function Ht(){return yb==null&&(yb=bS().epsilon()),yb}function Xa(){return"channelsLast"}function Df(e,t){return oe(e,t)}function Kc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function B4(e,t){return O(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Kc(e,1);return Ub(n,[1,t,1])})}function W4(e){let t=[rs(e.shape)];return W(e,t)}function V4(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return W(e,t)}function ei(e,t,n){return O(()=>{switch(e.rank){case 1:return yf(e,t,n);case 2:return Iv(e,[t,0],[n,e.shape[1]]);case 3:return Vu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return sc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ge(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ge(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function bb(e,t,n){return O(()=>{switch(e.rank){case 1:return yf(e,t,n);case 2:return Iv(e,[0,t],[e.shape[0],n]);case 3:return Vu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return sc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function yh(e,t,n,a){return O(()=>{switch(e.rank){case 1:return yf(e,t,n);case 2:switch(a){case 1:return ei(e,t,n);case 2:return bb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return ei(e,t,n);case 2:return Vu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return bb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return ei(e,t,n);case 2:return sc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return sc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return bb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Ov(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function lk(e,t){switch(e.rank){case 1:return CS([e,t]);case 2:return _S([e,t],0);case 3:return ES([e,t],0);case 4:return AS([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Ub(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return On(e,t)}function Rf(e,t=0,n=1,a,r){return KS(e,t,n,a,r)}function ur(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return us.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Gb(e.rank,a,Xa()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W($e(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(us.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Gb(e.rank,a,Xa()):null,activation:n}),d)}}function C2(e,t,n){return O(()=>(Array.isArray(t)?t=qe(t,"int32"):t=oe(t,"int32"),ui(e,t,n)))}function Xc(e){return z(e,e)}function Gb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Qa(e,t,n){return O(()=>(n==null&&(n=Xa()),Ot(n),J(e,Gb(e.rank,t,n))))}function U4(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Lu(e)}function G4(e){return O(()=>fe(e,J(zt(e),1)))}function _2(e,t,n,a){return O(()=>t2(e,t,n,a))}function H4(e){return O(()=>{let t=J(.5,z(.2,e));return nn(t,0,1)})}function Yc(e,t,n=!1){return n?e():t()}var j4=["fanIn","fanOut","fanAvg"],q4=["normal","uniform","truncatedNormal"];function K4(e){wo(j4,"FanMode",e)}function X4(e){wo(q4,"Distribution",e)}var Aa=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Lv=class extends Aa{apply(e,t){return kt(e,t)}};Lv.className="Zeros";se.registerClass(Lv);var Mf=class extends Aa{apply(e,t){return Zn(e,t)}};Mf.className="Ones";se.registerClass(Mf);var zv=class extends Aa{constructor(e){if(super(),typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return O(()=>z(we(this.value),Zn(e,t)))}getConfig(){return{value:this.value}}};zv.className="Constant";se.registerClass(zv);var Bv=class extends Aa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Wu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Bv.className="RandomUniform";se.registerClass(Bv);var Wv=class extends Aa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Rf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Wv.className="RandomNormal";se.registerClass(Wv);var Vv=class extends Aa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return vf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Vv.className="TruncatedNormal";se.registerClass(Vv);var Uv=class extends Aa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return O(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,pv(e[0]))})}getConfig(){return{gain:this.gain}}};Uv.className="Identity";se.registerClass(Uv);function Y4(e,t="channelsLast"){let n,a;if(Ot(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Wn=class extends Aa{constructor(e){if(super(),e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,K4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,X4(this.distribution),this.seed=e.seed}apply(e,t){let n=Y4(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return vf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Wu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wn.className="VarianceScaling";se.registerClass(Wn);var Pf=class extends Wn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Pf.className="GlorotUniform";se.registerClass(Pf);var Of=class extends Wn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Of.className="GlorotNormal";se.registerClass(Of);var Lf=class extends Wn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Lf.className="HeNormal";se.registerClass(Lf);var zf=class extends Wn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};zf.className="HeUniform";se.registerClass(zf);var Bf=class extends Wn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Bf.className="LeCunNormal";se.registerClass(Bf);var Wf=class extends Wn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Wf.className="LeCunNormal";se.registerClass(Wf);var Gv=class extends Aa{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return O(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Rf(n,0,1,"float32"),r=d2.gramSchmidt(a);return e[0]>e[1]&&(r=$e(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Gv.className="Orthogonal";se.registerClass(Gv);var uk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function pk(e,t={}){return qc(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return Mv(e)}function It(e){if(typeof e=="string"){let t=e in uk?uk[e]:e;if(t==="GlorotNormal")return new Of;if(t==="GlorotUniform")return new Pf;if(t==="HeNormal")return new Lf;if(t==="HeUniform")return new zf;if(t==="LeCunNormal")return new Bf;if(t==="LeCunUniform")return new Wf;{let n={};return n.className=t,n.config={},pk(n)}}else return e instanceof Aa?e:pk(e)}function Hb(e){return Array.isArray(e)&&Array.isArray(e[0])}function Xh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function it(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Yh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var ck="Variable",E2=class{constructor(e,t="float32",n=ck,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=k2(),n=n==null?ck:n,this.originalName=S2(n),this.name=N2(this.originalName),this.trainable_=a,this.constraint=r,this.val=YS(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),J4(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function J4(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function jb(e){return e.map(t=>t.read())}function Hv(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ua=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=k2(),s!=null&&(this.originalName=S2(s),this.name=N2(this.originalName)),this.rank=t.length}},Z4=0,Vf=class{constructor(e,t){this.callArgs=t,this.id=Z4++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Q4=0,Ye=class extends se.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Q4++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+Ff(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Va(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Pn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Pn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return Pn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Pn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),a=!0;for(let s of n)if(!(s instanceof Ua)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ua){r=!1;break}if(a===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Qs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of vt(e))s.push(i.shape);this.build(Pn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=vt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Pn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=eV(e),i=this.computeOutputShape(s),o,l=tV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ua(l,u,this,vt(e),t,this.name,p)):o=new Ua(l,i,this,vt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Va(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Yh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return jb(e?this.trainableWeights:this.weights)}setWeights(e){O(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=jb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new H(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Hv(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():It("zeros"));let l=a.apply(t,n),u=new E2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=vt(e);t=vt(t),n=vt(n),a=vt(a),r=Xh(r),s=Xh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new Vf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function eV(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return Pn(t)}function tV(e){return"float32"}function A2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=A2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Hu=class extends Ye{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Ff("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ua(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Vf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Hu.className="InputLayer";se.registerClass(Hu);function $2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Hu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function nV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return oe(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ys=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ys)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=nV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ua){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ua){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Re(this.id2Mask)}},Jh=new x2,Zh=new x2;function aV(e){Jh!=null&&Jh.setMaxEntries(e),Zh!=null&&Zh.setMaxEntries(e)}function zp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().join(","),d=Jh.get(p),c;if(d==null){let m=rV(i,t);d=m.sorted,c=m.recipientCounts,Jh.put(p,d),Zh.put(p,c)}c={},r||Object.assign(c,Zh.get(p));let h=new Ys(t);for(let m=0;m<d.length;++m){if(a!=null){let $=jh().numTensors;$>a.maxNumTensors&&(a.maxNumTensors=$),$<a.minNumTensors&&(a.minNumTensors=$)}let f=d[m],g=f.sourceLayer;if(g instanceof Hu)continue;let y=[],b=[],x=[],v=!1;for(let $ of f.inputs){let P=h.getValue($),F=h.getMask($);y.push(P),b.push(F),F!=null&&(v=!0),r||(c[$.name]--,c[$.name]===0&&!t.hasKey($)&&o.indexOf($.name)===-1&&!P.isDisposed&&$.sourceLayer.stateful!==!0&&x.push(P))}v&&(n=n||{},n.mask=b[0]);let w=vt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let C=iV(f),E=Array.isArray(C)?C:[C];for(let $=0;$<E.length;++$){h.hasKey(E[$])||h.add(E[$],w[$],Array.isArray(T)?T[0]:T);let P=o.indexOf(E[$].name);P!==-1&&(l[P]=w[$])}r||Re(x)}return h.disposeMasks(),s?l:l[0]}function rV(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=dk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=dk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:sV(a)}}function sV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function dk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function iV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var oV=X();oV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,aV);var F2={};Me(F2,{maxNorm:()=>lV,minMaxNorm:()=>cV,nonNeg:()=>pV,unitNorm:()=>uV});function jv(e,t){return O(()=>un(be(z(e,e),t,!0)))}var Jc=class extends se.Serializable{getConfig(){return{}}},qv=class extends Jc{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=jv(e,this.axis),n=nn(t,0,this.maxValue);return z(e,fe(n,J(Ht(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};qv.className="MaxNorm";se.registerClass(qv);var Kv=class extends Jc{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>fe(e,J(Ht(),jv(e,this.axis))))}getConfig(){return{axis:this.axis}}};Kv.className="UnitNorm";se.registerClass(Kv);var Xv=class extends Jc{apply(e){return Xe(e)}};Xv.className="NonNeg";se.registerClass(Xv);var Yv=class extends Jc{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=jv(e,this.axis),n=J(z(this.rate,nn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,fe(n,J(Ht(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Yv.className="MinMaxNorm";se.registerClass(Yv);var hk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Kt(e){return Mv(e)}function mk(e,t={}){return qc(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in hk?hk[e]:e,config:{}};return mk(t)}else return e instanceof Jc?e:mk(e)}function lV(e){return new qv(e)}function uV(e){return new Kv(e)}function pV(){return new Xv}function cV(e){return new Yv(e)}var D2={};Me(D2,{constant:()=>mV,glorotNormal:()=>wV,glorotUniform:()=>vV,heNormal:()=>kV,heUniform:()=>IV,identity:()=>bV,leCunNormal:()=>SV,leCunUniform:()=>NV,ones:()=>hV,orthogonal:()=>TV,randomNormal:()=>gV,randomUniform:()=>fV,truncatedNormal:()=>yV,varianceScaling:()=>xV,zeros:()=>dV});function dV(){return new Lv}function hV(){return new Mf}function mV(e){return new zv(e)}function fV(e){return new Bv(e)}function gV(e){return new Wv(e)}function yV(e){return new Vv(e)}function bV(e){return new Uv(e)}function xV(e){return new Wn(e)}function vV(e){return new Pf(e)}function wV(e){return new Of(e)}function kV(e){return new Lf(e)}function IV(e){return new zf(e)}function SV(e){return new Bf(e)}function NV(e){return new Wf(e)}function TV(e){return new Gv(e)}var R2={};Me(R2,{Layer:()=>Ye,RNN:()=>yr,RNNCell:()=>nd,activation:()=>ZU,add:()=>oG,alphaDropout:()=>GG,average:()=>lG,averagePooling1d:()=>a0,averagePooling2d:()=>r0,averagePooling3d:()=>s0,avgPool1d:()=>yG,avgPool2d:()=>xG,avgPool3d:()=>wG,avgPooling1d:()=>bG,avgPooling2d:()=>vG,avgPooling3d:()=>kG,batchNormalization:()=>mG,bidirectional:()=>PG,concatenate:()=>uG,conv1d:()=>UU,conv2d:()=>GU,conv2dTranspose:()=>HU,conv3d:()=>jU,conv3dTranspose:()=>qU,convLstm2d:()=>FG,convLstm2dCell:()=>DG,cropping2D:()=>XU,dense:()=>QU,depthwiseConv2d:()=>JU,dot:()=>hG,dropout:()=>eG,elu:()=>OU,embedding:()=>iG,flatten:()=>nG,gaussianDropout:()=>UG,gaussianNoise:()=>VG,globalAveragePooling1d:()=>IG,globalAveragePooling2d:()=>SG,globalMaxPool1d:()=>LG,globalMaxPool2d:()=>zG,globalMaxPooling1d:()=>NN,globalMaxPooling2d:()=>TN,gru:()=>TG,gruCell:()=>CG,input:()=>Z2,inputLayer:()=>PU,layerNormalization:()=>fG,leakyReLU:()=>zU,lstm:()=>_G,lstmCell:()=>EG,masking:()=>HG,maxPool1d:()=>BG,maxPool2d:()=>WG,maxPooling1d:()=>CN,maxPooling2d:()=>_N,maxPooling3d:()=>NG,maximum:()=>pG,minimum:()=>cG,multiply:()=>dG,permute:()=>sG,prelu:()=>BU,reLU:()=>LU,repeatVector:()=>aG,reshape:()=>rG,rnn:()=>RG,separableConv2d:()=>KU,simpleRNN:()=>AG,simpleRNNCell:()=>$G,softmax:()=>WU,spatialDropout1d:()=>tG,stackedRNNCells:()=>MG,thresholdedReLU:()=>VU,timeDistributed:()=>OG,upSampling2d:()=>YU,zeroPadding2d:()=>gG});async function Jr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Re(a)}}function M2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var fk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(fk||(fk={}));var CV=125,Cl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},P2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},_V=class extends Cl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=O(()=>J(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:O(()=>{let a=z(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),en(t[n])}))}},O2=class extends Cl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},L2=class extends Cl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Dv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=CV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=E4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Jr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Jr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Jr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Jr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Jr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Jr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Jr(e),await this.trainEnd(e))}};function z2(e,t){return e==null&&(e={}),e instanceof Cl?[e]:Array.isArray(e)&&e[0]instanceof Cl?e:vt(e).map(n=>new L2(n,t))}var Sa=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Sa.checkForDuplicate(t),Sa.constructors[e]==null&&(Sa.constructors[e]=[]),Sa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Sa.constructors)Sa.constructors[+t].forEach(n=>{if(n===e)throw new H("Duplicate callback constructor.")})}static clear(){Sa.constructors={}}static createCallbacks(e){let t=[];for(let n in Sa.constructors){let a=+n;e>=a&&t.push(...Sa.constructors[a])}return t.map(n=>new n)}};Sa.constructors={};function B2(e,t,n,a,r,s,i,o,l){let u=new O2,p=[new _V,...Sa.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new P2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function ja(e,t={},n=!1){return qc(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function Qh(e,t){return O(()=>{e.dtype!=="float32"&&(e=oe(e,"float32"));let n=be(Xc(e),t,!0),a=_n(n.shape,Ht()),r=un(fr(n,a));return fe(e,r)})}function ko(e,t){return O(()=>Et(Xc(ce(t,e)),-1))}function Uf(e,t){return O(()=>Et(zt(ce(t,e)),-1))}function ju(e,t){return O(()=>{let n=ce(e,t),a=nn(zt(e),Ht(),Number.MAX_VALUE),r=zt(fe(n,a));return z(100,Et(r,-1))})}function EV(e,t){return O(()=>{let n=nn(t,Ht(),Number.MAX_VALUE),a=ta(J(1,n)),r=nn(e,Ht(),Number.MAX_VALUE),s=ta(J(1,r));return Et(Xc(ce(a,s)),-1)})}function AV(e,t){return O(()=>{let n=fr(0,ce(1,z(e,t)));return Et(Xc(n),-1)})}function $V(e,t){return O(()=>{let n=fr(0,ce(1,z(e,t)));return Et(n,-1)})}function FV(e,t){return O(()=>{let n=be(z(e,t),-1),a=Ta(z(ce(1,e),t),-1);return fr(0,J(1,ce(a,n)))})}function DV(e,t){return O(()=>{let n=Math.log(2),a=ce(t,e),r=ce(J(a,xo(z(-2,a))),n);return Et(r,-1)})}function ic(e,t,n=!1){return O(()=>{if(n)t=Ja(t);else{let a=be(t,t.shape.length-1,!0);t=fe(t,a)}return t=nn(t,Ht(),1-Ht()),St(be(z(oe(e,"float32"),ta(t)),t.shape.length-1))})}function em(e,t,n=!1){return O(()=>{let a=oe(zu(W4(e)),"int32");t=nn(t,Ht(),1-Ht());let r=t.shape,s=W(Il(a,r[r.length-1]),r);return ic(s,t,n)})}function RV(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return O(()=>{let n=Xe(t),a=St(zt(t));return J(ce(n,z(t,e)),Bc(gn(a)))})}function Gf(e,t){return O(()=>{let n;return n=nn(t,Ht(),1-Ht()),n=ta(fe(n,ce(1,n))),Et(RV(e,n),-1)})}function MV(e,t){return O(()=>{let n=nn(e,Ht(),1),a=nn(t,Ht(),1);return be(z(e,ta(fe(n,a))),-1)})}function PV(e,t){return O(()=>{let n=ta(J(Ht(),t));return Et(ce(t,z(e,n)),-1)})}function Jv(e,t){return O(()=>{let n=Qh(e,-1),a=Qh(t,-1),r=z(n,a);return St(be(r,-1))})}var tm={meanSquaredError:ko,meanAbsoluteError:Uf,meanAbsolutePercentageError:ju,meanSquaredLogarithmicError:EV,squaredHinge:AV,hinge:$V,categoricalHinge:FV,logcosh:DV,categoricalCrossentropy:ic,sparseCategoricalCrossentropy:em,binaryCrossentropy:Gf,kullbackLeiblerDivergence:MV,poisson:PV,cosineProximity:Jv};function xb(e){if(typeof e=="string"){if(e in tm)return tm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Zv(e,t){return O(()=>{let n=z(.5,na(t)),a=Df(Gn(t,n),e.dtype);return Et(ea(e,a),-1)})}function Qv(e,t){return O(()=>Df(ea(oi(e,-1),oi(t,-1)),"float32"))}function W2(e,t){return O(()=>oe(be(_a(ea(e,1),ea(t,1))),"float32"))}function OV(e,t){return O(()=>oe(be(_a(ea(e,1),ea(t,0))),"float32"))}function LV(e,t){return O(()=>oe(be(_a(ea(e,0),ea(t,1))),"float32"))}function V2(e,t){return O(()=>{let n=W2(e,t),a=LV(e,t),r=J(n,a);return oe(fn(Gn(r,0),fe(n,r),0),"float32")})}function zV(e,t){return O(()=>{let n=W2(e,t),a=OV(e,t),r=J(n,a);return oe(fn(Gn(r,0),fe(n,r),0),"float32")})}function U2(e,t){return Gf(e,t)}function G2(e,t){return e.rank===t.rank&&(e=dr(e,[e.rank-1])),t=oi(t,-1),t.dtype!==e.dtype&&(t=oe(t,e.dtype)),oe(ea(e,t),"float32")}var BV=ko,WV=ko,VV=Uf,UV=Uf,GV=ju,HV=ju,ew=ic,jV=Jv,H2=em,nm={binaryAccuracy:Zv,categoricalAccuracy:Qv,precision:V2,categoricalCrossentropy:ew,sparseCategoricalCrossentropy:H2,mse:BV,MSE:WV,mae:VV,MAE:UV,mape:GV,MAPE:HV,cosine:jV};function qV(e){if(typeof e=="string"&&e in nm)return nm[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function bh(e){if(ir(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(tm))if(tm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(nm))if(nm[n]===e){t=n;break}return t!==void 0?t:e.name}}function KV(e){let t={Adagrad:()=>Gs.adagrad(.01),Adadelta:()=>Gs.adadelta(1,.95,Ht()),Adam:()=>Gs.adam(.001,.9,.999,Ht()),Adamax:()=>Gs.adamax(.002,.9,.999,Ht(),0),RMSProp:()=>Gs.rmsprop(.001,.9,0,Ht()),SGD:()=>Gs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}function gk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!qb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function qb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!qb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!qb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function XV(e,t,n,a=console.log){let r=JV(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),am(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?ZV(o[p],n,a):QV(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=YV(e),u=Yh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function YV(e){let t;return e.collectedTrainableWeights!=null?t=Yh(e.collectedTrainableWeights):t=Yh(e.trainableWeights),t}function JV(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function am(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function ZV(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];am(o,t,n)}function QV(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];am(p,t,a);for(let d=1;d<i.length;++d)am(["","","","",i[d]],t,a)}function j2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function oc(e,t){if(e===null)return null;if(typeof e=="string")return qs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];j2(t,r,s)?n.push(s):n.push(oc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=qs(a);n[s]=oc(r,s)}}return n}}function Kb(e,t){if(e==null)return null;if(typeof e=="string")return Sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];j2(t,r,s)?n.push(s):n.push(Kb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Sr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Kb(r,a)}return n}}var tw="3.16.0",rr=class extends Ye{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Ff(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;ir(x===0,"input layer has >1 nodes"),ir(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof Hu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,w,T)=>{(v==null||w==null||T==null)&&(v=y.sourceLayer,w=y.nodeIndex,T=y.tensorIndex);let C=v.inboundNodes[w];if(x.indexOf(C)!==-1)throw new Va(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(rr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let $=0;$<E;$++){let P=C.inputTensors[$],F=C.inboundLayers[$],S=C.nodeIndices[$],M=C.tensorIndices[$];o(P,b,x,F,S,M)}for(b.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let w=y.inboundLayers[v],T=y.nodeIndices[v],C=w.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(b+1,E),n[C.id]=C}}let d={};for(let y in t){let b=t[y];b in d||(d[b]=[]),d[b].push(n[y])}let c={};for(let y in a){let b=a[y];b in c||(c[b]=[]),c[b].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(fh);this.layers=[];for(let y of h){let b=c[y];b.sort((x,v)=>{let w=s[x.id],T=s[v.id];return w<T?-1:w>T?1:0});for(let x of b)x instanceof rr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(fh);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Va(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Va(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Vf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new H(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new H(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new H(`${s.length} of ${a} weights are not set: ${s}`)}Hv(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${tw}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Kb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return O(()=>{e=vt(e);let n=new Ys;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return zp(this.outputs,n,t)})}computeMask(e,t){return O(()=>{e=vt(e);let n;return t==null?n=di(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Xh(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(fh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];p.push(x)}let d=u.computeOutputShape(Pn(p)),c=Xh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];ir(o in n),r.push(n[o])}return Pn(r)}runInternalGraph(e,t){t==null&&(t=di(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(fh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=vt(p.call(x,m)),b=vt(p.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=vt(p.call(f,m)),b=vt(p.computeMask(f,g));if(p.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],w=y[x],T=b[x];n[v.id]=[w,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ir(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof rr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=rr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return O(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=rr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=rr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],y=d.nodeIndices[f],b=d.tensorIndices[f],x=rr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=rr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=rr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],w=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let C=r[v];if(C.inboundNodes.length<=w){i(f,g);return}let E=C.inboundNodes[w];y.push(E.outputTensors[T])}y.length>0&&f.apply(Pn(y),b)}function l(f){let g=f.name,y=ja(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!_4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];ir(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];ir(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){O(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function eU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function q2(e,t){return eU(e,t,"classWeight")}async function K2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=O(()=>{if(e.shape.length===1)return _r(e);if(e.shape.length===2){if(e.shape[1]>1)return oi(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Re(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),qe(i,"float32")}else return null}function tU(e,t){return z(e,t)}var nU=32;function X2(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=yk("input",e.inputNames,n),i=yk("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function yk(e,t,n){if(n instanceof Ae)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function aU(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function rU(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(bk(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=aU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=z2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=B2(p,d,n.epochs,null,null,sU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());!a||y<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:w}=X2(e,x.value),T={};T.batch=b,T.size=v[0].shape[0],await c.onBatchBegin(b,T);let C=[];if(n.classWeight!=null){let P=q2(n.classWeight,e.outputNames);for(let F=0;F<P.length;++F)C.push(await K2(w[F],null,P[F]))}let E=v.concat(w).concat(C),$=o(E);Re(E);for(let P=0;P<l.length;++P){let F=l[P],S=$[P];T[F]=S,en(S)}await c.onBatchEnd(b,T),M2(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;bk(n.validationData)?v=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=vt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?nU:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=v[w]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function sU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function bk(e){return typeof e.iterator=="function"}function iU(e){return typeof e.next=="function"}async function oU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=iU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=O(()=>{if(u.value){let{xs:p,ys:d}=X2(e,u.value),c=p.concat(d),h=O(()=>r(c));if(Re(c),l===0)for(let f=0;f<h.length;++f)s.push(we(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=O(()=>J(s[f],z(m,g))),l>0&&Re(y)}Re(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=fe(s[u],o),Re(p)}return Pn(s)}function Xb(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Bp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>ei(a,t,n-t)):ei(e,t,n-t)}function nw(e,t){return O(()=>e==null?null:Array.isArray(e)?e.map(n=>nw(n,t)):C2(e,t.dtype==="int32"?t:oe(t,"int32")))}function Yb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function lU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Ka(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=B2(o,i,s,c,g,h,r,f,d);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await b.onEpochBegin(v);let w={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Oe("batch shuffling is not implemneted yet");p&&k.shuffle(y);let T=qe(y),C=Yb(g,r);for(let E=0;E<C.length;++E){let $={};if(await b.onBatchBegin(E,$),O(()=>{let P=C[E][0],F=C[E][1],S=ei(T,P,F-P);$.batch=E,$.size=F-P;let M=nw(n,S),V=t(M);for(let j=0;j<a.length;++j){let q=a[j],K=V[j];$[q]=K,en(K)}if(E===C.length-1&&f){let j=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let K=a[q],Q=j[q];en(Q),w["val_"+K]=Q}}}),await b.onBatchEnd(E,$),M2($),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(v,w),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function uU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;Xb(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,y;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let E=!0,$=await e.standardizeUserData(l,u,null,null,E,h);p=$[0],d=$[1],y=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-a.validationSplit)),$=r[0].shape[0];p=Bp(r,E,$),i=r,r=Bp(r,0,E),d=Bp(s,E,$),o=s,s=Bp(s,0,E),y=p.concat(d)}else a.validationSteps!=null&&(g=!0);let b=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),v=e.getDedupedMetricsNames(),w,T;g?(e.makeTestFunction(),w=e.testFunction,T=v.slice().concat(v.map(E=>"val_"+E))):(w=null,y=[],T=v.slice());let C=z2(a.callbacks,a.yieldEvery);return await lU(e,x,b,v,h,a.epochs,a.verbose,C,w,y,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,Wa(r,t),Wa(s,n),Wa(i,t),Wa(o,n),Wa(p,l),Wa(d,u),c!=null&&Re(c)}}function Y2(e){let t=[];e instanceof Ae&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Kc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Wa(e,t){if(e==null)return;let n=[];if(t instanceof Ae)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ae)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function pU(e){return e instanceof Ae}function Jb(e){return Array.isArray(e)}function xk(e){return!pU(e)&&!Jb(e)}function vk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Jb(e)&&e.length>0)i=!0;else if(xk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(xk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new H(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Jb(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=Y2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new H(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function cU(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function dU(e,t,n){let a=[ko,Gf,ic];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===ic&&s.shape[s.shape.length-1]===1)throw new H(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new H(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function wk(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new H(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function hU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var mU="layers-model",Er=class extends rr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");XV(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=KV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Dr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new H(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(xb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>xb(s))}else{let s=xb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Qs("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=hU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Qs("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Gf?["accuracy","acc"].indexOf(c)!==-1?p=Zv:["crossentropy","ce"].indexOf(c)!==-1&&(p=U2):this.lossFunctions[s]===em?["accuracy","acc"].indexOf(c)!==-1?p=G2:["crossentropy","ce"].indexOf(c)!==-1&&(p=H2):["accuracy","acc"].indexOf(c)!==-1?p=Qv:["crossentropy","ce"].indexOf(c)!==-1&&(p=ew);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=qV(c),u=l+bh(c);let h;Qs(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Xb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Pn(l)}finally{Wa(s[0],e),Wa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),oU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Ys;if(e instanceof Ae&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new H(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=zp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=di(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return O(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=Yb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)O(()=>{let o=r[i][0],l=r[i][1],u=Bp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Ys(p);return zp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return Pn(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=Y2(e);wk(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Xb(a),this.predictLoop(n,a)}finally{Wa(n,e)}}predictOnBatch(e){wk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Va("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===em?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=vk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=vk(t,this.feedOutputNames,r,!1,"target"),cU(e,t,null),dU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=q2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await K2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return O(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=Yb(s,n),l=qe(Ka(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=ei(l,p,d-p),h=nw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(we(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;ik(e,a)>1&&(r+=`_${ik(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Ys(u),d=zp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],d[h]);r[h]!=null&&(m=tU(m,r[h]));let f=Et(m);t.push(f),h===0?c=m:c=J(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Et(f(a[g],d[g]))}en(m),s.push(m)}return c=Et(c),this.calculateLosses().forEach(h=>{c=J(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>O(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Ys(s),o=zp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Et(u(r[l],o[l]));l===0?n=p:n=J(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Et(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return uU(this,e,t,n)}async fitDataset(e,t){return rU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Re(s),Wa(n[0],e),Wa(n[1],t),Pn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=jh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-jh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Sr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Sr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Sr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(bh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(bh(e)));{let e={};for(let t in this.metrics)e[t]=Sr(bh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=oc(e.optimizer_config),n=ja(t),a;if(typeof e.loss=="string")a=qs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>qs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=qs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>qs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=qs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Qt.getSaveHandlers(e);if(i.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new H(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Qt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:mU,generatedBy:`TensorFlow.js tfjs-layers v${tw}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Qt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Qt.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(gk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){gk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Er.className="Model";se.registerClass(Er);var J2=class extends Er{};J2.className="Functional";se.registerClass(J2);async function fU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=oc(n),r=ja(a,t);if(e.weightsManifest!=null){let s=await Qt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Re(s)}return r}async function gU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Qt.getLoadHandlers(e,t);if(n.length===0)n.push(Qt.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return yU(e,void 0,t)}async function yU(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=ja(oc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=bU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),Re(u),Re(p.map(d=>d.tensor))}return o}function bU(e,t){let n=Qt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var _l=class extends Er{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Ff("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof _l||e instanceof Er,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=$2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=A2(this.outputs[0])}this.inboundNodes=[],new Vf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(it(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Er({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof _l))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=ja(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};_l.className="Sequential";se.registerClass(_l);function xU(e){return new Er(e)}function vU(e){return new _l(e)}function wU(e,t){return t==null&&(t={}),gU(e,t)}function Z2(e){return $2(e)}function kU(e,t){Sa.registerCallbackConstructor(e,t)}var Hn=class extends se.Serializable{getConfig(){return{}}},Q2=class extends Hn{apply(e,t=1){return U4(e,t)}};Q2.className="elu";se.registerClass(Q2);var eN=class extends Hn{apply(e){return mf(e)}};eN.className="selu";se.registerClass(eN);var tN=class extends Hn{apply(e){return Xe(e)}};tN.className="relu";se.registerClass(tN);var nN=class extends Hn{apply(e){return O(()=>Bu(6,Xe(e)))}};nN.className="relu6";se.registerClass(nN);var aN=class extends Hn{apply(e){return e}};aN.className="linear";se.registerClass(aN);var rN=class extends Hn{apply(e){return ma(e)}};rN.className="sigmoid";se.registerClass(rN);var sN=class extends Hn{apply(e){return H4(e)}};sN.className="hardSigmoid";se.registerClass(sN);var iN=class extends Hn{apply(e){return xo(e)}};iN.className="softplus";se.registerClass(iN);var oN=class extends Hn{apply(e){return G4(e)}};oN.className="softsign";se.registerClass(oN);var lN=class extends Hn{apply(e){return li(e)}};lN.className="tanh";se.registerClass(lN);var aw=class extends Hn{apply(e,t=-1){return Ja(e,t)}};aw.className="softmax";se.registerClass(aw);var uN=class extends Hn{apply(e,t=-1){return of(e,t)}};uN.className="logSoftmax";se.registerClass(uN);var pN=class extends Hn{apply(e,t=1){return O(()=>z(ma(z(e,t)),e))}};pN.className="swish";se.registerClass(pN);var cN=class extends Hn{apply(e){return O(()=>z(e,li(xo(e))))}};cN.className="mish";se.registerClass(cN);function cs(e){return e.getClassName()}function vb(e,t={}){return qc(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function ds(e){if(e==null){let t={};return t.className="linear",t.config={},vb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},vb(t)}else return e instanceof Hn?e:vb(e)}function rw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var dN=class extends se.Serializable{},Zc=class extends dN{constructor(e){super(),rw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return O(()=>{let t=kt([1]);return this.hasL1&&(t=J(t,be(z(this.l1,zt(e))))),this.hasL2&&(t=J(t,be(z(this.l2,Xc(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Zc.className="L1L2";se.registerClass(Zc);function IU(e){return rw(e),new Zc({l1:e!=null?e.l1:null,l2:0})}function SU(e){return rw(e),new Zc({l2:e!=null?e.l2:null,l1:0})}var kk={l1l2:"L1L2"};function dt(e){return Mv(e)}function Ik(e,t={}){return qc(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function Nt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in kk?kk[e]:e,config:{}};return Ik(t)}else return e instanceof dN?e:Ik(e)}var sw=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Xe(e);return this.maxValue!=null&&(n=nn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};sw.className="ReLU";se.registerClass(sw);var iw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return zc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};iw.className="LeakyReLU";se.registerClass(iw);var ow=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=It(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Nt(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=it(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Bt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),Uc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:At(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Kt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};ow.className="PReLU";se.registerClass(ow);var lw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Lu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};lw.className="ELU";se.registerClass(lw);var uw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return z(n,oe(Gn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};uw.className="ThresholdedReLU";se.registerClass(uw);var pw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new aw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};pw.className="Softmax";se.registerClass(pw);function xl(e,t,n){if(typeof e=="number")return di(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!z4(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function qa(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function or(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ps([n-t,0]);else if(a==="same")e=e*t;else throw new H(`Unsupport padding mode: ${a}.`);return e}function cw(e,t){return O(()=>(Ot(t),t==="channelsFirst"?$e(e,[0,2,3,1]):e))}function hN(e,t){return O(()=>(Ot(t),t==="channelsFirst"?$e(e,[0,2,3,4,1]):e))}function NU(e,t,n,a=1,r="valid",s,i=1){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=$e(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Qm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Qa(o,n)),o})}function Sk(e,t,n,a=[1,1],r="valid",s,i,o=null){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=cw(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=us.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=$e(l,[0,3,1,2])),l})}function TU(e,t,n,a=[1,1,1],r="valid",s,i){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=hN(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=rv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Qa(o,n)),s==="channelsFirst"&&(o=$e(o,[0,4,1,2,3])),o})}var dw=class extends Ye{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",dw.verifyArgs(t),this.rank=e,tn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=xl(t.kernelSize,e,"kernelSize"),this.strides=xl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ba(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ot(this.dataFormat),this.activation=ds(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=It(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=Nt(t.biasRegularizer),this.activityRegularizer=Nt(t.activityRegularizer),this.dilationRate=xl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ir("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Pv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:cs(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Qc=class extends dw{constructor(e,t){super(e,t),this.kernel=null,Qc.verifyArgs(t),this.filters=t.filters,tn(this.filters,"filters"),this.kernelInitializer=It(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=Nt(t.kernelRegularizer)}build(e){e=it(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return O(()=>{e=ze(e);let n,a=this.bias==null?null:this.bias.read(),r=w2(this.activation.getClassName());if(r!=null&&this.rank===2)n=Sk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=NU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Sk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=TU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=it(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=qa(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:At(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Kt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},ed=class extends Qc{constructor(e){super(2,e),ed.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Pv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};ed.className="Conv2D";se.registerClass(ed);var td=class extends Qc{constructor(e){super(3,e),td.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};td.className="Conv3D";se.registerClass(td);var hw=class extends ed{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=ze(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=or(o,d,u,this.padding),m=or(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=$e(n,[0,2,3,1]));let g=ef(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=$e(g,[0,3,1,2])),this.bias!=null&&(g=Qa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=or(t[a],o,s,this.padding),t[r]=or(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};hw.className="Conv2DTranspose";se.registerClass(hw);var mw=class extends td{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=ze(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=or(l,m,d,this.padding),b=or(u,f,c,this.padding),x=or(p,g,h,this.padding),v=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=$e(n,[0,2,3,4,1]));let w=FS(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=$e(w,[0,4,1,2,3])),this.bias!==null&&(w=Qa(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=or(t[a],u,i,this.padding),t[r]=or(t[r],p,o,this.padding),t[s]=or(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};mw.className="Conv3DTranspose";se.registerClass(mw);var mN=class extends Qc{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=It(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Nt(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=It(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Nt(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=it(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Bt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{e=ze(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=$e(e,[0,2,3,1])),n=vo(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=$e(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseConstraint),e.pointwiseConstraint=Kt(this.pointwiseConstraint),e}};mN.className="SeparableConv";var fw=class extends mN{constructor(e){super(2,e)}};fw.className="SeparableConv2D";se.registerClass(fw);var Hf=class extends Qc{constructor(e){super(1,e),Hf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Pv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Hf.className="Conv1D";se.registerClass(Hf);var gw=class extends Ye{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return O(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=yh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return yh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=yh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return yh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};gw.className="Cropping2D";se.registerClass(gw);var yw=class extends Ye{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,P4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return O(()=>{let n=ze(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=$e(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Ln.resizeNearestNeighbor(n,[r,s]):Ln.resizeBilinear(n,[r,s]);return $e(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Ln.resizeNearestNeighbor(n,[r,s]):Ln.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};yw.className="UpSampling2D";se.registerClass(yw);function CU(e,t,n=[1,1],a="valid",r,s){return O(()=>{r==null&&(r=Xa()),Ot(r);let i=cw(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Is(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=$e(i,[0,3,1,2])),i})}var bw=class extends dw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=It(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=Nt(e.depthwiseRegularizer)}build(e){if(e=it(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{e=ze(e);let n=CU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Qa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=qa(t,this.kernelSize[0],this.padding,this.strides[0]),s=qa(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseRegularizer),e}};bw.className="DepthwiseConv2D";se.registerClass(bw);function fN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function gN(e,t,n,a=!1,r,s,i=!1,o=!1){return O(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ka(2,l));if(t=$e(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=oe(oe(r,"bool"),"float32"),r.rank===l-1&&(r=mn(r,-1)),r=$e(r,u)),a&&(t=aa(t,0),r!=null&&(r=aa(r,0)));let p=[],d,c=n,h=t.shape[0],m=mt(t),f;r!=null&&(f=mt(r));for(let y=0;y<h;++y){let b=m[y],x=O(()=>e(b,c));if(r==null)d=x[0],c=x[1];else{let v=O(()=>{let w=f[y],T=ce(na(w),w),C=J(z(x[0],w),z(c[0],T)),E=c.map(($,P)=>J(z(x[1][P],w),z($,T)));return{output:C,newStates:E}});d=v.output,c=v.newStates}o&&p.push(d)}let g;return o&&(g=Mt(p,1)),[d,g,c]})}var yr=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Kf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ka(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Hb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return O(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");Hb(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Bt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Bt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>kt([n,a])):this.states_=[kt([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>kt([n,a])):this.states_[0]=kt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new H(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>en(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=fN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Bt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ua){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=ze(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new H(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=gN((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return O(()=>{let t=kt(e.shape);return t=be(t,[1,2]),t=Kc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Ub(t,[1,n]):t):this.cell.stateSize>1?[Ub(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===yr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=ja(a,n);return new e(Object.assign(t,{cell:r}))}};yr.className="RNN";se.registerClass(yr);var nd=class extends Ye{},jf=class extends nd{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,tn(this.units,"units"),this.activation=ds(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=It(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=It(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=It(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Tl([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=ur(z(e,s),this.kernel.read()):r=ur(e,this.kernel.read()),this.bias!=null&&(r=Qa(r,this.bias.read())),i!=null&&(n=z(n,i));let o=J(r,ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};jf.className="SimpleRNNCell";se.registerClass(jf);var xw=class extends yr{constructor(e){e.cell=new jf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};xw.className="SimpleRNN";se.registerClass(xw);var qf=class extends nd{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,tn(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=It(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=It(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=It(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Tl([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=ur(e,this.kernel.read());this.useBias&&(u=Qa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=ur(a,d),[m,f,g]=zn(u,3,u.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=ur(z(o,a),c);l=this.activation.apply(J(g,x));let v=J(z(i,a),z(J(1,St(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),recurrentActivation:cs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};qf.className="GRUCell";se.registerClass(qf);var vw=class extends yr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new qf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};vw.className="GRU";se.registerClass(vw);var ad=class extends nd{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,tn(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=It(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=It(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=It(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=Tl([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=it(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Aa{apply(i,o){let l=r.apply([s]),u=new Mf().apply([s]),p=r.apply([s*2]);return lk(lk(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=J(d,ur(a,this.recurrentKernel.read())),this.useBias&&(d=Qa(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=J(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),recurrentActivation:cs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};ad.className="LSTMCell";se.registerClass(ad);var ww=class extends yr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new ad(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ww.className="LSTM";se.registerClass(ww);var Kf=class extends nd{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return O(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Hb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Qs(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(ja(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return jb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Hv(t)}};Kf.className="StackedRNNCells";se.registerClass(Kf);function hs(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):_2(t(),n),o=()=>Yc(i,t,a);return!r||r<=1?en(o().clone()):Array(r).fill(void 0).map(o).map(l=>en(l.clone()))}var _U=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},yN=class extends yr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Bt({ndim:5})]}call(e,t){return O(()=>{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return O(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=kt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>kt(r)):this.states_=[kt(r)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>kt(r)):this.states_[0]=kt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>en(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=qa(l,a[0],r,s[0],i[0]),d=qa(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};yN.className="ConvRNN2D";var Xf=class extends ad{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t})),this.filters=t,tn(this.filters,"filters"),this.kernelSize=xl(n,2,"kernelSize"),this.kernelSize.forEach(o=>tn(o,"kernelSize")),this.strides=xl(a||1,2,"strides"),this.strides.forEach(o=>tn(o,"strides")),this.padding=r||"valid",ba(this.padding),this.dataFormat=s||"channelsLast",Ot(this.dataFormat),this.dilationRate=xl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>tn(o,"dilationRate"))}build(e){var t;e=it(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Aa{apply(p,d){let c=l.apply([u]),h=Zn([u]),m=l.apply([u*2]);return Ov([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return O(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(ee,re,Z)=>!re||!re[Z]?ee:z(re[Z],ee),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,w,T]=zn(this.kernel.read(),i,b),[C,E,$,P]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,v,E,this.padding),d=this.inputConv(d,w,$,this.padding),c=this.inputConv(c,T,P,this.padding);let[F,S,M,V]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,F),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),y=this.recurrentConv(y,V);let j=this.recurrentActivation.apply(J(u,m)),q=this.recurrentActivation.apply(J(p,f)),K=J(z(q,s),z(j,this.activation.apply(J(d,g)))),Q=z(this.recurrentActivation.apply(J(c,y)),this.activation.apply(K));return[Q,Q,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=_U(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Qa(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Xf.className="ConvLSTM2DCell";se.registerClass(Xf);var kw=class extends yN{constructor(e){let t=new Xf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};kw.className="ConvLSTM2D";se.registerClass(kw);var Yf=class extends Ye{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Yc(()=>_2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Yf.className="Dropout";se.registerClass(Yf);var Iw=class extends Yf{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Iw.className="SpatialDropout1D";se.registerClass(Iw);var Sw=class extends Ye{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,tn(this.units,"units"),this.activation=ds(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=It(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=It(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=Nt(e.kernelRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.activityRegularizer=Nt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=it(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=it(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=w2(this.activation.getClassName()),r;return a!=null?r=ur(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=ur(n,this.kernel.read()),this.bias!=null&&(r=Qa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:cs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Sw.className="Dense";se.registerClass(Sw);var Nw=class extends Ye{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=it(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=$e(n,a)}return V4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Nw.className="Flatten";se.registerClass(Nw);var Tw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.activation=ds(e.activation)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:cs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Tw.className="Activation";se.registerClass(Tw);var Cw=class extends Ye{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return O(()=>(e=ze(e),B4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Cw.className="RepeatVector";se.registerClass(Cw);var _w=class extends Ye{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!==0)throw new H(n);a[s]=i/r}else if(i!==r)throw new H(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};_w.className="Reshape";se.registerClass(_w);var Ew=class extends Ye{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ka(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=it(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return $e(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ew.className="Permute";se.registerClass(Ew);var Aw=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),a=-1;return tc(ci(n,this.maskValue),a)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e),a=-1,r=!0,s=tc(ci(n,this.maskValue),a,r);return z(n,oe(s,n.dtype))})}};Aw.className="Masking";se.registerClass(Aw);var $w=class extends Ye{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,tn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,tn(this.outputDim,"outputDim"),this.embeddingsInitializer=It(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Nt(e.embeddingsRegularizer),this.activityRegularizer=Nt(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return O(()=>this.maskZero?(e=ze(e),ci(e,Ke(e))):null)}computeOutputShape(e){if(e=it(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);n.dtype!=="int32"&&(n=Df(n,"int32"));let a=C2(this.embeddings.read(),W(n,[n.size]));return W(a,it(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Kt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};$w.className="Embedding";se.registerClass($w);var Io=class extends Ye{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[it(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return O(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ps(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Kc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(rs(u.slice(1))));c=$e(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=Ka(1,l).concat([0]);n.push($e(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W($e(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ka(0,i-1));s=$e(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return O(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=_a(n,t[a]);return n})}},Fw=class extends Io{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};Fw.className="Add";se.registerClass(Fw);var Dw=class extends Io{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};Dw.className="Multiply";se.registerClass(Dw);var Rw=class extends Io{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return z(1/e.length,t)})}};Rw.className="Average";se.registerClass(Rw);var Mw=class extends Io{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=fr(t,e[n]);return t})}};Mw.className="Maximum";se.registerClass(Mw);var Pw=class extends Io{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Bu(t,e[n]);return t})}};Pw.className="Minimum";se.registerClass(Pw);var Ow=class extends Io{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return O(()=>Ov(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return O(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(oe(na(e[s]),"bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return Zm(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="Concatenate";se.registerClass(Ow);function Dp(e,t){for(;e<0;)e+=t;return e}function EU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return O(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=be(z(e,t),s[0]):o=be(z($e(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=De(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=dr(o,u)}return o.shape.length===1&&(o=mn(o,1)),o})}var Lw=class extends Io{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new H(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Dp(r,e[s].shape.length)):a=[Dp(this.axes,t.shape.length),Dp(this.axes,n.shape.length)],this.normalize&&(t=Qh(t,a[0]),n=Qh(n,a[1])),EU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Dp(this.axes,e.length),Dp(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Lw.className="Dot";se.registerClass(Lw);var zw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return Yc(()=>J(Rf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};zw.className="GaussianNoise";se.registerClass(zw);var Bw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?Yc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,Rf(n.shape,1,a))},()=>n,t.training||!1):n})}};Bw.className="GaussianDropout";se.registerClass(Bw);var Ww=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Yc(()=>{let a=ze(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Ss(Wu(n),this.rate);o=Df(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=J(z(a,o),z(J(o,-1),i));return J(z(p,l),u)},()=>ze(e),t.training||!1)}return e})}};Ww.className="AlphaDropout";se.registerClass(Ww);function lc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=IS(e,t,n,a,r,s);else if(e.rank===3)i=SS(e,t,n,a,r,s);else if(e.rank===4)i=NS(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function AU(e,t,n,a,r=.001){return O(()=>{let s=uf(e,a),i=s.mean,o=s.variance;return[lc(e,i,o,n,t,r),i,o]})}function $U(e,t,n,a,r=.001){return O(()=>{let s=uf(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ka(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[lc(e,u,p,c,d,r),i,o]})}function FU(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Ka(0,e.rank-1))?AU(e,t,n,a,r):$U(e,t,n,a,r)}var Vw=class extends Ye{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=It(e.betaInitializer||"zeros"),this.gammaInitializer=It(e.gammaInitializer||"ones"),this.movingMeanInitializer=It(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=It(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=Nt(e.betaRegularizer),this.gammaRegularizer=Nt(e.gammaRegularizer)}build(e){e=it(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training,a=ze(e),r=a.shape,s=r.length,i=Ka(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=di(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!k.arraysEqual(u,Ka(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return lc(a,g,y,b,x,this.epsilon)}else return lc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=FU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{O(()=>{let x=1-b,v=g.read(),w=z(ce(v,y),x);g.write(ce(v,w))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Kt(this.betaConstraint),gammaConstraint:Kt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Vw.className="BatchNormalization";se.registerClass(Vw);var Uw=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=It(e.betaInitializer||"zeros"),this.gammaInitializer=It(e.gammaInitializer||"ones"),this.betaRegularizer=Nt(e.betaRegularizer),this.gammaRegularizer=Nt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=it(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=ze(e),a=n.shape,r=a.length;return O(()=>{let{mean:s,variance:i}=uf(n,this.axis,!0),o=di(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=l(this.gamma.read()),p=l(this.beta.read()),d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=On(s,d),i=On(i,d),u=On(u,c),p=On(p,c),lc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Uw.className="LayerNormalization";se.registerClass(Uw);function DU(e,t,n){return O(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Xa()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ya(e,a)})}var Gw=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Xa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return O(()=>DU(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Gw.className="ZeroPadding2D";se.registerClass(Gw);function Jf(e,t,n,a,r,s){return O(()=>{Ot(r),I2(s),ba(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Xa()),s==null&&(s="max"),e=cw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Pt(e,t,n,o):i=ga(e,t,n,o),r==="channelsFirst"&&(i=$e(i,[0,3,1,2])),i})}function bN(e,t,n,a,r,s){return O(()=>{Ot(r),I2(s),ba(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Xa()),s==null&&(s="max"),e=hN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=gv(e,t,n,o):i=ev(e,t,n,o),r==="channelsFirst"&&(i=$e(i,[0,4,1,2,3])),i})}var xN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(tn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ba(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=it(e);let t=qa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return O(()=>{this.invokeCallHook(e,t),e=Kc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return dr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Hw=class extends xN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),Jf(e,t,n,a,r,"max")}};Hw.className="MaxPooling1D";se.registerClass(Hw);var jw=class extends xN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),Jf(e,t,n,a,r,"avg")}};jw.className="AveragePooling1D";se.registerClass(jw);var vN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];tn(this.poolSize,"poolSize"),tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ba(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=qa(t,this.poolSize[0],this.padding,this.strides[0]),n=qa(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},qw=class extends vN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),Jf(e,t,n,a,r,"max")}};qw.className="MaxPooling2D";se.registerClass(qw);var Kw=class extends vN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),Jf(e,t,n,a,r,"avg")}};Kw.className="AveragePooling2D";se.registerClass(Kw);var wN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];tn(this.poolSize,"poolSize"),tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ba(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=qa(t,this.poolSize[0],this.padding,this.strides[0]),n=qa(n,this.poolSize[1],this.padding,this.strides[1]),a=qa(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Xw=class extends wN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),bN(e,t,n,a,r,"max")}};Xw.className="MaxPooling3D";se.registerClass(Xw);var Yw=class extends wN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ba(a),bN(e,t,n,a,r,"avg")}};Yw.className="AveragePooling3D";se.registerClass(Yw);var kN=class extends Ye{constructor(e){super(e),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},Jw=class extends kN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=ze(e);return Et(n,1)})}};Jw.className="GlobalAveragePooling1D";se.registerClass(Jw);var Zw=class extends kN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=ze(e);return Ta(n,1)})}};Zw.className="GlobalMaxPooling1D";se.registerClass(Zw);var IN=class extends Ye{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Qw=class extends IN{call(e,t){return O(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};Qw.className="GlobalAveragePooling2D";se.registerClass(Qw);var e0=class extends IN{call(e,t){return O(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Ta(n,[1,2]):Ta(n,[2,3])})}};e0.className="GlobalMaxPooling2D";se.registerClass(e0);var SN=class extends Ye{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=ja(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},t0=class extends SN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=it(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=it(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return O(()=>(e=ze(e),gN((n,a)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};t0.className="TimeDistributed";se.registerClass(t0);function RU(e){wo(M4,"BidirectionalMergeMode",e)}var MU="concat",n0=class extends SN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ja(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=ja(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?MU:e.mergeMode,RU(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Pn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=fN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Bt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ua;for(let l of s)if(l instanceof Ua!==o)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=aa(r,1));let i;return this.mergeMode==="concat"?i=Ov([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=z(.5,J(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Qs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Qs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ja(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};n0.className="Bidirectional";se.registerClass(n0);function PU(e){return new Hu(e)}function OU(e){return new lw(e)}function LU(e){return new sw(e)}function zU(e){return new iw(e)}function BU(e){return new ow(e)}function WU(e){return new pw(e)}function VU(e){return new uw(e)}function UU(e){return new Hf(e)}function GU(e){return new ed(e)}function HU(e){return new hw(e)}function jU(e){return new td(e)}function qU(e){return new mw(e)}function KU(e){return new fw(e)}function XU(e){return new gw(e)}function YU(e){return new yw(e)}function JU(e){return new bw(e)}function ZU(e){return new Tw(e)}function QU(e){return new Sw(e)}function eG(e){return new Yf(e)}function tG(e){return new Iw(e)}function nG(e){return new Nw(e)}function aG(e){return new Cw(e)}function rG(e){return new _w(e)}function sG(e){return new Ew(e)}function iG(e){return new $w(e)}function oG(e){return new Fw(e)}function lG(e){return new Rw(e)}function uG(e){return new Ow(e)}function pG(e){return new Mw(e)}function cG(e){return new Pw(e)}function dG(e){return new Dw(e)}function hG(e){return new Lw(e)}function mG(e){return new Vw(e)}function fG(e){return new Uw(e)}function gG(e){return new Gw(e)}function a0(e){return new jw(e)}function yG(e){return a0(e)}function bG(e){return a0(e)}function r0(e){return new Kw(e)}function xG(e){return r0(e)}function vG(e){return r0(e)}function s0(e){return new Yw(e)}function wG(e){return s0(e)}function kG(e){return s0(e)}function IG(e){return new Jw(e)}function SG(e){return new Qw(e)}function NN(e){return new Zw(e)}function TN(e){return new e0(e)}function CN(e){return new Hw(e)}function _N(e){return new qw(e)}function NG(e){return new Xw(e)}function TG(e){return new vw(e)}function CG(e){return new qf(e)}function _G(e){return new ww(e)}function EG(e){return new ad(e)}function AG(e){return new xw(e)}function $G(e){return new jf(e)}function FG(e){return new kw(e)}function DG(e){return new Xf(e)}function RG(e){return new yr(e)}function MG(e){return new Kf(e)}function PG(e){return new n0(e)}function OG(e){return new t0(e)}var LG=NN,zG=TN,BG=CN,WG=_N;function VG(e){return new zw(e)}function UG(e){return new Bw(e)}function GG(e){return new Ww(e)}function HG(e){return new Aw(e)}var EN={};Me(EN,{MAPE:()=>n6,MSE:()=>s6,binaryAccuracy:()=>jG,binaryCrossentropy:()=>qG,categoricalAccuracy:()=>XG,categoricalCrossentropy:()=>YG,cosineProximity:()=>QG,mape:()=>a6,meanAbsoluteError:()=>e6,meanAbsolutePercentageError:()=>t6,meanSquaredError:()=>r6,mse:()=>i6,precision:()=>JG,recall:()=>ZG,sparseCategoricalAccuracy:()=>KG});function jG(e,t){return Zv(e,t)}function qG(e,t){return U2(e,t)}function KG(e,t){return G2(e,t)}function XG(e,t){return Qv(e,t)}function YG(e,t){return ew(e,t)}function JG(e,t){return V2(e,t)}function ZG(e,t){return zV(e,t)}function QG(e,t){return Jv(e,t)}function e6(e,t){return Uf(e,t)}function t6(e,t){return ju(e,t)}function n6(e,t){return ju(e,t)}function a6(e,t){return ju(e,t)}function r6(e,t){return ko(e,t)}function s6(e,t){return ko(e,t)}function i6(e,t){return ko(e,t)}var AN={};Me(AN,{modelFromJSON:()=>fU});var $N={};Me($N,{l1:()=>l6,l1l2:()=>o6,l2:()=>u6});function o6(e){return new Zc(e)}function l6(e){return IU(e)}function u6(e){return SU(e)}var FN=class extends Cl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Er))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function xh(e,t){return e<t}function Nk(e,t){return e>t}var DN=class extends FN{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=xh:this.mode==="max"?this.monitorFunc=Nk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Nk:this.monitorFunc=xh,this.monitorFunc===xh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===xh?1/0:-1/0}async onEpochEnd(e,t){await Jr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function p6(e){return new DN(e)}var c6={earlyStopping:p6},d6=X();d6.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ia;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ia||(Ia={}));var Tk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Tk||(Tk={}));var i0={};function h6(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};i0[e]=n}function RN(e){return i0[e]}function m6(e){delete i0[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Sn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>Sn(d,n,a,r));let u=Sn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:k.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function Sn(e,t,n,a){let[r,s]=Yn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[rm(r,o)]);return i!==void 0?t[rm(r,i)][s]:void 0}function f6(e,t,n){return t[rm(e,n.currentContextId)]}function lr(e,t){let[n,a,r]=Yn(e);return[rm(n,t&&t.currentContextId),a,r]}function rm(e,t){return t?`${e}-${t}`:e}function Yn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function _h(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Nr(e){return e.kept?e:_r(e)}var MN={};Me(MN,{json:()=>g6});var g6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],PN={};Me(PN,{json:()=>y6});var y6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],ON={};Me(ON,{json:()=>b6});var b6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],LN={};Me(LN,{json:()=>x6});var x6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],zN={};Me(zN,{json:()=>v6});var v6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],BN={};Me(BN,{json:()=>w6});var w6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],WN={};Me(WN,{json:()=>k6});var k6=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],VN={};Me(VN,{json:()=>I6});var I6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],UN={};Me(UN,{json:()=>S6});var S6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],GN={};Me(GN,{json:()=>N6});var N6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],HN={};Me(HN,{json:()=>T6});var T6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],jN={};Me(jN,{json:()=>C6});var C6=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],qN={};Me(qN,{json:()=>_6});var _6=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],KN={};Me(KN,{json:()=>E6});var E6=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],XN={};Me(XN,{json:()=>A6});var A6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],YN={};Me(YN,{json:()=>$6});var $6=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],JN={};Me(JN,{json:()=>F6});var F6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],ZN={};Me(ZN,{json:()=>D6});var D6=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],QN={};Me(QN,{json:()=>R6});var R6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Ck=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[MN,PN,ON,LN,zN,BN,WN,VN,UN,GN,HN,jN,qN,KN,XN,YN,JN,ZN,QN],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=lr(g),v=i[b];if(v.outputs!=null){let w=v.outputs.indexOf(x);if(w!==-1){let T=`${b}:${w}`;f.inputNames[y]=T}}f.inputs.push(v),v.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=lr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=lr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=RN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Zb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=sx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=sx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=ex(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=ex(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=rx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=rx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Qb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Qb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=ox(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ox(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=ax(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ax(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=ix(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ix(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=tx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=tx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=nx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=_k(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=_k(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=lr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:o0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=lr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=lr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function M6(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function eT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):M6(e);return t?n:n.toLowerCase()}function Zb(e,t,n,a=!1){let r=e[t];return r!=null?eT(r.s,a):n}function Qb(e,t,n){let a=e[t];return a?a.b:n}function ex(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function o0(e){switch(typeof e=="string"&&(e=Ia[e]),e){case Ia.DT_FLOAT:case Ia.DT_HALF:return"float32";case Ia.DT_INT32:case Ia.DT_INT64:case Ia.DT_INT8:case Ia.DT_UINT8:return"int32";case Ia.DT_BOOL:return"bool";case Ia.DT_DOUBLE:return"float32";case Ia.DT_STRING:return"string";default:return null}}function _k(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function tx(e,t,n){let a=e[t];return a&&a.type?o0(a.type):n}function nx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>o0(r)):n}function tT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ax(e,t,n){let a=e[t];return a&&a.shape?tT(a.shape):n}function rx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function sx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>eT(s,a)):n}function ix(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>tT(r)):n}function ox(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var P6=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Sn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Sn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ex(this.node.rawAttrs,e,t);if(n.s!=null)return Zb(this.node.rawAttrs,e,t);if(n.b!=null)return Qb(this.node.rawAttrs,e,t);if(n.shape!=null)return ax(this.node.rawAttrs,e,t);if(n.type!=null)return tx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return rx(this.node.rawAttrs,e,t);if(n.list.s!=null)return sx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return ix(this.node.rawAttrs,e,t);if(n.list.b!=null)return ox(this.node.rawAttrs,e,t);if(n.list.type!=null)return nx(this.node.rawAttrs,e,t)}return t}},O6=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[xS(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[bv(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[ov(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Jm(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ce(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Bu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[fr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[$r(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[xf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},L6=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[Hx(I("x",e,t,n))];case"Acosh":return[jx(I("x",e,t,n))];case"Asin":return[Kx(I("x",e,t,n))];case"Asinh":return[Xx(I("x",e,t,n))];case"Atan":return[Yx(I("x",e,t,n))];case"Atan2":return[Jx(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Zx(I("x",e,t,n))];case"Ceil":return[nv(I("x",e,t,n))];case"Complex":return[os(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Lc(I("x",e,t,n))];case"Cosh":return[tf(I("x",e,t,n))];case"Elu":return[Lu(I("x",e,t,n))];case"Erf":return[lv(I("x",e,t,n))];case"Exp":return[gn(I("x",e,t,n))];case"Expm1":return[uv(I("x",e,t,n))];case"Floor":return[zu(I("x",e,t,n))];case"Log":return[ta(I("x",e,t,n))];case"Log1p":return[Bc(I("x",e,t,n))];case"Imag":return[af(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[wv(I("x",e,t,n))];case"Real":return[rc(I("x",e,t,n))];case"Relu":return[Xe(I("x",e,t,n))];case"Round":return[df(I("x",e,t,n))];case"Selu":return[mf(I("x",e,t,n))];case"Sigmoid":return[ma(I("x",e,t,n))];case"Sin":return[ff(I("x",e,t,n))];case"Sign":return[kv(I("x",e,t,n))];case"Sinh":return[gf(I("x",e,t,n))];case"Softplus":return[xo(I("x",e,t,n))];case"Sqrt":return[un(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[li(I("x",e,t,n))];case"Tan":return[Nv(I("x",e,t,n))];case"ClipByValue":return[nn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[cf(I("x",e,t,n))];case"Rsqrt":return[hf(Sn(e.inputNames[0],t,n))];case"Prod":return[pf(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[zc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Uc(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[cv(Sn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Na(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Ek(e){return!(typeof e=="number"||e.some(t=>t<0))}function Rp(e,t,n){let a=lx(e,n),r=!Ek(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=lx(s.shape,a)}),!Ek(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function lx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var z6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),en(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Na(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,en(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Qn([],[0].concat(this.elementShape));let n=this.readMany(e);return Na(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Mt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Qn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Na(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];O(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=W(Ge(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},El=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Na(t,r.shape,"TensorList shape mismatch: "),en(r)}),this.idTensor=we(0),this.maxNumElements=a,en(this.idTensor)}get id(){return this.idTensor.id}copy(){return new El([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Na(e,this.elementShape,"TensorList shape mismatch: ");let a=Rp(this.elementShape,this.tensors,e);return O(()=>{let r=this.tensors.map(s=>W(s,a));return Mt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Rp(this.elementShape,this.tensors,e),a=this.tensors.pop();return Na(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Na(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");en(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new El([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Na(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Rp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Na(this.elementShape,t.shape,"TensorList shape mismatch: "),en(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Na(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Rp(this.elementShape,this.tensors,n);return e.length===0?Qn([],[0].concat(a)):O(()=>{let r=e.map(s=>W(this.tensors[s],a));return Mt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Na(this.elementShape,t,"TensorList shape mismatch: ");let n=Rp(this.elementShape,this.tensors,t);return this.size()===0?Qn([],[0].concat(n)):O(()=>{let a=this.tensors.map(r=>W(r,n));return Qe(a,0)})}};function B6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Na(r,t,"TensorList shape mismatch: ");let s=mt(e);return new El(s,t,a)}function W6(e,t,n){return new El([],e,t,n)}function V6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new El([],n,e.dtype,a),i=mt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function U6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=lx(s,n),o=a===0?0:e.size/a,l=O(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=W(Ge(e,h,m),i)}return e.dispose(),p}),u=new El([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var G6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[Nr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Nr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Sn(r,t,n)!==void 0);if(a){let r=Sn(a,t,n);return[Nr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Nr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Nr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Nr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),p=new z6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,we(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=V6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=W6(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=B6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=U6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id);return[we(r.size(),"int32")]}case"TensorListResize":{let a=I("tensorListId",e,t,n),r=I("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ak(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=I("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=I("strides",e,t,n),d=_h(e,t,n),c=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[m,f]=I("args",e,t,n);i&&(f=m,m=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var H6=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Qm(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=_h(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Rt(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=Ak(e,t,n);return[us.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=Ak(e,t,n);return[us.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=_h(e,t,n);return[ef(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=_h(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Is(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[rv(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ga(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Pt(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=HS(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ev(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[gv(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[iv(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},j6=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[_n(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[LS(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[jS(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Il(a,r,s,i)]}case"Ones":return[Zn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[na(I("x",e,t,n))];case"RandomUniform":return[Wu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Sl(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[vf(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[kt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ke(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wb(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var q6=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=wb(e,t,n),u=await Ln.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=wb(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Ln.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=wb(e,t,n);return[await Ln.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=oe(I("condition",e,t,n),"bool"),r=[await _v(a)];return a.dispose(),r}case"ListDiff":return XS(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},K6=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=Tv(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Kh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Kh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},X6=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[Sn(e.name,t,n)||a];case"Placeholder":return[Sn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[Nr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>Nr(u));case"Snapshot":let r=I("x",e,t,n);return[Nr(r)];case"Shape":return[qe(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>qe(u.shape));case"Size":return[we(I("x",e,t,n).size,"int32")];case"Rank":return[we(I("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Y6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,en(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),O(()=>{let a=mt(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];en(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return O(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Mt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},J6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Y6(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Z6=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ln.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ln.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ln.cropAndResize(a,r,s,i,o,l)]}case"ImageProjectiveTransformV3":{let a=I("images",e,t,n),r=I("transforms",e,t,n),s=I("outputShape",e,t,n),i=I("fillValue",e,t,n),o=I("interpolation",e,t,n),l=I("fillMode",e,t,n);return[Ln.transform(a,r,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Q6=(e,t,n)=>{switch(e.op){case"Equal":return[ea(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ci(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Gn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Ss(I("a",e,t,n),I("b",e,t,n))];case"Less":return[rf(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Ns(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[_a(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Wc(I("a",e,t,n))];case"LogicalOr":return[lf(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[fn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eH=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[De(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[MS(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[$e(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,p]=I("args",e,t,n);return[us.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:p,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tH=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ar(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ar(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[dv(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Ja(I("x",e,t,n))];case"LogSoftmax":return[of(I("x",e,t,n))];case"SparseToDense":return[Ev(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nH=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ta(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Et(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ac(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[be(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zm(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[tc(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[oi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[qx(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[pf(I("x",e,t,n),i,o)]}case"Cumprod":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[nc(I("x",e,t,n),i,o,l)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[nf(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[tv(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[DS(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},aH=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Qe(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[ui(a,oe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[ui(s,oe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[aa(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[aa(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Ge(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Sv(d,a,r,s,i,o,l,u,p)]}case"Pack":return O(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=dr(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(dr(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:W(l,s)});return[Mt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return mt(r,a)}case"Tile":{let a=I("reps",e,t,n);return[On(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[QS(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[e2(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Ev(a,s,r,s.dtype===i.dtype?i:oe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rH=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=Lp.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=Lp.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[Lp.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Lp.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},sH=(e,t,n)=>{switch(e.op){case"FFT":return[Gc(I("x",e,t,n))];case"IFFT":return[Nl(I("x",e,t,n))];case"RFFT":return[Hc(I("x",e,t,n))];case"IRFFT":return[bf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iH=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=Ch.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=Ch.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[Ch.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},oH=(e,t,n)=>{switch(e.op){case"Cast":return[oe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[mn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[dr(I("x",e,t,n),a)]}case"Reshape":return[W(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[yv(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ya(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Vc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Oc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[sv(I("x",e,t,n),a,r)]}case"BroadcastTo":return[bl(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[TS(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function $k(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return O(()=>O6(s,i,o));case"basic_math":return O(()=>L6(s,i,o));case"control":return G6(s,i,o);case"convolution":return O(()=>H6(s,i,o));case"creation":return O(()=>j6(s,i,o));case"dynamic":return q6(s,i,o);case"evaluation":return O(()=>K6(s,i,o));case"image":return O(()=>Z6(s,i,o));case"graph":return O(()=>X6(s,i,o));case"logical":return O(()=>Q6(s,i,o));case"matrices":return O(()=>eH(s,i,o));case"normalization":return O(()=>tH(s,i,o));case"reduction":return O(()=>nH(s,i,o));case"slice_join":return O(()=>aH(s,i,o));case"sparse":return O(()=>rH(s,i,o));case"spectral":return O(()=>sH(s,i,o));case"string":return O(()=>iH(s,i,o));case"transformation":return O(()=>oH(s,i,o));case"hash_table":return J6(s,i,o,a);case"custom":let l=RN(s.op);if(l&&l.customExecutor)return l.customExecutor(new P6(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var Fk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Dk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Yn(c)[0]),p=[];a!=null&&(p=a.map(c=>Yn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((nT(c)||dH(c)||hH(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function lH(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Yn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var uH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],pH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],cH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function nT(e){return uH.indexOf(e.op)>=0}function dH(e){return pH.indexOf(e.op)>=0}function hH(e){return cH.indexOf(e.op)>=0}var ux=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ux(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=Dk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return lH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Yn(p)[0]]),r=t.map(p=>Yn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return O(()=>{let p=new Fk(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Yn(m),y=[];y[g]=e[m],d[f]=y});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=$k(f,d,p,this._resourceManager);if(k.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>Sn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=f6(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=lr(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new Fk(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>Sn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Yn(b)[0]]),i=n.map(b=>Yn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=Dk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Yn(b),w=[];w[v]=e[b],h[x]=w});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!nT(b)&&!Sn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&I("isConstant",p.node,a,n)&&([d]=lr(p.node.name,n)),a[p.node.name]==null){let c=$k(p.node,a,n,this._resourceManager);d||([d]=lr(p.node.name,n));let h=n.currentContext;k.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=lr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Sn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Sn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Yn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Yn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Yn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},mH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},fH="?tfjs-format=file",gH="model.json",aT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new mH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Qt.browserHTTPRequest(e,this.loadOptions);else{let t=Qt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Qt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=Qt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ux(Ck.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Ck.Instance.transformGraph(e.modelInitializer);this.initializer=new ux(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Qt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ae)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function yH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${gH}${fH}`);let n=new aT(e,t);return await n.load(),n}var bH="3.16.0",rT={};Me(rT,{CSVDataset:()=>hT,Dataset:()=>qu,FileDataSource:()=>vT,TextLineDataset:()=>dT,URLDataSource:()=>wT,array:()=>WH,csv:()=>ZH,func:()=>QH,generator:()=>ej,microphone:()=>nj,version_data:()=>aj,webcam:()=>tj,zip:()=>VH});var xH=bi(fI()),vH=bi(fI());function wH(e,t){return sm(e,t)}function sm(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Al(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=sm(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function kH(e,t=iT){return sT(e,t)}function sT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Al(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=sT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function iT(e){return e===null?null:Al(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function oT(e,t){let n=new Map;sm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return sm(e,t,n)}function Al(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=gI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ae)&&!(e instanceof Promise)&&!t)}function IH(e){return e==null||SH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ae||k.isTypedArray(e)}function SH(e){return e===null||typeof e!="object"&&typeof e!="function"}function NH(e){return wH(e,TH)}function TH(e){return e instanceof Ae?{value:e.clone(),recurse:!1}:Al(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var lT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},l0=class extends lT{constructor(){super(l0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};l0.INITIAL_CAPACITY=32;function uT(e){return new EH(e)}function u0(e){return new AH(e)}function CH(e,t){return new pT(e,t)}function _H(e,t=ts.FAIL){return new zH(e,t)}var an=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new OH(this,e)}filter(e){return new MH(this,e)}map(e){return new PH(this,e)}mapAsync(e){return new Rk(this,e)}serialMapAsync(e){return new Rk(this,e).serial()}flatmap(e){return new LH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new RH(this,e,t)}columnMajorBatch(e,t=!0,n=iT){return this.rowMajorBatch(e,t).map(a=>kH(a,n))}concatenate(e,t){return new pT(uT([this,e]),t)}take(e){return e<0||e==null?this:new DH(this,e)}skip(e){return e<0||e==null?this:new FH(this,e)}prefetch(e){return new cT(this,e)}shuffle(e,t){return new BH(this,e,t)}serial(){return new $H(this)}},EH=class extends an{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:NH(e),done:!1}}},AH=class extends an{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},$H=class extends an{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},FH=class extends an{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Re(e.value)}return this.upstream.next()}},DH=class extends an{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},RH=class extends an{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},MH=class extends an{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},PH=class extends an{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ga.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ga.getTensorsInContainer(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},OH=class extends an{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Rk=class extends an{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ga.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ga.getTensorsInContainer(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},p0=class extends an{constructor(){super(),this.outputQueue=new l0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},LH=class extends p0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ga.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ga.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return!0}},pT=class extends an{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ts;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ts||(ts={}));var zH=class extends an{constructor(e,t=ts.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof an?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await oT(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ts.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ts.SHORTEST:return{value:null,done:!0};case ts.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},cT=class extends an{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new lT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},BH=class extends cT{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=vH.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},qu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Xn(async()=>(await n.iterator()).columnMajorBatch(e,t,UH),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Xn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Xn(async()=>(await t.iterator()).filter(a=>O(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Xn(async()=>(await t.iterator()).map(n=>O(()=>e(n))),this.size)}mapAsync(e){let t=this;return Xn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Xn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Xn(async()=>{let a=u0(async()=>({value:await t.iterator(),done:!1}));return CH(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Xn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=xH.alea(t||k.now().toString());return Xn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Xn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};qu.MAX_BUFFER_SIZE=1e4;function Xn(e,t=null){return new class extends qu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function WH(e){return Xn(async()=>uT(e),e.length)}function VH(e){if(!Al(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Xn(async()=>{let n=await oT(e,a=>{if(a instanceof qu)return{value:a.iterator(),recurse:!1};if(Al(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return _H(n,ts.SHORTEST)},t)}function UH(e){if(e===null)return null;let t=e[0];return IH(t)?{value:GH(e),recurse:!1}:{value:null,recurse:!0}}function GH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ae?Mt(e):Qn(e)}var dT=class extends qu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},vh='"',Mp=Symbol("out"),Mk=Symbol("field"),wh=Symbol("quote"),kb=Symbol("quoteafterquote"),Pk=Symbol("quoteinquote"),hT=class extends qu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new dT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Mp;for(let i=0;i<r;i++)switch(s){case Mp:switch(e.charAt(i)){case vh:a=i+1,s=wh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Mp;break;default:s=Mk,a=i;break}break;case Mk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Mp,a=i+1;break;default:}break;case wh:switch(e.charAt(i)){case vh:s=kb;break;default:}break;case kb:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Mp,a=i+1;break;case vh:s=wh;break;default:s=Pk;break}break;case Pk:switch(e.charAt(i)){case vh:s=wh;break;default:}break;default:}if(s===kb?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},mT=class extends an{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!X().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new mT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Qn(n,t)}},fT=class extends an{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ha([s,r,o,i],[1,4])}else this.cropBox=Ha([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!X().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new fT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=bo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return O(()=>{let t=mn(oe(e,"float32"),0),n;n=Ln.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},gT=class{},yT=class extends an{split(e){return new HH(this,e)}},HH=class extends yT{constructor(e,t){super(),this.upstream=e,this.impl=new jH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},jH=class extends p0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},qH=class extends an{decodeUTF8(){return new KH(this)}},KH=class extends yT{constructor(e){super(),this.upstream=e,this.impl=new XH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},XH=class extends p0{constructor(e){if(super(),this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=gI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},bT=class extends qH{constructor(e,t={}){super(),this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function YH(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=JH(e));let s=await(n||k.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new bT(i,t)}else throw new Error(s.statusText)}var JH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function xT(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var vT=class extends gT{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(xT(this.input)&&X().get("IS_NODE")){let e=Nx();this.input=e.readFileSync(this.input.slice(7))}return new bT(this.input,this.options)}},wT=class extends gT{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return xT(this.url)?new vT(this.url,this.fileOptions).iterator():YH(this.url,this.fileOptions)}};function ZH(e,t={}){return new hT(new wT(e),t)}function QH(e){let t=u0(e);return Xn(async()=>t)}function ej(e){return Xn(async()=>{let t=await e();return u0(()=>t.next())})}async function tj(e,t){return fT.create(e,t)}async function nj(e){return mT.create(e)}var aj="3.16.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var rj=gr.whereImpl,c0=class extends hc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new hm(this,sr())}nextDataId(){return c0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&_.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return sr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return rj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};c0.nextDataId=0;var kT={};Me(kT,{addImpl:()=>ST,bincountImpl:()=>h0,bincountReduceImpl:()=>NT,ceilImpl:()=>TT,concatImpl:()=>m0,equalImpl:()=>CT,expImpl:()=>ET,expm1Impl:()=>$T,floorImpl:()=>FT,gatherNdImpl:()=>DT,gatherV2Impl:()=>RT,greaterEqualImpl:()=>PT,greaterImpl:()=>MT,lessEqualImpl:()=>LT,lessImpl:()=>OT,linSpaceImpl:()=>zT,logImpl:()=>BT,maxImpl:()=>WT,maximumImpl:()=>VT,minimumImpl:()=>UT,multiplyImpl:()=>f0,negImpl:()=>GT,notEqualImpl:()=>HT,prodImpl:()=>jT,rangeImpl:()=>y0,rsqrtImpl:()=>qT,sigmoidImpl:()=>jj,simpleAbsImpl:()=>IT,sliceImpl:()=>om,sparseFillEmptyRowsImpl:()=>XT,sparseReshapeImpl:()=>YT,sparseSegmentReductionImpl:()=>b0,sqrtImpl:()=>Xj,squaredDifferenceImpl:()=>JT,stridedSliceImpl:()=>ZT,stringNGramsImpl:()=>QT,stringSplitImpl:()=>eC,stringToHashBucketFastImpl:()=>tC,subImpl:()=>nC,tileImpl:()=>aC,topKImpl:()=>sC,transposeImpl:()=>g0,uniqueImpl:()=>iC});function IT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var sj=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=IT(r),n.makeOutput(a,t.shape,t.dtype)},ij={kernelName:Ml,backendName:"cpu",kernelFunc:sj};function Vt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),p=k.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<p.length;++y){let b=k.indexToLoc(y,o,l),x=b.slice(-d);f.forEach(C=>x[C]=0);let v=k.locToIndex(x,d,h),w=b.slice(-c);g.forEach(C=>w[C]=0);let T=k.locToIndex(w,c,m);p[y]=e(a[v],r[T])}return[p,i]}}function Jn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var oj={kernelName:vm,backendName:"cpu",kernelFunc:Jn};function im(e,t,n="float32"){if(n==="complex64"){let r=im(e,t,"float32"),s=im(e,t,"float32");return Jn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function hr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var lj={kernelName:zi,backendName:"cpu",kernelFunc:hr};function hi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var uj={kernelName:zm,backendName:"cpu",kernelFunc:hi};function ms(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return hr({inputs:{x:r},backend:n});let i=im(n,r.shape,r.dtype),o=ms({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Jn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=hi({inputs:{input:r},backend:n}),o=ms({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=hr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Vt((p,d)=>p!==d?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var pj={kernelName:Si,backendName:"cpu",kernelFunc:ms};function rn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?_.fromUint8ToStringArray(u):u,c=i.dtype==="string"?_.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ms({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ms({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[w,T,C]=n(i.shape,o.shape,h,m,x,v),E=l.makeTensorInfo(C,"float32",w),$=l.makeTensorInfo(C,"float32",T),P=Jn({inputs:{real:E,imag:$},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo($),P}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function d0(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,p=k.computeStrides(o),d=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=k.computeStrides(t),x=n.length,v=k.computeStrides(n);if(h.length+m.length===0)for(let w=0;w<d.length;w++){let T=w%f.length,C=w%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[w]=E.real,c[w]=E.imag}else for(let w=0;w<d.length;w++){let T=k.indexToLoc(w,u,p),C=T.slice(-y);h.forEach(S=>C[S]=0);let E=k.locToIndex(C,y,b),$=T.slice(-x);m.forEach(S=>$[S]=0);let P=k.locToIndex($,x,v),F=e(f[E*2],f[E*2+1],g[P*2],g[P*2+1]);d[w]=F.real,c[w]=F.imag}return[d,c,o]}}var ST=Vt((e,t)=>e+t),cj=d0((e,t,n,a)=>({real:e+n,imag:t+a})),rd=rn(ys,ST,cj),dj={kernelName:ys,backendName:"cpu",kernelFunc:rd};function h0(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function NT(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=He([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Ts(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function ot(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),p=n||i.dtype,d=k.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function Ku(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var TT=Ts(e=>Math.ceil(e)),hj=Ku(Ni,TT),mj={kernelName:Ni,backendName:"cpu",kernelFunc:hj};function m0(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var CT=Vt((e,t)=>e===t?1:0),_T=rn(Jl,CT,null,"bool"),fj={kernelName:Jl,backendName:"cpu",kernelFunc:_T},ET=Ts(e=>Math.exp(e)),AT=Ku(Ri,ET,"float32"),gj={kernelName:Ri,backendName:"cpu",kernelFunc:AT},$T=Ts(e=>Math.expm1(e)),yj=Ku(Ql,$T),bj={kernelName:Ql,backendName:"cpu",kernelFunc:yj},FT=Ts(e=>Math.floor(e)),xj=Ku(Mi,FT),vj={kernelName:Mi,backendName:"cpu",kernelFunc:xj};function DT(e,t,n,a,r,s,i,o,l){let u=He([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function RT(e,t,n){let a=He(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var MT=Vt((e,t)=>e>t?1:0),wj=rn(au,MT,null,"bool"),kj={kernelName:au,backendName:"cpu",kernelFunc:wj},PT=Vt((e,t)=>e>=t?1:0),Ij=rn(Li,PT,null,"bool"),Sj={kernelName:Li,backendName:"cpu",kernelFunc:Ij},OT=Vt((e,t)=>e<t?1:0),Nj=rn(ou,OT,null,"bool"),Tj={kernelName:ou,backendName:"cpu",kernelFunc:Nj},LT=Vt((e,t)=>e<=t?1:0),Cj=rn(lu,LT,null,"bool"),_j={kernelName:lu,backendName:"cpu",kernelFunc:Cj};function zT(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var BT=Ts(e=>Math.log(e)),Ej=Ku(Wi,BT),Aj={kernelName:Wi,backendName:"cpu",kernelFunc:Ej};function WT(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var VT=Vt((e,t)=>Math.max(e,t)),$j=rn(Ui,VT),Fj={kernelName:Ui,backendName:"cpu",kernelFunc:$j},UT=Vt((e,t)=>Math.min(e,t)),Dj=rn(qi,UT),Rj={kernelName:qi,backendName:"cpu",kernelFunc:Dj},f0=Vt((e,t)=>e*t),Mj=d0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Zf=rn(Xi,f0,Mj),Pj={kernelName:Xi,backendName:"cpu",kernelFunc:Zf};function GT(e,t,n){let a=k.createScalarValue(-1,n);return f0([],t,a,e,n)}function Oj(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=GT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Lj={kernelName:du,backendName:"cpu",kernelFunc:Oj},HT=Vt((e,t)=>e!==t?1:0),zj=rn(hu,HT,null,"bool"),Bj={kernelName:hu,backendName:"cpu",kernelFunc:zj};function g0(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let p=0;p<i;++p){let d=k.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=k.locToIndex(c,s,l);u[h]=e[p]}return u}function Vn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=g0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var Wj={kernelName:yo,backendName:"cpu",kernelFunc:Vn};function jT(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=fa(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function Vj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=_.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=_.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=jT(d.shape,d.dtype,h,p),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),c.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var Uj={kernelName:eo,backendName:"cpu",kernelFunc:Vj};function y0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var qT=Ts(e=>1/Math.sqrt(e)),Gj=Ku(io,qT),Hj={kernelName:io,backendName:"cpu",kernelFunc:Gj},jj=Ts(e=>1/(1+Math.exp(-e))),KT=ot(lo,e=>1/(1+Math.exp(-e))),qj={kernelName:lo,backendName:"cpu",kernelFunc:KT};function om(e,t,n,a,r){let s=qt.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let d=qt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,u=He(a,r,l),p=He(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?_.fromStringArrayToUint8(p.values):p.values}function mi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=qt.parseSliceParams(r,s,i);qt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=om(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var Kj={kernelName:Su,backendName:"cpu",kernelFunc:mi};function XT(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(_.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*d];if(y<0)throw new Error(_.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(_.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b<o;++b)p[b]=b;return[g,[o,d],y,u,p]}else{let g=m[l-1],y=k.getArrayFromDType(n,g*d),b=k.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let w=e[v*d],T=x[w],C=(w===0?0:m[w-1])+T;x[w]++;for(let E=0;E<d;++E)y[C*d+E]=e[v*d+E];b[C]=a[v],p[v]=C}for(let v=0;v<l;++v)if(x[v]===0){let w=v===0?0:m[v-1];y[w*d+0]=v;for(let T=1;T<d;++T)y[w*d+T]=0;b[w]=i}return[y,[g,d],b,u,p]}}function YT(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(_.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(_.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(_.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(_.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(k.sizeFromShape(l)!==s)throw new Error(_.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=k.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<d;++y)g+=e[f*d+y]*c[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/h[y]),g%=h[y]}return[m,[i,o],l]}function b0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=k.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f<o){if(b=r[f],y===b){++f;continue}if(y>=b)throw new Error(_.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(_.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(_.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let w=0;w<u;w++)h[y*u+w]+=e[v*u+w]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=b,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var Xj=Ts(e=>Math.sqrt(e)),Yj=ot(uo,e=>Math.sqrt(e)),Jj={kernelName:uo,backendName:"cpu",kernelFunc:Yj},JT=Vt((e,t)=>{let n=e-t;return n*n}),Zj=rn(ho,JT),Qj={kernelName:ho,backendName:"cpu",kernelFunc:Zj};function ZT(e,t,n,a){let r=He(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var e5=class{constructor(e,t,n,a,r,s){this.separator=k.encodeString(e),this.nGramWidths=t,this.leftPad=k.encodeString(n),this.rightPad=k.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(y=>h[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=k.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function QT(e,t,n,a,r,s,i,o){return new e5(n,a,r,s,i,o).compute(e,t)}function t5(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function eC(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;t5(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=k.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function tC(e,t){let n=k.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=k.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var nC=Vt((e,t)=>e-t),n5=d0((e,t,n,a)=>({real:e-n,imag:t-a})),x0=rn(mo,nC,n5),a5={kernelName:mo,backendName:"cpu",kernelFunc:x0};function aC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=He(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Wp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function rC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));rC(e,t,c,h)}let r=e[t],s=n,i=a;for(k.swap(e,n,t),Wp(e[a],r)>0&&k.swap(e,n,a);s<i;){for(k.swap(e,s,i),s++,i--;Wp(e[s],r)<0;)s=s+1;for(;Wp(e[i],r)>0;)i=i-1}Wp(e[n],r)===0?k.swap(e,n,i):(i=i+1,k.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function sC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((b,x)=>m[x]={value:b,index:x}),a<m.length&&(rC(m,a),m=m.slice(0,a)),r&&m.sort(Wp);let f=d*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let p=t.slice();return p[p.length-1]=a,[He(p,n,l),He(p,"int32",u)]}function iC(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new jt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new jt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Ym("cpu",()=>new c0,1);var oC=ot(Di,e=>e>=0?e:Math.exp(e)-1),r5={kernelName:Di,backendName:"cpu",kernelFunc:oC};function lC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var s5={kernelName:Bi,backendName:"cpu",kernelFunc:lC},i5=Vt((e,t)=>e<0?t*e:e);function uC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=i5(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var o5={kernelName:Qi,backendName:"cpu",kernelFunc:uC},pC=ot(to,e=>Math.max(0,e)),l5={kernelName:to,backendName:"cpu",kernelFunc:pC},cC=ot(ao,e=>Math.min(Math.max(0,e),6)),u5={kernelName:ao,backendName:"cpu",kernelFunc:cC};function v0(e,t,n,a,r){if(n==="linear")return hr({inputs:{x:t},backend:e});if(n==="relu")return pC({inputs:{x:t},backend:e});if(n==="elu")return oC({inputs:{x:t},backend:e});if(n==="relu6")return cC({inputs:{x:t},backend:e});if(n==="prelu")return uC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return lC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return KT({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Tt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var p5={kernelName:vu,backendName:"cpu",kernelFunc:Tt};function dC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=Ou.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);k.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],w=Tt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Tt({inputs:{x:s},backend:n,attrs:{shape:v}}),C=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],$=o?T.shape[1]:T.shape[2],P=Math.max(g,y),F=n.data.get(w.dataId).values,S=n.data.get(T.dataId).values,M=k.computeStrides(w.shape),V=k.computeStrides(T.shape),[j,q,K]=i?[M[0],1,M[1]]:[M[0],M[1],1],[Q,ee,re]=o?[1,V[1],V[0]]:[V[1],1,V[0]],Z=E*$,ie=He([P,E,$],w.dtype),ae=ie.values,le=n.blockSize;for(let ue=0;ue<P;ue++)for(let ke=0;ke<E;ke+=le)for(let ye=0;ye<$;ye+=le)for(let Ie=0;Ie<C;Ie+=le){let Ee=Math.min(ke+le,E),Fe=Math.min(ye+le,$),Be=Math.min(Ie+le,C);for(let je=ke;je<Ee;je++)for(let st=ye;st<Fe;st++){let nt=0;for(let at=Ie;at<Be;at++){let Te=Math.min(ue,g-1)*j,gt=Math.min(ue,y-1)*re,ct=F[Te+je*q+at*K],bn=S[at*Q+st*ee+gt];nt+=ct*bn}ae[ue*Z+(je*$+st)]+=nt}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(b,ie.dtype,ie.values)}var c5={kernelName:Ii,backendName:"cpu",kernelFunc:dC};function d5(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=dC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=rd({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=v0(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var h5={kernelName:ni,backendName:"cpu",kernelFunc:d5},m5=ot(Pl,e=>Math.acos(e)),f5={kernelName:Pl,backendName:"cpu",kernelFunc:m5},g5=ot(Ol,e=>Math.acosh(e)),y5={kernelName:Ol,backendName:"cpu",kernelFunc:g5};function b5(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=He(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var x5={kernelName:vi,backendName:"cpu",kernelFunc:b5};function v5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=_.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=_.computeOutAndReduceShapes(p.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let w=f[b+v];x=x&&w}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=_.expandShapeToKeepDim(d,o),b=Tt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var w5={kernelName:Ll,backendName:"cpu",kernelFunc:v5};function k5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=_.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=_.computeOutAndReduceShapes(p.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let w=f[b+v];x=x||w}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=_.expandShapeToKeepDim(d,o),b=Tt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var I5={kernelName:zl,backendName:"cpu",kernelFunc:k5};function S5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=_.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(p),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let w=f[y+v];w>b&&(b=w,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var N5={kernelName:wi,backendName:"cpu",kernelFunc:S5};function T5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=_.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(p),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let w=f[y+v];w<b&&(b=w,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var C5={kernelName:mc,backendName:"cpu",kernelFunc:T5},_5=ot(Bl,e=>Math.asin(e)),E5={kernelName:Bl,backendName:"cpu",kernelFunc:_5},A5=ot(Wl,e=>Math.asinh(e)),$5={kernelName:Wl,backendName:"cpu",kernelFunc:A5},F5=ot(Vl,e=>Math.atan(e)),D5={kernelName:Vl,backendName:"cpu",kernelFunc:F5},R5=Vt((e,t)=>Math.atan2(e,t)),M5=rn(Gl,R5),P5={kernelName:Gl,backendName:"cpu",kernelFunc:M5},O5=ot(Ul,e=>Math.atanh(e)),L5={kernelName:Ul,backendName:"cpu",kernelFunc:O5};function w0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=He(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let w=v*y,T=v*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let $=E*i-c,P=Math.max(0,$),F=Math.min(r.inHeight,p+$),S=w+E*b;for(let M=0;M<r.outWidth;++M){let V=M*o-h,j=Math.max(0,V),q=Math.min(r.inWidth,d+V),K=m,Q=0,ee=0;for(let Z=P;Z<F;Z+=l){let ie=T+Z*a[1];for(let ae=j;ae<q;ae+=u){let le=ie+ae*a[2],ue=e[le+C];s==="max"&&ue>K?K=ue:s==="avg"&&(Q+=ue,ee++)}if(isNaN(K))break}let re=S+M*x+C;g[re]=s==="avg"?Q/ee:K}}}return f}function hC(e,t,n,a,r=!1,s=!1){let i=He(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=He(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=u;let w=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let $=Math.min(a.inWidth,c+C),P=Number.NEGATIVE_INFINITY,F=-1;for(let S=v;S<w;S+=u){let M=S-x;for(let V=E;V<$;V+=p){let j=V-C,q=f.get(g,S,V,y);q>P&&(P=q,r?F=s?((g*a.inHeight+S)*a.inWidth+V)*a.inChannels+y:(S*a.inWidth+V)*a.inChannels+y:F=M*c+j)}}i.set(F,g,b,T,y)}}return i}function mC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=He(r.outShape,n),v=x.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let $=0;$<r.batchSize;++$){let P=$*w,F=$*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let V=M*i-f,j=V;for(;j<0;)j+=u;let q=Math.min(r.inDepth,c+V),K=P+M*T;for(let Q=0;Q<r.outHeight;++Q){let ee=Q*o-g,re=ee;for(;re<0;)re+=p;let Z=Math.min(r.inHeight,h+ee),ie=K+Q*C;for(let ae=0;ae<r.outWidth;++ae){let le=ae*l-y,ue=le;for(;ue<0;)ue+=d;let ke=Math.min(r.inWidth,m+le),ye=ie+ae*E,Ie=b,Ee=0,Fe=0;for(let je=j;je<q;je+=u){let st=F+je*a[1];for(let nt=re;nt<Z;nt+=p){let at=st+nt*a[2];for(let Te=ue;Te<ke;Te+=d){let gt=at+Te*a[3],ct=e[gt+S];if(s==="max"&&ct>Ie?Ie=ct:s==="avg"&&(Ee+=ct,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Be=ye+S;v[Be]=s==="avg"?Ee/Fe:Ie}}}}return x}function z5(e,t){let n=He(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-c,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+b);for(let w=0;w<t.outHeight;++w){let T=w*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let $=0;$<t.outWidth;++$){let P=$*s-m,F=P;for(;F<0;)F+=l;let S=Math.min(t.inWidth,d+P),M=Number.NEGATIVE_INFINITY,V=-1;for(let j=x;j<v;j+=i){let q=j-b;for(let K=C;K<E;K+=o){let Q=K-T;for(let ee=F;ee<S;ee+=l){let re=ee-P,Z=e.get(f,j,K,ee,g);Z>=M&&(M=Z,V=q*p*d+Q*p+re)}}}n.set(V,f,y,w,$,g)}}}return n}function B5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=w0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var W5={kernelName:ki,backendName:"cpu",kernelFunc:B5};function V5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"avgPool3d");let p=_.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=mC(d,r.shape,r.dtype,k.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var U5={kernelName:fc,backendName:"cpu",kernelFunc:V5};function G5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"avgPool3DGrad");let p=_.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,v=p.effectiveFilterDepth,w=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=v-1-p.padInfo.front,E=T-1-p.padInfo.left,$=w-1-p.padInfo.top,P=He(s.shape,"float32"),F=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let V=0;V<p.inChannels;++V)for(let j=0;j<p.inDepth;++j)for(let q=0;q<p.inHeight;++q)for(let K=0;K<p.inWidth;++K){let Q=j-C,ee=q-$,re=K-E,Z=0;for(let ie=0;ie<v;ie+=y){let ae=(Q+ie)/d;if(!(ae<0||ae>=p.outDepth||Math.floor(ae)!==ae))for(let le=0;le<w;le+=b){let ue=(ee+le)/c;if(!(ue<0||ue>=p.outHeight||Math.floor(ue)!==ue))for(let ke=0;ke<T;ke+=x){let ye=(re+ke)/h;ye<0||ye>=p.outWidth||Math.floor(ye)!==ye||(Z+=S.get(M,ae,ue,ye,V))}}}P.set(Z*F,M,j,q,K,V)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var H5={kernelName:ym,backendName:"cpu",kernelFunc:G5};function j5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=_.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,v=y-1-p.padInfo.top,w=He(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=He(r.shape,"float32",C);for(let $=0;$<p.batchSize;++$)for(let P=0;P<p.inChannels;++P)for(let F=0;F<p.inHeight;++F)for(let S=0;S<p.inWidth;++S){let M=F-v,V=S-x,j=0;for(let q=0;q<y;q+=f){let K=(M+q)/d;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let Q=0;Q<b;Q+=g){let ee=(V+Q)/c;ee<0||ee>=p.outWidth||Math.floor(ee)!==ee||(j+=E.get($,K,ee,P))}}w.set(j*T,$,F,S,P)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var q5={kernelName:gm,backendName:"cpu",kernelFunc:j5};function K5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,v=0,w=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[v++]+(p[E]-d[w++])*h[T++]/Math.sqrt(c[C++]+u),v>=g&&(v=0),w>=x&&(w=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var X5={kernelName:Oi,backendName:"cpu",kernelFunc:K5};function Y5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),u=_.getPermuted(l.length,s.length),p=_.getReshapedPermuted(r.shape,s,o),d=_.getSliceBeginCoords(i,s.length),c=_.getSliceSize(p,i,s.length),h=Tt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Tt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=mi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var J5={kernelName:Hl,backendName:"cpu",kernelFunc:Y5};function Z5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=h0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var Q5={kernelName:bm,backendName:"cpu",kernelFunc:Z5};function eq(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=_.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var tq={kernelName:xm,backendName:"cpu",kernelFunc:eq},nq=ot(bs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),aq={kernelName:bs,backendName:"cpu",kernelFunc:nq},rq=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},sq={kernelName:gc,backendName:"cpu",kernelFunc:rq};function $l(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var iq={kernelName:Fm,backendName:"cpu",kernelFunc:$l};function Fl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return hr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>hi({inputs:{input:v},backend:n})),g=o.map(v=>$l({inputs:{input:v},backend:n})),y=Fl({inputs:f,backend:n,attrs:{axis:s}}),b=Fl({inputs:g,backend:n,attrs:{axis:s}}),x=Jn({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=o.map(f=>{let g=k.sizeFromShape(f.shape.slice(s));return Tt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=m0(p,i,t[0].dtype,d),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var oq={kernelName:jl,backendName:"cpu",kernelFunc:Fl};function fC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;xe([r,s],"conv2d");let d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new jt(c.outShape,r.dtype),w=k.computeStrides(r.shape),T=k.computeStrides(s.shape),C=w[0],E=x?w[1]:w[2],$=x?w[2]:1,P=x?1:w[1],F=v.strides[0],S=x?v.strides[1]:v.strides[2],M=x?v.strides[2]:1,V=x?1:v.strides[1],j=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,K=v.values;for(let Q=0;Q<c.batchSize;++Q){let ee=Q*C,re=Q*F;for(let Z=0;Z<c.outHeight;++Z){let ie=re+Z*S,ae=Z*c.strideHeight-b;for(let le=0;le<h;++le){let ue=ae+le*f;if(ue<0||ue>=c.inHeight)continue;let ke=le*T[0],ye=ee+ue*E;for(let Ie=0;Ie<c.outWidth;++Ie){let Ee=ie+Ie*M,Fe=Ie*c.strideWidth-y;for(let Be=0;Be<m;++Be){let je=Fe+Be*g;if(je<0||je>=c.inWidth)continue;let st=ke+Be*T[1],nt=ye+je*$,at=st;for(let Te=0;Te<c.inChannels;++Te){let gt=j[nt+Te*P];for(let ct=0;ct<c.outChannels;++ct)K[Ee+ct*V]+=gt*q[at+ct];at+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,K)}var lq={kernelName:Ti,backendName:"cpu",kernelFunc:fC};function uq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"conv2dBackpropFilter");let d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",b=new jt(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,w=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new jt(r.shape,r.dtype,w),E=new jt(s.shape,s.dtype,T);for(let $=0;$<f;++$){let P=Math.max(0,Math.ceil((v-$)/h)),F=Math.min(c.outHeight,(c.inHeight+v-$)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),V=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let j=0;j<c.inChannels;++j)for(let q=0;q<c.outChannels;++q){let K=0;for(let Q=0;Q<c.batchSize;++Q)for(let ee=P;ee<F;++ee){let re=$+ee*h-v;for(let Z=M;Z<V;++Z){let ie=S+Z*m-x;y?K+=C.get(Q,re,ie,j)*E.get(Q,ee,Z,q):K+=C.get(Q,j,re,ie)*E.get(Q,q,ee,Z)}}b.set(K,$,S,j,q)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var pq={kernelName:wm,backendName:"cpu",kernelFunc:uq};function cq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;xe([r,s],"conv2dBackpropInput");let d=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=_.convertConv2DDataFormat(u),m=_.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new jt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,w]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:$,inHeight:P,inWidth:F,outChannels:S,outHeight:M,outWidth:V,strideHeight:j,strideWidth:q}=m;h=m.dataFormat;let K=C-1-m.padInfo.top,Q=E-1-m.padInfo.left,ee=h==="channelsLast",re=f.strides[0],Z=ee?f.strides[1]:f.strides[2],ie=ee?f.strides[2]:1,ae=ee?1:f.strides[1],le=c[0],ue=ee?c[1]:c[2],ke=ee?c[2]:1,ye=ee?1:c[1];for(let Ie=0;Ie<T;++Ie)for(let Ee=0;Ee<$;++Ee)for(let Fe=0;Fe<P;++Fe){let Be=Fe-K,je=Math.max(0,Math.ceil(Be/j)),st=Math.min(M,(C+Be)/j);for(let nt=0;nt<F;++nt){let at=nt-Q,Te=Math.max(0,Math.ceil(at/q)),gt=Math.min(V,(E+at)/q),ct=0;for(let Yt=je;Yt<st;++Yt){let Dn=Yt*j-Be;for(let Ut=Te;Ut<gt;++Ut){let Jt=Ut*q-at,Da=le*Ie+ue*Yt+ke*Ut,Rn=x*(C-1-Dn)+v*(E-1-Jt)+w*Ee;for(let Gt=0;Gt<S;++Gt){let ia=y[Da+ye*Gt],oa=b[Rn+Gt];ct+=ia*oa}}}let bn=re*Ie+Z*Fe+ie*nt+ae*Ee;g[bn]=ct}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var dq={kernelName:Ci,backendName:"cpu",kernelFunc:cq};function hq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let u=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,v=new jt(u.outShape,r.dtype),w=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=v.values,E=k.computeStrides(r.shape),$=k.computeStrides(s.shape);for(let P=0;P<u.batchSize;++P){let F=P*E[0],S=P*v.strides[0];for(let M=0;M<u.outDepth;++M){let V=S+M*v.strides[1],j=M*u.strideDepth-y;for(let q=0;q<p;++q){let K=j+q*h;if(K<0||K>=u.inDepth)continue;let Q=q*$[0],ee=F+K*E[1];for(let re=0;re<u.outHeight;++re){let Z=V+re*v.strides[2],ie=re*u.strideHeight-x;for(let ae=0;ae<d;++ae){let le=ie+ae*m;if(le<0||le>=u.inHeight)continue;let ue=Q+ae*$[1],ke=ee+le*E[2];for(let ye=0;ye<u.outWidth;++ye){let Ie=Z+ye*u.outChannels,Ee=ye*u.strideWidth-b;for(let Fe=0;Fe<c;++Fe){let Be=Ee+Fe*f;if(Be<0||Be>=u.inWidth)continue;let je=ue+Fe*$[2],st=ke+Be*u.inChannels,nt=je;for(let at=0;at<u.inChannels;++at){let Te=w[st+at];for(let gt=0;gt<u.outChannels;++gt)C[Ie+gt]+=Te*T[nt+gt];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var mq={kernelName:yc,backendName:"cpu",kernelFunc:hq};function fq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),p=k.computeStrides(s.shape),d=_.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,y=d.filterWidth,b=new jt(d.filterShape,"float32"),x=b.values,[v,w,T,C]=b.strides,E=n.data.get(s.dataId).values,[$,P,F,S]=p,M=n.data.get(r.dataId).values,[V,j,q,K]=u,Q=d.padInfo.front,ee=d.padInfo.left,re=d.padInfo.top;for(let Z=0;Z<f;++Z){let ie=Math.max(0,Math.ceil((Q-Z)/c)),ae=Math.min(d.outDepth,(d.inDepth+Q-Z)/c),le=Z*v;for(let ue=0;ue<g;++ue){let ke=Math.max(0,Math.ceil((re-ue)/h)),ye=Math.min(d.outHeight,(d.inHeight+re-ue)/h),Ie=ue*w+le;for(let Ee=0;Ee<y;++Ee){let Fe=Math.max(0,Math.ceil((ee-Ee)/m)),Be=Math.min(d.outWidth,(d.inWidth+ee-Ee)/m),je=Ee*T+Ie;for(let st=0;st<d.inChannels;++st){let nt=st*C+je;for(let at=0;at<d.outChannels;++at){let Te=0;for(let gt=0;gt<d.batchSize;++gt){let ct=gt*V,bn=gt*$;for(let Yt=ie;Yt<ae;++Yt){let Dn=(Z+Yt*c-Q)*j+ct,Ut=Yt*P+bn;for(let Jt=ke;Jt<ye;++Jt){let Da=(ue+Jt*h-re)*q+Dn,Rn=Jt*F+Ut;for(let Gt=Fe;Gt<Be;++Gt){let ia=(Ee+Gt*m-ee)*K+Da,oa=Gt*S+Rn;Te+=M[ia+st]*E[oa+at]}}}}x[nt+at]=Te}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var gq={kernelName:km,backendName:"cpu",kernelFunc:fq};function yq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),p=k.computeStrides(s.shape),d=_.computeConv3DInfo(l,s.shape,o,1,i),c=new jt(d.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,b=n.data.get(r.dataId).values,[x,v,w,T]=u,C=n.data.get(s.dataId).values,[E,$,P,F]=p,{batchSize:S,filterDepth:M,filterHeight:V,filterWidth:j,inChannels:q,inDepth:K,inHeight:Q,inWidth:ee,outChannels:re,outDepth:Z,outHeight:ie,outWidth:ae,strideDepth:le,strideHeight:ue,strideWidth:ke}=d,ye=M-1-d.padInfo.front,Ie=V-1-d.padInfo.top,Ee=j-1-d.padInfo.left;for(let Fe=0;Fe<S;++Fe)for(let Be=0;Be<q;++Be)for(let je=0;je<K;++je){let st=je-ye,nt=Math.max(0,Math.ceil(st/le)),at=Math.min(Z,(M+st)/le);for(let Te=0;Te<Q;++Te){let gt=Te-Ie,ct=Math.max(0,Math.ceil(gt/ue)),bn=Math.min(ie,(V+gt)/ue);for(let Yt=0;Yt<ee;++Yt){let Dn=Yt-Ee,Ut=Math.max(0,Math.ceil(Dn/ke)),Jt=Math.min(ae,(j+Dn)/ke),Da=0;for(let Rn=nt;Rn<at;++Rn){let Gt=Rn*le-st;for(let ia=ct;ia<bn;++ia){let oa=ia*ue-gt;for(let Hr=Ut;Hr<Jt;++Hr){let Rs=Hr*ke-Dn,Fd=x*Fe+v*Rn+w*ia+T*Hr,jr=E*(M-1-Gt)+$*(V-1-oa)+P*(j-1-Rs)+F*Be;for(let kr=0;kr<re;++kr){let xp=b[Fd+kr],Yo=C[jr+kr];Da+=xp*Yo}}}}h[m*Fe+f*je+g*Te+y*Yt+Be]=Da}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var bq={kernelName:Im,backendName:"cpu",kernelFunc:yq},xq=ot(_i,e=>Math.cos(e)),vq={kernelName:_i,backendName:"cpu",kernelFunc:xq},wq=ot(Ei,e=>Math.cosh(e)),kq={kernelName:Ei,backendName:"cpu",kernelFunc:wq};function Iq(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=He([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,w=k.computeStrides(r.shape),T=k.computeStrides(y.shape);for(let C=0;C<m;C++){let E=C*4,$=b[E],P=b[E+1],F=b[E+2],S=b[E+3],M=x[C];if(M>=p)continue;let V=f>1?(F-$)*(d-1)/(f-1):0,j=g>1?(S-P)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let K=f>1?$*(d-1)+q*V:.5*($+F)*(d-1);if(K<0||K>d-1){for(let Q=0;Q<g;Q++)for(let ee=0;ee<h;ee++){let re=ee+Q*T[2]+q*T[1]+C*T[0];y.values[re]=u}continue}if(l==="bilinear"){let Q=Math.floor(K),ee=Math.ceil(K),re=K-Q;for(let Z=0;Z<g;Z++){let ie=g>1?P*(c-1)+Z*j:.5*(P+S)*(c-1);if(ie<0||ie>c-1){for(let ke=0;ke<h;ke++){let ye=ke+Z*T[2]+q*T[1]+C*T[0];y.values[ye]=u}continue}let ae=Math.floor(ie),le=Math.ceil(ie),ue=ie-ae;for(let ke=0;ke<h;ke++){let ye=ke+ae*w[2]+Q*w[1]+M*w[0],Ie=v[ye];ye=ke+le*w[2]+Q*w[1]+M*w[0];let Ee=v[ye];ye=ke+ae*w[2]+ee*w[1]+M*w[0];let Fe=v[ye];ye=ke+le*w[2]+ee*w[1]+M*w[0];let Be=v[ye],je=Ie+(Ee-Ie)*ue,st=Fe+(Be-Fe)*ue;ye=ke+Z*T[2]+q*T[1]+C*T[0],y.values[ye]=je+(st-je)*re}}}else for(let Q=0;Q<g;++Q){let ee=g>1?P*(c-1)+Q*j:.5*(P+S)*(c-1);if(ee<0||ee>c-1){for(let ie=0;ie<h;ie++){let ae=ie+Q*T[2]+q*T[1]+C*T[0];y.values[ae]=u}continue}let re=Math.round(ee),Z=Math.round(K);for(let ie=0;ie<h;ie++){let ae=ie+re*w[2]+Z*w[1]+M*w[0],le=ie+Q*T[2]+q*T[1]+C*T[0];y.values[le]=v[ae]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Sq={kernelName:Kl,backendName:"cpu",kernelFunc:Iq};function Nq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumprod");let l=_.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=_.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=fa(u.dtype,"int32"),c=k.makeOnesTypedArray(k.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?1:h[x];else{let v=f(y,b-1);c[x]=i?h[v]*c[v]:h[x]*c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=_.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var Tq={kernelName:ql,backendName:"cpu",kernelFunc:Nq};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=_.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=fa(u.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?0:h[x];else{let v=f(y,b-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=_.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var _q={kernelName:Ai,backendName:"cpu",kernelFunc:Cq};function Eq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=h0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=NT(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Aq={kernelName:Sm,backendName:"cpu",kernelFunc:Eq};function $q(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<d;++b){let x=Math.floor(b/s),v=b%s;for(let w=0;w<c;++w){let T=Math.floor(w/s),C=w%s,E=(v*s+C)*h;for(let $=0;$<h;++$){let P=$+E+p*(T+u*(x+l*y));f[g++]=m[P]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var Fq={kernelName:Xl,backendName:"cpu",kernelFunc:$q};function gC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;xe([r,s],"depthwiseConv2DNative");let p=k.computeStrides(r.shape),d=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,w=h.outChannels/h.inChannels,T=new jt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,$=T.values;for(let P=0;P<h.batchSize;++P){let F=P*p[0],S=P*T.strides[0];for(let M=0;M<h.outHeight;++M){let V=S+M*T.strides[1],j=M*h.strideHeight-v;for(let q=0;q<m;++q){let K=j+q*g;if(K<0||K>=h.inHeight)continue;let Q=q*d[0],ee=F+K*p[1];for(let re=0;re<h.outWidth;++re){let Z=V+re*T.strides[2],ie=re*h.strideWidth-x;for(let ae=0;ae<f;++ae){let le=ie+ae*y;if(le<0||le>=h.inWidth)continue;let ue=Q+ae*d[1],ke=ee+le*h.inChannels,ye=Z,Ie=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let Fe=C[ke+Ee];for(let Be=0;Be<w;++Be)$[ye+Be]+=Fe*E[Ie+Be];ye+=w,Ie+=w}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var Dq={kernelName:$i,backendName:"cpu",kernelFunc:gC};function Rq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let d=_.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new jt(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,x=d.outChannels/d.inChannels,v=n.data.get(r.dataId).values,w=new jt(r.shape,r.dtype,v),T=n.data.get(s.dataId).values,C=new jt(s.shape,s.dtype,T);for(let E=0;E<m;++E){let $=Math.max(0,Math.ceil((b-E)/c)),P=Math.min(d.outHeight,(d.inHeight+b-E)/c);for(let F=0;F<f;++F){let S=Math.max(0,Math.ceil((y-F)/h)),M=Math.min(d.outWidth,(d.inWidth+y-F)/h);for(let V=0;V<d.outChannels;++V){let j=Math.trunc(V/x),q=V%x,K=0;for(let Q=0;Q<d.batchSize;++Q)for(let ee=$;ee<P;++ee){let re=E+ee*c-b;for(let Z=S;Z<M;++Z){let ie=F+Z*h-y;K+=w.get(Q,re,ie,j)*C.get(Q,ee,Z,V)}}g.set(K,E,F,j,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Mq={kernelName:Nm,backendName:"cpu",kernelFunc:Rq};function Pq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let d=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=_.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new jt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,w,T]=d,C=n.data.get(s.dataId).values,[E,$,P]=c,{batchSize:F,filterHeight:S,filterWidth:M,inChannels:V,inHeight:j,inWidth:q,outChannels:K,outHeight:Q,outWidth:ee,strideHeight:re,strideWidth:Z}=h,ie=S-1-h.padInfo.top,ae=M-1-h.padInfo.left,le=K/V;for(let ue=0;ue<F;++ue)for(let ke=0;ke<V;++ke)for(let ye=0;ye<j;++ye){let Ie=ye-ie,Ee=Math.max(0,Math.ceil(Ie/re)),Fe=Math.min(Q,(S+Ie)/re);for(let Be=0;Be<q;++Be){let je=Be-ae,st=Math.max(0,Math.ceil(je/Z)),nt=Math.min(ee,(M+je)/Z),at=0;for(let Te=Ee;Te<Fe;++Te){let gt=Te*re-Ie;for(let ct=st;ct<nt;++ct){let bn=ct*Z-je,Yt=v*ue+w*Te+T*ct,Dn=E*(S-1-gt)+$*(M-1-bn)+P*ke;for(let Ut=0;Ut<le;++Ut){let Jt=ke*le+Ut,Da=x[Yt+Jt],Rn=C[Dn+Ut];at+=Da*Rn}}}f[g*ue+y*ye+b*Be+ke]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Oq={kernelName:Tm,backendName:"cpu",kernelFunc:Pq};function Lq(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=He([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var zq={kernelName:Cm,backendName:"cpu",kernelFunc:Lq},Bq={kernelName:bc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:$,outShape:P}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=k.sizeFromShape(P),S=P.length,M=k.getArrayFromDType(a.dtype,F);for(let V=0;V<h;++V)for(let j=0;j<y;++j){let q=j*v-x.top;for(let K=0;K<b;++K){let Q=K*w-x.left;for(let ee=0;ee<g;++ee){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<T;++ie){let ae=q+ie*E;if(ae>=0&&ae<m)for(let le=0;le<C;++le){let ue=Q+le*$;if(ue>=0&&ue<f){let ke=k.locToIndex([V,ae,ue,ee],p,k.computeStrides(a.shape)),ye=k.locToIndex([ie,le,ee],c,k.computeStrides(r.shape)),Ie=u[ke]+d[ye];Ie>re&&(re=Ie)}}}let Z=k.locToIndex([V,j,K,ee],S,k.computeStrides(P));M[Z]=re}}}return{dataId:l.write(k.toTypedArray(M,a.dtype),P,a.dtype),shape:P,dtype:a.dtype}}},Wq={kernelName:Bh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=k.toNestedArray(a.shape,u.data.get(a.dataId).values),d=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:$}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===$.length,()=>`Error in ${Bh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let P=k.toNestedArray($,u.data.get(s.dataId).values),F=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let V=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Q=Number.MIN_SAFE_INTEGER,ee=0,re=0;for(let Z=0;Z<w;++Z){let ie=V+Z*C;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*E;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Z][ae][K];ue>Q&&(Q=ue,ee=Z,re=ae)}}}F[ee][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(k.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Vq={kernelName:zh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=k.toNestedArray(a.shape,u.data.get(a.dataId).values),d=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:$}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===$.length,()=>`Error in ${zh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let P=k.toNestedArray($,u.data.get(s.dataId).values),F=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let V=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Q=Number.MIN_SAFE_INTEGER,ee=V<0?0:V,re=q<0?0:q;for(let Z=0;Z<w;++Z){let ie=V+Z*C;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*E;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Z][ae][K];ue>Q&&(Q=ue,ee=ie,re=le)}}}F[S][ee][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(k.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function sd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=ms({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=hr({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),p=_.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Vn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=_.getInnerMostAxes(d.length,l)),_.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=_.computeOutAndReduceShapes(c.shape,d),f=_.upcastType(c.dtype,"int32"),g=im(n,h,f),y=k.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<b.length;++v){let w=v*y,T=0;for(let C=0;C<y;++C)T+=x[w+C];b[v]=T}if(i){let v=_.expandShapeToKeepDim(g.shape,u),w=g;g=Tt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var Uq={kernelName:po,backendName:"cpu",kernelFunc:sd};function Gq(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=_.decodeEinsumEquation(r,s.length);_.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=_.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(y)?x=s[g]:(x=Vn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let w=0;w<b.length;++w)v.splice(b[w],0,1);k.arraysEqual(x.shape,v)||(x=Tt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=Zf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=sd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Hq={kernelName:_m,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var qq={kernelName:Em,backendName:"cpu",kernelFunc:jq},Kq=_.ERF_P,Xq=_.ERF_A1,Yq=_.ERF_A2,Jq=_.ERF_A3,Zq=_.ERF_A4,Qq=_.ERF_A5,e8=ot(Yl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+Kq*n);return t*(1-((((Qq*a+Zq)*a+Jq)*a+Yq)*a+Xq)*a*Math.exp(-n*n))}),t8={kernelName:Yl,backendName:"cpu",kernelFunc:e8};function lm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Tt({inputs:{x:r},backend:n,attrs:{shape:o}})}var n8={kernelName:Zl,backendName:"cpu",kernelFunc:lm},a8=Vt((e,t)=>e/t),k0=rn(Fi,a8),px={kernelName:Fi,backendName:"cpu",kernelFunc:k0};function yC(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=k.sizeFromShape(u),d=k.getTypedArrayFromDType("float32",p),c=k.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let y=mi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=mi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Jn({inputs:{real:y,imag:b},backend:n}),{real:v,imag:w}=r8(x,t,n),T=_.mergeRealAndImagArrays(v,w);for(let C=0;C<s;C++){let E=_.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Jn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function r8(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(s8(a)){let o=cx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=hr({inputs:{x:d},backend:n}),h=px.kernelFunc({inputs:{a:u,b:d},backend:n}),m=px.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=i8(o,a,t);return _.splitRealAndImagArrays(l)}}function s8(e){return(e&e-1)===0}function cx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Jn({inputs:{real:d,imag:c},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Jn({inputs:{real:b,imag:x},backend:r}),w=cx(l,u,i,a,r),T=w.real,C=w.imag,E=[T.length],$=r.makeTensorInfo(E,"float32",T),P=r.makeTensorInfo(E,"float32",C),F=Jn({inputs:{real:$,imag:P},backend:r}),S=cx(f,g,i,a,r),M=S.real,V=S.imag,j=[M.length],q=r.makeTensorInfo(j,"float32",M),K=r.makeTensorInfo(j,"float32",V),Q=Jn({inputs:{real:q,imag:K},backend:r}),ee=_.exponents(n,a),re=[ee.real.length],Z=r.makeTensorInfo(re,"float32",ee.real),ie=r.makeTensorInfo(re,"float32",ee.imag),ae=Jn({inputs:{real:Z,imag:ie},backend:r}),le=Zf({inputs:{a:ae,b:Q},backend:r}),ue=rd({inputs:{a:F,b:le},backend:r}),ke=x0({inputs:{a:F,b:le},backend:r}),ye=hi({inputs:{input:ue},backend:r}),Ie=hi({inputs:{input:ke},backend:r}),Ee=$l({inputs:{input:ue},backend:r}),Fe=$l({inputs:{input:ke},backend:r}),Be=Fl({inputs:[ye,Ie],backend:r,attrs:{axis:0}}),je=Fl({inputs:[Ee,Fe],backend:r,attrs:{axis:0}}),st=r.data.get(Be.dataId).values,nt=r.data.get(je.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(Fe),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(je),{real:st,imag:nt}}function i8(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),u=_.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function o8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=Tt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=yC(o,!1,n),u=Tt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var l8={kernelName:Am,backendName:"cpu",kernelFunc:o8};function I0(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return p8(o,r,i),t.makeTensorInfo(a,i,o)}var u8={kernelName:xc,backendName:"cpu",kernelFunc:I0};function p8(e,t,n){e.fill(t)}var c8={kernelName:eu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=Math.round(l-f-1),x=c+m+g+y,v=p[x];if(b>=0&&b<l){let w=b*u,T=c+m+w+y;v=p[T]}s[x]=v}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},d8=Vt((e,t)=>Math.floor(e/t)),h8=rn(Pi,d8,null,"int32"),m8={kernelName:Pi,backendName:"cpu",kernelFunc:h8};function f8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=fC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=rd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=v0(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var g8={kernelName:ai,backendName:"cpu",kernelFunc:f8};function y8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=gC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=rd({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=v0(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var b8={kernelName:ri,backendName:"cpu",kernelFunc:y8};function x8(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=_.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=DT(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var v8={kernelName:nu,backendName:"cpu",kernelFunc:x8};function w8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=k.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let v=0;v<u.length;++v){let w=u[v];k.assert(w<=p-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=k.sizeFromShape(s.shape),h=_.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=Tt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=Tt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=RT(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var k8={kernelName:tu,backendName:"cpu",kernelFunc:w8};function I8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=Tt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=yC(o,!0,n),u=Tt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var S8={kernelName:$m,backendName:"cpu",kernelFunc:I8},N8=ot(ru,e=>Number.isFinite(e)?1:0,"bool"),T8={kernelName:ru,backendName:"cpu",kernelFunc:N8},C8=ot(su,e=>Math.abs(e)===1/0?1:0,"bool"),_8={kernelName:su,backendName:"cpu",kernelFunc:C8},E8=ot(iu,e=>Number.isNaN(e)?1:0,"bool"),A8={kernelName:iu,backendName:"cpu",kernelFunc:E8};function $8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=zT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var F8={kernelName:Dm,backendName:"cpu",kernelFunc:$8},D8=ot(uu,e=>Math.log1p(e)),R8={kernelName:uu,backendName:"cpu",kernelFunc:D8},M8=Vt((e,t)=>e&&t),P8=rn(pu,M8,null,"bool"),O8={kernelName:pu,backendName:"cpu",kernelFunc:P8},L8=ot(vc,e=>e?0:1,"bool"),z8={kernelName:vc,backendName:"cpu",kernelFunc:L8},B8=Vt((e,t)=>e||t),W8=rn(wc,B8,null,"bool"),V8={kernelName:wc,backendName:"cpu",kernelFunc:W8};function U8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let v=d[y];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),y=d[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var G8={kernelName:kc,backendName:"cpu",kernelFunc:U8};function H8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;xe(i,"LRNGrad");let d=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),y=d;for(let b=0;b<y;b++){let x=b%c,v=b-x+Math.max(0,x-o),w=b-x+Math.min(c,x+o+1),T=0;for(let C=v;C<w;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=v;C<w;C++){let E=-2*u*p*m[C]*f[b]/T;b===C&&(E+=Math.pow(T,-p)),E*=h[b],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var j8={kernelName:Rm,backendName:"cpu",kernelFunc:H8};function bC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=k.parseAxisParam(s,l),d=p,c=_.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let w=0;w<v.length;w++)v[w]=l[c[w]];h=g0(h,l,r.dtype,c,v),d=_.getInnerMostAxes(d.length,u),l=v}xe(r,"max"),_.assertAxesAreInnerMostDims("max",d,u);let[m,f]=_.computeOutAndReduceShapes(l,d),g=k.sizeFromShape(f),y=WT(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=_.expandShapeToKeepDim(m,p)),{dataId:b,shape:x,dtype:r.dtype}}var q8={kernelName:Vi,backendName:"cpu",kernelFunc:bC};function K8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))d=hr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=w0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var X8={kernelName:Gi,backendName:"cpu",kernelFunc:K8};function Y8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"maxPool3d");let p=_.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=mC(d,r.shape,r.dtype,k.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var J8={kernelName:Ic,backendName:"cpu",kernelFunc:Y8};function Z8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"maxPool3DGrad");let p=_.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=z5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,v=p.effectiveFilterHeight,w=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=w-1-p.padInfo.left,E=v-1-p.padInfo.top,$=He(s.shape,"float32"),P=n.bufferSync(r);for(let F=0;F<p.batchSize;++F)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let V=0;V<p.inHeight;++V)for(let j=0;j<p.inWidth;++j){let q=M-T,K=V-E,Q=j-C,ee=0;for(let re=0;re<x;re+=g){let Z=(q+re)/h;if(!(Z<0||Z>=p.outDepth||Math.floor(Z)!==Z))for(let ie=0;ie<v;ie+=y){let ae=(K+ie)/m;if(!(ae<0||ae>=p.outHeight||Math.floor(ae)!==ae))for(let le=0;le<w;le+=b){let ue=(Q+le)/f;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let ke=x*v*w-1-c.get(F,Z,ae,ue,S),ye=re*v*w+ie*w+le,Ie=ke===ye?1:0;Ie!==0&&(ee+=P.get(F,Z,ae,ue,S)*Ie)}}}$.set(ee,F,M,V,j,S)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var Q8={kernelName:Pm,backendName:"cpu",kernelFunc:Z8};function eK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=_.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=He(c.outShape,o.dtype,hC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,w=v-1-c.padInfo.left,T=x-1-c.padInfo.top,C=He(o.shape,"float32"),E=n.data.get(r.dataId).values,$=He(r.shape,"float32",E);for(let P=0;P<c.batchSize;++P)for(let F=0;F<c.inChannels;++F)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let V=S-T,j=M-w,q=0;for(let K=0;K<x;K+=y){let Q=(V+K)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let ee=0;ee<v;ee+=b){let re=(j+ee)/g;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let Z=x*v-1-m.get(P,Q,re,F),ie=K*v+ee,ae=Z===ie?1:0;ae!==0&&(q+=$.get(P,Q,re,F)*ae)}}C.set(q,P,S,M,F)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var tK={kernelName:Mm,backendName:"cpu",kernelFunc:eK};function nK(e,t,n,a,r){let s=k.computeStrides(t),i=w0(e,t,n,s,r,"max"),o=hC(e,t,n,r,!0,a);return[i.values,o.values]}var aK={kernelName:Om,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=_.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=nK(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function rK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ms({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=k0({inputs:{a:c,b:d},backend:n});p.push(h);let m=sd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var sK={kernelName:Hi,backendName:"cpu",kernelFunc:rK};function iK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=_.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=_.computeOutAndReduceShapes(p.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let w=f[b+v];(Number.isNaN(w)||w<x)&&(x=w)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=_.expandShapeToKeepDim(d,o),b=Tt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var oK={kernelName:ji,backendName:"cpu",kernelFunc:iK};function lK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,g=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=k.indexToLoc(b,f,g);for(let w=0;w<f;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-p:x[w]>=u[w]&&(x[w]=(u[w]-1)*2-x[w]+p);x=x.map((w,T)=>w-l[T]);let v=k.locToIndex(x,c,h);y[b]=d[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var uK={kernelName:Ki,backendName:"cpu",kernelFunc:lK},pK=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),cK=rn(cu,pK),dK={kernelName:cu,backendName:"cpu",kernelFunc:cK},hK=bi(mI());function xC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=bC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=_.expandShapeToKeepDim(u.shape,l),d=Tt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=x0({inputs:{a:r,b:d},backend:n}),h=AT({inputs:{x:c},backend:n}),m=sd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=Tt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=k0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var mK={kernelName:co,backendName:"cpu",kernelFunc:xC};function fK(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:xC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let y=hK.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let w=0;w<g.length;w++)if(v<g[w]){h[b+x]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var gK={kernelName:Lm,backendName:"cpu",kernelFunc:fK},yK=gr.nonMaxSuppressionV3Impl;function bK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=yK(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var xK={kernelName:mu,backendName:"cpu",kernelFunc:bK},vK=gr.nonMaxSuppressionV4Impl;function wK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;xe(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=vK(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var kK={kernelName:fu,backendName:"cpu",kernelFunc:wK},IK=gr.nonMaxSuppressionV5Impl;function SK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;xe(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=IK(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var NK={kernelName:gu,backendName:"cpu",kernelFunc:SK};function TK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let p=n.data.get(r.dataId).values;for(let d=0;d<l;++d)p[d]>=0&&p[d]<s&&(u[d*s+p[d]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var CK={kernelName:Yi,backendName:"cpu",kernelFunc:TK};function um(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=hi({inputs:{input:a},backend:n}),s=um({inputs:{x:r},backend:n}),i=$l({inputs:{input:a},backend:n}),o=um({inputs:{x:i},backend:n}),l=Jn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return I0({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var _K={kernelName:Mu,backendName:"cpu",kernelFunc:um};function vC(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=hi({inputs:{input:a},backend:n}),s=vC({inputs:{x:r},backend:n}),i=$l({inputs:{input:a},backend:n}),o=um({inputs:{x:i},backend:n}),l=Jn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return I0({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var EK={kernelName:yu,backendName:"cpu",kernelFunc:vC};function wC(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return lm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{k.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=lm({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Fl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var AK={kernelName:bu,backendName:"cpu",kernelFunc:wC};function $K(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=k.sizeFromShape(r.shape),d=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),g=k.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<p;y++){let b=k.indexToLoc(y,d,c).map((v,w)=>v+l[w]),x=k.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var kC={kernelName:Ji,backendName:"cpu",kernelFunc:$K},FK=Vt((e,t)=>Math.pow(e,t)),DK=rn(Zi,FK),RK={kernelName:Zi,backendName:"cpu",kernelFunc:DK};function MK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=y0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var PK={kernelName:Sc,backendName:"cpu",kernelFunc:MK},OK=ot(xu,e=>1/e),LK={kernelName:xu,backendName:"cpu",kernelFunc:OK};function zK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(k.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,v=y[0]/b[0],w=y[1]/b[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=v*(C+.5)-.5:E=v*C;let $=Math.max(0,Math.floor(E)),P=E-$,F=Math.min(c-1,Math.ceil(E)),S=T*l[0]+$*l[1],M=T*l[0]+F*l[1];for(let V=0;V<p;V++){let j;i?j=w*(V+.5)-.5:j=w*V;let q=Math.max(0,Math.floor(j)),K=j-q,Q=Math.min(h-1,Math.ceil(j)),ee=S+q*l[2],re=M+q*l[2],Z=S+Q*l[2],ie=M+Q*l[2];for(let ae=0;ae<m;ae++){let le=f[ee+ae],ue=f[re+ae],ke=f[Z+ae],ye=f[ie+ae],Ie=le+(ke-le)*K,Ee=ue+(ye-ue)*K,Fe=Ie+(Ee-Ie)*P;g[x++]=Fe}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var BK={kernelName:no,backendName:"cpu",kernelFunc:zK};function WK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w<l;w++){let T=w*o[0];for(let C=0;C<c;C++){let E=C*y,$=Math.floor(E),P=Math.min(Math.ceil(E),u-1),F=T+$*o[1],S=T+P*o[1],M=E-$,V=1-M;for(let j=0;j<h;j++){let q=j*b,K=Math.floor(q),Q=Math.min(Math.ceil(q),p-1),ee=q-K,re=1-ee,Z=F+K*o[2],ie=F+Q*o[2],ae=S+K*o[2],le=S+Q*o[2],ue=V*re,ke=V*ee,ye=M*re,Ie=M*ee;for(let Ee=0;Ee<d;Ee++){let Fe=x[v++];m[Z+Ee]+=Fe*ue,m[ie+Ee]+=Fe*ke,m[ae+Ee]+=Fe*ye,m[le+Ee]+=Fe*Ie}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var VK={kernelName:Wm,backendName:"cpu",kernelFunc:WK};function UK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],v=y[1]/b[1],w=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let $=i?x*(E+.5):x*E,P=Math.min(c-1,s?Math.round($):Math.floor($));i&&(P=Math.max(0,P));let F=C+P*l[1];for(let S=0;S<p;S++){let M=i?v*(S+.5):v*S,V=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(V=Math.max(0,V));let j=F+V*l[2];for(let q=0;q<m;q++){let K=f[j+q];g[w++]=K}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var GK={kernelName:Nc,backendName:"cpu",kernelFunc:UK};function HK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,y=[i&&h>1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],w=1/x,T=1/v,C=Math.ceil(w)*2+2,E=Math.ceil(T)*2+2;for(let $=0;$<u;$++){let P=$*o[0];for(let F=0;F<p;F++){let S=P+F*o[1],M=Math.floor(F*w),V=Math.floor(M-C/2);for(let j=0;j<d;j++){let q=S+j*o[2],K=Math.floor(j*T),Q=Math.floor(K-E/2);for(let ee=0;ee<c;ee++){let re=0;for(let Z=0;Z<C;Z++){let ie=Z+V;if(ie<0||ie>=h)continue;let ae=P+ie*l[1],le=ie*x,ue=Math.min(p-1,i?Math.round(le):Math.floor(le));if(F===ue)for(let ke=0;ke<E;ke++){let ye=ke+Q;if(ye<0||ye>=m)continue;let Ie=ae+ye*l[2],Ee=ye*v,Fe=Math.min(d-1,i?Math.round(Ee):Math.floor(Ee));j===Fe&&(re+=g[Ie+ee])}}f[q+ee]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var jK={kernelName:Bm,backendName:"cpu",kernelFunc:HK};function qK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return hr({inputs:{x:r},backend:n});let l=new jt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var KK={kernelName:ro,backendName:"cpu",kernelFunc:qK},XK={kernelName:Pu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=_.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*d*p*c;for(let w=0;w<p;w++){let T=w*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let $=0;$<c;$++){let P=[u,w,C,$],F=P[2],S=P[1],M=(F-h)*y-(S-m)*g,V=(F-h)*g+(S-m)*y;M=Math.round(M+h),V=Math.round(V+m);let j=s;if(typeof s!="number"&&($===3?j=f:j=s[$]),M>=0&&M<d&&V>=0&&V<p){let K=V*(d*c),Q=M*c,ee=v+K+Q+$;j=b[ee]}let q=v+T+E+$;l[q]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},YK=ot(so,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),JK={kernelName:so,backendName:"cpu",kernelFunc:YK};function IC(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return He(n,t.dtype);let h=He(p,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=d[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=IC(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var QK={kernelName:wu,backendName:"cpu",kernelFunc:ZK};function eX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=fa(r.dtype,s.dtype),d=k.makeZerosTypedArray(k.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var tX={kernelName:ku,backendName:"cpu",kernelFunc:eX},nX=_.SELU_SCALEALPHA,aX=_.SELU_SCALE,rX=ot(Iu,e=>e>=0?aX*e:nX*(Math.exp(e)-1)),sX={kernelName:Iu,backendName:"cpu",kernelFunc:rX},iX=ot(Tu,e=>e<0?-1:e>0?1:0),oX={kernelName:Tu,backendName:"cpu",kernelFunc:iX},lX=ot(oo,e=>Math.sin(e)),uX={kernelName:oo,backendName:"cpu",kernelFunc:lX},pX=ot(Nu,e=>Math.sinh(e)),cX={kernelName:Nu,backendName:"cpu",kernelFunc:pX},dX=11920928955078125e-23,Ok=Math.log(dX)+2,hX=ot(Cu,e=>{let t=e>-Ok,n=e<Ok,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),mX={kernelName:Cu,backendName:"cpu",kernelFunc:hX};function fX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=kC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),c=_.getReshapedPermuted(u.shape,s,o,!1),h=Tt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Tt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var gX={kernelName:_u,backendName:"cpu",kernelFunc:fX};function yX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=XT(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var bX={kernelName:Tc,backendName:"cpu",kernelFunc:yX};function xX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=YT(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var vX={kernelName:Au,backendName:"cpu",kernelFunc:xX};function wX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=b0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var kX={kernelName:Cc,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=b0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var SX={kernelName:_c,backendName:"cpu",kernelFunc:IX};function NX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=IC(m,f,o,c,p,u,l,d,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var TX={kernelName:Vm,backendName:"cpu",kernelFunc:NX};function CX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=mi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var _X={kernelName:Eu,backendName:"cpu",kernelFunc:CX},EX={kernelName:Ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},AX=ot(vs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),$X={kernelName:vs,backendName:"cpu",kernelFunc:AX};function FX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;xe(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),w;if(f)w=Tt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){k.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),C=mi({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});w=Tt({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=ZT(h,T,v,b);w=n.makeTensorInfo(m,C.dtype,C.values)}return w}var DX={kernelName:$u,backendName:"cpu",kernelFunc:FX};function RX(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=QT(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var MX={kernelName:Um,backendName:"cpu",kernelFunc:RX};function PX(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=eC(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var OX={kernelName:Gm,backendName:"cpu",kernelFunc:PX};function LX(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=tC(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var zX={kernelName:Hm,backendName:"cpu",kernelFunc:LX},BX=ot(fo,e=>Math.tan(e)),WX={kernelName:fo,backendName:"cpu",kernelFunc:BX},VX=ot(go,e=>Math.tanh(e)),UX={kernelName:go,backendName:"cpu",kernelFunc:VX};function GX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=aC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var HX={kernelName:xs,backendName:"cpu",kernelFunc:GX};function jX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=sC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var qX={kernelName:Fu,backendName:"cpu",kernelFunc:jX};function KX(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=k.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],w=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(g));w.fill(l);let T=a.data.get(r.dataId).values,C=a.data.get(s.dataId).values;for(let E=0;E<p;++E){let $=s.shape[0]===1?C:C.subarray(E*8,E*8+8);for(let P=0;P<m;++P)for(let F=0;F<f;++F)for(let S=0;S<h;++S){let M,V=$[6]*F+$[7]*P+1;if(V===0)continue;let j=($[0]*F+$[1]*P+$[2])/V,q=($[3]*F+$[4]*P+$[5])/V,K=Lk(j,c,o),Q=Lk(q,d,o);switch(i){case"nearest":M=e7(T,d,c,b,x,v,E,Q,K,S,l);break;case"bilinear":M=t7(T,d,c,b,x,v,E,Q,K,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ee=E*b+P*x+F*v+S;w[ee]=M}return a.makeTensorInfo(g,r.dtype,w)}return{dataId:a.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var XX={kernelName:Du,backendName:"cpu",kernelFunc:KX};function Lk(e,t,n){switch(n){case"reflect":return YX(e,t);case"wrap":return JX(e,t);case"nearest":return QX(e,t);case"constant":default:return ZX(e,t)}}function YX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function JX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function ZX(e,t){return e}function QX(e,t){return k.clamp(0,e,t-1)}function Vp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function e7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Vp(e,t,n,a,r,s,i,d,c,u,p)}function t7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Vp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Vp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Vp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Vp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function n7(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=iC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var a7={kernelName:jm,backendName:"cpu",kernelFunc:n7};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=mi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=Tt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var s7={kernelName:Ru,backendName:"cpu",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=lm({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=_T({inputs:{a:g,b:c},backend:n}),b=ms({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=Zf({inputs:{a:b,b:r},backend:n}),v=sd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),p.push(g),p.push(y),p.push(b),p.push(x),p.push(v)}let h=wC({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var o7={kernelName:Ac,backendName:"cpu",kernelFunc:i7},l7=[h5,ij,f5,y5,dj,x5,w5,I5,N5,C5,E5,$5,D5,P5,L5,W5,U5,H5,q5,c5,X5,J5,Q5,tq,pj,mj,aq,oj,sq,oq,lq,pq,dq,mq,gq,bq,vq,kq,Sq,Tq,_q,Aq,Fq,Dq,Mq,Oq,zq,Bq,Wq,Vq,Hq,r5,qq,fj,t8,gj,n8,bj,l8,u8,c8,vj,m8,g8,b8,v8,k8,kj,Sj,lj,S8,iq,T8,_8,A8,s5,Tj,_j,F8,Aj,R8,O8,z8,V8,G8,j8,q8,Fj,X8,J8,Q8,tK,aK,sK,oK,Rj,uK,dK,gK,Pj,Lj,xK,kK,NK,Bj,CK,EK,AK,kC,RK,o5,Uj,PK,uj,px,LK,l5,u5,p5,BK,VK,GK,jK,KK,XK,JK,Hj,QK,tX,sX,qj,oX,uX,cX,Kj,mK,mX,gX,bX,vX,kX,SX,TX,_X,Jj,EX,Qj,$X,DX,MX,OX,zX,a5,Uq,WX,UX,HX,qX,XX,Wj,a7,s7,o7,_K];for(let e of l7)$c(e);var SC={};Me(SC,{assertNotComplex:()=>Yu,bindCanvasToFramebuffer:()=>x7,bindColorTextureToFramebuffer:()=>Ah,bindTextureToProgramUniformSampler:()=>BC,bindTextureUnit:()=>OC,bindVertexBufferToProgramAttribute:()=>dx,callAndCheck:()=>ge,canBeRepresented:()=>TC,createFragmentShader:()=>EC,createFramebuffer:()=>PC,createProgram:()=>AC,createStaticIndexBuffer:()=>DC,createStaticVertexBuffer:()=>FC,createTexture:()=>RC,createVertexShader:()=>_C,getBatchDim:()=>fi,getExtensionOrThrow:()=>Up,getFramebufferErrorMessage:()=>WC,getMaxTexturesInShader:()=>HC,getNumChannels:()=>y7,getProgramUniformLocation:()=>zC,getProgramUniformLocationOrThrow:()=>LC,getRowsCols:()=>gi,getShapeAs3D:()=>$h,getTextureShapeFromLogicalShape:()=>UC,getWebGLDisjointQueryTimerVersion:()=>jC,getWebGLErrorMessage:()=>CC,getWebGLMaxTextureSize:()=>GC,hasExtension:()=>ha,isCapableOfRenderingToFloatTexture:()=>qC,isDownloadFloatTextureEnabled:()=>KC,isReshapeFree:()=>pc,isWebGLFenceEnabled:()=>XC,isWebGLVersionEnabled:()=>mx,linkProgram:()=>$C,logShaderSourceAndInfoLog:()=>N0,resetMaxTextureSize:()=>v7,resetMaxTexturesInShader:()=>w7,unbindColorTextureFromFramebuffer:()=>hx,unbindTextureUnit:()=>b7,validateFramebuffer:()=>Gp,validateProgram:()=>Eh,validateTextureSize:()=>MC});var Ks={},Ib={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function NC(e,t){Ks[e]=t}function Ya(e,t){if(!(e in Ks)||t!=null){let a=p7(e,t);if(a!==null)Ks[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Ks[e];return n==null||n.isContextLost()?(delete Ks[e],Ya(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Ks[e])}function u7(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function p7(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?u7(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Ks[e]},!1),e===1?n.getContext("webgl",Ib)||n.getContext("experimental-webgl",Ib):n.getContext("webgl2",Ib)}var uc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(uc||(uc={}));var da;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(da||(da={}));var ln;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(ln||(ln={}));function id(e,t){return[t,e]}function c7(e,t){return e*t}function kh(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Xu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function d7(e,t){let[n,a]=Xu(e,t);return n*a*4}function S0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return X().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ge(e,t){let n=t();return X().getBool("DEBUG")&&h7(e),n}function h7(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+CC(e,t))}var m7=596e-10,f7=65504;function TC(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||m7<Math.abs(e)&&Math.abs(e)<f7)}function CC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Up(e,t){return Rr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function _C(e,t){let n=Rr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function EC(e,t){let n=Rr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),X().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw N0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var g7=/ERROR: [0-9]+:([0-9]+):/g;function N0(e,t){let n=g7.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((d,c)=>k.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
|
|
`))}function AC(e){return Rr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function $C(e,t){if(ge(e,()=>e.linkProgram(t)),!X().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Eh(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function FC(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function DC(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function y7(){return X().getNumber("WEBGL_VERSION")===2?1:4}function RC(e){return Rr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function MC(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function PC(e){return Rr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function dx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ge(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function OC(e,t,n){VC(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function b7(e,t){VC(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function LC(e,t,n){return Rr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function zC(e,t,n){return e.getUniformLocation(t,n)}function BC(e,t,n,a){ge(e,()=>OC(e,t,a)),ge(e,()=>e.uniform1i(n,a))}function x7(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Ah(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function hx(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Gp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+WC(e,t))}function WC(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Rr(e,t,n){let a=ge(e,()=>t());if(a==null)throw new Error(n);return a}function VC(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function fi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function gi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $h(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[fi(e),...gi(e)]),t}function UC(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=fi(e),s=2,i=2;return e.length&&([s,i]=gi(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function Ih(e){return e%2===0}function pc(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Ih(n)&&Ih(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Ih(e[0])&&Ih(t[0])}var Fh,Dh;function GC(e){if(Fh==null){let t=Ya(e);Fh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Fh}function v7(){Fh=null}function w7(){Dh=null}function HC(e){if(Dh==null){let t=Ya(e);Dh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Dh)}function jC(e){if(e===0)return 0;let t,n=Ya(e);return ha(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ha(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ha(e,t){return e.getExtension(t)!=null}function mx(e){try{if(Ya(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function qC(e){if(e===0)return!1;let t=Ya(e);if(e===1){if(!ha(t,"OES_texture_float"))return!1}else if(!ha(t,"EXT_color_buffer_float"))return!1;return fx(t)}function KC(e){if(e===0)return!1;let t=Ya(e);if(e===1){if(!ha(t,"OES_texture_float")||!ha(t,"WEBGL_color_buffer_float"))return!1}else{if(ha(t,"EXT_color_buffer_float"))return fx(t);let n="EXT_color_buffer_half_float";if(ha(t,n)){let a=t.getExtension(n);return k7(t,a)}return!1}return fx(t)}function fx(e){let t=S0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function k7(e,t){let n=S0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function XC(e){return e!==2?!1:Ya(e).fenceSync!=null}function Yu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=X();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>mx(2)?2:mx(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>GC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>HC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:jC(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Rc.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>qC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>KC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>XC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Rc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function En(){let e,t,n,a,r,s,i,o,l,u;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function So(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Qf(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function I7(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function S7(e,t,n="index"){let a=e.map((s,i)=>i),r=I7(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function T0(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function C0(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var YC=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:JC}=_;function N7(e,t,n){let a=[];if(e.forEach(c=>{let h=k.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=_0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
|
|
`),s=e.map(c=>T7(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=En(),l=E7(o),u,p,d=F7(o);return t.isPacked?(u=C7(t.logicalShape,i,n.enableShapeUniforms),p=$7(o)):(u=_7(t.logicalShape,i,n.enableShapeUniforms),p=A7(o)),n.packedInputs&&(d+=P7),[d,l,p,r,u,s,n.userCode].join(`
|
|
`)}function Ju(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return K7(e,t);case 1:return Y7(e,t);case 2:return Z7(e,t);case 3:return eY(e,t);case 4:return nY(e,t);case 5:return aY(e);case 6:return rY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function ZC(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return q7(e);case 1:return X7(e,t);case 2:return J7(e,t);case 3:return Q7(e,t);default:return tY(e,t)}}function T7(e,t,n=!1,a){let r="";n?r+=ZC(e,a):r+=Ju(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=sY(e,t):r+=iY(e,t)),r}function C7(e,t,n){switch(e.length){case 0:return QC();case 1:return O7(e,t,n);case 2:return H7(e,t,n);case 3:return z7(e,t,n);default:return W7(e,t,n)}}function _7(e,t,n){switch(e.length){case 0:return QC();case 1:return L7(e,t,n);case 2:return j7(e,t,n);case 3:return B7(e,t,n);case 4:return V7(e,t,n);case 5:return U7(e,t);case 6:return G7(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function E7(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function A7(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function $7(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function F7(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${D7}
|
|
${R7}
|
|
${M7}
|
|
`}var D7=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,R7=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,M7=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,P7=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function QC(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function O7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${a[1]}.0);
|
|
}
|
|
`:a[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${a[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
|
|
}
|
|
`}function L7(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function z7(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function B7(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Qf(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let a=So(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function W7(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function V7(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Qf(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let a=So(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function U7(e,t){let n=So(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function G7(e,t){let n=So(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function H7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function j7(e,t,n){return k.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function No(e){return`offset${e}`}function q7(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=En();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function K7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=No(n);if(t)return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function X7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=En();if(t)return`
|
|
vec4 ${a}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${a}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function Y7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int index) {
|
|
${Zu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${a}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=No(n);return i===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function J7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=En();if(s!=null&&k.arraysEqual(n,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`}function Z7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&k.arraysEqual(n,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let c=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=k.squeezeShape(n),l=i;if(l.length<n.length){let c=Qu(e,l),h=["row","col"];return`
|
|
${Ju(c,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${ep(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Zu(e)}
|
|
}
|
|
`;let u=s[0],p=s[1],d=No(a);return p===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function Q7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=Qu(e,c),f=["b","row","col"];return`
|
|
${ZC(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${ep(f,h)});
|
|
}
|
|
`}let o=En();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${p}, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`}function eY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=k.squeezeShape(n),u=o;if(u.length<n.length){let f=Qu(e,u),g=["row","col","depth"];return`
|
|
${Ju(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${ep(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${Zu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${a}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(c===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=No(a);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${a}Shape[1] * ${a}Shape[2];
|
|
int stride1 = ${a}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${c}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function tY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=En();if(t)return`
|
|
vec4 ${a}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${m};
|
|
int texR = index / ${p};
|
|
int texC = index - texR * ${p};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function nY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(n);if(l.length<n.length){let b=Qu(e,l),x=["row","col","depth","depth2"];return`
|
|
${Ju(b,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${ep(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${Zu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let y=No(a);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${y});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index + ${y});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function aY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Qu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Ju(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${ep(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Zu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=No(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function rY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let g=Qu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Ju(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${ep(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${p}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Zu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=No(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${p} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Zu(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function sY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=JC(e.shapeInfo.logicalShape,t.logicalShape),l=pt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function iY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=pt(l),p=JC(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function pt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function _0(e,t,n){let{newShape:a,keptDims:r}=k.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!k.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function Qu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ep(e,t){return t.map(n=>e[n]).join(", ")}function oY(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=N7(r,i,t),l=EC(e.gl,o),u=e.createProgram(l);return X().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},e_(e,t,u))}function e_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),X().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function zk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function lY(e,t,n,a,r){t.program.enableShapeUniforms||(zk(t.inShapeInfos,n),zk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=_0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(k.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=k.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function uY(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=_0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${w[0]>1}_${w[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let w=k.computeStrides(p);m=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&k.arraysEqual(i.shape,l),y=k.sizeFromShape(i.shape)===1,b=_.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&k.arraysEqual(l,n.texData.texShape),v=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${v}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${X().getNumber("WEBGL_VERSION")}`,s}function jn(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var pY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=uc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Qf(["r","c","d"],e):So(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},cY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=uc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Qf(["r","c","d"],e):So(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},dY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=da.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
|
|
${YC}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},hY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=da.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
|
|
${YC}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},mY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?C0():T0(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}},fY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?C0():T0(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},t_={};Me(t_,{bindVertexProgramAttributeStreams:()=>p_,createBufferFromOutputTexture:()=>h_,createFloat16MatrixTexture:()=>i_,createFloat16PackedMatrixTexture:()=>u_,createFloat32MatrixTexture:()=>s_,createIndexBuffer:()=>r_,createPackedMatrixTexture:()=>l_,createUnsignedBytesMatrixTexture:()=>o_,createVertexBuffer:()=>a_,createVertexShader:()=>n_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>f_,downloadFloat32MatrixFromBuffer:()=>m_,downloadMatrixFromPackedOutputTexture:()=>y_,downloadPackedMatrixFromBuffer:()=>g_,getInternalFormatForFloat16MatrixTexture:()=>A0,getInternalFormatForFloat16PackedMatrixTexture:()=>D0,getInternalFormatForFloat32MatrixTexture:()=>E0,getInternalFormatForPackedMatrixTexture:()=>F0,getInternalFormatForUnsignedBytesMatrixTexture:()=>$0,uploadDenseMatrixToTexture:()=>c_,uploadPixelDataToTexture:()=>d_});function n_(e){let t=En(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return _C(e,n)}function a_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return FC(e,t)}function r_(e){let t=new Uint16Array([0,1,2,2,1,3]);return DC(e,t)}function od(e,t,n,a,r,s){MC(t,n);let i=RC(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ge(e,()=>e.texStorage2D(o,1,a,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function E0(e){return e.internalFormatFloat}function s_(e,t,n,a){let[r,s]=id(t,n);return od(e,r,s,E0(a),a.textureFormatFloat,e.FLOAT)}function A0(e){return e.internalFormatHalfFloat}function i_(e,t,n,a){let[r,s]=id(t,n);return od(e,r,s,A0(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function $0(e){return e.downloadTextureFormat}function o_(e,t,n,a){let[r,s]=id(t,n);return od(e,r,s,$0(a),e.RGBA,e.UNSIGNED_BYTE)}function F0(e){return e.internalFormatPackedFloat}function l_(e,t,n,a){let[r,s]=Xu(t,n);return od(e,r,s,F0(a),e.RGBA,e.FLOAT)}function D0(e){return e.internalFormatPackedHalfFloat}function u_(e,t,n,a){let[r,s]=Xu(t,n);return od(e,r,s,D0(a),e.RGBA,a.textureTypeHalfFloat)}function p_(e,t,n){return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),dx(e,t,"clipSpacePos",n,3,20,0)&&dx(e,t,"uv",n,2,20,12)}function c_(e,t,n,a,r,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function d_(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function h_(e,t,n,a){let r=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function m_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function f_(e,t,n,a){let[r,s]=id(t,n),i=4,o=new Uint8Array(c7(t*n,i));return ge(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function g_(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(d7(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function y_(e,t,n){let a=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Rh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,NC(t,e)):this.gl=Ya(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),X().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Up(this.gl,r),ha(this.gl,s))this.textureHalfFloatExtension=Up(this.gl,s);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ha(this.gl,a))this.colorBufferHalfFloatExtension=Up(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ha(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ha(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=a_(this.gl),this.indexBuffer=r_(this.gl),this.framebuffer=PC(this.gl),this.textureConfig=S0(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),s_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),i_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),o_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),d_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),c_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),u_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),l_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(hx(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>f_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return g_(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return m_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=h_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>y_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=n_(t));let n=AC(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),$C(t,n),this.debug&&Eh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=p_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Eh(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?LC(this.gl,e,t):zC(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),BC(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Xu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Eh(this.gl,this.program),Gp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Up(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=gY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ah(this.gl,e,this.framebuffer),this.debug&&Gp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ah(this.gl,this.outputTexture,this.framebuffer),this.debug&&Gp(this.gl)):hx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Ah(a,e,this.framebuffer),this.debug&&Gp(a),this.outputTexture=e,ge(a,()=>a.viewport(0,0,t,n)),ge(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function gY(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:yY,bincountImpl:b_,bincountReduceImpl:bY,ceilImpl:xY,concatImpl:vY,equalImpl:wY,expImpl:kY,expm1Impl:IY,floorImpl:SY,gatherNdImpl:NY,gatherV2Impl:TY,greaterImpl:CY,greaterEqualImpl:_Y,lessImpl:EY,lessEqualImpl:AY,linSpaceImpl:$Y,logImpl:FY,maxImpl:DY,maximumImpl:RY,minimumImpl:MY,multiplyImpl:PY,negImpl:OY,notEqualImpl:LY,prodImpl:zY,rangeImpl:BY,rsqrtImpl:WY,sigmoidImpl:VY,simpleAbsImpl:x_,sliceImpl:UY,sparseFillEmptyRowsImpl:GY,sparseReshapeImpl:HY,sparseSegmentReductionImpl:v_,sqrtImpl:jY,stridedSliceImpl:qY,stringNGramsImpl:KY,stringSplitImpl:XY,stringToHashBucketFastImpl:YY,subImpl:JY,tileImpl:ZY,topKImpl:QY,transposeImpl:R0,uniqueImpl:e9}=kT;function w_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Nn(e,t){return t===1?[e]:w_(e,t)}function t9(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var n9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=jn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Nn("rc",this.rank),n=pt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${a};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},k_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${a9(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?C0():T0(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function a9(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?S7(["r","c","d"],"inputShape"):So(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var r9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Wk(t,n),r=Vk(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Bk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===ln.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===ln.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===ln.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Wk(n,a),s=Vk(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Bk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function s9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Bk(e,t,n,a,r){let s=i9(t,a),i;if(r){let[l,u]=Xu(e[0],e[1]);i=l*u}else{let[l,u]=id(e[0],e[1]);i=l*u}let o=s9(n,s);return i*o}function i9(e,t){switch(e){case ln.PACKED_2X2_FLOAT32:return F0(t);case ln.PACKED_2X2_FLOAT16:return D0(t);case ln.UNPACKED_FLOAT32:return E0(t);case ln.UNPACKED_FLOAT16:return A0(t);case ln.PACKED_4X1_UNSIGNED_BYTE:return $0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function o9(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?ln.PACKED_2X2_FLOAT32:ln.UNPACKED_FLOAT32:e?ln.PACKED_2X2_FLOAT16:ln.UNPACKED_FLOAT16}function Wk(e,t){if(e===da.UPLOAD)return ln.PACKED_2X2_FLOAT32;if(e===da.RENDER||e==null)return o9(t);if(e===da.DOWNLOAD||e===da.PIXELS)return ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Vk(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Cr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},$a="if (isnan(x)) return x;",l9="return x;",Uk="return abs(x);",u9="return (x >= 0.0) ? x : (exp(x) - 1.0);",p9=$a+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,c9=$a+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,pl="return x;",d9="return 1.0 / (1.0 + exp(-1.0 * x));",h9="return x;",m9=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,f9=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,g9=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,y9="return 1.0 / (1.0 + exp(-1.0 * x));",Js=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},b9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length);let t=e.length,n=Nn("rc",t),a=pt(t),r=t9(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},x9=gr.whereImpl,v9=1e-7,w9=1e-4,Sb={};function k9(e){return e in Sb||(Sb[e]={}),Sb[e]}var I9=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),S9=600;function N9(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*S9/1024/1024}var eg=class extends hc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Rh)t=e;else{let n=Ya(X().getNumber("WEBGL_VERSION"),e);t=new Rh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ya(X().getNumber("WEBGL_VERSION"));t=new Rh(n),this.binaryCache=k9(X().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new r9(this.gpgpu),this.numMBBeforeWarning=N9(),this.texData=new hm(this,sr())}nextDataId(){return eg.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:da.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:da.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new Js(i,pl):d=new Cr(i,pl);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=_.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Js(a,pl):h=new Cr(a,pl);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...kh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=_.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&sr().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new Js(r,pl):c=new Cr(r,pl);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=sr().makeTensorFromDataId(u.dataId,u.shape,u.dtype),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!TC(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...kh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=X().getBool("WEBGL_PACK")&&a===!0,i=s?$h(t):t,o=s?new hY(i):new dY(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=I9){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return x9(e.shape,t)}packedUnaryOp(e,t,n){let a=new Js(e.shape,t),r=this.compileAndRun(a,[e],n);return sr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=x_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Uk,e.dtype);let t=new Cr(e.shape,Uk),n=this.compileAndRun(t,[e]);return sr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return sr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new b9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new n9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[fi(e.shape),...gi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[fi(t),...gi(t)],s=new k_(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=k.sizeFromShape(r),c=t[0]*t[1]*4;k.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=$h(r),o;a?o=new cY(i):o=new pY(i);let l=!0,u=[t!=null?t:kh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===uc.DENSE){let g=s!=null?s:kh(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),k.sizeFromShape(i.shape)===0)return o.values=k.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&k.sizeFromShape(g.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!pc(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=uY(e,u,p),c=this.getAndSaveBinary(d,()=>oY(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),X().get("ENGINE_COMPILE_ONLY")||lY(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=X().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=k.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=O(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?v9:w9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let p=t.texShape;if(p==null&&(p=UC(n,o),t.texShape=p),r!=null){let d=$h(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Xu(p[0],p[1])),o?c=new fY(d,f):c=new mY(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=da.PIXELS:b.usage=da.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],v=!0,w=this.runWebGLProgram(c,[y],a,x,v),T=this.texData.get(w.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,X().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=k.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=T9(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Dv(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(N0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=e_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};eg.nextDataId=0;function T9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var C9="3.16.0";function I_(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}Rc.isBrowser()&&Ym("webgl",()=>new eg,2);var _9={forceHalfFloat:I_},S_=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Dl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=jn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},tg=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,ld=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=jn(r);let s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${pt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Nn("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Un(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var E9={kernelName:zi,backendName:"webgl",kernelFunc:Un};function Cs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Un({inputs:{x:a},backend:n}),l=Un({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var A9={kernelName:vm,backendName:"webgl",kernelFunc:Cs},N_="return (a < 0.) ? b * a : a;",T_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function $9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ld(T_,r.shape,i.shape):new Dl(N_,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var F9={kernelName:Bi,backendName:"webgl",kernelFunc:$9},C_="return (a < 0.) ? b * a : a;",__=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function D9(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ld(__,a.shape,r.shape):new Dl(C_,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var R9={kernelName:Qi,backendName:"webgl",kernelFunc:D9},tp="if (isnan(x)) return x;",M9=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,P9=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new Js(i.shape,t):p=new Cr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function cn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,w]=x,T={dataId:v.dataId,dtype:v.dtype,shape:l.shape},C={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new Dl(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],fa(v.dtype,w.dtype))}),b=Cs({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||fa(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?_.fromUint8ToStringArray(m):m,y=l.dtype==="string"?_.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),v=p.makeTensorInfo(x,d),w=p.texData.get(v.dataId);return w.values=b,v}let c=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new ld(t,l.shape,u.shape,n):h=new Dl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function ng(e,t=!1){if(e==="linear")return t?h9:l9;if(e==="relu")return t?f9:p9;if(e==="elu")return t?m9:u9;if(e==="relu6")return t?g9:c9;if(e==="prelu")return t?__:C_;if(e==="leakyrelu")return t?T_:N_;if(e==="sigmoid")return t?y9:d9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var E_=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=jn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${b};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Gk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Hk=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},jk="return a * b;";function M0(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Hk(Gk.REAL,a.shape,r.shape),p=new Hk(Gk.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=PY(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new ld(jk,a.shape,r.shape):i=new Dl(jk,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var O9={kernelName:Xi,backendName:"webgl",kernelFunc:M0};function L9(e,t,n){let a=[fi(e.shape),...gi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[fi(t),...gi(t)],i=new k_(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function me(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!pc(r.shape,l)&&!(p.texture!==null&&pc(p.shape,l))?L9(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var z9={kernelName:vu,backendName:"webgl",kernelFunc:me},qk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${k.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},B9=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function W9(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function To(e,t,n,a){let r=W9(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new qk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new qk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new B9({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var V9=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=U9(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function U9(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var G9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=pt(this.rank),r=w_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function ag(e,t,n){let a=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new G9(e.shape,t):new V9(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function H9(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=ag(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=_.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=_.expandShapeToKeepDim(d,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,g=me({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),y=Km(e.dtype),b=To(g,y,"sum",a),x=me({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(p),x}function rg(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return H9(r,s,i,n)}var j9={kernelName:po,backendName:"webgl",kernelFunc:rg};function pn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=R0(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=ag(r,s,i);return u}var q9={kernelName:yo,backendName:"webgl",kernelFunc:pn},A_=1e3;function pm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=k.sizeFromShape(f),b=k.sizeFromShape(g),x=Ou.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);k.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let v=n?[y,d,h]:[y,h,d],w=a?[b,m,c]:[b,c,m],T=me({inputs:{x:e},backend:r,attrs:{shape:v}}),C=me({inputs:{x:t},backend:r,attrs:{shape:w}}),E=[T,C],$=Math.max(y,b),P=n?T.shape[1]:T.shape[2],F=s!=null,S=i!=null,M=l==="leakyrelu",V=l!=null?ng(l,!0):null,j=F||S||M||V!=null,q;if((h===1||m===1)&&P>A_&&j===!1){let Q=T,ee=C;n&&(Q=pn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(Q)),a&&(ee=pn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(ee));let re=m!==1,Z=m===1,ie=Q;re&&(ie=me({inputs:{x:Q},backend:r,attrs:{shape:[$,P,1]}}),E.push(ie));let ae=m===1?2:1,le=ee;Z&&(le=me({inputs:{x:ee},backend:r,attrs:{shape:[$,1,P]}}),E.push(le));let ue=M0({inputs:{a:ie,b:le},backend:r});q=rg({inputs:{x:ue},backend:r,attrs:{axis:ae,keepDims:!0}}),E.push(ue)}else{let Q=fa(e.dtype,t.dtype),ee=new E_(v,w,[$,h,m],n,a,F,V,S,M),re=[T,C];if(s!=null&&re.push(s),S&&re.push(i),M){let Z=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));re.push(Z),E.push(Z)}q=r.runWebGLProgram(ee,re,Q)}let K=me({inputs:{x:q},backend:r,attrs:{shape:x}});E.push(q);for(let Q of E)r.disposeIntermediateTensorInfo(Q);return K}function K9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return pm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var X9={kernelName:ni,backendName:"webgl",kernelFunc:K9},Kk="return abs(x);";function Y9(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=x_(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Js(a.shape,Kk):r=new Cr(a.shape,Kk),n.runWebGLProgram(r,[a],a.dtype)}var J9={kernelName:Ml,backendName:"webgl",kernelFunc:Y9},Z9=$a+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,Q9=Je({opSnippet:Z9}),eJ={kernelName:Pl,backendName:"webgl",kernelFunc:Q9},tJ=$a+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,nJ=Je({opSnippet:tJ}),aJ={kernelName:Ol,backendName:"webgl",kernelFunc:nJ},Xk="return a + b;",rJ=cn({opSnippet:Xk,packedOpSnippet:Xk,supportsComplex:!0,cpuKernelImpl:yY}),sJ={kernelName:ys,backendName:"webgl",kernelFunc:rJ},iJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},oJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Mh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Un({inputs:{x:a[0]},backend:n});if(a.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Mh({inputs:a.slice(0,o),backend:n}),u=Mh({inputs:a.slice(o),backend:n});return Mh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>fa(o,l)),s=a.map(o=>o.shape),i=X().getBool("WEBGL_PACK")?new oJ(a[0].shape,s):new iJ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var lJ={kernelName:vi,backendName:"webgl",kernelFunc:Mh};function uJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=pn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o)),_.assertAxesAreInnerMostDims("all",u,o);let[c,h]=_.computeOutAndReduceShapes(d.shape,u),m=k.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=To(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var pJ={kernelName:Ll,backendName:"webgl",kernelFunc:uJ};function cJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=pn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o)),_.assertAxesAreInnerMostDims("any",u,o);let[c,h]=_.computeOutAndReduceShapes(d.shape,u),m=k.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=To(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var dJ={kernelName:zl,backendName:"webgl",kernelFunc:cJ},hJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},mJ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=pt(o),u=Nn("coords",o),p,d;if(s===1){d=o+1;let C=pt(d);p=`
|
|
${C} sourceLocR = ${C}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${C} sourceLocG = ${C}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${C} sourceLocA = ${C}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${C} sourceLocB = ${C}(${u.join()}, 0);
|
|
--${u[o-2]};`}else d=o,p=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=Nn("sourceLocR",d-1).concat("inIdx.r"),g=Nn("sourceLocG",d-1).concat("inIdx.g"),y=Nn("sourceLocB",d-1).concat("inIdx.b"),b=Nn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()})));`,w=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function $_(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new hJ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=$_(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function F_(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new mJ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=F_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function D_(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=_.computeOutAndReduceShapes(l.shape,r),d=k.sizeFromShape(p),c=me({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=$_(e,c,a);s.push(h);let m=me({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return F_(e,t,a)}function fJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=pn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=D_(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var gJ={kernelName:wi,backendName:"webgl",kernelFunc:fJ};function yJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=pn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=D_(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var bJ={kernelName:mc,backendName:"webgl",kernelFunc:yJ},xJ=$a+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,vJ=Je({opSnippet:xJ}),wJ={kernelName:Bl,backendName:"webgl",kernelFunc:vJ},kJ=$a+"return log(x + sqrt(x * x + 1.0));",IJ=Je({opSnippet:kJ}),SJ={kernelName:Wl,backendName:"webgl",kernelFunc:IJ},NJ=$a+`
|
|
return atan(x);
|
|
`,TJ=Je({opSnippet:NJ}),CJ={kernelName:Vl,backendName:"webgl",kernelFunc:TJ},_J=M9+`
|
|
return atan(a, b);
|
|
`,EJ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+P9+`
|
|
return result;
|
|
`,AJ=cn({opSnippet:_J,packedOpSnippet:EJ}),$J={kernelName:Gl,backendName:"webgl",kernelFunc:AJ},FJ=$a+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,DJ=Je({opSnippet:FJ}),RJ={kernelName:Ul,backendName:"webgl",kernelFunc:DJ},cc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,T=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},P0=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,E=`
|
|
if (${b}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function MJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Yu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))return Un({inputs:{x:r},backend:n});let d=new cc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var PJ={kernelName:ki,backendName:"webgl",kernelFunc:MJ};function OJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=_.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new P0(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var LJ={kernelName:fc,backendName:"webgl",kernelFunc:OJ},zJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},BJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function WJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=_.computePool3DInfo(i.shape,o,l,d,u,p),h=new BJ(c);return n.runWebGLProgram(h,[r],i.dtype)}var VJ={kernelName:ym,backendName:"webgl",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Yu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=_.computePool2DInfo(i.shape,o,l,1,u),d=new zJ(p);return n.runWebGLProgram(d,[r],i.dtype)}var GJ={kernelName:gm,backendName:"webgl",kernelFunc:UJ};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return pm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var jJ={kernelName:Ii,backendName:"webgl",kernelFunc:HJ},qJ=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},KJ=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},XJ=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=X().getBool("WEBGL_PACK_NORMALIZATION")?new KJ(a.shape,r.shape,s.shape,p,d,l):new qJ(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},YJ={kernelName:Oi,backendName:"webgl",kernelFunc:XJ},JJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=pt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=ZJ(this.rank),a,r=e.map((s,i)=>`sourceLoc.${gx[i]} = start[${i}] + coords.${gx[i]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},gx=["x","y","z","w","u","v"];function ZJ(e){if(e===1)return"sourceLoc";if(e<=6)return gx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var QJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=pt(this.rank),n=Nn("coords",this.rank),a=Nn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function eZ(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=qt.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function np(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=qt.parseSliceParams(r,s,i);if(qt.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=UY(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=qt.isSliceContinous(r.shape,o,l);if(u||!p){let d=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new QJ(l):new JJ(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),eZ(r,o,l,n)}var tZ={kernelName:Su,backendName:"webgl",kernelFunc:np},nZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=_.getReshaped(r.shape,s,o),u=_.getPermuted(l.length,s.length),p=_.getReshapedPermuted(r.shape,s,o),d=_.getSliceBeginCoords(i,s.length),c=_.getSliceSize(p,i,s.length),h=[],m=me({inputs:{x:r},backend:n,attrs:{shape:l}}),f=pn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=me({inputs:{x:f},backend:n,attrs:{shape:p}}),y=np({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},aZ={kernelName:Hl,backendName:"webgl",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=b_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var sZ={kernelName:bm,backendName:"webgl",kernelFunc:rZ};function iZ(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=_.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var oZ={kernelName:xm,backendName:"webgl",kernelFunc:iZ},lZ="return float(a != b);",R_=cn({opSnippet:lZ,cpuKernelImpl:LY,dtype:"bool"}),uZ={kernelName:hu,backendName:"webgl",kernelFunc:R_};function ud(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Un({inputs:{x:r.complexTensorInfos.real},backend:n})}var pZ={kernelName:zm,backendName:"webgl",kernelFunc:ud},cZ="return float(int(x));";function dZ(e,t){let n=new Cr(e.shape,cZ),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function yx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Un({inputs:{x:r},backend:n});let i=kt(r.shape),o=yx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Cs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=ud({inputs:{input:r},backend:n}),o=yx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Un({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return dZ(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=R_({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var hZ={kernelName:Si,backendName:"webgl",kernelFunc:yx},Yk="return ceil(x);",mZ=Je({opSnippet:Yk,packedOpSnippet:Yk,cpuKernelImpl:xY}),fZ={kernelName:Ni,backendName:"webgl",kernelFunc:mZ},gZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},yZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function bZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;X().getBool("WEBGL_PACK_CLIP")?o=new yZ(r.shape):o=new gZ(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var xZ={kernelName:bs,backendName:"webgl",kernelFunc:bZ},vZ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Jk(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function wZ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new vZ(a.shape),i=[Jk(a,r.complexTensorInfos.real),Jk(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var kZ={kernelName:gc,backendName:"webgl",kernelFunc:wZ},IZ=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},SZ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=pt(a),s=Nn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Sh(i,l,f)}),
|
|
vec2(${Sh(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];d+=`
|
|
return getChannel(
|
|
getT${c}(${Sh(i,l,h)}),
|
|
vec2(${Sh(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Sh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function sg(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Un({inputs:{x:r.complexTensorInfos.imag},backend:n})}var NZ={kernelName:Fm,backendName:"webgl",kernelFunc:sg};function ml(e,t,n){let a=e[0].dtype;if(a==="complex64"){let p=e.map(f=>ud({inputs:{input:f},backend:n})),d=e.map(f=>sg({inputs:{input:f},backend:n})),c=ml(p,t,n),h=ml(d,t,n),m=Cs({inputs:{real:c,imag:h},backend:n});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),d.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let p=e.map(y=>{let b=k.sizeFromShape(y.shape.slice(t));return me({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),d=p.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=_.computeOutShape(p.map(y=>y.shape),1),h=p[0].shape[0]===1,m=vY(d,c,a,h),f=_.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(f,a,m);return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let p=Math.floor(e.length/2),d=ml(e.slice(0,p),t,n),c=ml(e.slice(p),t,n),h=ml([d,c],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),h}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new SZ(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,a)}let{tensors2D:s,outShape:i}=TZ(e,t,n),o=new IZ(s.map(p=>p.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(p=>n.disposeIntermediateTensorInfo(p));let u=me({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function TZ(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>me({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function M_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Un({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return _.assertParamsConsistent(l,s),ml(o,s,n)}var CZ={kernelName:jl,backendName:"webgl",kernelFunc:M_},P_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${b}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},_Z=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EZ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=jn(this.outputShape.length);let{dataFormat:n}=t,a=En(),r=n==="channelsLast",s=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.y + ${p};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${a.output} = result;
|
|
}
|
|
`}};function O_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(!((d===1||c===1)&&p>A_)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&k.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(pc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let w=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(w);let T=pm({a:x,b:w,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);k.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,C.shape=n.outShape,g=Un({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=me({inputs:{x:e},backend:a,attrs:{shape:[1,b,n.inChannels]}}),v=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=pm({a:x,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=me({inputs:{x:w},backend:a,attrs:{shape:n.outShape}}),y.push(x),y.push(v),y.push(w)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function L_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[f,g],b=!0,x=!1,v=[],w=me({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=me({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});v.push(w),v.push(T);let C=new EZ(y,n),E=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=a.runWebGLProgram(C,[w],"float32",E),P=me({inputs:{x:$},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push($),v.push(P);let F=r!=null,S=s!=null,M=o==="leakyrelu",V=o?ng(o,!0):null,j=new E_(P.shape,T.shape,[1,g,n.outChannels],b,x,F,V,S,M),q=[P,T];if(r&&q.push(r),S&&q.push(s),M){let re=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));q.push(re),v.push(re)}let K=a.runWebGLProgram(j,q,"float32"),Q=m?[1,c,d,n.outChannels]:[1,n.outChannels,c,d],ee=me({inputs:{x:K},backend:a,attrs:{shape:Q}});v.push(K);for(let re of v)a.disposeIntermediateTensorInfo(re);return ee}function AZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=O_({x:r,filter:s,convInfo:c,backend:n});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=L_({x:r,filter:s,convInfo:c,backend:n});else{let f=new P_(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=me({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var $Z={kernelName:Ti,backendName:"webgl",kernelFunc:AZ},FZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},DZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},RZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},MZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function PZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=_.convertConv2DDataFormat(l),c=_.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new FZ(c);return n.runWebGLProgram(h,[r,s],"float32")}var OZ={kernelName:wm,backendName:"webgl",kernelFunc:PZ};function LZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=_.convertConv2DDataFormat(u),c=_.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new DZ(c);return n.runWebGLProgram(h,[r,s],"float32")}var zZ={kernelName:Ci,backendName:"webgl",kernelFunc:LZ};function BZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=_.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new _Z(u);return n.runWebGLProgram(p,[r,s],"float32")}var WZ={kernelName:yc,backendName:"webgl",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=_.computeConv3DInfo(r.shape,l,i,1,o),p=new RZ(u);return n.runWebGLProgram(p,[r,s],"float32")}var UZ={kernelName:km,backendName:"webgl",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=_.computeConv3DInfo(l,s.shape,o,1,i),p=new MZ(u);return n.runWebGLProgram(p,[r,s],"float32")}var HZ={kernelName:Im,backendName:"webgl",kernelFunc:GZ},jZ=tp+`
|
|
return cos(x);
|
|
`,qZ=Je({opSnippet:jZ}),KZ={kernelName:_i,backendName:"webgl",kernelFunc:qZ},XZ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,YZ=Je({opSnippet:XZ}),JZ={kernelName:Ei,backendName:"webgl",kernelFunc:YZ},ZZ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${b});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},QZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new ZZ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},eQ={kernelName:Kl,backendName:"webgl",kernelFunc:QZ},Zk=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let a=e.length,r=t?"1.0":`getX(${Qk(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${pt(a)} coords = getOutputCoords();
|
|
int end = ${eI(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${eI(a,"coords")} = idx;
|
|
val *= getX(${Qk(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Qk(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function eI(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative product for rank ${e} is not yet supported`)}function tQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=_.getAxesPermutation([s],l),p=r;u!=null&&(p=pn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=_.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=p.shape[d],h=Un({inputs:{x:p},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new Zk(p.shape,!1,o),g=[[m]],y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new Zk(p.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=_.getUndoAxesPermutation(u),f=pn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}return h}var nQ={kernelName:ql,backendName:"webgl",kernelFunc:tQ},tI=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${nI(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${pt(a)} coords = getOutputCoords();
|
|
int end = ${aI(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${aI(a,"coords")} = idx;
|
|
val += getX(${nI(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function nI(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function aI(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function aQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=_.getAxesPermutation([s],l),p=r;u!=null&&(p=pn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=_.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=p.shape[d],h=Un({inputs:{x:p},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new tI(p.shape,!1,o),g=[[m]],y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new tI(p.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=_.getUndoAxesPermutation(u),f=pn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}return h}var rQ={kernelName:Ai,backendName:"webgl",kernelFunc:aQ};function sQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=b_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=bY(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var iQ={kernelName:Sm,backendName:"webgl",kernelFunc:sQ},oQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function lQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new oQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var uQ={kernelName:Xl,backendName:"webgl",kernelFunc:lQ},z_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=jn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},B_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=jn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;c+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<p;g++)c+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?c+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<p)){let b=i%2===0?k.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):b===1?c+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:c+=`
|
|
xCOffset = xC + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<p&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<p&&(c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<p&&(c+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<p&&(c+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${m}
|
|
setOutput(result);
|
|
}
|
|
`}};function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=_.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new B_(d):c=new z_(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var cQ={kernelName:$i,backendName:"webgl",kernelFunc:pQ},dQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},hQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function mQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=_.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new dQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var fQ={kernelName:Nm,backendName:"webgl",kernelFunc:mQ};function gQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=_.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new hQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var yQ={kernelName:Tm,backendName:"webgl",kernelFunc:gQ},bQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function xQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=me({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new bQ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=me({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var vQ={kernelName:Cm,backendName:"webgl",kernelFunc:xQ},wQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function kQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new wQ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=me({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var IQ={kernelName:bc,backendName:"webgl",kernelFunc:kQ};function SQ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=_.decodeEinsumEquation(r,s.length);_.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=_.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(y)?x=s[g]:(x=pn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let w=0;w<b.length;++w)v.splice(b[w],0,1);k.arraysEqual(x.shape,v)||(x=me({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=M0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=rg({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var NQ={kernelName:_m,backendName:"webgl",kernelFunc:SQ},TQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",CQ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,_Q=Je({opSnippet:TQ,packedOpSnippet:CQ}),EQ={kernelName:Di,backendName:"webgl",kernelFunc:_Q},AQ="return (b >= 1.0) ? a : a * (b + 1.0);",$Q=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,FQ=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ld($Q,a.shape,r.shape):new Dl(AQ,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},DQ={kernelName:Em,backendName:"webgl",kernelFunc:FQ},RQ=`
|
|
return vec4(equal(a, b));
|
|
`,MQ="return float(a == b);",PQ=cn({opSnippet:MQ,packedOpSnippet:RQ,dtype:"bool",cpuKernelImpl:wY}),OQ={kernelName:Jl,backendName:"webgl",kernelFunc:PQ},LQ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${_.ERF_P};
|
|
float a1 = ${_.ERF_A1};
|
|
float a2 = ${_.ERF_A2};
|
|
float a3 = ${_.ERF_A3};
|
|
float a4 = ${_.ERF_A4};
|
|
float a5 = ${_.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,zQ=Je({opSnippet:LQ}),BQ={kernelName:Yl,backendName:"webgl",kernelFunc:zQ},WQ=tp+`
|
|
return exp(x);
|
|
`,VQ=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,W_=Je({opSnippet:WQ,packedOpSnippet:VQ,cpuKernelImpl:kY,dtype:"float32"}),UQ={kernelName:Ri,backendName:"webgl",kernelFunc:W_};function bx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),me({inputs:{x:s},backend:a,attrs:{shape:o}})}var GQ={kernelName:Zl,backendName:"webgl",kernelFunc:bx},rI="return exp(x) - 1.0;",HQ=Je({opSnippet:rI,packedOpSnippet:rI,cpuKernelImpl:IY}),jQ={kernelName:Ql,backendName:"webgl",kernelFunc:HQ},sI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function V_(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=me({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new sI("real",l,t),p=new sI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=me({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function qQ(e){let{inputs:t,backend:n}=e,{input:a}=t;return V_(a,!1,n)}var KQ={kernelName:Am,backendName:"webgl",kernelFunc:qQ},XQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function pd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new XQ(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var YQ={kernelName:xc,backendName:"webgl",kernelFunc:pd},JQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},ZQ={kernelName:eu,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new JQ(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},iI="return floor(x);",QQ=Je({opSnippet:iI,packedOpSnippet:iI,cpuKernelImpl:SY}),eee={kernelName:Mi,backendName:"webgl",kernelFunc:QQ},tee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,nee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,aee=cn({opSnippet:tee,packedOpSnippet:nee,dtype:"int32"}),ree={kernelName:Pi,backendName:"webgl",kernelFunc:aee},see=class{constructor(e){this.variableNames=["A"];let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},iee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},oee={kernelName:Wh,backendName:"webgl",kernelFunc:lee},cl;function lee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];(o||i)&&(cl==null&&(cl=document.createElement("canvas").getContext("2d")),cl.canvas.width=l,cl.canvas.height=u,cl.drawImage(r,0,0,l,u),r=cl.canvas);let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=da.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=X().getBool("WEBGL_PACK")?new iee(d):new see(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function uee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(p),g=_.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=O_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=L_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,w=o!=null,T=h==="leakyrelu",C=h?ng(h,!1):null,E=new P_(g,v,C,w,T),$=[r,s];if(i&&$.push(i),o&&$.push(o),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));$.push(P),b.push(P)}y=n.runWebGLProgram(E,$,"float32")}let x=me({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var pee={kernelName:ai,backendName:"webgl",kernelFunc:uee};function cee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?ng(c,y):null,x=[r,s],v=i!=null,w=o!=null,T=c==="leakyrelu";if(v&&x.push(i),w&&x.push(o),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(P),m.push(P)}let C;y?C=new B_(g,v,b,w,T):C=new z_(g,v,b,w,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(C,x,"float32",E);return m.forEach(P=>n.disposeIntermediateTensorInfo(P)),$}var dee={kernelName:ri,backendName:"webgl",kernelFunc:cee},hee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=pt(t.length),r=pt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function mee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=k.sizeFromShape(a.shape),[l,u,p,d]=_.prepareAndValidate(a,r),c=me({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=me({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=NY(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new hee(i,d,[u,p]),f=n.runWebGLProgram(m,[h,c],h.dtype),g=me({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var fee={kernelName:nu,backendName:"webgl",kernelFunc:mee},gee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=pt(this.rank),a=yee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${a}));
|
|
}
|
|
`}};function yee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function U_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0];if(X().get("DEBUG")){let b=n.readSync(s.dataId),x=r.shape[l];for(let v=0;v<b.length;++v){let w=b[v];k.assert(w<=x-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${x-1}]`)}}let u=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=k.sizeFromShape(s.shape),d=[],c=me({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=me({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),v=TY(x,b,m);return d.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new gee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=me({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var bee={kernelName:tu,backendName:"webgl",kernelFunc:U_},xee="return float(a > b);",vee=`
|
|
return vec4(greaterThan(a, b));
|
|
`,wee=cn({opSnippet:xee,packedOpSnippet:vee,cpuKernelImpl:CY,dtype:"bool"}),kee={kernelName:au,backendName:"webgl",kernelFunc:wee},Iee="return float(a >= b);",See=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Nee=cn({opSnippet:Iee,packedOpSnippet:See,dtype:"bool",cpuKernelImpl:_Y}),Tee={kernelName:Li,backendName:"webgl",kernelFunc:Nee};function Cee(e){let{inputs:t,backend:n}=e,{input:a}=t;return V_(a,!0,n)}var _ee={kernelName:$m,backendName:"webgl",kernelFunc:Cee},Eee="return float(!isnan(x) && !isinf(x));",Aee=Je({opSnippet:Eee,dtype:"bool"}),$ee={kernelName:ru,backendName:"webgl",kernelFunc:Aee},Fee="return float(isinf(x));",Dee=Je({opSnippet:Fee,dtype:"bool"}),Ree={kernelName:su,backendName:"webgl",kernelFunc:Dee},Mee="return float(isnan(x));",Pee=Je({opSnippet:Mee,dtype:"bool"}),Oee={kernelName:iu,backendName:"webgl",kernelFunc:Pee},Lee="return float(a < b);",zee=`
|
|
return vec4(lessThan(a, b));
|
|
`,Bee=cn({opSnippet:Lee,packedOpSnippet:zee,cpuKernelImpl:EY,dtype:"bool"}),Wee={kernelName:ou,backendName:"webgl",kernelFunc:Bee},Vee="return float(a <= b);",Uee=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Gee=cn({opSnippet:Vee,packedOpSnippet:Uee,cpuKernelImpl:AY,dtype:"bool"}),Hee={kernelName:lu,backendName:"webgl",kernelFunc:Gee};function jee(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=$Y(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var qee={kernelName:Dm,backendName:"webgl",kernelFunc:jee},Kee=tp+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,Xee=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,Yee=Je({opSnippet:Kee,packedOpSnippet:Xee,cpuKernelImpl:FY}),Jee={kernelName:Wi,backendName:"webgl",kernelFunc:Yee},Zee=tp+`
|
|
return log(1.0 + x);
|
|
`,Qee=Je({opSnippet:Zee}),ete={kernelName:uu,backendName:"webgl",kernelFunc:Qee},tte="return float(a >= 1.0 && b >= 1.0);",nte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,ate=cn({opSnippet:tte,packedOpSnippet:nte,dtype:"bool"}),rte={kernelName:pu,backendName:"webgl",kernelFunc:ate},ste="return float(!(x >= 1.0));",ite=Je({opSnippet:ste}),ote={kernelName:vc,backendName:"webgl",kernelFunc:ite},lte="return float(a >= 1.0 || b >= 1.0);",ute=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,pte=cn({opSnippet:lte,packedOpSnippet:ute,dtype:"bool"}),cte={kernelName:wc,backendName:"webgl",kernelFunc:pte},dte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},hte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},mte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=X().getBool("WEBGL_PACK_NORMALIZATION")?new hte(r.shape,s,i,o,l):new dte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},fte={kernelName:kc,backendName:"webgl",kernelFunc:mte},gte=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},yte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new gte(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},bte={kernelName:Rm,backendName:"webgl",kernelFunc:yte};function xte(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=To(i,e.dtype,"max",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function G_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let v=R0(b,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let w=n.texData.get(h.dataId);w.values=v}else h=ag(r,p,n);u=_.getInnerMostAxes(u.length,o)}_.assertAxesAreInnerMostDims("max",u,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(c){let b=n.texData.get(h.dataId).values,x=DY(b,k.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=xte(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var vte={kernelName:Vi,backendName:"webgl",kernelFunc:G_},wte=S_+`
|
|
return max(a, b);
|
|
`,kte=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+tg+`
|
|
return result;
|
|
`,Ite=cn({opSnippet:wte,packedOpSnippet:kte,cpuKernelImpl:RY}),Ste={kernelName:Ui,backendName:"webgl",kernelFunc:Ite};function Nte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Yu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))return Un({inputs:{x:r},backend:n});let d=new cc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Tte={kernelName:Gi,backendName:"webgl",kernelFunc:Nte};function Cte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new P0(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var _te={kernelName:Ic,backendName:"webgl",kernelFunc:Cte},Ete=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ate=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${d}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function $te(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=_.computePool3DInfo(i.shape,o,l,d,u,p),h=new P0(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new Ate(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Fte={kernelName:Pm,backendName:"webgl",kernelFunc:$te};function Dte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Yu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=_.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new cc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Ete(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var Rte={kernelName:Mm,backendName:"webgl",kernelFunc:Dte};function Mte(e,t,n,a){let r=new cc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new cc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Pte={kernelName:Om,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(_.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=_.computePool2DInfo(a.shape,r,s,u,i),[d,c]=Mte(a,o,p,l);return[d,c]}};function Ote(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=To(i,"float32","mean",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var Lte={kernelName:Hi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,p=_.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let C=0;C<v.length;C++)v[C]=a.shape[p[C]];let w=R0(x,a.shape,a.dtype,p,v);m=i.makeTensorInfo(v,a.dtype);let T=i.texData.get(m.dataId);T.values=w}else m=ag(a,p,i);h.push(m),u=_.getInnerMostAxes(u.length,o)}_.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=Ote(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function zte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=pn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",u,o);let[c,h]=_.computeOutAndReduceShapes(d.shape,u),m=k.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=To(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var Bte={kernelName:ji,backendName:"webgl",kernelFunc:zte},Wte=S_+`
|
|
return min(a, b);
|
|
`,Vte=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+tg+`
|
|
return result;
|
|
`,Ute=cn({opSnippet:Wte,packedOpSnippet:Vte,cpuKernelImpl:MY}),Gte={kernelName:qi,backendName:"webgl",kernelFunc:Ute},Hte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=pt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},jte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=pt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Nn("rc",a),l=Nn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},qte=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jte(a.shape,r,s):new Hte(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Kte={kernelName:Ki,backendName:"webgl",kernelFunc:qte},Xte=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,Yte=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+tg+`
|
|
return result;
|
|
`,Jte=cn({opSnippet:Xte,packedOpSnippet:Yte}),Zte={kernelName:cu,backendName:"webgl",kernelFunc:Jte},Qte=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},ene=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,tne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,H_=cn({opSnippet:ene,packedOpSnippet:tne,checkOutOfBounds:!0}),nne={kernelName:Fi,backendName:"webgl",kernelFunc:H_},oI="return a - b;",j_=cn({opSnippet:oI,packedOpSnippet:oI,supportsComplex:!0,cpuKernelImpl:JY}),ane={kernelName:mo,backendName:"webgl",kernelFunc:j_};function q_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=G_({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),u=me({inputs:{x:o},backend:n,attrs:{shape:l}}),p=j_({inputs:{a:r,b:u},backend:n}),d=W_({inputs:{x:p},backend:n}),c=rg({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=me({inputs:{x:c},backend:n,attrs:{shape:l}}),m=H_({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var rne={kernelName:co,backendName:"webgl",kernelFunc:q_};function sne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:q_({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Qte(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var ine={kernelName:Lm,backendName:"webgl",kernelFunc:sne},one=$a+`
|
|
return -x;
|
|
`,lne=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function une(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=OY(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Js(a.shape,lne):r=new Cr(a.shape,one),n.runWebGLProgram(r,[a],a.dtype)}var pne={kernelName:du,backendName:"webgl",kernelFunc:une},cne=gr.nonMaxSuppressionV3Impl;function dne(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=cne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var hne={kernelName:mu,backendName:"webgl",kernelFunc:dne},mne=gr.nonMaxSuppressionV4Impl;function fne(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=mne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var gne={kernelName:fu,backendName:"webgl",kernelFunc:fne},yne=gr.nonMaxSuppressionV5Impl;function bne(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=yne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var xne={kernelName:gu,backendName:"webgl",kernelFunc:bne},vne=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},wne=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new vne(l,s,i,o),p=me({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[p],r.dtype);n.disposeIntermediateTensorInfo(p);let c=[...r.shape,s],h=me({inputs:{x:d},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),h},kne={kernelName:Yi,backendName:"webgl",kernelFunc:wne};function cm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=ud({inputs:{input:a},backend:n}),s=cm({inputs:{x:r},backend:n}),i=sg({inputs:{input:a},backend:n}),o=cm({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return pd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Ine={kernelName:Mu,backendName:"webgl",kernelFunc:cm};function K_(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=ud({inputs:{input:a},backend:n}),s=K_({inputs:{x:r},backend:n}),i=sg({inputs:{input:a},backend:n}),o=cm({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return pd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Sne={kernelName:yu,backendName:"webgl",kernelFunc:K_};function Nne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return bx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{k.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=bx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=M_({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var Tne={kernelName:bu,backendName:"webgl",kernelFunc:Nne},Cne=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=pt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},_ne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=pt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Nn("rc",a),l=Nn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${d[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},X_=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(k.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return pd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _ne(r.shape,s,i):new Cne(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},Ene={kernelName:Ji,backendName:"webgl",kernelFunc:X_},Ane=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,$ne=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+tg+`
|
|
return result;
|
|
`,Fne=cn({opSnippet:Ane,packedOpSnippet:$ne}),Dne={kernelName:Zi,backendName:"webgl",kernelFunc:Fne};function Rne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),p=u,d=_.getAxesPermutation(p,o),c=r;d!=null&&(c=pn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=_.getInnerMostAxes(p.length,o),l.push(c)),_.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=zY(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(c.shape,p),g=k.sizeFromShape(f),y=me({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=Km(r.dtype),x=To(y,b,"prod",n);h=me({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,u);h=me({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Mne={kernelName:eo,backendName:"webgl",kernelFunc:Rne},Y_=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=BY(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Pne={kernelName:Sc,backendName:"webgl",kernelFunc:Y_},One="return 1.0 / x;",Lne=Je({opSnippet:One}),zne={kernelName:xu,backendName:"webgl",kernelFunc:Lne},Bne=$a+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Wne=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Vne=Je({opSnippet:Bne,packedOpSnippet:Wne}),Une={kernelName:to,backendName:"webgl",kernelFunc:Vne},Gne=$a+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Hne=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,jne=Je({opSnippet:Gne,packedOpSnippet:Hne}),qne={kernelName:ao,backendName:"webgl",kernelFunc:jne},Kne=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Xne=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Yne(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Xne(r.shape,l,u,s,i):new Kne(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Jne={kernelName:no,backendName:"webgl",kernelFunc:Yne},Zne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Qne(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Zne(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var eae={kernelName:Wm,backendName:"webgl",kernelFunc:Qne},tae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},nae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function aae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new nae(r.shape,l,u,s,i):new tae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var rae={kernelName:Nc,backendName:"webgl",kernelFunc:aae},sae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function iae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new sae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var oae={kernelName:Bm,backendName:"webgl",kernelFunc:iae},lae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=pt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},uae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Nn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=pt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${p(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function pae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Un({inputs:{x:r},backend:n});let l=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uae(r.shape,o):new lae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var cae={kernelName:ro,backendName:"webgl",kernelFunc:pae},dae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},hae={kernelName:Pu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new dae(a.shape,s),[u,p]=_.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},mae=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,fae=Je({opSnippet:mae}),gae={kernelName:so,backendName:"webgl",kernelFunc:fae},yae="return inversesqrt(x);",bae=Je({opSnippet:yae,cpuKernelImpl:WY}),xae={kernelName:io,backendName:"webgl",kernelFunc:bae},J_=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=pt(r.length),l=pt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function vae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=me({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=me({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new J_(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=me({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var wae={kernelName:wu,backendName:"webgl",kernelFunc:vae},kae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=pt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Iae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new kae(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],fa(r.dtype,s.dtype))}var Sae={kernelName:ku,backendName:"webgl",kernelFunc:Iae},Nae=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${_.SELU_SCALEALPHA};
|
|
float scale = ${_.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Tae=Je({opSnippet:Nae}),Cae={kernelName:Iu,backendName:"webgl",kernelFunc:Tae},_ae=tp+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,Eae=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Aae=Je({opSnippet:_ae,packedOpSnippet:Eae,cpuKernelImpl:VY}),$ae={kernelName:lo,backendName:"webgl",kernelFunc:Aae},Fae=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Dae=Je({opSnippet:Fae}),Rae={kernelName:Tu,backendName:"webgl",kernelFunc:Dae},Mae=tp+`
|
|
return sin(x);
|
|
`,Pae=Je({opSnippet:Mae}),Oae={kernelName:oo,backendName:"webgl",kernelFunc:Pae},Lae=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,zae=Je({opSnippet:Lae}),Bae={kernelName:Nu,backendName:"webgl",kernelFunc:zae},Wae=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Vae=Je({opSnippet:Wae}),Uae={kernelName:Cu,backendName:"webgl",kernelFunc:Vae},Gae=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],p=X_({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=_.getReshaped(p.shape,s,o,!1),c=_.getPermuted(d.length,s.length,!1),h=_.getReshapedPermuted(p.shape,s,o,!1),m=me({inputs:{x:p},backend:n,attrs:{shape:d}}),f=pn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=me({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},Hae={kernelName:_u,backendName:"webgl",kernelFunc:Gae};function jae(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=GY(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var qae={kernelName:Tc,backendName:"webgl",kernelFunc:jae};function Kae(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=HY(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Xae={kernelName:Au,backendName:"webgl",kernelFunc:Kae};function Yae(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=v_(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Jae={kernelName:Cc,backendName:"webgl",kernelFunc:Yae};function Zae(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=v_(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Qae={kernelName:_c,backendName:"webgl",kernelFunc:Zae};function ere(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:p,outputSize:d}=_.calculateShapes(s,r,o),c=!1,h=new J_(u,l,r.shape.length,s.shape.length,p,[d,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=me({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var tre={kernelName:Vm,backendName:"webgl",kernelFunc:ere};function nre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=np({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var are={kernelName:Eu,backendName:"webgl",kernelFunc:nre},lI="return sqrt(x);",rre=Je({opSnippet:lI,packedOpSnippet:lI,cpuKernelImpl:jY}),sre={kernelName:uo,backendName:"webgl",kernelFunc:rre},ire="return x * x;",ore=Je({opSnippet:ire}),lre={kernelName:Ec,backendName:"webgl",kernelFunc:ore},uI="return (a - b) * (a - b);",ure=cn({opSnippet:uI,packedOpSnippet:uI}),pre={kernelName:ho,backendName:"webgl",kernelFunc:ure};function cre({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=$a+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Cr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var dre={kernelName:vs,backendName:"webgl",kernelFunc:cre},hre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=pt(n.length),s=pt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),w;if(f)w=me({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){k.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=qt.computeOutShape(b,x,v),E=np({inputs:{x:r},backend:n,attrs:{begin:b,size:C}});w=me({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=He(r.shape,r.dtype,C),$=qY(h,E,v,b);w=n.makeTensorInfo(m,r.dtype,$.values)}else{let C=new hre(b,v,h);w=n.runWebGLProgram(C,[r],r.dtype)}let T=me({inputs:{x:w},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(w),T}var fre={kernelName:$u,backendName:"webgl",kernelFunc:mre};function gre(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=KY(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var yre={kernelName:Um,backendName:"webgl",kernelFunc:gre};function bre(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=XY(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var xre={kernelName:Gm,backendName:"webgl",kernelFunc:bre};function vre(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=YY(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var wre={kernelName:Hm,backendName:"webgl",kernelFunc:vre},kre="return tan(x);",Ire=Je({opSnippet:kre}),Sre={kernelName:fo,backendName:"webgl",kernelFunc:Ire},Nre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Tre=Je({opSnippet:Nre}),Cre={kernelName:go,backendName:"webgl",kernelFunc:Tre},_re=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=pt(this.rank),r=Ere(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Ere(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function Z_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>k.decodeString(d)):o,u=He(r.shape,r.dtype,l),p=ZY(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new _re(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Are={kernelName:xs,backendName:"webgl",kernelFunc:Z_},$re=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Fre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Vs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function pI(e){let t=1;for(;t<e;)t*=2;return t}function Dre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let $=n.readSync(r.dataId),[P,F]=QY($,u,r.dtype,s,i);return[n.makeTensorInfo(P.shape,P.dtype,P.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,pd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=k.sizeFromShape(u)/p,f=me({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Vs(n,h);let g=pI(s),y=pI(p),b=null,x=()=>b===null?[f,f]:[f,b],v=($,P,F)=>{let S=x(),M=new $re(F),V=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[$],[P]],j=b;b=n.runWebGLProgram(M,S,"int32",V),Vs(n,j)};for(let $=1;$<g;$*=2){let P=$*2;for(let F=$;F>=1;F/=2)v(P,F,[m,y])}for(let $=y;$>g;$/=2){let P=x(),F=new Fre([m,$/2]),S=[[p],[b===null?1:0],[g]],M=b;b=n.runWebGLProgram(F,P,"int32",S),Vs(n,M);let V=g/2,j=V*2;for(let q=V;q>=1;q/=2)v(j,q,b.shape)}let w=b;b=np({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Vs(n,w);let T=U_({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Vs(n,f);let C=u.slice(0,-1);C.push(s),w=b,b=me({inputs:{x:b},attrs:{shape:C},backend:n}),Vs(n,w);let E=T;return T=me({inputs:{x:T},attrs:{shape:C},backend:n}),Vs(n,E),[T,b]}var Rre={kernelName:Fu,backendName:"webgl",kernelFunc:Dre},Mre=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Pre(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Mre(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var Ore={kernelName:Du,backendName:"webgl",kernelFunc:Pre};function Lre(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Yu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=e9(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var zre={kernelName:jm,backendName:"webgl",kernelFunc:Lre};function Bre(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=np({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=me({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Wre={kernelName:Ru,backendName:"webgl",kernelFunc:Bre},Vre=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function Ure(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=_.getAxesPermutation([u],o),d=r;p!=null&&(d=pn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=_.getInnerMostAxes(1,o)[0]);let c=_.segment_util.computeOutShape(d.shape,u,i),h=k.sizeFromShape([d.shape[u]]),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Km(r.dtype),g=(v,w,T,C,E)=>{let $=v.shape[0],P=v.shape[1],F=_.segment_util.segOpComputeOptimalWindowSize(P,E),S={windowSize:F,inSize:P,batchSize:$,numSegments:E},M=new Vre(S,w),V=n.compileAndRun(M,[v,T],C);if(l.push(V),V.shape[1]===E)return V;let j=Y_({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),q=Z_({inputs:{x:j},backend:n,attrs:{reps:[P/F]}});return l.push(j),l.push(q),g(V,w,q,C,E)},y=g(m,"unsortedSegmentSum",s,f,i),b=me({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let v=_.getUndoAxesPermutation(p);x=pn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var Gre={kernelName:Ac,backendName:"webgl",kernelFunc:Ure},Hre=[X9,J9,eJ,aJ,sJ,lJ,pJ,dJ,gJ,bJ,wJ,SJ,CJ,$J,RJ,PJ,LJ,VJ,GJ,jJ,YJ,aZ,sZ,oZ,hZ,fZ,xZ,A9,kZ,CZ,$Z,OZ,zZ,WZ,UZ,HZ,KZ,JZ,eQ,nQ,rQ,iQ,uQ,cQ,fQ,yQ,vQ,IQ,NQ,EQ,DQ,OQ,BQ,UQ,GQ,jQ,KQ,YQ,ZQ,eee,ree,oee,pee,dee,fee,bee,kee,Tee,E9,_ee,NZ,$ee,Ree,Oee,F9,Wee,Hee,qee,Jee,ete,rte,ote,cte,fte,bte,vte,Ste,Tte,_te,Fte,Rte,Pte,Lte,Bte,Gte,Kte,Zte,ine,O9,pne,hne,gne,xne,uZ,kne,Sne,Tne,Ene,Dne,R9,Mne,Pne,pZ,nne,zne,Une,qne,z9,Jne,eae,rae,oae,cae,hae,gae,xae,wae,Sae,Cae,$ae,Rae,Oae,Bae,tZ,rne,Uae,Hae,qae,Xae,Jae,Qae,tre,are,sre,lre,pre,dre,fre,yre,xre,wre,ane,j9,Sre,Cre,Are,Rre,Ore,q9,zre,Wre,Gre,Ine];for(let e of Hre)$c(e);var Ft;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Ft||(Ft={}));var dc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(dc||(dc={}));var Q_;function jre(e){Q_=e.wasm.cwrap(ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function qre(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=dc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=Ou.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,y,b],r.dtype),w=n.dataIdMap.get(v.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return Q_(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,w),v}var Kre={kernelName:ni,backendName:"wasm",setupFunc:jre,kernelFunc:qre};function dn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return k.sizeFromShape(u.shape)===0||n(l,Ft[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Xre=dn(Ml);function An(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=_.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,Ft[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Yre=!0,Jre=An(ys,Yre),eE;function Zre(e){eE=e.wasm.cwrap(vi,null,["array","number","number","number"])}function Qre(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return eE(s,r.length,Ft[a.dtype],i),a}var ese={kernelName:vi,backendName:"wasm",setupFunc:Zre,kernelFunc:Qre};function ig(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var tse={kernelName:zi,backendName:"wasm",kernelFunc:ig},tE;function nse(e){tE=e.wasm.cwrap(yo,null,["number","array","number","number","number","array","number"])}function fs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=rse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=ase(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=ig({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return tE(p,h,l.shape.length,Ft[l.dtype],d,c,s.length),u}function ase(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function rse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var sse={kernelName:yo,backendName:"wasm",kernelFunc:fs,setupFunc:nse};function _s(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=_.getInnerMostAxes(i.length,r),l=fs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var nE;function ise(e){nE=e.wasm.cwrap(Ll,null,["number, number, number"])}function ose(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("all",p,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,p),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;nE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=_.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var lse={kernelName:Ll,backendName:"wasm",setupFunc:ise,kernelFunc:ose},aE;function use(e){aE=e.wasm.cwrap(zl,null,["number, number, number"])}function pse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("any",p,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,p),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;aE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=_.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var cse={kernelName:zl,backendName:"wasm",setupFunc:use,kernelFunc:pse},rE;function dse(e){rE=e.wasm.cwrap(wi,null,["number","number","number","number","number"])}function hse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=_s(s,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),g=l.shape[p[0]];return rE(o,Ft[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var mse={kernelName:wi,backendName:"wasm",kernelFunc:hse,setupFunc:dse},sE;function fse(e){sE=e.wasm.cwrap(ki,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gse(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=_.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.strideHeight,b=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let v=a.makeOutput(p.outShape,"float32"),w=a.dataIdMap.get(v.dataId).id;return sE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,w),v}var yse={kernelName:ki,backendName:"wasm",setupFunc:fse,kernelFunc:gse};function Bn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var bse={kernelName:vu,backendName:"wasm",kernelFunc:Bn},iE;function xse(e){iE=e.wasm.cwrap(Ii,null,["number","array","number","number","array","number","number","number","number"])}function vse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=Ou.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);k.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],w=Bn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Bn({inputs:{x:s},backend:n,attrs:{shape:v}}),C=n.dataIdMap.get(w.dataId).id,E=n.dataIdMap.get(T.dataId).id,$=i?w.shape[2]:w.shape[1],P=o?T.shape[1]:T.shape[2],F=Math.max(g,y),S=n.makeOutput([F,$,P],w.dtype),M=n.dataIdMap.get(S.dataId).id,V=new Uint8Array(new Int32Array(w.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return iE(C,V,w.shape.length,E,j,T.shape.length,i,o,M),n.disposeData(w.dataId),n.disposeData(T.dataId),S.shape=b,S}var wse={kernelName:Ii,backendName:"wasm",setupFunc:xse,kernelFunc:vse};function yi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=qt.parseSliceParams(t,n,a),o=qt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=k.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=qt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=om(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)kse(l,p[0],c,s,i);else if(h===3)Ise(l,p[0],p[1],c,s,i);else if(h===4)Sse(l,p[0],p[1],p[2],c,s,i);else{let m=om(l,s,i,t.shape,t.dtype);c.set(m)}return u}function kse(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Ise(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Sse(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let y=p;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Nse={kernelName:Su,backendName:"wasm",kernelFunc:yi};function Tse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),u=_.getPermuted(l.length,s.length),p=_.getReshapedPermuted(r.shape,s,o),d=_.getSliceBeginCoords(i,s.length),c=_.getSliceSize(p,i,s.length),h=Bn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=fs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Bn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=yi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var Cse={kernelName:Hl,backendName:"wasm",kernelFunc:Tse};function cd(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var _se={kernelName:Si,backendName:"wasm",kernelFunc:cd},Ese=dn(Ni),oE;function Ase(e){oE=e.wasm.cwrap(bs,null,["number","number","number","number"])}function $se(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return oE(o,s,i,u),l}var Fse={kernelName:bs,backendName:"wasm",setupFunc:Ase,kernelFunc:$se};function lE(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return ig({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=k.sizeFromShape(x.shape.slice(a));return Bn({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=m0(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,p=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],y=h*g,b=d[f].subarray(y,y+g);c.set(b,m),m+=g}}return i}var Dse={kernelName:jl,backendName:"wasm",kernelFunc:lE},uE;function Rse(e){uE=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Mse(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,w=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,$=m.inChannels,P=m.outChannels,F=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return uE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,F,w,T,C,E,$,P,M),S}var Pse={kernelName:Ti,backendName:"wasm",setupFunc:Rse,kernelFunc:Mse},pE;function Ose(e){pE=e.wasm.cwrap(Ci,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lse(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:w,outWidth:T,strideHeight:C,strideWidth:E}=h,$=f-1-h.padInfo.top,P=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",S=k.computeStrides(h.inShape),M=k.computeStrides(r.shape),[V,j,q]=k.computeStrides(s.shape),K=S[0],Q=F?S[1]:S[2],ee=F?S[2]:1,re=F?1:S[1],Z=M[0],ie=F?M[1]:M[2],ae=F?M[2]:1,le=F?1:M[1],ue=t.makeOutput(h.inShape,"float32"),ke=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return pE(ye,Ie,m,f,g,b,x,y,w,T,v,C,E,$,P,V,j,q,K,Q,ee,re,Z,ie,ae,le,ke),ue}var zse={kernelName:Ci,backendName:"wasm",setupFunc:Ose,kernelFunc:Lse},Bse=dn(_i),Wse=dn(Ei),xx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(xx||(xx={}));var cE;function Vse(e){cE=e.wasm.cwrap(Kl,null,["number","number","number","number","array","number","number","number","number","number"])}function Use(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=cd({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return cE(g,y,b,p,w,d,c,xx[r],s,v),f!=null&&t.disposeData(f.dataId),x}var Gse={kernelName:Kl,backendName:"wasm",setupFunc:Vse,kernelFunc:Use},dE;function Hse(e){dE=e.wasm.cwrap(ql,null,["number","number","number","number","number","number"])}function jse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([s],l),p=r;u!==null&&(p=fs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;dE(m,i?1:0,o?1:0,h,f,Ft[r.dtype]);let g=c;if(u!==null){let y=_.getUndoAxesPermutation(u);g=fs({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var qse={kernelName:ql,backendName:"wasm",setupFunc:Hse,kernelFunc:jse},hE;function Kse(e){hE=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number"])}function Xse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([s],l),p=r;u!==null&&(p=fs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;hE(m,i?1:0,o?1:0,h,f,Ft[r.dtype]);let g=c;if(u!==null){let y=_.getUndoAxesPermutation(u);g=fs({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Yse={kernelName:Ai,backendName:"wasm",setupFunc:Kse,kernelFunc:Xse},mE;function Jse(e){mE=e.wasm.cwrap(Xl,null,["number","number","number","array","number","array","array","number","number"])}function Zse(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return mE(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var Qse={kernelName:Xl,backendName:"wasm",setupFunc:Jse,kernelFunc:Zse},fE;function eie(e){fE=e.wasm.cwrap($i,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=_.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,w=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,$=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get(F.dataId).id;return fE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,P,v,w,T,C,E,$,S),F}var nie={kernelName:$i,backendName:"wasm",setupFunc:eie,kernelFunc:tie},aie=dn(Di),rie=!1,sie=An(Jl,rie,"bool"),iie=dn(Ri,"float32");function vx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Bn({inputs:{x:r},backend:a,attrs:{shape:o}})}var oie={kernelName:Zl,backendName:"wasm",kernelFunc:vx};function gE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var lie={kernelName:xc,backendName:"wasm",kernelFunc:gE},yE;function uie(e){yE=e.wasm.cwrap(eu,null,["number","number","number","number","number","number"])}function pie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return yE(s,o,l,u,p,i),r}var cie={kernelName:eu,backendName:"wasm",kernelFunc:pie,setupFunc:uie},die=dn(Mi),hie=!1,mie=An(Pi,hie),bE;function fie(e){bE=e.wasm.cwrap(Oi,null,["number","number","number","number","number","number","number"])}function gie(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return bE(p,d,c,h,m,r,g),f}var yie={kernelName:Oi,backendName:"wasm",setupFunc:fie,kernelFunc:gie},xE;function bie(e){xE=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=dc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let w=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,$=f.padInfo.bottom,P=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Q=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Z=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return xE(y,K,Q,ee,b,w,T,v,C,E,$,P,q,F,S,M,V,j,x,g,ie,m||0,Z),re}var vie={kernelName:ai,backendName:"wasm",setupFunc:bie,kernelFunc:xie},vE;function wie(e){vE=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=dc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let w=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,$=f.padInfo.bottom,P=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Q=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Z=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return vE(y,K,Q,ee,b,w,T,v,C,E,$,P,q,F,S,M,V,j,x,g,ie,m||0,Z),re}var Iie={kernelName:ri,backendName:"wasm",setupFunc:wie,kernelFunc:kie},wE;function Sie(e){wE=e.wasm.cwrap(nu,null,["number","number","number","number","number","number","array","number"])}function Nie(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Lx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return wE(c,Ft[a.dtype],h,i,d,o,m,f),u}var Tie={kernelName:nu,backendName:"wasm",setupFunc:Sie,kernelFunc:Nie},kE;function Cie(e){kE=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _ie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];k.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Bn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),m=Bn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(k.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(k.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer);return kE(b,Ft[r.dtype],w,y,x,d.batchSize,T,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var Eie={kernelName:tu,backendName:"wasm",setupFunc:Cie,kernelFunc:_ie},Aie=!1,$ie=An(au,Aie,"bool"),Fie=!1,Die=An(Li,Fie,"bool"),IE;function Rie(e){IE=e.wasm.cwrap(Bi,null,["number","number","number","number"])}function Mie(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;IE(r,Ft[t.dtype],n,i)}return s}var Pie={kernelName:Bi,backendName:"wasm",setupFunc:Rie,kernelFunc:Mie},Oie=!1,Lie=An(ou,Oie,"bool"),zie=!1,Bie=An(lu,zie,"bool"),Wie=dn(Wi),Vie=!1,Uie=An(pu,Vie,"bool"),SE;function Gie(e){SE=e.wasm.cwrap(Vi,null,["number","number","number","number"])}function Hie(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=_s(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",p,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,p),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;SE(o,Ft[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=_.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var jie={kernelName:Vi,backendName:"wasm",setupFunc:Gie,kernelFunc:Hie},qie=!1,Kie=An(Ui,qie),NE;function Xie(e){NE=e.wasm.cwrap(Gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yie(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;k.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=_.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,w=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return NE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,v,w,T,E),C}var Jie={kernelName:Gi,backendName:"wasm",setupFunc:Xie,kernelFunc:Yie},TE;function Zie(e){TE=e.wasm.cwrap(Hi,null,["number, number, number"])}function Qie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=cd({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;TE(l,y,v)}if(h&&t.disposeData(p.dataId),s){let v=_.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var eoe={kernelName:Hi,backendName:"wasm",setupFunc:Zie,kernelFunc:Qie},CE;function toe(e){CE=e.wasm.cwrap(ji,null,["number","number","number","number"])}function noe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;_.assertAxesAreInnerMostDims("min",d,m);let[f,g]=_.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;CE(l,Ft[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=_.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var aoe={kernelName:ji,backendName:"wasm",setupFunc:toe,kernelFunc:noe},roe=!1,soe=An(qi,roe),wx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(wx||(wx={}));var _E;function ioe(e){_E=e.wasm.cwrap(Ki,null,["number","array","number","number","array","array","number","number"])}function ooe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return _E(i,u,t.shape.length,Ft[t.dtype],c,h,wx[r],l),o}var loe={kernelName:Ki,backendName:"wasm",kernelFunc:ooe,setupFunc:ioe},uoe=!0,poe=An(Xi,uoe),coe=dn(du);function O0(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var EE;function doe(e){EE=e.wasm.cwrap(mu,"number",["number","number","number","number","number"])}function hoe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=EE(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=O0(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var moe={kernelName:mu,backendName:"wasm",setupFunc:doe,kernelFunc:hoe},AE;function foe(e){AE=e.wasm.cwrap(fu,"number",["number","number","number","number","number","bool"])}function goe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=AE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=O0(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var yoe={kernelName:fu,backendName:"wasm",setupFunc:foe,kernelFunc:goe},$E;function boe(e){$E=e.wasm.cwrap(gu,"number",["number","number","number","number","number","number"])}function xoe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=$E(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=O0(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var voe={kernelName:gu,backendName:"wasm",setupFunc:boe,kernelFunc:xoe},woe=!1,koe=An(hu,woe,"bool"),FE;function Ioe(e){FE=e.wasm.cwrap(Yi,null,["number","number","number","number","number"])}function Soe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return FE(p,s,i,o,u),l}var Noe={kernelName:Yi,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe};function Toe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Coe={kernelName:yu,backendName:"wasm",kernelFunc:Toe};function _oe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return vx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{k.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=vx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=lE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Eoe={kernelName:bu,backendName:"wasm",kernelFunc:_oe},DE;function Aoe(e){DE=e.wasm.cwrap(Ji,null,["number","array","number","number","array","array","number","number"])}function $oe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(k.sizeFromShape(t.shape)===0)return gE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return DE(i,u,t.shape.length,Ft[t.dtype],c,h,r,l),o}var RE={kernelName:Ji,backendName:"wasm",kernelFunc:$oe,setupFunc:Aoe},Foe=!1,Doe=An(Zi,Foe),ME;function Roe(e){ME=e.wasm.cwrap(Qi,null,["number","number","number"])}function Moe(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=cd({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return ME(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var Poe={kernelName:Qi,backendName:"wasm",setupFunc:Roe,kernelFunc:Moe},PE;function Ooe(e){PE=e.wasm.cwrap(eo,null,["number","number","number","number"])}function Loe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;PE(l,y,Ft[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=_.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var zoe={kernelName:eo,backendName:"wasm",setupFunc:Ooe,kernelFunc:Loe},Boe=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=y0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Woe={kernelName:Sc,backendName:"wasm",kernelFunc:Boe},Voe=!0,Uoe=An(Fi,Voe),Goe=dn(to),Hoe=dn(ao),OE;function joe(e){OE=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number"])}function qoe(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=cd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return OE(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var Koe={kernelName:no,backendName:"wasm",setupFunc:joe,kernelFunc:qoe},LE;function Xoe(e){LE=e.wasm.cwrap(ro,null,["number","array","number","array","number","number"])}function Yoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return ig({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);LE(l,p,i.length,d,r.shape.length,u);let c=Bn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Joe={kernelName:ro,backendName:"wasm",kernelFunc:Yoe,setupFunc:Xoe},zE;function Zoe(e){zE=e.wasm.cwrap(Pu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Qoe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=_.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return zE(u,d,c,h,m,s,f,g,v,x.length,p),l}var ele={kernelName:Pu,backendName:"wasm",kernelFunc:Qoe,setupFunc:Zoe},tle=dn(so),nle=dn(io),BE;function ale(e){BE=e.wasm.cwrap(wu,null,["number","number","number","number","number","number","array","number","number"])}function rle(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=zx.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return BE(h,m,Ft[s.dtype],l,u,p,f,c,g),o}var sle={kernelName:wu,backendName:"wasm",setupFunc:ale,kernelFunc:rle},WE;function ile(e){WE=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function ole(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return WE(i,o,l,h,p),u}var lle={kernelName:ku,backendName:"wasm",kernelFunc:ole,setupFunc:ile},VE;function ule(e){VE=e.wasm.cwrap(lo,null,["number","number"])}function ple(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||VE(a,s),r}var cle={kernelName:"Sigmoid",backendName:"wasm",setupFunc:ule,kernelFunc:ple},dle=dn(oo),UE;function hle(e){UE=e.wasm.cwrap(co,null,["number","number","number","number"])}function mle(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||UE(r,i,o,l),s}var fle={kernelName:co,backendName:"wasm",setupFunc:hle,kernelFunc:mle};function gle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=RE.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),c=_.getReshapedPermuted(u.shape,s,o,!1),h=Bn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=fs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Bn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var yle={kernelName:_u,backendName:"wasm",kernelFunc:gle},GE;function ble(e){GE=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function xle(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([u],"bool"),x=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([o],a.dtype),w=t.dataIdMap.get(v.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=GE(d,c,Ft[r.dtype],o,u,l,h,f,y,x,w,C),$=t.readSync(T.dataId),P;switch($[0]){case 1:{P=_.getSparseFillEmptyRowsIndicesDenseShapeMismatch($[1]);break}case 2:{P=_.getSparseFillEmptyRowsNegativeIndexErrorMessage($[1],$[2]);break}case 3:P=_.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage($[1],$[2],$[3]);break;default:P=""}if(t.disposeData(T.dataId),P)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(P);let F=m,S=g;return E!==p[0]&&(F=yi({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=yi({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[F,S,b,v]}var vle={kernelName:Tc,backendName:"wasm",setupFunc:ble,kernelFunc:xle},HE;function wle(e){HE=e.wasm.cwrap(Au,null,["number","number","number","number","number","number","number"])}function kle(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=k.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;HE(i,o,l,u,c,m,g);let y=t.readSync(f.dataId),b;switch(y[0]){case 0:{b=_.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=_.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=_.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=_.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=_.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:b=""}if(t.disposeData(f.dataId),b)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(b);return[d,h]}var Ile={kernelName:Au,backendName:"wasm",setupFunc:wle,kernelFunc:kle},jE;function qE(e){jE=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function KE(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;jE(d,Ft[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=_.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=_.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=_.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Sle(e){return KE(e,!0)}var Nle={kernelName:Cc,backendName:"wasm",setupFunc:qE,kernelFunc:Sle};function Tle(e){return KE(e,!1)}var Cle={kernelName:_c,backendName:"wasm",setupFunc:qE,kernelFunc:Tle};function _le(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=yi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Ele={kernelName:Eu,backendName:"wasm",kernelFunc:_le},Ale=dn(uo),$le=dn(Ec),Fle=!0,Dle=An(ho,Fle),XE;function Rle(e){XE=e.wasm.cwrap(vs,null,["number","number","number","number"])}function Mle(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return XE(i,r,Ft[s.dtype],l),o}var Ple={kernelName:vs,backendName:"wasm",setupFunc:Rle,kernelFunc:Mle},YE;function Ole(e){YE=e.wasm.cwrap($u,null,["number","array","number","array","array","array","array","array","number","number"])}function Lle(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),w;if(f)w=Bn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){k.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),C=yi({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});w=Bn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),$=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer),V=t.dataIdMap.get(T.dataId).id;YE(C,E,r.shape.length,$,P,F,S,M,h.length,V),w=Bn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return w}var zle={kernelName:$u,backendName:"wasm",setupFunc:Ole,kernelFunc:Lle},Ble=!0,Wle=An(mo,Ble),JE;function Vle(e){JE=e.wasm.cwrap(po,null,["number","number","number","number"])}function Ule(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=_s(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;JE(l,y,Ft[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=_.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Gle={kernelName:po,backendName:"wasm",setupFunc:Vle,kernelFunc:Ule},Hle=dn(fo),jle=dn(go),ZE;function qle(e){ZE=e.wasm.cwrap(xs,null,["number","array","number","array","number","number"])}function Kle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return ZE(s,l,r.shape.length,u,o.length,Ft[p.dtype],d),p}var Xle={kernelName:xs,backendName:"wasm",setupFunc:qle,kernelFunc:Kle},QE;function Yle(e){QE=e.wasm.cwrap(Fu,null,["number","array","number","number","number","bool","number","number"])}var Jle=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return QE(i,o,a.shape.length,Ft[a.dtype],r,s,p,c),[u,d]},Zle={kernelName:Fu,backendName:"wasm",setupFunc:Yle,kernelFunc:Jle},eA;function Qle(e){eA=e.wasm.cwrap(Du,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function eue(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(b.dataId).id,v=t.dataIdMap.get(r.dataId).id,w=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,C;switch(o){case"constant":C=1;break;case"reflect":C=2;break;case"wrap":C=3;break;case"nearest":C=4;break;default:C=1;break}return eA(v,w,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,T,C,l,x),b}var tue={kernelName:Du,backendName:"wasm",setupFunc:Qle,kernelFunc:eue};function nue(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=yi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var aue={kernelName:Ru,backendName:"wasm",kernelFunc:nue};function rue(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var sue={kernelName:Mu,backendName:"wasm",kernelFunc:rue},iue=[Kre,Xre,Jre,ese,lse,cse,mse,yse,wse,Cse,_se,Ese,Fse,Dse,Pse,zse,Bse,Wse,Gse,qse,Yse,Qse,nie,aie,sie,iie,oie,lie,cie,die,mie,yie,vie,Iie,Tie,Eie,$ie,Die,tse,Pie,Lie,Bie,Wie,Uie,jie,Kie,Jie,eoe,aoe,soe,loe,poe,coe,moe,yoe,voe,koe,Noe,Coe,Eoe,RE,Doe,Poe,zoe,Woe,Uoe,Goe,Hoe,bse,Koe,Joe,ele,tle,nle,sle,lle,cle,dle,Nse,fle,yle,vle,Ile,Nle,Cle,Ele,Ale,$le,Dle,Ple,zle,Wle,Gle,Hle,jle,Xle,Zle,tue,sse,aue,sue];for(let e of iue)$c(e);var kx=X();kx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));kx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(kx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var cI=bi(mF()),oue=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,lue=bi(fF()),tA=class extends hc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(nA),Ix=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new hm(this,sr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||k.sizeFromShape(s);let o=k.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return cue(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function uue(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function dI(e,t,n){if(dm!=null)return dm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Kp!=null&&Kp[a]!=null?Kp[a]:n+a}async function pue(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=oue.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?dI(e,t,Hp!=null?Hp:l):l+o},L0&&(r.instantiateWasm=uue(dI(e,t,Hp!=null?Hp:"")));let s=!1;r.onAbort=()=>{s||Xp||(Xp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&dm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+cI.default.toString()],{type:"text/javascript"}),i=(0,cI.default)(r)):i=(0,lue.default)(r),i.then(o=>{s=!0,Xp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function cue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var due=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],dm=null,Hp=null,Kp={},Xp=!1,L0=!1;function hue(e,t=!1){if(Gx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");dm=e,L0=t}function mue(e,t=!1){if(Xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Hp=e;else{Kp=e;let n=due.filter(a=>Kp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}L0=t}var nA=-1,Ix=-1;function fue(e){nA=e}function gue(){if(Ix===-1)throw new Error("WASM backend not initialized.");return Ix}var yue="3.16.0",bue=2;Ym("wasm",async()=>{let{wasm:e}=await pue();return new tA(e)},bue);var xue="3.16.0",vue="3.16.0",wue="3.16.0",kue="3.16.0",Iue="3.16.0",Sue="3.16.0",Nue="3.16.0",Tue="3.16.0",Cue={tfjs:xue,"tfjs-core":vue,"tfjs-data":wue,"tfjs-layers":kue,"tfjs-converter":Iue,"tfjs-backend-cpu":Sue,"tfjs-backend-webgl":Nue,"tfjs-backend-wasm":Tue};var u1={};hh(u1,{AnchorPosition:()=>e1,DrawBox:()=>md,DrawBoxOptions:()=>pg,DrawFaceLandmarks:()=>wg,DrawFaceLandmarksOptions:()=>vg,DrawTextField:()=>Lr,DrawTextFieldOptions:()=>ip,drawContour:()=>Mr,drawDetections:()=>Pue,drawFaceExpressions:()=>Wue,drawFaceLandmarks:()=>Uue});function Mr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var V0={};hh(V0,{computeReshapedDimensions:()=>W0,getCenterPoint:()=>Eo,isDimensions:()=>lg,isEven:()=>og,isFloat:()=>B0,isTensor:()=>Co,isTensor1D:()=>_ue,isTensor2D:()=>z0,isTensor3D:()=>Pr,isTensor4D:()=>xa,isValidNumber:()=>er,isValidProbablitiy:()=>ap,range:()=>br,round:()=>_o});var yn=class{constructor(t,n){if(!er(t)||!er(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new yn(1/this.width,1/this.height)}};function Co(e,t){return e instanceof Ae&&e.shape.length===t}function _ue(e){return Co(e,1)}function z0(e){return Co(e,2)}function Pr(e){return Co(e,3)}function xa(e){return Co(e,4)}function B0(e){return e%1!==0}function og(e){return e%2===0}function _o(e,t=2){let n=10**t;return Math.floor(e*n)/n}function lg(e){return e&&e.width&&e.height}function W0({width:e,height:t},n){let a=n/Math.max(t,e);return new yn(Math.round(e*a),Math.round(t*a))}function Eo(e){return e.reduce((t,n)=>t.add(n),new Pe(0,0)).div(new Pe(e.length,e.length))}function br(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function er(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function ap(e){return er(e)&&e>=0&&e<=1}var Pe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Pe(this.x+t.x,this.y+t.y)}sub(t){return new Pe(this.x-t.x,this.y-t.y)}mul(t){return new Pe(this.x*t.x,this.y*t.y)}div(t){return new Pe(this.x/t.x,this.y/t.y)}abs(){return new Pe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Pe(Math.floor(this.x),Math.floor(this.y))}};var lt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(er)}static assertIsValidBox(t,n,a=!1){if(!lt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(er),s=[a.x,a.y,a.width,a.height].every(er);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];lt.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Pe(this.left,this.top)}get topRight(){return new Pe(this.right,this.top)}get bottomLeft(){return new Pe(this.left,this.bottom)}get bottomRight(){return new Pe(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new lt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new lt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new lt({x:t,y:n,width:a,height:r})}rescale(t){let n=lg(t)?t.width:t,a=lg(t)?t.height:t;return new lt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new lt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new lt({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new lt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new lt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ao=class extends lt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Or=class{constructor(t,n,a,r,s){this._imageDims=new yn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new lt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new lt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Or(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var bt=class extends Or{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new bt(a,r,s)}};function U0(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function G0(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Ao(a,r,s,i)}function H0(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(U0(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function tr(e,t){return O(()=>{let[n,a,r]=t,s=_n([...e.shape.slice(0,3),1],n,"float32"),i=_n([...e.shape.slice(0,3),1],a,"float32"),o=_n([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return ce(e,l)})}function j0(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,_n(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>oe(c,"float32"));return Qe(d,i)})}function Eue(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function dd(e){return 1/(1+Math.exp(-e))}function Aue(e){return Math.log(e/(1-e))}var $o=class extends lt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var $ue=.5,Fue=.43,Due=.45,ra=class{constructor(t,n,a=new Pe(0,0)){let{width:r,height:s}=n;this._imgDims=new yn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Pe(r,s)).add(a))}get shift(){return new Pe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Pe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Pe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof bt?t.box.floor():new lt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Due),l=Eo(t),u=Math.floor(Math.max(0,l.x-$ue*o)),p=Math.floor(Math.max(0,l.y-Fue*o));return new $o(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=G0(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var q0=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Eo([t[3],t[4]])]}};var Fo=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Eo)}};var rp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${_o(this.distance)})`:""}`}};var sp=class extends lt{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(lt.assertIsValidBox(n,a),!er(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var xr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new xr(t.label,n)}};var K0=class extends sp{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(sp.assertIsValidLabeledBox(n,a),!ap(n.score)||!ap(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function vr(e){return e.detection instanceof bt}function Do(e,t){return{...e,...{detection:t}}}function X0(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function hd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function ug(e){let t="";if(!e&&hd())try{e=z$("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Y0(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=ug();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function J0(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var sn;function Rue(){if(!sn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return sn}function Z0(e){sn=e}function Q0(){return J0()?Z0(X0()):hd()?Z0(Y0()):null}function Mue(e){if(sn||Q0(),!sn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=sn.Canvas,Image:n=sn.Image}=e;sn.Canvas=t,sn.Image=n,sn.createCanvasElement=e.createCanvasElement||(()=>new t),sn.createImageElement=e.createImageElement||(()=>new n),sn.ImageData=e.ImageData||sn.ImageData,sn.Video=e.Video||sn.Video,sn.fetch=e.fetch||sn.fetch,sn.readFile=e.readFile||sn.readFile}var et={getEnv:Rue,setEnv:Z0,initialize:Q0,createBrowserEnv:X0,createFileSystem:ug,createNodejsEnv:Y0,monkeyPatch:Mue,isBrowser:J0,isNodejs:hd};Q0();function Ro(e){return!et.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function qn(e){let{Canvas:t,CanvasRenderingContext2D:n}=et.getEnv();if(e instanceof n)return e;let a=Ro(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var e1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(e1||{}),ip=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Lr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Lr?t.text:t,this.anchor=n,this.options=new ip(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=Ro(t),a=qn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var pg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ip({...i,...s})}},md=class{constructor(t,n={}){this.box=new lt(t),this.options=new pg(n)}draw(t){let n=qn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Lr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Pue(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof bt?a.score:vr(a)?a.detection.score:void 0,s=a instanceof bt?a.box:vr(a)?a.detection.box:new lt(a),i=r?`${_o(r)}`:void 0;new md(s,{label:i}).draw(e)})}function fd(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function t1(e){return new Promise((t,n)=>{(e instanceof et.getEnv().Canvas||fd(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function n1(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=et.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Mo(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t?new yn(e.naturalWidth,e.naturalHeight):e instanceof n?new yn(e.videoWidth,e.videoHeight):new yn(e.width,e.height)}function Po({width:e,height:t}){let{createCanvasElement:n}=et.getEnv(),a=n();return a.width=e,a.height=t,a}function gd(e,t){let{ImageData:n}=et.getEnv();if(!(e instanceof n)&&!fd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Mo(e),s=Po({width:a,height:r});return e instanceof n?qn(s).putImageData(e,0,0):qn(s).drawImage(e,0,0,a,r),s}async function a1(e,t){let n=t||et.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(xa(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await bo.toPixels(i,n),i.dispose(),n}function cg(e){let{Image:t,Canvas:n,Video:a}=et.getEnv();return e instanceof t||e instanceof n||e instanceof a}function r1(e,t,n=!1){let{Image:a,Canvas:r}=et.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Po({width:1,height:1});let s=Mo(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Po({width:t,height:t}),p=e instanceof r?e:gd(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&qn(u).drawImage(p,c,h,o,l),u}var wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Pr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(xa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof et.getEnv().Canvas?a:gd(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return br(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return W0({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=br(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=xa(i)?i:mn(i);return o=j0(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ln.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof et.getEnv().Canvas)return bo.fromPixels(r1(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Mt(a.map(s=>oe(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function xt(e){if(e instanceof wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Ro);return a.forEach((r,s)=>{if(!cg(r)&&!Pr(r)&&!xa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(xa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>cg(r)&&t1(r))),new wr(a,Array.isArray(e))}async function op(e,t){let{Canvas:n}=et.getEnv(),a=e;if(!(e instanceof n)){let i=await xt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await a1(o)}let r=qn(a);return t.map(i=>i instanceof bt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Po({width:l,height:u});return l>0&&u>0&&qn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function lp(e,t){if(!Pr(e)&&!xa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(xa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(xa(e)?1:0);return t.map(o=>o instanceof bt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Vu(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function zr(e,t){let{fetch:n}=et.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Oue(e){let t=await zr(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return n1(n)}async function s1(e){return(await zr(e)).json()}async function Lue(e){return new Float32Array(await(await zr(e)).arrayBuffer())}function aA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=et.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function zue(e){let t=await zr(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return aA(n)}function dg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function i1(e,t){let{manifestUri:n,modelBaseUri:a}=dg(e,t),r=await s1(n);return Qt.loadWeights(r,a)}function Bue(e,t,n=!1){let{width:a,height:r}=n?Mo(t):t;return e.width=a,e.height=r,{width:a,height:r}}var on=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof is)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof is))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Qn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await i1(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=et.getEnv(),{manifestUri:a,modelBaseUri:r}=dg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Qt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Kn(e,t,n){return O(()=>{let a=vo(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function hg(e,t,n=!1){return O(()=>{let a=Xe(n?J(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Kn(e,t.conv0,[2,2])),r=Kn(a,t.conv1,[1,1]),s=Xe(J(a,r)),i=Kn(s,t.conv2,[1,1]);return Xe(J(a,J(r,i)))})}function yd(e,t,n=!1,a=!0){return O(()=>{let r=Xe(n?J(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Kn(e,t.conv0,a?[2,2]:[1,1])),s=Kn(r,t.conv1,[1,1]),i=Xe(J(r,s)),o=Kn(i,t.conv2,[1,1]),l=Xe(J(r,J(s,o))),u=Kn(l,t.conv3,[1,1]);return Xe(J(r,J(s,J(o,u))))})}function Oo(e,t,n="same",a=!1){return O(()=>{let r=J(Rt(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function $n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function up(e,t){return(n,a,r,s)=>{let i=Za(e(n*a*r*r),[r,r,n,a]),o=qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function mg(e,t){return(n,a,r)=>{let s=Ha(e(n*a),[n,a]),i=qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var bd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function pp(e,t){return(n,a,r)=>{let s=Za(e(9*n),[3,3,n,1]),i=Za(e(n*a),[1,1,n,a]),o=qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new bd(s,i,o)}}function cp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new bd(n,a,r)}}function sa(e,t){return(n,a,r)=>{let s=e[n];if(!Co(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function Fn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function fg(e,t){let n=up(e,t),a=pp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function rA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock4Params:r}=fg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function gg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function yg(e,t){let n=sa(e,t),a=gg(n),r=cp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function sA(e){let t=[],{extractDenseBlock4Params:n}=yg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return $n(e,t),{params:a,paramMappings:t}}var dp=class extends on{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=yd(s,n.dense0,!0);return i=yd(i,n.dense1),i=yd(i,n.dense2),i=yd(i,n.dense3),i=ga(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await xt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return sA(t)}extractParams(t){return rA(t)}};function xd(e,t){return O(()=>J(De(e,t.weights),t.bias))}function iA(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=Fn(e),o=mg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function oA(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return $n(e,t),{params:r,paramMappings:t}}function bg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var hp=class extends on{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n;return xd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return iA(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=bg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),oA(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var o1=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Br=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);o1.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return o1.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var vd=class extends hp{constructor(t=new dp){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>Ja(this.runNet(t)))}async forward(t){return this.forwardInput(await xt(t))}async predictExpressions(t){let n=await xt(t),a=await this.forwardInput(n),r=await Promise.all(mt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Br(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function l1(e){return e.expressions instanceof Br}function xg(e,t){return{...e,...{expressions:t}}}function Wue(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Br?s:l1(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=vr(s)?s.detection.box.bottomLeft:a||new Pe(0,0);new Lr(l.map(d=>`${d.expression} (${_o(d.probability)})`),u).draw(e)})}function Lo(e){return vr(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof bt}function Vue(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function mp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new bt(e.detection.score,r.rescale(s.reverse()),s),o=Vue(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var vg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},wg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new vg(n)}draw(t){let n=qn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Fo&&(n.strokeStyle=i,n.lineWidth=s,Mr(n,this.faceLandmarks.getJawOutline()),Mr(n,this.faceLandmarks.getLeftEyeBrow()),Mr(n,this.faceLandmarks.getRightEyeBrow()),Mr(n,this.faceLandmarks.getNose()),Mr(n,this.faceLandmarks.getLeftEye(),!0),Mr(n,this.faceLandmarks.getRightEye(),!0),Mr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Uue(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:Lo(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new wg(r).draw(e)})}var lA="1.6.8";function jue(e,t){let n=up(e,t),a=pp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function uA(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=Fn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=jue(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};br(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function que(e,t){let n=sa(e,t),a=gg(n),r=cp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function pA(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=que(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};br(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return $n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function cA(e,t,n){return J(Rt(e,t.filters,n,"same"),t.bias)}function p1(e,t,n=!0){let a=n?Xe(e):e;return a=Kn(a,t.separable_conv0,[1,1]),a=Kn(Xe(a),t.separable_conv1,[1,1]),a=Pt(a,[3,3],[2,2],"same"),a=J(a,cA(e,t.expansion_conv,[2,2])),a}function Kue(e,t){let n=Kn(Xe(e),t.separable_conv0,[1,1]);return n=Kn(Xe(n),t.separable_conv1,[1,1]),n=Kn(Xe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var kg=class extends on{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return O(()=>{let r=oe(n.toBatchTensor(112,!0),"float32"),i=tr(r,[122.782,117.001,104.298]).div(255),o=Xe(cA(i,a.entry_flow.conv_in,[2,2]));return o=p1(o,a.entry_flow.reduction_block_0,!1),o=p1(o,a.entry_flow.reduction_block_1),br(this._numMainBlocks,0,1).forEach(l=>{o=Kue(o,a.middle_flow[`main_block_${l}`])}),o=p1(o,a.exit_flow.reduction_block),o=Xe(Kn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await xt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return pA(n,this._numMainBlocks)}extractParams(n){return uA(n,this._numMainBlocks)}};function dA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),r=mg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function hA(e){let t=[],n=sa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return $n(e,t),{params:r,paramMappings:t}}var Ig=(n=>(n.FEMALE="female",n.MALE="male",n))(Ig||{});var wd=class extends on{constructor(n=new kg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n,s=ga(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=xd(s,a.fc.age).as1D(),o=xd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return O(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Ja(r)}})}async forward(n){return this.forwardInput(await xt(n))}async predictAgeAndGender(n){let a=await xt(n),r=await this.forwardInput(a),s=mt(r.age),i=mt(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return dA(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=bg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),hA(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var fp=class extends hp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Mt([_n([68],d,"float32"),_n([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(_n([s,136],n,"float32")).sub(Mt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Mt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await xt(t))}async detectLandmarks(t){let n=await xt(t),a=O(()=>mt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>og(d)),u=o.filter((p,d)=>!og(d));return new Fo(Array(68).fill(0).map((p,d)=>new Pe(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var zo=class extends fp{constructor(t=new dp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function mA(e){let t=[],{extractDenseBlock3Params:n}=yg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return $n(e,t),{params:a,paramMappings:t}}function fA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock3Params:r}=fg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Sg=class extends on{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=hg(s,n.dense0,!0);return i=hg(i,n.dense1),i=hg(i,n.dense2),i=ga(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await xt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return mA(t)}extractParams(t){return fA(t)}};var kd=class extends fp{constructor(t=new Sg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var c1=class extends zo{};function gA(e,t){return J(z(e,t.weights),t.biases)}function d1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=J(o,i),o=gA(o,t.scale),a?Xe(o):o}function yA(e,t){return d1(e,t,[1,1],!0)}function h1(e,t){return d1(e,t,[1,1],!1)}function Ng(e,t){return d1(e,t,[2,2],!0,"valid")}function Xue(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(B0(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>$e(Za(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=qe(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=qe(e(o)),p=qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function bA(e){let{extractWeights:t,getRemainingWeights:n}=Fn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Xue(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),w=O(()=>$e(Ha(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:w},paramMappings:a}}function Yue(e,t){let n=sa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function xA(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Yue(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!z0(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return $n(e,t),{params:v,paramMappings:t}}function nr(e,t){let n=yA(e,t.conv1);return n=h1(n,t.conv2),n=J(n,e),n=Xe(n),n}function Id(e,t){let n=Ng(e,t.conv1);n=h1(n,t.conv2);let a=ga(e,2,2,"valid"),r=kt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=kt(o);n=Qe([n,l],1);let u=[...n.shape];u[2]=1;let p=kt(u);n=Qe([n,p],2)}return a=s?Qe([a,r],3):a,n=J(a,n),n=Xe(n),n}var Bo=class extends on{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(150,!0),"float32"),s=tr(a,[122.782,117.001,104.298]).div(255),i=Ng(s,n.conv32_down);i=Pt(i,3,2,"valid"),i=nr(i,n.conv32_1),i=nr(i,n.conv32_2),i=nr(i,n.conv32_3),i=Id(i,n.conv64_down),i=nr(i,n.conv64_1),i=nr(i,n.conv64_2),i=nr(i,n.conv64_3),i=Id(i,n.conv128_down),i=nr(i,n.conv128_1),i=nr(i,n.conv128_2),i=Id(i,n.conv256_down),i=nr(i,n.conv256_1),i=nr(i,n.conv256_2),i=Id(i,n.conv256_down_out);let o=i.mean([1,2]);return De(o,n.fc)})}async forward(t){return this.forwardInput(await xt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await xt(t),a=O(()=>mt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return xA(t)}extractParams(t){return bA(t)}};function Jue(e){let t=new Bo;return t.extractWeights(e),t}function Tg(e,t){return{...e,...{descriptor:t}}}function Zue(e){return typeof e.age=="number"}function Cg(e,t){return{...e,...{age:t}}}function Que(e){return(e.gender==="male"||e.gender==="female")&&ap(e.genderProbability)}function _g(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function epe(e,t){function n(l,u){let p=Za(e(9*l),[3,3,l,1]),d=qe(e(l)),c=qe(e(l)),h=qe(e(l)),m=qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Za(e(l*u*p*p),[p,p,l,u]),m=qe(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),w=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:w}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),w=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),$=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),P=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:w},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:$},box_predictor_5:{box_encoding_predictor:P,class_predictor:F}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function vA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=epe(n,t),i=r(),o=s(),u={extra_dim:Xm(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function tpe(e,t){let n=sa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function wA(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=tpe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Pr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return $n(e,t),{params:s,paramMappings:t}}function Fa(e,t,n){return O(()=>{let a=Rt(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),nn(a,0,6)})}var npe=.0010000000474974513;function ape(e,t,n){return O(()=>{let a=Is(e,t.filters,n,"same");return a=Ar(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,npe),nn(a,0,6)})}function rpe(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function kA(e,t){return O(()=>{let n,a=Fa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=rpe(o);a=ape(a,s.depthwise_conv,l),a=Fa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function spe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function IA(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=spe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function ipe(e){let t=mt($e(e,[1,0])),n=[ce(t[2],t[0]),ce(t[3],t[1])],a=[J(t[0],fe(n[0],2)),J(t[1],fe(n[1],2))];return{sizes:n,centers:a}}function ope(e,t){let{sizes:n,centers:a}=ipe(e),r=mt($e(t,[1,0])),s=fe(z(gn(fe(r[2],5)),n[0]),2),i=J(z(fe(r[0],10),n[0]),a[0]),o=fe(z(gn(fe(r[3],5)),n[1]),2),l=J(z(fe(r[1],10),n[1]),a[1]);return $e(Mt([ce(i,s),ce(l,o),J(i,s),J(l,o)]),[1,0])}function SA(e,t,n){return O(()=>{let a=e.shape[0],r=ope(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ma(Ge(t,[0,0,1],[-1,-1,-1])),i=Ge(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=mt(r),l=mt(i);return{boxes:o,scores:l}})}function Wo(e,t){return O(()=>{let n=e.shape[0],a=W(Oo(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(Oo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function NA(e,t,n){return O(()=>{let a=Fa(e,n.conv_0,[1,1]),r=Fa(a,n.conv_1,[2,2]),s=Fa(r,n.conv_2,[1,1]),i=Fa(s,n.conv_3,[2,2]),o=Fa(i,n.conv_4,[1,1]),l=Fa(o,n.conv_5,[2,2]),u=Fa(l,n.conv_6,[1,1]),p=Fa(u,n.conv_7,[2,2]),d=Wo(t,n.box_predictor_0),c=Wo(e,n.box_predictor_1),h=Wo(r,n.box_predictor_2),m=Wo(i,n.box_predictor_3),f=Wo(l,n.box_predictor_4),g=Wo(p,n.box_predictor_5),y=Qe([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var va=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Es=class extends on{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(512,!1),"float32"),r=ce(fe(a,127.5),1),s=kA(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=NA(s.out,s.conv11,n.prediction_layer);return SA(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await xt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new va(n),s=await xt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=IA(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=c.map(x=>{let[v,w]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(E=>E*g),[T,C]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(E=>E*f);return new bt(p[x],new $o(T,v,C-T,w-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return wA(t)}extractParams(t){return vA(t)}};function TA(e){let t=new Es;return t.extractWeights(e),t}function lpe(e){return TA(e)}var m1=class extends Es{};var CA=.4,_A=[new Pe(.738768,.874946),new Pe(2.42204,2.65704),new Pe(4.30971,7.04493),new Pe(10.246,4.59428),new Pe(12.6868,11.8741)],EA=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],AA=[117.001,114.697,97.404],$A="tiny_yolov2_model",FA="tiny_yolov2_separable_conv_model";var Eg=e=>typeof e=="number";function f1(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Eg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Eg(t.x)&&Eg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Eg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function gp(e){return O(()=>{let t=z(e,we(.10000000149011612));return J(Xe(ce(e,t)),t)})}function Wr(e,t){return O(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=ce(n,t.bn.sub),n=z(n,t.bn.truediv),n=J(n,t.conv.bias),gp(n)})}function Vr(e,t){return O(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=vo(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),gp(n)})}function upe(e,t){let n=up(e,t);function a(i,o){let l=qe(e(i)),u=qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=pp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function DA(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=Fn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=upe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),w=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),$=u(g,y,"conv5"),P=b?u(y,b,"conv6"):void 0,F=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:v,conv1:w,conv2:T,conv3:C,conv4:E,conv5:$,conv6:P,conv7:F,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,v=l(d,c,"conv0"),w=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),$=l(g,y,"conv5"),P=l(y,b,"conv6"),F=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:w,conv2:T,conv3:C,conv4:E,conv5:$,conv6:P,conv7:F,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function ppe(e,t){let n=sa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=cp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function RA(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=ppe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return $n(e,n),{params:i,paramMappings:n}}var ar=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var g1=class extends on{constructor(n){super("TinyYolov2");f1(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Wr(n,a.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv5),r=Pt(r,[2,2],[1,1],"same"),r=Wr(r,a.conv6),r=Wr(r,a.conv7),Oo(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?gp(Oo(n,a.conv0,"valid",!1)):Vr(n,a.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv5),r=Pt(r,[2,2],[1,1],"same"),r=a.conv6?Vr(r,a.conv6):r,r=a.conv7?Vr(r,a.conv7):r,Oo(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let s=oe(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?tr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await xt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new ar(a),i=await xt(n),o=await this.forwardInput(i,r),l=O(()=>mt(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(y=>y.box),c=p.map(y=>y.score),h=p.map(y=>y.classScore),m=p.map(y=>this.config.classes[y.label]);return H0(d.map(y=>y.rescale(r)),c,this.config.iouThreshold,!0).map(y=>new Or(c[y],h[y],m[y],d[y],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return RA(n,this.config)}extractParams(n){let a=this.config.filterSizes||g1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return DA(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=O(()=>{let b=n.reshape([p,p,d,this.boxEncodingSize]),x=b.slice([0,0,0,0],[p,p,d,4]),v=b.slice([0,0,0,4],[p,p,d,1]),w=this.withClassScores?Ja(b.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):we(0);return[x,v,w]}),f=[],g=await h.array(),y=await c.array();for(let b=0;b<p;b++)for(let x=0;x<p;x++)for(let v=0;v<d;v++){let w=dd(g[b][x][v][0]);if(!r||w>r){let T=(x+dd(y[b][x][v][0]))/p*l,C=(b+dd(y[b][x][v][1]))/p*u,E=Math.exp(y[b][x][v][2])*this.config.anchors[v].x/p*l,$=Math.exp(y[b][x][v][3])*this.config.anchors[v].y/p*u,P=T-E/2,F=C-$/2,S={row:b,col:x,anchor:v},{classScore:M,label:V}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Ao(P,F,P+E,F+$),score:w,classScore:w*M,label:V,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},Vo=g1;Vo.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Uo=class extends Vo{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:CA,classes:["face"],...t?{anchors:EA,meanRgb:AA}:{anchors:_A,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?FA:$A}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function cpe(e,t=!0){let n=new Uo(t);return n.extractWeights(e),n}var Sd=class extends ar{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var wa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Go(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Lo(l)?r(l):l.detection),i=a||(t instanceof Ae?await lp(t,s):await op(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function yp(e,t,n,a,r){return Go([e],t,async s=>n(s[0]),a,r)}var MA=.4,PA=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],OA=[117.001,114.697,97.404];var Ho=class extends Vo{constructor(){let t={withSeparableConvs:!0,iouThreshold:MA,classes:["face"],anchors:PA,meanRgb:OA,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var tt={ssdMobilenetv1:new Es,tinyFaceDetector:new Ho,tinyYolov2:new Uo,faceLandmark68Net:new zo,faceLandmark68TinyNet:new kd,faceRecognitionNet:new Bo,faceExpressionNet:new vd,ageGenderNet:new wd},LA=(e,t)=>tt.ssdMobilenetv1.locateFaces(e,t),dpe=(e,t)=>tt.tinyFaceDetector.locateFaces(e,t),hpe=(e,t)=>tt.tinyYolov2.locateFaces(e,t),zA=e=>tt.faceLandmark68Net.detectLandmarks(e),mpe=e=>tt.faceLandmark68TinyNet.detectLandmarks(e),fpe=e=>tt.faceRecognitionNet.computeFaceDescriptor(e),gpe=e=>tt.faceExpressionNet.predictExpressions(e),ype=e=>tt.ageGenderNet.predictAgeAndGender(e),BA=e=>tt.ssdMobilenetv1.load(e),bpe=e=>tt.tinyFaceDetector.load(e),xpe=e=>tt.tinyYolov2.load(e),vpe=e=>tt.faceLandmark68Net.load(e),wpe=e=>tt.faceLandmark68TinyNet.load(e),kpe=e=>tt.faceRecognitionNet.load(e),Ipe=e=>tt.faceExpressionNet.load(e),Spe=e=>tt.ageGenderNet.load(e),Npe=BA,Tpe=LA,Cpe=zA;var Ag=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},jo=class extends Ag{async run(){let t=await this.parentTask,n=await Go(t,this.input,async a=>Promise.all(a.map(r=>tt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>xg(a,n[r]))}withAgeAndGender(){return new Ko(this,this.input)}},qo=class extends Ag{async run(){let t=await this.parentTask;if(!t)return;let n=await yp(t,this.input,a=>tt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return xg(t,n)}withAgeAndGender(){return new Xo(this,this.input)}},As=class extends jo{withAgeAndGender(){return new Fs(this,this.input)}withFaceDescriptors(){return new Ur(this,this.input)}},$s=class extends qo{withAgeAndGender(){return new Ds(this,this.input)}withFaceDescriptor(){return new Gr(this,this.input)}};var $g=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Ko=class extends $g{async run(){let t=await this.parentTask,n=await Go(t,this.input,async a=>Promise.all(a.map(r=>tt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Cg(_g(a,i,o),s)})}withFaceExpressions(){return new jo(this,this.input)}},Xo=class extends $g{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await yp(t,this.input,s=>tt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Cg(_g(t,a,r),n)}withFaceExpressions(){return new qo(this,this.input)}},Fs=class extends Ko{withFaceExpressions(){return new As(this,this.input)}withFaceDescriptors(){return new Ur(this,this.input)}},Ds=class extends Xo{withFaceExpressions(){return new $s(this,this.input)}withFaceDescriptor(){return new Gr(this,this.input)}};var Nd=class extends wa{constructor(n,a){super();this.parentTask=n;this.input=a}},Ur=class extends Nd{async run(){let t=await this.parentTask;return(await Go(t,this.input,a=>Promise.all(a.map(r=>tt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Tg(t[r],a))}withFaceExpressions(){return new As(this,this.input)}withAgeAndGender(){return new Fs(this,this.input)}},Gr=class extends Nd{async run(){let t=await this.parentTask;if(!t)return;let n=await yp(t,this.input,a=>tt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Tg(t,n)}withFaceExpressions(){return new $s(this,this.input)}withAgeAndGender(){return new Ds(this,this.input)}};var Td=class extends wa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?tt.faceLandmark68TinyNet:tt.faceLandmark68Net}},Cd=class extends Td{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ae?await lp(this.input,n):await op(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ae&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>mp(i,r[o]))}withFaceExpressions(){return new As(this,this.input)}withAgeAndGender(){return new Fs(this,this.input)}withFaceDescriptors(){return new Ur(this,this.input)}},_d=class extends Td{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await lp(this.input,[n]):await op(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),mp(t,r)}withFaceExpressions(){return new $s(this,this.input)}withAgeAndGender(){return new Ds(this,this.input)}withFaceDescriptor(){return new Gr(this,this.input)}};var Ed=class extends wa{constructor(n,a=new va){super();this.input=n;this.options=a}},bp=class extends Ed{async run(){let{input:t,options:n}=this,a;if(n instanceof Sd)a=tt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof va)a=tt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof ar)a=tt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Do({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Cd(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new jo(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Ko(this.runAndExtendWithFaceDetections(),this.input)}},Ad=class extends Ed{async run(){let t=await new bp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Do({},n):void 0)})}withFaceLandmarks(t=!1){return new _d(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new qo(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Xo(this.runAndExtendWithFaceDetection(),this.input)}};function _pe(e,t=new va){return new Ad(e,t)}function Fg(e,t=new va){return new bp(e,t)}async function WA(e,t){return Fg(e,new va(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Epe(e,t={}){return Fg(e,new ar(t)).withFaceLandmarks().withFaceDescriptors()}var Ape=WA;function y1(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var $d=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof xr)return i;if(i instanceof Float32Array)return new xr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new xr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>y1(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new rp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new rp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>xr.fromJSON(a));return new $d(n,t.distanceThreshold)}};function $pe(e){let t=new Ho;return t.extractWeights(e),t}function VA(e,t){let{width:n,height:a}=new yn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>VA(r,{width:n,height:a}));if(Lo(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return mp(Do(e,r),s)}return vr(e)?Do(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof bt?e.forSize(n,a):e}var Fpe=lA;return W$(Dpe);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|