face-api/dist/face-api.esm.js

4883 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var aF=Object.defineProperty;var Gr=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var ab=(e,t)=>{for(var n in t)aF(e,n,{get:t[n],enumerable:!0})};var Oe={};ab(Oe,{Abs:()=>wl,Acos:()=>kl,Acosh:()=>Il,AdadeltaOptimizer:()=>of,AdagradOptimizer:()=>lf,AdamOptimizer:()=>uf,AdamaxOptimizer:()=>pf,Add:()=>cs,AddN:()=>mi,All:()=>Sl,Any:()=>Tl,ArgMax:()=>fi,ArgMin:()=>sc,Asin:()=>Nl,Asinh:()=>Cl,Atan:()=>_l,Atan2:()=>$l,Atanh:()=>El,AvgPool:()=>gi,AvgPool3D:()=>ic,AvgPool3DGrad:()=>Yh,AvgPoolGrad:()=>Xh,BackendWasm:()=>k$,BatchMatMul:()=>yi,BatchToSpaceND:()=>Al,Bincount:()=>Zh,BroadcastArgs:()=>Jh,BroadcastTo:()=>RI,Callback:()=>JN,CallbackList:()=>nN,Cast:()=>bi,Ceil:()=>xi,ClipByValue:()=>ds,Complex:()=>Qh,ComplexAbs:()=>oc,Concat:()=>Fl,Conv2D:()=>vi,Conv2DBackpropFilter:()=>em,Conv2DBackpropInput:()=>wi,Conv3D:()=>lc,Conv3DBackpropFilterV2:()=>tm,Conv3DBackpropInputV2:()=>nm,Cos:()=>ki,Cosh:()=>Ii,CropAndResize:()=>Rl,Cumprod:()=>Dl,Cumsum:()=>Si,CustomCallback:()=>rN,DataStorage:()=>jh,DenseBincount:()=>am,DepthToSpace:()=>Ml,DepthwiseConv2dNative:()=>Ti,DepthwiseConv2dNativeBackpropFilter:()=>rm,DepthwiseConv2dNativeBackpropInput:()=>sm,Diag:()=>im,Dilation2D:()=>uc,Dilation2DBackpropFilter:()=>gh,Dilation2DBackpropInput:()=>fh,ENV:()=>Ix,EarlyStopping:()=>QN,Einsum:()=>om,Elu:()=>Ci,EluGrad:()=>lm,Environment:()=>FI,Equal:()=>Ol,Erf:()=>Pl,Exp:()=>_i,ExpandDims:()=>Ll,Expm1:()=>zl,FFT:()=>um,Fill:()=>pc,FlipLeftRight:()=>Wl,Floor:()=>Ei,FloorDiv:()=>$i,FromPixels:()=>yh,FusedBatchNorm:()=>Ai,FusedConv2D:()=>Qs,FusedDepthwiseConv2D:()=>ei,GPGPUContext:()=>ph,GatherNd:()=>Vl,GatherV2:()=>Bl,GraphModel:()=>k0,Greater:()=>Ul,GreaterEqual:()=>Fi,History:()=>aN,IFFT:()=>pm,Identity:()=>Di,Imag:()=>cm,InputSpec:()=>zt,IsFinite:()=>Gl,IsInf:()=>Hl,IsNan:()=>jl,KernelBackend:()=>rc,LRN:()=>cc,LRNGrad:()=>hm,LayerVariable:()=>XT,LayersModel:()=>Nr,LeakyRelu:()=>Ri,Less:()=>ql,LessEqual:()=>Kl,LinSpace:()=>dm,Log:()=>Mi,Log1p:()=>Xl,LogSoftmax:()=>PI,LogicalAnd:()=>Yl,LogicalNot:()=>Zl,LogicalOr:()=>Jl,LogicalXor:()=>MI,LowerBound:()=>qF,MathBackendWebGL:()=>Rf,Max:()=>Pi,MaxPool:()=>Li,MaxPool3D:()=>dc,MaxPool3DGrad:()=>fm,MaxPoolGrad:()=>mm,MaxPoolWithArgmax:()=>gm,Maximum:()=>Oi,Mean:()=>zi,Min:()=>Wi,Minimum:()=>Bi,MirrorPad:()=>Vi,Mod:()=>Ql,MomentumOptimizer:()=>cf,Multinomial:()=>ym,Multiply:()=>Ui,Neg:()=>eu,NonMaxSuppressionV3:()=>nu,NonMaxSuppressionV4:()=>au,NonMaxSuppressionV5:()=>ru,NotEqual:()=>tu,OP_SCOPE_SUFFIX:()=>Cx,OneHot:()=>Gi,OnesLike:()=>su,Optimizer:()=>Ar,OptimizerConstructors:()=>Hr,Pack:()=>iu,PadV2:()=>Hi,Pool:()=>KF,Pow:()=>ji,Prelu:()=>qi,Prod:()=>Ki,RMSPropOptimizer:()=>df,RNN:()=>dr,RaggedGather:()=>bm,RaggedRange:()=>xm,RaggedTensorToTensor:()=>vm,Range:()=>hc,Rank:()=>wb,Real:()=>wm,RealDiv:()=>Ni,Reciprocal:()=>ou,Reduction:()=>xn,Relu:()=>Xi,Relu6:()=>Ji,Reshape:()=>lu,ResizeBilinear:()=>Zi,ResizeBilinearGrad:()=>Im,ResizeNearestNeighbor:()=>Yi,ResizeNearestNeighborGrad:()=>km,Reverse:()=>Qi,RotateWithOffset:()=>Su,Round:()=>eo,Rsqrt:()=>to,SGDOptimizer:()=>Bc,ScatterNd:()=>uu,SearchSorted:()=>Sm,Select:()=>pu,Selu:()=>cu,Sequential:()=>hl,Sigmoid:()=>ao,Sign:()=>mu,Sin:()=>no,Sinh:()=>hu,Slice:()=>du,Softmax:()=>io,Softplus:()=>fu,SpaceToBatchND:()=>gu,SparseFillEmptyRows:()=>mc,SparseReshape:()=>bu,SparseSegmentMean:()=>fc,SparseSegmentSum:()=>gc,SparseToDense:()=>Tm,SplitV:()=>yu,Sqrt:()=>ro,Square:()=>yc,SquaredDifference:()=>oo,Step:()=>ms,StridedSlice:()=>xu,StringNGrams:()=>bc,StringSplit:()=>xc,StringToHashBucketFast:()=>vc,Sub:()=>lo,Sum:()=>so,SymbolicTensor:()=>Ba,Tan:()=>uo,Tanh:()=>po,Tensor:()=>Te,TensorBuffer:()=>Ht,Tile:()=>hs,TopK:()=>vu,Transform:()=>wu,Transpose:()=>Tr,Unique:()=>Nm,Unpack:()=>ku,UnsortedSegmentSum:()=>wc,UpperBound:()=>XF,Variable:()=>ts,ZerosLike:()=>Iu,_FusedMatMul:()=>Js,abs:()=>Lt,acos:()=>Bx,acosh:()=>Vx,add:()=>Y,addN:()=>CS,all:()=>Am,any:()=>qp,argMax:()=>ai,argMin:()=>Ux,asin:()=>Gx,asinh:()=>Hx,atan:()=>jx,atan2:()=>qx,atanh:()=>Kx,avgPool:()=>ga,avgPool3d:()=>Yx,backend:()=>uS,backend_util:()=>N,basicLSTMCell:()=>AS,batchNorm:()=>ys,batchNorm2d:()=>Zx,batchNorm3d:()=>Jx,batchNorm4d:()=>Qx,batchToSpaceND:()=>$c,bincount:()=>ev,booleanMaskAsync:()=>hT,broadcastArgs:()=>FS,broadcastTo:()=>Ks,broadcast_util:()=>Tu,browser:()=>co,buffer:()=>Pe,callbacks:()=>bH,cast:()=>le,ceil:()=>tv,clipByValue:()=>en,clone:()=>rr,complex:()=>Cr,concat:()=>Ze,concat1d:()=>nv,concat2d:()=>av,concat3d:()=>rv,concat4d:()=>sv,constraints:()=>JT,conv1d:()=>Fm,conv2d:()=>At,conv2dTranspose:()=>Dm,conv3d:()=>ov,conv3dTranspose:()=>lv,copyRegisteredKernels:()=>QF,cos:()=>Ac,cosh:()=>Rm,cosineWindow:()=>tf,cumprod:()=>Kp,cumsum:()=>Mm,customGrad:()=>or,data:()=>I2,denseBincount:()=>Sh,deprecationWarn:()=>Rx,depthToSpace:()=>uv,depthwiseConv2d:()=>bs,deregisterOp:()=>wH,device_util:()=>Tc,diag:()=>RS,dilation2d:()=>pv,disableDeprecationWarnings:()=>CR,dispose:()=>_e,disposeVariables:()=>_R,div:()=>he,divNoNan:()=>cv,dot:()=>dv,dropout:()=>zv,einsum:()=>MS,elu:()=>Nu,enableDebugMode:()=>NR,enableProdMode:()=>TR,enclosingPowerOfTwo:()=>Wv,engine:()=>Na,env:()=>H,equal:()=>Qn,erf:()=>hv,euclideanNorm:()=>gv,exp:()=>fn,expandDims:()=>Zt,expm1:()=>yv,eye:()=>Pm,fft:()=>zc,fill:()=>gn,findBackend:()=>MR,findBackendFactory:()=>PR,floor:()=>_u,floorDiv:()=>$m,forceHalfFloat:()=>V_,fused:()=>pl,gather:()=>Eu,gatherND:()=>yT,gather_util:()=>Mx,getBackend:()=>DR,getGradient:()=>xb,getKernel:()=>bh,getKernelsForBackend:()=>xh,getThreadsCount:()=>mpe,gpgpu_util:()=>v_,grad:()=>iO,grads:()=>oO,greater:()=>Nn,greaterEqual:()=>Er,ifft:()=>ul,imag:()=>Cc,image:()=>za,inTopKAsync:()=>bT,initializers:()=>QT,input:()=>bN,io:()=>Ut,irfft:()=>Zm,isFinite:()=>bv,isInf:()=>xv,isNaN:()=>vv,keep:()=>Jt,kernel_impls:()=>cr,layers:()=>eN,leakyRelu:()=>Fc,less:()=>Om,lessEqual:()=>xs,linalg:()=>Uv,linspace:()=>WS,loadGraphModel:()=>S6,loadGraphModelSync:()=>T6,loadLayersModel:()=>xU,localResponseNormalization:()=>wv,log:()=>ea,log1p:()=>Dc,logSigmoid:()=>kv,logSoftmax:()=>zm,logSumExp:()=>Wm,logicalAnd:()=>Ea,logicalNot:()=>Rc,logicalOr:()=>Bm,logicalXor:()=>Iv,losses:()=>$T,lowerBound:()=>VS,matMul:()=>Fe,math:()=>lS,max:()=>ha,maxPool:()=>Dt,maxPool3d:()=>Sv,maxPoolWithArgmax:()=>US,maximum:()=>pr,mean:()=>Nt,memory:()=>kh,meshgrid:()=>GS,metrics:()=>XN,min:()=>il,minimum:()=>$u,mirrorPad:()=>Tv,mod:()=>Nv,model:()=>kU,models:()=>YN,moments:()=>Mc,movingAverage:()=>mT,mul:()=>z,multiRNNCell:()=>HS,multinomial:()=>jS,neg:()=>bt,nextFrame:()=>Gv,norm:()=>Cu,notEqual:()=>ii,oneHot:()=>rl,ones:()=>Zn,onesLike:()=>ta,op:()=>L,outerProduct:()=>qS,pad:()=>ya,pad1d:()=>KS,pad2d:()=>XS,pad3d:()=>YS,pad4d:()=>ZS,pool:()=>Cv,pow:()=>_r,prelu:()=>Oc,print:()=>Ax,prod:()=>_v,profile:()=>ER,raggedGather:()=>JS,raggedRange:()=>QS,raggedTensorToTensor:()=>eT,rand:()=>tT,randomGamma:()=>nT,randomNormal:()=>Um,randomStandardNormal:()=>aT,randomUniform:()=>Au,range:()=>ol,ready:()=>FR,real:()=>sl,reciprocal:()=>Av,registerBackend:()=>Em,registerCallbackConstructor:()=>SU,registerGradient:()=>OI,registerKernel:()=>kc,registerOp:()=>vH,regularizers:()=>ZN,relu:()=>Xe,relu6:()=>Gm,removeBackend:()=>RR,reshape:()=>W,reverse:()=>fa,reverse1d:()=>rT,reverse2d:()=>sT,reverse3d:()=>iT,reverse4d:()=>oT,rfft:()=>Wc,round:()=>Hm,rsqrt:()=>jm,scalar:()=>xe,scatterND:()=>fT,scatter_util:()=>Px,searchSorted:()=>Vm,selu:()=>qm,separableConv2d:()=>vs,sequential:()=>IU,serialization:()=>ne,setBackend:()=>AR,setPlatform:()=>OR,setThreadsCount:()=>hpe,setWasmPath:()=>cpe,setWasmPaths:()=>dpe,setWebGLContext:()=>GC,setdiff1dAsync:()=>lT,sigmoid:()=>da,sign:()=>Fv,signal:()=>ET,sin:()=>Km,sinh:()=>Xm,slice:()=>Be,slice1d:()=>Lc,slice2d:()=>Ym,slice3d:()=>mo,slice4d:()=>ll,slice_util:()=>jt,softmax:()=>Ka,softplus:()=>ho,spaceToBatchND:()=>Pc,sparse:()=>AT,sparseToDense:()=>gT,spectral:()=>_T,split:()=>zn,sqrt:()=>ln,square:()=>ot,squaredDifference:()=>Jm,squeeze:()=>ws,stack:()=>Ft,step:()=>fo,stridedSlice:()=>Dv,string:()=>FT,sub:()=>pe,sum:()=>fe,sumOutType:()=>_m,tan:()=>Rv,tanh:()=>ri,tensor:()=>kn,tensor1d:()=>Ke,tensor2d:()=>_a,tensor3d:()=>_c,tensor4d:()=>Aa,tensor5d:()=>uT,tensor6d:()=>pT,tensor_util:()=>Va,test_util:()=>SS,tidy:()=>P,tile:()=>Ln,time:()=>$R,topk:()=>Mv,train:()=>zs,transpose:()=>Ee,truncatedNormal:()=>Qm,unique:()=>Pv,unregisterGradient:()=>JF,unregisterKernel:()=>ZF,unsortedSegmentSum:()=>ef,unstack:()=>ct,upcastType:()=>ma,upperBound:()=>cT,util:()=>v,valueAndGrad:()=>lO,valueAndGrads:()=>uO,variable:()=>Ov,variableGrads:()=>BS,version:()=>wpe,version_converter:()=>C6,version_core:()=>fM,version_layers:()=>dw,version_wasm:()=>fpe,version_webgl:()=>rJ,webgl:()=>sJ,webgl_util:()=>UC,where:()=>mn,whereAsync:()=>Lv,zeros:()=>It,zerosLike:()=>qe});var rF=Object.create,bx=Object.defineProperty,sF=Object.getOwnPropertyDescriptor,iF=Object.getOwnPropertyNames,oF=Object.getPrototypeOf,lF=Object.prototype.hasOwnProperty,vI=(e=>typeof Gr!="undefined"?Gr:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Gr!="undefined"?Gr:t)[n]}):e)(function(e){if(typeof Gr!="undefined")return Gr.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Bt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),$e=(e,t)=>{for(var n in t)bx(e,n,{get:t[n],enumerable:!0})},uF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of iF(t))!lF.call(e,r)&&r!==n&&bx(e,r,{get:()=>t[r],enumerable:!(a=sF(t,r))||a.enumerable});return e},us=(e,t,n)=>(n=e!=null?rF(oF(e)):{},uF(t||!e||!e.__esModule?bx(n,"default",{value:e,enumerable:!0}):n,e)),pF=Bt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,B){this.low=S|0,this.high=M|0,this.unsigned=!!B}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var B,U,G;return M?(S>>>=0,(G=0<=S&&S<256)&&(U=i[S],U)?U:(B=u(S,(S|0)<0?-1:0,!0),G&&(i[S]=B),B)):(S|=0,(G=-128<=S&&S<128)&&(U=s[S],U)?U:(B=u(S,S<0?-1:0,!1),G&&(s[S]=B),B))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return $}else{if(S<=-y)return R;if(S+1>=y)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,B){return new a(S,M,B)}a.fromBits=u;var p=Math.pow;function d(S,M,B){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(B=M,M=!1):M=!!M,B=B||10,B<2||36<B)throw RangeError("radix");var U;if((U=S.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,B).neg();for(var G=l(p(B,8)),q=x,K=0;K<S.length;K+=8){var Z=Math.min(8,S.length-K),J=parseInt(S.substring(K,K+Z),B);if(Z<8){var ee=l(p(B,Z));q=q.mul(ee).add(l(J))}else q=q.mul(G),q=q.add(l(J))}return q.unsigned=M,q}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,b=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var $=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=$;var R=u(0,-2147483648,!1);a.MIN_VALUE=R;var F=a.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(R)){var M=l(S),B=this.div(M),U=B.mul(M).sub(this);return B.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var G=l(p(S,6),this.unsigned),q=this,K="";;){var Z=q.div(G),J=q.sub(Z.mul(G)).toInt()>>>0,ee=J.toString(S);if(q=Z,q.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(R)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},F.eq=F.equals,F.notEquals=function(S){return!this.eq(S)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(S){return this.comp(S)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(S){return this.comp(S)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(S){return this.comp(S)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(S){return this.comp(S)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),B=S.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(R)?R:this.not().add(I)},F.neg=F.negate,F.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,B=this.high&65535,U=this.low>>>16,G=this.low&65535,q=S.high>>>16,K=S.high&65535,Z=S.low>>>16,J=S.low&65535,ee=0,ae=0,te=0,ie=0;return ie+=G+J,te+=ie>>>16,ie&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=B+K,ee+=ae>>>16,ae&=65535,ee+=M+q,ee&=65535,u(te<<16|ie,ee<<16|ae,this.unsigned)},F.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},F.sub=F.subtract,F.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(R))return S.isOdd()?R:x;if(S.eq(R))return this.isOdd()?R:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var B=this.high>>>16,U=this.high&65535,G=this.low>>>16,q=this.low&65535,K=S.high>>>16,Z=S.high&65535,J=S.low>>>16,ee=S.low&65535,ae=0,te=0,ie=0,oe=0;return oe+=q*ee,ie+=oe>>>16,oe&=65535,ie+=G*ee,te+=ie>>>16,ie&=65535,ie+=q*J,te+=ie>>>16,ie&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=G*J,ae+=te>>>16,te&=65535,te+=q*Z,ae+=te>>>16,te&=65535,ae+=B*ee+U*J+G*Z+q*K,ae&=65535,u(ie<<16|oe,ae<<16|te,this.unsigned)},F.mul=F.multiply,F.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var B,U,G;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;G=w}else{if(this.eq(R)){if(S.eq(I)||S.eq(C))return R;if(S.eq(R))return I;var q=this.shr(1);return B=q.div(S).shl(1),B.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(B)),G=B.add(U.div(S)),G)}else if(S.eq(R))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();G=x}for(U=this;U.gte(S);){B=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(B)/Math.LN2),Z=K<=48?1:p(2,K-48),J=l(B),ee=J.mul(S);ee.isNegative()||ee.gt(U);)B-=Z,J=l(B,this.unsigned),ee=J.mul(S);J.isZero()&&(J=I),G=G.add(J),U=U.sub(ee)}return G},F.div=F.divide,F.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},F.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},F.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},F.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var B=this.low;return u(B>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},F.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,B){return B?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),cF=Bt(()=>{}),dF=Bt(()=>{}),hF=Bt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),bF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xF=Bt(()=>{}),vF=Bt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[I,w(a)]:I==null?x():I,3),E),R=new f(E),F=function(){for(var S=R.g(i),M=u,B=0;S<p;)S=(S+B)*s,M*=s,B=R.g(1);for(;S>=d;)S/=2,M/=2,B>>>=1;return(S+B)/M};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,b(w(R.S),a),(T.pass||C||function(S,M,B,U){return U&&(U.S&&g(U,R),S.state=function(){return g(R,{})}),B?(r[l]=S,M):S})(F,$,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,E=this,$=0,R=E.i=E.j=0,F=E.S=[];for(C||(I=[C++]);$<s;)F[$]=$++;for($=0;$<s;$++)F[$]=F[R=c&R+I[$%C]+(T=F[$])],F[R]=T;(E.g=function(S){for(var M,B=0,U=E.i,G=E.j,q=E.S;S--;)M=q[U=c&U+1],B=B*s+q[c&(q[U]=q[G=c&G+M])+(q[G]=M)];return E.i=U,E.j=G,B})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function y(I,T){var C=[],E=typeof I,$;if(T&&E=="object")for($ in I)try{C.push(y(I[$],T-1))}catch(R){}return C.length?C:E=="string"?I:I+"\0"}function b(I,T){for(var C=I+"",E,$=0;$<C.length;)T[c&$]=c&(E^=T[c&$]*19)+C.charCodeAt($++);return w(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=xF()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Hh=Bt((e,t)=>{var n=hF(),a=mF(),r=fF(),s=gF(),i=yF(),o=bF(),l=vF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),wI=Bt(()=>{}),xx=Bt(()=>{}),dh=Bt(()=>{}),wF=Bt(()=>{}),kF=Bt(()=>{}),IF=Bt(()=>{}),SF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=ze&&it(ue.buffer),dt}function i(){return ue.buffer!=ze&&it(ue.buffer),Hn}function o(){return ue.buffer!=ze&&it(ue.buffer),Mt}function l(){return ue.buffer!=ze&&it(ue.buffer),sn}function u(){return ue.buffer!=ze&&it(ue.buffer),Fn}function p(){return ue.buffer!=ze&&it(ue.buffer),ia}function d(){return ue.buffer!=ze&&it(ue.buffer),Dn}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(D,j){h=D,m=j});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(D,j)=>{throw j},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function $(D){return c.locateFile?c.locateFile(D,E):E+D}var R,F,S,M;function B(D){D instanceof Rs||J("exiting due to exception: "+D)}if(T){I?E=dh().dirname(E)+"/":E=__dirname+"/";var U,G;typeof vI=="function"&&(U=xx(),G=dh()),R=(j,re)=>(j=G.normalize(j),U.readFileSync(j,re?void 0:"utf8")),S=j=>{var re=R(j,!0);return re.buffer||(re=new Uint8Array(re)),re},F=(j,re,ce)=>{j=G.normalize(j),U.readFile(j,function(Ie,je){Ie?ce(Ie):re(je.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Rs))throw j}),process.on("unhandledRejection",function(j){throw j}),x=(j,re)=>{if(wa())throw process.exitCode=j,re;B(re),process.exit(j)},c.inspect=function(){return"[Emscripten Module object]"};let D;try{D=wF()}catch(j){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),j}global.Worker=D.Worker}else(w||I)&&(I?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(R=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.send(null),j.responseText},I&&(S=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.responseType="arraybuffer",j.send(null),new Uint8Array(j.response)}),F=(D,j,re)=>{var ce=new XMLHttpRequest;ce.open("GET",D,!0),ce.responseType="arraybuffer",ce.onload=()=>{if(ce.status==200||ce.status==0&&ce.response){j(ce.response);return}re()},ce.onerror=re,ce.send(null)}),M=D=>document.title=D);T&&typeof performance=="undefined"&&(global.performance=kF().performance);var q=console.log.bind(console),K=console.warn.bind(console);T&&(q=D=>U.writeSync(1,D+`
`),K=D=>U.writeSync(2,D+`
`));var Z=c.print||q,J=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,ie=Atomics.compareExchange,oe;c.wasmBinary&&(oe=c.wasmBinary);var ye=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Lo("no native wasm support detected");var ue,be,ke=!1,Se;function Le(D,j){D||Lo(j)}var Ve=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function nt(D,j,re){for(var ce=j+re,Ie=j;D[Ie]&&!(Ie>=ce);)++Ie;if(Ie-j>16&&D.buffer&&Ve)return Ve.decode(D.buffer instanceof SharedArrayBuffer?D.slice(j,Ie):D.subarray(j,Ie));for(var je="";j<Ie;){var Ce=D[j++];if(!(Ce&128)){je+=String.fromCharCode(Ce);continue}var De=D[j++]&63;if((Ce&224)==192){je+=String.fromCharCode((Ce&31)<<6|De);continue}var Ot=D[j++]&63;if((Ce&240)==224?Ce=(Ce&15)<<12|De<<6|Ot:Ce=(Ce&7)<<18|De<<12|Ot<<6|D[j++]&63,Ce<65536)je+=String.fromCharCode(Ce);else{var la=Ce-65536;je+=String.fromCharCode(55296|la>>10,56320|la&1023)}}return je}function st(D,j){return D?nt(i(),D,j):""}function Je(D,j,re,ce){if(!(ce>0))return 0;for(var Ie=re,je=re+ce-1,Ce=0;Ce<D.length;++Ce){var De=D.charCodeAt(Ce);if(De>=55296&&De<=57343){var Ot=D.charCodeAt(++Ce);De=65536+((De&1023)<<10)|Ot&1023}if(De<=127){if(re>=je)break;j[re++]=De}else if(De<=2047){if(re+1>=je)break;j[re++]=192|De>>6,j[re++]=128|De&63}else if(De<=65535){if(re+2>=je)break;j[re++]=224|De>>12,j[re++]=128|De>>6&63,j[re++]=128|De&63}else{if(re+3>=je)break;j[re++]=240|De>>18,j[re++]=128|De>>12&63,j[re++]=128|De>>6&63,j[re++]=128|De&63}}return j[re]=0,re-Ie}function at(D,j,re){return Je(D,i(),j,re)}var ze,dt,Hn,Mt,sa,sn,Fn,ia,Dn;C&&(ze=c.buffer);function it(D){ze=D,c.HEAP8=dt=new Int8Array(D),c.HEAP16=Mt=new Int16Array(D),c.HEAP32=sn=new Int32Array(D),c.HEAPU8=Hn=new Uint8Array(D),c.HEAPU16=sa=new Uint16Array(D),c.HEAPU32=Fn=new Uint32Array(D),c.HEAPF32=ia=new Float32Array(D),c.HEAPF64=Dn=new Float64Array(D)}var Rn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,ze=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Rn/65536,maximum:32768,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ue&&(ze=ue.buffer),Rn=ze.byteLength,it(ze);var jn,gr=[],Mo=[],Ja=[],mp=!1;function wa(){return ye}function Po(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)bg(c.preRun.shift());bp(gr)}function Xt(){mp=!0,!C&&bp(Mo)}function bd(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)I1(c.postRun.shift());bp(Ja)}}function bg(D){gr.unshift(D)}function xg(D){Mo.unshift(D)}function I1(D){Ja.unshift(D)}var Br=0,Oo=null,yr=null;function S1(D){Br++,c.monitorRunDependencies&&c.monitorRunDependencies(Br)}function T1(D){if(Br--,c.monitorRunDependencies&&c.monitorRunDependencies(Br),Br==0&&(Oo!==null&&(clearInterval(Oo),Oo=null),yr)){var j=yr;yr=null,j()}}function Lo(D){C?postMessage({cmd:"onAbort",arg:D}):c.onAbort&&c.onAbort(D),D="Aborted("+D+")",J(D),ke=!0,Se=1,D+=". Build with -sASSERTIONS for more info.";var j=new WebAssembly.RuntimeError(D);throw m(j),j}var vg="data:application/octet-stream;base64,";function xd(D){return D.startsWith(vg)}function fp(D){return D.startsWith("file://")}var yn;yn="tfjs-backend-wasm-threaded-simd.wasm",xd(yn)||(yn=$(yn));function vd(D){try{if(D==yn&&oe)return new Uint8Array(oe);if(S)return S(D);throw"both async and sync fetching of the wasm failed"}catch(j){Lo(j)}}function wg(){if(!oe&&(w||I)){if(typeof fetch=="function"&&!fp(yn))return fetch(yn,{credentials:"same-origin"}).then(function(D){if(!D.ok)throw"failed to load wasm binary file at '"+yn+"'";return D.arrayBuffer()}).catch(function(){return vd(yn)});if(F)return new Promise(function(D,j){F(yn,function(re){D(new Uint8Array(re))},j)})}return Promise.resolve().then(function(){return vd(yn)})}function kg(){var D={env:Fd,wasi_snapshot_preview1:Fd};function j(Ce,De){var Ot=Ce.exports;if(c.asm=Ot,Fg(c.asm._emscripten_tls_init),jn=c.asm.__indirect_function_table,xg(c.asm.__wasm_call_ctors),be=De,!C){var la=Ae.unusedWorkers.length;Ae.unusedWorkers.forEach(function(xr){Ae.loadWasmModuleToWorker(xr,function(){--la||T1("wasm-instantiate")})})}}C||S1("wasm-instantiate");function re(Ce){j(Ce.instance,Ce.module)}function ce(Ce){return wg().then(function(De){return WebAssembly.instantiate(De,D)}).then(function(De){return De}).then(Ce,function(De){J("failed to asynchronously prepare wasm: "+De),Lo(De)})}function Ie(){return!oe&&typeof WebAssembly.instantiateStreaming=="function"&&!xd(yn)&&!fp(yn)&&!T&&typeof fetch=="function"?fetch(yn,{credentials:"same-origin"}).then(function(Ce){var De=WebAssembly.instantiateStreaming(Ce,D);return De.then(re,function(Ot){return J("wasm streaming compile failed: "+Ot),J("falling back to ArrayBuffer instantiation"),ce(re)})}):ce(re)}if(c.instantiateWasm)try{var je=c.instantiateWasm(D,j);return je}catch(Ce){J("Module.instantiateWasm callback failed with error: "+Ce),m(Ce)}return Ie().catch(m),{}}var Ig,N1,Sg={};function Rs(D){this.name="ExitStatus",this.message="Program terminated with exit("+D+")",this.status=D}function Tg(D){var j=Ae.pthreads[D];delete Ae.pthreads[D],j.terminate(),eb(D),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(j),1),j.pthread_ptr=0}function Ng(D){var j=Ae.pthreads[D];j.postMessage({cmd:"cancel"})}function gp(D){var j=Ae.pthreads[D];Le(j),Ae.returnWorkerToPool(j)}function wd(D){var j=Ae.getNewWorker();if(!j)return 6;Ae.runningWorkers.push(j),Ae.pthreads[D.pthread_ptr]=j,j.pthread_ptr=D.pthread_ptr;var re={cmd:"run",start_routine:D.startRoutine,arg:D.arg,pthread_ptr:D.pthread_ptr};return j.runPthread=()=>{re.time=performance.now(),j.postMessage(re,D.transferList)},j.loaded&&(j.runPthread(),delete j.runPthread),0}var kd={varargs:void 0,get:function(){kd.varargs+=4;var D=l()[kd.varargs-4>>2];return D},getStr:function(D){var j=st(D);return j}};function yp(D){if(C)return Vr(1,1,D);Se=D,wa()||(Ae.terminateAllThreads(),c.onExit&&c.onExit(D),ke=!0),x(D,new Rs(D))}function C1(D,j){if(Se=D,!j&&C)throw Sd(D),"unwind";yp(D)}var Id=C1;function Cg(D){if(D instanceof Rs||D=="unwind")return Se;x(1,D)}var Ae={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Ae.initWorker():Ae.initMainThread()},initMainThread:function(){for(var D=8;D--;)Ae.allocateUnusedWorker()},initWorker:function(){ye=!1},setExitStatus:function(D){Se=D},terminateAllThreads:function(){for(var D of Object.values(Ae.pthreads))Ae.returnWorkerToPool(D);for(var D of Ae.unusedWorkers)D.terminate();Ae.unusedWorkers=[]},returnWorkerToPool:function(D){var j=D.pthread_ptr;delete Ae.pthreads[j],Ae.unusedWorkers.push(D),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(D),1),D.pthread_ptr=0,eb(j)},receiveObjectTransfer:function(D){},threadInitTLS:function(){Ae.tlsInitFunctions.forEach(D=>D())},loadWasmModuleToWorker:function(D,j){D.onmessage=re=>{var ce=re.data,Ie=ce.cmd;if(D.pthread_ptr&&(Ae.currentProxiedOperationCallerThread=D.pthread_ptr),ce.targetThread&&ce.targetThread!=Ld()){var je=Ae.pthreads[ce.targetThread];je?je.postMessage(ce,ce.transferList):J('Internal error! Worker sent a message "'+Ie+'" to target pthread '+ce.targetThread+", but that thread no longer exists!"),Ae.currentProxiedOperationCallerThread=void 0;return}Ie==="processProxyingQueue"?xp(ce.queue):Ie==="spawnThread"?wd(ce):Ie==="cleanupThread"?gp(ce.thread):Ie==="killThread"?Tg(ce.thread):Ie==="cancelThread"?Ng(ce.thread):Ie==="loaded"?(D.loaded=!0,j&&j(D),D.runPthread&&(D.runPthread(),delete D.runPthread)):Ie==="print"?Z("Thread "+ce.threadId+": "+ce.text):Ie==="printErr"?J("Thread "+ce.threadId+": "+ce.text):Ie==="alert"?alert("Thread "+ce.threadId+": "+ce.text):ce.target==="setimmediate"?D.postMessage(ce):Ie==="onAbort"?c.onAbort&&c.onAbort(ce.arg):Ie&&J("worker sent an unknown command "+Ie),Ae.currentProxiedOperationCallerThread=void 0},D.onerror=re=>{var ce="worker sent an error!";throw J(ce+" "+re.filename+":"+re.lineno+": "+re.message),re},T&&(D.on("message",function(re){D.onmessage({data:re})}),D.on("error",function(re){D.onerror(re)}),D.on("detachedExit",function(){})),D.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:be})},allocateUnusedWorker:function(){var D=$("tfjs-backend-wasm-threaded-simd.worker.js");Ae.unusedWorkers.push(new Worker(D))},getNewWorker:function(){return Ae.unusedWorkers.length==0&&(Ae.allocateUnusedWorker(),Ae.loadWasmModuleToWorker(Ae.unusedWorkers[0])),Ae.unusedWorkers.pop()}};c.PThread=Ae;function bp(D){for(;D.length>0;)D.shift()(c)}function _g(D){var j=tb(),re=D();return zd(j),re}function _1(D){return D}function E1(D){var j=/\b_Z[\w\d_]+/g;return D.replace(j,function(re){var ce=re;return re===ce?re:ce+" ["+re+"]"})}function Eg(){var D=Ld(),j=l()[D+44>>2],re=l()[D+48>>2],ce=j-re;P1(j,ce),zd(j)}c.establishStackSpace=Eg;function Sd(D){if(C)return Vr(2,0,D);try{Id(D)}catch(j){Cg(j)}}var zo=[];function $g(D){var j=zo[D];return j||(D>=zo.length&&(zo.length=D+1),zo[D]=j=jn.get(D)),j}function Ag(D,j){var re=$g(D)(j);wa()?Ae.setExitStatus(re):M1(re)}c.invokeEntryPoint=Ag;function $1(){var D=new Error;if(!D.stack){try{throw new Error}catch(j){D=j}if(!D.stack)return"(no stack trace available)"}return D.stack.toString()}function Fg(D){Ae.tlsInitFunctions.push(D)}function Dg(D,j){s().set(D,j)}function Rg(D){F1(D,!I,1,!w),Ae.threadInitTLS()}function Mg(D){C?postMessage({cmd:"cleanupThread",thread:D}):gp(D)}function Td(D,j,re,ce){return C?Vr(3,1,D,j,re,ce):Nd(D,j,re,ce)}function Nd(D,j,re,ce){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ie=[],je=0;if(C&&(Ie.length===0||je))return Td(D,j,re,ce);if(je)return je;var Ce={startRoutine:re,pthread_ptr:D,arg:ce,transferList:Ie};return C?(Ce.cmd="spawnThread",postMessage(Ce,Ie),0):wd(Ce)}function Pg(){return 2097152}var Og=!0;function Lg(){return Og}function xp(D){Atomics.store(l(),D>>2,1),Ld()&&R1(D),Atomics.compareExchange(l(),D>>2,1,0)}c.executeNotifiedProxyingQueue=xp;function zg(D,j,re,ce){if(D==j)setTimeout(()=>xp(ce));else if(C)postMessage({targetThread:D,cmd:"processProxyingQueue",queue:ce});else{var Ie=Ae.pthreads[D];if(!Ie)return;Ie.postMessage({cmd:"processProxyingQueue",queue:ce})}return 1}function Wg(D,j,re){return-1}function Bg(){Lo("")}function Ms(D){Ms.shown||(Ms.shown={}),Ms.shown[D]||(Ms.shown[D]=1,T&&(D="warning: "+D),J(D))}function Vg(){T||I||Ms("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Ug(){return Date.now()}function Cd(){return 2147483648}function Gg(){return Cd()}var Wo;T?Wo=()=>{var D=process.hrtime();return D[0]*1e3+D[1]/1e6}:C?Wo=()=>performance.now()-c.__performance_now_clock_drift:Wo=()=>performance.now();function Hg(D,j,re){i().copyWithin(D,j,j+re)}function jg(){return T?IF().cpus().length:navigator.hardwareConcurrency}function Vr(D,j){var re=arguments.length-2,ce=arguments;return _g(()=>{for(var Ie=re,je=Wd(Ie*8),Ce=je>>3,De=0;De<re;De++){var Ot=ce[2+De];d()[Ce+De]=Ot}return D1(D,Ie,je,j)})}var vp=[];function qg(D,j,re){vp.length=j;for(var ce=re>>3,Ie=0;Ie<j;Ie++)vp[Ie]=d()[ce+Ie];var je=D<0,Ce=je?Sg[-D-1]:ty[D];return Ce.apply(null,vp)}function Kg(D){try{return ue.grow(D-ze.byteLength+65535>>>16),it(ue.buffer),1}catch(j){}}function Xg(D){var j=i().length;if(D=D>>>0,D<=j)return!1;var re=Cd();if(D>re)return!1;let ce=(Ot,la)=>Ot+(la-Ot%la)%la;for(var Ie=1;Ie<=4;Ie*=2){var je=j*(1+.2/Ie);je=Math.min(je,D+100663296);var Ce=Math.min(re,ce(Math.max(D,je),65536)),De=Kg(Ce);if(De)return!0}return!1}function Yg(){throw"unwind"}function _d(D){return C?Vr(4,1,D):52}function Ed(D,j,re,ce,Ie){return C?Vr(5,1,D,j,re,ce,Ie):70}var Zg=[null,[],[]];function Jg(D,j){var re=Zg[D];j===0||j===10?((D===1?Z:J)(nt(re,0)),re.length=0):re.push(j)}function $d(D,j,re,ce){if(C)return Vr(6,1,D,j,re,ce);for(var Ie=0,je=0;je<re;je++){var Ce=u()[j>>2],De=u()[j+4>>2];j+=8;for(var Ot=0;Ot<De;Ot++)Jg(D,i()[Ce+Ot]);Ie+=De}return u()[ce>>2]=Ie,0}function Ad(D){var j=c["_"+D];return j}function Qg(D,j,re,ce,Ie){var je={string:ua=>{var Go=0;if(ua!=null&&ua!==0){var z1=(ua.length<<2)+1;Go=Wd(z1),at(ua,Go,z1)}return Go},array:ua=>{var Go=Wd(ua.length);return Dg(ua,Go),Go}};function Ce(ua){return j==="string"?st(ua):j==="boolean"?Boolean(ua):ua}var De=Ad(D),Ot=[],la=0;if(ce)for(var xr=0;xr<ce.length;xr++){var L1=je[re[xr]];L1?(la===0&&(la=tb()),Ot[xr]=L1(ce[xr])):Ot[xr]=ce[xr]}var nb=De.apply(null,Ot);function nF(ua){return la!==0&&zd(la),Ce(ua)}return nb=nF(nb),nb}function ey(D,j,re,ce){re=re||[];var Ie=re.every(Ce=>Ce==="number"||Ce==="boolean"),je=j!=="string";return je&&Ie&&!ce?Ad(D):function(){return Qg(D,j,re,arguments,ce)}}Ae.init();var ty=[null,yp,Sd,Td,_d,Ed,$d],Fd={__emscripten_init_main_thread_js:Rg,__emscripten_thread_cleanup:Mg,__pthread_create_js:Nd,_emscripten_default_pthread_stack_size:Pg,_emscripten_get_now_is_monotonic:Lg,_emscripten_notify_task_queue:zg,_emscripten_set_offscreencanvas_size:Wg,abort:Bg,emscripten_check_blocking_allowed:Vg,emscripten_date_now:Ug,emscripten_get_heap_max:Gg,emscripten_get_now:Wo,emscripten_memcpy_big:Hg,emscripten_num_logical_cores:jg,emscripten_receive_on_main_thread_js:qg,emscripten_resize_heap:Xg,emscripten_unwind_to_js_event_loop:Yg,exit:Id,fd_close:_d,fd_seek:Ed,fd_write:$d,memory:ue||c.wasmMemory},A1=kg(),ny=c.___wasm_call_ctors=function(){return(ny=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},ay=c._init=function(){return(ay=c._init=c.asm.init).apply(null,arguments)},ry=c._init_with_threads_count=function(){return(ry=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},sy=c._get_threads_count=function(){return(sy=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},iy=c._register_tensor=function(){return(iy=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},oy=c._dispose_data=function(){return(oy=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},ly=c._dispose=function(){return(ly=c._dispose=c.asm.dispose).apply(null,arguments)},uy=c._Abs=function(){return(uy=c._Abs=c.asm.Abs).apply(null,arguments)},py=c._Add=function(){return(py=c._Add=c.asm.Add).apply(null,arguments)},cy=c._AddN=function(){return(cy=c._AddN=c.asm.AddN).apply(null,arguments)},dy=c._All=function(){return(dy=c._All=c.asm.All).apply(null,arguments)},hy=c._Any=function(){return(hy=c._Any=c.asm.Any).apply(null,arguments)},my=c._ArgMax=function(){return(my=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},fy=c._AvgPool=function(){return(fy=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},gy=c._BatchMatMul=function(){return(gy=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},yy=c._Ceil=function(){return(yy=c._Ceil=c.asm.Ceil).apply(null,arguments)},by=c._ClipByValue=function(){return(by=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},xy=c._Conv2D=function(){return(xy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},vy=c._Conv2DBackpropInput=function(){return(vy=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},wy=c._Cos=function(){return(wy=c._Cos=c.asm.Cos).apply(null,arguments)},ky=c._Cosh=function(){return(ky=c._Cosh=c.asm.Cosh).apply(null,arguments)},Iy=c._CropAndResize=function(){return(Iy=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Sy=c._Cumprod=function(){return(Sy=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Ty=c._Cumsum=function(){return(Ty=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Ny=c._DepthToSpace=function(){return(Ny=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},Cy=c._DepthwiseConv2dNative=function(){return(Cy=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},_y=c._Elu=function(){return(_y=c._Elu=c.asm.Elu).apply(null,arguments)},Ey=c._Equal=function(){return(Ey=c._Equal=c.asm.Equal).apply(null,arguments)},$y=c._Exp=function(){return($y=c._Exp=c.asm.Exp).apply(null,arguments)},Ay=c._FlipLeftRight=function(){return(Ay=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},Fy=c._Floor=function(){return(Fy=c._Floor=c.asm.Floor).apply(null,arguments)},Dy=c._FloorDiv=function(){return(Dy=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},Ry=c._FusedBatchNorm=function(){return(Ry=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},My=c._FusedConv2D=function(){return(My=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},Py=c._FusedDepthwiseConv2D=function(){return(Py=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},Oy=c._Gather=function(){return(Oy=c._Gather=c.asm.Gather).apply(null,arguments)},Ly=c._GatherNd=function(){return(Ly=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},zy=c._Greater=function(){return(zy=c._Greater=c.asm.Greater).apply(null,arguments)},Wy=c._GreaterEqual=function(){return(Wy=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},By=c._LeakyRelu=function(){return(By=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Vy=c._Less=function(){return(Vy=c._Less=c.asm.Less).apply(null,arguments)},Uy=c._LessEqual=function(){return(Uy=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},Gy=c._Log=function(){return(Gy=c._Log=c.asm.Log).apply(null,arguments)},Hy=c._LogicalAnd=function(){return(Hy=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},jy=c._LogicalNot=function(){return(jy=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},qy=c._LogicalOr=function(){return(qy=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},Ky=c._LogicalXor=function(){return(Ky=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},Xy=c._Max=function(){return(Xy=c._Max=c.asm.Max).apply(null,arguments)},Dd=c._MaxPool=function(){return(Dd=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Rd=c._Maximum=function(){return(Rd=c._Maximum=c.asm.Maximum).apply(null,arguments)},wp=c._Mean=function(){return(wp=c._Mean=c.asm.Mean).apply(null,arguments)},Yy=c._Min=function(){return(Yy=c._Min=c.asm.Min).apply(null,arguments)},Zy=c._Minimum=function(){return(Zy=c._Minimum=c.asm.Minimum).apply(null,arguments)},Bo=c._MirrorPad=function(){return(Bo=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Md=c._Multiply=function(){return(Md=c._Multiply=c.asm.Multiply).apply(null,arguments)},Vo=c._Neg=function(){return(Vo=c._Neg=c.asm.Neg).apply(null,arguments)},Uo=c._NonMaxSuppressionV3=function(){return(Uo=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Jy=c._NonMaxSuppressionV4=function(){return(Jy=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},X=c._NonMaxSuppressionV5=function(){return(X=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},se=c._NotEqual=function(){return(se=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},we=c._OneHot=function(){return(we=c._OneHot=c.asm.OneHot).apply(null,arguments)},He=c._PadV2=function(){return(He=c._PadV2=c.asm.PadV2).apply(null,arguments)},wt=c._Pow=function(){return(wt=c._Pow=c.asm.Pow).apply(null,arguments)},kt=c._Prelu=function(){return(kt=c._Prelu=c.asm.Prelu).apply(null,arguments)},Ue=c._Prod=function(){return(Ue=c._Prod=c.asm.Prod).apply(null,arguments)},We=c._RealDiv=function(){return(We=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},Pt=c._Relu=function(){return(Pt=c._Relu=c.asm.Relu).apply(null,arguments)},oa=c._Relu6=function(){return(oa=c._Relu6=c.asm.Relu6).apply(null,arguments)},br=c._ResizeBilinear=function(){return(br=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Pd=c._ResizeNearestNeighbor=function(){return(Pd=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},kp=c._Reverse=function(){return(kp=c._Reverse=c.asm.Reverse).apply(null,arguments)},Qy=c._RotateWithOffset=function(){return(Qy=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},Mn=c._Round=function(){return(Mn=c._Round=c.asm.Round).apply(null,arguments)},Ur=c._Rsqrt=function(){return(Ur=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},Od=c._ScatterNd=function(){return(Od=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},SA=c._SelectV2=function(){return(SA=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},TA=c._Sigmoid=function(){return(TA=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},NA=c._Sin=function(){return(NA=c._Sin=c.asm.Sin).apply(null,arguments)},CA=c._Softmax=function(){return(CA=c._Softmax=c.asm.Softmax).apply(null,arguments)},_A=c._SparseFillEmptyRows=function(){return(_A=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},EA=c._SparseReshape=function(){return(EA=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},$A=c._SparseSegmentReduction=function(){return($A=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},AA=c._Sqrt=function(){return(AA=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},FA=c._Square=function(){return(FA=c._Square=c.asm.Square).apply(null,arguments)},DA=c._SquaredDifference=function(){return(DA=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},RA=c._Step=function(){return(RA=c._Step=c.asm.Step).apply(null,arguments)},MA=c._StridedSlice=function(){return(MA=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},PA=c._Sub=function(){return(PA=c._Sub=c.asm.Sub).apply(null,arguments)},OA=c._Sum=function(){return(OA=c._Sum=c.asm.Sum).apply(null,arguments)},LA=c._Tan=function(){return(LA=c._Tan=c.asm.Tan).apply(null,arguments)},zA=c._Tanh=function(){return(zA=c._Tanh=c.asm.Tanh).apply(null,arguments)},WA=c._Tile=function(){return(WA=c._Tile=c.asm.Tile).apply(null,arguments)},BA=c._TopK=function(){return(BA=c._TopK=c.asm.TopK).apply(null,arguments)},VA=c._Transform=function(){return(VA=c._Transform=c.asm.Transform).apply(null,arguments)},UA=c._Transpose=function(){return(UA=c._Transpose=c.asm.Transpose).apply(null,arguments)},GA=c.__FusedMatMul=function(){return(GA=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},HA=c._malloc=function(){return(HA=c._malloc=c.asm.malloc).apply(null,arguments)},jA=c._free=function(){return(jA=c._free=c.asm.free).apply(null,arguments)},qA=c.__emscripten_tls_init=function(){return(qA=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},Ld=c._pthread_self=function(){return(Ld=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},KA=c.___errno_location=function(){return(KA=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},F1=c.__emscripten_thread_init=function(){return(F1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},XA=c.__emscripten_thread_crashed=function(){return(XA=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},YA=c._emscripten_main_thread_process_queued_calls=function(){return(YA=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},ZA=c._emscripten_main_browser_thread_id=function(){return(ZA=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},D1=c._emscripten_run_in_main_runtime_thread_js=function(){return(D1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},JA=c._emscripten_dispatch_to_thread_=function(){return(JA=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},R1=c.__emscripten_proxy_execute_task_queue=function(){return(R1=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},eb=c.__emscripten_thread_free_data=function(){return(eb=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},M1=c.__emscripten_thread_exit=function(){return(M1=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},P1=c._emscripten_stack_set_limits=function(){return(P1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},tb=c.stackSave=function(){return(tb=c.stackSave=c.asm.stackSave).apply(null,arguments)},zd=c.stackRestore=function(){return(zd=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},Wd=c.stackAlloc=function(){return(Wd=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},QA=c.dynCall_iijjiiii=function(){return(QA=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},eF=c.dynCall_jiji=function(){return(eF=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=wa,c.wasmMemory=ue,c.cwrap=ey,c.ExitStatus=Rs,c.PThread=Ae;var Bd;yr=function D(){Bd||O1(),Bd||(yr=D)};function O1(D){if(D=D||y,Br>0)return;if(C){h(c),Xt(),postMessage({cmd:"loaded"});return}if(Po(),Br>0)return;function j(){Bd||(Bd=!0,c.calledRun=!0,!ke&&(Xt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),bd()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),j()},1)):j()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();O1();var Vd;f&&(Vd={uncaughtException:process.listeners("uncaughtException").filter(function(D){return!f.uncaughtException.indexOf(D)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(D){return!f.unhandledRejection.indexOf(D)>-1})});var Ud;if(typeof WasmBackendModule!="undefined")Ud=WasmBackendModule;else if(typeof r!="undefined")Ud=r;else throw new Error("Could not find wasm module in post.js");if(Vd){var tF=Ud._dispose;Ud._dispose=function(){tF(),Vd.uncaughtException.forEach(function(D){process.removeListener("uncaughtException",D)}),Vd.unhandledRejection.forEach(function(D){process.removeListener("unhandledRejection",D)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),TF=Bt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),NF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(X,se){i=X,o=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(X,se)=>{throw se},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(X){return s.locateFile?s.locateFile(X,g):g+X}var b,x,w,I;function T(X){X instanceof Oo||R("exiting due to exception: "+X)}if(f){m?g=dh().dirname(g)+"/":g=__dirname+"/";var C,E;typeof vI=="function"&&(C=xx(),E=dh()),b=(X,se)=>(X=E.normalize(X),C.readFileSync(X,se?void 0:"utf8")),w=X=>{var se=b(X,!0);return se.buffer||(se=new Uint8Array(se)),se},x=(X,se,we)=>{X=E.normalize(X),C.readFile(X,function(He,wt){He?we(He):se(wt.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Oo))throw X}),process.on("unhandledRejection",function(X){throw X}),c=(X,se)=>{if(Hn())throw process.exitCode=X,se;T(se),process.exit(X)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},m&&(w=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=(X,se,we)=>{var He=new XMLHttpRequest;He.open("GET",X,!0),He.responseType="arraybuffer",He.onload=()=>{if(He.status==200||He.status==0&&He.response){se(He.response);return}we()},He.onerror=we,He.send(null)},I=X=>document.title=X);var $=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var F=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ja("no native wasm support detected");var B,U=!1,G;function q(X,se){X||Ja(se)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(X,se,we){for(var He=se+we,wt=se;X[wt]&&!(wt>=He);)++wt;if(wt-se>16&&X.buffer&&K)return K.decode(X.subarray(se,wt));for(var kt="";se<wt;){var Ue=X[se++];if(!(Ue&128)){kt+=String.fromCharCode(Ue);continue}var We=X[se++]&63;if((Ue&224)==192){kt+=String.fromCharCode((Ue&31)<<6|We);continue}var Pt=X[se++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|We<<6|Pt:Ue=(Ue&7)<<18|We<<12|Pt<<6|X[se++]&63,Ue<65536)kt+=String.fromCharCode(Ue);else{var oa=Ue-65536;kt+=String.fromCharCode(55296|oa>>10,56320|oa&1023)}}return kt}function J(X,se){return X?Z(oe,X,se):""}function ee(X,se,we,He){if(!(He>0))return 0;for(var wt=we,kt=we+He-1,Ue=0;Ue<X.length;++Ue){var We=X.charCodeAt(Ue);if(We>=55296&&We<=57343){var Pt=X.charCodeAt(++Ue);We=65536+((We&1023)<<10)|Pt&1023}if(We<=127){if(we>=kt)break;se[we++]=We}else if(We<=2047){if(we+1>=kt)break;se[we++]=192|We>>6,se[we++]=128|We&63}else if(We<=65535){if(we+2>=kt)break;se[we++]=224|We>>12,se[we++]=128|We>>6&63,se[we++]=128|We&63}else{if(we+3>=kt)break;se[we++]=240|We>>18,se[we++]=128|We>>12&63,se[we++]=128|We>>6&63,se[we++]=128|We&63}}return se[we]=0,we-wt}function ae(X,se,we){return ee(X,oe,se,we)}var te,ie,oe,ye,ue,be,ke,Se,Le;function Ve(X){te=X,s.HEAP8=ie=new Int8Array(X),s.HEAP16=ye=new Int16Array(X),s.HEAP32=be=new Int32Array(X),s.HEAPU8=oe=new Uint8Array(X),s.HEAPU16=ue=new Uint16Array(X),s.HEAPU32=ke=new Uint32Array(X),s.HEAPF32=Se=new Float32Array(X),s.HEAPF64=Le=new Float64Array(X)}var nt=s.INITIAL_MEMORY||16777216,st,Je=[],at=[],ze=[],dt=!1;function Hn(){return M}function Mt(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Fn(s.preRun.shift());yr(Je)}function sa(){dt=!0,yr(at)}function sn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Dn(s.postRun.shift());yr(ze)}function Fn(X){Je.unshift(X)}function ia(X){at.unshift(X)}function Dn(X){ze.unshift(X)}var it=0,Rn=null,jn=null;function gr(X){it++,s.monitorRunDependencies&&s.monitorRunDependencies(it)}function Mo(X){if(it--,s.monitorRunDependencies&&s.monitorRunDependencies(it),it==0&&(Rn!==null&&(clearInterval(Rn),Rn=null),jn)){var se=jn;jn=null,se()}}function Ja(X){s.onAbort&&s.onAbort(X),X="Aborted("+X+")",R(X),U=!0,G=1,X+=". Build with -sASSERTIONS for more info.";var se=new WebAssembly.RuntimeError(X);throw o(se),se}var mp="data:application/octet-stream;base64,";function wa(X){return X.startsWith(mp)}function Po(X){return X.startsWith("file://")}var Xt;Xt="tfjs-backend-wasm.wasm",wa(Xt)||(Xt=y(Xt));function bd(X){try{if(X==Xt&&S)return new Uint8Array(S);if(w)return w(X);throw"both async and sync fetching of the wasm failed"}catch(se){Ja(se)}}function bg(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Po(Xt))return fetch(Xt,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Xt+"'";return X.arrayBuffer()}).catch(function(){return bd(Xt)});if(x)return new Promise(function(X,se){x(Xt,function(we){X(new Uint8Array(we))},se)})}return Promise.resolve().then(function(){return bd(Xt)})}function xg(){var X={env:yp,wasi_snapshot_preview1:yp};function se(Ue,We){var Pt=Ue.exports;s.asm=Pt,B=s.asm.memory,Ve(B.buffer),st=s.asm.__indirect_function_table,ia(s.asm.__wasm_call_ctors),Mo("wasm-instantiate")}gr("wasm-instantiate");function we(Ue){se(Ue.instance)}function He(Ue){return bg().then(function(We){return WebAssembly.instantiate(We,X)}).then(function(We){return We}).then(Ue,function(We){R("failed to asynchronously prepare wasm: "+We),Ja(We)})}function wt(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!wa(Xt)&&!Po(Xt)&&!f&&typeof fetch=="function"?fetch(Xt,{credentials:"same-origin"}).then(function(Ue){var We=WebAssembly.instantiateStreaming(Ue,X);return We.then(we,function(Pt){return R("wasm streaming compile failed: "+Pt),R("falling back to ArrayBuffer instantiation"),He(we)})}):He(we)}if(s.instantiateWasm)try{var kt=s.instantiateWasm(X,se);return kt}catch(Ue){R("Module.instantiateWasm callback failed with error: "+Ue),o(Ue)}return wt().catch(o),{}}var I1,Br;function Oo(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}function yr(X){for(;X.length>0;)X.shift()(s)}function S1(X){return X}function T1(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(we){var He=we;return we===He?we:He+" ["+we+"]"})}function Lo(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function vg(X,se){ie.set(X,se)}function xd(){Ja("")}function fp(){return 2147483648}function yn(){return fp()}function vd(X,se,we){oe.copyWithin(X,se,se+we)}function wg(X){try{return B.grow(X-te.byteLength+65535>>>16),Ve(B.buffer),1}catch(se){}}function kg(X){var se=oe.length;X=X>>>0;var we=fp();if(X>we)return!1;let He=(Pt,oa)=>Pt+(oa-Pt%oa)%oa;for(var wt=1;wt<=4;wt*=2){var kt=se*(1+.2/wt);kt=Math.min(kt,X+100663296);var Ue=Math.min(we,He(Math.max(X,kt),65536)),We=wg(Ue);if(We)return!0}return!1}var Ig={varargs:void 0,get:function(){Ig.varargs+=4;var X=be[Ig.varargs-4>>2];return X},getStr:function(X){var se=J(X);return se}};function N1(X){return 52}function Sg(X,se,we,He,wt){return 70}var Rs=[null,[],[]];function Tg(X,se){var we=Rs[X];se===0||se===10?((X===1?$:R)(Z(we,0)),we.length=0):we.push(se)}function Ng(X,se,we,He){for(var wt=0,kt=0;kt<we;kt++){var Ue=ke[se>>2],We=ke[se+4>>2];se+=8;for(var Pt=0;Pt<We;Pt++)Tg(X,oe[Ue+Pt]);wt+=We}return ke[He>>2]=wt,0}function gp(X){var se=s["_"+X];return se}function wd(X,se,we,He,wt){var kt={string:Mn=>{var Ur=0;if(Mn!=null&&Mn!==0){var Od=(Mn.length<<2)+1;Ur=wp(Od),ae(Mn,Ur,Od)}return Ur},array:Mn=>{var Ur=wp(Mn.length);return vg(Mn,Ur),Ur}};function Ue(Mn){return se==="string"?J(Mn):se==="boolean"?Boolean(Mn):Mn}var We=gp(X),Pt=[],oa=0;if(He)for(var br=0;br<He.length;br++){var Pd=kt[we[br]];Pd?(oa===0&&(oa=Dd()),Pt[br]=Pd(He[br])):Pt[br]=He[br]}var kp=We.apply(null,Pt);function Qy(Mn){return oa!==0&&Rd(oa),Ue(Mn)}return kp=Qy(kp),kp}function kd(X,se,we,He){we=we||[];var wt=we.every(Ue=>Ue==="number"||Ue==="boolean"),kt=se!=="string";return kt&&wt&&!He?gp(X):function(){return wd(X,se,we,arguments,He)}}var yp={abort:xd,emscripten_get_heap_max:yn,emscripten_memcpy_big:vd,emscripten_resize_heap:kg,fd_close:N1,fd_seek:Sg,fd_write:Ng},C1=xg(),Id=s.___wasm_call_ctors=function(){return(Id=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Cg=s._init=function(){return(Cg=s._init=s.asm.init).apply(null,arguments)},Ae=s._init_with_threads_count=function(){return(Ae=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},bp=s._get_threads_count=function(){return(bp=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},_g=s._register_tensor=function(){return(_g=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},_1=s._dispose_data=function(){return(_1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},E1=s._dispose=function(){return(E1=s._dispose=s.asm.dispose).apply(null,arguments)},Eg=s._Abs=function(){return(Eg=s._Abs=s.asm.Abs).apply(null,arguments)},Sd=s._Add=function(){return(Sd=s._Add=s.asm.Add).apply(null,arguments)},zo=s._AddN=function(){return(zo=s._AddN=s.asm.AddN).apply(null,arguments)},$g=s._All=function(){return($g=s._All=s.asm.All).apply(null,arguments)},Ag=s._Any=function(){return(Ag=s._Any=s.asm.Any).apply(null,arguments)},$1=s._ArgMax=function(){return($1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Fg=s._AvgPool=function(){return(Fg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Dg=s._BatchMatMul=function(){return(Dg=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Rg=s._Ceil=function(){return(Rg=s._Ceil=s.asm.Ceil).apply(null,arguments)},Mg=s._ClipByValue=function(){return(Mg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Td=s._Conv2D=function(){return(Td=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Nd=s._Conv2DBackpropInput=function(){return(Nd=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Pg=s._Cos=function(){return(Pg=s._Cos=s.asm.Cos).apply(null,arguments)},Og=s._Cosh=function(){return(Og=s._Cosh=s.asm.Cosh).apply(null,arguments)},Lg=s._CropAndResize=function(){return(Lg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},xp=s._Cumprod=function(){return(xp=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},zg=s._Cumsum=function(){return(zg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Wg=s._DepthToSpace=function(){return(Wg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Bg=s._DepthwiseConv2dNative=function(){return(Bg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Ms=s._Elu=function(){return(Ms=s._Elu=s.asm.Elu).apply(null,arguments)},Vg=s._Equal=function(){return(Vg=s._Equal=s.asm.Equal).apply(null,arguments)},Ug=s._Exp=function(){return(Ug=s._Exp=s.asm.Exp).apply(null,arguments)},Cd=s._FlipLeftRight=function(){return(Cd=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Gg=s._Floor=function(){return(Gg=s._Floor=s.asm.Floor).apply(null,arguments)},Wo=s._FloorDiv=function(){return(Wo=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Hg=s._FusedBatchNorm=function(){return(Hg=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},jg=s._FusedConv2D=function(){return(jg=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Vr=s._FusedDepthwiseConv2D=function(){return(Vr=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},vp=s._Gather=function(){return(vp=s._Gather=s.asm.Gather).apply(null,arguments)},qg=s._GatherNd=function(){return(qg=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Kg=s._Greater=function(){return(Kg=s._Greater=s.asm.Greater).apply(null,arguments)},Xg=s._GreaterEqual=function(){return(Xg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Yg=s._LeakyRelu=function(){return(Yg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},_d=s._Less=function(){return(_d=s._Less=s.asm.Less).apply(null,arguments)},Ed=s._LessEqual=function(){return(Ed=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Zg=s._Log=function(){return(Zg=s._Log=s.asm.Log).apply(null,arguments)},Jg=s._LogicalAnd=function(){return(Jg=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},$d=s._LogicalNot=function(){return($d=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},Ad=s._LogicalOr=function(){return(Ad=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Qg=s._LogicalXor=function(){return(Qg=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},ey=s._Max=function(){return(ey=s._Max=s.asm.Max).apply(null,arguments)},ty=s._MaxPool=function(){return(ty=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Fd=s._Maximum=function(){return(Fd=s._Maximum=s.asm.Maximum).apply(null,arguments)},A1=s._Mean=function(){return(A1=s._Mean=s.asm.Mean).apply(null,arguments)},ny=s._Min=function(){return(ny=s._Min=s.asm.Min).apply(null,arguments)},ay=s._Minimum=function(){return(ay=s._Minimum=s.asm.Minimum).apply(null,arguments)},ry=s._MirrorPad=function(){return(ry=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},sy=s._Multiply=function(){return(sy=s._Multiply=s.asm.Multiply).apply(null,arguments)},iy=s._Neg=function(){return(iy=s._Neg=s.asm.Neg).apply(null,arguments)},oy=s._NonMaxSuppressionV3=function(){return(oy=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},ly=s._NonMaxSuppressionV4=function(){return(ly=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},uy=s._NonMaxSuppressionV5=function(){return(uy=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},py=s._NotEqual=function(){return(py=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},cy=s._OneHot=function(){return(cy=s._OneHot=s.asm.OneHot).apply(null,arguments)},dy=s._PadV2=function(){return(dy=s._PadV2=s.asm.PadV2).apply(null,arguments)},hy=s._Pow=function(){return(hy=s._Pow=s.asm.Pow).apply(null,arguments)},my=s._Prelu=function(){return(my=s._Prelu=s.asm.Prelu).apply(null,arguments)},fy=s._Prod=function(){return(fy=s._Prod=s.asm.Prod).apply(null,arguments)},gy=s._RealDiv=function(){return(gy=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},yy=s._Relu=function(){return(yy=s._Relu=s.asm.Relu).apply(null,arguments)},by=s._Relu6=function(){return(by=s._Relu6=s.asm.Relu6).apply(null,arguments)},xy=s._ResizeBilinear=function(){return(xy=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},vy=s._ResizeNearestNeighbor=function(){return(vy=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},wy=s._Reverse=function(){return(wy=s._Reverse=s.asm.Reverse).apply(null,arguments)},ky=s._RotateWithOffset=function(){return(ky=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Iy=s._Round=function(){return(Iy=s._Round=s.asm.Round).apply(null,arguments)},Sy=s._Rsqrt=function(){return(Sy=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Ty=s._ScatterNd=function(){return(Ty=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Ny=s._SelectV2=function(){return(Ny=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Cy=s._Sigmoid=function(){return(Cy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},_y=s._Sin=function(){return(_y=s._Sin=s.asm.Sin).apply(null,arguments)},Ey=s._Softmax=function(){return(Ey=s._Softmax=s.asm.Softmax).apply(null,arguments)},$y=s._SparseFillEmptyRows=function(){return($y=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Ay=s._SparseReshape=function(){return(Ay=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Fy=s._SparseSegmentReduction=function(){return(Fy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Dy=s._Sqrt=function(){return(Dy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Ry=s._Square=function(){return(Ry=s._Square=s.asm.Square).apply(null,arguments)},My=s._SquaredDifference=function(){return(My=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Py=s._Step=function(){return(Py=s._Step=s.asm.Step).apply(null,arguments)},Oy=s._StridedSlice=function(){return(Oy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Ly=s._Sub=function(){return(Ly=s._Sub=s.asm.Sub).apply(null,arguments)},zy=s._Sum=function(){return(zy=s._Sum=s.asm.Sum).apply(null,arguments)},Wy=s._Tan=function(){return(Wy=s._Tan=s.asm.Tan).apply(null,arguments)},By=s._Tanh=function(){return(By=s._Tanh=s.asm.Tanh).apply(null,arguments)},Vy=s._Tile=function(){return(Vy=s._Tile=s.asm.Tile).apply(null,arguments)},Uy=s._TopK=function(){return(Uy=s._TopK=s.asm.TopK).apply(null,arguments)},Gy=s._Transform=function(){return(Gy=s._Transform=s.asm.Transform).apply(null,arguments)},Hy=s._Transpose=function(){return(Hy=s._Transpose=s.asm.Transpose).apply(null,arguments)},jy=s.__FusedMatMul=function(){return(jy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},qy=s._malloc=function(){return(qy=s._malloc=s.asm.malloc).apply(null,arguments)},Ky=s._free=function(){return(Ky=s._free=s.asm.free).apply(null,arguments)},Xy=s.___errno_location=function(){return(Xy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Dd=s.stackSave=function(){return(Dd=s.stackSave=s.asm.stackSave).apply(null,arguments)},Rd=s.stackRestore=function(){return(Rd=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},wp=s.stackAlloc=function(){return(wp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Yy=s.dynCall_iijjiiii=function(){return(Yy=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Zy=s.dynCall_jiji=function(){return(Zy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=kd;var Bo;jn=function X(){Bo||Md(),Bo||(jn=X)};function Md(X){if(X=X||p,it>0||(Mt(),it>0))return;function se(){Bo||(Bo=!0,s.calledRun=!0,!U&&(sa(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),sn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),se()},1)):se()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Md();var Vo;l&&(Vo={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var Uo;if(typeof r!="undefined")Uo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Uo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Vo){var Jy=Uo._dispose;Uo._dispose=function(){Jy(),Vo.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),Vo.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),jh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},rc=class{refCount(e){return qn("refCount")}incRef(e){return qn("incRef")}timerAvailable(){return!0}time(e){return qn("time")}read(e){return qn("read")}readSync(e){return qn("readSync")}readToGPU(e,t){return qn("readToGPU")}numDataIds(){return qn("numDataIds")}disposeData(e,t){return qn("disposeData")}write(e,t,n){return qn("write")}move(e,t,n,a,r){return qn("move")}createTensorFromTexture(e,t,n){return qn("createTensorFromTexture")}memory(){return qn("memory")}floatPrecision(){return qn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return qn("dispose")}};function qn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function kI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,hh(e,t,n)}function CF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,hh(e,n,a),hh(t,n,a)}function Vp(e,t,n){return Math.max(e,Math.min(t,n))}function _F(e){return e%2===0?e:e+1}function hh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function EF(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function $F(e,t){let n=Math.random();return t*n+(1-n)*e}function AF(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function A(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Sn(e,t,n=""){A(ps(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function hi(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Zs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)Zs(e[a],t,n);else t.push(e);return t}function mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function FF(e){return e.length===0}function ps(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function tl(e){return e%1===0}function DF(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function RF(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function MF(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return kI(t),t}function Lp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function PF(e,t=r=>0,n,a){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a!=null?a(o,l):setTimeout(o,l)};o()})}function OF(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function $a(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>tl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function II(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:$a(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function SI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function TI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function NI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function CI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function LF(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function bb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function _I(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Kr(e){return typeof e=="string"||e instanceof String}function EI(e){return typeof e=="boolean"}function $I(e){return typeof e=="number"}function qh(e){return Array.isArray(e)?qh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":$I(e)?"float32":Kr(e)?"string":EI(e)?"bool":"float32"}function es(e){return!!(e&&e.constructor&&e.call&&e.apply)}function mh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function vl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function AI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=AI(e+l*o,i,n,a)}return r}function Zo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return AI(0,e,t,n)}function vx(e,t){let n=Kh(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Kh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function zF(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Zo(e,new Float32Array(n));if(t==="int32")return Zo(e,new Int32Array(n));if(t==="bool")return Zo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function wx(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function WF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function BF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function kx(e){return e&&e.then&&typeof e.then=="function"}var W1="tfjsflags",FI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=VF,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(kx(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);W1 in e&&e[W1].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=GF(n,a)})}};function VF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(UF(t,a[0],a[1]),a.join("="))),t}function UF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function GF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return Ix}var Ix=null;function HF(e){Ix=e}var rb;function DI(){if(rb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");rb=e}return rb}function jF(){let e=DI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Sx(e,t){let n=jF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var wl="Abs",kl="Acos",Il="Acosh",cs="Add",mi="AddN",Sl="All",Tl="Any",fi="ArgMax",sc="ArgMin",Nl="Asin",Cl="Asinh",_l="Atan",El="Atanh",$l="Atan2",gi="AvgPool",Xh="AvgPoolGrad",ic="AvgPool3D",Yh="AvgPool3DGrad",yi="BatchMatMul",Al="BatchToSpaceND",Zh="Bincount",RI="BroadcastTo",Jh="BroadcastArgs",bi="Cast",xi="Ceil",ds="ClipByValue",Qh="Complex",oc="ComplexAbs",Fl="Concat",vi="Conv2D",em="Conv2DBackpropFilter",wi="Conv2DBackpropInput",lc="Conv3D",tm="Conv3DBackpropFilterV2",nm="Conv3DBackpropInputV2",ki="Cos",Ii="Cosh",Dl="Cumprod",Si="Cumsum",Rl="CropAndResize",am="DenseBincount",Ml="DepthToSpace",Ti="DepthwiseConv2dNative",rm="DepthwiseConv2dNativeBackpropFilter",sm="DepthwiseConv2dNativeBackpropInput",im="Diag",uc="Dilation2D",fh="Dilation2DBackpropInput",gh="Dilation2DBackpropFilter",Ni="RealDiv",om="Einsum",Ci="Elu",lm="EluGrad",Pl="Erf",Ol="Equal",_i="Exp",Ll="ExpandDims",zl="Expm1",um="FFT",pc="Fill",Wl="FlipLeftRight",Ei="Floor",$i="FloorDiv",Ai="FusedBatchNorm",Bl="GatherV2",Vl="GatherNd",Ul="Greater",Fi="GreaterEqual",Di="Identity",pm="IFFT",cm="Imag",Gl="IsFinite",Hl="IsInf",jl="IsNan",Ri="LeakyRelu",ql="Less",Kl="LessEqual",dm="LinSpace",Mi="Log",Xl="Log1p",Yl="LogicalAnd",Zl="LogicalNot",Jl="LogicalOr",MI="LogicalXor",PI="LogSoftmax",qF="LowerBound",cc="LRN",hm="LRNGrad",Pi="Max",Oi="Maximum",Li="MaxPool",mm="MaxPoolGrad",dc="MaxPool3D",fm="MaxPool3DGrad",gm="MaxPoolWithArgmax",zi="Mean",Wi="Min",Bi="Minimum",Vi="MirrorPad",Ql="Mod",ym="Multinomial",Ui="Multiply",eu="Neg",tu="NotEqual",nu="NonMaxSuppressionV3",au="NonMaxSuppressionV4",ru="NonMaxSuppressionV5",su="OnesLike",Gi="OneHot",iu="Pack",Hi="PadV2",KF="Pool",ji="Pow",qi="Prelu",Ki="Prod",bm="RaggedGather",xm="RaggedRange",vm="RaggedTensorToTensor",hc="Range",wm="Real",ou="Reciprocal",Xi="Relu",lu="Reshape",Yi="ResizeNearestNeighbor",km="ResizeNearestNeighborGrad",Zi="ResizeBilinear",Im="ResizeBilinearGrad",Ji="Relu6",Qi="Reverse",eo="Round",to="Rsqrt",uu="ScatterNd",Sm="SearchSorted",pu="Select",cu="Selu",du="Slice",no="Sin",hu="Sinh",mu="Sign",ao="Sigmoid",fu="Softplus",ro="Sqrt",so="Sum",gu="SpaceToBatchND",yu="SplitV",io="Softmax",mc="SparseFillEmptyRows",bu="SparseReshape",fc="SparseSegmentMean",gc="SparseSegmentSum",Tm="SparseToDense",oo="SquaredDifference",yc="Square",xu="StridedSlice",bc="StringNGrams",xc="StringSplit",vc="StringToHashBucketFast",lo="Sub",uo="Tan",po="Tanh",hs="Tile",vu="TopK",wu="Transform",Tr="Transpose",Nm="Unique",ku="Unpack",wc="UnsortedSegmentSum",XF="UpperBound",Iu="ZerosLike",ms="Step",yh="FromPixels",Su="RotateWithOffset",Js="_FusedMatMul",Qs="FusedConv2D",ei="FusedDepthwiseConv2D";function qr(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function YF(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var nl=Sx("kernelRegistry",()=>new Map),Up=Sx("gradRegistry",()=>new Map);function bh(e,t){let n=Tx(e,t);return nl.get(n)}function xb(e){return Up.get(e)}function xh(e){let t=nl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function kc(e){let{kernelName:t,backendName:n}=e,a=Tx(t,n);nl.has(a)&&qr(`The kernel '${t}' for backend '${n}' is already registered`),nl.set(a,e)}function OI(e){let{kernelName:t}=e;Up.has(t)&&H().getBool("DEBUG")&&qr(`Overriding the gradient for '${t}'`),Up.set(t,e)}function ZF(e,t){let n=Tx(e,t);if(!nl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);nl.delete(n)}function JF(e){if(!Up.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Up.delete(e)}function QF(e,t){xh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});kc(a)})}function Tx(e,t){return`${t}_${e}`}var v={};$e(v,{arraysEqual:()=>ps,assert:()=>A,assertNonNegativeIntegerDimensions:()=>wx,assertNonNull:()=>hi,assertShapesMatch:()=>Sn,bytesFromStringArray:()=>_I,bytesPerElement:()=>bb,checkConversionForErrors:()=>NI,clamp:()=>Vp,computeStrides:()=>vl,createScalarValue:()=>sD,createShuffledIndices:()=>MF,decodeString:()=>vh,distSquared:()=>AF,encodeString:()=>Sc,fetch:()=>oD,fingerPrint64:()=>rD,flatten:()=>Zs,getArrayFromDType:()=>TI,getTypedArrayFromDType:()=>SI,hasEncodingLoss:()=>LF,hexToLong:()=>Ic,indexToLoc:()=>BF,inferDtype:()=>qh,inferFromImplicitShape:()=>OF,isBoolean:()=>EI,isFunction:()=>es,isInt:()=>tl,isNumber:()=>$I,isPromise:()=>kx,isScalarShape:()=>FF,isString:()=>Kr,isTypedArray:()=>hn,isValidDtype:()=>CI,locToIndex:()=>WF,makeOnesTypedArray:()=>vx,makeZerosNestedTypedArray:()=>zF,makeZerosTypedArray:()=>Kh,nearestDivisor:()=>mh,nearestLargerEven:()=>_F,now:()=>Gp,parseAxisParam:()=>$a,randUniform:()=>$F,repeatedTry:()=>PF,rightPad:()=>Lp,shuffle:()=>kI,shuffleCombo:()=>CF,sizeFromShape:()=>mt,sizeToSquarishShape:()=>RF,squeezeShape:()=>II,sum:()=>EF,swap:()=>hh,tanh:()=>DF,toNestedArray:()=>Zo,toTypedArray:()=>Cm});var B1=us(pF()),Ws=B1.default||B1;function Ic(e){return Ws.fromString(e,!0,16)}var LI=Ic("c3a5c85c97cb3127"),Ls=Ic("b492b66fbe98f273"),bn=Ic("9ae16a3b2f90404f");function vb(e){return e.xor(e.shru(47))}function zI(e,t,n){let a=e.slice(t,t+n);return Ws.fromBytes(Array.from(a),!0,!0)}function ht(e,t){return zI(e,t,8)}function V1(e,t){return zI(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Zr(e,t,n=Ic("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function eD(e,t,n,a,r,s){r=r.add(e),s=Yt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Yt(r,44)),[r.add(a),s.add(i)]}function Gd(e,t,n,a){return eD(ht(e,t),ht(e,t+8),ht(e,t+16),ht(e,t+24),n,a)}function tD(e,t=e.length){if(t>=8){let n=bn.add(t*2),a=ht(e,0).add(bn),r=ht(e,t-8),s=Yt(r,37).mul(n).add(a),i=Yt(a,25).add(r).mul(n);return Zr(s,i,n)}if(t>=4){let n=bn.add(t*2),a=V1(e,0);return Zr(a.shl(3).add(t),V1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return vb(bn.mul(s).xor(LI.mul(i))).mul(bn)}return bn}function nD(e,t=e.length){let n=bn.add(t*2),a=ht(e,0).mul(Ls),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(bn);return Zr(Yt(a.add(r),43).add(Yt(s,30)).add(i),a.add(Yt(r.add(bn),18)).add(s),n)}function aD(e,t=e.length){let n=bn.add(t*2),a=ht(e,0).mul(bn),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(bn),o=Yt(a.add(r),43).add(Yt(s,30)).add(i),l=Zr(o,a.add(Yt(r.add(bn),18)).add(s),n),u=ht(e,16).mul(n),p=ht(e,24),d=o.add(ht(e,t-32)).mul(n),c=l.add(ht(e,t-24)).mul(n);return Zr(Yt(u.add(p),43).add(Yt(d,30)).add(c),u.add(Yt(p.add(a),18)).add(d),n)}function rD(e,t=e.length){let n=Ws.fromNumber(81,!0);if(t<=32)return t<=16?tD(e,t):nD(e,t);if(t<=64)return aD(e,t);let a=n,r=n.mul(Ls).add(113),s=vb(r.mul(bn).add(113)).mul(bn),i=[Ws.UZERO,Ws.UZERO],o=[Ws.UZERO,Ws.UZERO];a=a.mul(bn).add(ht(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Yt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(Ls),r=Yt(r.add(i[1]).add(ht(e,l+48)),42).mul(Ls),a=a.xor(o[1]),r=r.add(i[0]).add(ht(e,l+40)),s=Yt(s.add(o[0]),33).mul(Ls),i=Gd(e,l,i[1].mul(Ls),a.add(o[0])),o=Gd(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Ls.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Yt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(d),r=Yt(r.add(i[1]).add(ht(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ht(e,l+40))),s=Yt(s.add(o[0]),33).mul(d),i=Gd(e,l,i[1].mul(d),a.add(o[0])),o=Gd(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],Zr(Zr(i[0],o[0],d).add(vb(r).mul(LI)).add(s),Zr(i[1],o[1],d).add(a),d)}function sD(e,t){return t==="string"?Sc(e):Cm([e],t)}function iD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Cm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Zs(e)),H().getBool("DEBUG")&&NI(e,t),iD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Gp(){return H().platform.now()}function oD(e,t){return H().platform.fetch(e,t)}function Sc(e,t="utf-8"){return t=t||"utf-8",H().platform.encode(e,t)}function vh(e,t="utf-8"){return t=t||"utf-8",H().platform.decode(e,t)}var lD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new pD)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Gp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Gp()-i})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{uD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function uD(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var pD=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Lp(`${a}ms`,9):a.error,o=Lp(e,25),l=t.rank,u=t.size,p=Lp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function cD(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function dD(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!ps(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var U1=20,Ip=3,sb=7;function hD(e,t,n,a){let r=vl(t),s=mD(e,t,n,r),i=t.length,o=ah(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function mD(e,t,n,a){let r=mt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?_p(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Cp(l[p+d],0,n).length)}return i}function Cp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(sb))} + ${parseFloat(e[1].toFixed(sb))}j`:Kr(e)?a=`'${e}'`:n==="bool"?a=WI(e):a=parseFloat(e.toFixed(sb)).toString(),Lp(a,t)}function WI(e){return e===0?"false":"true"}function ah(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=_p(e);return[Cp(f[0],0,n)]}return n==="bool"?[WI(e[0])]:[e[0].toString()]}if(l===1){if(o>U1){let f=Ip*i,g=Array.from(e.slice(0,f)),y=Array.from(e.slice((o-Ip)*i,o*i));return n==="complex64"&&(g=_p(g),y=_p(y)),["["+g.map((b,x)=>Cp(b,r[x],n)).join(", ")+", ..., "+y.map((b,x)=>Cp(b,r[o-Ip+x],n)).join(", ")+"]"]}return["["+(n==="complex64"?_p(e):Array.from(e)).map((f,g)=>Cp(f,r[g],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>U1){for(let f=0;f<Ip;f++){let g=f*d,y=g+d;c.push(...ah(e.slice(g,y),u,n,p,r,!1))}c.push("...");for(let f=o-Ip;f<o;f++){let g=f*d,y=g+d;c.push(...ah(e.slice(g,y),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,y=g+d;c.push(...ah(e.slice(g,y),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function _p(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ht=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=mt(e),n!=null){let a=n.length;A(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||TI(t,this.size),this.strides=vl(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Oa().makeTensor(this.values,this.shape,this.dtype)}},Oa=null,Ko=null,fD=null;function gD(e){Oa=e}function yD(e){Ko=e}function bD(e){fD=e}var Te=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=mt(e),this.strides=vl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Ko.buffer(this.shape,this.dtype,e)}bufferSync(){return Ko.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Zo(this.shape,e,this.dtype==="complex64")}arraySync(){return Zo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Oa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>vh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Oa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Oa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>vh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Oa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Oa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Ko.print(this,e)}clone(){return this.throwIfDisposed(),Ko.clone(this)}toString(e=!1){let t=this.dataSync();return hD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Ko.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Oa().makeVariable(this,e,t,n)}};Object.defineProperty(Te,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return Sx("Tensor",()=>Te)}Q();var ts=class extends Te{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ps(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Oa().disposeTensor(this),this.dataId=e.dataId,Oa().incRef(this,null)}dispose(){Oa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ts,Symbol.hasInstance,{value:e=>e instanceof Te&&e.assign!=null&&e.assign instanceof Function});var Va={};$e(Va,{assertTypesMatch:()=>BI,getTensorsInContainer:()=>Nx,isTensorInList:()=>vD,makeTypesMatch:()=>_t});var wb;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(wb||(wb={}));var kb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(kb||(kb={}));var Ib;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Ib||(Ib={}));var Sb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Sb||(Sb={}));var Tb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Tb||(Tb={}));var xD={float32:Sb,int32:kb,bool:Ib,complex64:Tb};function ma(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return xD[e][t]}function _m(e){return ma(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=ma(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function BI(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function vD(e,t){return t.some(n=>n.id===e.id)}function Nx(e){let t=[];return VI(e,t,new Set),t}function VI(e,t,n){if(e==null)return;if(e instanceof Te){t.push(e);return}if(!wD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),VI(s,t,n))}}function wD(e){return Array.isArray(e)||typeof e=="object"}function ib(e){return e.kernelName!=null}var G1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Hp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new G1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(qr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new lD(this.backendInstance),!0}setupRegisteredKernels(){xh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){xh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof rc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,qr(`Initialization of backend ${e} failed`),qr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return qr(`Initialization of backend ${e} failed`),qr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Hp.nextTensorId++}nextVariableId(){return Hp.nextVariableId++}clone(e){let t=O.runKernel(Di,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel(bi,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,bh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ib(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ib(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=bh(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=ib(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=xb(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Kr(e[0])&&(r=e.map(o=>Sc(o)));let s=a.write(r,t,n),i=new Te(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=_I(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Te(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new ts(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*bb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ts||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*bb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=xb(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=Kh(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Nx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Te,()=>"The result y returned by f() must be a tensor.");let s=cD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?kD(r.shape):n,dD(i,s,l=>this.tidy(l),ID);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(es(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Te),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Te,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(es(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];A(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(u.every(d=>d instanceof Te),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Gp(),n=await this.backend.time(e);return n.wallMs=Gp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new G1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Hp.nextTensorId=0;Hp.nextVariableId=0;function kD(e){let t=vx(mt(e),"float32");return O.makeTensor(t,e,"float32")}function UI(){let e=DI();if(e._tfengine==null){let t=new FI(e);e._tfengine=new Hp(t)}return HF(e._tfengine.ENV),gD(()=>e._tfengine),e._tfengine}var O=UI();function ID(e,t){let n={a:e,b:t};return O.runKernel(cs,n)}var Tc={};$e(Tc,{isBrowser:()=>GI,isMobile:()=>ND,mockIsMobile:()=>TD});function SD(){return typeof navigator!="undefined"&&navigator!=null}var Nb;function TD(e){Nb=e}function ND(e){if(Nb!==void 0)return Nb;if(e||SD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function GI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Jn=H();Jn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Jn.registerFlag("IS_BROWSER",()=>GI());Jn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Jn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Jn.registerFlag("PROD",()=>!1);Jn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Jn.getBool("DEBUG"));Jn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Jn.registerFlag("IS_TEST",()=>!1);Jn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Jn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Jn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Jn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Jn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function ir(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(typeof e=="object"&&"texture"in e){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&HI(e,a,[]),a}function HI(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)HI(e[r],a,n.concat(r))}function H1(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Te)return H1(a,e.dtype,t,n),e;let r=qh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),H1(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=ir(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Cm(e,r):Zs(e,[],!0);return O.makeTensor(i,s,r)}function jp(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var Cx="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Cx;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return kx(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function CD(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");Sn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(Qh,r)}var Cr=L({complex_:CD});function fs(e,t,n,a){if(a==null&&(a=qh(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(typeof e=="object"&&"texture"in e){if(a!=="float32"&&a!=="int32")throw new Error(`Creating tensor from texture only supports 'float32'|'int32' dtype, while the dtype is ${a}.`);return e.channels=e.channels||"RGBA",O.backend.createTensorFromTexture(e,t||n,a)}if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){wx(t);let r=mt(t),s=mt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==mt(t.slice(i)):!0;A(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Cm(e,a):Zs(e,[],!0),O.makeTensor(e,t,a)}function kn(e,t,n){let a=ir(e,n);return fs(e,t,a,n)}var Cb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},wh=4;async function _D(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+wh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=wh,m.set(y,f),f+=y.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:ED(s),specs:n}}function jI(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=mt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Cb[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=MD()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=mt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+wh))[0];r+=wh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Cb[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<h.length;y++)h[y]=p[y*2],m[y]=p[y*2+1];let f=kn(h,l,"float32"),g=kn(m,l,"float32");n[i]=Cr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=kn(p,l,o))}return n}function ED(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var _x=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function j1(e){return _x?Buffer.byteLength(e):new Blob([e]).size}function $D(e){if(_x)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function AD(e){if(_x){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Ex(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function q1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function qI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function KI(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),a}async function $x(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),KI(e,n,a)}function Nc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:j1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:j1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XI(e){let t=[];for(let n of e)t.push(...n.weights);return t}function FD(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function DD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function RD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function MD(){let e=FD(),t=DD(),n=RD();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var $t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return $t.instance==null&&($t.instance=new $t),$t.instance}static registerSaveRouter(e){$t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){$t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return $t.getHandlers(e,"save")}static getLoadHandlers(e,t){return $t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?$t.getInstance().loadRouters:$t.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},PD=e=>$t.registerSaveRouter(e),OD=e=>$t.registerLoadRouter(e),LD=e=>$t.getSaveHandlers(e),zD=(e,t)=>$t.getLoadHandlers(e,t),_b="tensorflowjs",Eb=1,Gs="models_store",Xr="model_info_store";function YI(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function $b(e){let t=e.result;t.createObjectStore(Gs,{keyPath:"modelPath"}),t.createObjectStore(Xr,{keyPath:"modelPath"})}var ti=class{constructor(e){if(this.indexedDB=YI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(_b,Eb);r.onupgradeneeded=()=>$b(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Gs,"readonly"),o=i.objectStore(Gs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Nc(t),o=s.transaction(Xr,"readwrite"),l=o.objectStore(Xr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Gs,"readwrite");let d=p.objectStore(Gs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(Xr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ti.URL_SCHEME="indexeddb://";var ZI=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ti.URL_SCHEME)?WD(e.slice(ti.URL_SCHEME.length)):null;$t.registerSaveRouter(ZI);$t.registerLoadRouter(ZI);function WD(e){return new ti(e)}function BD(e){return e.startsWith(ti.URL_SCHEME)?e.slice(ti.URL_SCHEME.length):e}var VD=class{constructor(){this.indexedDB=YI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(_b,Eb);n.onupgradeneeded=()=>$b(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Xr,"readonly"),s=r.objectStore(Xr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=BD(e),new Promise((t,n)=>{let a=this.indexedDB.open(_b,Eb);a.onupgradeneeded=()=>$b(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Xr,"readwrite"),i=s.objectStore(Xr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Gs,"readwrite");let d=l.objectStore(Gs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Ir="/",Xo="tensorflowjs_models",JI="info",UD="model_topology",GD="weight_specs",HD="weight_data",jD="model_metadata";function QI(e){return{info:[Xo,e,JI].join(Ir),topology:[Xo,e,UD].join(Ir),weightSpecs:[Xo,e,GD].join(Ir),weightData:[Xo,e,HD].join(Ir),modelMetadata:[Xo,e,jD].join(Ir)}}function eS(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function qD(e){let t=e.split(Ir);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ir)}function KD(e){return e.startsWith(ni.URL_SCHEME)?e.slice(ni.URL_SCHEME.length):e}var ni=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=QI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Nc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,$D(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw eS(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=AD(s),t}};ni.URL_SCHEME="localstorage://";var tS=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ni.URL_SCHEME)?XD(e.slice(ni.URL_SCHEME.length)):null;$t.registerSaveRouter(tS);$t.registerLoadRouter(tS);function XD(e){return new ni(e)}var YD=class{constructor(){A(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xo+Ir,n=Ir+JI;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=qD(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=KD(e);let t=QI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return eS(t),n}},Jo="://",Pn=class{constructor(){this.managers={}}static getInstance(){return Pn.instance==null&&(Pn.instance=new Pn),Pn.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Jo)&&(e=e.slice(0,e.indexOf(Jo))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Pn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Pn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Pn.getInstance().managers)}};function rh(e){if(e.indexOf(Jo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Pn.getSchemes().join(",")}`);return{scheme:e.split(Jo)[0],path:e.split(Jo)[1]}}async function nS(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=$t.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=$t.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=rh(e).scheme,l=rh(e).path,u=o===rh(e).scheme,p=await r.load();n&&u&&await Pn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Pn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function ZD(){let e=Pn.getSchemes(),t={};for(let n of e){let a=await Pn.getManager(n).listModels();for(let r in a){let s=n+Jo+r;t[s]=a[r]}}return t}async function JD(e){let t=rh(e);return Pn.getManager(t.scheme).removeModel(t.path)}async function QD(e,t){return nS(e,t,!1)}async function eR(e,t){return nS(e,t,!0)}var tR=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!H().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new tR);try{Pn.registerManager(ni.URL_SCHEME,new YD)}catch(e){}try{Pn.registerManager(ti.URL_SCHEME,new VD)}catch(e){}}var nR={importFetch:()=>cF()},ob,aR=class{constructor(){this.util=dF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(ob==null&&(ob=nR.importFetch()),ob(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new aR);function Pe(e,t="float32",n){return t=t||"float32",wx(e),new Ht(e,t,n)}function rR(e,t){let n=_(e,"x","cast");if(!CI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel(bi,a,r)}var le=L({cast_:rR});function sR(e){let t={x:_(e,"x","clone","string_or_numeric")};return O.runKernel(Di,t)}var rr=L({clone_:sR});function Ax(e,t=!1){console.log(e.toString(t))}UI();var iR={buffer:Pe,cast:le,clone:rr,print:Ax};yD(iR);var Ut={};$e(Ut,{browserFiles:()=>hR,browserHTTPRequest:()=>bR,concatenateArrayBuffers:()=>Ex,copyModel:()=>QD,decodeWeights:()=>jI,encodeWeights:()=>_D,fromMemory:()=>vR,fromMemorySync:()=>oS,getLoadHandlers:()=>zD,getModelArtifactsForJSON:()=>$x,getModelArtifactsForJSONSync:()=>KI,getModelArtifactsInfoForJSON:()=>Nc,getSaveHandlers:()=>LD,getWeightSpecs:()=>XI,http:()=>Dx,isHTTPScheme:()=>Ab,listModels:()=>ZD,loadWeights:()=>mR,moveModel:()=>eR,registerLoadRouter:()=>OD,registerSaveRouter:()=>PD,removeModel:()=>JD,weightsLoaderFactory:()=>rS,withSaveHandler:()=>wR,withSaveHandlerSync:()=>kR});var oR="model",lR=".json",uR=".weights.bin";function K1(e){return new Promise(t=>setTimeout(t)).then(e)}var al=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(al.URL_SCHEME)&&(e=e.slice(al.URL_SCHEME.length)),(e==null||e.length===0)&&(e=oR),this.modelJsonFileName=e+lR,this.weightDataFileName=e+uR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=qI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await K1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await K1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Nc(e)}}}};al.URL_SCHEME="downloads://";var pR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=$x(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Ex(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>q1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=q1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},cR=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(al.URL_SCHEME)?dR(e.slice(al.URL_SCHEME.length)):null;$t.registerSaveRouter(cR);function dR(e="model"){return new al(e)}function hR(e){return new pR(e)}function X1(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function aS(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await X1(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await X1(i,t.onProgress,o,l)}async function mR(e,t="",n,a){return rS(r=>aS(r,{requestInit:a}))(e,t,n)}function rS(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Cb[y]*mt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let w=new Uint8Array(p[c+x]);y.set(w,b),b+=w.byteLength}s[h].forEach(x=>{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=jI(w,[x.manifestEntry]);for(let T in I)d[T]=I[T]}),c+=m}),d}}var fR="application/octet-stream",gR="application/json",Fx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=qI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:gR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:fR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Nc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return $x(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=yR(t),r=this.weightPathPrefix||n,s=XI(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await aS(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Ex(l)]}};Fx.URL_SCHEME_REGEX=/^https?:\/\//;function yR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Ab(e){return e.match(Fx.URL_SCHEME_REGEX)!=null}var sS=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Ab(a)):n=Ab(e),n)return Dx(e,t)}return null};$t.registerSaveRouter(sS);$t.registerLoadRouter(sS);function Dx(e,t){return new Fx(e,t)}function bR(e,t){return Dx(e,t)}var lb=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},iS=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},xR=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function vR(e,t,n,a){let r=arguments;return new xR(oS(...r))}function oS(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new lb(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lb({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lb({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function wR(e){return new iS(e)}function kR(e){return new iS(e)}var lS={};$e(lS,{confusionMatrix:()=>UR});function IR(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=_t(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel(yi,i,o)}var Fe=L({matMul_:IR});function SR(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:_(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(Gi,s,i)}var rl=L({oneHot_:SR});function TR(){H().set("PROD",!0)}function NR(){H().set("DEBUG",!0)}function CR(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Rx(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}bD(Rx);function _R(){O.disposeVariables()}function Na(){return O}function kh(){return O.memory()}function ER(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function _e(e){Nx(e).forEach(t=>t.dispose())}function Jt(e){return O.keep(e)}function $R(e){return O.time(e)}function AR(e){return O.setBackend(e)}function FR(){return O.ready()}function DR(){return O.backendName}function RR(e){O.removeBackend(e)}function MR(e){return O.findBackend(e)}function PR(e){return O.findBackendFactory(e)}function Em(e,t,n=1){return O.registerBackend(e,t,n)}function uS(){return O.backend}function OR(e,t){H().setPlatform(e,t)}function LR(e){let t={input:_(e,"input","imag")};return O.runKernel(cm,t)}var Cc=L({imag_:LR});function zR(e){let t={x:_(e,"x","neg")};return O.runKernel(eu,t)}var bt=L({neg_:zR});function WR(e){let t={input:_(e,"input","real")};return O.runKernel(wm,t)}var sl=L({real_:WR});function BR(e,t,n){let a=_(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),A(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=sl(a),o=Cc(a);return i=O.runKernel(Tr,{x:i},s),o=O.runKernel(Tr,{x:o},s),n&&(o=bt(o)),Cr(i,o)}):O.runKernel(Tr,r,s)}var Ee=L({transpose_:BR});function VR(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=rl(le(a,"int32"),n),i=rl(le(r,"int32"),n),o=Ee(s),l=Fe(o,i);return le(l,"int32")}var UR=L({confusionMatrix_:VR}),Tu={};$e(Tu,{assertAndGetBroadcastShape:()=>lt,getBroadcastDims:()=>pS,getReductionAxes:()=>Wt});function pS(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function lt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var co={};$e(co,{fromPixels:()=>YR,fromPixelsAsync:()=>KR,toPixels:()=>XR});function _c(e,t,n){if(hi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=ir(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return fs(e,t,a,n)}var Ps;function cS(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(bh(yh,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(yh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Ps==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ps=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ps=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Ps.canvas.width=l,Ps.canvas.height=u,Ps.drawImage(e,0,0,l,u),p=Ps.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return _c(d,[u,l,t],"int32")}function GR(e){return e!=null&&e.data instanceof Uint8Array}function HR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function jR(e){return e!=null&&e.width!==0&&e.height!==0}function qR(e){return HR()&&!(e instanceof ImageBitmap)&&jR(e)&&!GR(e)}async function KR(e,t=3){let n=null;if(H().getBool("WRAP_TO_IMAGEBITMAP")&&qR(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return cS(n,t)}async function XR(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Te)){let u=n;n=le(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var YR=L({fromPixels_:cS}),Mx={};$e(Mx,{prepareAndValidate:()=>dS});function dS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...vl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Px={};$e(Px,{calculateShapes:()=>hS,validateInput:()=>Lx,validateUpdateShape:()=>Ox});function Ox(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Lx(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Ox(n,t,e)}function hS(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=mt(t.shape)/o,u=[...vl(n.slice(0,r)),1],p=mt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var jt={};$e(jt,{assertParamsValid:()=>JR,computeFlatOffset:()=>aM,computeOutShape:()=>eM,getNormalizedAxes:()=>tM,isSliceContinous:()=>nM,maskToAxes:()=>QR,parseSliceParams:()=>kS,sliceInfo:()=>rM,startForAxis:()=>vS,startIndicesWithElidedDims:()=>yS,stopForAxis:()=>wS,stopIndicesWithElidedDims:()=>bS,stridesForAxis:()=>xS,stridesWithElidedDims:()=>mS});var Fb=-2,ZR=-1;function JR(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)A(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function QR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function eM(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function mS(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function fS(e,t,n){return n<=e?n:n-(t-1)}function gS(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function tM(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=yS(i,h,m,a,e),d=bS(o,h,m,r,e),c=mS(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=vS(i,a,s,e,h,l),d[h]=wS(o,r,s,e,h,l),c[h]=xS(s,h,l);return{begin:p,end:d,strides:c}}function yS(e,t,n,a,r){let s=[...r],i=gS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=fS(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function bS(e,t,n,a,r){let s=[...r],i=gS(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=fS(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Vp(0,s[o],r[o])}return s}function xS(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function vS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Vp(0,i,l-1),i}function wS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Vp(0,i,l):i=Vp(-1,i,l-1),i}function nM(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function aM(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function kS(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function rM(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b<d.dims;b++)p&&(1<<b&o)!==0&&d.numAddAxisAfterEllipsis++,1<<b&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};sM(d,c);let h=!0,m=!0,f=!0,g=[],y=[];for(let b=0;b<e.length;++b){if(c.strides[b]===0)throw Error(`strides[${b}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<b),w=e[b];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<b,c.endMask&1<<b],T=[c.strides[b]>0?0:-1,c.strides[b]>0?w:w-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let C=!!(c.beginMask&1<<b&&c.endMask&1<<b);if(c.beginValid&&c.endValid){if(x){let F=c.begin[b]<0?w+c.begin[b]:c.begin[b];if(c.begin[b]=F,c.end[b]=c.begin[b]+1,F<0||F>=w)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=Y1(c.begin[b],0,c.strides[b],w,I,T),c.end[b]=Y1(c.end[b],1,c.strides[b],w,I,T);let R=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===w;h=h&&R,m=m&&(b===0&&c.strides[b]===1||R)}else h=h&&c.strides[b]===1&&C,m=m&&(b===0&&c.strides[b]===1||C);let E,$=!1;if(c.beginValid&&c.endValid?(E=c.end[b]-c.begin[b],$=!0):x?(E=1,$=!0):C&&w>=0&&(c.strides[b]<0?E=-w:E=w,$=!0),$){let R;E===0||E<0!=c.strides[b]<0?R=0:R=Math.trunc(E/c.strides[b])+(E%c.strides[b]!==0?1:0),g.push(R)}else g.push(-1)}for(let b=0;b<c.finalShapeGatherIndices.length;++b){let x=c.finalShapeGatherIndices[b];x>=0?y.push(g[x]):x===Fb&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==Fb),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function sM(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Fb),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(ZR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function Y1(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ne={};$e(ne,{Serializable:()=>IS,SerializationMap:()=>Bs,registerClass:()=>gs});var IS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Bs=class{constructor(){this.classNameMap={}}static getMap(){return Bs.instance==null&&(Bs.instance=new Bs),Bs.instance}static register(e){Bs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function gs(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Bs.register(e)}var SS={};$e(SS,{TEST_EPSILON_FLOAT16:()=>TS,createVideoElement:()=>hM,encodeStrings:()=>NS,expectArrayBuffersEqual:()=>dM,expectArraysClose:()=>oM,expectArraysEqual:()=>uM,expectNumbersClose:()=>pM,expectPromiseToFail:()=>lM,expectValuesInRange:()=>cM,play:()=>mM,testEpsilon:()=>zx});var iM=.001,TS=.1;function oM(e,t,n){return n==null&&(n=zx()),Db(e,t,(a,r)=>Wx(a,r,n))}function zx(){return O.backend.floatPrecision()===32?iM:TS}function Db(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=ir(e),o=ir(t);if(!ps(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:Zs(e),s=hn(t)?t:Zs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function lM(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function uM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Kr(e)||Kr(e[0])||Kr(t)||Kr(t[0])?Db(e,n,(a,r)=>a==r):Db(e,t,(a,r)=>Wx(a,r,0))}function pM(e,t,n){if(n==null&&(n=zx()),!Wx(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function Wx(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function cM(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function dM(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function NS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?NS(n):e[t]=Sc(n)}return e}function hM(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function mM(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var fM="4.0.0";function gM(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(cs,r)}var Y=L({add_:gM});function yM(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel($i,r)}var $m=L({floorDiv_:yM});function bM(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=_t(n,a),n.dtype==="int32"&&a.dtype==="int32")return $m(n,a);let r={a:n,b:a},s={};return O.runKernel(Ni,r,s)}var he=L({div_:bM});function xM(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Ui,r)}var z=L({mul_:xM});function vM(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(oc,n)}else{let n={x:t};return O.runKernel(wl,n)}}var Lt=L({abs_:vM});function wM(e){let t={x:_(e,"x","acos")};return O.runKernel(kl,t)}var Bx=L({acos_:wM});function kM(e){let t={x:_(e,"x","acosh")};return O.runKernel(Il,t)}var Vx=L({acosh_:kM});function IM(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ps(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(mi,a)}var CS=L({addN_:IM});function SM(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(Sl,a,r)}var Am=L({all_:SM});function TM(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(Tl,a,r)}var qp=L({any_:TM});function NM(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return O.runKernel(fi,n,a)}var ai=L({argMax_:NM});function CM(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return O.runKernel(sc,n,a)}var Ux=L({argMin_:CM});function _M(e){let t={x:_(e,"x","asin")};return O.runKernel(Nl,t)}var Gx=L({asin_:_M});function EM(e){let t={x:_(e,"x","asinh")};return O.runKernel(Cl,t)}var Hx=L({asinh_:EM});function $M(e){let t={x:_(e,"x","atan")};return O.runKernel(_l,t)}var jx=L({atan_:$M});function AM(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel($l,r)}var qx=L({atan2_:AM});function FM(e){let t={x:_(e,"x","atanh")};return O.runKernel(El,t)}var Kx=L({atanh_:FM});function DM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=$S(r);return Ec(e,o,n,s,a,null,null,l)}function _S(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Ih(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ec(e,u,n,a,r,s,!1,i)}function RM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Rb(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ES(e,p,n,a,r,!1,d,s)}function Ec(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Ih(n),[y,b]=Ih(a),x=Qo(c,y),w=Qo(h,b),{padInfo:I,outHeight:T,outWidth:C}=OM(r,u,p,f,g,x,w,s,o),E=i?m*d:m,$;return o==="channelsFirst"?$=[l,E,T,C]:o==="channelsLast"&&($=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:b,inShape:e,outShape:$,filterShape:t}}function ES(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Rb(n),[w,I,T]=Rb(a),C=Qo(h,w),E=Qo(m,I),$=Qo(f,T),{padInfo:R,outDepth:F,outHeight:S,outWidth:M}=LM(r,u,p,d,y,b,x,C,E,$,o),B=s?g*c:g,U;return i==="channelsFirst"?U=[l,B,F,S,M]:i==="channelsLast"&&(U=[l,F,S,M,B]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:F,outHeight:S,outWidth:M,outChannels:B,padInfo:R,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:$,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function MM(e,t,n,a,r){a==null&&(a=Xx(e,t,n));let s=e[0],i=e[1],o=qs((s-t+2*a)/n+1,r),l=qs((i-t+2*a)/n+1,r);return[o,l]}function PM(e,t,n,a,r,s){r==null&&(r=Xx(e,t,a));let i=e[0],o=e[1],l=e[2],u=qs((i-t+2*r)/a+1,s),p=qs((o-t+2*r)/a+1,s),d=qs((l-t+2*r)/a+1,s);return[u,p,d,n]}function Xx(e,t,n,a=1){let r=Qo(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Ih(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Rb(e){return typeof e=="number"?[e,e,e]:e}function Qo(e,t){return t<=1?e:e+(e-1)*(t-1)}function OM(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=MM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=qs((t-s+c+h)/a+1,o),d=qs((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function LM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=PM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,w=Math.floor(g/2),I=g-w,T=Math.floor(y/2),C=y-T;d={top:w,bottom:I,left:T,right:C,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function qs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ns(e){let[t,n,a]=Ih(e);return t===1&&n===1&&a===1}function ur(e,t){return ns(e)||ns(t)}function $S(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Tn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")A(tl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{A(tl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function zM(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(lu,n,a)}var W=L({reshape_:zM});function WM(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;A(ur(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Tn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(gi,u,p);return d=le(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ga=L({avgPool_:WM});function BM(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(ic,u,p);return d=le(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Yx=L({avgPool3d_:BM});function VM(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=jp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return rr(n[0]);let a=n,r={axis:t};return O.runKernel(Fl,a,r)}var Ze=L({concat_:VM});function UM(e){let t={x:_(e,"x","sigmoid","float32")};return O.runKernel(ao,t)}var da=L({sigmoid_:UM});function GM(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(du,r,s)}var Be=L({slice_:GM});function HM(e){let t={x:_(e,"x","tanh","float32")};return O.runKernel(po,t)}var ri=L({tanh_:HM});function jM(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),p=_(r,"c","basicLSTMCell"),d=_(s,"h","basicLSTMCell"),c=Ze([u,d],1),h=Fe(c,o),m=Y(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Be(m,[0,0],y),x=Be(m,[0,g],y),w=Be(m,[0,g*2],y),I=Be(m,[0,g*3],y),T=Y(z(da(b),ri(x)),z(p,da(Y(i,w)))),C=z(ri(T),da(I));return[T,C]}var AS=L({basicLSTMCell_:jM});function qM(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(Al,s,i)}var $c=L({batchToSpaceND_:qM});function KM(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function XM(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;a!=null&&(p=_(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:KM(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel(Ai,d,c);return W(h,i.shape)}var ys=L({batchNorm_:XM});function YM(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),ys(i,o,l,p,u,s)}var Zx=L({batchNorm2d_:YM});function ZM(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),ys(i,o,l,p,u,s)}var Jx=L({batchNorm3d_:ZM});function JM(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),ys(i,o,l,p,u,s)}var Qx=L({batchNorm4d_:JM});function QM(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(Zh,s,i)}var ev=L({bincount_:QM});function eP(e,t){let n=_(e,"s0","broadcastArgs","int32"),a=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(Jh,r)}var FS=L({broadcastArgs_:eP});function tP(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return rr(n);let i={x:n},o={reps:s};return O.runKernel(hs,i,o)}var Ks=L({broadcastTo_:tP});function nP(e){let t={x:_(e,"x","ceil","float32")};return O.runKernel(xi,t)}var tv=L({ceil_:nP});function gn(e,t,n){let a={shape:e,value:t,dtype:n};return O.runKernel(pc,{},a)}function aP(e,t,n){let a=_(e,"x","clipByValue");if(A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return gn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(ds,r,s)}var en=L({clipByValue_:aP});function rP(e){return Ze(e,0)}var nv=L({concat1d_:rP});function sP(e,t){return Ze(e,t)}var av=L({concat2d_:sP});function iP(e,t){return Ze(e,t)}var rv=L({concat3d_:iP});function oP(e,t){return Ze(e,t)}var sv=L({concat4d_:oP});function lP(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Tn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),A(ur(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(vi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var At=L({conv2d_:lP});function uP(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Tn("conv1d",a,i),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(ur(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=At(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Fm=L({conv1d_:uP});function pP(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];A(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),A(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Tn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(wi,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var iv=L({conv2DBackpropInput_:pP});function cP(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return iv(n,i,o,a,r,"NHWC",s)}var Dm=L({conv2dTranspose_:cP});function dP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(ur(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(lc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var ov=L({conv3d_:dP});function hP(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(nm,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var DS=L({conv3DBackpropInput_:hP});function mP(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return DS(n,s,i,a,r)}var lv=L({conv3dTranspose_:mP});function fP(e){let t={x:_(e,"x","cos","float32")};return O.runKernel(ki,t)}var Ac=L({cos_:fP});function gP(e){let t={x:_(e,"x","cosh","float32")};return O.runKernel(Ii,t)}var Rm=L({cosh_:gP});function yP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Dl,r,s)}var Kp=L({cumprod_:yP});function bP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Si,r,s)}var Mm=L({cumsum_:bP});function xP(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(am,i,o)}var Sh=L({denseBincount_:xP});function vP(e,t,n="NHWC"){let a=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(Ml,o,l)}var uv=L({depthToSpace_:vP});function wP(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Tn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Ti,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bs=L({depthwiseConv2d_:wP});function kP(e){let t={x:_(e,"x","diag")};return O.runKernel(im,t)}var RS=L({diag_:kP});function IP(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(uc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var pv=L({dilation2d_:IP});function SP(e,t){let n=_(e,"a","equal","string_or_numeric"),a=_(t,"b","equal","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Ol,r)}var Qn=L({equal_:SP});function TP(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=lt(lt(s.shape,a.shape),r.shape),o=Ks(s,i),l=Ks(a,i),u=Ks(r,i),p={condition:o,t:l,e:u};return O.runKernel(pu,p)}var mn=L({where_:TP});function NP(e){let t={x:_(e,"x","zerosLike")};return O.runKernel(Iu,t)}var qe=L({zerosLike_:NP});function CP(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=_t(n,a);let r=he(n,a),s=qe(r),i=Qn(a,s);return mn(i,s,r)}var cv=L({divNoNan_:CP});function _P(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=Fe(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=Fe(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=Fe(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return Fe(n,i)}}var dv=L({dot_:_P});function EP(e,...t){let n=t.map((r,s)=>_(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(om,n,a)}var MS=L({einsum_:EP});function $P(e){let t={x:_(e,"x","elu","float32")};return O.runKernel(Ci,t)}var Nu=L({elu_:$P});function AP(e){let t=_(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=le(t,"float32"));let n={x:t};return O.runKernel(Pl,n)}var hv=L({erf_:AP});function mv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function PS(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function OS(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function si(e,t){let n=t.map(a=>1);return PS(e,n,t)}function FP(e,t,n){A(mv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function LS(e,t){if(mv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function fv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function DP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function RP(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return O.runKernel(Pi,a,r)}var ha=L({max_:RP});function MP(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return O.runKernel(Wi,a,r)}var il=L({min_:MP});function PP(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(ji,r)}var _r=L({pow_:PP});function xe(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return fs(e,[],[],t)}function OP(e){let t={x:_(e,"x","sqrt","float32")};return O.runKernel(ro,t)}var ln=L({sqrt_:OP});function LP(e){let t=_(e,"x","square"),n={};return O.runKernel("Square",{x:t},n)}var ot=L({square_:LP});function zP(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(so,r,s)}var fe=L({sum_:zP});function WP(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=zS(e,t,n),s=r.shape;if(a){let i=$a(n,e.shape);s=si(r.shape,i)}return W(r,s)}function zS(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return zS(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return fe(Lt(e),n);if(t===1/0)return ha(Lt(e),n);if(t===-1/0)return il(Lt(e),n);if(t==="euclidean"||t===2)return ln(fe(_r(Lt(e),xe(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ha(fe(Lt(e),n[0]),n[1]-1);if(t===1/0)return ha(fe(Lt(e),n[1]),n[0]);if(t===-1/0)return il(fe(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ln(fe(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Cu=L({norm_:WP});function BP(e,t=null,n=!1){return Cu(e,"euclidean",t,n)}var gv=L({euclideanNorm_:BP});function VP(e){let t={x:_(e,"x","exp")};return O.runKernel(_i,t)}var fn=L({exp_:VP});function UP(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");A(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(Ll,a,r)}var Zt=L({expandDims_:UP});function GP(e){let t={x:_(e,"x","expm1")};return O.runKernel(zl,t)}var yv=L({expm1_:GP});function HP(e,t){let n=_(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(hs,a,r)}var Ln=L({tile_:HP});function jP(e,t,n,a="float32"){t==null&&(t=e);let r=Pe([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ln(Zt(i,0),[n[0],1,1]);if(n.length===2)return Ln(Zt(Zt(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ln(Zt(Zt(Zt(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Pm=L({eye_:jP});function qP(e){let t={x:_(e,"x","floor","float32")};return O.runKernel(Ei,t)}var _u=L({floor_:qP});function KP(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return O.runKernel(Bl,i,o)}var Eu=L({gather_:KP});function XP(e,t){let n=_(e,"a","greater","string_or_numeric"),a=_(t,"b","greater","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Ul,r)}var Nn=L({greater_:XP});function YP(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),a=_(t,"b","greaterEqual","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Fi,r)}var Er=L({greaterEqual_:YP});function ZP(e){let t={x:_(e,"x","isFinite")};return O.runKernel(Gl,t)}var bv=L({isFinite_:ZP});function JP(e){let t={x:_(e,"x","isInf")};return O.runKernel(Hl,t)}var xv=L({isInf_:JP});function QP(e){let t={x:_(e,"x","isNaN")};return O.runKernel(jl,t)}var vv=L({isNaN_:QP});function eO(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return O.runKernel(Ri,n,a)}var Fc=L({leakyRelu_:eO});function tO(e,t){let n=_(e,"a","less","string_or_numeric"),a=_(t,"b","less","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(ql,r)}var Om=L({less_:tO});function nO(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),a=_(t,"b","lessEqual","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Kl,r)}var xs=L({lessEqual_:nO});function WS(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return O.runKernel(dm,{},a)}function aO(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(tl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(cc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wv=L({localResponseNormalization_:aO});function rO(e){let t={x:_(e,"x","log","float32")};return O.runKernel(Mi,t)}var ea=L({log_:rO});function sO(e){let t={x:_(e,"x","log1p")};return O.runKernel(Xl,t)}var Dc=L({log1p_:sO});function iO(e){return A(es(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&Sn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Lm(i),i[0]})}}function oO(e){return A(es(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=jp(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&Sn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Lm(i),i})}}function lO(e){return A(es(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Te,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Te,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return Lm(a),{grad:a[0],value:r}}}function uO(e){return A(es(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Te),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Te,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&Sn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Lm(a.grads),a}}function BS(e,t){A(es(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(u=>u instanceof ts),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);A(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function or(e){return O.customGrad(e)}function Lm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function pO(e){let t={x:_(e,"x","softplus")};return O.runKernel(fu,t)}var ho=L({softplus_:pO});function cO(e){let t=_(e,"x","logSigmoid");return or(n=>({value:bt(ho(bt(n))),gradFunc:a=>z(a,da(bt(n)))}))(t)}var kv=L({logSigmoid_:cO});function dO(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(lo,r)}var pe=L({sub_:dO});function hO(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return or((a,r)=>{let s=ha(a,t,!0),i=pe(a,s),o=pe(le(i,"float32"),ea(fe(fn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=fn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var zm=L({logSoftmax_:hO});function mO(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=$a(t,a.shape),s=ha(a,r,!0),i=pe(a,s),o=fn(i),l=fe(o,r),u=ea(l),p=Y(W(s,u.shape),u);if(n){let d=si(p.shape,r);return W(p,d)}return p}var Wm=L({logSumExp_:mO});function fO(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Yl,r)}var Ea=L({logicalAnd_:fO});function gO(e){let t={x:_(e,"x","logicalNot","bool")};return O.runKernel(Zl,t)}var Rc=L({logicalNot_:gO});function yO(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Jl,r)}var Bm=L({logicalOr_:yO});function bO(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return lt(n.shape,a.shape),Ea(Bm(e,t),Rc(Ea(e,t)))}var Iv=L({logicalXor_:bO}),Hd=2147483648;function xO(e,t,n="left"){let a=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(mt(l.shape)>=Hd)throw new Error(`values tensor size must less than ${Hd}`);if(o.shape[1]>=Hd)throw new Error(`trailing dim_size must less than ${Hd} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(Sm,u,p)}var Vm=L({searchSorted_:xO});function VS(e,t){return Vm(e,t,"left")}function vO(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(ur(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Tn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(Li,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Dt=L({maxPool_:vO});function wO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(dc,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Sv=L({maxPool3d_:wO});function kO(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel(gm,s,i);return{result:o[0],indexes:o[1]}}var US=L({maxPoolWithArgmax_:kO});function IO(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=_t(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Oi,r)}var pr=L({maximum_:IO});function SO(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(zi,a,r)}var Nt=L({mean_:SO});function It(e,t="float32"){if(t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return Cr(a,r)}let n=Kh(mt(e),t);return O.makeTensor(n,e,t)}function Zn(e,t="float32"){if(t==="complex64"){let a=Zn(e,"float32"),r=It(e,"float32");return Cr(a,r)}let n=vx(mt(e),t);return O.makeTensor(n,e,t)}function GS(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=_(e,"x","meshgrid",e instanceof Te?e.dtype:"float32");if(t===void 0)return[a];let r=_(t,"y","meshgrid",t instanceof Te?t.dtype:"float32"),s=mt(a.shape),i=mt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[Fe(Zn([i,1],a.dtype),a),Fe(r,Zn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[Fe(a,Zn([1,i],a.dtype)),Fe(Zn([s,1],r.dtype),r)])}function TO(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=_t(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Bi,r)}var $u=L({minimum_:TO});function NO(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)A(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(Vi,i,s)}var Tv=L({mirrorPad_:NO});function CO(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=_t(n,a);let r={a:n,b:a};return O.runKernel(Ql,r)}var Nv=L({mod_:CO});function _O(e,t=null,n=!1){e=_(e,"x","moments");let a=$a(t,e.shape),r=Nt(e,a,n),s=r.shape;n||(s=si(r.shape,a));let i=ot(pe(le(e,"float32"),W(r,s))),o=Nt(i,a,n);return{mean:r,variance:o}}var Mc=L({moments_:_O});function EO(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=jp(n,"c","multiRNNCell"),i=jp(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var HS=L({multiRNNCell_:EO});function $O(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(ym,o,l);return i===1?W(u,[u.size]):u}var jS=L({multinomial_:$O});function AO(e,t){let n=_(e,"a","notEqual","string_or_numeric"),a=_(t,"b","notEqual","string_or_numeric");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(tu,r)}var ii=L({notEqual_:AO});function FO(e){let t={x:_(e,"x","onesLike")};return O.runKernel(su,t)}var ta=L({onesLike_:FO});function DO(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return Fe(r,s)}var qS=L({outerProduct_:DO});function RO(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(Hi,s,r)}var ya=L({pad_:RO});function MO(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ya(e,[t],n)}var KS=L({pad1d_:MO});function PO(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var XS=L({pad2d_:PO});function OO(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var YS=L({pad3d_:OO});function LO(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ya(e,t,n)}var ZS=L({pad4d_:LO});function zO(e,t,n){let a=_(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(gu,r,s)}var Pc=L({spaceToBatchND_:zO});function WO(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=_(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(ur(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=_S(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=VO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=BO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:Pc(l,d,m),b=(n==="avg"?()=>ga(y,t,s,g,i):()=>Dt(y,t,s,g,i))(),x=h?b:$c(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function BO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function VO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Cv=L({pool_:WO});function UO(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(qi,r)}var Oc=L({prelu_:UO});function GO(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(Ki,r,s)}var _v=L({prod_:GO});function HO(e,t,n,a){let r=e.map((p,d)=>_(p,`tensors${d}`,"raggedGather","int32")),s=_(t,"paramsDenseValues","raggedGather"),i=_(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(bm,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var JS=L({raggedGather_:HO});function jO(e,t,n){let a=_(e,"starts","raggedRange"),r=_(t,"limits","raggedRange",a.dtype),s=_(n,"deltas","raggedRange",a.dtype),i={starts:a,limits:r,deltas:s},o=O.runKernel(xm,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var QS=L({raggedRange_:jO});function qO(e,t,n,a,r){let s=_(e,"shape","raggedTensorToTensor","int32"),i=_(t,"values","raggedTensorToTensor"),o=_(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>_(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(vm,u,p)}var eT=L({raggedTensorToTensor_:qO});function KO(e,t,n){let a=mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return O.makeTensor(r,e,n)}var tT=L({rand_:KO}),Ev=us(Hh()),$v=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Ev.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},XO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Ev.alea(r.toString()),this.randn=new $v(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},YO=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Ev.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function ZO(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new XO(t,n,a,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var nT=L({randomGamma_:ZO});function JO(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new $v(t,n,a,!1,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Um=L({randomNormal_:JO});function QO(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return Um(e,0,1,t,n)}var aT=L({randomStandardNormal_:QO});function e3(e,t=0,n=1,a="float32",r){let s=Pe(e,a),i=new YO(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Au=L({randomUniform_:e3});function ol(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return O.runKernel(hc,{},r)}function t3(e){let t={x:_(e,"x","reciprocal")};return O.runKernel(ou,t)}var Av=L({reciprocal_:t3});function n3(e){let t={x:_(e,"x","relu")};return O.runKernel(Xi,t)}var Xe=L({relu_:n3});function a3(e){let t={x:_(e,"x","relu6")};return O.runKernel(Ji,t)}var Gm=L({relu6_:a3});function r3(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return O.runKernel(Qi,n,a)}var fa=L({reverse_:r3});function s3(e){let t=_(e,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),fa(t,0)}var rT=L({reverse1d_:s3});function i3(e,t){let n=_(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),fa(n,t)}var sT=L({reverse2d_:i3});function o3(e,t){let n=_(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),fa(n,t)}var iT=L({reverse3d_:o3});function l3(e,t){let n=_(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),fa(n,t)}var oT=L({reverse4d_:l3});function u3(e){let t={x:_(e,"x","round")};return O.runKernel(eo,t)}var Hm=L({round_:u3});function p3(e){let t={x:_(e,"x","rsqrt","float32")};return O.runKernel(to,t)}var jm=L({rsqrt_:p3});function c3(e){let t={x:_(e,"x","selu")};return O.runKernel(cu,t)}var qm=L({selu_:c3});function d3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];A(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=bs(p,l,a,r,i,s),f=At(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var vs=L({separableConv2d_:d3});async function h3(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new Ht([o],n.dtype),u=new Ht([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var lT=h3;function m3(e){let t={x:_(e,"x","sign")};return O.runKernel(mu,t)}var Fv=L({sign_:m3});function f3(e){let t={x:_(e,"x","sin","float32")};return O.runKernel(no,t)}var Km=L({sin_:f3});function g3(e){let t={x:_(e,"x","sinh")};return O.runKernel(hu,t)}var Xm=L({sinh_:g3});function y3(e,t,n){let a=_(e,"x","slice1d");return A(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var Lc=L({slice1d_:y3});function b3(e,t,n){let a=_(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Ym=L({slice2d_:b3});function x3(e,t,n){let a=_(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var mo=L({slice3d_:x3});function v3(e,t,n){let a=_(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var ll=L({slice4d_:v3});function w3(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(io,a,r)}var Ka=L({softmax_:w3});function k3(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(um,t)}var zc=L({fft_:k3});function I3(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(pm,t)}var ul=L({ifft_:I3});function S3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=ul(r)}else{let r=[n,2*(t-1)],s=W(sl(e),[n,t]),i=W(Cc(e),[n,t]),o=fa(Be(s,[0,1],[n,t-2]),1),l=z(fa(Be(i,[0,1],[n,t-2]),1),xe(-1)),u=Ze([s,o],1),p=Ze([i,l],1),d=W(Cr(u,p),[r[0],r[1]]);a=ul(d)}if(a=sl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Zm=L({irfft_:S3});function T3(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(yu,a,r)}var zn=L({split_:T3});function N3(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Ze([e,It(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W(Cr(r,s),[a,n]),o=zc(i),l=Math.floor(n/2)+1,u=sl(o),p=Cc(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Cr(d[0],c[0]),h)}var Wc=L({rfft_:N3});function C3(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=_t(n,a),lt(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(oo,r,s)}var Jm=L({squaredDifference_:C3});function _3(e,t){let n=_(e,"x","squeeze","string_or_numeric");return W(n,II(n.shape,t).newShape)}var ws=L({squeeze_:_3});function E3(e,t=0){let n=jp(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(iu,a,r)}var Ft=L({stack_:E3});function $3(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return O.runKernel(ms,n,a)}var fo=L({step_:$3});function A3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel(xu,u,p)}var Dv=L({stridedSlice_:A3});function F3(e){let t={x:_(e,"x","tan","float32")};return O.runKernel(uo,t)}var Rv=L({tan_:F3});function Ke(e,t){hi(e);let n=ir(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return fs(e,null,n,t)}function _a(e,t,n){if(hi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=ir(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return fs(e,t,a,n)}function Aa(e,t,n){if(hi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=ir(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return fs(e,t,a,n)}function uT(e,t,n){if(hi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=ir(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return fs(e,t,a,n)}function pT(e,t,n){if(hi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=ir(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,fs(e,t,a,n)}function D3(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(vu,s,i);return{values:o,indices:l}}var Mv=L({topk_:D3});function R3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new $v(t,n,a,!0,r),i=Pe(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Qm=L({truncatedNormal_:R3});function M3(e,t=0){let n=_(e,"x","unique","string_or_numeric");A(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Nm,a,r);return{values:s,indices:i}}var Pv=L({unique_:M3});function P3(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");A(tl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(wc,s,i)}var ef=L({unsortedSegmentSum_:P3});function O3(e,t=0){let n=_(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(ku,a,r)}var ct=L({unstack_:O3});function cT(e,t){return Vm(e,t,"right")}function Ov(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function dT(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Pe(e,"int32"),r=Pe([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function L3(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=dT(t.shape,n);return e!==t&&t.dispose(),a}var Lv=L3;async function z3(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;A(i>0,()=>"mask cannot be scalar"),Sn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await Lv(d),h=ws(c,[1]),m=Eu(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var hT=z3;function W3(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");BI(s,i),A(ps(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=xe(1),u=pe(l,o),p=z(pe(i,s),u);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let d=_(a,"step","movingAverage");p=he(p,pe(l,_r(o,d)))}return Y(s,p)}var mT=L({movingAverage_:W3});function B3(e,t,n){let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");Lx(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(uu,s,i)}var fT=L({scatterND_:B3});function V3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function U3(e,t,n,a=0){let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(a,"defaultValue","sparseToDense",s.dtype);V3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(Tm,o,l)}var gT=L({sparseToDense_:U3});function G3(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(Vl,a)}var yT=L({gatherND_:G3});function H3(e,t){if(t==null)return e.shape.slice();if(ps(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function j3(e,t,n,a){let r=_(e,"x","dropout");if(A(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Te?r.clone():r;let s=H3(r,n),i=1-t,o=he(_u(Y(Au(s,0,1,"float32",a),i)),i);return z(r,o)}var zv=L({dropout_:j3});function Wv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function tf(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Ke(r,"float32")}async function q3(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");A(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Sn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=SI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),kn(p,r.shape,"bool")}var bT=q3,pl={};$e(pl,{conv2d:()=>Y3,depthwiseConv2d:()=>eL,matMul:()=>nL});function K3(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),A(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Tn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(em,d,c)}var Bv=L({conv2DBackpropFilter_:K3});function nf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,fo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function af(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),W(n,e.shape)}function rf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Nu(e);if(t==="relu6")return Gm(e);if(t==="prelu")return Oc(e,n);if(t==="leakyrelu")return Fc(e,a);if(t==="sigmoid")return da(e);throw new Error(`Unknown fused activation ${t}.`)}var sf=(e,t)=>!(e>0)||t==="linear";function X3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",sf(O.state.gradientDepth,l)===!1){A(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=At(e,t,n,a,r,s,i);return o!=null&&(T=Y(T,o)),rf(T,l,u,p)}let d=_(e,"x","conv2d","float32"),c=_(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Tn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];A(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),A(ur(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Ec(h.shape,c.shape,n,s,a,i),y;o!=null&&(y=_(o,"bias","fused conv2d"),[y]=_t(y,d),r==="NHWC"?lt(g.outShape,y.shape):(A(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),A(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(u!=null){let T=u.shape;if(A(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)A(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{lt(T,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}b=_(u,"prelu weights","fused conv2d")}let x=(T,C)=>{A(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,$,R,F]=C,S=nf(T,R,l);A(ns(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=iv($.shape,S,E,n,a),B=Bv($,S,E.shape,n,a),U=[M,B];if(F!=null){let G=af(F,S);U.push(G)}return U},w={x:h,filter:c,bias:y,preluActivationWeights:b},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?or((T,C,E)=>{let $=O.runKernel(Qs,w,I);return E([C,T,$]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:x}})(h,c):or((T,C,E,$)=>{let R=O.runKernel(Qs,w,I);return $([C,T,R,E]),m&&(R=W(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,c,y)}var Y3=L({fusedConv2d_:X3});function Z3(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(rm,u,p)}var xT=L({depthwiseConv2dNativeBackpropFilter_:Z3});function J3(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(sm,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vT=L({depthwiseConv2dNativeBackpropInput_:J3});function Q3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(sf(O.state.gradientDepth,l)===!1){let I=bs(e,t,n,a,r,s,i);return o!=null&&(I=Y(I,o)),rf(I,l,u,p)}let d=_(e,"x","depthwiseConv2d","float32"),c=_(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),A(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),A(ur(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Tn("fused depthwiseConv2d",a,i);let f=Ec(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=_t(g,d),lt(f.outShape,g.shape));let y;u!=null&&(y=_(u,"prelu weights","fused depthwiseConv2d"));let b=(I,T)=>{A(ns(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,$,R]=T,F=nf(I,$,l),S=vT(E.shape,F,C,n,a,s,i),M=xT(E,F,C.shape,n,a,s,i);if(R!=null){let B=af(g,F);return[S,M,B]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?or((I,T,C)=>{let E=O.runKernel(ei,x,w);return C([T,I,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:b}})(h,c):or((I,T,C,E)=>{let $=O.runKernel(ei,x,w);return E([T,I,$,C]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,c,g)}var eL=L({fusedDepthwiseConv2d_:Q3});function tL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(sf(O.state.gradientDepth,s)===!1){let R=Fe(e,t,n,a);return r!=null&&(R=Y(R,r)),rf(R,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=_t(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=mt(m),y=mt(f);A(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=lt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),w=a?W(u,[y,h,d]):W(u,[y,d,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=_t(I,l),lt(b,I.shape));let T;i!=null&&(T=_(i,"prelu weights","fused matMul"));let C=(R,F)=>{let[S,M,B,U]=F,G=nf(W(R,B.shape),B,s),q,K;if(!n&&!a?(q=Fe(G,M,!1,!0),K=Fe(S,G,!0,!1)):!n&&a?(q=Fe(G,M,!1,!1),K=Fe(G,S,!0,!1)):n&&!a?(q=Fe(M,G,!1,!0),K=Fe(S,G,!1,!1)):(q=Fe(M,G,!0,!0),K=Fe(G,S,!0,!0)),r!=null){let Z=af(U,G);return[q,K,Z]}else return[q,K]},E={a:x,b:w,bias:I,preluActivationWeights:T},$={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?or((R,F,S)=>{let M=O.runKernel(Js,E,$);return S([R,F,M]),{value:W(M,b),gradFunc:C}})(x,w):or((R,F,S,M)=>{let B=O.runKernel(Js,E,$);return M([R,F,B,S]),{value:W(B,b),gradFunc:C}})(x,w,I)}var nL=L({fusedMatMul_:tL});function aL(e){return tf(e,.54,.46)}var rL=L({hammingWindow_:aL});function sL(e){return tf(e,.5,.5)}var wT=L({hannWindow_:sL});function iL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Ze([Be(e,s,t-o),gn([o],r)]);i.push(l),s+=n}return i.length===0?_a([],[0,t]):W(Ze(i),[i.length,t])}var kT=L({frame_:iL});function oL(e,t,n,a,r=wT){a==null&&(a=Wv(t));let s=kT(e,t,n),i=z(s,r(t));return Wc(i,a)}var lL=L({stft_:oL});function uL(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(Rl,p,d)}var pL=L({cropAndResize_:uL});function cL(e){let t=_(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(Wl,n,{})}var dL=L({flipLeftRight_:cL});function hL(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ln(t,r)}var mL=L({grayscaleToRGB_:hL});function fL(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(Su,s,i)}var gL=L({rotateWithOffset_:fL});function Fu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function yL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=Fu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(nu,{boxes:s,scores:i},l)}var bL=L({nonMaxSuppression_:yL});function xL(e,t,n){let a=vL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function vL(e,t,n){return kL(e,t,n||wL)}function wL(e,t){return e>t?1:e<t?-1:0}function kL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function IT(e,t,n,a,r){return Vv(e,t,n,a,r,0)}function ST(e,t,n,a,r,s){return Vv(e,t,n,a,r,0,!1,s,!0)}function TT(e,t,n,a,r,s){return Vv(e,t,n,a,r,s,!0)}function Vv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Z1);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let T=IL(e,b,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*SL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&xL(u,g,Z1))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function IL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function SL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function Z1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function TL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=Fu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=IT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ke(d,"int32")}var NL=TL;function CL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Fu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(ru,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var _L=L({nonMaxSuppressionWithScore_:CL});async function EL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Fu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=TT(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(c,"int32"),selectedScores:Ke(h)}}var $L=EL;function AL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=Fu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(au,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var FL=L({nonMaxSuppressionPadded_:AL});async function DL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=Fu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=ST(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(m,"int32"),validOutputs:xe(f,"int32")}}var RL=DL;function ML(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Zi,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var NT=L({resizeBilinear_:ML});function PL(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Yi,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var CT=L({resizeNearestNeighbor_:PL});function OL(e,t="binary",n=!1,a=.5){let r=_(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(Ke([a]),255),p,d,c,h;if(A(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),A(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),A(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),y=z(c,o);h=Y(Y(f,g),y)}else h=e;if(t==="otsu"){let f=ev(le(Hm(h),"int32"),kn([]),256);u=LL(f,l)}let m=n?xs(h,u):Nn(h,u);return le(z(m,255),"int32")}function LL(e,t){let n=Ke([-1]),a=Ke([0]),r=Ke([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Be(e,0,d+1),i=Be(e,d+1),u=he(fe(s),t),p=he(fe(i),t);let c=fe(z(s,ol(0,s.size)));o=he(c,fe(s));let h=gn(i.shape,s.size),m=Y(ol(0,i.size),h),f=z(i,m);l=he(fe(f),fe(i));let g=pe(o,l),y=pe(o,l),b=z(u,p);r=z(z(b,g),y);let x=Nn(r,a);a=mn(x,r,a),n=mn(x,Ke([d]),n)}return n}var zL=L({threshold_:OL});function WL(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");A(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(wu,l,u)}var BL=L({transform_:WL});function VL(e,t,n){A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=_(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(ol(0,s,1,"int32"),[-1,1]),l=ol(0,i,1,"int32"),u=pe(o,l),p=Ea(xs(u,xe(+t,"int32")),Er(u,xe(-n,"int32"))),d=It([s,i],a.dtype);return W(Ft(ct(W(a,[-1,s,i])).map(c=>mn(p,c,d))),r)}var UL=L({bandPart_:VL});function GL(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)A(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>ws(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(O.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(fe(z(n[i],s)),n[i]);s=pe(s,o)}return he(s,Cu(s,"euclidean"))}));return t?Ft(n,0):n}var HL=L({gramSchmidt_:GL});function jL(e,t=!1){if(A(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return J1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ct(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=J1(l,t);r.push(u),s.push(p)});let i=W(Ft(r,0),e.shape),o=W(Ft(s,0),e.shape);return[i,o]}}function J1(e,t=!1){return O.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Pm(n),s=rr(e),i=_a([[1]],[1,1]),o=rr(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=O.tidy(()=>{let h=Be(s,[u,u],[n-u,1]),m=Cu(h),f=Be(s,[u,u],[1,1]),g=mn(Nn(f,0),_a([[-1]]),_a([[1]])),y=pe(f,z(g,m)),b=he(h,y);b.shape[0]===1?o=rr(i):o=Ze([i,Be(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=bt(he(Fe(g,y),m)),w=Be(s,[u,0],[n-u,a]),I=z(x,o),T=Ee(o);if(u===0)s=pe(w,Fe(I,Fe(T,w)));else{let $=pe(w,Fe(I,Fe(T,w)));s=Ze([Be(s,[0,0],[u,a]),$],0)}let C=Ee(I),E=Be(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,Fe(Fe(E,o),C));else{let $=pe(E,Fe(Fe(E,o),C));r=Ze([Be(r,[0,0],[n,u]),$],1)}return[o,s,r]}),_e([p,d,c])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var qL=L({qr_:jL}),xn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(xn||(xn={}));function KL(e,t,n=xn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===xn.NONE)return s;if(n===xn.SUM)return fe(s);if(n===xn.MEAN){if(r==null)return Nt(s);{let i=a.size/r.size,o=he(fe(s),fe(r));return i>1?he(o,xe(i)):o}}if(n===xn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(fe(s),xe(a.size));{let i=z(r,Zn(a.shape)),o=le(fe(ii(i,xe(0))),"float32");return he(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var $r=L({computeWeightedLoss_:KL});function XL(e,t,n,a=xn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),Sn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(pe(r,s));return $r(o,i,a)}var YL=L({absoluteDifference_:XL});function ZL(e,t,n,a,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),Sn(s.shape,i.shape,"Error in cosineDistance: ");let l=xe(1),u=pe(l,fe(z(s,i),n,!0));return $r(u,o,r)}var JL=L({cosineDistance_:ZL});function QL(e,t,n,a=xn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),Sn(r.shape,s.shape,"Error in hingeLoss: ");let o=xe(1);r=pe(z(xe(2),r),o);let l=Xe(pe(o,z(r,s)));return $r(l,i,a)}var ez=L({hingeLoss_:QL});function tz(e,t,n,a=1,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),Sn(s.shape,i.shape,"Error in huberLoss: ");let l=xe(a),u=Lt(pe(i,s)),p=$u(u,l),d=pe(u,p),c=Y(z(xe(.5),ot(p)),z(l,d));return $r(c,o,r)}var nz=L({huberLoss_:tz});function az(e,t,n,a=1e-7,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),Sn(s.shape,i.shape,"Error in logLoss: ");let l=xe(1),u=xe(a),p=bt(z(s,ea(Y(i,u)))),d=z(pe(l,s),ea(Y(pe(l,i),u))),c=pe(p,d);return $r(c,o,r)}var rz=L({logLoss_:az});function sz(e,t,n,a=xn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),Sn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Jm(r,s);return $r(o,i,a)}var iz=L({meanSquaredError_:sz});function oz(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");Sn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=z(a,n),i=Dc(fn(bt(Lt(a))));return Y(pe(r,s),i)}function lz(e,t,n,a=0,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),Sn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=xe(a),p=xe(1),d=xe(.5);s=Y(z(s,pe(p,u)),z(d,u))}let l=oz(s,i);return $r(l,o,r)}var uz=L({sigmoidCrossEntropy_:lz});function pz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return or((a,r,s)=>{let i=Wm(r,[n],!0),o=pe(le(r,"float32"),i);s([a,o]);let l=bt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=si(u.shape,[n]);return[z(W(u,h),pe(le(d,"float32"),fn(c))),z(W(u,h),pe(fn(c),le(d,"float32")))]}}})(e,t)}function cz(e,t,n,a=0,r=xn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),Sn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=xe(a),p=xe(1),d=xe(s.shape[1]);s=Y(z(s,pe(p,u)),he(u,d))}let l=pz(s,i);return $r(l,o,r)}var dz=L({softmaxCrossEntropy_:cz});function hz(e,t,n,a){let r=_(e,"indices","sparseFillEmptyRows","int32"),s=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(mc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var mz=L({sparseFillEmptyRows_:hz});function fz(e,t,n){let a=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),s=_(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(bu,i);return{outputIndices:o[0],outputShape:o[1]}}var gz=L({sparseReshape_:fz});function yz(e,t,n){let a=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),s=_(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(fc,i)}var bz=L({sparseSegmentMean_:yz});function xz(e,t,n){let a=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),s=_(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(gc,i)}var vz=L({sparseSegmentSum_:xz});function wz(e,t,n,a,r,s,i,o){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=_(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(bc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var kz=L({stringNGrams_:wz});function Iz(e,t,n=!0){let a=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(xc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var Sz=L({stringSplit_:Iz});function Tz(e,t){let n=_(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(vc,r,a)}var Nz=L({stringToHashBucketFast_:Tz}),_T={fft:zc,ifft:ul,rfft:Wc,irfft:Zm},ET={hammingWindow:rL,hannWindow:wT,frame:kT,stft:lL},za={flipLeftRight:dL,grayscaleToRGB:mL,resizeNearestNeighbor:CT,resizeBilinear:NT,rotateWithOffset:gL,cropAndResize:pL,nonMaxSuppression:bL,nonMaxSuppressionAsync:NL,nonMaxSuppressionWithScore:_L,nonMaxSuppressionWithScoreAsync:$L,nonMaxSuppressionPadded:FL,nonMaxSuppressionPaddedAsync:RL,threshold:zL,transform:BL},Uv={bandPart:UL,gramSchmidt:HL,qr:qL},$T={absoluteDifference:YL,computeWeightedLoss:$r,cosineDistance:JL,hingeLoss:ez,huberLoss:nz,logLoss:rz,meanSquaredError:iz,sigmoidCrossEntropy:uz,softmaxCrossEntropy:dz},AT={sparseFillEmptyRows:mz,sparseReshape:gz,sparseSegmentMean:bz,sparseSegmentSum:vz},FT={stringNGrams:kz,stringSplit:Sz,stringToHashBucketFast:Nz},Ar=class extends IS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return _e(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return BS(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:xe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ar,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var of=class extends Ar{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=Y(z(i,this.rho),z(ot(s),1-this.rho)),u=z(he(ln(Y(o,this.epsilon)),ln(Y(i,this.epsilon))),s),p=Y(z(o,this.rho),z(ot(u),1-this.rho));i.assign(l),o.assign(p);let d=Y(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};of.className="Adadelta";gs(of);var lf=class extends Ar{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>gn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=Y(s,ot(r));s.assign(i);let o=Y(z(he(r,ln(Y(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};lf.className="Adagrad";gs(lf);var uf=class extends Ar{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=xe(t).variable(),this.accBeta2=xe(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=Y(z(p,this.beta2),z(ot(l),1-this.beta2)),h=he(d,n),m=he(c,a);u.assign(d),p.assign(c);let f=Y(z(he(h,Y(ln(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(_r(this.beta1,this.iterations_+1)),this.accBeta2.assign(_r(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};uf.className="Adam";gs(uf);var pf=class extends Ar{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=xe(0).variable(),this.accBeta1=xe(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=he(-this.learningRate,Y(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=Lt(l),m=pr(c,h);u.assign(d),p.assign(m);let f=Y(z(he(a,n),he(d,Y(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};pf.className="Adamax";gs(pf);var Bc=class extends Ar{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=Y(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Jt(xe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Bc.className="SGD";gs(Bc);var cf=class extends Bc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=xe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=Y(z(this.m,r),s);this.useNesterov?i=Y(z(this.c,Y(s,z(o,this.m))),a):i=Y(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};cf.className="Momentum";gs(cf);var df=class extends Ar{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=Y(z(i,this.decay),z(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=Y(z(u,this.decay),z(s,1-this.decay)),d=he(z(s,this.learningRate),ln(pe(l,Y(ot(p),this.epsilon)))),c=Y(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=Y(z(i,this.decay),z(ot(s),1-this.decay)),p=Y(z(o,this.momentum),he(z(s,this.learningRate),ln(Y(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};df.className="RMSProp";gs(df);var Hr=class{static sgd(e){return new Bc(e)}static momentum(e,t,n=!1){return new cf(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new df(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new uf(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new of(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new pf(e,t,n,a,r)}static adagrad(e,t=.1){return new lf(e,t)}},zs={sgd:Hr.sgd,momentum:Hr.momentum,adadelta:Hr.adadelta,adagrad:Hr.adagrad,rmsprop:Hr.rmsprop,adamax:Hr.adamax,adam:Hr.adam},Cz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Gv(){return new Promise(e=>Cz(()=>e()))}var N={};$e(N,{ERF_A1:()=>Vz,ERF_A2:()=>Uz,ERF_A3:()=>Gz,ERF_A4:()=>Hz,ERF_A5:()=>jz,ERF_P:()=>Bz,PARALLELIZE_THRESHOLD:()=>Hv,RowPartitionType:()=>er,SELU_SCALE:()=>RT,SELU_SCALEALPHA:()=>DT,applyActivation:()=>rf,assertAndGetBroadcastShape:()=>lt,assertAxesAreInnerMostDims:()=>FP,assertParamsConsistent:()=>_z,assignToTypedArray:()=>Jz,axesAreInnerMostDims:()=>mv,calculateShapes:()=>hS,checkEinsumDimSizes:()=>rW,checkPadOnDimRoundingMode:()=>Tn,combineLocations:()=>PS,combineRaggedTensorToTensorShapes:()=>$z,complexWithEvenIndex:()=>Xz,complexWithOddIndex:()=>Yz,computeConv2DInfo:()=>Ec,computeConv3DInfo:()=>ES,computeDefaultPad:()=>Xx,computeDilation2DInfo:()=>DM,computeOptimalWindowSize:()=>Rz,computeOutAndReduceShapes:()=>OS,computeOutShape:()=>Ez,computePool2DInfo:()=>_S,computePool3DInfo:()=>RM,convertConv2DDataFormat:()=>$S,decodeEinsumEquation:()=>nW,eitherStridesOrDilationsAreOne:()=>ur,expandShapeToKeepDim:()=>si,exponent:()=>eW,exponents:()=>Qz,fromStringArrayToUint8:()=>TW,fromUint8ToStringArray:()=>SW,getAxesPermutation:()=>LS,getBroadcastDims:()=>pS,getComplexWithIndex:()=>Zz,getEinsumComputePath:()=>sW,getEinsumPermutation:()=>aW,getFusedBiasGradient:()=>af,getFusedDyActivation:()=>nf,getImageCenter:()=>Mz,getInnerMostAxes:()=>DP,getPermuted:()=>Oz,getRaggedRank:()=>Fz,getReductionAxes:()=>Wt,getReshaped:()=>Pz,getReshapedPermuted:()=>Lz,getRowPartitionTypesHelper:()=>Az,getSliceBeginCoords:()=>zz,getSliceSize:()=>Wz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>uW,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>pW,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>cW,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>mW,getSparseReshapeInputOutputMismatchErrorMessage:()=>gW,getSparseReshapeInputOutputMultipleErrorMessage:()=>fW,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>dW,getSparseReshapeNegativeOutputDimErrorMessage:()=>hW,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>vW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>yW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>bW,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>xW,getUndoAxesPermutation:()=>fv,isIdentityPermutation:()=>iW,log:()=>YF,mergeRealAndImagArrays:()=>qz,prepareAndValidate:()=>dS,prepareSplitSize:()=>lW,segment_util:()=>MT,shouldFuse:()=>sf,slice_util:()=>jt,splitRealAndImagArrays:()=>Kz,tupleValuesAreOne:()=>ns,upcastType:()=>ma,validateDefaultValueShape:()=>Dz,validateInput:()=>Lx,validateUpdateShape:()=>Ox,warn:()=>qr});function _z(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)A(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function Ez(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var er;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(er||(er={}));function $z(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function Az(e){let t={FIRST_DIM_SIZE:er.FIRST_DIM_SIZE,VALUE_ROWIDS:er.VALUE_ROWIDS,ROW_LENGTHS:er.ROW_LENGTHS,ROW_SPLITS:er.ROW_SPLITS,ROW_LIMITS:er.ROW_LIMITS,ROW_STARTS:er.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function Fz(e){return e.length===0?0:e[0]===er.FIRST_DIM_SIZE?e.length-1:e.length}function Dz(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var Hv=30;function Rz(e){return e<=Hv?e:mh(e,Math.floor(Math.sqrt(e)))}function Mz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function Pz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function Oz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Lz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function zz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function Wz(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var DT=1.7580993408473768,RT=1.0507009873554805,Bz=.3275911,Vz=.254829592,Uz=-.284496736,Gz=1.421413741,Hz=-1.453152027,jz=1.061405429;function qz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function Kz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function Xz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Yz(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Zz(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function Jz(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function Qz(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function eW(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var ub="->",tW=/->/g,Q1=",",ek="...";function nW(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(tW,"").length)/ub.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${ub}").`);let[a,r]=e.split(ub);A(a.indexOf(ek)===-1,()=>`The ellipsis notation ("${ek}") is not supported yet.`);let s=a.split(Q1),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==Q1&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function aW(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function rW(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:A(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function sW(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=oW(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function iW(e){return e.every((t,n)=>t===n)}function oW(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function lW(e,t,n=0){let a=[];if(typeof t=="number")A(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function uW(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function pW(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function cW(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function dW(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function hW(e,t){return`size ${e} must be non-negative, not ${t}`}function mW(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function fW(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function gW(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function yW(){return"segment ids must be >= 0"}function bW(){return"segment ids are not increasing"}function xW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function vW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var MT={};$e(MT,{collectGatherOpShapeInfo:()=>IW,computeOutShape:()=>kW,segOpComputeOptimalWindowSize:()=>wW});function wW(e,t){let n=!1,a;for(e<=Hv?(a=e,n=!0):a=mh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=mh(e,a+1);return a}function kW(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function IW(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function SW(e){try{return e.map(t=>vh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function TW(e){return e.map(t=>Sc(t))}var cr={};$e(cr,{nonMaxSuppressionV3Impl:()=>IT,nonMaxSuppressionV4Impl:()=>ST,nonMaxSuppressionV5Impl:()=>TT,whereImpl:()=>dT});var PT={kernelName:wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,fo(le(n,"float32"),-1))}}},NW={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(le(n,"float32")),r=ln(pe(xe(1),a));return bt(he(e,r))}}}},CW={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ln(pe(ot(le(n,"float32")),1));return he(e,a)}}}},_W={kernelName:cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}},EW={kernelName:mi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},$W={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},AW={kernelName:sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},FW={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ln(pe(xe(1),ot(le(n,"float32")))))}}},DW={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ln(Y(xe(1),ot(le(n,"float32"))));return he(e,a)}}}},RW={kernelName:$l,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=Y(ot(n),ot(a)),i=z(e,he(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=fe(i,o)),W(i,n.shape)},b:()=>{let s=Y(ot(n),ot(a)),i=bt(z(e,he(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=fe(i,o)),W(i,a.shape)}}}},MW={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Y(ot(le(n,"float32")),1))}}},PW={kernelName:El,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(xe(1),ot(le(n,"float32"))))}}};function OW(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Tn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(Yh,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var LW=L({avgPool3dGrad_:OW}),zW={kernelName:ic,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>LW(e,a,r,s,i,o)}}};function WW(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel(Xh,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var BW=L({avgPoolGrad_:WW}),VW={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>BW(e,a,r,s,i)}}},UW={kernelName:yi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Fe(e,r,!1,!0),b:()=>Fe(a,e,!0,!1)}:!s&&i?{a:()=>Fe(e,r,!1,!1),b:()=>Fe(e,a,!0,!1)}:s&&!i?{a:()=>Fe(r,e,!1,!0),b:()=>Fe(a,e,!1,!1)}:{a:()=>Fe(r,e,!0,!0),b:()=>Fe(e,a,!0,!0)}}},GW={kernelName:Al,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Pc(e,a,r)}}},HW={kernelName:RI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>fe(e,o,!0)}}},jW={kernelName:bi,gradFunc:e=>({x:()=>e.clone()})},qW={kernelName:xi,gradFunc:e=>({x:()=>qe(e)})},KW={kernelName:ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>mn(Ea(Er(a,r),xs(a,s)),e,qe(e))}}},XW={kernelName:oc,inputsToSave:["x"],gradFunc:PT.gradFunc},YW={kernelName:Fl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=$a(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},ZW={kernelName:vi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(ns(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>iv(a.shape,e,r,i,o,l),filter:()=>Bv(a,e,r.shape,i,o,l)}}},JW={kernelName:wi,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>At(e,r,s,i,o,1,l),filter:()=>Bv(e,a,r.shape,s,i,o,l)}}};function QW(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(tm,o,l)}var eB=L({conv3DBackpropFilter_:QW}),tB={kernelName:lc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(ns(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>DS(i.shape,e,o,r,s),filter:()=>eB(i,e,o.shape,r,s)}}},nB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(bt(Km(le(n,"float32"))),e)}}},aB={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Xm(le(n,"float32")),e)}}},rB={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=LS([r],a.rank),l=Mm(e,r,s,!i);return o!=null&&(l=Ee(l,o)),l}}}},sB={kernelName:Ti,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(ns(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(ur(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Tn("depthwiseConv2d",s,i),{x:()=>vT(l.shape,e,u,r,s,o,i),filter:()=>xT(l,e,u.shape,r,s,o,i)}}},iB={kernelName:uc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(fh,s,n),filter:()=>O.runKernel(gh,i,n)}}},oB={kernelName:Ci,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(lm,a)}}},lB={kernelName:Pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(fn(bt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},uB={kernelName:_i,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},pB={kernelName:Ll,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},cB={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,fn(n))}}},dB={kernelName:Ei,gradFunc:e=>({x:()=>qe(e)})},hB={kernelName:$i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=he(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,le(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ot(a);return bt(he(s,le(o,"float32")))}}}},mB={kernelName:Ai,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?xe(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=pe(r,s),c=z(e,l),h=jm(Y(i,xe(a))),m=z(z(z(h,h),h),xe(-.5));return{x:()=>s.rank===1?W(z(z(e,Ln(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,xe(-1)),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),W(f,s.shape)}}}},fB={kernelName:Bl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=$a(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=tk(0,p),m=tk(p+1,p+1+c),f=nk([u,[l],d]),g=W(e,f),y=W(r,[l]),b=nk([[p],h,m]),x=Ee(g,b),w=ef(x,y,a.shape[i]),I=fv(b);return w=Ee(w,I),w},indices:()=>r}}};function tk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function nk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var gB={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},yB={kernelName:Di,gradFunc:e=>({x:()=>le(e,"float32")})},bB={kernelName:Gl,gradFunc:e=>({x:()=>qe(e)})},xB={kernelName:Hl,gradFunc:e=>({x:()=>qe(e)})},vB={kernelName:jl,gradFunc:e=>({x:()=>qe(e)})},wB={kernelName:Ri,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Nn(a,0);return{x:()=>mn(s,e,z(e,r))}}},kB={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Y(n,1))}}},IB={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(n,"float32"))}}},SB={kernelName:PI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=fn(a);return pe(e,z(fe(e,r,!0),s))}}}};function TB(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel(hm,o,l)}var NB=L({localResponseNormalizationBackprop_:TB}),CB={kernelName:cc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>NB(a,r,e,s,i,o,l)}}};function OT(e,t,n,a){return t.rank<n.rank&&(t=W(t,si(t.shape,a))),e.rank<n.rank&&(e=W(e,si(e.shape,a))),{x:()=>z(e,le(Qn(n,t),e.dtype))}}var ak={kernelName:Pi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=$a(r,s.shape),l=OT(e,i,s,o);return{x:()=>l.x()}}},_B={kernelName:Oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,le(Er(n,a),"float32")),b:()=>z(e,le(Om(n,a),"float32"))}}};function EB(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),A(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Tn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(fm,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var $B=L({maxPool3dGrad_:EB}),AB={kernelName:dc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>$B(e,a,r,s,i,o,l)}}};function FB(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Tn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(mm,p,d)}var DB=L({maxPoolGrad_:FB}),RB={kernelName:Li,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>DB(e,a,r,s,i,o)}}},MB={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=$a(r,a.shape),i=OS(a.shape,s)[1],o=mt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return he(z(u,Zn(a.shape,"float32")),o)}}}},PB={kernelName:Wi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=$a(r,s.shape),l=OT(e,i,s,o);return{x:()=>l.x()}}},OB={kernelName:Bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,le(xs(n,a),"float32")),b:()=>z(e,le(Nn(n,a),"float32"))}}},LB={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},zB={kernelName:Ql,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?W(fe(e,s),n.shape):e},b:()=>{let s=z(e,bt(_u(he(n,a)))),i=Wt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},WB={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=z(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,le(n,"float32")),i=Wt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},BB={kernelName:eu,gradFunc:e=>({x:()=>bt(e)})},VB={kernelName:Gi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},UB={kernelName:su,gradFunc:e=>({x:()=>qe(e)})},GB={kernelName:iu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ct(e,a).map(r=>()=>r)}},rk={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},HB={kernelName:ji,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=lt(s.shape,i.shape);return{a:()=>{let l=le(i,"float32"),u=z(e,z(l,_r(s,pe(l,xe(1))))),p=Wt(s.shape,o);return p.length>0&&(u=fe(u,p)),W(u,s.shape)},b:()=>{let l=Nn(s,0),u=mn(l,ea(s),qe(s)),p=z(e,z(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=fe(p,d)),W(p,i.shape)}}}},jB={kernelName:qi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Nn(n,0);return{x:()=>mn(r,e,z(e,a)),alpha:()=>{let s=mn(r,qe(e),z(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}};function qB(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=Kp(e,n,!0,!1),i=Kp(e,n,!0,!0),o=z(s,i);return z(r,o)}function KB(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=Ee(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=qB(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=Ee(p,d)}return p}var XB={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>KB(a,e,s)}}},YB={kernelName:Ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=he(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,le(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ot(a);return bt(he(s,le(o,"float32")))}}}},ZB={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,bt(ot(n)))}}},JB={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(xs(n,6),fo(n));return{x:()=>z(e,le(a,"float32"))}}},QB={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,le(fo(n),"float32"))}}},e4={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},t4={kernelName:Zi,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Im,r,n)}}},n4={kernelName:Yi,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(km,r,n)}}},a4={kernelName:Qi,gradFunc:(e,t,n)=>{let{dims:a}=n,r=$a(a,e.shape);return{x:()=>fa(e,r)}}},r4={kernelName:eo,gradFunc:e=>({x:()=>qe(e)})},s4={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>bt(he(e,z(_r(n,1.5),2)))}}},i4={kernelName:pu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>le(qe(n),"float32"),t:()=>z(e,le(n,e.dtype)),e:()=>z(e,le(Rc(n),e.dtype))}}},o4={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Nn(n,xe(0)),r=xe(DT),s=xe(RT),i=z(e,s),o=z(z(e,r),fn(le(n,"float32")));return mn(a,i,o)}}}},l4={kernelName:ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(xe(1),n)))}}},u4={kernelName:mu,gradFunc:e=>({x:()=>qe(e)})},p4={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ac(le(n,"float32")),e)}}},c4={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Rm(le(n,"float32")),e)}}},d4={kernelName:du,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=kS(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ya(e,u)}}},h4={kernelName:io,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},m4={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,da(n))}}},sk={kernelName:gu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>$c(e,a,r)}}},ik={kernelName:yu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Ze(e,a)}}},f4={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(ln(le(n,"float32")),2))}}},g4={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(le(n,"float32"),2))}}},y4={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xe(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},b4={kernelName:ms,gradFunc:e=>({x:()=>qe(e)})},x4={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(bt(s),a.shape)}}}},v4={kernelName:so,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;$a(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Zn(a.shape,"float32"));return{x:()=>o}}},w4={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ot(Ac(n)))}}},k4={kernelName:po,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(xe(1),ot(n)),e)}}},I4={kernelName:hs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=Y(s,Be(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=Y(s,Be(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=Y(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=Y(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},S4={kernelName:Tr,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=fv(r);return{x:()=>Ee(e,s)}}},T4={kernelName:ku,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Ft(e,r)}}},N4={kernelName:wc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>C4(e,n)}}};function C4(e,t){let n=pr(t,qe(t)),a=Eu(e,n),r=Er(t,xe(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=Zt(r,o+1);r=Ea(r,Zn(a.shape,"bool"));let i=qe(a);return mn(r,a,i)}var _4={kernelName:Iu,gradFunc:e=>({x:()=>qe(e)})},E4=[PT,NW,CW,_W,EW,$W,AW,FW,DW,RW,MW,PW,zW,VW,UW,GW,HW,jW,qW,KW,XW,YW,JW,ZW,tB,nB,aB,rB,sB,iB,YB,oB,lB,uB,pB,cB,hB,dB,mB,fB,gB,yB,bB,xB,vB,wB,kB,IB,SB,CB,ak,ak,_B,AB,RB,MB,PB,OB,LB,zB,WB,BB,VB,UB,GB,rk,rk,HB,jB,XB,ZB,JB,QB,e4,t4,n4,a4,r4,s4,i4,o4,l4,u4,p4,c4,d4,h4,m4,sk,sk,ik,ik,f4,y4,g4,b4,x4,v4,w4,k4,I4,S4,T4,N4,_4];for(let e of E4)OI(e);Q().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),Bx(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),Vx(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),Y(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Am(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),qp(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),ai(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),Ux(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),W(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),le(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};Q().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};Q().prototype.asin=function(){return this.throwIfDisposed(),Gx(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),Hx(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),jx(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),qx(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),Kx(this)};Q().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ga(this,e,t,n,a)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),$c(this,e,t)};Q().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),ys(this,e,t,n,a,r)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ks(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),le(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),tv(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),en(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Te&&(e=[e]),Ze([this,...e],t)};Q().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Fm(this,e,t,n,a,r,s)};Q().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Dm(this,e,t,n,a,r)};Q().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),At(this,e,t,n,a,r,s)};Q().prototype.cos=function(){return this.throwIfDisposed(),Ac(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),Rm(this)};Q().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Kp(this,e,t,n)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Mm(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),uv(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),bs(this,e,t,n,a,r,s)};Q().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),pv(this,e,t,n,a,r)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),cv(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),dv(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),Nu(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),Qn(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),hv(this)};Q().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),gv(this,e,t)};Q().prototype.exp=function(){return this.throwIfDisposed(),fn(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),Zt(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),yv(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),zc(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),_u(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),$m(this,e)};Q().prototype.gather=function(e,t){return this.throwIfDisposed(),Eu(this,e,t)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Er(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),Nn(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),ul(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),Zm(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),bv(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),xv(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),vv(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Fc(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),xs(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),Om(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),wv(this,e,t,n,a)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),kv(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),zm(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Wm(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),ea(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),Dc(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Ea(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),Rc(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),Bm(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),Iv(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Fe(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Dt(this,e,t,n,a)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),pr(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),Nt(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),il(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),$u(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Tv(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),Nv(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),bt(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Cu(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),ii(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),rl(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),ta(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),ya(this,e,t)};Q().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),Cv(this,e,t,n,a,r,s)};Q().prototype.pow=function(e){return this.throwIfDisposed(),_r(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),Oc(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),_v(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),Av(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),Gm(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),NT(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),CT(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),fa(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),Wc(this)};Q().prototype.round=function(){return this.throwIfDisposed(),Hm(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),jm(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),qm(this)};Q().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),vs(this,e,t,n,a,r,s)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),Fv(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),Km(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),Xm(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),Ka(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),ho(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Pc(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),ln(this)};Q().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Jm(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),ws(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Te?[this,e]:[this,...e];return Ft(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),fo(this,e)};Q().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Dv(this,e,t,n,a,r,s,i,o)};Q().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),Rv(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),ri(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),Ln(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),le(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),le(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),le(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),Mv(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),Ee(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),Pv(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),ef(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),ct(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),mn(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var vr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,vr.prototype)}},Wa=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Wa.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},Re=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Re.prototype)}},LT=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,LT.prototype)}},zT=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function oi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function tr(e,t){if(!e)throw new LT(t)}function ok(e,t){let n=0;for(let a of e)a===t&&n++;return n}function On(e){return e.length===1?e[0]:e}function yt(e){return Array.isArray(e)?e:[e]}function wr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Vs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ka={};function jv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Mb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Mb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Mb(a))}}}function Vc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ka)i=ka[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ka?[o,l]=ka.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ka))u[h]=ka[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},ka);for(let h of Object.keys(n))ka[h]=n[h];Mb(s.config);let c=l(o,s.config,n,r);return ka=Object.assign({},d),c}else{let u=Object.assign({},ka);for(let d of Object.keys(n))ka[d]=n[d];let p=new o(s.config);return ka=Object.assign({},u),p}}}function $4(e,t){return e<t?-1:e>t?1:0}function jd(e,t){return-1*$4(e,t)}function Jr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function A4(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function go(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function qv(e,t,n=0,a=1/0){return tr(n>=0),tr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Qt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Qt(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${WT(e)}.`)}function WT(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>WT(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function F4(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function BT(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var D4=0;function VT(){return D4++}var qd={};function hf(e=""){return e in qd||(qd[e]=0),qd[e]+=1,e+qd[e].toString()}var R4=["channelsFirst","channelsLast"],M4=["nearest","bilinear"],P4=["valid","same","causal"],O4=["max","avg"],L4=["sum","mul","concat","ave"],Ho=new Map;function Rt(e){go(R4,"DataFormat",e)}function z4(e){go(M4,"InterpolationFormat",e)}function ba(e){go(P4,"PaddingMode",e)}function UT(e){go(O4,"PoolMode",e)}var zp=[],lk="/";function Xs(e,t){zp.push(e);try{let n=t();return zp.pop(),n}catch(n){throw zp.pop(),n}}function W4(){return zp.length===0?"":zp.join(lk)+lk}function GT(e){if(!jT(e))throw new Error("Not a valid tensor name: '"+e+"'");return W4()+e}function HT(e){if(!jT(e))throw new Error("Not a valid tensor name: '"+e+"'");Ho.has(e)||Ho.set(e,0);let t=Ho.get(e);if(Ho.set(e,Ho.get(e)+1),t>0){let n=`${e}_${t}`;return Ho.set(n,1),n}else return e}var B4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function jT(e){return!!e.match(B4)}function V4(e){return e===parseInt(e.toString(),10)}function Qr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function cl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function as(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ha(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var pb;function Gt(){return pb==null&&(pb=uS().epsilon()),pb}function ja(){return"channelsLast"}function yo(e,t){return le(e,t)}function Uc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function U4(e,t){return P(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Uc(e,1);return Pb(n,[1,t,1])})}function G4(e){let t=[Qr(e.shape)];return W(e,t)}function H4(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Qr(e.shape,1)];return W(e,t)}function Ys(e,t,n){return P(()=>{switch(e.rank){case 1:return Lc(e,t,n);case 2:return Ym(e,[t,0],[n,e.shape[1]]);case 3:return mo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ll(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function cb(e,t,n){return P(()=>{switch(e.rank){case 1:return Lc(e,t,n);case 2:return Ym(e,[0,t],[e.shape[0],n]);case 3:return mo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ll(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Kd(e,t,n,a){return P(()=>{switch(e.rank){case 1:return Lc(e,t,n);case 2:switch(a){case 1:return Ys(e,t,n);case 2:return cb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Ys(e,t,n);case 2:return mo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return cb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Ys(e,t,n);case 2:return ll(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ll(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return cb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Kv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function uk(e,t){switch(e.rank){case 1:return nv([e,t]);case 2:return av([e,t],0);case 3:return rv([e,t],0);case 4:return sv([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Pb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ln(e,t)}function mf(e,t=0,n=1,a,r){return Um(e,t,n,a,r)}function sr(e,t,n,a){if(e.rank<2||t.rank<2)throw new Re(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Re(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return pl.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Ob(e.rank,a,ja()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(Ee(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(pl.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Ob(e.rank,a,ja()):null,activation:n}),d)}}function qT(e,t,n){return P(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=le(t,"int32"),Eu(e,t,n)))}function Gc(e){return z(e,e)}function Ob(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Xa(e,t,n){return P(()=>(n==null&&(n=ja()),Rt(n),Y(e,Ob(e.rank,t,n))))}function j4(e,t=1){if(t!==1)throw new Re(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Nu(e)}function q4(e){return P(()=>he(e,Y(Lt(e),1)))}function KT(e,t,n,a){return P(()=>zv(e,t,n,a))}function K4(e){return P(()=>{let t=Y(.5,z(.2,e));return en(t,0,1)})}function Hc(e,t,n=!1){return n?e():t()}var X4=["fanIn","fanOut","fanAvg"],Y4=["normal","uniform","truncatedNormal"];function Z4(e){go(X4,"FanMode",e)}function J4(e){go(Y4,"Distribution",e)}var Fa=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Xv=class extends Fa{apply(e,t){return It(e,t)}};Xv.className="Zeros";ne.registerClass(Xv);var ff=class extends Fa{apply(e,t){return Zn(e,t)}};ff.className="Ones";ne.registerClass(ff);var Yv=class extends Fa{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(xe(this.value),Zn(e,t)))}getConfig(){return{value:this.value}}};Yv.className="Constant";ne.registerClass(Yv);var Zv=class extends Fa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Au(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Zv.className="RandomUniform";ne.registerClass(Zv);var Jv=class extends Fa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Re(`randomNormal does not support dType ${t}.`);return mf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Jv.className="RandomNormal";ne.registerClass(Jv);var Qv=class extends Fa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Re(`truncatedNormal does not support dType ${t}.`);return Qm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Qv.className="TruncatedNormal";ne.registerClass(Qv);var ew=class extends Fa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Pm(e[0]))})}getConfig(){return{gain:this.gain}}};ew.className="Identity";ne.registerClass(ew);function Q4(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Qr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Qr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Qr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Bn=class extends Fa{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Z4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,J4(this.distribution),this.seed=e.seed}apply(e,t){let n=Q4(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Re(`${this.getClassName()} does not support dType ${t}.`);return Qm(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Au(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Bn.className="VarianceScaling";ne.registerClass(Bn);var gf=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};gf.className="GlorotUniform";ne.registerClass(gf);var yf=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};yf.className="GlorotNormal";ne.registerClass(yf);var bf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};bf.className="HeNormal";ne.registerClass(bf);var xf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};xf.className="HeUniform";ne.registerClass(xf);var vf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};vf.className="LeCunNormal";ne.registerClass(vf);var wf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};wf.className="LeCunNormal";ne.registerClass(wf);var tw=class extends Fa{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Re("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new Re("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=mf(n,0,1,"float32"),r=Uv.gramSchmidt(a);return e[0]>e[1]&&(r=Ee(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};tw.className="Orthogonal";ne.registerClass(tw);var pk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function ck(e,t={}){return Vc(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return jv(e)}function St(e){if(typeof e=="string"){let t=e in pk?pk[e]:e;if(t==="GlorotNormal")return new yf;if(t==="GlorotUniform")return new gf;if(t==="HeNormal")return new bf;if(t==="HeUniform")return new xf;if(t==="LeCunNormal")return new vf;if(t==="LeCunUniform")return new wf;{let n={};return n.className=t,n.config={},ck(n)}}else return e instanceof Fa?e:ck(e)}function Lb(e){return Array.isArray(e)&&Array.isArray(e[0])}function Th(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ne(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Qe(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Nh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var dk="Variable",XT=class{constructor(e,t="float32",n=dk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=VT(),n=n==null?dk:n,this.originalName=GT(n),this.name=HT(this.originalName),this.trainable_=a,this.constraint=r,this.val=Ov(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),eV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function eV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function zb(e){return e.map(t=>t.read())}function nw(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ba=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=VT(),s!=null&&(this.originalName=GT(s),this.name=HT(this.originalName)),this.rank=t.length}},tV=0,kf=class{constructor(e,t){this.callArgs=t,this.id=tV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nV=0,Ge=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=wr(n)+"_"+hf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Wa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new vr(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new vr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=yt(e),a=!0;for(let s of n)if(!(s instanceof Ba)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ba){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return Xs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of yt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=yt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new Re("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=aV(e),i=this.computeOutputShape(s),o,l=rV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ba(l,u,this,yt(e),t,this.name,p)):o=new Ba(l,i,this,yt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Re("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new vr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new vr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Wa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Nh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return zb(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=zb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}nw(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():St("zeros"));let l=a.apply(t,n),u=new XT(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=yt(e);t=yt(t),n=yt(n),a=yt(a),r=Th(r),s=Th(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new kf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function aV(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function rV(e){return"float32"}function YT(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=YT(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Du=class extends Ge{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:hf("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ba(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new kf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Du.className="InputLayer";ne.registerClass(Du);function ZT(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Du({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function sV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return le(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Hs=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Hs)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=sV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&_e(this.id2Mask)}},Ch=new zT,_h=new zT;function iV(e){Ch!=null&&Ch.setMaxEntries(e),_h!=null&&_h.setMaxEntries(e)}function Ep(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Ch.get(p),c;if(d==null){let m=oV(i,t);d=m.sorted,c=m.recipientCounts,Ch.put(p,d),_h.put(p,c)}c={},r||Object.assign(c,_h.get(p));let h=new Hs(t);for(let m=0;m<d.length;++m){if(a!=null){let $=kh().numTensors;$>a.maxNumTensors&&(a.maxNumTensors=$),$<a.minNumTensors&&(a.minNumTensors=$)}let f=d[m],g=f.sourceLayer;if(g instanceof Du)continue;let y=[],b=[],x=[],w=!1;for(let $ of f.inputs){let R=h.getValue($),F=h.getMask($);y.push(R),b.push(F),F!=null&&(w=!0),r||(c[$.name]--,c[$.name]===0&&!t.hasKey($)&&o.indexOf($.name)===-1&&!R.isDisposed&&$.sourceLayer.stateful!==!0&&x.push(R))}w&&(n=n||{},n.mask=b[0]);let I=yt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let C=uV(f),E=Array.isArray(C)?C:[C];for(let $=0;$<E.length;++$){h.hasKey(E[$])||h.add(E[$],I[$],Array.isArray(T)?T[0]:T);let R=o.indexOf(E[$].name);R!==-1&&(l[R]=I[$])}r||_e(x)}return h.disposeMasks(),s?l:l[0]}function oV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=hk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=hk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:lV(a)}}function lV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function hk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function uV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var pV=H();pV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,iV);var JT={};$e(JT,{maxNorm:()=>cV,minMaxNorm:()=>mV,nonNeg:()=>hV,unitNorm:()=>dV});function aw(e,t){return P(()=>ln(fe(z(e,e),t,!0)))}var jc=class extends ne.Serializable{getConfig(){return{}}},rw=class extends jc{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=aw(e,this.axis),n=en(t,0,this.maxValue);return z(e,he(n,Y(Gt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};rw.className="MaxNorm";ne.registerClass(rw);var sw=class extends jc{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>he(e,Y(Gt(),aw(e,this.axis))))}getConfig(){return{axis:this.axis}}};sw.className="UnitNorm";ne.registerClass(sw);var iw=class extends jc{apply(e){return Xe(e)}};iw.className="NonNeg";ne.registerClass(iw);var ow=class extends jc{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=aw(e,this.axis),n=Y(z(this.rate,en(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,Y(Gt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};ow.className="MinMaxNorm";ne.registerClass(ow);var mk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return jv(e)}function fk(e,t={}){return Vc(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in mk?mk[e]:e,config:{}};return fk(t)}else return e instanceof jc?e:fk(e)}function cV(e){return new rw(e)}function dV(e){return new sw(e)}function hV(){return new iw}function mV(e){return new ow(e)}var QT={};$e(QT,{constant:()=>yV,glorotNormal:()=>SV,glorotUniform:()=>IV,heNormal:()=>TV,heUniform:()=>NV,identity:()=>wV,leCunNormal:()=>CV,leCunUniform:()=>_V,ones:()=>gV,orthogonal:()=>EV,randomNormal:()=>xV,randomUniform:()=>bV,truncatedNormal:()=>vV,varianceScaling:()=>kV,zeros:()=>fV});function fV(){return new Xv}function gV(){return new ff}function yV(e){return new Yv(e)}function bV(e){return new Zv(e)}function xV(e){return new Jv(e)}function vV(e){return new Qv(e)}function wV(e){return new ew(e)}function kV(e){return new Bn(e)}function IV(e){return new gf(e)}function SV(e){return new yf(e)}function TV(e){return new bf(e)}function NV(e){return new xf(e)}function CV(e){return new vf(e)}function _V(e){return new wf(e)}function EV(e){return new tw(e)}var eN={};$e(eN,{Layer:()=>Ge,RNN:()=>dr,RNNCell:()=>Zc,activation:()=>nG,add:()=>cG,alphaDropout:()=>KG,average:()=>dG,averagePooling1d:()=>y0,averagePooling2d:()=>b0,averagePooling3d:()=>x0,avgPool1d:()=>wG,avgPool2d:()=>IG,avgPool3d:()=>TG,avgPooling1d:()=>kG,avgPooling2d:()=>SG,avgPooling3d:()=>NG,batchNormalization:()=>bG,bidirectional:()=>WG,categoryEncoding:()=>JG,concatenate:()=>hG,conv1d:()=>qU,conv2d:()=>KU,conv2dTranspose:()=>XU,conv3d:()=>YU,conv3dTranspose:()=>ZU,convLstm2d:()=>PG,convLstm2dCell:()=>OG,cropping2D:()=>QU,dense:()=>aG,depthwiseConv2d:()=>tG,dot:()=>yG,dropout:()=>rG,elu:()=>BU,embedding:()=>pG,flatten:()=>iG,gaussianDropout:()=>qG,gaussianNoise:()=>jG,globalAveragePooling1d:()=>CG,globalAveragePooling2d:()=>_G,globalMaxPool1d:()=>VG,globalMaxPool2d:()=>UG,globalMaxPooling1d:()=>HN,globalMaxPooling2d:()=>jN,gru:()=>$G,gruCell:()=>AG,input:()=>bN,inputLayer:()=>WU,layerNormalization:()=>xG,leakyReLU:()=>UU,lstm:()=>FG,lstmCell:()=>DG,masking:()=>XG,maxPool1d:()=>GG,maxPool2d:()=>HG,maxPooling1d:()=>qN,maxPooling2d:()=>KN,maxPooling3d:()=>EG,maximum:()=>mG,minimum:()=>fG,multiply:()=>gG,permute:()=>uG,prelu:()=>GU,reLU:()=>VU,repeatVector:()=>oG,rescaling:()=>YG,reshape:()=>lG,resizing:()=>ZG,rnn:()=>LG,separableConv2d:()=>JU,simpleRNN:()=>RG,simpleRNNCell:()=>MG,softmax:()=>HU,spatialDropout1d:()=>sG,stackedRNNCells:()=>zG,thresholdedReLU:()=>jU,timeDistributed:()=>BG,upSampling2d:()=>eG,zeroPadding2d:()=>vG});async function jr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];_e(a)}}function tN(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var gk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(gk||(gk={}));var $V=125,dl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},nN=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},AV=class extends dl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=P(()=>Y(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(he(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Jt(t[n])}))}},aN=class extends dl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},rN=class extends dl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Gv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=$V),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=F4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await jr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await jr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await jr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await jr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await jr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await jr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await jr(e),await this.trainEnd(e))}};function sN(e,t){return e==null&&(e={}),e instanceof dl?[e]:Array.isArray(e)&&e[0]instanceof dl?e:yt(e).map(n=>new rN(n,t))}var Ta=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ta.checkForDuplicate(t),Ta.constructors[e]==null&&(Ta.constructors[e]=[]),Ta.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ta.constructors)Ta.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){Ta.constructors={}}static createCallbacks(e){let t=[];for(let n in Ta.constructors){let a=+n;e>=a&&t.push(...Ta.constructors[a])}return t.map(n=>new n)}};Ta.constructors={};function iN(e,t,n,a,r,s,i,o,l){let u=new aN,p=[new AV,...Ta.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new nN(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ua(e,t={},n=!1){return Vc(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function Eh(e,t){return P(()=>{e.dtype!=="float32"&&(e=le(e,"float32"));let n=fe(Gc(e),t,!0),a=gn(n.shape,Gt()),r=ln(pr(n,a));return he(e,r)})}function bo(e,t){return P(()=>Nt(Gc(pe(t,e)),-1))}function If(e,t){return P(()=>Nt(Lt(pe(t,e)),-1))}function Ru(e,t){return P(()=>{let n=pe(e,t),a=en(Lt(e),Gt(),Number.MAX_VALUE),r=Lt(he(n,a));return z(100,Nt(r,-1))})}function FV(e,t){return P(()=>{let n=en(t,Gt(),Number.MAX_VALUE),a=ea(Y(1,n)),r=en(e,Gt(),Number.MAX_VALUE),s=ea(Y(1,r));return Nt(Gc(pe(a,s)),-1)})}function DV(e,t){return P(()=>{let n=pr(0,pe(1,z(e,t)));return Nt(Gc(n),-1)})}function RV(e,t){return P(()=>{let n=pr(0,pe(1,z(e,t)));return Nt(n,-1)})}function MV(e,t){return P(()=>{let n=fe(z(e,t),-1),a=ha(z(pe(1,e),t),-1);return pr(0,Y(1,pe(a,n)))})}function PV(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(Y(a,ho(z(-2,a))),n);return Nt(r,-1)})}function Xp(e,t,n=!1){return P(()=>{if(n)t=Ka(t);else{let a=fe(t,t.shape.length-1,!0);t=he(t,a)}return t=en(t,Gt(),1-Gt()),bt(fe(z(le(e,"float32"),ea(t)),t.shape.length-1))})}function $h(e,t,n=!1){return P(()=>{let a=le(_u(G4(e)),"int32");t=en(t,Gt(),1-Gt());let r=t.shape,s=W(rl(a,r[r.length-1]),r);return Xp(s,t,n)})}function OV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Xe(t),a=bt(Lt(t));return Y(pe(n,z(t,e)),Dc(fn(a)))})}function Sf(e,t){return P(()=>{let n;return n=en(t,Gt(),1-Gt()),n=ea(he(n,pe(1,n))),Nt(OV(e,n),-1)})}function LV(e,t){return P(()=>{let n=en(e,Gt(),1),a=en(t,Gt(),1);return fe(z(e,ea(he(n,a))),-1)})}function zV(e,t){return P(()=>{let n=ea(Y(Gt(),t));return Nt(pe(t,z(e,n)),-1)})}function lw(e,t){return P(()=>{let n=Eh(e,-1),a=Eh(t,-1),r=z(n,a);return bt(fe(r,-1))})}var Ah={meanSquaredError:bo,meanAbsoluteError:If,meanAbsolutePercentageError:Ru,meanSquaredLogarithmicError:FV,squaredHinge:DV,hinge:RV,categoricalHinge:MV,logcosh:PV,categoricalCrossentropy:Xp,sparseCategoricalCrossentropy:$h,binaryCrossentropy:Sf,kullbackLeiblerDivergence:LV,poisson:zV,cosineProximity:lw};function db(e){if(typeof e=="string"){if(e in Ah)return Ah[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function uw(e,t){return P(()=>{let n=z(.5,ta(t)),a=yo(Nn(t,n),e.dtype);return Nt(Qn(e,a),-1)})}function pw(e,t){return P(()=>yo(Qn(ai(e,-1),ai(t,-1)),"float32"))}function oN(e,t){return P(()=>le(fe(Ea(Qn(e,1),Qn(t,1))),"float32"))}function WV(e,t){return P(()=>le(fe(Ea(Qn(e,1),Qn(t,0))),"float32"))}function BV(e,t){return P(()=>le(fe(Ea(Qn(e,0),Qn(t,1))),"float32"))}function lN(e,t){return P(()=>{let n=oN(e,t),a=BV(e,t),r=Y(n,a);return le(mn(Nn(r,0),he(n,r),0),"float32")})}function VV(e,t){return P(()=>{let n=oN(e,t),a=WV(e,t),r=Y(n,a);return le(mn(Nn(r,0),he(n,r),0),"float32")})}function uN(e,t){return Sf(e,t)}function pN(e,t){return e.rank===t.rank&&(e=ws(e,[e.rank-1])),t=ai(t,-1),t.dtype!==e.dtype&&(t=le(t,e.dtype)),le(Qn(e,t),"float32")}var UV=bo,GV=bo,HV=If,jV=If,qV=Ru,KV=Ru,cw=Xp,XV=lw,cN=$h,Fh={binaryAccuracy:uw,categoricalAccuracy:pw,precision:lN,categoricalCrossentropy:cw,sparseCategoricalCrossentropy:cN,mse:UV,MSE:GV,mae:HV,MAE:jV,mape:qV,MAPE:KV,cosine:XV};function YV(e){if(typeof e=="string"&&e in Fh)return Fh[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Xd(e){if(tr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Ah))if(Ah[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Fh))if(Fh[n]===e){t=n;break}return t!==void 0?t:e.name}}function ZV(e){let t={Adagrad:()=>zs.adagrad(.01),Adadelta:()=>zs.adadelta(1,.95,Gt()),Adam:()=>zs.adam(.001,.9,.999,Gt()),Adamax:()=>zs.adamax(.002,.9,.999,Gt(),0),RMSProp:()=>zs.rmsprop(.001,.9,0,Gt()),SGD:()=>zs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function yk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Wb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function Wb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Wb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Wb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function JV(e,t,n,a=console.log){let r=eU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),Dh(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?tU(o[p],n,a):nU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=QV(e),u=Nh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function QV(e){let t;return e.collectedTrainableWeights!=null?t=Nh(e.collectedTrainableWeights):t=Nh(e.trainableWeights),t}function eU(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Dh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function tU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];Dh(o,t,n)}function nU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];Dh(p,t,a);for(let d=1;d<i.length;++d)Dh(["","","","",i[d]],t,a)}function dN(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Yp(e,t){if(e===null)return null;if(typeof e=="string")return Vs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];dN(t,r,s)?n.push(s):n.push(Yp(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Vs(a);n[s]=Yp(r,s)}}return n}}function Bb(e,t){if(e==null)return null;if(typeof e=="string")return wr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];dN(t,r,s)?n.push(s):n.push(Bb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=wr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Bb(r,a)}return n}}var dw="4.0.0",Qa=class extends Ge{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=hf(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Jr(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Jr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;tr(x===0,"input layer has >1 nodes"),tr(w===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof Du))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=y.sourceLayer,I=y.nodeIndex,T=y.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new Wa(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(Qa.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let $=0;$<E;$++){let R=C.inputTensors[$],F=C.inboundLayers[$],S=C.nodeIndices[$],M=C.tensorIndices[$];o(R,b,x,F,S,M)}for(b.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let w=0;w<y.inboundLayers.length;w++){let I=y.inboundLayers[w],T=y.nodeIndices[w],C=I.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(b+1,E),n[C.id]=C}}let d={};for(let y in t){let b=t[y];b in d||(d[b]=[]),d[b].push(n[y])}let c={};for(let y in a){let b=a[y];b in c||(c[b]=[]),c[b].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(jd);this.layers=[];for(let y of h){let b=c[y];b.sort((x,w)=>{let I=s[x.id],T=s[w.id];return I<T?-1:I>T?1:0});for(let x of b)x instanceof Qa&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(jd);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let w of b.inputTensors)if(m.indexOf(w)===-1)throw new Wa(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of b.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Wa(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new kf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}nw(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${dw}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Bb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=yt(e);let n=new Hs;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Ep(this.outputs,n,t)})}computeMask(e,t){return P(()=>{e=yt(e);let n;return t==null?n=oi(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Th(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(jd);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];p.push(x)}let d=u.computeOutputShape(On(p)),c=Th(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];tr(o in n),r.push(n[o])}return On(r)}runInternalGraph(e,t){t==null&&(t=oi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(jd);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),y=yt(p.call(x,m)),b=yt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=yt(p.call(f,m)),b=yt(p.computeMask(f,g));if(p.activityRegularizer)throw new Re("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=y[x],T=b[x];n[w.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){tr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Qa?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Qa.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return P(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Qa.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=Qa.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],y=d.nodeIndices[f],b=d.tensorIndices[f],x=Qa.nodeKey(g,y),w=t[x];w==null&&(w=0),m.push([g.name,w,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Qa.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Qa.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let w=x[0],I=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let C=r[w];if(C.inboundNodes.length<=I){i(f,g);return}let E=C.inboundNodes[I];y.push(E.outputTensors[T])}y.length>0&&f.apply(On(y),b)}function l(f){let g=f.name,y=Ua(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!A4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];tr(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];tr(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function aU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function hN(e,t){return aU(e,t,"classWeight")}async function mN(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return rr(e);if(e.shape.length===2){if(e.shape[1]>1)return ai(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());_e(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ke(i,"float32")}else return null}function rU(e,t){return z(e,t)}var sU=32;function fN(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=bk("input",e.inputNames,n),i=bk("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function bk(e,t,n){if(n instanceof Te)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function iU(e){if(e.length===3)throw new Re("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function oU(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(xk(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=iU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=sN(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=iN(p,d,n.epochs,null,null,lU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());!a||y<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=fN(e,x.value),T={};T.batch=b,T.size=w[0].shape[0],await c.onBatchBegin(b,T);let C=[];if(n.classWeight!=null){let R=hN(n.classWeight,e.outputNames);for(let F=0;F<R.length;++F)C.push(await mN(I[F],null,R[F]))}let E=w.concat(I).concat(C),$=o(E);_e(E);for(let R=0;R<l.length;++R){let F=l[R],S=$[R];T[F]=S,Jt(S)}await c.onBatchEnd(b,T),tN(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let w;xk(n.validationData)?w=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=yt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?sU:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function lU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function xk(e){return typeof e.iterator=="function"}function uU(e){return typeof e.next=="function"}async function pU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Re("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=uU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=P(()=>{if(u.value){let{xs:p,ys:d}=fN(e,u.value),c=p.concat(d),h=P(()=>r(c));if(_e(c),l===0)for(let f=0;f<h.length;++f)s.push(xe(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=P(()=>Y(s[f],z(m,g))),l>0&&_e(y)}_e(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=he(s[u],o),_e(p)}return On(s)}function Vb(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function $p(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Ys(a,t,n-t)):Ys(e,t,n-t)}function hw(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>hw(n,t)):qT(e,t.dtype==="int32"?t:le(t,"int32")))}function Ub(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function cU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Ha(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=iN(o,i,s,c,g,h,r,f,d);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await b.onEpochBegin(w);let I={};if(h!=null)throw new Re("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Re("batch shuffling is not implemneted yet");p&&v.shuffle(y);let T=Ke(y),C=Ub(g,r);for(let E=0;E<C.length;++E){let $={};if(await b.onBatchBegin(E,$),P(()=>{let R=C[E][0],F=C[E][1],S=Ys(T,R,F-R);$.batch=E,$.size=F-R;let M=hw(n,S),B=t(M);for(let U=0;U<a.length;++U){let G=a[U],q=B[U];$[G]=q,Jt(q)}if(E===C.length-1&&f){let U=e.testLoop(l,u,r);for(let G=0;G<a.length;++G){let q=a[G],K=U[G];Jt(K),I["val_"+q]=K}}}),await b.onBatchEnd(E,$),tN($),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(w,I),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function dU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;Vb(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,y;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Re("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let E=!0,$=await e.standardizeUserData(l,u,null,null,E,h);p=$[0],d=$[1],y=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-a.validationSplit)),$=r[0].shape[0];p=$p(r,E,$),i=r,r=$p(r,0,E),d=$p(s,E,$),o=s,s=$p(s,0,E),y=p.concat(d)}else a.validationSteps!=null&&(g=!0);let b=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),w=e.getDedupedMetricsNames(),I,T;g?(e.makeTestFunction(),I=e.testFunction,T=w.slice().concat(w.map(E=>"val_"+E))):(I=null,y=[],T=w.slice());let C=sN(a.callbacks,a.yieldEvery);return await cU(e,x,b,w,h,a.epochs,a.verbose,C,I,y,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,La(r,t),La(s,n),La(i,t),La(o,n),La(p,l),La(d,u),c!=null&&_e(c)}}function gN(e){let t=[];e instanceof Te&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Uc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function La(e,t){if(e==null)return;let n=[];if(t instanceof Te)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Te)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function hU(e){return e instanceof Te}function Gb(e){return Array.isArray(e)}function vk(e){return!hU(e)&&!Gb(e)}function wk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Gb(e)&&e.length>0)i=!0;else if(vk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(vk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Gb(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=gN(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function mU(e,t,n){let a=Jr(e.map(s=>s.shape[0]));a.sort();let r=Jr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function fU(e,t,n){let a=[bo,Sf,Xp];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Xp&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function kk(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function gU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var yU="layers-model",Nr=class extends Qa{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");JV(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=ZV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ar))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(db(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>db(s))}else{let s=db(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Xs("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=gU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Xs("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Sf?["accuracy","acc"].indexOf(c)!==-1?p=uw:["crossentropy","ce"].indexOf(c)!==-1&&(p=uN):this.lossFunctions[s]===$h?["accuracy","acc"].indexOf(c)!==-1?p=pN:["crossentropy","ce"].indexOf(c)!==-1&&(p=cN):["accuracy","acc"].indexOf(c)!==-1?p=pw:["crossentropy","ce"].indexOf(c)!==-1&&(p=cw);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=YV(c),u=l+Xd(c);let h;Xs(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Vb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{La(s[0],e),La(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),pU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Hs;if(e instanceof Te&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Ep(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=oi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new Re("Verbose predictLoop() is not implemented yet.");let r=Ub(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)P(()=>{let o=r[i][0],l=r[i][1],u=$p(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Hs(p);return Ep(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return On(s.map(i=>Ze(i,0)))})}predict(e,t={}){let n=gN(e);kk(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Vb(a),this.predictLoop(n,a)}finally{La(n,e)}}predictOnBatch(e){kk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Wa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===$h?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=wk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=wk(t,this.feedOutputNames,r,!1,"target"),mU(e,t,null),fU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=hN(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await mN(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return P(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Re("Verbose mode is not implemented yet.");if(r!=null)throw new Re("steps mode in testLoop() is not implemented yet");{let o=Ub(s,n),l=Ke(Ha(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=Ys(l,p,d-p),h=hw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(xe(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=Y(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=he(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;if(ok(e,a)>1){let s=ok(e.slice(0,n),a);r+=`_${s}`}t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Hs(u),d=Ep(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=rU(f,r[h]));let g=Nt(f);t.push(g),h===0?c=f:c=Y(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Nt(f(a[g],d[g]))}Jt(m),s.push(m)}return c=Nt(c),this.calculateLosses().forEach(h=>{c=Y(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Hs(s),o=Ep(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Nt(u(r[l],o[l]));l===0?n=p:n=Y(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Nt(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return dU(this,e,t,n)}async fitDataset(e,t){return oU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return _e(s),La(n[0],e),La(n[1],t),On(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=kh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-kh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=wr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>wr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=wr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[wr(Xd(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>wr(Xd(e)));{let e={};for(let t in this.metrics)e[t]=wr(Xd(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Yp(e.optimizer_config),n=Ua(t),a;if(typeof e.loss=="string")a=Vs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Vs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Vs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Vs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Vs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Ut.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ut.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:yU,generatedBy:`TensorFlow.js tfjs-layers v${dw}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Ut.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Ut.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(yk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){yk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Nr.className="Model";ne.registerClass(Nr);var yN=class extends Nr{};yN.className="Functional";ne.registerClass(yN);async function bU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Yp(n),r=Ua(a,t);if(e.weightsManifest!=null){let s=await Ut.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),_e(s)}return r}async function xU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ut.getLoadHandlers(e,t);if(n.length===0)n.push(Ut.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return vU(e,void 0,t)}async function vU(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ua(Yp(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=wU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),_e(u),_e(p.map(d=>d.tensor))}return o}function wU(e,t){let n=Ut.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var hl=class extends Nr{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:hf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof hl||e instanceof Nr,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=ZT({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=YT(this.outputs[0])}this.inboundNodes=[],new kf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:oi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Qe(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Wa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof hl))throw new Re(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ua(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};hl.className="Sequential";ne.registerClass(hl);function kU(e){return new Nr(e)}function IU(e){return new hl(e)}function bN(e){return ZT(e)}function SU(e,t){Ta.registerCallbackConstructor(e,t)}var Un=class extends ne.Serializable{getConfig(){return{}}},xN=class extends Un{apply(e,t=1){return j4(e,t)}};xN.className="elu";ne.registerClass(xN);var vN=class extends Un{apply(e){return qm(e)}};vN.className="selu";ne.registerClass(vN);var wN=class extends Un{apply(e){return Xe(e)}};wN.className="relu";ne.registerClass(wN);var kN=class extends Un{apply(e){return P(()=>$u(6,Xe(e)))}};kN.className="relu6";ne.registerClass(kN);var IN=class extends Un{apply(e){return e}};IN.className="linear";ne.registerClass(IN);var SN=class extends Un{apply(e){return da(e)}};SN.className="sigmoid";ne.registerClass(SN);var TN=class extends Un{apply(e){return K4(e)}};TN.className="hardSigmoid";ne.registerClass(TN);var NN=class extends Un{apply(e){return ho(e)}};NN.className="softplus";ne.registerClass(NN);var CN=class extends Un{apply(e){return q4(e)}};CN.className="softsign";ne.registerClass(CN);var _N=class extends Un{apply(e){return ri(e)}};_N.className="tanh";ne.registerClass(_N);var mw=class extends Un{apply(e,t=-1){return Ka(e,t)}};mw.className="softmax";ne.registerClass(mw);var EN=class extends Un{apply(e,t=-1){return zm(e,t)}};EN.className="logSoftmax";ne.registerClass(EN);var $N=class extends Un{apply(e,t=1){return P(()=>z(da(z(e,t)),e))}};$N.className="swish";ne.registerClass($N);var AN=class extends Un{apply(e){return P(()=>z(e,ri(ho(e))))}};AN.className="mish";ne.registerClass(AN);function rs(e){return e.getClassName()}function hb(e,t={}){return Vc(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function ss(e){if(e==null){let t={};return t.className="linear",t.config={},hb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},hb(t)}else return e instanceof Un?e:hb(e)}function fw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var FN=class extends ne.Serializable{},qc=class extends FN{constructor(e){super(),fw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=It([1]);return this.hasL1&&(t=Y(t,fe(z(this.l1,Lt(e))))),this.hasL2&&(t=Y(t,fe(z(this.l2,Gc(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};qc.className="L1L2";ne.registerClass(qc);function TU(e){return fw(e),new qc({l1:e!=null?e.l1:null,l2:0})}function NU(e){return fw(e),new qc({l2:e!=null?e.l2:null,l1:0})}var Ik={l1l2:"L1L2"};function pt(e){return jv(e)}function Sk(e,t={}){return Vc(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Ik?Ik[e]:e,config:{}};return Sk(t)}else return e instanceof FN?e:Sk(e)}var gw=class extends Ge{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ne(e);let n=Xe(e);return this.maxValue!=null&&(n=en(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};gw.className="ReLU";ne.registerClass(gw);var yw=class extends Ge{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ne(e);return Fc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};yw.className="LeakyReLU";ne.registerClass(yw);var bw=class extends Ge{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Kt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Qe(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ne(e),Oc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ct(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};bw.className="PReLU";ne.registerClass(bw);var xw=class extends Ge{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Re(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ne(e);return Nu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xw.className="ELU";ne.registerClass(xw);var vw=class extends Ge{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ne(e);return z(n,le(Nn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};vw.className="ThresholdedReLU";ne.registerClass(vw);var ww=class extends Ge{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new mw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ne(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ww.className="Softmax";ne.registerClass(ww);function el(e,t,n){if(typeof e=="number")return oi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!V4(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ga(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function nr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+as([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function kw(e,t){return P(()=>(Rt(t),t==="channelsFirst"?Ee(e,[0,2,3,1]):e))}function DN(e,t){return P(()=>(Rt(t),t==="channelsFirst"?Ee(e,[0,2,3,4,1]):e))}function CU(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=ja()),Rt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ee(e,[0,2,1])),r==="causal")throw new Re("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Fm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Xa(o,n)),o})}function Tk(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=ja()),Rt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=kw(e,s);if(r==="causal")throw new Re("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=pl.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ee(l,[0,3,1,2])),l})}function _U(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=ja()),Rt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=DN(e,s);if(r==="causal")throw new Re("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=ov(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Xa(o,n)),s==="channelsFirst"&&(o=Ee(o,[0,4,1,2,3])),o})}var Iw=class extends Ge{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Iw.verifyArgs(t),this.rank=e,Qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Re(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=el(t.kernelSize,e,"kernelSize"),this.strides=el(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ba(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=ss(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Kt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=el(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(tr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!qv(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:rs(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Kc=class extends Iw{constructor(e,t){super(e,t),this.kernel=null,Kc.verifyArgs(t),this.filters=t.filters,Qt(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Kt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n,a=this.bias==null?null:this.bias.read(),r=BT(this.activation.getClassName());if(r!=null&&this.rank===2)n=Tk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=CU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Tk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=_U(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Re("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Qe(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ga(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ct(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Xc=class extends Kc{constructor(e){super(2,e),Xc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!qv(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Xc.className="Conv2D";ne.registerClass(Xc);var Yc=class extends Kc{constructor(e){super(3,e),Yc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Yc.className="Conv3D";ne.registerClass(Yc);var Sw=class extends Xc{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Qe(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ne(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=nr(o,d,u,this.padding),m=nr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ee(n,[0,2,3,1]));let g=Dm(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ee(g,[0,3,1,2])),this.bias!=null&&(g=Xa(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=Qe(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=nr(t[a],o,s,this.padding),t[r]=nr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sw.className="Conv2DTranspose";ne.registerClass(Sw);var Tw=class extends Yc{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Qe(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ne(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=nr(l,m,d,this.padding),b=nr(u,f,c,this.padding),x=nr(p,g,h,this.padding),w=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ee(n,[0,2,3,4,1]));let I=lv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=Ee(I,[0,4,1,2,3])),this.bias!==null&&(I=Xa(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=Qe(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=nr(t[a],u,i,this.padding),t[r]=nr(t[r],p,o,this.padding),t[s]=nr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Tw.className="Conv3DTranspose";ne.registerClass(Tw);var RN=class extends Kc{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Kt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Kt(t.pointwiseConstraint)}build(e){if(e=Qe(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n;if(this.rank===1)throw new Re("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ee(e,[0,2,3,1])),n=vs(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Xa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ee(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};RN.className="SeparableConv";var Nw=class extends RN{constructor(e){super(2,e)}};Nw.className="SeparableConv2D";ne.registerClass(Nw);var Tf=class extends Kc{constructor(e){super(1,e),Tf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!qv(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Tf.className="Conv1D";ne.registerClass(Tf);var Cw=class extends Ge{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Ne(e),this.dataFormat==="channelsLast"){let n=Kd(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Kd(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Kd(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Kd(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Cw.className="Cropping2D";ne.registerClass(Cw);var _w=class extends Ge{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,z4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Ne(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ee(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?za.resizeNearestNeighbor(n,[r,s]):za.resizeBilinear(n,[r,s]);return Ee(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?za.resizeNearestNeighbor(n,[r,s]):za.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};_w.className="UpSampling2D";ne.registerClass(_w);function EU(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=ja()),Rt(r);let i=kw(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=bs(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ee(i,[0,3,1,2])),i})}var Ew=class extends Iw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Kt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=Qe(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n=EU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Xa(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ga(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ga(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};Ew.className="DepthwiseConv2D";ne.registerClass(Ew);function MN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function PN(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ha(2,l));if(t=Ee(t,u),s!=null)throw new Re("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=le(le(r,"bool"),"float32"),r.rank===l-1&&(r=Zt(r,-1)),r=Ee(r,u)),a&&(t=fa(t,0),r!=null&&(r=fa(r,0)));let p=[],d,c=n,h=t.shape[0],m=ct(t),f;r!=null&&(f=ct(r));for(let y=0;y<h;++y){let b=m[y],x=P(()=>e(b,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[y],T=pe(ta(I),I),C=Y(z(x[0],I),z(c[0],T)),E=c.map(($,R)=>Y(z(x[1][R],I),z($,T)));return{output:C,newStates:E}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Ft(p,1)),[d,g,c]})}var dr=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new _f({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ha(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Lb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Re("Constants support is not implemented in RNN yet.");Lb(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new zt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=MN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ba){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Ne(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=PN((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=It(e.shape);return t=fe(t,[1,2]),t=Uc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Pb(t,[1,n]):t):this.cell.stateSize>1?[Pb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===dr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),e),t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ua(a,n);return new e(Object.assign(t,{cell:r}))}};dr.className="RNN";ne.registerClass(dr);var Zc=class extends Ge{},Nf=class extends Zc{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=ss(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=cl([1,as([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=cl([1,as([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Qe(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>ta(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>ta(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=sr(z(e,s),this.kernel.read()):r=sr(e,this.kernel.read()),this.bias!=null&&(r=Xa(r,this.bias.read())),i!=null&&(n=z(n,i));let o=Y(r,sr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},e),t)}};Nf.className="SimpleRNNCell";ne.registerClass(Nf);var $w=class extends dr{constructor(e){e.cell=new Nf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};$w.className="SimpleRNN";ne.registerClass($w);var Cf=class extends Zc{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Qt(this.units,"units"),this.activation=ss(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ss(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=cl([1,as([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=cl([1,as([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Qe(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>ta(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>ta(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=sr(e,this.kernel.read());this.useBias&&(u=Xa(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=sr(a,d),[m,f,g]=zn(u,3,u.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(Y(m,y)),o=this.recurrentActivation.apply(Y(f,b));let x=sr(z(o,a),c);l=this.activation.apply(Y(g,x));let w=Y(z(i,a),z(Y(1,bt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),recurrentActivation:rs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},e),t)}};Cf.className="GRUCell";ne.registerClass(Cf);var Aw=class extends dr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Cf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Aw.className="GRU";ne.registerClass(Aw);var Jc=class extends Zc{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Qt(this.units,"units"),this.activation=ss(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ss(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=cl([1,as([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=cl([1,as([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Qe(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Fa{apply(i,o){let l=r.apply([s]),u=new ff().apply([s]),p=r.apply([s*2]);return uk(uk(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>ta(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>ta(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=sr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=Y(d,sr(a,this.recurrentKernel.read())),this.useBias&&(d=Xa(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=Y(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),recurrentActivation:rs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},e),t)}};Jc.className="LSTMCell";ne.registerClass(Jc);var Fw=class extends dr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Jc(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fw.className="LSTM";ne.registerClass(Fw);var _f=class extends Zc{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Lb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Xs(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign(Object.assign({},e),n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ua(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return zb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}nw(t)}};_f.className="StackedRNNCells";ne.registerClass(_f);function is(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):KT(t(),n),o=()=>Hc(i,t,a);return!r||r<=1?Jt(o().clone()):Array(r).fill(void 0).map(o).map(l=>Jt(l.clone()))}var $U=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},ON=class extends dr{constructor(e){if(e.unroll)throw new Re("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Re("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new zt({ndim:5})]}call(e,t){return P(()=>{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ga(l,a[0],r,s[0],i[0]),d=Ga(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};ON.className="ConvRNN2D";var Ef=class extends Jc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign(Object.assign({},e),{units:t})),this.filters=t,Qt(this.filters,"filters"),this.kernelSize=el(n,2,"kernelSize"),this.kernelSize.forEach(o=>Qt(o,"kernelSize")),this.strides=el(a||1,2,"strides"),this.strides.forEach(o=>Qt(o,"strides")),this.padding=r||"valid",ba(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=el(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Qt(o,"dilationRate"))}build(e){var t;e=Qe(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Fa{apply(p,d){let c=l.apply([u]),h=Zn([u]),m=l.apply([u*2]);return Kv([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>ta(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,J,ee)=>!J||!J[ee]?Z:z(J[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>ta(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,w,I,T]=zn(this.kernel.read(),i,b),[C,E,$,R]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,E,this.padding),d=this.inputConv(d,I,$,this.padding),c=this.inputConv(c,T,R,this.padding);let[F,S,M,B]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,F),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),y=this.recurrentConv(y,B);let U=this.recurrentActivation.apply(Y(u,m)),G=this.recurrentActivation.apply(Y(p,f)),q=Y(z(G,s),z(U,this.activation.apply(Y(d,g)))),K=z(this.recurrentActivation.apply(Y(c,y)),this.activation.apply(q));return[K,K,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=$U(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),a)}inputConv(e,t,n,a){let r=At(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Xa(r,n,this.dataFormat):r}recurrentConv(e,t){return At(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Ef.className="ConvLSTM2DCell";ne.registerClass(Ef);var Dw=class extends ON{constructor(e){let t=new Ef(e);super(Object.assign(Object.assign({},e),{cell:t}))}static fromConfig(e,t){return new e(t)}};Dw.className="ConvLSTM2D";ne.registerClass(Dw);var $f=class extends Ge{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Hc(()=>KT(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};$f.className="Dropout";ne.registerClass($f);var Rw=class extends $f{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Rw.className="SpatialDropout1D";ne.registerClass(Rw);var Mw=class extends Ge{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Qt(this.units,"units"),this.activation=ss(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Kt(e.kernelConstraint),this.biasConstraint=Kt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Qe(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Qe(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=BT(this.activation.getClassName()),r;return a!=null?r=sr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=sr(n,this.kernel.read()),this.bias!=null&&(r=Xa(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:rs(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Mw.className="Dense";ne.registerClass(Mw);var Pw=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Qe(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Qr(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Ee(n,a)}return H4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Pw.className="Flatten";ne.registerClass(Pw);var Ow=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.activation=ss(e.activation)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return this.activation.apply(n)})}getConfig(){let e={activation:rs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="Activation";ne.registerClass(Ow);var Lw=class extends Ge{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Ne(e),U4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Lw.className="RepeatVector";ne.registerClass(Lw);var zw=class extends Ge{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=Qr(e);if(s!==null){if(r===0||i%r!==0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};zw.className="Reshape";ne.registerClass(zw);var Ww=class extends Ge{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ha(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Qe(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ee(Ne(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ww.className="Permute";ne.registerClass(Ww);var Bw=class extends Ge{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ne(e),a=-1;return qp(ii(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=-1,r=!0,s=qp(ii(n,this.maskValue),a,r);return z(n,le(s,n.dtype))})}};Bw.className="Masking";ne.registerClass(Bw);var Vw=class extends Ge{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Qt(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Kt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Ne(e),ii(e,qe(e))):null)}computeOutputShape(e){if(e=Qe(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);n.dtype!=="int32"&&(n=yo(n,"int32"));let a=qT(this.embeddings.read(),W(n,[n.size]));return W(a,Qe(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Vw.className="Embedding";ne.registerClass(Vw);var xo=class extends Ge{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Re}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Qe(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Jr(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Jr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=as(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Uc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(Qr(u.slice(1))));c=Ee(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=Ha(1,l).concat([0]);n.push(Ee(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(Ee(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ha(0,i-1));s=Ee(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Jr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return P(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Zt(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Ea(n,t[a]);return n})}},Uw=class extends xo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return t})}};Uw.className="Add";ne.registerClass(Uw);var Gw=class extends xo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};Gw.className="Multiply";ne.registerClass(Gw);var Hw=class extends xo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return z(1/e.length,t)})}};Hw.className="Average";ne.registerClass(Hw);var jw=class extends xo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=pr(t,e[n]);return t})}};jw.className="Maximum";ne.registerClass(jw);var qw=class extends xo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=$u(t,e[n]);return t})}};qw.className="Minimum";ne.registerClass(qw);var Kw=class extends xo{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>Kv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(le(ta(e[s]),"bool")):t[s].rank<e[s].rank?a.push(Zt(t[s],-1)):a.push(t[s]);let r=Ze(a,this.axis);return Am(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Kw.className="Concatenate";ne.registerClass(Kw);function Sp(e,t){for(;e<0;)e+=t;return e}function AU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Re("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Re("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=fe(z(e,t),s[0]):o=fe(z(Ee(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Fe(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=ws(o,u)}return o.shape.length===1&&(o=Zt(o,1)),o})}var Xw=class extends xo{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Re("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Sp(r,e[s].shape.length)):a=[Sp(this.axes,t.shape.length),Sp(this.axes,n.shape.length)],this.normalize&&(t=Eh(t,a[0]),n=Eh(n,a[1])),AU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Sp(this.axes,e.length),Sp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Re("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Xw.className="Dot";ne.registerClass(Xw);var Yw=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return Hc(()=>Y(mf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Yw.className="GaussianNoise";ne.registerClass(Yw);var Zw=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return this.rate>0&&this.rate<1?Hc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,mf(n.shape,1,a))},()=>n,t.training||!1):n})}};Zw.className="GaussianDropout";ne.registerClass(Zw);var Jw=class extends Ge{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ne(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Hc(()=>{let a=Ne(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Er(Au(n),this.rate);o=yo(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=Y(z(a,o),z(Y(o,-1),i));return Y(z(p,l),u)},()=>Ne(e),t.training||!1)}return e})}};Jw.className="AlphaDropout";ne.registerClass(Jw);function Zp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Zx(e,t,n,a,r,s);else if(e.rank===3)i=Jx(e,t,n,a,r,s);else if(e.rank===4)i=Qx(e,t,n,a,r,s);else throw new Re(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function FU(e,t,n,a,r=.001){return P(()=>{let s=Mc(e,a),i=s.mean,o=s.variance;return[Zp(e,i,o,n,t,r),i,o]})}function DU(e,t,n,a,r=.001){return P(()=>{let s=Mc(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ha(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[Zp(e,u,p,c,d,r),i,o]})}function RU(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),Ha(0,e.rank-1))?FU(e,t,n,a,r):DU(e,t,n,a,r)}var Qw=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Kt(e.betaConstraint),this.gammaConstraint=Kt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=Qe(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Ne(e),r=a.shape,s=r.length,i=Ha(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=oi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,Ha(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return Zp(a,g,y,b,x,this.epsilon)}else return Zp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=RU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{P(()=>{let x=1-b,w=g.read(),I=z(pe(w,y),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Qw.className="BatchNormalization";ne.registerClass(Qw);var e0=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Qe(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Jr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Ne(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=Mc(n,this.axis,!0),o=oi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Ln(s,d),i=Ln(i,d),u!=null&&(u=Ln(u,c)),p!=null&&(p=Ln(p,c)),Zp(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};e0.className="LayerNormalization";ne.registerClass(e0);function MU(e,t,n){return P(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ja()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ya(e,a)})}var t0=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ja():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=Qe(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>MU(Ne(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};t0.className="ZeroPadding2D";ne.registerClass(t0);function Af(e,t,n,a,r,s){return P(()=>{Rt(r),UT(s),ba(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=kw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Dt(e,t,n,o):i=ga(e,t,n,o),r==="channelsFirst"&&(i=Ee(i,[0,3,1,2])),i})}function LN(e,t,n,a,r,s){return P(()=>{Rt(r),UT(s),ba(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=DN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Sv(e,t,n,o):i=Yx(e,t,n,o),r==="channelsFirst"&&(i=Ee(i,[0,4,1,2,3])),i})}var zN=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ba(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=Qe(e);let t=Ga(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Uc(Ne(e),2);let n=this.poolingFunction(Ne(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ws(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},n0=class extends zN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Af(e,t,n,a,r,"max")}};n0.className="MaxPooling1D";ne.registerClass(n0);var a0=class extends zN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Af(e,t,n,a,r,"avg")}};a0.className="AveragePooling1D";ne.registerClass(a0);var WN=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ba(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ga(t,this.poolSize[0],this.padding,this.strides[0]),n=Ga(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ne(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},r0=class extends WN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Af(e,t,n,a,r,"max")}};r0.className="MaxPooling2D";ne.registerClass(r0);var s0=class extends WN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),Af(e,t,n,a,r,"avg")}};s0.className="AveragePooling2D";ne.registerClass(s0);var BN=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Qt(this.poolSize,"poolSize"),Qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ba(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ga(t,this.poolSize[0],this.padding,this.strides[0]),n=Ga(n,this.poolSize[1],this.padding,this.strides[1]),a=Ga(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ne(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},i0=class extends BN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),LN(e,t,n,a,r,"max")}};i0.className="MaxPooling3D";ne.registerClass(i0);var o0=class extends BN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ba(a),LN(e,t,n,a,r,"avg")}};o0.className="AveragePooling3D";ne.registerClass(o0);var VN=class extends Ge{constructor(e){super(e),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Re}},l0=class extends VN{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ne(e);return Nt(n,1)})}};l0.className="GlobalAveragePooling1D";ne.registerClass(l0);var u0=class extends VN{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ne(e);return ha(n,1)})}};u0.className="GlobalMaxPooling1D";ne.registerClass(u0);var UN=class extends Ge{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Re}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},p0=class extends UN{call(e,t){return P(()=>{let n=Ne(e);return this.dataFormat==="channelsLast"?Nt(n,[1,2]):Nt(n,[2,3])})}};p0.className="GlobalAveragePooling2D";ne.registerClass(p0);var c0=class extends UN{call(e,t){return P(()=>{let n=Ne(e);return this.dataFormat==="channelsLast"?ha(n,[1,2]):ha(n,[2,3])})}};c0.className="GlobalMaxPooling2D";ne.registerClass(c0);var GN=class extends Ge{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ua(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},d0=class extends GN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=Qe(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Qe(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Ne(e),PN((n,a)=>[Ne(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};d0.className="TimeDistributed";ne.registerClass(d0);function PU(e){go(L4,"BidirectionalMergeMode",e)}var OU="concat",h0=class extends GN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ua(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ua(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?OU:e.mergeMode,PU(this.mergeMode),e.weights)throw new Re("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=MN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new zt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Re("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ba;for(let l of s)if(l instanceof Ba!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=fa(r,1));let i;return this.mergeMode==="concat"?i=Kv([a,r]):this.mergeMode==="sum"?i=Y(a,r):this.mergeMode==="ave"?i=z(.5,Y(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Xs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Xs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ua(t.layer);if(delete t.layer,t.numConstants!=null)throw new Re("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};h0.className="Bidirectional";ne.registerClass(h0);var m0=class extends Ge{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Ne(e),e.dtype!=="float32"&&(e=yo(e,"float32")),Y(z(e,this.scale),this.offset)))}};m0.className="Rescaling";ne.registerClass(m0);var LU=["bilinear","nearest"],Nk=new Set(LU),f0=class extends Ge{constructor(e){if(super(e),this.height=e.height,this.width=e.width,e.interpolation)if(Nk.has(e.interpolation))this.interpolation=e.interpolation;else throw new V(`Invalid interpolation parameter: ${e.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=Boolean(e.cropToAspectRatio)}computeOutputShape(e){e=Qe(e);let t=e[2];return[this.height,this.width,t]}getConfig(){let e={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return za.resizeBilinear(e,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return za.resizeNearestNeighbor(e,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...Nk]} are supported`)})}};f0.className="Resizing";ne.registerClass(f0);function zU(e,t,n,a){let r=Ne(e);if(r.dtype!=="int32"&&(r=yo(r,"int32")),t==="int")return r;let s=r.shape;if(r.rank===0&&(r=Zt(r,-1)),t==="oneHot"&&r.shape[r.shape.length-1]!==1&&(r=Zt(r,-1)),r.rank>2)throw new V(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${r.rank}.`);let i=["multiHot","oneHot"].includes(t),o=r,l;if(typeof a!="undefined"&&t==="count"?l=Sh(o,a,n,i):l=Sh(o,[],n,i),t!=="tfIdf")return l;if(a)return z(l,a);throw new V("When outputMode is 'tfIdf', weights must be provided.")}var g0=class extends Ge{constructor(e){super(e),this.numTokens=e.numTokens,e.outputMode?this.outputMode=e.outputMode:this.outputMode="multiHot"}getConfig(){let e={numTokens:this.numTokens,outputMode:this.outputMode},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){return e=Qe(e),e==null?[this.numTokens]:this.outputMode==="oneHot"&&e[e.length-1]!==1?(e.push(this.numTokens),e):(e[e.length-1]=this.numTokens,e)}call(e,t){return P(()=>{e=Ne(e),e.dtype!=="int32"&&(e=yo(e,"int32"));let n;if(typeof t.countWeights!="undefined"){if(this.outputMode!=="count")throw new V(`countWeights is not used when outputMode !== count.
Received countWeights=${t.countWeights}`);n=Ne(t.countWeights)}let a=ha(e),r=il(e),s=Nn(this.numTokens,a).bufferSync().get(0),i=Er(r,0).bufferSync().get(0);if(!(s&&i))throw new V(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return zU(e,this.outputMode,this.numTokens,n)})}};g0.className="CategoryEncoding";ne.registerClass(g0);function WU(e){return new Du(e)}function BU(e){return new xw(e)}function VU(e){return new gw(e)}function UU(e){return new yw(e)}function GU(e){return new bw(e)}function HU(e){return new ww(e)}function jU(e){return new vw(e)}function qU(e){return new Tf(e)}function KU(e){return new Xc(e)}function XU(e){return new Sw(e)}function YU(e){return new Yc(e)}function ZU(e){return new Tw(e)}function JU(e){return new Nw(e)}function QU(e){return new Cw(e)}function eG(e){return new _w(e)}function tG(e){return new Ew(e)}function nG(e){return new Ow(e)}function aG(e){return new Mw(e)}function rG(e){return new $f(e)}function sG(e){return new Rw(e)}function iG(e){return new Pw(e)}function oG(e){return new Lw(e)}function lG(e){return new zw(e)}function uG(e){return new Ww(e)}function pG(e){return new Vw(e)}function cG(e){return new Uw(e)}function dG(e){return new Hw(e)}function hG(e){return new Kw(e)}function mG(e){return new jw(e)}function fG(e){return new qw(e)}function gG(e){return new Gw(e)}function yG(e){return new Xw(e)}function bG(e){return new Qw(e)}function xG(e){return new e0(e)}function vG(e){return new t0(e)}function y0(e){return new a0(e)}function wG(e){return y0(e)}function kG(e){return y0(e)}function b0(e){return new s0(e)}function IG(e){return b0(e)}function SG(e){return b0(e)}function x0(e){return new o0(e)}function TG(e){return x0(e)}function NG(e){return x0(e)}function CG(e){return new l0(e)}function _G(e){return new p0(e)}function HN(e){return new u0(e)}function jN(e){return new c0(e)}function qN(e){return new n0(e)}function KN(e){return new r0(e)}function EG(e){return new i0(e)}function $G(e){return new Aw(e)}function AG(e){return new Cf(e)}function FG(e){return new Fw(e)}function DG(e){return new Jc(e)}function RG(e){return new $w(e)}function MG(e){return new Nf(e)}function PG(e){return new Dw(e)}function OG(e){return new Ef(e)}function LG(e){return new dr(e)}function zG(e){return new _f(e)}function WG(e){return new h0(e)}function BG(e){return new d0(e)}var VG=HN,UG=jN,GG=qN,HG=KN;function jG(e){return new Yw(e)}function qG(e){return new Zw(e)}function KG(e){return new Jw(e)}function XG(e){return new Bw(e)}function YG(e){return new m0(e)}function ZG(e){return new f0(e)}function JG(e){return new g0(e)}var XN={};$e(XN,{MAPE:()=>uH,MSE:()=>dH,binaryAccuracy:()=>QG,binaryCrossentropy:()=>eH,categoricalAccuracy:()=>nH,categoricalCrossentropy:()=>aH,cosineProximity:()=>iH,mape:()=>pH,meanAbsoluteError:()=>oH,meanAbsolutePercentageError:()=>lH,meanSquaredError:()=>cH,mse:()=>hH,precision:()=>rH,recall:()=>sH,sparseCategoricalAccuracy:()=>tH});function QG(e,t){return uw(e,t)}function eH(e,t){return uN(e,t)}function tH(e,t){return pN(e,t)}function nH(e,t){return pw(e,t)}function aH(e,t){return cw(e,t)}function rH(e,t){return lN(e,t)}function sH(e,t){return VV(e,t)}function iH(e,t){return lw(e,t)}function oH(e,t){return If(e,t)}function lH(e,t){return Ru(e,t)}function uH(e,t){return Ru(e,t)}function pH(e,t){return Ru(e,t)}function cH(e,t){return bo(e,t)}function dH(e,t){return bo(e,t)}function hH(e,t){return bo(e,t)}var YN={};$e(YN,{modelFromJSON:()=>bU});var ZN={};$e(ZN,{l1:()=>fH,l1l2:()=>mH,l2:()=>gH});function mH(e){return new qc(e)}function fH(e){return TU(e)}function gH(e){return NU(e)}var JN=class extends dl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yd(e,t){return e<t}function Ck(e,t){return e>t}var QN=class extends JN{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Re("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yd:this.mode==="max"?this.monitorFunc=Ck:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Ck:this.monitorFunc=Yd,this.monitorFunc===Yd&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yd?1/0:-1/0}async onEpochEnd(e,t){await jr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function yH(e){return new QN(e)}var bH={earlyStopping:yH},xH=H();xH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Sa;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Sa||(Sa={}));var _k;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(_k||(_k={}));var v0={};function vH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};v0[e]=n}function e2(e){return v0[e]}function wH(e){delete v0[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return vn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>vn(d,n,a,r));let u=vn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function vn(e,t,n,a){let[r,s]=Xn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Rh(r,o)]);return i!==void 0?t[Rh(r,i)][s]:void 0}function kH(e,t,n){return t[Rh(e,n.currentContextId)]}function ar(e,t){let[n,a,r]=Xn(e);return[Rh(n,t&&t.currentContextId),a,r]}function Rh(e,t){return t?`${e}-${t}`:e}function Xn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function sh(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function kr(e){return e.kept?e:rr(e)}var t2={};$e(t2,{json:()=>IH});var IH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],n2={};$e(n2,{json:()=>SH});var SH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],a2={};$e(a2,{json:()=>TH});var TH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],r2={};$e(r2,{json:()=>NH});var NH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],s2={};$e(s2,{json:()=>CH});var CH=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],i2={};$e(i2,{json:()=>_H});var _H=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],o2={};$e(o2,{json:()=>EH});var EH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],l2={};$e(l2,{json:()=>$H});var $H=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],u2={};$e(u2,{json:()=>AH});var AH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],p2={};$e(p2,{json:()=>FH});var FH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],c2={};$e(c2,{json:()=>DH});var DH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],d2={};$e(d2,{json:()=>RH});var RH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],h2={};$e(h2,{json:()=>MH});var MH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],m2={};$e(m2,{json:()=>PH});var PH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],f2={};$e(f2,{json:()=>OH});var OH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],g2={};$e(g2,{json:()=>LH});var LH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],y2={};$e(y2,{json:()=>zH});var zH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],b2={};$e(b2,{json:()=>WH});var WH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],x2={};$e(x2,{json:()=>BH});var BH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Ek=class{constructor(){let e=[t2,n2,a2,r2,s2,i2,o2,l2,u2,p2,c2,d2,h2,m2,f2,g2,y2,b2,x2],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}static get Instance(){return this._instance||(this._instance=new this)}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=ar(g),w=i[b];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${b}:${I}`;f.inputNames[y]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=ar(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=ar(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=e2(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Hb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Hb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Jb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Jb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=qb(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=qb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Zb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=jb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=jb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=ex(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ex(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Yb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Yb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Qb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Qb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Kb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Kb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Xb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Xb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=$k(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=$k(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=ar(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:w0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=ar(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=ar(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function VH(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function v2(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):VH(e);return t?n:n.toLowerCase()}function Hb(e,t,n,a=!1){let r=e[t];return r!=null?v2(r.s,a):n}function jb(e,t,n){let a=e[t];return a?a.b:n}function qb(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function w0(e){switch(typeof e=="string"&&(e=Sa[e]),e){case Sa.DT_FLOAT:case Sa.DT_HALF:return"float32";case Sa.DT_INT32:case Sa.DT_INT64:case Sa.DT_INT8:case Sa.DT_UINT8:return"int32";case Sa.DT_BOOL:return"bool";case Sa.DT_DOUBLE:return"float32";case Sa.DT_STRING:return"string";default:return null}}function $k(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Kb(e,t,n){let a=e[t];return a&&a.type?w0(a.type):n}function Xb(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>w0(r)):n}function w2(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Yb(e,t,n){let a=e[t];return a&&a.shape?w2(a.shape):n}function Zb(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Jb(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>v2(s,a)):n}function Qb(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>w2(r)):n}function ex(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var UH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return vn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return vn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return qb(this.node.rawAttrs,e,t);if(n.s!=null)return Hb(this.node.rawAttrs,e,t);if(n.b!=null)return jb(this.node.rawAttrs,e,t);if(n.shape!=null)return Yb(this.node.rawAttrs,e,t);if(n.type!=null)return Kb(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Zb(this.node.rawAttrs,e,t);if(n.list.s!=null)return Jb(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Qb(this.node.rawAttrs,e,t);if(n.list.b!=null)return ex(this.node.rawAttrs,e,t);if(n.list.type!=null)return Xb(this.node.rawAttrs,e,t)}return t}},un={};$e(un,{OP_SCOPE_SUFFIX:()=>Cx,abs:()=>Lt,acos:()=>Bx,acosh:()=>Vx,add:()=>Y,addN:()=>CS,all:()=>Am,any:()=>qp,argMax:()=>ai,argMin:()=>Ux,asin:()=>Gx,asinh:()=>Hx,atan:()=>jx,atan2:()=>qx,atanh:()=>Kx,avgPool:()=>ga,avgPool3d:()=>Yx,basicLSTMCell:()=>AS,batchNorm:()=>ys,batchNorm2d:()=>Zx,batchNorm3d:()=>Jx,batchNorm4d:()=>Qx,batchToSpaceND:()=>$c,bincount:()=>ev,booleanMaskAsync:()=>hT,broadcastArgs:()=>FS,broadcastTo:()=>Ks,buffer:()=>Pe,cast:()=>le,ceil:()=>tv,clipByValue:()=>en,clone:()=>rr,complex:()=>Cr,concat:()=>Ze,concat1d:()=>nv,concat2d:()=>av,concat3d:()=>rv,concat4d:()=>sv,conv1d:()=>Fm,conv2d:()=>At,conv2dTranspose:()=>Dm,conv3d:()=>ov,conv3dTranspose:()=>lv,cos:()=>Ac,cosh:()=>Rm,cosineWindow:()=>tf,cumprod:()=>Kp,cumsum:()=>Mm,denseBincount:()=>Sh,depthToSpace:()=>uv,depthwiseConv2d:()=>bs,diag:()=>RS,dilation2d:()=>pv,div:()=>he,divNoNan:()=>cv,dot:()=>dv,dropout:()=>zv,einsum:()=>MS,elu:()=>Nu,enclosingPowerOfTwo:()=>Wv,equal:()=>Qn,erf:()=>hv,euclideanNorm:()=>gv,exp:()=>fn,expandDims:()=>Zt,expm1:()=>yv,eye:()=>Pm,fft:()=>zc,fill:()=>gn,floor:()=>_u,floorDiv:()=>$m,fused:()=>pl,gather:()=>Eu,gatherND:()=>yT,greater:()=>Nn,greaterEqual:()=>Er,ifft:()=>ul,imag:()=>Cc,image:()=>za,inTopKAsync:()=>bT,irfft:()=>Zm,isFinite:()=>bv,isInf:()=>xv,isNaN:()=>vv,leakyRelu:()=>Fc,less:()=>Om,lessEqual:()=>xs,linalg:()=>Uv,linspace:()=>WS,localResponseNormalization:()=>wv,log:()=>ea,log1p:()=>Dc,logSigmoid:()=>kv,logSoftmax:()=>zm,logSumExp:()=>Wm,logicalAnd:()=>Ea,logicalNot:()=>Rc,logicalOr:()=>Bm,logicalXor:()=>Iv,losses:()=>$T,lowerBound:()=>VS,matMul:()=>Fe,max:()=>ha,maxPool:()=>Dt,maxPool3d:()=>Sv,maxPoolWithArgmax:()=>US,maximum:()=>pr,mean:()=>Nt,meshgrid:()=>GS,min:()=>il,minimum:()=>$u,mirrorPad:()=>Tv,mod:()=>Nv,moments:()=>Mc,movingAverage:()=>mT,mul:()=>z,multiRNNCell:()=>HS,multinomial:()=>jS,neg:()=>bt,norm:()=>Cu,notEqual:()=>ii,oneHot:()=>rl,ones:()=>Zn,onesLike:()=>ta,op:()=>L,outerProduct:()=>qS,pad:()=>ya,pad1d:()=>KS,pad2d:()=>XS,pad3d:()=>YS,pad4d:()=>ZS,pool:()=>Cv,pow:()=>_r,prelu:()=>Oc,print:()=>Ax,prod:()=>_v,raggedGather:()=>JS,raggedRange:()=>QS,raggedTensorToTensor:()=>eT,rand:()=>tT,randomGamma:()=>nT,randomNormal:()=>Um,randomStandardNormal:()=>aT,randomUniform:()=>Au,range:()=>ol,real:()=>sl,reciprocal:()=>Av,relu:()=>Xe,relu6:()=>Gm,reshape:()=>W,reverse:()=>fa,reverse1d:()=>rT,reverse2d:()=>sT,reverse3d:()=>iT,reverse4d:()=>oT,rfft:()=>Wc,round:()=>Hm,rsqrt:()=>jm,scalar:()=>xe,scatterND:()=>fT,searchSorted:()=>Vm,selu:()=>qm,separableConv2d:()=>vs,setdiff1dAsync:()=>lT,sigmoid:()=>da,sign:()=>Fv,signal:()=>ET,sin:()=>Km,sinh:()=>Xm,slice:()=>Be,slice1d:()=>Lc,slice2d:()=>Ym,slice3d:()=>mo,slice4d:()=>ll,softmax:()=>Ka,softplus:()=>ho,spaceToBatchND:()=>Pc,sparse:()=>AT,sparseToDense:()=>gT,spectral:()=>_T,split:()=>zn,sqrt:()=>ln,square:()=>ot,squaredDifference:()=>Jm,squeeze:()=>ws,stack:()=>Ft,step:()=>fo,stridedSlice:()=>Dv,string:()=>FT,sub:()=>pe,sum:()=>fe,tan:()=>Rv,tanh:()=>ri,tensor:()=>kn,tensor1d:()=>Ke,tensor2d:()=>_a,tensor3d:()=>_c,tensor4d:()=>Aa,tensor5d:()=>uT,tensor6d:()=>pT,tile:()=>Ln,topk:()=>Mv,transpose:()=>Ee,truncatedNormal:()=>Qm,unique:()=>Pv,unsortedSegmentSum:()=>ef,unstack:()=>ct,upperBound:()=>cT,variable:()=>Ov,where:()=>mn,whereAsync:()=>Lv,zeros:()=>It,zerosLike:()=>qe});var GH=(e,t,n,a=un)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},HH=(e,t,n,a=un)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(vn(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(vn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ca(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Ak(e){return!(typeof e=="number"||e.some(t=>t<0))}function Tp(e,t,n){let a=tx(e,n),r=!Ak(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=tx(s.shape,a)}),!Ak(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function tx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var jH=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=xe(0),Jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ca(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return kn([],[0].concat(this.elementShape));let n=this.readMany(e);return Ca(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Ft(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return kn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Ca(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ze(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ct(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=[0,o===0?0:a[o-1],0],u=[1,e[o],r];s[o]=W(Be(t,l,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},ml=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ca(t,r.shape,"TensorList shape mismatch: "),Jt(r)}),this.idTensor=xe(0),this.maxNumElements=a,Jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ml([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ca(e,this.elementShape,"TensorList shape mismatch: ");let a=Tp(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>W(s,a));return Ft(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Tp(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Ca(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ca(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new ml([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ca(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Tp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ca(this.elementShape,t.shape,"TensorList shape mismatch: "),Jt(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ca(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Tp(this.elementShape,this.tensors,n);return e.length===0?kn([],[0].concat(a)):P(()=>{let r=e.map(s=>W(this.tensors[s],a));return Ft(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ca(this.elementShape,t,"TensorList shape mismatch: ");let n=Tp(this.elementShape,this.tensors,t);return this.size()===0?kn([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>W(r,n));return Ze(a,0)})}};function qH(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ca(r,t,"TensorList shape mismatch: ");let s=ct(e);return new ml(s,t,a)}function KH(e,t,n,a){return new ml([],e,t,a)}function XH(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new ml([],n,e.dtype,a),i=ct(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function YH(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=tx(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=[0,d===0?0:r[d-1],0],h=[1,t[d],o];p[d]=W(Be(e,c,h),i)}return e.dispose(),p}),u=new ml([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var ZH=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[kr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=kr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>vn(r,t,n)!==void 0);if(a){let r=vn(a,t,n);return[kr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[kr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[kr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[kr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new jH(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,xe(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[xe(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=XH(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=KH(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=qH(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=YH(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[xe(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Fk(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=sh(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var JH=(e,t,n,a=un)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=sh(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Fk(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Fk(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=sh(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=sh(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},QH=(e,t,n,a=un)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function mb(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var e6=async(e,t,n,a,r=un)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=mb(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=mb(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=mb(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},t6=(e,t,n,a=un)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},n6=(e,t,n,a=un)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[vn(e.name,t,n)||r];case"Placeholder":return[vn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[kr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>kr(p));case"Snapshot":let s=k("x",e,t,n);return[kr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},a6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=xe(0),this.tensorMap=new Map,Jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return xe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=ct(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return P(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Ft(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},r6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=a.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,n),i=k("valueDType",e,t,n),o=new a6(s,i);return a.addHashTable(e.name,o),[o.handle]}}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},s6=(e,t,n,a=un)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},i6=(e,t,n,a=un)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},o6=(e,t,n,a=un)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},l6=(e,t,n,a=un)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},u6=(e,t,n,a=un)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},p6=(e,t,n,a=un)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return P(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},c6=(e,t,n,a=un)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},d6=(e,t,n,a=un)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},h6=(e,t,n,a=un)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},m6=(e,t,n,a=un)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Dk(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>GH(i,o,l));case"basic_math":return r(()=>HH(i,o,l));case"control":return ZH(i,o,l);case"convolution":return r(()=>JH(i,o,l));case"creation":return r(()=>QH(i,o,l));case"dynamic":return e6(i,o,l);case"evaluation":return r(()=>t6(i,o,l));case"image":return r(()=>s6(i,o,l));case"graph":return r(()=>n6(i,o,l));case"logical":return r(()=>i6(i,o,l));case"matrices":return r(()=>o6(i,o,l));case"normalization":return r(()=>l6(i,o,l));case"reduction":return r(()=>u6(i,o,l));case"slice_join":return r(()=>p6(i,o,l));case"sparse":return r(()=>c6(i,o,l));case"spectral":return r(()=>d6(i,o,l));case"string":return r(()=>h6(i,o,l));case"transformation":return r(()=>m6(i,o,l));case"hash_table":return r6(i,o,l,a);case"custom":let u=e2(i.op);if(u&&u.customExecutor)return u.customExecutor(new UH(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Rk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Mk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Xn(c)[0]),p=[];a!=null&&(p=a.map(c=>Xn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((k2(c)||x6(c)||v6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function f6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Xn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var g6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],y6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],b6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function k2(e){return g6.indexOf(e.op)>=0}function x6(e){return y6.indexOf(e.op)>=0}function v6(e){return b6.indexOf(e.op)>=0}var nx=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new nx(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=Mk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return f6(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Xn(p)[0]]),r=t.map(p=>Xn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return P(()=>{let p=new Rk(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Xn(m),y=[];y[g]=e[m],d[f]=y});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=Dk(f,d,p,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>vn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=kH(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=ar(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new Rk(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>vn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Xn(b)[0]]),i=n.map(b=>Xn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=Mk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,w]=Xn(b),I=[];I[w]=e[b],h[x]=I});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!k2(b)&&!vn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=ar(p.node.name,n)),a[p.node.name]==null){let c=Dk(p.node,a,n,this._resourceManager);d||([d]=ar(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=ar(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!vn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!vn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Xn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Xn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Xn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},w6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},k6="?tfjs-format=file",I6="model.json",k0=class{constructor(e,t={},n=Ut){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new w6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new nx(Ek.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Ek.Instance.transformGraph(e.modelInitializer);this.initializer=new nx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let a=n instanceof Te?[n]:n,r={};return a.forEach((s,i)=>r[this.structuredOutputKeys[i]]=s),r}return n}normalizeInputs(e){if(!(e instanceof Te)&&!Array.isArray(e)){if(this.signature!=null&&this.signature.inputs!=null)for(let a in this.signature.inputs){let r=this.signature.inputs[a];r.resourceId!=null&&(e[a]=this.resourceIdToCapturedInput[r.resourceId])}return e}e=Array.isArray(e)?e:[e];let t=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+t!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-t} non-resource placeholders, while there are ${e.length} input tensors provided.`);let n=0;return this.inputNodes.reduce((a,r)=>{let s=this.signature?this.signature.inputs[r]:null;return s!=null&&s.resourceId!=null?a[r]=this.resourceIdToCapturedInput[s.resourceId]:a[r]=e[n++],a},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=Object.keys(this.initializerSignature.outputs);for(let n=0;n<t.length;n++){let a=t[n],r=this.initializerSignature.outputs[a];this.resourceIdToCapturedInput[r.resourceId]=e[n]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&_e(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function S6(e,t={},n=Ut){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=N6(e));let a=new k0(e,t,n);return await a.load(),a}function T6(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=Ut.getWeightSpecs(a.weightsManifest),i=Ut.getModelArtifactsForJSONSync(a,s,r);t=Ut.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=Ut.fromMemorySync(e);else throw new Error("Unknown model format");let n=new k0(t);return n.load(),n}function N6(e){return e.endsWith("/")||(e=e+"/"),`${e}${I6}${k6}`}var C6="4.0.0",I2={};$e(I2,{CSVDataset:()=>F2,Dataset:()=>Mu,FileDataSource:()=>z2,TextLineDataset:()=>A2,URLDataSource:()=>W2,array:()=>Y6,csv:()=>oj,func:()=>lj,generator:()=>uj,microphone:()=>cj,version_data:()=>dj,webcam:()=>pj,zip:()=>Z6});var _6=us(Hh()),E6=us(Hh());function $6(e,t){return Mh(e,t)}function Mh(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(fl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Mh(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function A6(e,t=T2){return S2(e,t)}function S2(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(fl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=S2(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function T2(e){return e===null?null:fl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function N2(e,t){let n=new Map;Mh(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return Mh(e,t,n)}function fl(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=wI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Te)&&!(e instanceof Promise)&&!t)}function F6(e){return e==null||D6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Te||v.isTypedArray(e)}function D6(e){return e===null||typeof e!="object"&&typeof e!="function"}function R6(e){return $6(e,M6)}function M6(e){return e instanceof Te?{value:e.clone(),recurse:!1}:fl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var C2=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},I0=class extends C2{constructor(){super(I0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};I0.INITIAL_CAPACITY=32;function _2(e){return new L6(e)}function S0(e){return new z6(e)}function P6(e,t){return new E2(e,t)}function O6(e,t=Yr.FAIL){return new K6(e,t)}var tn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new j6(this,e)}filter(e){return new G6(this,e)}map(e){return new H6(this,e)}mapAsync(e){return new Pk(this,e)}serialMapAsync(e){return new Pk(this,e).serial()}flatmap(e){return new q6(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new U6(this,e,t)}columnMajorBatch(e,t=!0,n=T2){return this.rowMajorBatch(e,t).map(a=>A6(a,n))}concatenate(e,t){return new E2(_2([this,e]),t)}take(e){return e<0||e==null?this:new V6(this,e)}skip(e){return e<0||e==null?this:new B6(this,e)}prefetch(e){return new $2(this,e)}shuffle(e,t){return new X6(this,e,t)}serial(){return new W6(this)}},L6=class extends tn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:R6(e),done:!1}}},z6=class extends tn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},W6=class extends tn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},B6=class extends tn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;_e(e.value)}return this.upstream.next()}},V6=class extends tn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},U6=class extends tn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},G6=class extends tn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},H6=class extends tn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Va.getTensorsInContainer(e.value),n=this.transform(e.value),a=Va.getTensorsInContainer(n);for(let r of t)Va.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},j6=class extends tn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Pk=class extends tn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Va.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Va.getTensorsInContainer(n);for(let r of t)Va.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},T0=class extends tn{constructor(){super(),this.outputQueue=new I0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},q6=class extends T0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Va.getTensorsInContainer(e.value),n=this.transform(e.value),a=Va.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Va.isTensorInList(r,a)||r.dispose();return!0}},E2=class extends tn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Yr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Yr||(Yr={}));var K6=class extends tn{constructor(e,t=Yr.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof tn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await N2(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Yr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Yr.SHORTEST:return{value:null,done:!0};case Yr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},$2=class extends tn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new C2(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},X6=class extends $2{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=E6.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Mu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Kn(async()=>(await n.iterator()).columnMajorBatch(e,t,J6),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Kn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Kn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Kn(async()=>{let a=S0(async()=>({value:await t.iterator(),done:!1}));return P6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Kn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=_6.alea(t||v.now().toString());return Kn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Mu.MAX_BUFFER_SIZE=1e4;function Kn(e,t=null){return new class extends Mu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function Y6(e){return Kn(async()=>_2(e),e.length)}function Z6(e){if(!fl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Kn(async()=>{let n=await N2(e,a=>{if(a instanceof Mu)return{value:a.iterator(),recurse:!1};if(fl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return O6(n,Yr.SHORTEST)},t)}function J6(e){if(e===null)return null;let t=e[0];return F6(t)?{value:Q6(e),recurse:!1}:{value:null,recurse:!0}}function Q6(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Te?Ft(e):kn(e)}var A2=class extends Mu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Zd='"',Np=Symbol("out"),Ok=Symbol("field"),Jd=Symbol("quote"),fb=Symbol("quoteafterquote"),Lk=Symbol("quoteinquote"),F2=class extends Mu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new A2(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Np;for(let i=0;i<r;i++)switch(s){case Np:switch(e.charAt(i)){case Zd:a=i+1,s=Jd;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Np;break;default:s=Ok,a=i;break}break;case Ok:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Np,a=i+1;break;default:}break;case Jd:switch(e.charAt(i)){case Zd:s=fb;break;default:}break;case fb:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Np,a=i+1;break;case Zd:s=Jd;break;default:s=Lk;break}break;case Lk:switch(e.charAt(i)){case Zd:s=Jd;break;default:}break;default:}if(s===fb?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},D2=class extends tn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new D2(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),kn(n,t)}},R2=class extends tn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=_a([s,r,o,i],[1,4])}else this.cropBox=_a([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new R2(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=co.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Zt(le(e,"float32"),0),n;n=za.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},M2=class{},P2=class extends tn{split(e){return new ej(this,e)}},ej=class extends P2{constructor(e,t){super(),this.upstream=e,this.impl=new tj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},tj=class extends T0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},nj=class extends tn{decodeUTF8(){return new aj(this)}},aj=class extends P2{constructor(e){super(),this.upstream=e,this.impl=new rj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},rj=class extends T0{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=wI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},O2=class extends nj{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function sj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=ij(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new O2(i,t)}else throw new Error(s.statusText)}var ij=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function L2(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var z2=class extends M2{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(L2(this.input)&&H().get("IS_NODE")){let e=xx();this.input=e.readFileSync(this.input.slice(7))}return new O2(this.input,this.options)}},W2=class extends M2{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return L2(this.url)?new z2(this.url,this.fileOptions).iterator():sj(this.url,this.fileOptions)}};function oj(e,t={}){return new F2(new W2(e),t)}function lj(e){let t=S0(e);return Kn(async()=>t)}function uj(e){return Kn(async()=>{let t=await e();return S0(()=>t.next())})}async function pj(e,t){return R2.create(e,t)}async function cj(e){return D2.create(e)}var dj="4.0.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var hj=cr.whereImpl,N0=class extends rc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new jh(this,Na())}nextDataId(){return N0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&N.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Pe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,t)}makeOutput(e,t,n){return Na().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return hj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};N0.nextDataId=0;var B2={};$e(B2,{addImpl:()=>G2,bincountImpl:()=>_0,bincountReduceImpl:()=>H2,castImpl:()=>U2,ceilImpl:()=>j2,concatImpl:()=>E0,equalImpl:()=>q2,expImpl:()=>X2,expm1Impl:()=>Z2,floorImpl:()=>J2,gatherNdImpl:()=>Q2,gatherV2Impl:()=>eC,greaterEqualImpl:()=>nC,greaterImpl:()=>tC,lessEqualImpl:()=>rC,lessImpl:()=>aC,linSpaceImpl:()=>sC,logImpl:()=>iC,maxImpl:()=>oC,maximumImpl:()=>lC,minimumImpl:()=>uC,multiplyImpl:()=>$0,negImpl:()=>pC,notEqualImpl:()=>cC,prodImpl:()=>dC,raggedGatherImpl:()=>hC,raggedRangeImpl:()=>mC,raggedTensorToTensorImpl:()=>fC,rangeImpl:()=>F0,rsqrtImpl:()=>gC,scatterImpl:()=>Yo,sigmoidImpl:()=>oq,simpleAbsImpl:()=>V2,sliceImpl:()=>Oh,sparseFillEmptyRowsImpl:()=>bC,sparseReshapeImpl:()=>xC,sparseSegmentReductionImpl:()=>D0,sqrtImpl:()=>pq,squaredDifferenceImpl:()=>vC,stridedSliceImpl:()=>wC,stringNGramsImpl:()=>R0,stringSplitImpl:()=>M0,stringToHashBucketFastImpl:()=>P0,subImpl:()=>kC,tileImpl:()=>IC,topKImpl:()=>TC,transposeImpl:()=>A0,uniqueImpl:()=>NC});function V2(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var mj=e=>{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=V2(r),n.makeOutput(a,t.shape,t.dtype)},fj={kernelName:wl,backendName:"cpu",kernelFunc:mj};function Vt(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<p.length;++y){let b=v.indexToLoc(y,o,l),x=b.slice(-d);f.forEach(C=>x[C]=0);let w=v.locToIndex(x,d,h),I=b.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[y]=e(a[w],r[T])}return[p,i]}}function Yn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var gj={kernelName:Qh,backendName:"cpu",kernelFunc:Yn};function Ph(e,t,n="float32"){if(n==="complex64"){let r=Ph(e,t,"float32"),s=Ph(e,t,"float32");return Yn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function lr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var yj={kernelName:Di,backendName:"cpu",kernelFunc:lr};function li(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var bj={kernelName:wm,backendName:"cpu",kernelFunc:li};function U2(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Vt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function os(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return lr({inputs:{x:r},backend:n});let p=Ph(n,r.shape,r.dtype),d=os({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Yn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=li({inputs:{input:r},backend:n}),d=os({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=lr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=U2(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var xj={kernelName:bi,backendName:"cpu",kernelFunc:os};function nn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=os({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=os({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,w=l.data.get(b.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),E=l.makeTensorInfo(C,"float32",I),$=l.makeTensorInfo(C,"float32",T),R=Yn({inputs:{real:E,imag:$},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo($),R}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function C0(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),y=t.length,b=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,C=I%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[I]=E.real,c[I]=E.imag}else for(let I=0;I<d.length;I++){let T=v.indexToLoc(I,u,p),C=T.slice(-y);h.forEach(S=>C[S]=0);let E=v.locToIndex(C,y,b),$=T.slice(-x);m.forEach(S=>$[S]=0);let R=v.locToIndex($,x,w),F=e(f[E*2],f[E*2+1],g[R*2],g[R*2+1]);d[I]=F.real,c[I]=F.imag}return[d,c,o]}}var G2=Vt((e,t)=>e+t),vj=C0((e,t,n,a)=>({real:e+n,imag:t+a})),gl=nn(cs,G2,vj),wj={kernelName:cs,backendName:"cpu",kernelFunc:gl};function _0(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function H2(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Pe([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ks(e){return(t,n,a)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=n||i.dtype,d=v.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function Pu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var j2=ks(e=>Math.ceil(e)),kj=Pu(xi,j2),Ij={kernelName:xi,backendName:"cpu",kernelFunc:kj};function E0(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var q2=Vt((e,t)=>e===t?1:0),K2=nn(Ol,q2,null,"bool"),Sj={kernelName:Ol,backendName:"cpu",kernelFunc:K2},X2=ks(e=>Math.exp(e)),Y2=Pu(_i,X2,"float32"),Tj={kernelName:_i,backendName:"cpu",kernelFunc:Y2},Z2=ks(e=>Math.expm1(e)),Nj=Pu(zl,Z2),Cj={kernelName:zl,backendName:"cpu",kernelFunc:Nj},J2=ks(e=>Math.floor(e)),_j=Pu(Ei,J2),Ej={kernelName:Ei,backendName:"cpu",kernelFunc:_j};function Q2(e,t,n,a,r,s,i,o,l){let u=Pe([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function eC(e,t,n){let a=Pe(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var tC=Vt((e,t)=>e>t?1:0),$j=nn(Ul,tC,null,"bool"),Aj={kernelName:Ul,backendName:"cpu",kernelFunc:$j},nC=Vt((e,t)=>e>=t?1:0),Fj=nn(Fi,nC,null,"bool"),Dj={kernelName:Fi,backendName:"cpu",kernelFunc:Fj},aC=Vt((e,t)=>e<t?1:0),Rj=nn(ql,aC,null,"bool"),Mj={kernelName:ql,backendName:"cpu",kernelFunc:Rj},rC=Vt((e,t)=>e<=t?1:0),Pj=nn(Kl,rC,null,"bool"),Oj={kernelName:Kl,backendName:"cpu",kernelFunc:Pj};function sC(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var iC=ks(e=>Math.log(e)),Lj=Pu(Mi,iC),zj={kernelName:Mi,backendName:"cpu",kernelFunc:Lj};function oC(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var lC=Vt((e,t)=>Math.max(e,t)),Wj=nn(Oi,lC),Bj={kernelName:Oi,backendName:"cpu",kernelFunc:Wj},uC=Vt((e,t)=>Math.min(e,t)),Vj=nn(Bi,uC),Uj={kernelName:Bi,backendName:"cpu",kernelFunc:Vj},$0=Vt((e,t)=>e*t),Gj=C0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Ff=nn(Ui,$0,Gj),Hj={kernelName:Ui,backendName:"cpu",kernelFunc:Ff};function pC(e,t,n){let a=v.createScalarValue(-1,n);return $0([],t,a,e,n)}function jj(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=pC(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var qj={kernelName:eu,backendName:"cpu",kernelFunc:jj},cC=Vt((e,t)=>e!==t?1:0),Kj=nn(tu,cC,null,"bool"),Xj={kernelName:tu,backendName:"cpu",kernelFunc:Kj};function A0(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Vn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ge(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=A0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var Yj={kernelName:Tr,backendName:"cpu",kernelFunc:Vn};function dC(e,t,n,a){let[r,s]=N.computeOutAndReduceShapes(e,a),i=ma(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function Zj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=N.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=N.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=dC(d.shape,d.dtype,h,p),y=f;return i&&(y=N.expandShapeToKeepDim(f,l)),c.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var Jj={kernelName:Ki,backendName:"cpu",kernelFunc:Zj};function Qj(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function eq(e,t){for(let n=0;n<e.length;++n){let a=e[n],r=n===e.length-1?t:e[n+1].length;if(a.length===0)throw new Error("Ragged splits may not be empty");if(a[0]<0)throw new Error("Ragged splits must be non-negative");if(a[a.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<a.length;++s)if(a[s-1]>a[s])throw new Error("Ragged splits must be sorted in ascending order")}}function tq(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);eq(n,a);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let d=1;d<l+1;++d)o[u].push(d*p)}for(let u=0;u<e.length;++u){let p=e[u],d=e[u]+1;for(let c=0;c<n.length;++c){let h=n[c],m=c+t.length-1;if(m>=0){let f=o[m],g=f[f.length-1]-h[p];for(let y=p;y<d;++y)o[m].push(h[y+1]+g)}p=h[p],d=h[d]}d!==p&&(r.push([p,d]),s+=d-p)}return{outSplits:o,valueSlices:r,numValues:s}}function nq(e){let t=[];for(let n=0;n<e.length;++n){let a=e[n].length,r=v.getArrayFromDType("int32",a);t.push(r),e[n].forEach((s,i)=>r[i]=s)}return t}function zk(e,t){let n=e.slice(0,t);for(;n.length<t;)n.push(1);for(let a=t;a<e.length;a++)n[t-1]*=e[a];return n}function aq(e,t,n,a,r,s){let i=zk(t,2)[1],o=zk(s,2)[1],l=0;for(let u of n)for(let p=u[0];p<u[1];++p){for(let d=0;d<a;++d)r[l*o+d]=e[p*i+d];++l}}function rq(e,t,n,a,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(n,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return aq(e,t,a,l,i,s),[i,s]}function hC(e,t,n,a,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(Qj(s,i,l),a.length===0)throw new Error("params.rank must be nonzero");let u=a[0],{outSplits:p,valueSlices:d,numValues:c}=tq(s,i,e,u),h=nq(p),m=rq(n,a,r,d,c);return[h,m[0],m[1]]}var Wk=2147483647;function mC(e,t,n,a,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let d=p.length===0?1:p[0],c=v.getArrayFromDType("int32",d+1);c[0]=0;for(let g=0;g<d;++g){let y=o?e[0]:e[g],b=l?a[0]:a[g],x=u?s[0]:s[g];if(x===0)throw new Error("Requires delta != 0");let w;if(x>0&&b<y||x<0&&b>y)w=0;else if(w=Math.ceil(Math.abs((b-y)/x)),w>Wk)throw new Error(`Requires ((limit - start) / delta) <= ${Wk}`);c[g+1]=c[g]+w}let h=c[d],m=v.getArrayFromDType(n,h),f=0;for(let g=0;g<d;++g){let y=c[g+1]-c[g],b=o?e[0]:e[g],x=u?s[0]:s[g];for(let w=0;w<y;++w)m[f++]=b,b+=x}return[c,m]}var Ia=N.RowPartitionType,ax=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=N.getRowPartitionTypesHelper(u),this.raggedRank=N.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===Ia.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===Ia.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case Ia.VALUE_ROWIDS:return ax.getMaxWidthValueRowID(t);case Ia.ROW_SPLITS:return ax.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${Ia[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return Vk(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;N.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=N.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case Ia.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case Ia.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${Ia[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Ia.FIRST_DIM_SIZE:return e[0];case Ia.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Ia.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Ia[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=Vk(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=W(u,h);u=Ks(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),y=(c-d)*o;Bk(g,f,y)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);Bk(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function Bk(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function Vk(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function fC(e,t,n,a,r,s,i,o,l,u){return new ax(e,t,n,a,r,s,i,o,l,u).compute()}function F0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var gC=ks(e=>1/Math.sqrt(e)),sq=Pu(to,gC),iq={kernelName:to,backendName:"cpu",kernelFunc:sq};function Yo(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Pe(n,t.dtype);let h=Pe(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=d[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}var oq=ks(e=>1/(1+Math.exp(-e))),yC=rt(ao,e=>1/(1+Math.exp(-e))),lq={kernelName:ao,backendName:"cpu",kernelFunc:yC};function Oh(e,t,n,a,r){let s=jt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=jt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=Pe(a,r,l),p=Pe(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function ui(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=jt.parseSliceParams(r,s,i);jt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=Oh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var uq={kernelName:du,backendName:"cpu",kernelFunc:ui};function bC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*d];if(y<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b<o;++b)p[b]=b;return[g,[o,d],y,u,p]}else{let g=m[l-1],y=v.getArrayFromDType(n,g*d),b=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],T=x[I],C=(I===0?0:m[I-1])+T;x[I]++;for(let E=0;E<d;++E)y[C*d+E]=e[w*d+E];b[C]=a[w],p[w]=C}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];y[I*d+0]=w;for(let T=1;T<d;++T)y[I*d+T]=0;b[I]=i}return[y,[g,d],b,u,p]}}function xC(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<d;++y)g+=e[f*d+y]*c[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/h[y]),g%=h[y]}return[m,[i,o],l]}function D0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f<o){if(b=r[f],y===b){++f;continue}if(y>=b)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[y*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=b,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var pq=ks(e=>Math.sqrt(e)),cq=rt(ro,e=>Math.sqrt(e)),dq={kernelName:ro,backendName:"cpu",kernelFunc:cq},vC=Vt((e,t)=>{let n=e-t;return n*n}),hq=nn(oo,vC),mq={kernelName:oo,backendName:"cpu",kernelFunc:hq};function wC(e,t,n,a){let r=Pe(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var fq=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let y=0;y<p;++y)c+=e[d+y].length;c+=u*this.rightPad.length;let h=l+u+p-1;c+=h*this.separator.length,n[a+i]=new Uint8Array(c);let m=n[a+i],f=0,g=y=>y.forEach(b=>m[f++]=b);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<p-1;++y)g(e[d+y]),g(this.separator);if(p>0){g(e[d+p-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function R0(e,t,n,a,r,s,i,o){return new fq(n,a,r,s,i,o).compute(e,t)}function gq(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function M0(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;gq(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function P0(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var kC=Vt((e,t)=>e-t),yq=C0((e,t,n,a)=>({real:e-n,imag:t-a})),O0=nn(lo,kC,yq),bq={kernelName:lo,backendName:"cpu",kernelFunc:O0};function IC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Pe(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Ap=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function SC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));SC(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),Ap(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;Ap(e[s],r)<0;)s=s+1;for(;Ap(e[i],r)>0;)i=i-1}Ap(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function TC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((b,x)=>m[x]={value:b,index:x}),a<m.length&&(SC(m,a),m=m.slice(0,a)),r&&m.sort(Ap);let f=d*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let p=t.slice();return p[p.length-1]=a,[Pe(p,n,l),Pe(p,"int32",u)]}function NC(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Ht(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new Ht(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Em("cpu",()=>new N0,1);var CC=rt(Ci,e=>e>=0?e:Math.exp(e)-1),xq={kernelName:Ci,backendName:"cpu",kernelFunc:CC};function _C(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var vq={kernelName:Ri,backendName:"cpu",kernelFunc:_C},wq=Vt((e,t)=>e<0?t*e:e);function EC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=wq(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var kq={kernelName:qi,backendName:"cpu",kernelFunc:EC},$C=rt(Xi,e=>Math.max(0,e)),Iq={kernelName:Xi,backendName:"cpu",kernelFunc:$C},AC=rt(Ji,e=>Math.min(Math.max(0,e),6)),Sq={kernelName:Ji,backendName:"cpu",kernelFunc:AC};function Lh(e,t,n,a,r){if(n==="linear")return lr({inputs:{x:t},backend:e});if(n==="relu")return $C({inputs:{x:t},backend:e});if(n==="elu")return CC({inputs:{x:t},backend:e});if(n==="relu6")return AC({inputs:{x:t},backend:e});if(n==="prelu")return EC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return _C({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return yC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Tq={kernelName:lu,backendName:"cpu",kernelFunc:ft};function FC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),b=Tu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[y,h,d]:[y,d,h],I=ft({inputs:{x:r},backend:n,attrs:{shape:x}}),T=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],$=o?T.shape[1]:T.shape[2],R=Math.max(g,y),F=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),B=v.computeStrides(T.shape),[U,G,q]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,J]=o?[1,B[1],B[0]]:[B[1],1,B[0]],ee=E*$,ae=Pe([R,E,$],I.dtype),te=ae.values,ie=n.blockSize;for(let oe=0;oe<R;oe++)for(let ye=0;ye<E;ye+=ie)for(let ue=0;ue<$;ue+=ie)for(let be=0;be<C;be+=ie){let ke=Math.min(ye+ie,E),Se=Math.min(ue+ie,$),Le=Math.min(be+ie,C);for(let Ve=ye;Ve<ke;Ve++)for(let nt=ue;nt<Se;nt++){let st=0;for(let Je=be;Je<Le;Je++){let at=Math.min(oe,g-1)*U,ze=Math.min(oe,y-1)*J,dt=F[at+Ve*G+Je*q],Hn=S[Je*K+nt*Z+ze];st+=dt*Hn}te[oe*ee+(Ve*$+nt)]+=st}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(b,ae.dtype,ae.values)}var Nq={kernelName:yi,backendName:"cpu",kernelFunc:FC};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=FC({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=gl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=Lh(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var _q={kernelName:Js,backendName:"cpu",kernelFunc:Cq},Eq=rt(kl,e=>Math.acos(e)),$q={kernelName:kl,backendName:"cpu",kernelFunc:Eq},Aq=rt(Il,e=>Math.acosh(e)),Fq={kernelName:Il,backendName:"cpu",kernelFunc:Aq};function Dq(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Pe(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Rq={kernelName:mi,backendName:"cpu",kernelFunc:Dq};function Mq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let w=0;w<h;++w){let I=f[b+w];x=x&&I}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=N.expandShapeToKeepDim(d,o),b=ft({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Pq={kernelName:Sl,backendName:"cpu",kernelFunc:Mq};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let w=0;w<h;++w){let I=f[b+w];x=x||I}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=N.expandShapeToKeepDim(d,o),b=ft({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Lq={kernelName:Tl,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let w=0;w<m;++w){let I=f[y+w];I>b&&(b=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Wq={kernelName:fi,backendName:"cpu",kernelFunc:zq};function Bq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let w=0;w<m;++w){let I=f[y+w];I<b&&(b=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Vq={kernelName:sc,backendName:"cpu",kernelFunc:Bq},Uq=rt(Nl,e=>Math.asin(e)),Gq={kernelName:Nl,backendName:"cpu",kernelFunc:Uq},Hq=rt(Cl,e=>Math.asinh(e)),jq={kernelName:Cl,backendName:"cpu",kernelFunc:Hq},qq=rt(_l,e=>Math.atan(e)),Kq={kernelName:_l,backendName:"cpu",kernelFunc:qq},Xq=Vt((e,t)=>Math.atan2(e,t)),Yq=nn($l,Xq),Zq={kernelName:$l,backendName:"cpu",kernelFunc:Yq},Jq=rt(El,e=>Math.atanh(e)),Qq={kernelName:El,backendName:"cpu",kernelFunc:Jq};function L0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*y,T=w*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let $=E*i-c,R=Math.max(0,$),F=Math.min(r.inHeight,p+$),S=I+E*b;for(let M=0;M<r.outWidth;++M){let B=M*o-h,U=Math.max(0,B),G=Math.min(r.inWidth,d+B),q=m,K=0,Z=0;for(let ee=R;ee<F;ee+=l){let ae=T+ee*a[1];for(let te=U;te<G;te+=u){let ie=ae+te*a[2],oe=e[ie+C];s==="max"&&oe>q?q=oe:s==="avg"&&(K+=oe,Z++)}if(isNaN(q))break}let J=S+M*x+C;g[J]=s==="avg"?K/Z:q}}}return f}function DC(e,t,n,a,r=!1,s=!1){let i=Pe(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Pe(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let $=Math.min(a.inWidth,c+C),R=Number.NEGATIVE_INFINITY,F=-1;for(let S=w;S<I;S+=u){let M=S-x;for(let B=E;B<$;B+=p){let U=B-C,G=f.get(g,S,B,y);G>R&&(R=G,r?F=s?((g*a.inHeight+S)*a.inWidth+B)*a.inChannels+y:(S*a.inWidth+B)*a.inChannels+y:F=M*c+U)}}i.set(F,g,b,T,y)}}return i}function RC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Pe(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let $=0;$<r.batchSize;++$){let R=$*I,F=$*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let B=M*i-f,U=B;for(;U<0;)U+=u;let G=Math.min(r.inDepth,c+B),q=R+M*T;for(let K=0;K<r.outHeight;++K){let Z=K*o-g,J=Z;for(;J<0;)J+=p;let ee=Math.min(r.inHeight,h+Z),ae=q+K*C;for(let te=0;te<r.outWidth;++te){let ie=te*l-y,oe=ie;for(;oe<0;)oe+=d;let ye=Math.min(r.inWidth,m+ie),ue=ae+te*E,be=b,ke=0,Se=0;for(let Ve=U;Ve<G;Ve+=u){let nt=F+Ve*a[1];for(let st=J;st<ee;st+=p){let Je=nt+st*a[2];for(let at=oe;at<ye;at+=d){let ze=Je+at*a[3],dt=e[ze+S];if(s==="max"&&dt>be?be=dt:s==="avg"&&(ke+=dt,Se++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let Le=ue+S;w[Le]=s==="avg"?ke/Se:be}}}}return x}function e5(e,t){let n=Pe(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-c,x=b;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+b);for(let I=0;I<t.outHeight;++I){let T=I*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let $=0;$<t.outWidth;++$){let R=$*s-m,F=R;for(;F<0;)F+=l;let S=Math.min(t.inWidth,d+R),M=Number.NEGATIVE_INFINITY,B=-1;for(let U=x;U<w;U+=i){let G=U-b;for(let q=C;q<E;q+=o){let K=q-T;for(let Z=F;Z<S;Z+=l){let J=Z-R,ee=e.get(f,U,q,Z,g);ee>=M&&(M=ee,B=G*p*d+K*p+J)}}}n.set(B,f,y,I,$,g)}}}return n}function t5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=lr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=L0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var n5={kernelName:gi,backendName:"cpu",kernelFunc:t5};function a5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=RC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var r5={kernelName:ic,backendName:"cpu",kernelFunc:a5};function s5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,E=T-1-p.padInfo.left,$=I-1-p.padInfo.top,R=Pe(s.shape,"float32"),F=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let B=0;B<p.inChannels;++B)for(let U=0;U<p.inDepth;++U)for(let G=0;G<p.inHeight;++G)for(let q=0;q<p.inWidth;++q){let K=U-C,Z=G-$,J=q-E,ee=0;for(let ae=0;ae<w;ae+=y){let te=(K+ae)/d;if(!(te<0||te>=p.outDepth||Math.floor(te)!==te))for(let ie=0;ie<I;ie+=b){let oe=(Z+ie)/c;if(!(oe<0||oe>=p.outHeight||Math.floor(oe)!==oe))for(let ye=0;ye<T;ye+=x){let ue=(J+ye)/h;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let be=S.get(M,te,oe,ue,B);ee+=be}}}R.set(ee*F,M,U,G,q,B)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var i5={kernelName:Yh,backendName:"cpu",kernelFunc:s5};function o5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,w=y-1-p.padInfo.top,I=Pe(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=Pe(r.shape,"float32",C);for(let $=0;$<p.batchSize;++$)for(let R=0;R<p.inChannels;++R)for(let F=0;F<p.inHeight;++F)for(let S=0;S<p.inWidth;++S){let M=F-w,B=S-x,U=0;for(let G=0;G<y;G+=f){let q=(M+G)/d;if(!(q<0||q>=p.outHeight||Math.floor(q)!==q))for(let K=0;K<b;K+=g){let Z=(B+K)/c;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let J=E.get($,q,Z,R);U+=J}}I.set(U*T,$,F,S,R)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var l5={kernelName:Xh,backendName:"cpu",kernelFunc:o5};function u5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[w++]+(p[E]-d[I++])*h[T++]/Math.sqrt(c[C++]+u),w>=g&&(w=0),I>=x&&(I=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var p5={kernelName:Ai,backendName:"cpu",kernelFunc:u5};function c5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=ft({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=ui({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var d5={kernelName:Al,backendName:"cpu",kernelFunc:c5};function h5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=_0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var m5={kernelName:Zh,backendName:"cpu",kernelFunc:h5};function f5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var g5={kernelName:Jh,backendName:"cpu",kernelFunc:f5},y5=rt(ds,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),b5={kernelName:ds,backendName:"cpu",kernelFunc:y5},x5=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},v5={kernelName:oc,backendName:"cpu",kernelFunc:x5};function yl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var w5={kernelName:cm,backendName:"cpu",kernelFunc:yl};function bl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(f=>f.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return lr({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>li({inputs:{input:w},backend:n})),g=l.map(w=>yl({inputs:{input:w},backend:n})),y=bl({inputs:f,backend:n,attrs:{axis:s}}),b=bl({inputs:g,backend:n,attrs:{axis:s}}),x=Yn({inputs:{real:y,imag:b},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=l.map(f=>{let g=[-1,v.sizeFromShape(f.shape.slice(s))];return ft({inputs:{x:f},backend:n,attrs:{shape:g}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=E0(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var k5={kernelName:Fl,backendName:"cpu",kernelFunc:bl};function MC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Ht(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],E=x?I[1]:I[2],$=x?I[2]:1,R=x?1:I[1],F=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,B=x?1:w.strides[1],U=n.data.get(r.dataId).values,G=n.data.get(s.dataId).values,q=w.values;for(let K=0;K<c.batchSize;++K){let Z=K*C,J=K*F;for(let ee=0;ee<c.outHeight;++ee){let ae=J+ee*S,te=ee*c.strideHeight-b;for(let ie=0;ie<h;++ie){let oe=te+ie*f;if(oe<0||oe>=c.inHeight)continue;let ye=ie*T[0],ue=Z+oe*E;for(let be=0;be<c.outWidth;++be){let ke=ae+be*M,Se=be*c.strideWidth-y;for(let Le=0;Le<m;++Le){let Ve=Se+Le*g;if(Ve<0||Ve>=c.inWidth)continue;let nt=ye+Le*T[1],st=ue+Ve*$,Je=nt;for(let at=0;at<c.inChannels;++at){let ze=U[st+at*R];for(let dt=0;dt<c.outChannels;++dt)q[ke+dt*B]+=ze*G[Je+dt];Je+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,q)}var I5={kernelName:vi,backendName:"cpu",kernelFunc:MC};function S5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",b=new Ht(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Ht(r.shape,r.dtype,I),E=new Ht(s.shape,s.dtype,T);for(let $=0;$<f;++$){let R=Math.max(0,Math.ceil((w-$)/h)),F=Math.min(c.outHeight,(c.inHeight+w-$)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),B=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let U=0;U<c.inChannels;++U)for(let G=0;G<c.outChannels;++G){let q=0;for(let K=0;K<c.batchSize;++K)for(let Z=R;Z<F;++Z){let J=$+Z*h-w;for(let ee=M;ee<B;++ee){let ae=S+ee*m-x;y?q+=C.get(K,J,ae,U)*E.get(K,Z,ee,G):q+=C.get(K,U,J,ae)*E.get(K,G,Z,ee)}}b.set(q,$,S,U,G)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var T5={kernelName:em,backendName:"cpu",kernelFunc:S5};function N5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ge([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new Ht(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:$,inHeight:R,inWidth:F,outChannels:S,outHeight:M,outWidth:B,strideHeight:U,strideWidth:G}=m;h=m.dataFormat;let q=C-1-m.padInfo.top,K=E-1-m.padInfo.left,Z=h==="channelsLast",J=f.strides[0],ee=Z?f.strides[1]:f.strides[2],ae=Z?f.strides[2]:1,te=Z?1:f.strides[1],ie=c[0],oe=Z?c[1]:c[2],ye=Z?c[2]:1,ue=Z?1:c[1];for(let be=0;be<T;++be)for(let ke=0;ke<$;++ke)for(let Se=0;Se<R;++Se){let Le=Se-q,Ve=Math.max(0,Math.ceil(Le/U)),nt=Math.min(M,(C+Le)/U);for(let st=0;st<F;++st){let Je=st-K,at=Math.max(0,Math.ceil(Je/G)),ze=Math.min(B,(E+Je)/G),dt=0;for(let Mt=Ve;Mt<nt;++Mt){let sa=Mt*U-Le;for(let sn=at;sn<ze;++sn){let Fn=sn*G-Je,ia=ie*be+oe*Mt+ye*sn,Dn=x*(C-1-sa)+w*(E-1-Fn)+I*ke;for(let it=0;it<S;++it){let Rn=y[ia+ue*it],jn=b[Dn+it];dt+=Rn*jn}}}let Hn=J*be+ee*Se+ae*st+te*ke;g[Hn]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var C5={kernelName:wi,backendName:"cpu",kernelFunc:N5};function _5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ge([r,s],"conv3d");let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,w=new Ht(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values,E=v.computeStrides(r.shape),$=v.computeStrides(s.shape);for(let R=0;R<u.batchSize;++R){let F=R*E[0],S=R*w.strides[0];for(let M=0;M<u.outDepth;++M){let B=S+M*w.strides[1],U=M*u.strideDepth-y;for(let G=0;G<p;++G){let q=U+G*h;if(q<0||q>=u.inDepth)continue;let K=G*$[0],Z=F+q*E[1];for(let J=0;J<u.outHeight;++J){let ee=B+J*w.strides[2],ae=J*u.strideHeight-x;for(let te=0;te<d;++te){let ie=ae+te*m;if(ie<0||ie>=u.inHeight)continue;let oe=K+te*$[1],ye=Z+ie*E[2];for(let ue=0;ue<u.outWidth;++ue){let be=ee+ue*u.outChannels,ke=ue*u.strideWidth-b;for(let Se=0;Se<c;++Se){let Le=ke+Se*f;if(Le<0||Le>=u.inWidth)continue;let Ve=oe+Se*$[2],nt=ye+Le*u.inChannels,st=Ve;for(let Je=0;Je<u.inChannels;++Je){let at=I[nt+Je];for(let ze=0;ze<u.outChannels;++ze)C[be+ze]+=at*T[st+ze];st+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var E5={kernelName:lc,backendName:"cpu",kernelFunc:_5};function $5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ge([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,y=d.filterWidth,b=new Ht(d.filterShape,"float32"),x=b.values,[w,I,T,C]=b.strides,E=n.data.get(s.dataId).values,[$,R,F,S]=p,M=n.data.get(r.dataId).values,[B,U,G,q]=u,K=d.padInfo.front,Z=d.padInfo.left,J=d.padInfo.top;for(let ee=0;ee<f;++ee){let ae=Math.max(0,Math.ceil((K-ee)/c)),te=Math.min(d.outDepth,(d.inDepth+K-ee)/c),ie=ee*w;for(let oe=0;oe<g;++oe){let ye=Math.max(0,Math.ceil((J-oe)/h)),ue=Math.min(d.outHeight,(d.inHeight+J-oe)/h),be=oe*I+ie;for(let ke=0;ke<y;++ke){let Se=Math.max(0,Math.ceil((Z-ke)/m)),Le=Math.min(d.outWidth,(d.inWidth+Z-ke)/m),Ve=ke*T+be;for(let nt=0;nt<d.inChannels;++nt){let st=nt*C+Ve;for(let Je=0;Je<d.outChannels;++Je){let at=0;for(let ze=0;ze<d.batchSize;++ze){let dt=ze*B,Hn=ze*$;for(let Mt=ae;Mt<te;++Mt){let sa=(ee+Mt*c-K)*U+dt,sn=Mt*R+Hn;for(let Fn=ye;Fn<ue;++Fn){let ia=(oe+Fn*h-J)*G+sa,Dn=Fn*F+sn;for(let it=Se;it<Le;++it){let Rn=(ke+it*m-Z)*q+ia,jn=it*S+Dn;at+=M[Rn+nt]*E[jn+Je]}}}}x[st+Je]=at}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var A5={kernelName:tm,backendName:"cpu",kernelFunc:$5};function F5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ge([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(l,s.shape,o,1,i),c=new Ht(d.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,b=n.data.get(r.dataId).values,[x,w,I,T]=u,C=n.data.get(s.dataId).values,[E,$,R,F]=p,{batchSize:S,filterDepth:M,filterHeight:B,filterWidth:U,inChannels:G,inDepth:q,inHeight:K,inWidth:Z,outChannels:J,outDepth:ee,outHeight:ae,outWidth:te,strideDepth:ie,strideHeight:oe,strideWidth:ye}=d,ue=M-1-d.padInfo.front,be=B-1-d.padInfo.top,ke=U-1-d.padInfo.left;for(let Se=0;Se<S;++Se)for(let Le=0;Le<G;++Le)for(let Ve=0;Ve<q;++Ve){let nt=Ve-ue,st=Math.max(0,Math.ceil(nt/ie)),Je=Math.min(ee,(M+nt)/ie);for(let at=0;at<K;++at){let ze=at-be,dt=Math.max(0,Math.ceil(ze/oe)),Hn=Math.min(ae,(B+ze)/oe);for(let Mt=0;Mt<Z;++Mt){let sa=Mt-ke,sn=Math.max(0,Math.ceil(sa/ye)),Fn=Math.min(te,(U+sa)/ye),ia=0;for(let Dn=st;Dn<Je;++Dn){let it=Dn*ie-nt;for(let Rn=dt;Rn<Hn;++Rn){let jn=Rn*oe-ze;for(let gr=sn;gr<Fn;++gr){let Mo=gr*ye-sa,Ja=x*Se+w*Dn+I*Rn+T*gr,mp=E*(M-1-it)+$*(B-1-jn)+R*(U-1-Mo)+F*Le;for(let wa=0;wa<J;++wa){let Po=b[Ja+wa],Xt=C[mp+wa];ia+=Po*Xt}}}}h[m*Se+f*Ve+g*at+y*Mt+Le]=ia}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var D5={kernelName:nm,backendName:"cpu",kernelFunc:F5},R5=rt(ki,e=>Math.cos(e)),M5={kernelName:ki,backendName:"cpu",kernelFunc:R5},P5=rt(Ii,e=>Math.cosh(e)),O5={kernelName:Ii,backendName:"cpu",kernelFunc:P5};function L5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=Pe([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(y.shape);for(let C=0;C<m;C++){let E=C*4,$=b[E],R=b[E+1],F=b[E+2],S=b[E+3],M=x[C];if(M>=p)continue;let B=f>1?(F-$)*(d-1)/(f-1):0,U=g>1?(S-R)*(c-1)/(g-1):0;for(let G=0;G<f;G++){let q=f>1?$*(d-1)+G*B:.5*($+F)*(d-1);if(q<0||q>d-1){for(let K=0;K<g;K++)for(let Z=0;Z<h;Z++){let J=Z+K*T[2]+G*T[1]+C*T[0];y.values[J]=u}continue}if(l==="bilinear"){let K=Math.floor(q),Z=Math.ceil(q),J=q-K;for(let ee=0;ee<g;ee++){let ae=g>1?R*(c-1)+ee*U:.5*(R+S)*(c-1);if(ae<0||ae>c-1){for(let ye=0;ye<h;ye++){let ue=ye+ee*T[2]+G*T[1]+C*T[0];y.values[ue]=u}continue}let te=Math.floor(ae),ie=Math.ceil(ae),oe=ae-te;for(let ye=0;ye<h;ye++){let ue=ye+te*I[2]+K*I[1]+M*I[0],be=w[ue];ue=ye+ie*I[2]+K*I[1]+M*I[0];let ke=w[ue];ue=ye+te*I[2]+Z*I[1]+M*I[0];let Se=w[ue];ue=ye+ie*I[2]+Z*I[1]+M*I[0];let Le=w[ue],Ve=be+(ke-be)*oe,nt=Se+(Le-Se)*oe;ue=ye+ee*T[2]+G*T[1]+C*T[0],y.values[ue]=Ve+(nt-Ve)*J}}}else for(let K=0;K<g;++K){let Z=g>1?R*(c-1)+K*U:.5*(R+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;ae<h;ae++){let te=ae+K*T[2]+G*T[1]+C*T[0];y.values[te]=u}continue}let J=Math.round(Z),ee=Math.round(q);for(let ae=0;ae<h;ae++){let te=ae+J*I[2]+ee*I[1]+M*I[0],ie=ae+K*T[2]+G*T[1]+C*T[0];y.values[ie]=w[te]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var z5={kernelName:Rl,backendName:"cpu",kernelFunc:L5};function W5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumprod");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ma(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?1:h[x];else{let w=f(y,b-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=N.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var B5={kernelName:Dl,backendName:"cpu",kernelFunc:W5};function V5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumsum");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ma(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?0:h[x];else{let w=f(y,b-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=N.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var U5={kernelName:Si,backendName:"cpu",kernelFunc:V5};function G5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=_0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=H2(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var H5={kernelName:am,backendName:"cpu",kernelFunc:G5};function j5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<d;++b){let x=Math.floor(b/s),w=b%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),C=I%s,E=(w*s+C)*h;for(let $=0;$<h;++$){let R=$+E+p*(T+u*(x+l*y));f[g++]=m[R]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var q5={kernelName:Ml,backendName:"cpu",kernelFunc:j5};function PC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ge([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,w=b.top,I=h.outChannels/h.inChannels,T=new Ht(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,$=T.values;for(let R=0;R<h.batchSize;++R){let F=R*p[0],S=R*T.strides[0];for(let M=0;M<h.outHeight;++M){let B=S+M*T.strides[1],U=M*h.strideHeight-w;for(let G=0;G<m;++G){let q=U+G*g;if(q<0||q>=h.inHeight)continue;let K=G*d[0],Z=F+q*p[1];for(let J=0;J<h.outWidth;++J){let ee=B+J*T.strides[2],ae=J*h.strideWidth-x;for(let te=0;te<f;++te){let ie=ae+te*y;if(ie<0||ie>=h.inWidth)continue;let oe=K+te*d[1],ye=Z+ie*h.inChannels,ue=ee,be=oe;for(let ke=0;ke<h.inChannels;++ke){let Se=C[ye+ke];for(let Le=0;Le<I;++Le)$[ue+Le]+=Se*E[be+Le];ue+=I,be+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var K5={kernelName:Ti,backendName:"cpu",kernelFunc:PC};function X5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Ht(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new Ht(r.shape,r.dtype,w),T=n.data.get(s.dataId).values,C=new Ht(s.shape,s.dtype,T);for(let E=0;E<m;++E){let $=Math.max(0,Math.ceil((b-E)/c)),R=Math.min(d.outHeight,(d.inHeight+b-E)/c);for(let F=0;F<f;++F){let S=Math.max(0,Math.ceil((y-F)/h)),M=Math.min(d.outWidth,(d.inWidth+y-F)/h);for(let B=0;B<d.outChannels;++B){let U=Math.trunc(B/x),G=B%x,q=0;for(let K=0;K<d.batchSize;++K)for(let Z=$;Z<R;++Z){let J=E+Z*c-b;for(let ee=S;ee<M;++ee){let ae=F+ee*h-y;q+=I.get(K,J,ae,U)*C.get(K,Z,ee,B)}}g.set(q,E,F,U,G)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Y5={kernelName:rm,backendName:"cpu",kernelFunc:X5};function Z5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ge([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new Ht(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[w,I,T]=d,C=n.data.get(s.dataId).values,[E,$,R]=c,{batchSize:F,filterHeight:S,filterWidth:M,inChannels:B,inHeight:U,inWidth:G,outChannels:q,outHeight:K,outWidth:Z,strideHeight:J,strideWidth:ee}=h,ae=S-1-h.padInfo.top,te=M-1-h.padInfo.left,ie=q/B;for(let oe=0;oe<F;++oe)for(let ye=0;ye<B;++ye)for(let ue=0;ue<U;++ue){let be=ue-ae,ke=Math.max(0,Math.ceil(be/J)),Se=Math.min(K,(S+be)/J);for(let Le=0;Le<G;++Le){let Ve=Le-te,nt=Math.max(0,Math.ceil(Ve/ee)),st=Math.min(Z,(M+Ve)/ee),Je=0;for(let at=ke;at<Se;++at){let ze=at*J-be;for(let dt=nt;dt<st;++dt){let Hn=dt*ee-Ve,Mt=w*oe+I*at+T*dt,sa=E*(S-1-ze)+$*(M-1-Hn)+R*ye;for(let sn=0;sn<ie;++sn){let Fn=ye*ie+sn,ia=x[Mt+Fn],Dn=C[sa+sn];Je+=ia*Dn}}}f[g*oe+y*ue+b*Le+ye]=Je}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var J5={kernelName:sm,backendName:"cpu",kernelFunc:Z5};function Q5(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Pe([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var e8={kernelName:im,backendName:"cpu",kernelFunc:Q5},t8={kernelName:uc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:$,outShape:R}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=v.sizeFromShape(R),S=R.length,M=v.getArrayFromDType(a.dtype,F);for(let B=0;B<h;++B)for(let U=0;U<y;++U){let G=U*w-x.top;for(let q=0;q<b;++q){let K=q*I-x.left;for(let Z=0;Z<g;++Z){let J=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<T;++ae){let te=G+ae*E;if(te>=0&&te<m)for(let ie=0;ie<C;++ie){let oe=K+ie*$;if(oe>=0&&oe<f){let ye=v.locToIndex([B,te,oe,Z],p,v.computeStrides(a.shape)),ue=v.locToIndex([ae,ie,Z],c,v.computeStrides(r.shape)),be=u[ye]+d[ue];be>J&&(J=be)}}}let ee=v.locToIndex([B,U,q,Z],S,v.computeStrides(R));M[ee]=J}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},n8={kernelName:gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:$}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===$.length,()=>`Error in ${gh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let R=v.toNestedArray($,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-b.top;for(let U=0;U<y;++U){let G=U*w-b.left;for(let q=0;q<f;++q){let K=Number.MIN_SAFE_INTEGER,Z=0,J=0;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let ie=G+te*E;if(ie>=0&&ie<m){let oe=p[S][ae][ie][q]+d[ee][te][q];oe>K&&(K=oe,Z=ee,J=te)}}}F[Z][J][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},a8={kernelName:fh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:$}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===$.length,()=>`Error in ${fh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let R=v.toNestedArray($,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-b.top;for(let U=0;U<y;++U){let G=U*w-b.left;for(let q=0;q<f;++q){let K=Number.MIN_SAFE_INTEGER,Z=B<0?0:B,J=G<0?0:G;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let ie=G+te*E;if(ie>=0&&ie<m){let oe=p[S][ae][ie][q]+d[ee][te][q];oe>K&&(K=oe,Z=ae,J=ie)}}}F[S][Z][J][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function Qc(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=os({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=lr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Vn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=Ph(n,h,f),y=v.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<b.length;++w){let I=w*y,T=0;for(let C=0;C<y;++C)T+=x[I+C];b[w]=T}if(i){let w=N.expandShapeToKeepDim(g.shape,u),I=g;g=ft({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var r8={kernelName:so,backendName:"cpu",kernelFunc:Qc};function s8(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=Vn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let I=0;I<b.length;++I)w.splice(b[I],0,1);v.arraysEqual(x.shape,w)||(x=ft({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Ff({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Qc({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var i8={kernelName:om,backendName:"cpu",kernelFunc:s8};function o8(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var l8={kernelName:lm,backendName:"cpu",kernelFunc:o8},u8=N.ERF_P,p8=N.ERF_A1,c8=N.ERF_A2,d8=N.ERF_A3,h8=N.ERF_A4,m8=N.ERF_A5,f8=rt(Pl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+u8*n);return t*(1-((((m8*a+h8)*a+d8)*a+c8)*a+p8)*a*Math.exp(-n*n))}),g8={kernelName:Pl,backendName:"cpu",kernelFunc:f8};function zh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:r},backend:n,attrs:{shape:o}})}var y8={kernelName:Ll,backendName:"cpu",kernelFunc:zh},b8=Vt((e,t)=>e/t),z0=nn(Ni,b8),rx={kernelName:Ni,backendName:"cpu",kernelFunc:z0};function OC(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let y=ui({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=ui({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Yn({inputs:{real:y,imag:b},backend:n}),{real:w,imag:I}=x8(x,t,n),T=N.mergeRealAndImagArrays(w,I);for(let C=0;C<s;C++){let E=N.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Yn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function x8(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(v8(a)){let o=sx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=lr({inputs:{x:d},backend:n}),h=rx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=rx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=w8(o,a,t);return N.splitRealAndImagArrays(l)}}function v8(e){return(e&e-1)===0}function sx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=n/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Yn({inputs:{real:d,imag:c},backend:r}),m=N.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),w=Yn({inputs:{real:b,imag:x},backend:r}),I=sx(l,u,i,a,r),T=I.real,C=I.imag,E=[T.length],$=r.makeTensorInfo(E,"float32",T),R=r.makeTensorInfo(E,"float32",C),F=Yn({inputs:{real:$,imag:R},backend:r}),S=sx(f,g,i,a,r),M=S.real,B=S.imag,U=[M.length],G=r.makeTensorInfo(U,"float32",M),q=r.makeTensorInfo(U,"float32",B),K=Yn({inputs:{real:G,imag:q},backend:r}),Z=N.exponents(n,a),J=[Z.real.length],ee=r.makeTensorInfo(J,"float32",Z.real),ae=r.makeTensorInfo(J,"float32",Z.imag),te=Yn({inputs:{real:ee,imag:ae},backend:r}),ie=Ff({inputs:{a:te,b:K},backend:r}),oe=gl({inputs:{a:F,b:ie},backend:r}),ye=O0({inputs:{a:F,b:ie},backend:r}),ue=li({inputs:{input:oe},backend:r}),be=li({inputs:{input:ye},backend:r}),ke=yl({inputs:{input:oe},backend:r}),Se=yl({inputs:{input:ye},backend:r}),Le=bl({inputs:[ue,be],backend:r,attrs:{axis:0}}),Ve=bl({inputs:[ke,Se],backend:r,attrs:{axis:0}}),nt=r.data.get(Le.dataId).values,st=r.data.get(Ve.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(Le),r.disposeIntermediateTensorInfo(Ve),{real:nt,imag:st}}function w8(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(r*o,t,n),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),N.assignToTypedArray(a,s,i,r)}return a}function k8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=OC(o,!1,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var I8={kernelName:um,backendName:"cpu",kernelFunc:k8};function W0(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return T8(o,r,i),t.makeTensorInfo(a,i,o)}var S8={kernelName:pc,backendName:"cpu",kernelFunc:W0};function T8(e,t,n){e.fill(t)}var N8={kernelName:Wl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=Math.round(l-f-1),x=c+m+g+y,w=p[x];if(b>=0&&b<l){let I=b*u,T=c+m+I+y;w=p[T]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},C8=Vt((e,t)=>Math.floor(e/t)),_8=nn($i,C8,null,"int32"),E8={kernelName:$i,backendName:"cpu",kernelFunc:_8};function $8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=MC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=ft({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=gl({inputs:{a:f,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else f=gl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let y=ft({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=Lh(n,f,h,y,m),n.disposeIntermediateTensorInfo(y)}else f=Lh(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var A8={kernelName:Qs,backendName:"cpu",kernelFunc:$8};function F8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=PC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=gl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Lh(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var D8={kernelName:ei,backendName:"cpu",kernelFunc:F8};function R8(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=Q2(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var M8={kernelName:Vl,backendName:"cpu",kernelFunc:R8};function P8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=ft({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=ft({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=eC(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var O8={kernelName:Bl,backendName:"cpu",kernelFunc:P8};function L8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=OC(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var z8={kernelName:pm,backendName:"cpu",kernelFunc:L8},W8=rt(Gl,e=>Number.isFinite(e)?1:0,"bool"),B8={kernelName:Gl,backendName:"cpu",kernelFunc:W8},V8=rt(Hl,e=>Math.abs(e)===1/0?1:0,"bool"),U8={kernelName:Hl,backendName:"cpu",kernelFunc:V8},G8=rt(jl,e=>Number.isNaN(e)?1:0,"bool"),H8={kernelName:jl,backendName:"cpu",kernelFunc:G8};function j8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=sC(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var q8={kernelName:dm,backendName:"cpu",kernelFunc:j8},K8=rt(Xl,e=>Math.log1p(e)),X8={kernelName:Xl,backendName:"cpu",kernelFunc:K8},Y8=Vt((e,t)=>e&&t),Z8=nn(Yl,Y8,null,"bool"),J8={kernelName:Yl,backendName:"cpu",kernelFunc:Z8},Q8=rt(Zl,e=>e?0:1,"bool"),eK={kernelName:Zl,backendName:"cpu",kernelFunc:Q8},tK=Vt((e,t)=>e||t),nK=nn(Jl,tK,null,"bool"),aK={kernelName:Jl,backendName:"cpu",kernelFunc:nK};function rK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let w=d[y];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),y=d[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var sK={kernelName:cc,backendName:"cpu",kernelFunc:rK};function iK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ge(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),y=d;for(let b=0;b<y;b++){let x=b%c,w=b-x+Math.max(0,x-o),I=b-x+Math.min(c,x+o+1),T=0;for(let C=w;C<I;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=w;C<I;C++){let E=-2*u*p*m[C]*f[b]/T;b===C&&(E+=Math.pow(T,-p)),E*=h[b],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var oK={kernelName:hm,backendName:"cpu",kernelFunc:iK};function LC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=N.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=A0(h,l,r.dtype,c,w),d=N.getInnerMostAxes(d.length,u),l=w}ge(r,"max"),N.assertAxesAreInnerMostDims("max",d,u);let[m,f]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),y=oC(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=N.expandShapeToKeepDim(m,p)),{dataId:b,shape:x,dtype:r.dtype}}var lK={kernelName:Pi,backendName:"cpu",kernelFunc:LC};function uK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=lr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=L0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var pK={kernelName:Li,backendName:"cpu",kernelFunc:uK};function cK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=RC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var dK={kernelName:dc,backendName:"cpu",kernelFunc:cK};function hK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=e5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,E=w-1-p.padInfo.top,$=Pe(s.shape,"float32"),R=n.bufferSync(r);for(let F=0;F<p.batchSize;++F)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let B=0;B<p.inHeight;++B)for(let U=0;U<p.inWidth;++U){let G=M-T,q=B-E,K=U-C,Z=0;for(let J=0;J<x;J+=g){let ee=(G+J)/h;if(!(ee<0||ee>=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae<w;ae+=y){let te=(q+ae)/m;if(!(te<0||te>=p.outHeight||Math.floor(te)!==te))for(let ie=0;ie<I;ie+=b){let oe=(K+ie)/f;if(oe<0||oe>=p.outWidth||Math.floor(oe)!==oe)continue;let ye=x*w*I-1-c.get(F,ee,te,oe,S),ue=J*w*I+ae*I+ie,be=ye===ue?1:0;if(be===0)continue;let ke=R.get(F,ee,te,oe,S);Z+=ke*be}}}$.set(Z,F,M,B,U,S)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var mK={kernelName:fm,backendName:"cpu",kernelFunc:hK};function fK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Pe(c.outShape,o.dtype,DC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=Pe(o.shape,"float32"),E=n.data.get(r.dataId).values,$=Pe(r.shape,"float32",E);for(let R=0;R<c.batchSize;++R)for(let F=0;F<c.inChannels;++F)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let B=S-T,U=M-I,G=0;for(let q=0;q<x;q+=y){let K=(B+q)/f;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z<w;Z+=b){let J=(U+Z)/g;if(J<0||J>=c.outWidth||Math.floor(J)!==J)continue;let ee=x*w-1-m.get(R,K,J,F),ae=q*w+Z,te=ee===ae?1:0;if(te===0)continue;let ie=$.get(R,K,J,F);G+=ie*te}}C.set(G,R,S,M,F)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var gK={kernelName:mm,backendName:"cpu",kernelFunc:fK};function yK(e,t,n,a,r){let s=v.computeStrides(t),i=L0(e,t,n,s,r,"max"),o=DC(e,t,n,r,!0,a);return[i.values,o.values]}var bK={kernelName:gm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=yK(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function xK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=os({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=z0({inputs:{a:c,b:d},backend:n});p.push(h);let m=Qc({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var vK={kernelName:zi,backendName:"cpu",kernelFunc:xK};function wK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let w=0;w<h;++w){let I=f[b+w];(Number.isNaN(I)||I<x)&&(x=I)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=N.expandShapeToKeepDim(d,o),b=ft({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var kK={kernelName:Wi,backendName:"cpu",kernelFunc:wK};function IK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ge(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),y=v.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=v.indexToLoc(b,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);y[b]=d[w]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var SK={kernelName:Vi,backendName:"cpu",kernelFunc:IK},TK=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),NK=nn(Ql,TK),CK={kernelName:Ql,backendName:"cpu",kernelFunc:NK},_K=us(Hh());function zC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=LC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),c=O0({inputs:{a:r,b:d},backend:n}),h=Y2({inputs:{x:c},backend:n}),m=Qc({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=z0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var EK={kernelName:io,backendName:"cpu",kernelFunc:zC};function $K(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:zC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let y=_K.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let w=y();h[b+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[b+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var AK={kernelName:ym,backendName:"cpu",kernelFunc:$K},FK=cr.nonMaxSuppressionV3Impl;function DK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ge(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=FK(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var RK={kernelName:nu,backendName:"cpu",kernelFunc:DK},MK=cr.nonMaxSuppressionV4Impl;function PK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ge(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=MK(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var OK={kernelName:au,backendName:"cpu",kernelFunc:PK},LK=cr.nonMaxSuppressionV5Impl;function zK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ge(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=LK(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var WK={kernelName:ru,backendName:"cpu",kernelFunc:zK};function BK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;ge(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var VK={kernelName:Gi,backendName:"cpu",kernelFunc:BK};function Wh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=li({inputs:{input:a},backend:n}),s=Wh({inputs:{x:r},backend:n}),i=yl({inputs:{input:a},backend:n}),o=Wh({inputs:{x:i},backend:n}),l=Yn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return W0({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var UK={kernelName:Iu,backendName:"cpu",kernelFunc:Wh};function WC(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=li({inputs:{input:a},backend:n}),s=WC({inputs:{x:r},backend:n}),i=yl({inputs:{input:a},backend:n}),o=Wh({inputs:{x:i},backend:n}),l=Yn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return W0({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var GK={kernelName:su,backendName:"cpu",kernelFunc:WC};function BC(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return zh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=zh({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=bl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var HK={kernelName:iu,backendName:"cpu",kernelFunc:BC};function jK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<p;y++){let b=v.indexToLoc(y,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var VC={kernelName:Hi,backendName:"cpu",kernelFunc:jK},qK=Vt((e,t)=>Math.pow(e,t)),KK=nn(ji,qK),XK={kernelName:ji,backendName:"cpu",kernelFunc:KK};function YK(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(y=>n.data.get(y.dataId).values),u=r.map(y=>y.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=hC(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(y=>n.makeTensorInfo([y.length],"int32",y)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var ZK={kernelName:bm,backendName:"cpu",kernelFunc:YK};function JK(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=mC(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var QK={kernelName:xm,backendName:"cpu",kernelFunc:JK};function eX(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=fC(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var tX={kernelName:vm,backendName:"cpu",kernelFunc:eX};function nX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=F0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var aX={kernelName:hc,backendName:"cpu",kernelFunc:nX},rX=rt(ou,e=>1/e),sX={kernelName:ou,backendName:"cpu",kernelFunc:rX};function iX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=y[0]/b[0],I=y[1]/b[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=w*(C+.5)-.5:E=w*C;let $=Math.max(0,Math.floor(E)),R=E-$,F=Math.min(c-1,Math.ceil(E)),S=T*l[0]+$*l[1],M=T*l[0]+F*l[1];for(let B=0;B<p;B++){let U;i?U=I*(B+.5)-.5:U=I*B;let G=Math.max(0,Math.floor(U)),q=U-G,K=Math.min(h-1,Math.ceil(U)),Z=S+G*l[2],J=M+G*l[2],ee=S+K*l[2],ae=M+K*l[2];for(let te=0;te<m;te++){let ie=f[Z+te],oe=f[J+te],ye=f[ee+te],ue=f[ae+te],be=ie+(ye-ie)*q,ke=oe+(ue-oe)*q,Se=be+(ke-be)*R;g[x++]=Se}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var oX={kernelName:Zi,backendName:"cpu",kernelFunc:iX};function lX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let T=I*o[0];for(let C=0;C<c;C++){let E=C*y,$=Math.floor(E),R=Math.min(Math.ceil(E),u-1),F=T+$*o[1],S=T+R*o[1],M=E-$,B=1-M;for(let U=0;U<h;U++){let G=U*b,q=Math.floor(G),K=Math.min(Math.ceil(G),p-1),Z=G-q,J=1-Z,ee=F+q*o[2],ae=F+K*o[2],te=S+q*o[2],ie=S+K*o[2],oe=B*J,ye=B*Z,ue=M*J,be=M*Z;for(let ke=0;ke<d;ke++){let Se=x[w++];m[ee+ke]+=Se*oe,m[ae+ke]+=Se*ye,m[te+ke]+=Se*ue,m[ie+ke]+=Se*be}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var uX={kernelName:Im,backendName:"cpu",kernelFunc:lX};function pX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],w=y[1]/b[1],I=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let $=i?x*(E+.5):x*E,R=Math.min(c-1,s?Math.round($):Math.floor($));i&&(R=Math.max(0,R));let F=C+R*l[1];for(let S=0;S<p;S++){let M=i?w*(S+.5):w*S,B=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(B=Math.max(0,B));let U=F+B*l[2];for(let G=0;G<m;G++){let q=f[U+G];g[I++]=q}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var cX={kernelName:Yi,backendName:"cpu",kernelFunc:pX};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,y=[i&&h>1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],w=y[1]/b[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,E=Math.ceil(T)*2+2;for(let $=0;$<u;$++){let R=$*o[0];for(let F=0;F<p;F++){let S=R+F*o[1],M=Math.floor(F*I),B=Math.floor(M-C/2);for(let U=0;U<d;U++){let G=S+U*o[2],q=Math.floor(U*T),K=Math.floor(q-E/2);for(let Z=0;Z<c;Z++){let J=0;for(let ee=0;ee<C;ee++){let ae=ee+B;if(ae<0||ae>=h)continue;let te=R+ae*l[1],ie=ae*x,oe=Math.min(p-1,i?Math.round(ie):Math.floor(ie));if(F===oe)for(let ye=0;ye<E;ye++){let ue=ye+K;if(ue<0||ue>=m)continue;let be=te+ue*l[2],ke=ue*w,Se=Math.min(d-1,i?Math.round(ke):Math.floor(ke));U===Se&&(J+=g[be+Z])}}f[G+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var hX={kernelName:km,backendName:"cpu",kernelFunc:dX};function mX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return lr({inputs:{x:r},backend:n});let l=new Ht(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var fX={kernelName:Qi,backendName:"cpu",kernelFunc:mX},gX={kernelName:Su,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let $=0;$<c;$++){let R=[u,I,C,$],F=R[2],S=R[1],M=(F-h)*y-(S-m)*g,B=(F-h)*g+(S-m)*y;M=Math.round(M+h),B=Math.round(B+m);let U=s;if(typeof s!="number"&&($===3?U=f:U=s[$]),M>=0&&M<d&&B>=0&&B<p){let q=B*(d*c),K=M*c,Z=w+q+K+$;U=b[Z]}let G=w+T+E+$;l[G]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},yX=rt(eo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),bX={kernelName:eo,backendName:"cpu",kernelFunc:yX};function xX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=Yo(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var vX={kernelName:uu,backendName:"cpu",kernelFunc:xX};function wX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function kX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function IX(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?wX(l,t[p+u]):kX(l,t[p+u])}return i}function SX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=IX(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var TX={kernelName:Sm,backendName:"cpu",kernelFunc:SX};function NX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ge([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ma(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var CX={kernelName:pu,backendName:"cpu",kernelFunc:NX},_X=N.SELU_SCALEALPHA,EX=N.SELU_SCALE,$X=rt(cu,e=>e>=0?EX*e:_X*(Math.exp(e)-1)),AX={kernelName:cu,backendName:"cpu",kernelFunc:$X},FX=rt(mu,e=>e<0?-1:e>0?1:0),DX={kernelName:mu,backendName:"cpu",kernelFunc:FX},RX=rt(no,e=>Math.sin(e)),MX={kernelName:no,backendName:"cpu",kernelFunc:RX},PX=rt(hu,e=>Math.sinh(e)),OX={kernelName:hu,backendName:"cpu",kernelFunc:PX},LX=11920928955078125e-23,Uk=Math.log(LX)+2,zX=rt(fu,e=>{let t=e>-Uk,n=e<Uk,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),WX={kernelName:fu,backendName:"cpu",kernelFunc:zX};function BX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ge([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=VC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var VX={kernelName:gu,backendName:"cpu",kernelFunc:BX};function UX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=bC(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var GX={kernelName:mc,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=xC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var jX={kernelName:bu,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=D0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var KX={kernelName:fc,backendName:"cpu",kernelFunc:qX};function XX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=D0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var YX={kernelName:gc,backendName:"cpu",kernelFunc:XX};function ZX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),y=Boolean(n.data.get(i.dataId).values[0]);f=Yo(m,g,o,c,p,u,l,d,y,h);break}case"float32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=Yo(m,g,o,c,p,u,l,d,y,h);break}case"int32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=Yo(m,g,o,c,p,u,l,d,y,h);break}case"string":{let g=n.bufferSync(s),y=v.decodeString(n.data.get(i.dataId).values[0]);f=Yo(m,g,o,c,p,u,l,d,y,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var JX={kernelName:Tm,backendName:"cpu",kernelFunc:ZX};function QX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=ui({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var eY={kernelName:yu,backendName:"cpu",kernelFunc:QX},tY={kernelName:yc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},nY=rt(ms,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),aY={kernelName:ms,backendName:"cpu",kernelFunc:nY};function rY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ft({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=jt.computeOutShape(b,x,w),C=ui({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});I=ft({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=wC(h,T,w,b);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var sY={kernelName:xu,backendName:"cpu",kernelFunc:rY};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=R0(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var oY={kernelName:bc,backendName:"cpu",kernelFunc:iY};function lY(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=M0(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var uY={kernelName:xc,backendName:"cpu",kernelFunc:lY};function pY(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=P0(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var cY={kernelName:vc,backendName:"cpu",kernelFunc:pY},dY=rt(uo,e=>Math.tan(e)),hY={kernelName:uo,backendName:"cpu",kernelFunc:dY},mY=rt(po,e=>Math.tanh(e)),fY={kernelName:po,backendName:"cpu",kernelFunc:mY};function gY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=IC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var yY={kernelName:hs,backendName:"cpu",kernelFunc:gY};function bY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=TC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var xY={kernelName:vu,backendName:"cpu",kernelFunc:bY};function vY(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=v.computeStrides(r.shape),b=y[0],x=y[1],w=y[2],I=v.computeStrides(g),T=I[0],C=I[1],E=I[2],$=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));$.fill(l);let R=a.data.get(r.dataId).values,F=a.data.get(s.dataId).values;for(let S=0;S<p;++S){let M=s.shape[0]===1?F:F.subarray(S*8,S*8+8);for(let B=0;B<m;++B)for(let U=0;U<f;++U)for(let G=0;G<h;++G){let q,K=M[6]*U+M[7]*B+1;if(K===0)continue;let Z=(M[0]*U+M[1]*B+M[2])/K,J=(M[3]*U+M[4]*B+M[5])/K,ee=Gk(Z,c,o),ae=Gk(J,d,o);switch(i){case"nearest":q=NY(R,d,c,b,x,w,S,ae,ee,G,l);break;case"bilinear":q=CY(R,d,c,b,x,w,S,ae,ee,G,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=S*T+B*C+U*E+G;$[te]=q}return a.makeTensorInfo(g,r.dtype,$)}return{dataId:a.write($,g,r.dtype),shape:r.shape,dtype:r.dtype}}var wY={kernelName:wu,backendName:"cpu",kernelFunc:vY};function Gk(e,t,n){switch(n){case"reflect":return kY(e,t);case"wrap":return IY(e,t);case"nearest":return TY(e,t);case"constant":default:return SY(e,t)}}function kY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function IY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function SY(e,t){return e}function TY(e,t){return v.clamp(0,e,t-1)}function Fp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function NY(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Fp(e,t,n,a,r,s,i,d,c,u,p)}function CY(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Fp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Fp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Fp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Fp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function _Y(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ge(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=NC(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var EY={kernelName:Nm,backendName:"cpu",kernelFunc:_Y};function $Y(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=ui({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=ft({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var AY={kernelName:ku,backendName:"cpu",kernelFunc:$Y};function FY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ge(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=zh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=K2({inputs:{a:g,b:c},backend:n}),b=os({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=Ff({inputs:{a:b,b:r},backend:n}),w=Qc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(y),p.push(b),p.push(x),p.push(w)}let h=BC({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var DY={kernelName:wc,backendName:"cpu",kernelFunc:FY},RY=[_q,fj,$q,Fq,wj,Rq,Pq,Lq,Wq,Vq,Gq,jq,Kq,Zq,Qq,n5,r5,i5,l5,Nq,p5,d5,m5,g5,xj,Ij,b5,gj,v5,k5,I5,T5,C5,E5,A5,D5,M5,O5,z5,B5,U5,H5,q5,K5,Y5,J5,e8,t8,n8,a8,i8,xq,l8,Sj,g8,Tj,y8,Cj,I8,S8,N8,Ej,E8,A8,D8,M8,O8,Aj,Dj,yj,z8,w5,B8,U8,H8,vq,Mj,Oj,q8,zj,X8,J8,eK,aK,sK,oK,lK,Bj,pK,dK,mK,gK,bK,vK,kK,Uj,SK,CK,AK,Hj,qj,RK,OK,WK,Xj,VK,GK,HK,VC,XK,kq,Jj,ZK,QK,tX,aX,bj,rx,sX,Iq,Sq,Tq,oX,uX,cX,hX,fX,gX,bX,iq,vX,TX,CX,AX,lq,DX,MX,OX,uq,EK,WX,VX,GX,jX,KX,YX,JX,eY,dq,tY,mq,aY,sY,oY,uY,cY,bq,r8,hY,fY,yY,xY,wY,Yj,EY,AY,DY,UK];for(let e of RY)kc(e);var UC={};$e(UC,{assertNotComplex:()=>Lu,bindCanvasToFramebuffer:()=>HY,bindColorTextureToFramebuffer:()=>oh,bindTextureToProgramUniformSampler:()=>s_,bindTextureUnit:()=>n_,bindVertexBufferToProgramAttribute:()=>ix,callAndCheck:()=>me,canBeRepresented:()=>HC,createFragmentShader:()=>KC,createFramebuffer:()=>t_,createProgram:()=>XC,createStaticIndexBuffer:()=>JC,createStaticVertexBuffer:()=>ZC,createTexture:()=>QC,createVertexShader:()=>qC,getBatchDim:()=>pi,getExtensionOrThrow:()=>Dp,getFramebufferErrorMessage:()=>i_,getMaxTexturesInShader:()=>p_,getNumChannels:()=>UY,getProgramUniformLocation:()=>r_,getProgramUniformLocationOrThrow:()=>a_,getRowsCols:()=>ci,getShapeAs3D:()=>Mp,getTextureShapeFromLogicalShape:()=>l_,getWebGLDisjointQueryTimerVersion:()=>c_,getWebGLErrorMessage:()=>jC,getWebGLMaxTextureSize:()=>u_,hasExtension:()=>ca,isCapableOfRenderingToFloatTexture:()=>d_,isDownloadFloatTextureEnabled:()=>h_,isReshapeFree:()=>Qp,isWebGLFenceEnabled:()=>m_,isWebGLVersionEnabled:()=>lx,linkProgram:()=>YC,logShaderSourceAndInfoLog:()=>V0,resetMaxTextureSize:()=>jY,resetMaxTexturesInShader:()=>qY,unbindColorTextureFromFramebuffer:()=>ox,unbindTextureUnit:()=>GY,validateFramebuffer:()=>Rp,validateProgram:()=>ih,validateTextureSize:()=>e_});var Us={},Qd={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function GC(e,t){Us[e]=t}function qa(e,t){if(!(e in Us)||t!=null){let a=PY(e,t);if(a!==null)Us[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Us[e];return n==null||n.isContextLost()?(delete Us[e],qa(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Us[e])}function MY(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function PY(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?MY(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Us[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(Qd.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",Qd)||n.getContext("experimental-webgl",Qd):n.getContext("webgl2",Qd)}var Jp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Jp||(Jp={}));var pa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pa||(pa={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function ed(e,t){return[t,e]}function OY(e,t){return e*t}function eh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Ou(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function LY(e,t){let[n,a]=Ou(e,t);return n*a*4}function B0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return H().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function me(e,t){let n=t();return H().getBool("DEBUG")&&zY(e),n}function zY(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+jC(e,t))}var WY=596e-10,BY=65504;function HC(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||WY<Math.abs(e)&&Math.abs(e)<BY)}function jC(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Dp(e,t){return Fr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function qC(e,t){let n=Fr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(me(e,()=>e.shaderSource(n,t)),me(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function KC(e,t){let n=Fr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(me(e,()=>e.shaderSource(n,t)),me(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw V0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var VY=/ERROR: [0-9]+:([0-9]+):/g;function V0(e,t){let n=VY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function XC(e){return Fr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function YC(e,t){if(me(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function ih(e,t){if(me(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ZC(e,t){let n=Fr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),me(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function JC(e,t){let n=Fr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return me(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),me(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function UY(){return H().getNumber("WEBGL_VERSION")===2?1:4}function QC(e){return Fr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function e_(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function t_(e){return Fr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ix(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),me(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),me(e,()=>e.enableVertexAttribArray(o)),!0)}function n_(e,t,n){o_(e,n),me(e,()=>e.activeTexture(e.TEXTURE0+n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function GY(e,t){o_(e,t),me(e,()=>e.activeTexture(e.TEXTURE0+t)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function a_(e,t,n){return Fr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function r_(e,t,n){return e.getUniformLocation(t,n)}function s_(e,t,n,a){me(e,()=>n_(e,t,a)),me(e,()=>e.uniform1i(n,a))}function HY(e){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),me(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),me(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function oh(e,t,n){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),me(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ox(e,t){me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),me(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Rp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+i_(e,t))}function i_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Fr(e,t,n){let a=me(e,()=>t());if(a==null)throw new Error(n);return a}function o_(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function pi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ci(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Mp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[pi(e),...ci(e)]),t}function l_(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=H().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&H().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=pi(e),l=2,u=2;e.length&&([l,u]=ci(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function th(e){return e%2===0}function Qp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||th(n)&&th(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&th(e[0])&&th(t[0])}var lh,uh;function u_(e){if(lh==null){let t=qa(e);lh=t.getParameter(t.MAX_TEXTURE_SIZE)}return lh}function jY(){lh=null}function qY(){uh=null}function p_(e){if(uh==null){let t=qa(e);uh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,uh)}function c_(e){if(e===0)return 0;let t,n=qa(e);return ca(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ca(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ca(e,t){return e.getExtension(t)!=null}function lx(e){try{if(qa(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function d_(e){if(e===0)return!1;let t=qa(e);if(e===1){if(!ca(t,"OES_texture_float"))return!1}else if(!ca(t,"EXT_color_buffer_float"))return!1;return ux(t)}function h_(e){if(e===0)return!1;let t=qa(e);if(e===1){if(!ca(t,"OES_texture_float")||!ca(t,"WEBGL_color_buffer_float"))return!1}else{if(ca(t,"EXT_color_buffer_float"))return ux(t);let n="EXT_color_buffer_half_float";if(ca(t,n)){let a=t.getExtension(n);return KY(t,a)}return!1}return ux(t)}function ux(e){let t=B0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function KY(e,t){let n=B0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function m_(e){return e!==2?!1:qa(e).fenceSync!=null}function Lu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ve=H();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>lx(2)?2:lx(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>u_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>p_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ve.getNumber("WEBGL_VERSION");return e===0?0:c_(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Tc.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>d_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>h_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>m_(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ve.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Tc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ve.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);ve.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);ve.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);ve.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);ve.registerFlag("WEBGL_EXP_CONV",()=>!1);ve.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>ve.getBool("IS_TEST"));ve.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);ve.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);ve.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);function Cn(){let e,t,n,a,r,s,i,o,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=H().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function vo(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Df(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function XY(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function YY(e,t,n="index"){let a=e.map((s,i)=>i),r=XY(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function U0(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function G0(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var f_=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:g_}=N;function ZY(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=H0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>JY(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=Cn(),l=tZ(o),u,p,d=rZ(o);return t.isPacked?(u=QY(t.logicalShape,i,n.enableShapeUniforms),p=aZ(o)):(u=eZ(t.logicalShape,i,n.enableShapeUniforms),p=nZ(o)),n.packedInputs&&(d+=lZ),[d,l,p,r,u,s,n.userCode].join(`
`)}function zu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return vZ(e,t);case 1:return kZ(e,t);case 2:return SZ(e,t);case 3:return NZ(e,t);case 4:return _Z(e,t);case 5:return EZ(e);case 6:return $Z(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function y_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return xZ(e);case 1:return wZ(e,t);case 2:return IZ(e,t);case 3:return TZ(e,t);default:return CZ(e,t)}}function JY(e,t,n=!1,a){let r="";n?r+=y_(e,a):r+=zu(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=AZ(e,t):r+=FZ(e,t)),r}function QY(e,t,n){switch(e.length){case 0:return b_();case 1:return uZ(e,t,n);case 2:return yZ(e,t,n);case 3:return cZ(e,t,n);default:return hZ(e,t,n)}}function eZ(e,t,n){switch(e.length){case 0:return b_();case 1:return pZ(e,t,n);case 2:return bZ(e,t,n);case 3:return dZ(e,t,n);case 4:return mZ(e,t,n);case 5:return fZ(e,t);case 6:return gZ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function tZ(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function nZ(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function aZ(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function rZ(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${sZ}
${iZ}
${oZ}
`}var sZ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,iZ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,oZ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,lZ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function b_(){return`
int getOutputCoords() {
return 0;
}
`}function uZ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function pZ(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function cZ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function dZ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Df(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=vo(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function hZ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function mZ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Df(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=vo(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function fZ(e,t){let n=vo(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function gZ(e,t){let n=vo(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function yZ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function bZ(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function wo(e){return`offset${e}`}function xZ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=Cn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function vZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=wo(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function wZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=Cn();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function kZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${Wu(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=wo(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function IZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Cn();if(s!=null&&v.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function SZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=Bu(e,l),h=["row","col"];return`
${zu(c,t)}
float ${r}(int row, int col) {
return ${r}(${Vu(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${Wu(e)}
}
`;let u=s[0],p=s[1],d=wo(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function TZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=Bu(e,c),f=["b","row","col"];return`
${y_(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${Vu(f,h)});
}
`}let o=Cn();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function NZ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=Bu(e,u),g=["row","col","depth"];return`
${zu(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${Vu(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Wu(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=wo(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function CZ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Cn();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function _Z(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let b=Bu(e,l),x=["row","col","depth","depth2"];return`
${zu(b,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${Vu(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${Wu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let y=wo(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${y});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${y});
return sampleTexture(${a}, uv);
}
`}function EZ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=Bu(e,l),g=["row","col","depth","depth2","depth3"];return`
${zu(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${Vu(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${Wu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=wo(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function $Z(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=Bu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${zu(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${Vu(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Wu(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=wo(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function Wu(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function AZ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=g_(e.shapeInfo.logicalShape,t.logicalShape),l=gt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function FZ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=gt(l),p=g_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function H0(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function Bu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Vu(e,t){return t.map(n=>e[n]).join(", ")}function DZ(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=ZY(r,i,t),l=KC(e.gl,o),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},x_(e,t,u))}function x_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function Hk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function RZ(e,t,n,a,r){t.program.enableShapeUniforms||(Hk(t.inShapeInfos,n),Hk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=H0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function MZ(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=H0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),y=v.sizeFromShape(i.shape)===1,b=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,s}function _n(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var PZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Jp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Df(["r","c","d"],e):vo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},OZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Jp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Df(["r","c","d"],e):vo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},LZ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pa.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=`
${f_}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},zZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pa.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=`
${f_}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},WZ={R:0,G:1,B:2,A:3},jk=class{constructor(e,t=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=Cn();this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<n.length;i++){let o=n[i];s+=`
if(offset == ${i}) {
result = values[${WZ[o]}];
}`}this.userCode=`
${this.enableShapeUniforms?G0():U0(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${a.texture2D}(A, uv);
${s}
}
${a.output} = vec4(${r}, 0., 0., 0.);
}
`}},BZ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Cn();this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?G0():U0(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},v_={};$e(v_,{bindVertexProgramAttributeStreams:()=>E_,createBufferFromOutputTexture:()=>F_,createFloat16MatrixTexture:()=>T_,createFloat16PackedMatrixTexture:()=>__,createFloat32MatrixTexture:()=>S_,createIndexBuffer:()=>I_,createPackedMatrixTexture:()=>C_,createUnsignedBytesMatrixTexture:()=>N_,createVertexBuffer:()=>k_,createVertexShader:()=>w_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>R_,downloadFloat32MatrixFromBuffer:()=>D_,downloadMatrixFromPackedOutputTexture:()=>P_,downloadPackedMatrixFromBuffer:()=>M_,getInternalFormatForFloat16MatrixTexture:()=>q0,getInternalFormatForFloat16PackedMatrixTexture:()=>Y0,getInternalFormatForFloat32MatrixTexture:()=>j0,getInternalFormatForPackedMatrixTexture:()=>X0,getInternalFormatForUnsignedBytesMatrixTexture:()=>K0,uploadDenseMatrixToTexture:()=>$_,uploadPixelDataToTexture:()=>A_});function w_(e){let t=Cn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return qC(e,n)}function k_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ZC(e,t)}function I_(e){let t=new Uint16Array([0,1,2,2,1,3]);return JC(e,t)}function td(e,t,n,a,r,s){e_(t,n);let i=QC(e),o=e.TEXTURE_2D;return me(e,()=>e.bindTexture(o,i)),me(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),me(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),me(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),me(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?me(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):me(e,()=>e.texStorage2D(o,1,a,t,n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function j0(e){return e.internalFormatFloat}function S_(e,t,n,a){let[r,s]=ed(t,n);return td(e,r,s,j0(a),a.textureFormatFloat,e.FLOAT)}function q0(e){return e.internalFormatHalfFloat}function T_(e,t,n,a){let[r,s]=ed(t,n);return td(e,r,s,q0(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function K0(e){return e.downloadTextureFormat}function N_(e,t,n,a){let[r,s]=ed(t,n);return td(e,r,s,K0(a),e.RGBA,e.UNSIGNED_BYTE)}function X0(e){return e.internalFormatPackedFloat}function C_(e,t,n,a){let[r,s]=Ou(t,n);return td(e,r,s,X0(a),e.RGBA,e.FLOAT)}function Y0(e){return e.internalFormatPackedHalfFloat}function __(e,t,n,a){let[r,s]=Ou(t,n);return td(e,r,s,Y0(a),e.RGBA,a.textureTypeHalfFloat)}function E_(e,t,n){return me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ix(e,t,"clipSpacePos",n,3,20,0)&&ix(e,t,"uv",n,2,20,12)}function $_(e,t,n,a,r,s){me(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function A_(e,t,n){me(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?me(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):me(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),me(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function F_(e,t,n,a){let r=e.createBuffer();me(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return me(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),me(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),me(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function D_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function R_(e,t,n,a){let[r,s]=ed(t,n),i=4,o=new Uint8Array(OY(t*n,i));return me(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function M_(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(LY(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function P_(e,t,n){let a=new Float32Array(t*n*4);return me(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var ph=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,GC(t,e)):this.gl=qa(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Dp(this.gl,r),ca(this.gl,s))this.textureHalfFloatExtension=Dp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ca(this.gl,a))this.colorBufferHalfFloatExtension=Dp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ca(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ca(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=k_(this.gl),this.indexBuffer=I_(this.gl),this.framebuffer=t_(this.gl),this.textureConfig=B0(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;me(e,()=>e.finish()),me(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),me(e,()=>e.deleteFramebuffer(this.framebuffer)),me(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),me(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),me(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),S_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),T_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),N_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),A_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),$_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),__(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),C_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ox(this.gl,this.framebuffer),this.outputTexture=null),me(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>R_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return M_(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return D_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=F_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>P_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=w_(t));let n=XC(t);return me(t,()=>t.attachShader(n,this.vertexShader)),me(t,()=>t.attachShader(n,e)),YC(t,n),this.debug&&ih(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=E_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&me(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ih(this.gl,this.program),me(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?a_(this.gl,e,t):r_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),me(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),s_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Ou(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ih(this.gl,this.program),Rp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),me(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),me(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Dp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=VZ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in H().platform&&(n=H().platform.setTimeoutCustom.bind(H().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),oh(this.gl,e,this.framebuffer),this.debug&&Rp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(oh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Rp(this.gl)):ox(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;oh(a,e,this.framebuffer),this.debug&&Rp(a),this.outputTexture=e,me(a,()=>a.viewport(0,0,t,n)),me(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),me(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function VZ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:UZ,bincountImpl:O_,bincountReduceImpl:GZ,castImpl:HZ,ceilImpl:jZ,concatImpl:qZ,equalImpl:KZ,expImpl:XZ,expm1Impl:YZ,floorImpl:ZZ,gatherNdImpl:JZ,gatherV2Impl:QZ,greaterImpl:e7,greaterEqualImpl:t7,lessImpl:n7,lessEqualImpl:a7,linSpaceImpl:r7,logImpl:s7,maxImpl:i7,maximumImpl:o7,minimumImpl:l7,multiplyImpl:u7,negImpl:p7,notEqualImpl:c7,prodImpl:d7,raggedGatherImpl:h7,raggedRangeImpl:m7,raggedTensorToTensorImpl:f7,rangeImpl:g7,rsqrtImpl:y7,scatterImpl:b7,sigmoidImpl:x7,simpleAbsImpl:L_,sliceImpl:v7,sparseFillEmptyRowsImpl:w7,sparseReshapeImpl:k7,sparseSegmentReductionImpl:z_,sqrtImpl:I7,stridedSliceImpl:S7,stringNGramsImpl:T7,stringSplitImpl:N7,stringToHashBucketFastImpl:C7,subImpl:_7,tileImpl:E7,topKImpl:$7,transposeImpl:Z0,uniqueImpl:A7}=B2;function W_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function wn(e,t){return t===1?[e]:W_(e,t)}function F7(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var D7=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=_n(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=wn("rc",this.rank),n=gt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},B_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${R7(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?G0():U0(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function R7(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?YY(["r","c","d"],"inputShape"):vo(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var M7=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Kk(t,n),r=Xk(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=qk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===on.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===on.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===on.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Kk(n,a),s=Xk(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=qk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function P7(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function qk(e,t,n,a,r){let s=O7(t,a),i;if(r){let[l,u]=Ou(e[0],e[1]);i=l*u}else{let[l,u]=ed(e[0],e[1]);i=l*u}let o=P7(n,s);return i*o}function O7(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return X0(t);case on.PACKED_2X2_FLOAT16:return Y0(t);case on.UNPACKED_FLOAT32:return j0(t);case on.UNPACKED_FLOAT16:return q0(t);case on.PACKED_4X1_UNSIGNED_BYTE:return K0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function L7(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function Kk(e,t){if(e===pa.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===pa.RENDER||e==null)return L7(t);if(e===pa.DOWNLOAD||e===pa.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Xk(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Sr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Da="if (isnan(x)) return x;",z7="return x;",Yk="return abs(x);",W7="return (x >= 0.0) ? x : (exp(x) - 1.0);",B7=Da+`
return (x < 0.0) ? 0.0 : x;
`,V7=Da+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,jo="return x;",U7="return 1.0 / (1.0 + exp(-1.0 * x));",G7="return x;",H7=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,j7=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,q7=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,K7="return 1.0 / (1.0 + exp(-1.0 * x));",js=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},X7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length);let t=e.length,n=wn("rc",t),a=gt(t),r=F7(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},Y7=cr.whereImpl,Z7=1e-7,J7=1e-4,gb={};function Q7(e){return e in gb||(gb[e]={}),gb[e]}var eJ=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),tJ=600;function nJ(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*tJ/1024/1024}var Rf=class extends rc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ph)t=e;else{let n=qa(H().getNumber("WEBGL_VERSION"),e);t=new ph(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=qa(H().getNumber("WEBGL_VERSION"));t=new ph(n),this.binaryCache=Q7(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new M7(this.gpgpu),this.numMBBeforeWarning=nJ(),this.texData=new jh(this,Na())}nextDataId(){return Rf.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,n,a,r,s){let i=this.makeTensorInfo(t,n),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[a,r]},o.texShape=[a,r];let l=Mp(t),u=new jk(l,!1,s),p=this.runWebGLProgram(u,[i],n,[[a,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:pa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:pa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new js(i,jo):d=new Sr(i,jo);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new js(a,jo):h=new Sr(a,jo);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...eh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;me(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Na().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new js(r,jo):c=new Sr(r,jo);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=Na().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Pe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!HC(n))throw H().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...eh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=H().getBool("WEBGL_PACK")&&a===!0,i=s?Mp(t):t,o=s?new zZ(i):new LZ(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=eJ){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return Y7(e.shape,t)}packedUnaryOp(e,t,n){let a=new js(e.shape,t),r=this.compileAndRun(a,[e],n);return Na().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=L_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(H().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Yk,e.dtype);let t=new Sr(e.shape,Yk),n=this.compileAndRun(t,[e]);return Na().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return Na().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new X7(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new D7(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[pi(e.shape),...ci(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[pi(t),...ci(t)],s=new B_(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Mp(r),o;a?o=new OZ(i):o=new PZ(i);let l=!0,u=[t!=null?t:eh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Jp.DENSE){let g=s!=null?s:eh(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Qp(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=MZ(e,u,p),c=this.getAndSaveBinary(d,()=>DZ(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||RZ(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=H().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(xe(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Z7:J7}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=l_(n,o),t.texShape=p),r!=null){let d=Mp(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Ou(p[0],p[1])),o?c=new BZ(d,f):c=new jk(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=pa.PIXELS:b.usage=pa.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[y],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=aJ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Gv(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(V0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=x_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}createTensorFromTexture(e,t,n){let{texture:a,height:r,width:s,channels:i}=e,o=Na().backend;if(!o.gpgpu.gl.isTexture(a))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(a,t,n,r,s,i);return Na().makeTensorFromDataId(l,t,n,o)}};Rf.nextDataId=0;function aJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var rJ="4.0.0";function V_(){H().set("WEBGL_FORCE_F16_TEXTURES",!0)}Tc.isBrowser()&&Em("webgl",()=>new Rf,2);var sJ={forceHalfFloat:V_},J0=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,xl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=_n(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},nd=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`,ad=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=_n(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${gt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=wn("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function na(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var iJ={kernelName:Di,backendName:"webgl",kernelFunc:na};function Is(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=na({inputs:{x:a},backend:n}),l=na({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var oJ={kernelName:Qh,backendName:"webgl",kernelFunc:Is},U_="return (a < 0.) ? b * a : a;",G_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function lJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ad(G_,r.shape,i.shape):new xl(U_,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var uJ={kernelName:Ri,backendName:"webgl",kernelFunc:lJ},H_="return (a < 0.) ? b * a : a;",j_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function pJ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ad(j_,a.shape,r.shape):new xl(H_,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var cJ={kernelName:qi,backendName:"webgl",kernelFunc:pJ},Uu="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new js(i.shape,t):p=new Sr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function pn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},E=new xl(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],ma(w.dtype,I.dtype))}),b=Is({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||ma(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,y=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=b,w}let c=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new ad(t,l.shape,u.shape,n):h=new xl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function ec(e,t=!1){if(e==="linear")return t?G7:z7;if(e==="relu")return t?j7:B7;if(e==="elu")return t?H7:W7;if(e==="relu6")return t?q7:V7;if(e==="prelu")return t?j_:H_;if(e==="leakyrelu")return t?G_:U_;if(e==="sigmoid")return t?K7:U7;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var q_=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=_n(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${b};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},Zk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Jk=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},Qk="return a * b;";function Q0(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=N.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Jk(Zk.REAL,a.shape,r.shape),p=new Jk(Zk.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Is({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=u7(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new ad(Qk,a.shape,r.shape):i=new xl(Qk,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var dJ={kernelName:Ui,backendName:"webgl",kernelFunc:Q0};function hJ(e,t,n){let a=[pi(e.shape),...ci(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[pi(t),...ci(t)],i=new B_(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function de(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!Qp(r.shape,l)&&!(p.texture!==null&&Qp(p.shape,l))?hJ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var mJ={kernelName:lu,backendName:"webgl",kernelFunc:de},eI=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},fJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function gJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function ko(e,t,n,a){let r=gJ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new eI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new eI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new fJ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var yJ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=gt(this.rank),r=bJ(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function bJ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var xJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=gt(this.rank),r=W_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Mf(e,t,n){let a=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xJ(e.shape,t):new yJ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function vJ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Mf(e,l,a),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=N.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=de({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),y=_m(e.dtype),b=ko(g,y,"sum",a),x=de({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(p),x}function Pf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return vJ(r,s,i,n)}var wJ={kernelName:so,backendName:"webgl",kernelFunc:Pf};function In(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=Z0(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Mf(r,s,i);return u}var kJ={kernelName:Tr,backendName:"webgl",kernelFunc:In},K_=1e3;function Bh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(f),b=v.sizeFromShape(g),x=Tu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[y,d,h]:[y,h,d],I=a?[b,m,c]:[b,c,m],T=de({inputs:{x:e},backend:r,attrs:{shape:w}}),C=de({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[T,C],$=Math.max(y,b),R=n?T.shape[1]:T.shape[2],F=s!=null,S=i!=null,M=l==="leakyrelu",B=l!=null?ec(l,!0):null,U=F||S||M||B!=null,G;if((h===1||m===1)&&R>K_&&U===!1){let K=T,Z=C;n&&(K=In({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(Z=In({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z));let J=m!==1,ee=m===1,ae=K;J&&(ae=de({inputs:{x:K},backend:r,attrs:{shape:[$,R,1]}}),E.push(ae));let te=m===1?2:1,ie=Z;ee&&(ie=de({inputs:{x:Z},backend:r,attrs:{shape:[$,1,R]}}),E.push(ie));let oe=Q0({inputs:{a:ae,b:ie},backend:r});G=Pf({inputs:{x:oe},backend:r,attrs:{axis:te,keepDims:!0}}),E.push(oe)}else{let K=ma(e.dtype,t.dtype),Z=new q_(w,I,[$,h,m],n,a,F,B,S,M),J=[T,C];if(s!=null&&J.push(s),S&&J.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));J.push(ee),E.push(ee)}G=r.runWebGLProgram(Z,J,K)}let q=de({inputs:{x:G},backend:r,attrs:{shape:x}});E.push(G);for(let K of E)r.disposeIntermediateTensorInfo(K);return q}function IJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return Bh({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var SJ={kernelName:Js,backendName:"webgl",kernelFunc:IJ},tI="return abs(x);";function TJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=L_(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new js(a.shape,tI):r=new Sr(a.shape,tI),n.runWebGLProgram(r,[a],a.dtype)}var NJ={kernelName:wl,backendName:"webgl",kernelFunc:TJ},CJ=Da+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,_J=Ye({opSnippet:CJ}),EJ={kernelName:kl,backendName:"webgl",kernelFunc:_J},$J=Da+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,AJ=Ye({opSnippet:$J}),FJ={kernelName:Il,backendName:"webgl",kernelFunc:AJ},nI="return a + b;",DJ=pn({opSnippet:nI,packedOpSnippet:nI,supportsComplex:!0,cpuKernelImpl:UZ}),RJ={kernelName:cs,backendName:"webgl",kernelFunc:DJ},MJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},PJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function ch(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return na({inputs:{x:a[0]},backend:n});if(a.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=ch({inputs:a.slice(0,o),backend:n}),u=ch({inputs:a.slice(o),backend:n});return ch({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ma(o,l)),s=a.map(o=>o.shape),i=H().getBool("WEBGL_PACK")?new PJ(a[0].shape,s):new MJ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var OJ={kernelName:mi,backendName:"webgl",kernelFunc:ch};function LJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=ko(f,f.dtype,"all",n),y;if(i){let b=N.expandShapeToKeepDim(c,l);y=de({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var zJ={kernelName:Sl,backendName:"webgl",kernelFunc:LJ};function WJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=ko(f,f.dtype,"any",n),y;if(i){let b=N.expandShapeToKeepDim(c,l);y=de({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var BJ={kernelName:Tl,backendName:"webgl",kernelFunc:WJ},VJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},UJ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=wn("coords",o),p,d;if(s===1){d=o+1;let C=gt(d);p=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[o-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[o-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[o-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=wn("sourceLocR",d-1).concat("inIdx.r"),g=wn("sourceLocG",d-1).concat("inIdx.g"),y=wn("sourceLocB",d-1).concat("inIdx.b"),b=wn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,I=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${I};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${I};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function X_(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new VJ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=X_(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function Y_(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new UJ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=Y_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function Z_(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=de({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=X_(e,c,a);s.push(h);let m=de({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return Y_(e,t,a)}function GJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=In({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=Z_(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var HJ={kernelName:fi,backendName:"webgl",kernelFunc:GJ};function jJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=In({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=Z_(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var qJ={kernelName:sc,backendName:"webgl",kernelFunc:jJ},KJ=Da+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,XJ=Ye({opSnippet:KJ}),YJ={kernelName:Nl,backendName:"webgl",kernelFunc:XJ},ZJ=Da+"return log(x + sqrt(x * x + 1.0));",JJ=Ye({opSnippet:ZJ}),QJ={kernelName:Cl,backendName:"webgl",kernelFunc:JJ},e9=Da+`
return atan(x);
`,t9=Ye({opSnippet:e9}),n9={kernelName:_l,backendName:"webgl",kernelFunc:t9},a9=J0+`
return atan(a, b);
`,r9=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+nd+`
return result;
`,s9=pn({opSnippet:a9,packedOpSnippet:r9}),i9={kernelName:$l,backendName:"webgl",kernelFunc:s9},o9=Da+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,l9=Ye({opSnippet:o9}),u9={kernelName:El,backendName:"webgl",kernelFunc:l9},tc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${w};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},e1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${$} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,E=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
setOutput(${I});
}
}
`}};function p9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Lu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return na({inputs:{x:r},backend:n});let d=new tc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var c9={kernelName:gi,backendName:"webgl",kernelFunc:p9};function d9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new e1(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var h9={kernelName:ic,backendName:"webgl",kernelFunc:d9},m9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},f9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function g9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new f9(c);return n.runWebGLProgram(h,[r],i.dtype)}var y9={kernelName:Yh,backendName:"webgl",kernelFunc:g9};function b9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Lu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new m9(p);return n.runWebGLProgram(d,[r],i.dtype)}var x9={kernelName:Xh,backendName:"webgl",kernelFunc:b9};function v9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Bh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var w9={kernelName:yi,backendName:"webgl",kernelFunc:v9},k9=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},I9=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},S9=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=H().getBool("WEBGL_PACK_NORMALIZATION")?new I9(a.shape,r.shape,s.shape,p,d,l):new k9(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},T9={kernelName:Ai,backendName:"webgl",kernelFunc:S9},N9=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=C9(this.rank),a,r=e.map((s,i)=>`sourceLoc.${px[i]} = start[${i}] + coords.${px[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},px=["x","y","z","w","u","v"];function C9(e){if(e===1)return"sourceLoc";if(e<=6)return px.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var _9=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=wn("coords",this.rank),a=wn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function E9(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=jt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Gu(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=jt.parseSliceParams(r,s,i);if(jt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=v7(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=jt.isSliceContinous(r.shape,o,l);if(u||!p){let d=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _9(l):new N9(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),E9(r,o,l,n)}var $9={kernelName:du,backendName:"webgl",kernelFunc:Gu},A9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=de({inputs:{x:r},backend:n,attrs:{shape:l}}),f=In({inputs:{x:m},backend:n,attrs:{perm:u}}),g=de({inputs:{x:f},backend:n,attrs:{shape:p}}),y=Gu({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},F9={kernelName:Al,backendName:"webgl",kernelFunc:A9};function D9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=O_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var R9={kernelName:Zh,backendName:"webgl",kernelFunc:D9};function M9(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var P9={kernelName:Jh,backendName:"webgl",kernelFunc:M9},O9="return float(a != b);",J_=pn({opSnippet:O9,cpuKernelImpl:c7,dtype:"bool"}),L9={kernelName:tu,backendName:"webgl",kernelFunc:J_};function rd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return na({inputs:{x:r.complexTensorInfos.real},backend:n})}var z9={kernelName:wm,backendName:"webgl",kernelFunc:rd},W9="return float(int(x));";function B9(e,t){let n=new Sr(e.shape,W9),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function cx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return na({inputs:{x:r},backend:n});let i=It(r.shape),o=cx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Is({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=rd({inputs:{input:r},backend:n}),o=cx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=na({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=HZ(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return B9(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=J_({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var V9={kernelName:bi,backendName:"webgl",kernelFunc:cx},aI="return ceil(x);",U9=Ye({opSnippet:aI,packedOpSnippet:aI,cpuKernelImpl:jZ}),G9={kernelName:xi,backendName:"webgl",kernelFunc:U9},H9=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},j9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function q9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;H().getBool("WEBGL_PACK_CLIP")?o=new j9(r.shape):o=new H9(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var K9={kernelName:ds,backendName:"webgl",kernelFunc:q9},X9=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function rI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Y9(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new X9(a.shape),i=[rI(a,r.complexTensorInfos.real),rI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var Z9={kernelName:oc,backendName:"webgl",kernelFunc:Y9},J9=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},Q9=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=gt(a),s=wn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${nh(i,l,f)}),
vec2(${nh(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${nh(i,l,h)}),
vec2(${nh(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function nh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Of(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return na({inputs:{x:r.complexTensorInfos.imag},backend:n})}var eQ={kernelName:cm,backendName:"webgl",kernelFunc:Of};function Pp(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(g=>rd({inputs:{input:g},backend:n})),c=e.map(g=>Of({inputs:{input:g},backend:n})),h=Pp(d,t,n),m=Pp(c,t,n),f=Is({inputs:{real:h,imag:m},backend:n});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(b=>{let x=[-1,v.sizeFromShape(b.shape.slice(t))];return de({inputs:{x:b},backend:n,attrs:{shape:x}})}),c=d.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),h=N.computeOutShape(d.map(b=>b.shape),1),m=d[0].shape[0]===1,f=qZ(c,h,a,m),g=N.computeOutShape(e.map(b=>b.shape),t),y=n.makeTensorInfo(g,a,f);return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}let s=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>s){let d=[];for(let h=0;h<e.length;h+=s){let m=e.slice(h,h+s);d.push(Pp(m,t,n))}let c=Pp(d,t,n);for(let h of d)n.disposeIntermediateTensorInfo(h);return c}if(H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new Q9(e.map(c=>c.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:i,outShape:o}=tQ(e,t,n),l=new J9(i.map(d=>d.shape)),u=n.runWebGLProgram(l,i,a);i.forEach(d=>n.disposeIntermediateTensorInfo(d));let p=de({inputs:{x:u},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(u),p}function tQ(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>de({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function Q_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?na({inputs:{x:l[0]},backend:n}):Pp(l,s,n)}var nQ={kernelName:Fl,backendName:"webgl",kernelFunc:Q_},eE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${I}
${w}
setOutput(result);
}
`}},aQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},tE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=_n(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
vec4 xTexelC${f*2};
int xTexelC${f*2}Ready;
vec4 xTexelC${f*2+1};
int xTexelC${f*2+1}Ready;
vec4 xC${f};`;d+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let f=0;f<u;f++)d+=`
xTexelC${f*2} = vec4(0.0);
xTexelC${f*2}Ready = 0;
xTexelC${f*2+1} = vec4(0.0);
xTexelC${f*2+1}Ready = 0;
xC${f} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
xC = xCCorner + ${g*o};
`,i===1){if(g<u&&(s%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,o===1&&g>0?d+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let y=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,o>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):y===1?d+=`
xC${g+1} = xTexelC${g};
`:d+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(s%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(d+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(d+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}d+=`
}
`,d+=`
}
`,d+=`
}
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:c=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${h}
setOutput(result);
}
`}},rQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=_n(this.outputShape.length);let{dataFormat:n}=t,a=Cn(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function Vh(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function nE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null){let b=Vh(s.shape,h);b!=null&&(s=de({inputs:{x:s},backend:a,attrs:{shape:b}}),y.push(s))}if(r!=null){let b=Vh(r.shape,h);b!=null&&(r=de({inputs:{x:r},backend:a,attrs:{shape:b}}),y.push(r))}if(!((d===1||c===1)&&p>K_)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Qp(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=de({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let T=Bh({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=na({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=n.outHeight*n.outWidth,x=de({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),w=de({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Bh({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=de({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),y.push(x),y.push(w),y.push(I)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function aE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[n.batchSize,f,g],b=!0,x=!1,w=[];if(s!=null){let K=Vh(s.shape,m);K!=null&&(s=de({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=Vh(r.shape,m);K!=null&&(r=de({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=de({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new rQ(y,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(T,[e],"float32",C),$=de({inputs:{x:E},backend:a,attrs:{shape:y}});w.push(E),w.push($);let R=r!=null,F=s!=null,S=o==="leakyrelu",M=o?ec(o,!0):null,B=new q_(m?$.shape:I.shape,m?I.shape:$.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],b,x,R,M,F,S),U=m?[$,I]:[I,$];if(r&&U.push(r),F&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let G=a.runWebGLProgram(B,U,"float32"),q=de({inputs:{x:G},backend:a,attrs:{shape:n.outShape}});w.push(G);for(let K of w)a.disposeIntermediateTensorInfo(K);return q}function sQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=nE({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let f=new tE(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=aE({x:r,filter:s,convInfo:c,backend:n});else{let f=new eE(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=de({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var iQ={kernelName:vi,backendName:"webgl",kernelFunc:sQ},oQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},lQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},uQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},pQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function cQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new oQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var dQ={kernelName:em,backendName:"webgl",kernelFunc:cQ};function hQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new lQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var mQ={kernelName:wi,backendName:"webgl",kernelFunc:hQ};function fQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new aQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var gQ={kernelName:lc,backendName:"webgl",kernelFunc:fQ};function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new uQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var bQ={kernelName:tm,backendName:"webgl",kernelFunc:yQ};function xQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new pQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var vQ={kernelName:nm,backendName:"webgl",kernelFunc:xQ},wQ=Uu+`
return cos(x);
`,kQ=Ye({opSnippet:wQ}),IQ={kernelName:ki,backendName:"webgl",kernelFunc:kQ},SQ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,TQ=Ye({opSnippet:SQ}),NQ={kernelName:Ii,backendName:"webgl",kernelFunc:TQ},CQ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},_Q=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new CQ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},EQ={kernelName:Rl,backendName:"webgl",kernelFunc:_Q},nc;(function(e){e.Prod="*",e.Sum="+"})(nc||(nc={}));var sI=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===nc.Prod?"1.0":"0.0",i=n?s:`getX(${iI(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${gt(r)} coords = getOutputCoords();
int end = ${oI(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${oI(r,"coords",this.op)} = idx;
val ${this.op}= getX(${iI(r,"coords",this.op)});
}
setOutput(val);
}
`}};function iI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function oI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function rE(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=In({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=na({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new sI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new sI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=In({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function $Q(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return rE(nc.Prod,r,n,s,i,o)}var AQ={kernelName:Dl,backendName:"webgl",kernelFunc:$Q};function FQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return rE(nc.Sum,r,n,s,i,o)}var DQ={kernelName:Si,backendName:"webgl",kernelFunc:FQ};function RQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=O_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=GZ(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var MQ={kernelName:am,backendName:"webgl",kernelFunc:RQ},PQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function OQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new PQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var LQ={kernelName:Ml,backendName:"webgl",kernelFunc:OQ},sE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=_n(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},iE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=_n(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=`
xC = xCCorner + ${y*l};
`,o===1){if(y<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?c+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<p)){let b=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1?c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${y+1} = vec4(previous.zw, xTexelC${y+1}.xy);
} else {
xC${y+1} = vec4(0.0, 0.0, xTexelC${y+1}.xy);
}
`:c+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):b===1?c+=`
xC${y+1} = xTexelC${y};
`:c+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<p&&(c+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<p&&(c+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<p&&(c+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function zQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new iE(d):c=new sE(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var WQ={kernelName:Ti,backendName:"webgl",kernelFunc:zQ},BQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},VQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function UQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new BQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var GQ={kernelName:rm,backendName:"webgl",kernelFunc:UQ};function HQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new VQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var jQ={kernelName:sm,backendName:"webgl",kernelFunc:HQ},qQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function KQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=de({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new qQ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=de({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var XQ={kernelName:im,backendName:"webgl",kernelFunc:KQ},YQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function ZQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new YQ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=de({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var JQ={kernelName:uc,backendName:"webgl",kernelFunc:ZQ};function QQ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(y)?x=s[g]:(x=In({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let I=0;I<b.length;++I)w.splice(b[I],0,1);v.arraysEqual(x.shape,w)||(x=de({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Q0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Pf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var eee={kernelName:om,backendName:"webgl",kernelFunc:QQ},tee="return (x >= 0.0) ? x : (exp(x) - 1.0);",nee=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,aee=Ye({opSnippet:tee,packedOpSnippet:nee}),ree={kernelName:Ci,backendName:"webgl",kernelFunc:aee},see="return (b >= 1.0) ? a : a * (b + 1.0);",iee=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,oee=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ad(iee,a.shape,r.shape):new xl(see,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},lee={kernelName:lm,backendName:"webgl",kernelFunc:oee},uee=`
return vec4(equal(a, b));
`,pee="return float(a == b);",cee=pn({opSnippet:pee,packedOpSnippet:uee,dtype:"bool",cpuKernelImpl:KZ}),dee={kernelName:Ol,backendName:"webgl",kernelFunc:cee},hee=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,mee=Ye({opSnippet:hee}),fee={kernelName:Pl,backendName:"webgl",kernelFunc:mee},gee=Uu+`
return exp(x);
`,yee=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oE=Ye({opSnippet:gee,packedOpSnippet:yee,cpuKernelImpl:XZ,dtype:"float32"}),bee={kernelName:_i,backendName:"webgl",kernelFunc:oE};function dx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),de({inputs:{x:s},backend:a,attrs:{shape:o}})}var xee={kernelName:Ll,backendName:"webgl",kernelFunc:dx},lI="return exp(x) - 1.0;",vee=Ye({opSnippet:lI,packedOpSnippet:lI,cpuKernelImpl:YZ}),wee={kernelName:zl,backendName:"webgl",kernelFunc:vee},uI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function lE(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=de({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new uI("real",l,t),p=new uI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Is({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=de({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function kee(e){let{inputs:t,backend:n}=e,{input:a}=t;return lE(a,!1,n)}var Iee={kernelName:um,backendName:"webgl",kernelFunc:kee},See=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function sd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new See(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Tee={kernelName:pc,backendName:"webgl",kernelFunc:sd},Nee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Cee={kernelName:Wl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new Nee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},pI="return floor(x);",_ee=Ye({opSnippet:pI,packedOpSnippet:pI,cpuKernelImpl:ZZ}),Eee={kernelName:Ei,backendName:"webgl",kernelFunc:_ee},$ee=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Aee=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Fee=pn({opSnippet:$ee,packedOpSnippet:Aee,dtype:"int32"}),Dee={kernelName:$i,backendName:"webgl",kernelFunc:Fee},Ree=class{constructor(e){this.variableNames=["A"];let t=Cn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Mee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Cn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Pee={kernelName:yh,backendName:"webgl",kernelFunc:Oee},qo,yb=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Oee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(qo==null||f!==yb)&&(yb=f,qo=document.createElement("canvas").getContext("2d",{willReadFrequently:yb})),qo.canvas.width=l,qo.canvas.height=u,qo.drawImage(r,0,0,l,u),r=qo.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=pa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=H().getBool("WEBGL_PACK")?new Mee(d):new Ree(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Lee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let E=[r,s],$=(R,F)=>{if(F==="NCHW"&&R.shape.length===1&&R.shape[0]!==1){let S=de({inputs:{x:R},backend:n,attrs:{shape:[R.shape[0],1,1]}});return b.push(S),S}return R};if(x&&E.push($(i,p)),w&&E.push($(o,p)),I){let R=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(R),b.push(R)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=nE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?ec(h,!0):null,$=new tE(g,x,E,w,I),R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=T();y=n.runWebGLProgram($,F,"float32",R)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=aE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let E=h?ec(h,!1):null,$=new eE(g,x,E,w,I),R=T();y=n.runWebGLProgram($,R,"float32")}let C=de({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var zee={kernelName:Qs,backendName:"webgl",kernelFunc:Lee};function Wee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?ec(c,y):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let R=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(R),m.push(R)}let C;y?C=new iE(g,w,b,I,T):C=new sE(g,w,b,I,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(C,x,"float32",E);return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),$}var Bee={kernelName:ei,backendName:"webgl",kernelFunc:Wee},Vee=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=gt(n.length),s=`
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${s}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Uee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=de({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=de({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=JZ(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Vee(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=de({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Gee={kernelName:Vl,backendName:"webgl",kernelFunc:Uee},Hee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),a=jee(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function jee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function uE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(H().get("DEBUG")){let b=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<b.length;++w){let I=b[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=de({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=de({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),w=QZ(x,b,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new Hee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=de({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var qee={kernelName:Bl,backendName:"webgl",kernelFunc:uE},Kee="return float(a > b);",Xee=`
return vec4(greaterThan(a, b));
`,Yee=pn({opSnippet:Kee,packedOpSnippet:Xee,cpuKernelImpl:e7,dtype:"bool"}),Zee={kernelName:Ul,backendName:"webgl",kernelFunc:Yee},Jee="return float(a >= b);",Qee=`
return vec4(greaterThanEqual(a, b));
`,ete=pn({opSnippet:Jee,packedOpSnippet:Qee,dtype:"bool",cpuKernelImpl:t7}),tte={kernelName:Fi,backendName:"webgl",kernelFunc:ete};function nte(e){let{inputs:t,backend:n}=e,{input:a}=t;return lE(a,!0,n)}var ate={kernelName:pm,backendName:"webgl",kernelFunc:nte},rte="return float(!isnan(x) && !isinf(x));",ste=Ye({opSnippet:rte,dtype:"bool"}),ite={kernelName:Gl,backendName:"webgl",kernelFunc:ste},ote="return float(isinf(x));",lte=Ye({opSnippet:ote,dtype:"bool"}),ute={kernelName:Hl,backendName:"webgl",kernelFunc:lte},pte="return float(isnan(x));",cte=Ye({opSnippet:pte,dtype:"bool"}),dte={kernelName:jl,backendName:"webgl",kernelFunc:cte},hte="return float(a < b);",mte=`
return vec4(lessThan(a, b));
`,fte=pn({opSnippet:hte,packedOpSnippet:mte,cpuKernelImpl:n7,dtype:"bool"}),gte={kernelName:ql,backendName:"webgl",kernelFunc:fte},yte="return float(a <= b);",bte=`
return vec4(lessThanEqual(a, b));
`,xte=pn({opSnippet:yte,packedOpSnippet:bte,cpuKernelImpl:a7,dtype:"bool"}),vte={kernelName:Kl,backendName:"webgl",kernelFunc:xte};function wte(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=r7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var kte={kernelName:dm,backendName:"webgl",kernelFunc:wte},Ite=Uu+`
return x < 0.0 ? 0./0. : log(x);
`,Ste=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,Tte=Ye({opSnippet:Ite,packedOpSnippet:Ste,cpuKernelImpl:s7}),Nte={kernelName:Mi,backendName:"webgl",kernelFunc:Tte},Cte=Uu+`
return log(1.0 + x);
`,_te=Ye({opSnippet:Cte}),Ete={kernelName:Xl,backendName:"webgl",kernelFunc:_te},$te="return float(a >= 1.0 && b >= 1.0);",Ate=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Fte=pn({opSnippet:$te,packedOpSnippet:Ate,dtype:"bool"}),Dte={kernelName:Yl,backendName:"webgl",kernelFunc:Fte},Rte="return float(!(x >= 1.0));",Mte=Ye({opSnippet:Rte}),Pte={kernelName:Zl,backendName:"webgl",kernelFunc:Mte},Ote="return float(a >= 1.0 || b >= 1.0);",Lte=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,zte=pn({opSnippet:Ote,packedOpSnippet:Lte,dtype:"bool"}),Wte={kernelName:Jl,backendName:"webgl",kernelFunc:zte},Bte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Vte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Ute=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new Vte(r.shape,s,i,o,l):new Bte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Gte={kernelName:cc,backendName:"webgl",kernelFunc:Ute},Hte=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},jte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Hte(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},qte={kernelName:hm,backendName:"webgl",kernelFunc:jte};function Kte(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=de({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ko(i,e.dtype,"max",a),l=de({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function pE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let w=Z0(b,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=Mf(r,p,n);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[m,f]=N.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=N.expandShapeToKeepDim(m,l));let y;if(c){let b=n.texData.get(h.dataId).values,x=i7(b,v.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=x}else y=Kte(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var Xte={kernelName:Pi,backendName:"webgl",kernelFunc:pE},Yte=J0+`
return max(a, b);
`,Zte=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+nd+`
return result;
`,Jte=pn({opSnippet:Yte,packedOpSnippet:Zte,cpuKernelImpl:o7}),Qte={kernelName:Oi,backendName:"webgl",kernelFunc:Jte};function ene(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Lu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return na({inputs:{x:r},backend:n});let d=new tc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var tne={kernelName:Li,backendName:"webgl",kernelFunc:ene};function nne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new e1(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var ane={kernelName:dc,backendName:"webgl",kernelFunc:nne},rne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},sne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function ine(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new e1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new sne(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var one={kernelName:fm,backendName:"webgl",kernelFunc:ine};function lne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Lu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new tc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new rne(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var une={kernelName:mm,backendName:"webgl",kernelFunc:lne};function pne(e,t,n,a){let r=new tc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new tc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var cne={kernelName:gm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=pne(a,o,p,l);return[d,c]}};function dne(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=de({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ko(i,"float32","mean",a),l=de({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var hne={kernelName:zi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;C<w.length;C++)w[C]=a.shape[p[C]];let I=Z0(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=Mf(a,p,i);h.push(m),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=N.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=N.expandShapeToKeepDim(f,l));let b=dne(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function mne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=de({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=ko(f,f.dtype,"min",n),y;if(i){let b=N.expandShapeToKeepDim(c,l);y=de({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=de({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var fne={kernelName:Wi,backendName:"webgl",kernelFunc:mne},gne=J0+`
return min(a, b);
`,yne=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+nd+`
return result;
`,bne=pn({opSnippet:gne,packedOpSnippet:yne,cpuKernelImpl:l7}),xne={kernelName:Bi,backendName:"webgl",kernelFunc:bne},vne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=gt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},wne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=gt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=wn("rc",a),l=wn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},kne=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wne(a.shape,r,s):new vne(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Ine={kernelName:Vi,backendName:"webgl",kernelFunc:kne},Sne=`if (b == 0.0) return NAN;
return mod(a, b);`,Tne=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+nd+`
return result;
`,Nne=pn({opSnippet:Sne,packedOpSnippet:Tne}),Cne={kernelName:Ql,backendName:"webgl",kernelFunc:Nne},_ne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Ene=`
if (a == b) {
return 1.0;
};
return a / b;`,$ne=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,cE=pn({opSnippet:Ene,packedOpSnippet:$ne,checkOutOfBounds:!0}),Ane={kernelName:Ni,backendName:"webgl",kernelFunc:cE},cI="return a - b;",dE=pn({opSnippet:cI,packedOpSnippet:cI,supportsComplex:!0,cpuKernelImpl:_7}),Fne={kernelName:lo,backendName:"webgl",kernelFunc:dE};function hE(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=pE({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=de({inputs:{x:o},backend:n,attrs:{shape:l}}),p=dE({inputs:{a:r,b:u},backend:n}),d=oE({inputs:{x:p},backend:n}),c=Pf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=de({inputs:{x:c},backend:n,attrs:{shape:l}}),m=cE({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Dne={kernelName:io,backendName:"webgl",kernelFunc:hE};function Rne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:hE({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new _ne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Mne={kernelName:ym,backendName:"webgl",kernelFunc:Rne},Pne=Da+`
return -x;
`,One=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Lne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=p7(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new js(a.shape,One):r=new Sr(a.shape,Pne),n.runWebGLProgram(r,[a],a.dtype)}var zne={kernelName:eu,backendName:"webgl",kernelFunc:Lne},Wne=cr.nonMaxSuppressionV3Impl;function Bne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Wne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Vne={kernelName:nu,backendName:"webgl",kernelFunc:Bne},Une=cr.nonMaxSuppressionV4Impl;function Gne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Une(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Hne={kernelName:au,backendName:"webgl",kernelFunc:Gne},jne=cr.nonMaxSuppressionV5Impl;function qne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=jne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Kne={kernelName:ru,backendName:"webgl",kernelFunc:qne},Xne=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},Yne=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new Xne(u,i,o,l),d=de({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=de({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},Zne={kernelName:Gi,backendName:"webgl",kernelFunc:Yne};function Uh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=rd({inputs:{input:a},backend:n}),s=Uh({inputs:{x:r},backend:n}),i=Of({inputs:{input:a},backend:n}),o=Uh({inputs:{x:i},backend:n}),l=Is({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return sd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Jne={kernelName:Iu,backendName:"webgl",kernelFunc:Uh};function mE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=rd({inputs:{input:a},backend:n}),s=mE({inputs:{x:r},backend:n}),i=Of({inputs:{input:a},backend:n}),o=Uh({inputs:{x:i},backend:n}),l=Is({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return sd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Qne={kernelName:su,backendName:"webgl",kernelFunc:mE};function eae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return dx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=dx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Q_({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var tae={kernelName:iu,backendName:"webgl",kernelFunc:eae},nae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=gt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},aae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=gt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=wn("rc",a),l=wn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},fE=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return sd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new aae(r.shape,s,i):new nae(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},rae={kernelName:Hi,backendName:"webgl",kernelFunc:fE},sae=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,iae=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+nd+`
return result;
`,oae=pn({opSnippet:sae,packedOpSnippet:iae}),lae={kernelName:ji,backendName:"webgl",kernelFunc:oae};function uae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=In({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=d7(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),y=de({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=_m(r.dtype),x=ko(y,b,"prod",n);h=de({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=de({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var pae={kernelName:Ki,backendName:"webgl",kernelFunc:uae};function cae(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(y=>n.readSync(y.dataId)),u=r.map(y=>y.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=h7(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(y=>n.makeTensorInfo([y.length],"int32",y)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var dae={kernelName:bm,backendName:"webgl",kernelFunc:cae};function hae(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=m7(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var mae={kernelName:xm,backendName:"webgl",kernelFunc:hae};function fae(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=f7(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var gae={kernelName:vm,backendName:"webgl",kernelFunc:fae},gE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=g7(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},yae={kernelName:hc,backendName:"webgl",kernelFunc:gE},bae="return 1.0 / x;",xae=Ye({opSnippet:bae}),vae={kernelName:ou,backendName:"webgl",kernelFunc:xae},wae=Da+`
return (x < 0.0) ? 0.0 : x;
`,kae=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Iae=Ye({opSnippet:wae,packedOpSnippet:kae}),Sae={kernelName:Xi,backendName:"webgl",kernelFunc:Iae},Tae=Da+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Nae=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Cae=Ye({opSnippet:Tae,packedOpSnippet:Nae}),_ae={kernelName:Ji,backendName:"webgl",kernelFunc:Cae},Eae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},$ae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Aae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new $ae(r.shape,l,u,s,i):new Eae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Fae={kernelName:Zi,backendName:"webgl",kernelFunc:Aae},Dae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Rae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Dae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Mae={kernelName:Im,backendName:"webgl",kernelFunc:Rae},Pae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Oae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Lae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Oae(r.shape,l,u,s,i):new Pae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var zae={kernelName:Yi,backendName:"webgl",kernelFunc:Lae},Wae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Bae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Wae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Vae={kernelName:km,backendName:"webgl",kernelFunc:Bae},Uae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=gt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Gae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=wn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=gt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Hae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return na({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Gae(r.shape,o):new Uae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var jae={kernelName:Qi,backendName:"webgl",kernelFunc:Hae},qae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Kae={kernelName:Su,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new qae(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Xae=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Yae=Ye({opSnippet:Xae}),Zae={kernelName:eo,backendName:"webgl",kernelFunc:Yae},Jae="return inversesqrt(x);",Qae=Ye({opSnippet:Jae,cpuKernelImpl:y7}),ere={kernelName:to,backendName:"webgl",kernelFunc:Qae},yE=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(r.length),l=gt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${c};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function tre(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=de({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=de({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new yE(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=de({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var nre={kernelName:uu,backendName:"webgl",kernelFunc:tre},are=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=H().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function rre(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new are(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var sre={kernelName:Sm,backendName:"webgl",kernelFunc:rre},ire=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=gt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function ore(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new ire(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ma(r.dtype,s.dtype))}var lre={kernelName:pu,backendName:"webgl",kernelFunc:ore},ure=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,pre=Ye({opSnippet:ure}),cre={kernelName:cu,backendName:"webgl",kernelFunc:pre},dre=Uu+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,hre=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,mre=Ye({opSnippet:dre,packedOpSnippet:hre,cpuKernelImpl:x7}),fre={kernelName:ao,backendName:"webgl",kernelFunc:mre},gre=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,yre=Ye({opSnippet:gre}),bre={kernelName:mu,backendName:"webgl",kernelFunc:yre},xre=Uu+`
return sin(x);
`,vre=Ye({opSnippet:xre}),wre={kernelName:no,backendName:"webgl",kernelFunc:vre},kre=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Ire=Ye({opSnippet:kre}),Sre={kernelName:hu,backendName:"webgl",kernelFunc:Ire},Tre=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Nre=Ye({opSnippet:Tre}),Cre={kernelName:fu,backendName:"webgl",kernelFunc:Nre},_re=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],p=fE({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(p.shape,s,o,!1),c=N.getPermuted(d.length,s.length,!1),h=N.getReshapedPermuted(p.shape,s,o,!1),m=de({inputs:{x:p},backend:n,attrs:{shape:d}}),f=In({inputs:{x:m},backend:n,attrs:{perm:c}}),g=de({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},Ere={kernelName:gu,backendName:"webgl",kernelFunc:_re};function $re(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=w7(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Are={kernelName:mc,backendName:"webgl",kernelFunc:$re};function Fre(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=k7(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Dre={kernelName:bu,backendName:"webgl",kernelFunc:Fre};function Rre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=z_(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Mre={kernelName:fc,backendName:"webgl",kernelFunc:Rre};function Pre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=z_(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Ore={kernelName:gc,backendName:"webgl",kernelFunc:Pre};function Lre(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let y=n.bufferSync(r),b=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=b7(y,b,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new yE(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=de({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var zre={kernelName:Tm,backendName:"webgl",kernelFunc:Lre};function Wre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=Gu({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Bre={kernelName:yu,backendName:"webgl",kernelFunc:Wre},dI="return sqrt(x);",Vre=Ye({opSnippet:dI,packedOpSnippet:dI,cpuKernelImpl:I7}),Ure={kernelName:ro,backendName:"webgl",kernelFunc:Vre},Gre="return x * x;",Hre=Ye({opSnippet:Gre}),jre={kernelName:yc,backendName:"webgl",kernelFunc:Hre},hI="return (a - b) * (a - b);",qre=pn({opSnippet:hI,packedOpSnippet:hI}),Kre={kernelName:oo,backendName:"webgl",kernelFunc:qre};function Xre({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Da+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Sr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Yre={kernelName:ms,backendName:"webgl",kernelFunc:Xre},Zre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=gt(n.length),s=gt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function Jre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=de({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=jt.computeOutShape(b,x,w),E=Gu({inputs:{x:r},backend:n,attrs:{begin:b,size:C}});I=de({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=Pe(r.shape,r.dtype,C),$=S7(h,E,w,b);I=n.makeTensorInfo(m,r.dtype,$.values)}else{let C=new Zre(b,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=de({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var Qre={kernelName:xu,backendName:"webgl",kernelFunc:Jre};function ese(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=T7(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var tse={kernelName:bc,backendName:"webgl",kernelFunc:ese};function nse(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=N7(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var ase={kernelName:xc,backendName:"webgl",kernelFunc:nse};function rse(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=C7(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var sse={kernelName:vc,backendName:"webgl",kernelFunc:rse},ise="return tan(x);",ose=Ye({opSnippet:ise}),lse={kernelName:uo,backendName:"webgl",kernelFunc:ose},use=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,pse=Ye({opSnippet:use}),cse={kernelName:po,backendName:"webgl",kernelFunc:pse},dse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=gt(this.rank),r=hse(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function hse(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function bE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=Pe(r.shape,r.dtype,l),p=E7(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new dse(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var mse={kernelName:hs,backendName:"webgl",kernelFunc:bE},fse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},gse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Os(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function mI(e){let t=1;for(;t<e;)t*=2;return t}function yse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=H().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=H().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let $=n.readSync(r.dataId),[R,F]=$7($,u,r.dtype,s,i);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,sd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=de({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Os(n,h);let g=mI(s),y=mI(p),b=null,x=()=>b===null?[f,f]:[f,b],w=($,R,F)=>{let S=x(),M=new fse(F),B=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[$],[R]],U=b;b=n.runWebGLProgram(M,S,"int32",B),Os(n,U)};for(let $=1;$<g;$*=2){let R=$*2;for(let F=$;F>=1;F/=2)w(R,F,[m,y])}for(let $=y;$>g;$/=2){let R=x(),F=new gse([m,$/2]),S=[[p],[b===null?1:0],[g]],M=b;b=n.runWebGLProgram(F,R,"int32",S),Os(n,M);let B=g/2,U=B*2;for(let G=B;G>=1;G/=2)w(U,G,b.shape)}let I=b;b=Gu({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Os(n,I);let T=uE({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Os(n,f);let C=u.slice(0,-1);C.push(s),I=b,b=de({inputs:{x:b},attrs:{shape:C},backend:n}),Os(n,I);let E=T;return T=de({inputs:{x:T},attrs:{shape:C},backend:n}),Os(n,E),[T,b]}var bse={kernelName:vu,backendName:"webgl",kernelFunc:yse},xse=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function vse(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new xse(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var wse={kernelName:wu,backendName:"webgl",kernelFunc:vse};function kse(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Lu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=A7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Ise={kernelName:Nm,backendName:"webgl",kernelFunc:kse};function Sse(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=Gu({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=de({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Tse={kernelName:ku,backendName:"webgl",kernelFunc:Sse},Nse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function Cse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=de({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=_m(r.dtype),g=(w,I,T,C,E)=>{let $=w.shape[0],R=w.shape[1],F=N.segment_util.segOpComputeOptimalWindowSize(R,E),S={windowSize:F,inSize:R,batchSize:$,numSegments:E},M=new Nse(S,I),B=n.compileAndRun(M,[w,T],C);if(l.push(B),B.shape[1]===E)return B;let U=gE({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),G=bE({inputs:{x:U},backend:n,attrs:{reps:[R/F]}});return l.push(U),l.push(G),g(B,I,G,C,E)},y=g(m,"unsortedSegmentSum",s,f,i),b=de({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let w=N.getUndoAxesPermutation(p);x=In({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var _se={kernelName:wc,backendName:"webgl",kernelFunc:Cse},Ese=[SJ,NJ,EJ,FJ,RJ,OJ,zJ,BJ,HJ,qJ,YJ,QJ,n9,i9,u9,c9,h9,y9,x9,w9,T9,F9,R9,P9,V9,G9,K9,oJ,Z9,nQ,iQ,dQ,mQ,gQ,bQ,vQ,IQ,NQ,EQ,AQ,DQ,MQ,LQ,WQ,GQ,jQ,XQ,JQ,eee,ree,lee,dee,fee,bee,xee,wee,Iee,Tee,Cee,Eee,Dee,Pee,zee,Bee,Gee,qee,Zee,tte,iJ,ate,eQ,ite,ute,dte,uJ,gte,vte,kte,Nte,Ete,Dte,Pte,Wte,Gte,qte,Xte,Qte,tne,ane,one,une,cne,hne,fne,xne,Ine,Cne,Mne,dJ,zne,Vne,Hne,Kne,L9,Zne,Qne,tae,rae,lae,cJ,pae,dae,mae,gae,yae,z9,Ane,vae,Sae,_ae,mJ,Fae,Mae,zae,Vae,jae,Kae,Zae,ere,nre,sre,lre,cre,fre,bre,wre,Sre,$9,Dne,Cre,Ere,Are,Dre,Mre,Ore,zre,Bre,Ure,jre,Kre,Yre,Qre,tse,ase,sse,Fne,wJ,lse,cse,mse,bse,wse,kJ,Ise,Tse,_se,Jne];for(let e of Ese)kc(e);var Et;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Et||(Et={}));var ac;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(ac||(ac={}));var xE;function $se(e){xE=e.wasm.cwrap(Js,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ase(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=ac[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=Tu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,y,b],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return xE(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var Fse={kernelName:Js,backendName:"wasm",setupFunc:$se,kernelFunc:Ase};function an(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,Et[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Dse=an(wl);function cn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,Et[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Rse=!0,Mse=cn(cs,Rse),vE;function Pse(e){vE=e.wasm.cwrap(mi,null,["array","number","number","number"])}function Ose(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return vE(s,r.length,Et[a.dtype],i),a}var Lse={kernelName:mi,backendName:"wasm",setupFunc:Pse,kernelFunc:Ose};function Lf(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return kn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var zse={kernelName:Di,backendName:"wasm",kernelFunc:Lf},wE;function Wse(e){wE=e.wasm.cwrap(Tr,null,["number","array","number","number","number","array","number"])}function ls(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Vse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Bse(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Lf({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return wE(p,h,l.shape.length,Et[l.dtype],d,c,s.length),u}function Bse(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Vse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Use={kernelName:Tr,backendName:"wasm",kernelFunc:ls,setupFunc:Wse};function Ss(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=N.getInnerMostAxes(i.length,r),l=ls({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var kE;function Gse(e){kE=e.wasm.cwrap(Sl,null,["number, number, number"])}function Hse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;N.assertAxesAreInnerMostDims("all",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;kE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=N.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var jse={kernelName:Sl,backendName:"wasm",setupFunc:Gse,kernelFunc:Hse},IE;function qse(e){IE=e.wasm.cwrap(Tl,null,["number, number, number"])}function Kse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;N.assertAxesAreInnerMostDims("any",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;IE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=N.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Xse={kernelName:Tl,backendName:"wasm",setupFunc:qse,kernelFunc:Kse},SE;function Yse(e){SE=e.wasm.cwrap(fi,null,["number","number","number","number","number"])}function Zse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=Ss(s,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=v.sizeFromShape(h.shape),g=l.shape[p[0]];return SE(o,Et[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Jse={kernelName:fi,backendName:"wasm",kernelFunc:Zse,setupFunc:Yse},TE;function Qse(e){TE=e.wasm.cwrap(gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eie(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.strideHeight,b=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return TE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,I),w}var tie={kernelName:gi,backendName:"wasm",setupFunc:Qse,kernelFunc:eie};function Wn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var nie={kernelName:lu,backendName:"wasm",kernelFunc:Wn},NE;function aie(e){NE=e.wasm.cwrap(yi,null,["number","array","number","number","array","number","number","number","number"])}function rie(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),b=Tu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[y,h,d]:[y,d,h],I=Wn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Wn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get(T.dataId).id,$=i?I.shape[2]:I.shape[1],R=o?T.shape[1]:T.shape[2],F=Math.max(g,y),S=n.makeOutput([F,$,R],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return NE(C,B,I.shape.length,E,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=b,S}var sie={kernelName:yi,backendName:"wasm",setupFunc:aie,kernelFunc:rie};function di(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=jt.parseSliceParams(t,n,a),o=jt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=jt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Oh(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)iie(l,p[0],c,s,i);else if(h===3)oie(l,p[0],p[1],c,s,i);else if(h===4)lie(l,p[0],p[1],p[2],c,s,i);else{let m=Oh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function iie(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function oie(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function lie(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let y=p;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var uie={kernelName:du,backendName:"wasm",kernelFunc:di};function pie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((y,b)=>y*b),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=Wn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ls({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=di({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var cie={kernelName:Al,backendName:"wasm",kernelFunc:pie};function Hu(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var die={kernelName:bi,backendName:"wasm",kernelFunc:Hu},hie=an(xi),CE;function mie(e){CE=e.wasm.cwrap(ds,null,["number","number","number","number"])}function fie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return CE(o,s,i,u),l}var gie={kernelName:ds,backendName:"wasm",setupFunc:mie,kernelFunc:fie};function _E(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return Lf({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=[-1,v.sizeFromShape(x.shape.slice(a))];return Wn({inputs:{x},backend:n,attrs:{shape:w}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=E0(m,s,t[0].dtype,f),y=N.computeOutShape(i.map(x=>x.shape),a);o.shape=y;let b=n.dataIdMap.get(o.dataId);return b.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],y=h*g,b=d[f].subarray(y,y+g);c.set(b,m),m+=g}}return o}var yie={kernelName:Fl,backendName:"wasm",kernelFunc:_E},EE;function bie(e){EE=e.wasm.cwrap(vi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=N.convertConv2DDataFormat(c),m=N.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,$=m.inChannels,R=m.outChannels,F=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return EE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,w,F,I,T,C,E,$,R,M),S}var vie={kernelName:vi,backendName:"wasm",setupFunc:bie,kernelFunc:xie},$E;function wie(e){$E=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kie(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:w,outHeight:I,outWidth:T,strideHeight:C,strideWidth:E}=h,$=f-1-h.padInfo.top,R=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",S=v.computeStrides(h.inShape),M=v.computeStrides(r.shape),[B,U,G]=v.computeStrides(s.shape),q=S[0],K=F?S[1]:S[2],Z=F?S[2]:1,J=F?1:S[1],ee=M[0],ae=F?M[1]:M[2],te=F?M[2]:1,ie=F?1:M[1],oe=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(oe.dataId).id,ue=t.dataIdMap.get(r.dataId).id,be=t.dataIdMap.get(s.dataId).id;return $E(ue,be,m,f,g,b,x,y,I,T,w,C,E,$,R,B,U,G,q,K,Z,J,ee,ae,te,ie,ye),oe}var Iie={kernelName:wi,backendName:"wasm",setupFunc:wie,kernelFunc:kie},Sie=an(ki),Tie=an(Ii),hx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(hx||(hx={}));var AE;function Nie(e){AE=e.wasm.cwrap(Rl,null,["number","number","number","number","array","number","number","number","number","number"])}function Cie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Hu({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return AE(g,y,b,p,I,d,c,hx[r],s,w),f!=null&&t.disposeData(f.dataId),x}var _ie={kernelName:Rl,backendName:"wasm",setupFunc:Nie,kernelFunc:Cie},FE;function Eie(e){FE=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number"])}function $ie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=ls({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;FE(m,i?1:0,o?1:0,h,f,Et[r.dtype]);let g=c;if(u!==null){let y=N.getUndoAxesPermutation(u);g=ls({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Aie={kernelName:Dl,backendName:"wasm",setupFunc:Eie,kernelFunc:$ie},DE;function Fie(e){DE=e.wasm.cwrap(Si,null,["number","number","number","number","number","number"])}function Die(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=ls({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;DE(m,i?1:0,o?1:0,h,f,Et[r.dtype]);let g=c;if(u!==null){let y=N.getUndoAxesPermutation(u);g=ls({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Rie={kernelName:Si,backendName:"wasm",setupFunc:Fie,kernelFunc:Die},RE;function Mie(e){RE=e.wasm.cwrap(Ml,null,["number","number","number","array","number","array","array","number","number"])}function Pie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return RE(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,w),f}var Oie={kernelName:Ml,backendName:"wasm",setupFunc:Mie,kernelFunc:Pie},ME;function Lie(e){ME=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,$=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get(F.dataId).id;return ME(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,R,w,I,T,C,E,$,S),F}var Wie={kernelName:Ti,backendName:"wasm",setupFunc:Lie,kernelFunc:zie},Bie=an(Ci),Vie=!1,Uie=cn(Ol,Vie,"bool"),Gie=an(_i,"float32");function mx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Wn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Hie={kernelName:Ll,backendName:"wasm",kernelFunc:mx};function PE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var jie={kernelName:pc,backendName:"wasm",kernelFunc:PE},OE;function qie(e){OE=e.wasm.cwrap(Wl,null,["number","number","number","number","number","number"])}function Kie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return OE(s,o,l,u,p,i),r}var Xie={kernelName:Wl,backendName:"wasm",kernelFunc:Kie,setupFunc:qie},Yie=an(Ei),Zie=!1,Jie=cn($i,Zie),LE;function Qie(e){LE=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number","number"])}function eoe(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return LE(p,d,c,h,m,r,g),f}var toe={kernelName:Ai,backendName:"wasm",setupFunc:Qie,kernelFunc:eoe},zE;function noe(e){zE=e.wasm.cwrap(Qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aoe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=ac[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,$=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return zE(y,q,K,Z,b,I,T,w,C,E,$,R,G,F,S,M,B,U,x,g,ae,m||0,ee),J}var roe={kernelName:Qs,backendName:"wasm",setupFunc:noe,kernelFunc:aoe},WE;function soe(e){WE=e.wasm.cwrap(ei,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ioe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=ac[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,$=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return WE(y,q,K,Z,b,I,T,w,C,E,$,R,G,F,S,M,B,U,x,g,ae,m||0,ee),J}var ooe={kernelName:ei,backendName:"wasm",setupFunc:soe,kernelFunc:ioe},BE;function loe(e){BE=e.wasm.cwrap(Vl,null,["number","number","number","number","number","number","array","number"])}function uoe(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Mx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return BE(c,Et[a.dtype],h,i,d,o,m,f),u}var poe={kernelName:Vl,backendName:"wasm",setupFunc:loe,kernelFunc:uoe},VE;function coe(e){VE=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function doe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Wn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Wn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return VE(b,Et[r.dtype],I,y,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var hoe={kernelName:Bl,backendName:"wasm",setupFunc:coe,kernelFunc:doe},moe=!1,foe=cn(Ul,moe,"bool"),goe=!1,yoe=cn(Fi,goe,"bool"),UE;function boe(e){UE=e.wasm.cwrap(Ri,null,["number","number","number","number"])}function xoe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;UE(r,Et[t.dtype],n,i)}return s}var voe={kernelName:Ri,backendName:"wasm",setupFunc:boe,kernelFunc:xoe},woe=!1,koe=cn(ql,woe,"bool"),Ioe=!1,Soe=cn(Kl,Ioe,"bool"),Toe=an(Mi),Noe=!1,Coe=cn(Yl,Noe,"bool"),_oe=an(Zl),Eoe=!1,$oe=cn(Jl,Eoe,"bool"),Aoe=!1,Foe=cn(MI,Aoe,"bool"),GE;function Doe(e){GE=e.wasm.cwrap(Pi,null,["number","number","number","number"])}function Roe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;GE(o,Et[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=N.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Moe={kernelName:Pi,backendName:"wasm",setupFunc:Doe,kernelFunc:Roe},Poe=!1,Ooe=cn(Oi,Poe),HE;function Loe(e){HE=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zoe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return HE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,w,I,T,E),C}var Woe={kernelName:Li,backendName:"wasm",setupFunc:Loe,kernelFunc:zoe},jE;function Boe(e){jE=e.wasm.cwrap(zi,null,["number, number, number"])}function Voe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Hu({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;jE(l,y,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var Uoe={kernelName:zi,backendName:"wasm",setupFunc:Boe,kernelFunc:Voe},qE;function Goe(e){qE=e.wasm.cwrap(Wi,null,["number","number","number","number"])}function Hoe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),y=v.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;qE(l,Et[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var joe={kernelName:Wi,backendName:"wasm",setupFunc:Goe,kernelFunc:Hoe},qoe=!1,Koe=cn(Bi,qoe),fx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(fx||(fx={}));var KE;function Xoe(e){KE=e.wasm.cwrap(Vi,null,["number","array","number","number","array","array","number","number"])}function Yoe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return KE(i,u,t.shape.length,Et[t.dtype],c,h,fx[r],l),o}var Zoe={kernelName:Vi,backendName:"wasm",kernelFunc:Yoe,setupFunc:Xoe},Joe=!0,Qoe=cn(Ui,Joe),ele=an(eu);function t1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var XE;function tle(e){XE=e.wasm.cwrap(nu,"number",["number","number","number","number","number"])}function nle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=XE(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=t1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var ale={kernelName:nu,backendName:"wasm",setupFunc:tle,kernelFunc:nle},YE;function rle(e){YE=e.wasm.cwrap(au,"number",["number","number","number","number","number","bool"])}function sle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=YE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=t1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var ile={kernelName:au,backendName:"wasm",setupFunc:rle,kernelFunc:sle},ZE;function ole(e){ZE=e.wasm.cwrap(ru,"number",["number","number","number","number","number","number"])}function lle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=ZE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=t1(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var ule={kernelName:ru,backendName:"wasm",setupFunc:ole,kernelFunc:lle},ple=!1,cle=cn(tu,ple,"bool"),JE;function dle(e){JE=e.wasm.cwrap(Gi,null,["number","number","number","number","number"])}function hle(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return JE(d,i,o,l,p),u}var mle={kernelName:Gi,backendName:"wasm",setupFunc:dle,kernelFunc:hle};function fle(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var gle={kernelName:su,backendName:"wasm",kernelFunc:fle};function yle(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return mx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=mx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=_E({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var ble={kernelName:iu,backendName:"wasm",kernelFunc:yle},QE;function xle(e){QE=e.wasm.cwrap(Hi,null,["number","array","number","number","array","array","number","number"])}function vle(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return PE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return QE(i,u,t.shape.length,Et[t.dtype],c,h,r,l),o}var e$={kernelName:Hi,backendName:"wasm",kernelFunc:vle,setupFunc:xle},wle=!1,kle=cn(ji,wle),t$;function Ile(e){t$=e.wasm.cwrap(qi,null,["number","number","number"])}function Sle(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Hu({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return t$(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var Tle={kernelName:qi,backendName:"wasm",setupFunc:Ile,kernelFunc:Sle},n$;function Nle(e){n$=e.wasm.cwrap(Ki,null,["number","number","number","number"])}function Cle(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;n$(l,y,Et[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var _le={kernelName:Ki,backendName:"wasm",setupFunc:Nle,kernelFunc:Cle},Ele=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=F0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},$le={kernelName:hc,backendName:"wasm",kernelFunc:Ele},Ale=!0,Fle=cn(Ni,Ale),Dle=an(Xi),Rle=an(Ji),a$;function Mle(e){a$=e.wasm.cwrap(Zi,null,["number","number","number","number","number","number","number","number","number","number"])}function Ple(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Hu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return a$(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var Ole={kernelName:Zi,backendName:"wasm",setupFunc:Mle,kernelFunc:Ple},r$;function Lle(e){r$=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number","number","number","number"])}function zle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=Hu({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let b=g.id,x=t.dataIdMap.get(f.dataId).id;return r$(b,p,d,c,h,l,u,s?1:0,i?1:0,x),y!=null&&t.disposeData(y.dataId),f}var Wle={kernelName:Yi,backendName:"wasm",setupFunc:Lle,kernelFunc:zle},s$;function Ble(e){s$=e.wasm.cwrap(Qi,null,["number","array","number","array","number","number"])}function Vle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return Lf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);s$(l,p,i.length,d,r.shape.length,u);let c=Wn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Ule={kernelName:Qi,backendName:"wasm",kernelFunc:Vle,setupFunc:Ble},i$;function Gle(e){i$=e.wasm.cwrap(Su,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Hle(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],w=new Uint8Array(new Int32Array(x).buffer);return i$(u,d,c,h,m,s,f,g,w,x.length,p),l}var jle={kernelName:Su,backendName:"wasm",kernelFunc:Hle,setupFunc:Gle},qle=an(eo),Kle=an(to),o$;function Xle(e){o$=e.wasm.cwrap(uu,null,["number","number","number","number","number","number","array","number","number"])}function Yle(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=Px.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return o$(h,m,Et[s.dtype],l,u,p,f,c,g),o}var Zle={kernelName:uu,backendName:"wasm",setupFunc:Xle,kernelFunc:Yle},l$;function Jle(e){l$=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Qle(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return l$(i,o,l,h,p),u}var eue={kernelName:pu,backendName:"wasm",kernelFunc:Qle,setupFunc:Jle},u$;function tue(e){u$=e.wasm.cwrap(ao,null,["number","number"])}function nue(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||u$(a,s),r}var aue={kernelName:"Sigmoid",backendName:"wasm",setupFunc:tue,kernelFunc:nue},rue=an(no),p$;function sue(e){p$=e.wasm.cwrap(io,null,["number","number","number","number"])}function iue(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||p$(r,i,o,l),s}var oue={kernelName:io,backendName:"wasm",setupFunc:sue,kernelFunc:iue};function lue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=e$.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=Wn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=ls({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var uue={kernelName:gu,backendName:"wasm",kernelFunc:lue},c$;function pue(e){c$=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function cue(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([u],"bool"),x=t.dataIdMap.get(b.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=c$(d,c,Et[r.dtype],o,u,l,h,f,y,x,I,C),$=t.readSync(T.dataId),R;switch($[0]){case 1:{R=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch($[1]);break}case 2:{R=N.getSparseFillEmptyRowsNegativeIndexErrorMessage($[1],$[2]);break}case 3:R=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage($[1],$[2],$[3]);break;default:R=""}if(t.disposeData(T.dataId),R)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(w.dataId),new Error(R);let F=m,S=g;return E!==p[0]&&(F=di({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=di({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[F,S,b,w]}var due={kernelName:mc,backendName:"wasm",setupFunc:pue,kernelFunc:cue},d$;function hue(e){d$=e.wasm.cwrap(bu,null,["number","number","number","number","number","number","number"])}function mue(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;d$(i,o,l,u,c,m,g);let y=t.readSync(f.dataId),b;switch(y[0]){case 0:{b=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=N.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));b=N.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));b=N.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:b=""}if(t.disposeData(f.dataId),b)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(b);return[d,h]}var fue={kernelName:bu,backendName:"wasm",setupFunc:hue,kernelFunc:mue},h$;function m$(e){h$=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function f$(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;h$(d,Et[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function gue(e){return f$(e,!0)}var yue={kernelName:fc,backendName:"wasm",setupFunc:m$,kernelFunc:gue};function bue(e){return f$(e,!1)}var xue={kernelName:gc,backendName:"wasm",setupFunc:m$,kernelFunc:bue};function vue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=di({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var wue={kernelName:yu,backendName:"wasm",kernelFunc:vue},kue=an(ro),Iue=an(yc),Sue=!0,Tue=cn(oo,Sue),g$;function Nue(e){g$=e.wasm.cwrap(ms,null,["number","number","number","number"])}function Cue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return g$(i,r,Et[s.dtype],l),o}var _ue={kernelName:ms,backendName:"wasm",setupFunc:Nue,kernelFunc:Cue},y$;function Eue(e){y$=e.wasm.cwrap(xu,null,["number","array","number","array","array","array","array","array","number","number"])}function $ue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:w}=jt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Wn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=jt.computeOutShape(b,x,w),C=di({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});I=Wn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),$=new Uint8Array(new Int32Array(b).buffer),R=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),B=t.dataIdMap.get(T.dataId).id;y$(C,E,r.shape.length,$,R,F,S,M,h.length,B),I=Wn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var Aue={kernelName:xu,backendName:"wasm",setupFunc:Eue,kernelFunc:$ue};function Fue(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=R0(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=m;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(f),[g,b]}var Due={kernelName:bc,backendName:"wasm",kernelFunc:Fue};function Rue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=M0(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Mue={kernelName:xc,backendName:"wasm",kernelFunc:Rue};function Pue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=P0(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Oue={kernelName:vc,backendName:"wasm",kernelFunc:Pue},Lue=!0,zue=cn(lo,Lue),b$;function Wue(e){b$=e.wasm.cwrap(so,null,["number","number","number","number"])}function Bue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;b$(l,y,Et[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Vue={kernelName:so,backendName:"wasm",setupFunc:Wue,kernelFunc:Bue},Uue=an(uo),Gue=an(po),x$;function Hue(e){x$=e.wasm.cwrap(hs,null,["number","array","number","array","number","number"])}function jue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return x$(s,l,r.shape.length,u,o.length,Et[p.dtype],d),p}var que={kernelName:hs,backendName:"wasm",setupFunc:Hue,kernelFunc:jue},v$;function Kue(e){v$=e.wasm.cwrap(vu,null,["number","array","number","number","number","bool","number","number"])}var Xue=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return v$(i,o,a.shape.length,Et[a.dtype],r,s,p,c),[u,d]},Yue={kernelName:vu,backendName:"wasm",setupFunc:Kue,kernelFunc:Xue},w$;function Zue(e){w$=e.wasm.cwrap(wu,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Jue(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return w$(I,T,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,b,g.length-1,C,E,l,w),x}var Que={kernelName:wu,backendName:"wasm",setupFunc:Zue,kernelFunc:Jue};function epe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=di({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var tpe={kernelName:ku,backendName:"wasm",kernelFunc:epe};function npe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var ape={kernelName:Iu,backendName:"wasm",kernelFunc:npe},rpe=[Fse,Dse,Mse,Lse,jse,Xse,Jse,tie,sie,cie,die,hie,gie,yie,vie,Iie,Sie,Tie,_ie,Aie,Rie,Oie,Wie,Bie,Uie,Gie,Hie,jie,Xie,Yie,Jie,toe,roe,ooe,poe,hoe,foe,yoe,zse,voe,koe,Soe,Toe,Coe,_oe,$oe,Foe,Moe,Ooe,Woe,Uoe,joe,Koe,Zoe,Qoe,ele,ale,ile,ule,cle,mle,gle,ble,e$,kle,Tle,_le,$le,Fle,Dle,Rle,nie,Ole,Wle,Ule,jle,qle,Kle,Zle,eue,aue,rue,uie,oue,uue,due,fue,yue,xue,wue,kue,Iue,Tue,_ue,Aue,Due,Mue,Oue,zue,Vue,Uue,Gue,que,Yue,Que,Use,tpe,ape];for(let e of rpe)kc(e);var gx=H();gx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});gx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(gx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var fI=us(SF()),spe=us(TF()),gI=us(NF()),yI=fI.default||fI,ipe=gI.default||gI,k$=class extends rc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(I$),yx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new jh(this,Na())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return upe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function ope(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function bI(e,t,n){if(Gh!=null)return Gh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Wp!=null&&Wp[a]!=null?Wp[a]:n+a}async function lpe(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=spe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?bI(e,t,Op!=null?Op:l):l+o},n1&&(r.instantiateWasm=ope(bI(e,t,Op!=null?Op:"")));let s=!1;r.onAbort=()=>{s||Bp||(Bp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Gh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+yI.toString()],{type:"text/javascript"}),i=yI(r)):i=ipe(r),i.then(o=>{s=!0,Bp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function upe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ppe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Gh=null,Op=null,Wp={},Bp=!1,n1=!1;function cpe(e,t=!1){if(Rx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Bp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Gh=e,n1=t}function dpe(e,t=!1){if(Bp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Op=e;else{Wp=e;let n=ppe.filter(a=>Wp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}n1=t}var I$=-1,yx=-1;function hpe(e){I$=e}function mpe(){if(yx===-1)throw new Error("WASM backend not initialized.");return yx}var fpe="4.0.0",gpe=2;Em("wasm",async()=>{let{wasm:e}=await lpe();return new k$(e)},gpe);var xI="4.0.0",ype="4.0.0",bpe="4.0.0",xpe="4.0.0",vpe="4.0.0",wpe={tfjs:xI,"tfjs-core":xI,"tfjs-converter":ype,"tfjs-backend-cpu":bpe,"tfjs-backend-webgl":xpe,"tfjs-backend-wasm":vpe};var G$={};ab(G$,{AnchorPosition:()=>c1,DrawBox:()=>ud,DrawBoxOptions:()=>Uf,DrawFaceLandmarks:()=>tg,DrawFaceLandmarksOptions:()=>eg,DrawTextField:()=>Or,DrawTextFieldOptions:()=>Ju,drawContour:()=>Dr,drawDetections:()=>_pe,drawFaceExpressions:()=>Epe,drawFaceLandmarks:()=>Ape});function Dr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var S$={};ab(S$,{computeReshapedDimensions:()=>s1,getCenterPoint:()=>To,isDimensions:()=>Wf,isEven:()=>zf,isFloat:()=>r1,isTensor:()=>Io,isTensor1D:()=>kpe,isTensor2D:()=>a1,isTensor3D:()=>Rr,isTensor4D:()=>xa,isValidNumber:()=>Ya,isValidProbablitiy:()=>ju,range:()=>hr,round:()=>So});var En=class{constructor(t,n){if(!Ya(t)||!Ya(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new En(1/this.width,1/this.height)}};function Io(e,t){return e instanceof Te&&e.shape.length===t}function kpe(e){return Io(e,1)}function a1(e){return Io(e,2)}function Rr(e){return Io(e,3)}function xa(e){return Io(e,4)}function r1(e){return e%1!==0}function zf(e){return e%2===0}function So(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Wf(e){return e&&e.width&&e.height}function s1({width:e,height:t},n){let a=n/Math.max(t,e);return new En(Math.round(e*a),Math.round(t*a))}function To(e){return e.reduce((t,n)=>t.add(n),new Me(0,0)).div(new Me(e.length,e.length))}function hr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Ya(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function ju(e){return Ya(e)&&e>=0&&e<=1}var Me=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Me(this.x+t.x,this.y+t.y)}sub(t){return new Me(this.x-t.x,this.y-t.y)}mul(t){return new Me(this.x*t.x,this.y*t.y)}div(t){return new Me(this.x/t.x,this.y/t.y)}abs(){return new Me(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Me(Math.floor(this.x),Math.floor(this.y))}};var ut=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Ya)}static assertIsValidBox(t,n,a=!1){if(!ut.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Ya),s=[a.x,a.y,a.width,a.height].every(Ya);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ut.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Me(this.left,this.top)}get topRight(){return new Me(this.right,this.top)}get bottomLeft(){return new Me(this.left,this.bottom)}get bottomRight(){return new Me(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ut({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ut({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ut({x:t,y:n,width:a,height:r})}rescale(t){let n=Wf(t)?t.width:t,a=Wf(t)?t.height:t;return new ut({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ut({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new ut({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ut({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new ut({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var qu=class extends ut{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Ts=class{constructor(t,n,a,r,s){this._imageDims=new En(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ut(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ut(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ts(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var xt=class extends Ts{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new xt(a,r,s)}};function T$(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function N$(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new qu(a,r,s,i)}function C$(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(T$(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function mr(e,t){return P(()=>{let[n,a,r]=t,s=gn([...e.shape.slice(0,3),1],n,"float32"),i=gn([...e.shape.slice(0,3),1],a,"float32"),o=gn([...e.shape.slice(0,3),1],r,"float32"),l=Ze([s,i,o],3);return pe(e,l)})}function _$(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,gn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>le(c,"float32"));return Ze(d,i)})}function Iye(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Bf(e){return 1/(1+Math.exp(-e))}function Tye(e){return Math.log(e/(1-e))}var Ku=class extends ut{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Ipe=.5,Spe=.43,Tpe=.45,va=class{constructor(t,n,a=new Me(0,0)){let{width:r,height:s}=n;this._imgDims=new En(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Me(r,s)).add(a))}get shift(){return new Me(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Me(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Me(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof xt?t.box.floor():new ut(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Tpe),l=To(t),u=Math.floor(Math.max(0,l.x-Ipe*o)),p=Math.floor(Math.max(0,l.y-Spe*o));return new Ku(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=N$(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var E$=class extends va{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],To([t[3],t[4]])]}};var Xu=class extends va{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(To)}};var id=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${So(this.distance)})`:""}`}};var od=class extends ut{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(ut.assertIsValidBox(n,a),!Ya(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var Mr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Mr(t.label,n)}};var $$=class extends od{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(od.assertIsValidLabeledBox(n,a),!ju(n.score)||!ju(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function Pr(e){return e.detection instanceof xt}function Yu(e,t){return{...e,...{detection:t}}}function i1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function ld(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Vf(e){let t="";if(!e&&ld())try{e=Gr("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function o1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Vf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function l1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var rn;function Npe(){if(!rn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return rn}function u1(e){rn=e}function p1(){return l1()?u1(i1()):ld()?u1(o1()):null}function Cpe(e){if(rn||p1(),!rn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=rn.Canvas,Image:n=rn.Image}=e;rn.Canvas=t,rn.Image=n,rn.createCanvasElement=e.createCanvasElement||(()=>new t),rn.createImageElement=e.createImageElement||(()=>new n),rn.ImageData=e.ImageData||rn.ImageData,rn.Video=e.Video||rn.Video,rn.fetch=e.fetch||rn.fetch,rn.readFile=e.readFile||rn.readFile}var et={getEnv:Npe,setEnv:u1,initialize:p1,createBrowserEnv:i1,createFileSystem:Vf,createNodejsEnv:o1,monkeyPatch:Cpe,isBrowser:l1,isNodejs:ld};p1();function Zu(e){return!et.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function aa(e){let{Canvas:t,CanvasRenderingContext2D:n}=et.getEnv();if(e instanceof n)return e;let a=Zu(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var c1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(c1||{}),Ju=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Or=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Or?t.text:t,this.anchor=n,this.options=new Ju(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=Zu(t),a=aa(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var Uf=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Ju({...i,...s})}},ud=class{constructor(t,n={}){this.box=new ut(t),this.options=new Uf(n)}draw(t){let n=aa(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Or([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function _pe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xt?a.score:Pr(a)?a.detection.score:void 0,s=a instanceof xt?a.box:Pr(a)?a.detection.box:new ut(a),i=r?`${So(r)}`:void 0;new ud(s,{label:i}).draw(e)})}function Gf(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function A$(e){return new Promise((t,n)=>{(e instanceof et.getEnv().Canvas||Gf(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function F$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=et.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Qu(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t?new En(e.naturalWidth,e.naturalHeight):e instanceof n?new En(e.videoWidth,e.videoHeight):new En(e.width,e.height)}function ep({width:e,height:t}){let{createCanvasElement:n}=et.getEnv(),a=n();return a.width=e,a.height=t,a}function Hf(e,t){let{ImageData:n}=et.getEnv();if(!(e instanceof n)&&!Gf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Qu(e),s=ep({width:a,height:r});return e instanceof n?aa(s).putImageData(e,0,0):aa(s).drawImage(e,0,0,a,r),s}async function D$(e,t){let n=t||et.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(xa(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await co.toPixels(i,n),i.dispose(),n}function d1(e){let{Image:t,Canvas:n,Video:a}=et.getEnv();return e instanceof t||e instanceof n||e instanceof a}function R$(e,t,n=!1){let{Image:a,Canvas:r}=et.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return ep({width:1,height:1});let s=Qu(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=ep({width:t,height:t}),p=e instanceof r?e:Hf(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&aa(u).drawImage(p,c,h,o,l),u}var Lr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Rr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(xa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof et.getEnv().Canvas?a:Hf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return hr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return s1({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=hr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Te){let o=xa(i)?i:Zt(i);return o=_$(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=za.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof et.getEnv().Canvas)return co.fromPixels(R$(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Ft(a.map(s=>le(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof Lr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Zu);return a.forEach((r,s)=>{if(!d1(r)&&!Rr(r)&&!xa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(xa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>d1(r)&&A$(r))),new Lr(a,Array.isArray(e))}async function pd(e,t){let{Canvas:n}=et.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await D$(o)}let r=aa(a);return t.map(i=>i instanceof xt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=ep({width:l,height:u});return l>0&&u>0&&aa(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function cd(e,t){if(!Rr(e)&&!xa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(xa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(xa(e)?1:0);return t.map(o=>o instanceof xt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>mo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ns(e,t){let{fetch:n}=et.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function pve(e){let t=await Ns(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return F$(n)}async function M$(e){return(await Ns(e)).json()}async function fve(e){return new Float32Array(await(await Ns(e)).arrayBuffer())}function P$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=et.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function wve(e){let t=await Ns(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return P$(n)}function jf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function O$(e,t){let{manifestUri:n,modelBaseUri:a}=jf(e,t),r=await M$(n);return Ut.loadWeights(r,a)}function _ve(e,t,n=!1){let{width:a,height:r}=n?Qu(t):t;return e.width=a,e.height=r,{width:a,height:r}}var dn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof ts)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof ts))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=kn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await O$(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=et.getEnv(),{manifestUri:a,modelBaseUri:r}=jf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Ut.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Te))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Gn(e,t,n){return P(()=>{let a=vs(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Y(a,t.bias),a})}function qf(e,t,n=!1){return P(()=>{let a=Xe(n?Y(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Gn(e,t.conv0,[2,2])),r=Gn(a,t.conv1,[1,1]),s=Xe(Y(a,r)),i=Gn(s,t.conv2,[1,1]);return Xe(Y(a,Y(r,i)))})}function dd(e,t,n=!1,a=!0){return P(()=>{let r=Xe(n?Y(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Gn(e,t.conv0,a?[2,2]:[1,1])),s=Gn(r,t.conv1,[1,1]),i=Xe(Y(r,s)),o=Gn(i,t.conv2,[1,1]),l=Xe(Y(r,Y(s,o))),u=Gn(l,t.conv3,[1,1]);return Xe(Y(r,Y(s,Y(o,u))))})}function No(e,t,n="same",a=!1){return P(()=>{let r=Y(At(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function $n(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function tp(e,t){return(n,a,r,s)=>{let i=Aa(e(n*a*r*r),[r,r,n,a]),o=Ke(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Kf(e,t){return(n,a,r)=>{let s=_a(e(n*a),[n,a]),i=Ke(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var hd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function np(e,t){return(n,a,r)=>{let s=Aa(e(9*n),[3,3,n,1]),i=Aa(e(n*a),[1,1,n,a]),o=Ke(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new hd(s,i,o)}}function ap(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new hd(n,a,r)}}function ra(e,t){return(n,a,r)=>{let s=e[n];if(!Io(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function An(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Xf(e,t){let n=tp(e,t),a=np(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function L$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock4Params:r}=Xf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Yf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function Zf(e,t){let n=ra(e,t),a=Yf(n),r=ap(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function z$(e){let t=[],{extractDenseBlock4Params:n}=Zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return $n(e,t),{params:a,paramMappings:t}}var rp=class extends dn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=mr(a,[122.782,117.001,104.298]).div(255),i=dd(s,n.dense0,!0);return i=dd(i,n.dense1),i=dd(i,n.dense2),i=dd(i,n.dense3),i=ga(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return z$(t)}extractParams(t){return L$(t)}};function md(e,t){return P(()=>Y(Fe(e,t.weights),t.bias))}function W$(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=An(e),o=Kf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function B$(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return $n(e,t),{params:r,paramMappings:t}}function Jf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var sp=class extends dn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Lr?this.faceFeatureExtractor.forwardInput(n):n;return md(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return W$(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Jf(n);return this.faceFeatureExtractor.loadFromWeightMap(a),B$(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var V$=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Cs=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);V$.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return V$.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Qf=class extends sp{constructor(t=new rp){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>Ka(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(ct(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Cs(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function U$(e){return e.expressions instanceof Cs}function h1(e,t){return{...e,...{expressions:t}}}function Epe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Cs?s:U$(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Pr(s)?s.detection.box.bottomLeft:a||new Me(0,0);new Or(l.map(d=>`${d.expression} (${So(d.probability)})`),u).draw(e)})}function ip(e){return Pr(e)&&e.landmarks instanceof va&&e.unshiftedLandmarks instanceof va&&e.alignedRect instanceof xt}function $pe(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l._x-u._x)**2+(l._y-u._y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l._x-u._x),c=Math.floor(u._x-p._x);return d-c},s=(l,u)=>{let p=Math.hypot(u._x-l._x,u._y-l._y),d=u._y-l._y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u._x-l._x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c={_x:(l._x+p._x)/2,_y:(l._y+p._y)/2},h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c._y-u._y<0?-1:1;return f*g};if(!e||!e._positions||e._positions.length!==68)return a;let o=e._positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function fd(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new xt(e.detection.score,r.rescale(s.reverse()),s),o=$pe(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var eg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},tg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new eg(n)}draw(t){let n=aa(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Xu&&(n.strokeStyle=i,n.lineWidth=s,Dr(n,this.faceLandmarks.getJawOutline()),Dr(n,this.faceLandmarks.getLeftEyeBrow()),Dr(n,this.faceLandmarks.getRightEyeBrow()),Dr(n,this.faceLandmarks.getNose()),Dr(n,this.faceLandmarks.getLeftEye(),!0),Dr(n,this.faceLandmarks.getRightEye(),!0),Dr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Ape(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof va?a:ip(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new tg(r).draw(e)})}var H$="1.7.6";function Rpe(e,t){let n=tp(e,t),a=np(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function j$(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=An(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Rpe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};hr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Mpe(e,t){let n=ra(e,t),a=Yf(n),r=ap(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function q$(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Mpe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};hr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return $n(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function K$(e,t,n){return Y(At(e,t.filters,n,"same"),t.bias)}function m1(e,t,n=!0){let a=n?Xe(e):e;return a=Gn(a,t.separable_conv0,[1,1]),a=Gn(Xe(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=Y(a,K$(e,t.expansion_conv,[2,2])),a}function Ppe(e,t){let n=Gn(Xe(e),t.separable_conv0,[1,1]);return n=Gn(Xe(n),t.separable_conv1,[1,1]),n=Gn(Xe(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var ng=class extends dn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=le(n.toBatchTensor(112,!0),"float32"),i=mr(r,[122.782,117.001,104.298]).div(255),o=Xe(K$(i,a.entry_flow.conv_in,[2,2]));return o=m1(o,a.entry_flow.reduction_block_0,!1),o=m1(o,a.entry_flow.reduction_block_1),hr(this._numMainBlocks,0,1).forEach(l=>{o=Ppe(o,a.middle_flow[`main_block_${l}`])}),o=m1(o,a.exit_flow.reduction_block),o=Xe(Gn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await vt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return q$(n,this._numMainBlocks)}extractParams(n){return j$(n,this._numMainBlocks)}};function X$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),r=Kf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function Y$(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return $n(e,t),{params:r,paramMappings:t}}var f1=(n=>(n.FEMALE="female",n.MALE="male",n))(f1||{});var ag=class extends dn{constructor(n=new ng(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Lr?this.faceFeatureExtractor.forwardInput(n):n,s=ga(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=md(s,a.fc.age).as1D(),o=md(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Ka(r)}})}async forward(n){return this.forwardInput(await vt(n))}async predictAgeAndGender(n){let a=await vt(n),r=await this.forwardInput(a),s=ct(r.age),i=ct(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return X$(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Jf(n);return this.faceFeatureExtractor.loadFromWeightMap(a),Y$(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var op=class extends sp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>Ft([gn([68],d,"float32"),gn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(gn([s,136],n,"float32")).sub(Ft(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Ft(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>zf(d)),u=o.filter((p,d)=>!zf(d));return new Xu(Array(68).fill(0).map((p,d)=>new Me(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var lp=class extends op{constructor(t=new rp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function Z$(e){let t=[],{extractDenseBlock3Params:n}=Zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return $n(e,t),{params:a,paramMappings:t}}function J$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractDenseBlock3Params:r}=Xf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var rg=class extends dn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=mr(a,[122.782,117.001,104.298]).div(255),i=qf(s,n.dense0,!0);return i=qf(i,n.dense1),i=qf(i,n.dense2),i=ga(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Z$(t)}extractParams(t){return J$(t)}};var sg=class extends op{constructor(t=new rg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Q$=class extends lp{};function eA(e,t){return Y(z(e,t.weights),t.biases)}function g1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Y(o,i),o=eA(o,t.scale),a?Xe(o):o}function tA(e,t){return g1(e,t,[1,1],!0)}function y1(e,t){return g1(e,t,[1,1],!1)}function ig(e,t){return g1(e,t,[2,2],!0,"valid")}function Ope(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(r1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>Ee(Aa(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=Ke(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=Ke(e(o)),p=Ke(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function nA(e){let{extractWeights:t,getRemainingWeights:n}=An(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Ope(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>Ee(_a(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function Lpe(e,t){let n=ra(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function aA(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Lpe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!a1(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return $n(e,t),{params:w,paramMappings:t}}function Za(e,t){let n=tA(e,t.conv1);return n=y1(n,t.conv2),n=Y(n,e),n=Xe(n),n}function gd(e,t){let n=ig(e,t.conv1);n=y1(n,t.conv2);let a=ga(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Ze([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Ze([n,p],2)}return a=s?Ze([a,r],3):a,n=Y(a,n),n=Xe(n),n}var up=class extends dn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=le(t.toBatchTensor(150,!0),"float32"),s=mr(a,[122.782,117.001,104.298]).div(255),i=ig(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Za(i,n.conv32_1),i=Za(i,n.conv32_2),i=Za(i,n.conv32_3),i=gd(i,n.conv64_down),i=Za(i,n.conv64_1),i=Za(i,n.conv64_2),i=Za(i,n.conv64_3),i=gd(i,n.conv128_down),i=Za(i,n.conv128_1),i=Za(i,n.conv128_2),i=gd(i,n.conv256_down),i=Za(i,n.conv256_1),i=Za(i,n.conv256_2),i=gd(i,n.conv256_down_out);let o=i.mean([1,2]);return Fe(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return aA(t)}extractParams(t){return nA(t)}};function eIe(e){let t=new up;return t.extractWeights(e),t}function b1(e,t){return{...e,...{descriptor:t}}}function rIe(e){return typeof e.age=="number"}function x1(e,t){return{...e,...{age:t}}}function lIe(e){return(e.gender==="male"||e.gender==="female")&&ju(e.genderProbability)}function v1(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function zpe(e,t){function n(l,u){let p=Aa(e(9*l),[3,3,l,1]),d=Ke(e(l)),c=Ke(e(l)),h=Ke(e(l)),m=Ke(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Aa(e(l*u*p*p),[p,p,l,u]),m=Ke(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),$=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:$},box_predictor_5:{box_encoding_predictor:R,class_predictor:F}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function rA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=An(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=zpe(n,t),i=r(),o=s(),u={extra_dim:_c(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function Wpe(e,t){let n=ra(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function sA(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Wpe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Rr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return $n(e,t),{params:s,paramMappings:t}}function Ra(e,t,n){return P(()=>{let a=At(e,t.filters,n,"same");return a=Y(a,t.batch_norm_offset),en(a,0,6)})}var Bpe=.0010000000474974513;function Vpe(e,t,n){return P(()=>{let a=bs(e,t.filters,n,"same");return a=ys(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Bpe),en(a,0,6)})}function Upe(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function iA(e,t){return P(()=>{let n,a=Ra(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Upe(o);a=Vpe(a,s.depthwise_conv,l),a=Ra(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Gpe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function oA(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Gpe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Hpe(e){let t=ct(Ee(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[Y(t[0],he(n[0],2)),Y(t[1],he(n[1],2))];return{sizes:n,centers:a}}function jpe(e,t){let{sizes:n,centers:a}=Hpe(e),r=ct(Ee(t,[1,0])),s=he(z(fn(he(r[2],5)),n[0]),2),i=Y(z(he(r[0],10),n[0]),a[0]),o=he(z(fn(he(r[3],5)),n[1]),2),l=Y(z(he(r[1],10),n[1]),a[1]);return Ee(Ft([pe(i,s),pe(l,o),Y(i,s),Y(l,o)]),[1,0])}function lA(e,t,n){return P(()=>{let a=e.shape[0],r=jpe(W(Ln(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=da(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ct(r),l=ct(i);return{boxes:o,scores:l}})}function Co(e,t){return P(()=>{let n=e.shape[0],a=W(No(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(No(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function uA(e,t,n){return P(()=>{let a=Ra(e,n.conv_0,[1,1]),r=Ra(a,n.conv_1,[2,2]),s=Ra(r,n.conv_2,[1,1]),i=Ra(s,n.conv_3,[2,2]),o=Ra(i,n.conv_4,[1,1]),l=Ra(o,n.conv_5,[2,2]),u=Ra(l,n.conv_6,[1,1]),p=Ra(u,n.conv_7,[2,2]),d=Co(t,n.box_predictor_0),c=Co(e,n.box_predictor_1),h=Co(r,n.box_predictor_2),m=Co(i,n.box_predictor_3),f=Co(l,n.box_predictor_4),g=Co(p,n.box_predictor_5),y=Ze([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Ze([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var Ma=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var _o=class extends dn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=le(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=iA(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=uA(s.out,s.conv11,n.prediction_layer);return lA(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ma(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=oA(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=c.map(x=>{let[w,I]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(E=>E*g),[T,C]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(E=>E*f);return new xt(p[x],new Ku(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return sA(t)}extractParams(t){return rA(t)}};function qpe(e){let t=new _o;return t.extractWeights(e),t}function eSe(e){return qpe(e)}var pA=class extends _o{};var cA=.4,dA=[new Me(.738768,.874946),new Me(2.42204,2.65704),new Me(4.30971,7.04493),new Me(10.246,4.59428),new Me(12.6868,11.8741)],hA=[new Me(1.603231,2.094468),new Me(6.041143,7.080126),new Me(2.882459,3.518061),new Me(4.266906,5.178857),new Me(9.041765,10.66308)],mA=[117.001,114.697,97.404],fA="tiny_yolov2_model",gA="tiny_yolov2_separable_conv_model";var og=e=>typeof e=="number";function yA(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!og(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>og(t.x)&&og(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(og)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function pp(e){return P(()=>{let t=z(e,xe(.10000000149011612));return Y(Xe(pe(e,t)),t)})}function zr(e,t){return P(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=Y(n,t.conv.bias),pp(n)})}function Wr(e,t){return P(()=>{let n=ya(e,[[0,0],[1,1],[1,1],[0,0]]);return n=vs(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),pp(n)})}function Kpe(e,t){let n=tp(e,t);function a(i,o){let l=Ke(e(i)),u=Ke(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=np(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function bA(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=An(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=Kpe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),$=u(g,y,"conv5"),R=b?u(y,b,"conv6"):void 0,F=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:$,conv6:R,conv7:F,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),$=l(g,y,"conv5"),R=l(y,b,"conv6"),F=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:$,conv6:R,conv7:F,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Xpe(e,t){let n=ra(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=ap(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function xA(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Xpe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return $n(e,n),{params:i,paramMappings:n}}var fr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var w1=class extends dn{constructor(n){super("TinyYolov2");yA(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=zr(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=zr(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=zr(r,a.conv6),r=zr(r,a.conv7),No(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?pp(No(n,a.conv0,"valid",!1)):Wr(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=a.conv6?Wr(r,a.conv6):r,r=a.conv7?Wr(r,a.conv7):r,No(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=le(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?mr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await vt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new fr(a),i=await vt(n),o=await this.forwardInput(i,r),l=P(()=>ct(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(y=>y.box),c=p.map(y=>y.score),h=p.map(y=>y.classScore),m=p.map(y=>this.config.classes[y.label]);return C$(d.map(y=>y.rescale(r)),c,this.config.iouThreshold,!0).map(y=>new Ts(c[y],h[y],m[y],d[y],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return xA(n,this.config)}extractParams(n){let a=this.config.filterSizes||w1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return bA(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let b=n.reshape([p,p,d,this.boxEncodingSize]),x=b.slice([0,0,0,0],[p,p,d,4]),w=b.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Ka(b.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):xe(0);return[x,w,I]}),f=[],g=await h.array(),y=await c.array();for(let b=0;b<p;b++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=Bf(g[b][x][w][0]);if(!r||I>r){let T=(x+Bf(y[b][x][w][0]))/p*l,C=(b+Bf(y[b][x][w][1]))/p*u,E=Math.exp(y[b][x][w][2])*this.config.anchors[w].x/p*l,$=Math.exp(y[b][x][w][3])*this.config.anchors[w].y/p*u,R=T-E/2,F=C-$/2,S={row:b,col:x,anchor:w},{classScore:M,label:B}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new qu(R,F,R+E,F+$),score:I,classScore:I*M,label:B,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},Eo=w1;Eo.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var cp=class extends Eo{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:cA,classes:["face"],...t?{anchors:hA,meanRgb:mA}:{anchors:dA,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?gA:fA}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function HSe(e,t=!0){let n=new cp(t);return n.extractWeights(e),n}var lg=class extends fr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Pa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function $o(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>ip(l)?r(l):l.detection),i=a||(t instanceof Te?await cd(t,s):await pd(t,s)),o=await n(i);return i.forEach(l=>l instanceof Te&&l.dispose()),o}async function dp(e,t,n,a,r){return $o([e],t,async s=>n(s[0]),a,r)}var vA=.4,wA=[new Me(1.603231,2.094468),new Me(6.041143,7.080126),new Me(2.882459,3.518061),new Me(4.266906,5.178857),new Me(9.041765,10.66308)],kA=[117.001,114.697,97.404];var hp=class extends Eo{constructor(){let t={withSeparableConvs:!0,iouThreshold:vA,classes:["face"],anchors:wA,meanRgb:kA,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var tt={ssdMobilenetv1:new _o,tinyFaceDetector:new hp,tinyYolov2:new cp,faceLandmark68Net:new lp,faceLandmark68TinyNet:new sg,faceRecognitionNet:new up,faceExpressionNet:new Qf,ageGenderNet:new ag},Ype=(e,t)=>tt.ssdMobilenetv1.locateFaces(e,t),wTe=(e,t)=>tt.tinyFaceDetector.locateFaces(e,t),kTe=(e,t)=>tt.tinyYolov2.locateFaces(e,t),Zpe=e=>tt.faceLandmark68Net.detectLandmarks(e),ITe=e=>tt.faceLandmark68TinyNet.detectLandmarks(e),STe=e=>tt.faceRecognitionNet.computeFaceDescriptor(e),TTe=e=>tt.faceExpressionNet.predictExpressions(e),NTe=e=>tt.ageGenderNet.predictAgeAndGender(e),Jpe=e=>tt.ssdMobilenetv1.load(e),CTe=e=>tt.tinyFaceDetector.load(e),_Te=e=>tt.tinyYolov2.load(e),ETe=e=>tt.faceLandmark68Net.load(e),$Te=e=>tt.faceLandmark68TinyNet.load(e),ATe=e=>tt.faceRecognitionNet.load(e),FTe=e=>tt.faceExpressionNet.load(e),DTe=e=>tt.ageGenderNet.load(e),RTe=Jpe,MTe=Ype,PTe=Zpe;var ug=class extends Pa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Ao=class extends ug{async run(){let t=await this.parentTask,n=await $o(t,this.input,async a=>Promise.all(a.map(r=>tt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>h1(a,n[r]))}withAgeAndGender(){return new Do(this,this.input)}},Fo=class extends ug{async run(){let t=await this.parentTask;if(!t)return;let n=await dp(t,this.input,a=>tt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return h1(t,n)}withAgeAndGender(){return new Ro(this,this.input)}},_s=class extends Ao{withAgeAndGender(){return new $s(this,this.input)}withFaceDescriptors(){return new Fs(this,this.input)}},Es=class extends Fo{withAgeAndGender(){return new As(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var pg=class extends Pa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Do=class extends pg{async run(){let t=await this.parentTask,n=await $o(t,this.input,async a=>Promise.all(a.map(r=>tt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return x1(v1(a,i,o),s)})}withFaceExpressions(){return new Ao(this,this.input)}},Ro=class extends pg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await dp(t,this.input,s=>tt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return x1(v1(t,a,r),n)}withFaceExpressions(){return new Fo(this,this.input)}},$s=class extends Do{withFaceExpressions(){return new _s(this,this.input)}withFaceDescriptors(){return new Fs(this,this.input)}},As=class extends Ro{withFaceExpressions(){return new Es(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var cg=class extends Pa{constructor(n,a){super();this.parentTask=n;this.input=a}},Fs=class extends cg{async run(){let t=await this.parentTask;return(await $o(t,this.input,a=>Promise.all(a.map(r=>tt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>b1(t[r],a))}withFaceExpressions(){return new _s(this,this.input)}withAgeAndGender(){return new $s(this,this.input)}},Ds=class extends cg{async run(){let t=await this.parentTask;if(!t)return;let n=await dp(t,this.input,a=>tt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return b1(t,n)}withFaceExpressions(){return new Es(this,this.input)}withAgeAndGender(){return new As(this,this.input)}};var dg=class extends Pa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?tt.faceLandmark68TinyNet:tt.faceLandmark68Net}},hg=class extends dg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Te?await cd(this.input,n):await pd(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Te&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>fd(i,r[o]))}withFaceExpressions(){return new _s(this,this.input)}withAgeAndGender(){return new $s(this,this.input)}withFaceDescriptors(){return new Fs(this,this.input)}},mg=class extends dg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Te?await cd(this.input,[n]):await pd(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Te&&s.dispose()),fd(t,r)}withFaceExpressions(){return new Es(this,this.input)}withAgeAndGender(){return new As(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var fg=class extends Pa{constructor(n,a=new Ma){super();this.input=n;this.options=a}},yd=class extends fg{async run(){let{input:t,options:n}=this,a;if(n instanceof lg)a=tt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ma)a=tt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof fr)a=tt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Yu({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new hg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ao(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Do(this.runAndExtendWithFaceDetections(),this.input)}},gg=class extends fg{async run(){let t=await new yd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Yu({},n):void 0)})}withFaceLandmarks(t=!1){return new mg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Fo(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Ro(this.runAndExtendWithFaceDetection(),this.input)}};function DNe(e,t=new Ma){return new gg(e,t)}function k1(e,t=new Ma){return new yd(e,t)}async function Qpe(e,t){return k1(e,new Ma(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function zNe(e,t={}){return k1(e,new fr(t)).withFaceLandmarks().withFaceDescriptors()}var WNe=Qpe;function IA(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var yg=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Mr)return i;if(i instanceof Float32Array)return new Mr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Mr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>IA(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new id(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new id("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Mr.fromJSON(a));return new yg(n,t.distanceThreshold)}};function r2e(e){let t=new hp;return t.extractWeights(e),t}function ece(e,t){let{width:n,height:a}=new En(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>ece(r,{width:n,height:a}));if(ip(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return fd(Yu(e,r),s)}return Pr(e)?Yu(e,e.detection.forSize(n,a)):e instanceof va||e instanceof xt?e.forSize(n,a):e}var f2e=H$;export{ag as AgeGenderNet,qu as BoundingBox,ut as Box,Pa as ComposableTask,Fs as ComputeAllFaceDescriptorsTask,cg as ComputeFaceDescriptorsTaskBase,Ds as ComputeSingleFaceDescriptorTask,hg as DetectAllFaceLandmarksTask,yd as DetectAllFacesTask,dg as DetectFaceLandmarksTaskBase,fg as DetectFacesTaskBase,mg as DetectSingleFaceLandmarksTask,gg as DetectSingleFaceTask,En as Dimensions,V$ as FACE_EXPRESSION_LABELS,xt as FaceDetection,pA as FaceDetectionNet,Qf as FaceExpressionNet,Cs as FaceExpressions,lp as FaceLandmark68Net,sg as FaceLandmark68TinyNet,Q$ as FaceLandmarkNet,va as FaceLandmarks,E$ as FaceLandmarks5,Xu as FaceLandmarks68,id as FaceMatch,yg as FaceMatcher,up as FaceRecognitionNet,f1 as Gender,od as LabeledBox,Mr as LabeledFaceDescriptors,Lr as NetInput,dn as NeuralNetwork,Ts as ObjectDetection,Me as Point,$$ as PredictedBox,Ku as Rect,_o as SsdMobilenetv1,Ma as SsdMobilenetv1Options,hp as TinyFaceDetector,lg as TinyFaceDetectorOptions,cp as TinyYolov2,fr as TinyYolov2Options,WNe as allFaces,Qpe as allFacesSsdMobilenetv1,zNe as allFacesTinyYolov2,A$ as awaitMediaLoaded,F$ as bufferToImage,STe as computeFaceDescriptor,ep as createCanvas,Hf as createCanvasFromMedia,eSe as createFaceDetectionNet,eIe as createFaceRecognitionNet,qpe as createSsdMobilenetv1,r2e as createTinyFaceDetector,HSe as createTinyYolov2,k1 as detectAllFaces,Zpe as detectFaceLandmarks,ITe as detectFaceLandmarksTiny,PTe as detectLandmarks,DNe as detectSingleFace,G$ as draw,et as env,IA as euclideanDistance,x1 as extendWithAge,b1 as extendWithFaceDescriptor,Yu as extendWithFaceDetection,h1 as extendWithFaceExpressions,fd as extendWithFaceLandmarks,v1 as extendWithGender,cd as extractFaceTensors,pd as extractFaces,pve as fetchImage,M$ as fetchJson,fve as fetchNetWeights,Ns as fetchOrThrow,wve as fetchVideo,aa as getContext2dOrThrow,Qu as getMediaDimensions,D$ as imageTensorToCanvas,R$ as imageToSquare,Tye as inverseSigmoid,T$ as iou,d1 as isMediaElement,Gf as isMediaLoaded,rIe as isWithAge,Pr as isWithFaceDetection,U$ as isWithFaceExpressions,ip as isWithFaceLandmarks,lIe as isWithGender,DTe as loadAgeGenderModel,RTe as loadFaceDetectionModel,FTe as loadFaceExpressionModel,ETe as loadFaceLandmarkModel,$Te as loadFaceLandmarkTinyModel,ATe as loadFaceRecognitionModel,Jpe as loadSsdMobilenetv1Model,CTe as loadTinyFaceDetectorModel,_Te as loadTinyYolov2Model,O$ as loadWeightMap,MTe as locateFaces,_ve as matchDimensions,N$ as minBbox,tt as nets,C$ as nonMaxSuppression,mr as normalize,_$ as padToSquare,NTe as predictAgeAndGender,TTe as recognizeFaceExpressions,ece as resizeResults,Zu as resolveInput,Iye as shuffleArray,Bf as sigmoid,Ype as ssdMobilenetv1,Oe as tf,wTe as tinyFaceDetector,kTe as tinyYolov2,vt as toNetInput,S$ as utils,yA as validateConfig,f2e as version};
//# sourceMappingURL=face-api.esm.js.map