4884 lines
1.2 MiB
4884 lines
1.2 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var f$=Object.defineProperty;var g$=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Ry=(e,t)=>{for(var n in t)f$(e,n,{get:t[n],enumerable:!0})};var Le={};Ry(Le,{Abs:()=>fl,Acos:()=>gl,Acosh:()=>yl,AdadeltaOptimizer:()=>nf,AdagradOptimizer:()=>af,AdamOptimizer:()=>rf,AdamaxOptimizer:()=>sf,Add:()=>ls,AddN:()=>pi,All:()=>bl,Any:()=>xl,ArgMax:()=>ci,ArgMin:()=>Kp,Asin:()=>vl,Asinh:()=>wl,Atan:()=>kl,Atan2:()=>Sl,Atanh:()=>Il,AvgPool:()=>di,AvgPool3D:()=>Xp,AvgPool3DGrad:()=>Kh,AvgPoolGrad:()=>qh,BackendWasm:()=>S_,BatchMatMul:()=>hi,BatchToSpaceND:()=>Nl,Bincount:()=>Xh,BroadcastArgs:()=>Yh,BroadcastTo:()=>eI,Callback:()=>aN,CallbackList:()=>o2,Cast:()=>mi,Ceil:()=>fi,ClipByValue:()=>us,Complex:()=>Jh,ComplexAbs:()=>Yp,Concat:()=>Tl,Conv2D:()=>gi,Conv2DBackpropFilter:()=>Zh,Conv2DBackpropInput:()=>yi,Conv3D:()=>Jp,Conv3DBackpropFilterV2:()=>Qh,Conv3DBackpropInputV2:()=>em,Cos:()=>bi,Cosh:()=>xi,CropAndResize:()=>Cl,Cumsum:()=>vi,CustomCallback:()=>u2,DataStorage:()=>Gh,DenseBincount:()=>tm,DepthToSpace:()=>El,DepthwiseConv2dNative:()=>wi,DepthwiseConv2dNativeBackpropFilter:()=>nm,DepthwiseConv2dNativeBackpropInput:()=>am,Diag:()=>rm,Dilation2D:()=>Zp,Dilation2DBackpropFilter:()=>bh,Dilation2DBackpropInput:()=>yh,ENV:()=>Qb,EarlyStopping:()=>rN,Einsum:()=>sm,Elu:()=>Ii,EluGrad:()=>im,Environment:()=>Zk,Equal:()=>Al,Erf:()=>_l,Exp:()=>Si,ExpandDims:()=>$l,Expm1:()=>Fl,FFT:()=>om,Fill:()=>Qp,FlipLeftRight:()=>Dl,Floor:()=>Ni,FloorDiv:()=>Ti,FromPixels:()=>xh,FusedBatchNorm:()=>Ci,FusedConv2D:()=>qs,FusedDepthwiseConv2D:()=>Ks,GPGPUContext:()=>dh,GatherNd:()=>Ml,GatherV2:()=>Rl,GraphModel:()=>EN,Greater:()=>Pl,GreaterEqual:()=>Ei,History:()=>l2,IFFT:()=>lm,Identity:()=>_i,Imag:()=>um,InputSpec:()=>Bt,IsFinite:()=>Ol,IsInf:()=>Ll,IsNan:()=>zl,KernelBackend:()=>qp,LRN:()=>nc,LRNGrad:()=>cm,LayerVariable:()=>a2,LayersModel:()=>Nr,LeakyRelu:()=>Ai,Less:()=>Bl,LessEqual:()=>Wl,LinSpace:()=>pm,Log:()=>$i,Log1p:()=>Ul,LogSoftmax:()=>tI,LogicalAnd:()=>Vl,LogicalNot:()=>ec,LogicalOr:()=>tc,MathBackendWebGL:()=>$f,Max:()=>Fi,MaxPool:()=>Ri,MaxPool3D:()=>ac,MaxPool3DGrad:()=>hm,MaxPoolGrad:()=>dm,MaxPoolWithArgmax:()=>mm,Maximum:()=>Di,Mean:()=>Mi,Min:()=>Pi,Minimum:()=>Oi,MirrorPad:()=>Li,Mod:()=>Gl,MomentumOptimizer:()=>of,Multinomial:()=>fm,Multiply:()=>zi,Neg:()=>Hl,NonMaxSuppressionV3:()=>ql,NonMaxSuppressionV4:()=>Kl,NonMaxSuppressionV5:()=>Xl,NotEqual:()=>jl,OP_SCOPE_SUFFIX:()=>cI,OneHot:()=>Bi,OnesLike:()=>Yl,Optimizer:()=>_r,OptimizerConstructors:()=>Ur,Pack:()=>Jl,PadV2:()=>Wi,Pool:()=>dF,Pow:()=>Ui,Prelu:()=>Vi,Prod:()=>Zl,RMSPropOptimizer:()=>lf,RNN:()=>fr,Range:()=>rc,Rank:()=>Qy,Real:()=>gm,RealDiv:()=>ki,Reciprocal:()=>Ql,Reduction:()=>wn,Relu:()=>Gi,Relu6:()=>ji,Reshape:()=>eu,ResizeBilinear:()=>Hi,ResizeBilinearGrad:()=>bm,ResizeNearestNeighbor:()=>sc,ResizeNearestNeighborGrad:()=>ym,Reverse:()=>qi,RotateWithOffset:()=>gu,Round:()=>Ki,Rsqrt:()=>Xi,SGDOptimizer:()=>Tc,ScatterNd:()=>tu,Select:()=>nu,Selu:()=>au,Sequential:()=>ll,Sigmoid:()=>Ji,Sign:()=>iu,Sin:()=>Yi,Sinh:()=>su,Slice:()=>ru,Softmax:()=>eo,Softplus:()=>ou,SpaceToBatchND:()=>lu,SparseFillEmptyRows:()=>ic,SparseReshape:()=>pu,SparseSegmentMean:()=>oc,SparseSegmentSum:()=>lc,SparseToDense:()=>xm,SplitV:()=>uu,Sqrt:()=>Zi,Square:()=>uc,SquaredDifference:()=>to,Step:()=>cs,StridedSlice:()=>cu,StringNGrams:()=>vm,StringSplit:()=>wm,StringToHashBucketFast:()=>km,Sub:()=>no,Sum:()=>Qi,SymbolicTensor:()=>Ba,Tan:()=>ao,Tanh:()=>ro,Tensor:()=>Ae,TensorBuffer:()=>jt,Tile:()=>ps,TopK:()=>du,Transform:()=>hu,Transpose:()=>so,Unique:()=>Im,Unpack:()=>mu,UnsortedSegmentSum:()=>pc,Variable:()=>Zr,ZerosLike:()=>fu,_FusedMatMul:()=>js,abs:()=>zt,acos:()=>fx,acosh:()=>gx,add:()=>J,addN:()=>GI,all:()=>_m,any:()=>Pp,argMax:()=>Js,argMin:()=>yx,asin:()=>bx,asinh:()=>xx,atan:()=>vx,atan2:()=>wx,atanh:()=>kx,avgPool:()=>ma,avgPool3d:()=>Sx,backend:()=>VI,backend_util:()=>E,basicLSTMCell:()=>rM,batchNorm:()=>Tr,batchNorm2d:()=>KI,batchNorm3d:()=>XI,batchNorm4d:()=>YI,batchToSpaceND:()=>yc,bincount:()=>Nx,booleanMaskAsync:()=>u3,broadcastArgs:()=>JI,broadcastTo:()=>Zo,broadcast_util:()=>yu,browser:()=>io,buffer:()=>He,callbacks:()=>MG,cast:()=>oe,ceil:()=>Tx,clipByValue:()=>nn,clone:()=>Sr,complex:()=>Qr,concat:()=>Qe,concat1d:()=>ZI,concat2d:()=>QI,concat3d:()=>eS,concat4d:()=>tS,constraints:()=>GS,conv1d:()=>Am,conv2d:()=>Rt,conv2dTranspose:()=>$m,conv3d:()=>Ex,conv3dTranspose:()=>aS,copyRegisteredKernels:()=>gF,cos:()=>bc,cosh:()=>Fm,cosineWindow:()=>ev,cumsum:()=>Dm,customGrad:()=>ur,data:()=>_N,denseBincount:()=>rS,deprecationWarn:()=>mx,depthToSpace:()=>_x,depthwiseConv2d:()=>ms,deregisterOp:()=>LG,device_util:()=>mc,diag:()=>RM,dilation2d:()=>Ax,disableDeprecationWarnings:()=>gR,dispose:()=>De,disposeVariables:()=>yR,div:()=>fe,divNoNan:()=>$x,dot:()=>sS,dropout:()=>TS,einsum:()=>iS,elu:()=>bu,enableDebugMode:()=>fR,enableProdMode:()=>mR,enclosingPowerOfTwo:()=>CS,engine:()=>ar,env:()=>Y,equal:()=>Jn,erf:()=>Fx,exp:()=>mn,expandDims:()=>dn,expm1:()=>Dx,eye:()=>Rx,fft:()=>Sc,fill:()=>Cn,findBackend:()=>SR,findBackendFactory:()=>NR,floor:()=>xu,floorDiv:()=>Em,forceHalfFloat:()=>qC,fused:()=>ts,gather:()=>Qs,gatherND:()=>NS,gather_util:()=>lx,getBackend:()=>kR,getGradient:()=>Jy,getKernel:()=>vh,getKernelsForBackend:()=>wh,getThreadsCount:()=>Rle,gpgpu_util:()=>NC,grad:()=>uP,grads:()=>pP,greater:()=>Bn,greaterEqual:()=>fs,ifft:()=>sl,imag:()=>Rm,image:()=>Xn,inTopKAsync:()=>v3,initializers:()=>KS,input:()=>I2,io:()=>Qt,irfft:()=>Km,isFinite:()=>oS,isInf:()=>lS,isNaN:()=>Mx,keep:()=>en,kernel_impls:()=>mr,layers:()=>t2,leakyRelu:()=>xc,less:()=>Mm,lessEqual:()=>gs,linalg:()=>OS,linspace:()=>uS,loadGraphModel:()=>W6,loadLayersModel:()=>HU,localResponseNormalization:()=>Px,log:()=>Zn,log1p:()=>vc,logSigmoid:()=>cS,logSoftmax:()=>Om,logSumExp:()=>zx,logicalAnd:()=>Sa,logicalNot:()=>wc,logicalOr:()=>Lm,logicalXor:()=>fS,losses:()=>nz,matMul:()=>Fe,math:()=>NI,max:()=>ka,maxPool:()=>Pt,maxPool3d:()=>Bx,maxPoolWithArgmax:()=>gS,maximum:()=>hr,mean:()=>_t,memory:()=>Sh,meshgrid:()=>FP,metrics:()=>eN,min:()=>Op,minimum:()=>vu,mirrorPad:()=>Wx,mod:()=>Ux,model:()=>VU,models:()=>tN,moments:()=>zm,movingAverage:()=>d3,mul:()=>B,multiRNNCell:()=>BP,multinomial:()=>yS,neg:()=>It,nextFrame:()=>LS,norm:()=>Jm,notEqual:()=>ti,oneHot:()=>al,ones:()=>Kn,onesLike:()=>Qn,op:()=>z,outerProduct:()=>HP,pad:()=>fa,pad1d:()=>KP,pad2d:()=>YP,pad3d:()=>ZP,pad4d:()=>eO,pool:()=>bS,pow:()=>Cr,prelu:()=>Ic,print:()=>wI,prod:()=>Bm,profile:()=>bR,rand:()=>uO,randomGamma:()=>hO,randomNormal:()=>xS,randomUniform:()=>wu,range:()=>rl,ready:()=>wR,real:()=>Lp,reciprocal:()=>Hx,registerBackend:()=>Cm,registerCallbackConstructor:()=>jU,registerGradient:()=>nI,registerKernel:()=>cc,registerOp:()=>OG,regularizers:()=>nN,relu:()=>Xe,relu6:()=>Wm,removeBackend:()=>IR,reshape:()=>W,reverse:()=>ea,reverse1d:()=>kO,reverse2d:()=>SO,reverse3d:()=>TO,reverse4d:()=>EO,rfft:()=>Nc,round:()=>Um,rsqrt:()=>Vm,scalar:()=>ke,scatterND:()=>SS,scatter_util:()=>ux,selu:()=>Gm,separableConv2d:()=>lo,sequential:()=>GU,serialization:()=>se,setBackend:()=>vR,setPlatform:()=>TR,setThreadsCount:()=>Dle,setWasmPath:()=>$le,setWasmPaths:()=>Fle,setWebGLContext:()=>YT,setdiff1dAsync:()=>vS,sigmoid:()=>da,sign:()=>jx,signal:()=>tz,sin:()=>Hm,sinh:()=>jm,slice:()=>Ge,slice1d:()=>qm,slice2d:()=>qx,slice3d:()=>ku,slice4d:()=>zp,slice_util:()=>qt,softmax:()=>Xa,softplus:()=>oo,spaceToBatchND:()=>kc,sparse:()=>xp,sparseToDense:()=>Qx,spectral:()=>ez,split:()=>On,sqrt:()=>ln,square:()=>lt,squaredDifference:()=>Xm,squeeze:()=>pr,stack:()=>Mt,step:()=>Iu,stridedSlice:()=>Kx,string:()=>sh,sub:()=>ce,sum:()=>be,sumOutType:()=>Nm,tan:()=>Xx,tanh:()=>Zs,tensor:()=>Yn,tensor1d:()=>qe,tensor2d:()=>Ua,tensor3d:()=>Tm,tensor4d:()=>Ya,tensor5d:()=>e3,tensor6d:()=>t3,tensor_util:()=>Wa,test_util:()=>BI,tidy:()=>O,tile:()=>Pn,time:()=>xR,topk:()=>Yx,train:()=>Rs,transpose:()=>Me,truncatedNormal:()=>Ym,unique:()=>Th,unregisterGradient:()=>fF,unregisterKernel:()=>mF,unsortedSegmentSum:()=>Jx,unstack:()=>dt,upcastType:()=>Ia,util:()=>k,valueAndGrad:()=>cP,valueAndGrads:()=>dP,variable:()=>wS,variableGrads:()=>pS,version:()=>Hle,version_converter:()=>U6,version_core:()=>hR,version_layers:()=>Sv,version_wasm:()=>Mle,version_webgl:()=>YY,webgl:()=>JY,webgl_util:()=>XT,where:()=>hn,whereAsync:()=>Zx,zeros:()=>wt,zerosLike:()=>Ke});var y$=Object.create,Vh=Object.defineProperty,b$=Object.getOwnPropertyDescriptor,x$=Object.getOwnPropertyNames,v$=Object.getPrototypeOf,w$=Object.prototype.hasOwnProperty,k$=e=>Vh(e,"__esModule",{value:!0}),mt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Re=(e,t)=>{for(var n in t)Vh(e,n,{get:t[n],enumerable:!0})},I$=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of x$(t))!w$.call(e,r)&&(n||r!=="default")&&Vh(e,r,{get:()=>t[r],enumerable:!(a=b$(t,r))||a.enumerable});return e},li=(e,t)=>I$(k$(Vh(e!=null?y$(v$(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),S$=mt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,V){this.low=S|0,this.high=M|0,this.unsigned=!!V}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var V,j,q;return M?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(V=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=V),V)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(V=u(S,S<0?-1:0,!1),q&&(s[S]=V),V))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?v:x;if(M){if(S<0)return v;if(S>=g)return $}else{if(S<=-y)return P;if(S+1>=y)return _}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,V){return new a(S,M,V)}a.fromBits=u;var p=Math.pow;function d(S,M,V){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(V=M,M=!1):M=!!M,V=V||10,V<2||36<V)throw RangeError("radix");var j;if((j=S.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return d(S.substring(1),M,V).neg();for(var q=l(p(V,8)),K=x,Q=0;Q<S.length;Q+=8){var ee=Math.min(8,S.length-Q),re=parseInt(S.substring(Q,Q+ee),V);if(ee<8){var Z=l(p(V,ee));K=K.mul(Z).add(l(re))}else K=K.mul(q),K=K.add(l(re))}return K.unsigned=M,K}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,b=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var w=o(1);a.ONE=w;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var _=u(-1,2147483647,!1);a.MAX_VALUE=_;var $=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=$;var P=u(0,-2147483648,!1);a.MIN_VALUE=P;var F=a.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=l(S),V=this.div(M),j=V.mul(M).sub(this);return V.toString(S)+j.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var q=l(p(S,6),this.unsigned),K=this,Q="";;){var ee=K.div(q),re=K.sub(ee.mul(q)).toInt()>>>0,Z=re.toString(S);if(K=ee,K.isZero())return Z+Q;for(;Z.length<6;)Z="0"+Z;Q=""+Z+Q}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},F.eq=F.equals,F.notEquals=function(S){return!this.eq(S)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(S){return this.comp(S)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(S){return this.comp(S)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(S){return this.comp(S)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(S){return this.comp(S)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),V=S.isNegative();return M&&!V?-1:!M&&V?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(w)},F.neg=F.negate,F.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,V=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Q=S.high&65535,ee=S.low>>>16,re=S.low&65535,Z=0,ie=0,ae=0,le=0;return le+=q+re,ae+=le>>>16,le&=65535,ae+=j+ee,ie+=ae>>>16,ae&=65535,ie+=V+Q,Z+=ie>>>16,ie&=65535,Z+=M+K,Z&=65535,u(ae<<16|le,Z<<16|ie,this.unsigned)},F.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},F.sub=F.subtract,F.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(P))return S.isOdd()?P:x;if(S.eq(P))return this.isOdd()?P:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Q=S.high>>>16,ee=S.high&65535,re=S.low>>>16,Z=S.low&65535,ie=0,ae=0,le=0,ue=0;return ue+=K*Z,le+=ue>>>16,ue&=65535,le+=q*Z,ae+=le>>>16,le&=65535,le+=K*re,ae+=le>>>16,le&=65535,ae+=j*Z,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*ee,ie+=ae>>>16,ae&=65535,ie+=V*Z+j*re+q*ee+K*Q,ie&=65535,u(le<<16|ue,ie<<16|ae,this.unsigned)},F.mul=F.multiply,F.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var V,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(P)){if(S.eq(w)||S.eq(C))return P;if(S.eq(P))return w;var K=this.shr(1);return V=K.div(S).shl(1),V.eq(x)?S.isNegative()?w:C:(j=this.sub(S.mul(V)),q=V.add(j.div(S)),q)}else if(S.eq(P))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){V=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Q=Math.ceil(Math.log(V)/Math.LN2),ee=Q<=48?1:p(2,Q-48),re=l(V),Z=re.mul(S);Z.isNegative()||Z.gt(j);)V-=ee,re=l(V,this.unsigned),Z=re.mul(S);re.isZero()&&(re=w),q=q.add(re),j=j.sub(Z)}return q},F.div=F.divide,F.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},F.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},F.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},F.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var V=this.low;return u(V>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},F.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,V){return V?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),N$=mt(()=>{}),T$=mt(()=>{}),C$=mt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=d.toString();for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),E$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),A$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),F$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Lk=mt(()=>{}),D$=mt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),p=a.pow(2,o),d=p*2,c=s-1,h;function m(w,T,C){var _=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[w,v(n)]:w==null?x():w,3),_),P=new f(_),F=function(){for(var S=P.g(i),M=u,V=0;S<p;)S=(S+V)*s,M*=s,V=P.g(1);for(;S>=d;)S/=2,M/=2,V>>>=1;return(S+V)/M};return F.int32=function(){return P.g(4)|0},F.quick=function(){return P.g(4)/4294967296},F.double=F,b(v(P.S),n),(T.pass||C||function(S,M,V,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),V?(a[l]=S,M):S})(F,$,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(w){var T,C=w.length,_=this,$=0,P=_.i=_.j=0,F=_.S=[];for(C||(w=[C++]);$<s;)F[$]=$++;for($=0;$<s;$++)F[$]=F[P=c&P+w[$%C]+(T=F[$])],F[P]=T;(_.g=function(S){for(var M,V=0,j=_.i,q=_.j,K=_.S;S--;)M=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return _.i=j,_.j=q,V})(s)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function y(w,T){var C=[],_=typeof w,$;if(T&&_=="object")for($ in w)try{C.push(y(w[$],T-1))}catch(P){}return C.length?C:_=="string"?w:w+"\0"}function b(w,T){for(var C=w+"",_,$=0;$<C.length;)T[c&$]=c&(_^=T[c&$]*19)+C.charCodeAt($++);return v(T)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(s):(w=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(w)),v(w)}catch(_){var T=r.navigator,C=T&&T.plugins;return[+new Date,r,C,r.screen,v(n)]}}function v(w){return String.fromCharCode.apply(0,w)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Lk()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),zk=mt((e,t)=>{var n=C$(),a=E$(),r=_$(),s=A$(),i=$$(),o=F$(),l=D$();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),R$=mt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),P$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),L$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),z$=mt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),B$=mt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(w,T,C){var _=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[w,v(a)]:w==null?x():w,3),_),P=new f(_),F=function(){for(var S=P.g(i),M=u,V=0;S<p;)S=(S+V)*s,M*=s,V=P.g(1);for(;S>=d;)S/=2,M/=2,V>>>=1;return(S+V)/M};return F.int32=function(){return P.g(4)|0},F.quick=function(){return P.g(4)/4294967296},F.double=F,b(v(P.S),a),(T.pass||C||function(S,M,V,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),V?(r[l]=S,M):S})(F,$,"global"in T?T.global:this==r,T.state)}function f(w){var T,C=w.length,_=this,$=0,P=_.i=_.j=0,F=_.S=[];for(C||(w=[C++]);$<s;)F[$]=$++;for($=0;$<s;$++)F[$]=F[P=c&P+w[$%C]+(T=F[$])],F[P]=T;(_.g=function(S){for(var M,V=0,j=_.i,q=_.j,K=_.S;S--;)M=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+M])+(K[q]=M)];return _.i=j,_.j=q,V})(s)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function y(w,T){var C=[],_=typeof w,$;if(T&&_=="object")for($ in w)try{C.push(y(w[$],T-1))}catch(P){}return C.length?C:_=="string"?w:w+"\0"}function b(w,T){for(var C=w+"",_,$=0;$<C.length;)T[c&$]=c&(_^=T[c&$]*19)+C.charCodeAt($++);return v(T)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),v(w)}catch(_){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,v(a)]}}function v(w){return String.fromCharCode.apply(0,w)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Lk()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Bk=mt((e,t)=>{var n=R$(),a=M$(),r=P$(),s=O$(),i=L$(),o=z$(),l=B$();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Wk=mt(()=>{}),Xb=mt(()=>{}),mh=mt(()=>{}),W$=mt(()=>{}),U$=mt(()=>{}),V$=mt(()=>{}),G$=mt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=yn&&$a(Te.buffer),dd}function i(){return Te.buffer!=yn&&$a(Te.buffer),hd}function o(){return Te.buffer!=yn&&$a(Te.buffer),tp}function l(){return Te.buffer!=yn&&$a(Te.buffer),md}function u(){return Te.buffer!=yn&&$a(Te.buffer),fd}function p(){return Te.buffer!=yn&&$a(Te.buffer),gd}function d(){return Te.buffer!=yn&&$a(Te.buffer),yd}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",w=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,_="";function $(N){return c.locateFile?c.locateFile(N,_):_+N}var P,F,S,M;function V(N){N instanceof cp||Z("exiting due to exception: "+N)}var j,q,K;if(T){w?_=mh().dirname(_)+"/":_=__dirname+"/",K=()=>{q||(j=Xb(),q=mh())},P=function(D,U){return K(),D=q.normalize(D),j.readFileSync(D,U?void 0:"utf8")},S=D=>{var U=P(D,!0);return U.buffer||(U=new Uint8Array(U)),U},F=(D,U,X)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,he){pe?X(pe):U(he.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof cp))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,U)=>{if(Ts())throw process.exitCode=D,U;V(U),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=W$()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||w)&&(w?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof a!="undefined"&&a&&(_=a),_.indexOf("blob:")!==0?_=_.substr(0,_.replace(/[?#].*/,"").lastIndexOf("/")+1):_="",T||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},w&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),F=(N,D,U)=>{var X=new XMLHttpRequest;X.open("GET",N,!0),X.responseType="arraybuffer",X.onload=()=>{if(X.status==200||X.status==0&&X.response){D(X.response);return}U()},X.onerror=U,X.send(null)}),M=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=U$().performance);var Q=console.log.bind(console),ee=console.warn.bind(console);T&&(K(),Q=N=>j.writeSync(1,N+`
|
|
`),ee=N=>j.writeSync(2,N+`
|
|
`));var re=c.print||Q,Z=c.printErr||ee;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(N){ae.shown||(ae.shown={}),ae.shown[N]||(ae.shown[N]=1,Z(N))}function le(N,D){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},X={parameters:[],results:D[0]=="v"?[]:[U[D[0]]]},pe=1;pe<D.length;++pe)X.parameters.push(U[D[pe]]);return new WebAssembly.Function(X,N)}var he=[1,0,1,96],xe=D.slice(0,1),Ce=D.slice(1),Et={i:127,j:126,f:125,d:124};he.push(Ce.length);for(var pe=0;pe<Ce.length;++pe)he.push(Et[Ce[pe]]);xe=="v"?he.push(0):he=he.concat([1,Et[xe]]),he[1]=he.length-2;var Ma=new Uint8Array([0,97,115,109,1,0,0,0].concat(he,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Pa=new WebAssembly.Module(Ma),Hd=new WebAssembly.Instance(Pa,{e:{f:N}}),dp=Hd.exports.f;return dp}var ue=[],we;function ye(){if(ue.length)return ue.pop();try{ia.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return ia.length-1}function Ie(N,D){for(var U=N;U<N+D;U++){var X=Mo(U);X&&we.set(X,U)}}var _e=0,$e=N=>{_e=N},Be=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,et;c.wasmBinary&&(et=c.wasmBinary);var tt=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Fo("no native wasm support detected");var Te,gt,ut=!1,gn;function Yt(N,D){N||Fo(D)}function Fn(N){var D=c["_"+N];return D}function Vt(N,D,U,X,pe){var he={string:function(oa){var Uo=0;if(oa!=null&&oa!==0){var c1=(oa.length<<2)+1;Uo=Wo(c1),Ss(oa,Uo,c1)}return Uo},array:function(oa){var Uo=Wo(oa.length);return br(oa,Uo),Uo}};function xe(oa){return D==="string"?sa(oa):D==="boolean"?Boolean(oa):oa}var Ce=Fn(N),Et=[],Ma=0;if(X)for(var Pa=0;Pa<X.length;Pa++){var Hd=he[U[Pa]];Hd?(Ma===0&&(Ma=Fy()),Et[Pa]=Hd(X[Pa])):Et[Pa]=X[Pa]}var dp=Ce.apply(null,Et);function m$(oa){return Ma!==0&&Wd(Ma),xe(oa)}return dp=m$(dp),dp}function Jt(N,D,U,X){U=U||[];var pe=U.every(function(xe){return xe==="number"}),he=D!=="string";return he&&pe&&!X?Fn(N):function(){return Vt(N,D,U,arguments,X)}}var Aa=1;function Dn(N){var D=new TextDecoder(N);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),D.decode.call(D,U))}var Gt=typeof TextDecoder!="undefined"?new Dn("utf8"):void 0;function ra(N,D,U){for(var X=D+U,pe=D;N[pe]&&!(pe>=X);)++pe;if(pe-D>16&&N.subarray&&Gt)return Gt.decode(N.subarray(D,pe));for(var he="";D<pe;){var xe=N[D++];if(!(xe&128)){he+=String.fromCharCode(xe);continue}var Ce=N[D++]&63;if((xe&224)==192){he+=String.fromCharCode((xe&31)<<6|Ce);continue}var Et=N[D++]&63;if((xe&240)==224?xe=(xe&15)<<12|Ce<<6|Et:xe=(xe&7)<<18|Ce<<12|Et<<6|N[D++]&63,xe<65536)he+=String.fromCharCode(xe);else{var Ma=xe-65536;he+=String.fromCharCode(55296|Ma>>10,56320|Ma&1023)}}return he}function sa(N,D){return N?ra(i(),N,D):""}function Or(N,D,U,X){if(!(X>0))return 0;for(var pe=U,he=U+X-1,xe=0;xe<N.length;++xe){var Ce=N.charCodeAt(xe);if(Ce>=55296&&Ce<=57343){var Et=N.charCodeAt(++xe);Ce=65536+((Ce&1023)<<10)|Et&1023}if(Ce<=127){if(U>=he)break;D[U++]=Ce}else if(Ce<=2047){if(U+1>=he)break;D[U++]=192|Ce>>6,D[U++]=128|Ce&63}else if(Ce<=65535){if(U+2>=he)break;D[U++]=224|Ce>>12,D[U++]=128|Ce>>6&63,D[U++]=128|Ce&63}else{if(U+3>=he)break;D[U++]=240|Ce>>18,D[U++]=128|Ce>>12&63,D[U++]=128|Ce>>6&63,D[U++]=128|Ce&63}}return D[U]=0,U-pe}function Ss(N,D,U){return Or(N,i(),D,U)}function cd(N){for(var D=0,U=0;U<N.length;++U){var X=N.charCodeAt(U);X>=55296&&X<=57343&&(X=65536+((X&1023)<<10)|N.charCodeAt(++U)&1023),X<=127?++D:X<=2047?D+=2:X<=65535?D+=3:D+=4}return D}var Lr=typeof TextDecoder!="undefined"?new Dn("utf-16le"):void 0;function br(N,D){s().set(N,D)}function ep(N,D,U){for(var X=0;X<N.length;++X)s()[D++>>0]=N.charCodeAt(X);U||(s()[D>>0]=0)}function Ao(N,D){return N%D>0&&(N+=D-N%D),N}var yn,dd,hd,tp,md,fd,H0,gd,yd;C&&(yn=c.buffer);function $a(N){yn=N,c.HEAP8=dd=new Int8Array(N),c.HEAP16=tp=new Int16Array(N),c.HEAP32=fd=new Int32Array(N),c.HEAPU8=hd=new Uint8Array(N),c.HEAPU16=md=new Uint16Array(N),c.HEAPU32=H0=new Uint32Array(N),c.HEAPF32=gd=new Float32Array(N),c.HEAPF64=yd=new Float64Array(N)}var bd=c.INITIAL_MEMORY||16777216;if(C)Te=c.wasmMemory,yn=c.buffer;else if(c.wasmMemory)Te=c.wasmMemory;else if(Te=new WebAssembly.Memory({initial:bd/65536,maximum:32768,shared:!0}),!(Te.buffer instanceof SharedArrayBuffer))throw Z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Te&&(yn=Te.buffer),bd=yn.byteLength,$a(yn);var ia,$o=[],zr=[],rg=[],xd=[],Ns=!1,sg=!1,vd=0;function Ts(){return tt||vd>0}function bn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)j0(c.preRun.shift());Sd($o)}function np(){Ns=!0,!C&&Sd(zr)}function ig(){C||(Ee.terminateAllThreads(),sg=!0)}function og(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)ap(c.postRun.shift());Sd(xd)}}function j0(N){$o.unshift(N)}function q0(N){zr.unshift(N)}function ap(N){xd.unshift(N)}var Br=0,wd=null,Fa=null;function rp(N){Br++,c.monitorRunDependencies&&c.monitorRunDependencies(Br)}function K0(N){if(Br--,c.monitorRunDependencies&&c.monitorRunDependencies(Br),Br==0&&(wd!==null&&(clearInterval(wd),wd=null),Fa)){var D=Fa;Fa=null,D()}}c.preloadedImages={},c.preloadedAudios={};function Fo(N){C?postMessage({cmd:"onAbort",arg:N}):c.onAbort&&c.onAbort(N),N="Aborted("+N+")",Z(N),ut=!0,gn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw m(D),D}var lg="data:application/octet-stream;base64,";function sp(N){return N.startsWith(lg)}function kd(N){return N.startsWith("file://")}var xn;xn="tfjs-backend-wasm-threaded-simd.wasm",sp(xn)||(xn=$(xn));function Id(N){try{if(N==xn&&et)return new Uint8Array(et);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(D){Fo(D)}}function Do(){if(!et&&(v||w)){if(typeof fetch=="function"&&!kd(xn))return fetch(xn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+xn+"'";return N.arrayBuffer()}).catch(function(){return Id(xn)});if(F)return new Promise(function(N,D){F(xn,function(U){N(new Uint8Array(U))},D)})}return Promise.resolve().then(function(){return Id(xn)})}function ug(){var N={env:Pd,wasi_snapshot_preview1:Pd};function D(xe,Ce){var Et=xe.exports;if(c.asm=Et,gg(c.asm.emscripten_tls_init),ia=c.asm.__indirect_function_table,q0(c.asm.__wasm_call_ctors),gt=Ce,!C){var Ma=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(Pa){Ee.loadWasmModuleToWorker(Pa,function(){--Ma||K0("wasm-instantiate")})})}}C||rp("wasm-instantiate");function U(xe){D(xe.instance,xe.module)}function X(xe){return Do().then(function(Ce){return WebAssembly.instantiate(Ce,N)}).then(function(Ce){return Ce}).then(xe,function(Ce){Z("failed to asynchronously prepare wasm: "+Ce),Fo(Ce)})}function pe(){return!et&&typeof WebAssembly.instantiateStreaming=="function"&&!sp(xn)&&!kd(xn)&&typeof fetch=="function"?fetch(xn,{credentials:"same-origin"}).then(function(xe){var Ce=WebAssembly.instantiateStreaming(xe,N);return Ce.then(U,function(Et){return Z("wasm streaming compile failed: "+Et),Z("falling back to ArrayBuffer instantiation"),X(U)})}):X(U)}if(c.instantiateWasm)try{var he=c.instantiateWasm(N,D);return he}catch(xe){return Z("Module.instantiateWasm callback failed with error: "+xe),!1}return pe().catch(m),{}}var X0,Y0,pg={};function Sd(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var U=D.func;typeof U=="number"?D.arg===void 0?Mo(U)():Mo(U)(D.arg):U(D.arg===void 0?null:D.arg)}}function Ro(N){var D=Fy(),U=N();return Wd(D),U}function kA(N){return N}function J0(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(U){var X=U;return U===X?U:X+" ["+U+"]"})}function cg(N){u()[N>>2]=0;var D=Ee.pthreads[N];delete Ee.pthreads[N],D.worker.terminate(),$y(N),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function dg(N){var D=Ee.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function Nd(N){var D=Ee.pthreads[N];if(D){u()[N>>2]=0;var U=D.worker;Ee.returnWorkerToPool(U)}}function Td(N){c$(N)}function hg(N){if(N instanceof cp||N=="unwind")return gn;x(1,N)}var Ee={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){C?Ee.initWorker():Ee.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)Ee.allocateUnusedWorker()},initWorker:function(){tt=!1},pthreads:{},setExitStatus:function(N){gn=N},terminateAllThreads:function(){for(var N in Ee.pthreads){var D=Ee.pthreads[N];D&&D.worker&&Ee.returnWorkerToPool(D.worker)}for(var U=0;U<Ee.unusedWorkers.length;++U){var X=Ee.unusedWorkers[U];X.terminate()}Ee.unusedWorkers=[]},returnWorkerToPool:function(N){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[N.pthread.threadInfoStruct],Ee.unusedWorkers.push(N),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(N),1),$y(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[p1>>2]=0;try{N()}finally{u()[p1>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Ee.tlsInitFunctions)Ee.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=U=>{var X=U.data,pe=X.cmd;if(N.pthread&&(Ee.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),X.targetThread&&X.targetThread!=Bd()){var he=Ee.pthreads[X.targetThread];he?he.worker.postMessage(X,X.transferList):Z('Internal error! Worker sent a message "'+pe+'" to target pthread '+X.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?s1():pe==="spawnThread"?Ed(X):pe==="cleanupThread"?Nd(X.thread):pe==="killThread"?cg(X.thread):pe==="cancelThread"?dg(X.thread):pe==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):pe==="print"?re("Thread "+X.threadId+": "+X.text):pe==="printErr"?Z("Thread "+X.threadId+": "+X.text):pe==="alert"?alert("Thread "+X.threadId+": "+X.text):X.target==="setimmediate"?N.postMessage(X):pe==="onAbort"?c.onAbort&&c.onAbort(X.arg):Z("worker sent an unknown command "+pe),Ee.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var X="worker sent an error!";throw Z(X+" "+U.filename+":"+U.lineno+": "+U.message),U},T&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Te,wasmModule:gt})},allocateUnusedWorker:function(){var N=$("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.pop()}};function mg(){var N=Bd(),D=u()[N+44>>2],U=u()[N+48>>2],X=D-U;u1(D,X),Wd(D)}c.establishStackSpace=mg;function Cd(N){if(C)return _s(1,0,N);try{Td(N)}catch(D){hg(D)}}var Cs=[];function Mo(N){var D=Cs[N];return D||(N>=Cs.length&&(Cs.length=N+1),Cs[N]=D=ia.get(N)),D}function fg(N,D){return Mo(N)(D)}c.invokeEntryPoint=fg;function Z0(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function gg(N,D,U){Ee.tlsInitFunctions.push(N)}function Q0(N,D){ia.set(N,D),Cs[N]=D}var Es;T?Es=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:C?Es=()=>performance.now()-c.__performance_now_clock_drift:Es=()=>performance.now();var yg=!0;function bg(N){return u()[r1()>>2]=N,N}function xg(N,D){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&yg)U=Es();else return bg(28),-1;return u()[D>>2]=U/1e3|0,u()[D+4>>2]=U%1e3*1e3*1e3|0,0}function vg(N,D){return xg(N,D)}function wg(N){i1(N,!w,1,!v),Ee.threadInit()}function kg(N){C?postMessage({cmd:"cleanupThread",thread:N}):Nd(N)}function Ed(N){var D=Ee.getNewWorker();if(!D)return 6;Ee.runningWorkers.push(D);var U=Ee.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=U;var X={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{X.time=performance.now(),D.postMessage(X,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function Ig(N,D,U,X){if(typeof SharedArrayBuffer=="undefined")return Z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],he=0;if(C&&(pe.length===0||he))return o1(687865856,N,D,U,X);if(he)return he;var xe={startRoutine:U,pthread_ptr:N,arg:X,transferList:pe};return C?(xe.cmd="spawnThread",postMessage(xe,pe),0):Ed(xe)}function Sg(){return 2097152}function Ng(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=Ee.pthreads[N],X=U&&U.worker;if(!X)return;X.postMessage({cmd:"processThreadQueue"})}return 1}function Tg(){Fo("")}function Cg(){T||w||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function _d(){return 2147483648}function Eg(N,D,U){i().copyWithin(N,D,D+U)}function _g(){return T?V$().cpus().length:navigator.hardwareConcurrency}function _s(N,D){var U=arguments.length-2,X=arguments;return Ro(function(){for(var pe=U,he=Wo(pe*8),xe=he>>3,Ce=0;Ce<U;Ce++){var Et=X[2+Ce];d()[xe+Ce]=Et}return l1(N,pe,he,D)})}var ip=[];function Ag(N,D,U){ip.length=D;for(var X=U>>3,pe=0;pe<D;pe++)ip[pe]=d()[X+pe];var he=N<0,xe=he?pg[-N-1]:Xg[N];return xe.apply(null,ip)}function $g(N){try{return Te.grow(N-yn.byteLength+65535>>>16),$a(Te.buffer),1}catch(D){}}function Fg(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var U=_d();if(N>U)return!1;for(var X=1;X<=4;X*=2){var pe=D*(1+.2/X);pe=Math.min(pe,N+100663296);var he=Math.min(U,Ao(Math.max(N,pe),65536)),xe=$g(he);if(xe)return!0}return!1}var Ue={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ue.eventHandlers.length-1;N>=0;--N)Ue._removeHandler(N);Ue.eventHandlers=[],Ue.deferredCalls=[]},registerRemoveEventListeners:function(){Ue.removeEventListenersRegistered||(rg.push(Ue.removeAllEventListeners),Ue.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,U){function X(xe,Ce){if(xe.length!=Ce.length)return!1;for(var Et in xe)if(xe[Et]!=Ce[Et])return!1;return!0}for(var pe in Ue.deferredCalls){var he=Ue.deferredCalls[pe];if(he.targetFunction==N&&X(he.argsList,U))return}Ue.deferredCalls.push({targetFunction:N,precedence:D,argsList:U}),Ue.deferredCalls.sort(function(xe,Ce){return xe.precedence<Ce.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Ue.deferredCalls.length;++D)Ue.deferredCalls[D].targetFunction==N&&(Ue.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Ue.inEventHandler&&Ue.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ue.canPerformEventHandlerRequests())for(var N=0;N<Ue.deferredCalls.length;++N){var D=Ue.deferredCalls[N];Ue.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var U=0;U<Ue.eventHandlers.length;++U)Ue.eventHandlers[U].target==N&&(!D||D==Ue.eventHandlers[U].eventTypeString)&&Ue._removeHandler(U--)},_removeHandler:function(N){var D=Ue.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Ue.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(X){++Ue.inEventHandler,Ue.currentEventHandler=N,Ue.runDeferredCalls(),N.handlerFunc(X),Ue.runDeferredCalls(),--Ue.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Ue.eventHandlers.push(N),Ue.registerRemoveEventListeners();else for(var U=0;U<Ue.eventHandlers.length;++U)Ue.eventHandlers[U].target==N.target&&Ue.eventHandlers[U].eventTypeString==N.eventTypeString&&Ue._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(N,D,U,X,pe){Ro(function(){var he=Wo(12);u()[he>>2]=U,u()[he+4>>2]=X,u()[he+8>>2]=pe,Ay(N,637534208,D,X,he)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Dg(N){var D=cd(N)+1,U=_y(D);return Ss(N,U,D),U}function Rg(N,D,U,X){Ro(function(){var pe=Wo(12),he=0;D&&(he=Dg(D)),u()[pe>>2]=he,u()[pe+4>>2]=U,u()[pe+8>>2]=X,Ay(N,657457152,0,he,pe)})}function Mg(N,D,U,X){D=D?sa(D):"",Rg(N,D,U,X)}function Pg(N){return N>2?sa(N):N}var Og=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Lg(N){N=Pg(N);var D=Og[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function op(N){return Lg(N)}function Ad(N,D,U){var X=op(N);if(!X)return-4;if(X.canvasSharedPtr&&(u()[X.canvasSharedPtr>>2]=D,u()[X.canvasSharedPtr+4>>2]=U),X.offscreenCanvas||!X.controlTransferredOffscreen){X.offscreenCanvas&&(X=X.offscreenCanvas);var pe=!1;if(X.GLctxObject&&X.GLctxObject.GLctx){var he=X.GLctxObject.GLctx.getParameter(2978);pe=he[0]===0&&he[1]===0&&he[2]===X.width&&he[3]===X.height}X.width=D,X.height=U,pe&&X.GLctxObject.GLctx.viewport(0,0,D,U)}else if(X.canvasSharedPtr){var xe=u()[X.canvasSharedPtr+8>>2];return Mg(xe,N,D,U),1}else return-4;return 0}function $d(N,D,U){return C?_s(2,1,N,D,U):Ad(N,D,U)}function zg(N,D,U){var X=op(N);return X?Ad(N,D,U):$d(N,D,U)}function Bg(){throw"unwind"}function Wg(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(U,X){D.vertexAttribDivisorANGLE(U,X)},N.drawArraysInstanced=function(U,X,pe,he){D.drawArraysInstancedANGLE(U,X,pe,he)},N.drawElementsInstanced=function(U,X,pe,he,xe){D.drawElementsInstancedANGLE(U,X,pe,he,xe)},1}function Ug(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(U){D.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){D.bindVertexArrayOES(U)},N.isVertexArray=function(U){return D.isVertexArrayOES(U)},1}function Vg(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(U,X){D.drawBuffersWEBGL(U,X)},1}function Gg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Ct={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){Ct.lastError||(Ct.lastError=N)},getNewId:function(N){for(var D=Ct.counter++,U=N.length;U<D;U++)N[U]=null;return D},getSource:function(N,D,U,X){for(var pe="",he=0;he<D;++he){var xe=X?u()[X+he*4>>2]:-1;pe+=sa(u()[U+he*4>>2],xe<0?void 0:xe)}return pe},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(pe,he){var xe=N.getContextSafariWebGL2Fixed(pe,he);return pe=="webgl"==xe instanceof WebGLRenderingContext?xe:null});var U=N.getContext("webgl",D);if(!U)return 0;var X=Ct.registerContext(U,D);return X},registerContext:function(N,D){var U=_y(8);u()[U+4>>2]=Bd();var X={handle:U,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=X),Ct.contexts[U]=X,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&Ct.initExtensions(X),U},makeContextCurrent:function(N){return Ct.currentContext=Ct.contexts[N],c.ctx=Md=Ct.currentContext&&Ct.currentContext.GLctx,!(N&&!Md)},getContext:function(N){return Ct.contexts[N]},deleteContext:function(N){Ct.currentContext===Ct.contexts[N]&&(Ct.currentContext=null),typeof Ue=="object"&&Ue.removeAllHandlersOnTarget(Ct.contexts[N].GLctx.canvas),Ct.contexts[N]&&Ct.contexts[N].GLctx.canvas&&(Ct.contexts[N].GLctx.canvas.GLctxObject=void 0),a1(Ct.contexts[N].handle),Ct.contexts[N]=null},initExtensions:function(N){if(N||(N=Ct.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;Wg(D),Ug(D),Vg(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Gg(D);var U=D.getSupportedExtensions()||[];U.forEach(function(X){!X.includes("lose_context")&&!X.includes("debug")&&D.getExtension(X)})}}},Hg=["default","low-power","high-performance"];function jg(N,D){var U=D>>2,X=u()[U+6],pe={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:Hg[X],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},he=op(N);if(!he||pe.explicitSwapControl)return 0;var xe=Ct.createContext(he,pe);return xe}function qg(N,D){return jg(N,D)}var Po={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var U=Po.buffers[N];D===0||D===10?((N===1?re:Z)(ra(U,0)),U.length=0):U.push(D)},varargs:void 0,get:function(){Po.varargs+=4;var N=u()[Po.varargs-4>>2];return N},getStr:function(N){var D=sa(N);return D},get64:function(N,D){return N}};function Fd(N){return C?_s(3,1,N):0}function Dd(N,D,U,X,pe){if(C)return _s(4,1,N,D,U,X,pe)}function Rd(N,D,U,X){if(C)return _s(5,1,N,D,U,X);for(var pe=0,he=0;he<U;he++){var xe=u()[D>>2],Ce=u()[D+4>>2];D+=8;for(var Et=0;Et<Ce;Et++)Po.printChar(N,i()[xe+Et]);pe+=Ce}return u()[X>>2]=pe,0}function Kg(N){$e(N)}Ee.init();var Md,Xg=[null,Cd,$d,Fd,Dd,Rd],e1=!1,Pd={__clock_gettime:vg,__emscripten_init_main_thread_js:wg,__emscripten_thread_cleanup:kg,__pthread_create_js:Ig,_emscripten_default_pthread_stack_size:Sg,_emscripten_notify_thread_queue:Ng,abort:Tg,emscripten_check_blocking_allowed:Cg,emscripten_get_heap_max:_d,emscripten_get_now:Es,emscripten_memcpy_big:Eg,emscripten_num_logical_cores:_g,emscripten_receive_on_main_thread_js:Ag,emscripten_resize_heap:Fg,emscripten_set_canvas_element_size:zg,emscripten_unwind_to_js_event_loop:Bg,emscripten_webgl_create_context:qg,exit:Td,fd_close:Fd,fd_seek:Dd,fd_write:Rd,memory:Te||c.wasmMemory,setTempRet0:Kg},t1=ug(),Yg=c.___wasm_call_ctors=function(){return(Yg=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Jg=c._init=function(){return(Jg=c._init=c.asm.init).apply(null,arguments)},Zg=c._init_with_threads_count=function(){return(Zg=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},Qg=c._get_threads_count=function(){return(Qg=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},ey=c._register_tensor=function(){return(ey=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},ty=c._dispose_data=function(){return(ty=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},ny=c._dispose=function(){return(ny=c._dispose=c.asm.dispose).apply(null,arguments)},ay=c._Abs=function(){return(ay=c._Abs=c.asm.Abs).apply(null,arguments)},ry=c._Add=function(){return(ry=c._Add=c.asm.Add).apply(null,arguments)},sy=c._AddN=function(){return(sy=c._AddN=c.asm.AddN).apply(null,arguments)},iy=c._All=function(){return(iy=c._All=c.asm.All).apply(null,arguments)},oy=c._Any=function(){return(oy=c._Any=c.asm.Any).apply(null,arguments)},ly=c._ArgMax=function(){return(ly=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},uy=c._AvgPool=function(){return(uy=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},py=c._BatchMatMul=function(){return(py=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},cy=c._Ceil=function(){return(cy=c._Ceil=c.asm.Ceil).apply(null,arguments)},dy=c._ClipByValue=function(){return(dy=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},hy=c._Conv2D=function(){return(hy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},my=c._Conv2DBackpropInput=function(){return(my=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},fy=c._Cos=function(){return(fy=c._Cos=c.asm.Cos).apply(null,arguments)},gy=c._Cosh=function(){return(gy=c._Cosh=c.asm.Cosh).apply(null,arguments)},yy=c._CropAndResize=function(){return(yy=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},by=c._Cumsum=function(){return(by=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},xy=c._DepthToSpace=function(){return(xy=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},vy=c._DepthwiseConv2dNative=function(){return(vy=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},wy=c._Elu=function(){return(wy=c._Elu=c.asm.Elu).apply(null,arguments)},ky=c._Equal=function(){return(ky=c._Equal=c.asm.Equal).apply(null,arguments)},Iy=c._Exp=function(){return(Iy=c._Exp=c.asm.Exp).apply(null,arguments)},Sy=c._FlipLeftRight=function(){return(Sy=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},Od=c._Floor=function(){return(Od=c._Floor=c.asm.Floor).apply(null,arguments)},Ld=c._FloorDiv=function(){return(Ld=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},lp=c._FusedBatchNorm=function(){return(lp=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},Ny=c._FusedConv2D=function(){return(Ny=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},Ty=c._FusedDepthwiseConv2D=function(){return(Ty=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},Oo=c._Gather=function(){return(Oo=c._Gather=c.asm.Gather).apply(null,arguments)},up=c._GatherNd=function(){return(up=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},pp=c._Greater=function(){return(pp=c._Greater=c.asm.Greater).apply(null,arguments)},n1=c._GreaterEqual=function(){return(n1=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},Lo=c._LeakyRelu=function(){return(Lo=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},zo=c._Less=function(){return(zo=c._Less=c.asm.Less).apply(null,arguments)},Cy=c._LessEqual=function(){return(Cy=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},G=c._Log=function(){return(G=c._Log=c.asm.Log).apply(null,arguments)},te=c._LogicalAnd=function(){return(te=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},de=c._Max=function(){return(de=c._Max=c.asm.Max).apply(null,arguments)},Se=c._MaxPool=function(){return(Se=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Ze=c._Maximum=function(){return(Ze=c._Maximum=c.asm.Maximum).apply(null,arguments)},nt=c._Mean=function(){return(nt=c._Mean=c.asm.Mean).apply(null,arguments)},Ve=c._Min=function(){return(Ve=c._Min=c.asm.Min).apply(null,arguments)},We=c._Minimum=function(){return(We=c._Minimum=c.asm.Minimum).apply(null,arguments)},Lt=c._MirrorPad=function(){return(Lt=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Da=c._Multiply=function(){return(Da=c._Multiply=c.asm.Multiply).apply(null,arguments)},Ra=c._Neg=function(){return(Ra=c._Neg=c.asm.Neg).apply(null,arguments)},Bo=c._NonMaxSuppressionV3=function(){return(Bo=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},As=c._NonMaxSuppressionV4=function(){return(As=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},Ey=c._NonMaxSuppressionV5=function(){return(Ey=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},Rn=c._NotEqual=function(){return(Rn=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Wr=c._OneHot=function(){return(Wr=c._OneHot=c.asm.OneHot).apply(null,arguments)},zd=c._PadV2=function(){return(zd=c._PadV2=c.asm.PadV2).apply(null,arguments)},IA=c._Pow=function(){return(IA=c._Pow=c.asm.Pow).apply(null,arguments)},SA=c._Prelu=function(){return(SA=c._Prelu=c.asm.Prelu).apply(null,arguments)},NA=c._Prod=function(){return(NA=c._Prod=c.asm.Prod).apply(null,arguments)},TA=c._RealDiv=function(){return(TA=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},CA=c._Relu=function(){return(CA=c._Relu=c.asm.Relu).apply(null,arguments)},EA=c._Relu6=function(){return(EA=c._Relu6=c.asm.Relu6).apply(null,arguments)},_A=c._ResizeBilinear=function(){return(_A=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},AA=c._Reverse=function(){return(AA=c._Reverse=c.asm.Reverse).apply(null,arguments)},$A=c._RotateWithOffset=function(){return($A=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},FA=c._Round=function(){return(FA=c._Round=c.asm.Round).apply(null,arguments)},DA=c._Rsqrt=function(){return(DA=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},RA=c._ScatterNd=function(){return(RA=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},MA=c._SelectV2=function(){return(MA=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},PA=c._Sigmoid=function(){return(PA=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},OA=c._Sin=function(){return(OA=c._Sin=c.asm.Sin).apply(null,arguments)},LA=c._Softmax=function(){return(LA=c._Softmax=c.asm.Softmax).apply(null,arguments)},zA=c._SparseFillEmptyRows=function(){return(zA=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},BA=c._SparseReshape=function(){return(BA=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},WA=c._SparseSegmentReduction=function(){return(WA=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},UA=c._Sqrt=function(){return(UA=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},VA=c._Square=function(){return(VA=c._Square=c.asm.Square).apply(null,arguments)},GA=c._SquaredDifference=function(){return(GA=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},HA=c._Step=function(){return(HA=c._Step=c.asm.Step).apply(null,arguments)},jA=c._StridedSlice=function(){return(jA=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},qA=c._Sub=function(){return(qA=c._Sub=c.asm.Sub).apply(null,arguments)},KA=c._Sum=function(){return(KA=c._Sum=c.asm.Sum).apply(null,arguments)},XA=c._Tan=function(){return(XA=c._Tan=c.asm.Tan).apply(null,arguments)},YA=c._Tanh=function(){return(YA=c._Tanh=c.asm.Tanh).apply(null,arguments)},JA=c._Tile=function(){return(JA=c._Tile=c.asm.Tile).apply(null,arguments)},ZA=c._TopK=function(){return(ZA=c._TopK=c.asm.TopK).apply(null,arguments)},QA=c._Transform=function(){return(QA=c._Transform=c.asm.Transform).apply(null,arguments)},e$=c._Transpose=function(){return(e$=c._Transpose=c.asm.Transpose).apply(null,arguments)},t$=c.__FusedMatMul=function(){return(t$=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},_y=c._malloc=function(){return(_y=c._malloc=c.asm.malloc).apply(null,arguments)},a1=c._free=function(){return(a1=c._free=c.asm.free).apply(null,arguments)},n$=c._emscripten_tls_init=function(){return(n$=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},r1=c.___errno_location=function(){return(r1=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},Bd=c._pthread_self=function(){return(Bd=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},s1=c._emscripten_main_thread_process_queued_calls=function(){return(s1=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},a$=c.__emscripten_thread_crashed=function(){return(a$=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},i1=c.__emscripten_thread_init=function(){return(i1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},r$=c._emscripten_current_thread_process_queued_calls=function(){return(r$=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},s$=c._emscripten_main_browser_thread_id=function(){return(s$=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},i$=c._emscripten_sync_run_in_main_thread_2=function(){return(i$=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},o1=c._emscripten_sync_run_in_main_thread_4=function(){return(o1=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},l1=c._emscripten_run_in_main_runtime_thread_js=function(){return(l1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Ay=c._emscripten_dispatch_to_thread_=function(){return(Ay=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},$y=c.__emscripten_thread_free_data=function(){return($y=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},o$=c.__emscripten_thread_exit=function(){return(o$=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},l$=c._memalign=function(){return(l$=c._memalign=c.asm.memalign).apply(null,arguments)},u1=c._emscripten_stack_set_limits=function(){return(u1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Fy=c.stackSave=function(){return(Fy=c.stackSave=c.asm.stackSave).apply(null,arguments)},Wd=c.stackRestore=function(){return(Wd=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},Wo=c.stackAlloc=function(){return(Wo=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},u$=c.dynCall_iijjiiii=function(){return(u$=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},p$=c.dynCall_jiji=function(){return(p$=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},p1=c.__emscripten_allow_main_runtime_queued_calls=21416;c.cwrap=Jt,c.keepRuntimeAlive=Ts,c.PThread=Ee,c.PThread=Ee,c.wasmMemory=Te,c.ExitStatus=cp;var Ud;function cp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Fa=function N(){Ud||Dy(),Ud||(Fa=N)};function Dy(N){if(N=N||y,Br>0)return;if(C){h(c),np(),postMessage({cmd:"loaded"});return}if(bn(),Br>0)return;function D(){Ud||(Ud=!0,c.calledRun=!0,!ut&&(np(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),og()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=Dy;function c$(N,D){if(gn=N,!D&&C)throw Cd(N),"unwind";Ts()||ig(),d$(N)}function d$(N){gn=N,Ts()||(Ee.terminateAllThreads(),c.onExit&&c.onExit(N),ut=!0),x(N,new cp(N))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();Dy();var Vd;f&&(Vd={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var Gd;if(typeof WasmBackendModule!="undefined")Gd=WasmBackendModule;else if(typeof r!="undefined")Gd=r;else throw new Error("Could not find wasm module in post.js");if(Vd){var h$=Gd._dispose;Gd._dispose=function(){h$(),Vd.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Vd.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),H$=mt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,te){i=G,o=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,te)=>{throw te},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(G){return s.locateFile?s.locateFile(G,g):g+G}var b,x,v,w;function T(G){G instanceof up||F("exiting due to exception: "+G)}var C,_,$;f?(m?g=mh().dirname(g)+"/":g=__dirname+"/",$=()=>{_||(C=Xb(),_=mh())},b=function(G,te){return $(),G=_.normalize(G),C.readFileSync(G,te?void 0:"utf8")},v=G=>{var te=b(G,!0);return te.buffer||(te=new Uint8Array(te)),te},x=(G,te,de)=>{$(),G=_.normalize(G),C.readFile(G,function(Se,Ze){Se?de(Se):te(Ze.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof up))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,te)=>{if(tp())throw process.exitCode=G,te;T(te),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.send(null),te.responseText},m&&(v=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),x=(G,te,de)=>{var Se=new XMLHttpRequest;Se.open("GET",G,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){te(Se.response);return}de()},Se.onerror=de,Se.send(null)},w=G=>document.title=G);var P=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var S=4;function M(G){M.shown||(M.shown={}),M.shown[G]||(M.shown[G]=1,F(G))}function V(G,te){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:te[0]=="v"?[]:[de[te[0]]]},Ze=1;Ze<te.length;++Ze)Se.parameters.push(de[te[Ze]]);return new WebAssembly.Function(Se,G)}var nt=[1,0,1,96],Ve=te.slice(0,1),We=te.slice(1),Lt={i:127,j:126,f:125,d:124};nt.push(We.length);for(var Ze=0;Ze<We.length;++Ze)nt.push(Lt[We[Ze]]);Ve=="v"?nt.push(0):nt=nt.concat([1,Lt[Ve]]),nt[1]=nt.length-2;var Da=new Uint8Array([0,97,115,109,1,0,0,0].concat(nt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Ra=new WebAssembly.Module(Da),Bo=new WebAssembly.Instance(Ra,{e:{f:G}}),As=Bo.exports.f;return As}var j=[],q;function K(){if(j.length)return j.pop();try{Lr.grow(1)}catch(G){throw G instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":G}return Lr.length-1}function Q(G,te){for(var de=G;de<G+te;de++){var Se=rp(de);Se&&q.set(Se,de)}}var ee=0,re=G=>{ee=G},Z;s.wasmBinary&&(Z=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ns("no native wasm support detected");var ae,le=!1,ue;function we(G,te){G||Ns(te)}function ye(G){var te=s["_"+G];return te}function Ie(G,te,de,Se,Ze){var nt={string:function(Rn){var Wr=0;if(Rn!=null&&Rn!==0){var zd=(Rn.length<<2)+1;Wr=lp(zd),tt(Rn,Wr,zd)}return Wr},array:function(Rn){var Wr=lp(Rn.length);return ut(Rn,Wr),Wr}};function Ve(Rn){return te==="string"?st(Rn):te==="boolean"?Boolean(Rn):Rn}var We=ye(G),Lt=[],Da=0;if(Se)for(var Ra=0;Ra<Se.length;Ra++){var Bo=nt[de[Ra]];Bo?(Da===0&&(Da=Od()),Lt[Ra]=Bo(Se[Ra])):Lt[Ra]=Se[Ra]}var As=We.apply(null,Lt);function Ey(Rn){return Da!==0&&Ld(Da),Ve(Rn)}return As=Ey(As),As}function _e(G,te,de,Se){de=de||[];var Ze=de.every(function(Ve){return Ve==="number"}),nt=te!=="string";return nt&&Ze&&!Se?ye(G):function(){return Ie(G,te,de,arguments,Se)}}var $e=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function je(G,te,de){for(var Se=te+de,Ze=te;G[Ze]&&!(Ze>=Se);)++Ze;if(Ze-te>16&&G.subarray&&Be)return Be.decode(G.subarray(te,Ze));for(var nt="";te<Ze;){var Ve=G[te++];if(!(Ve&128)){nt+=String.fromCharCode(Ve);continue}var We=G[te++]&63;if((Ve&224)==192){nt+=String.fromCharCode((Ve&31)<<6|We);continue}var Lt=G[te++]&63;if((Ve&240)==224?Ve=(Ve&15)<<12|We<<6|Lt:Ve=(Ve&7)<<18|We<<12|Lt<<6|G[te++]&63,Ve<65536)nt+=String.fromCharCode(Ve);else{var Da=Ve-65536;nt+=String.fromCharCode(55296|Da>>10,56320|Da&1023)}}return nt}function st(G,te){return G?je(Jt,G,te):""}function et(G,te,de,Se){if(!(Se>0))return 0;for(var Ze=de,nt=de+Se-1,Ve=0;Ve<G.length;++Ve){var We=G.charCodeAt(Ve);if(We>=55296&&We<=57343){var Lt=G.charCodeAt(++Ve);We=65536+((We&1023)<<10)|Lt&1023}if(We<=127){if(de>=nt)break;te[de++]=We}else if(We<=2047){if(de+1>=nt)break;te[de++]=192|We>>6,te[de++]=128|We&63}else if(We<=65535){if(de+2>=nt)break;te[de++]=224|We>>12,te[de++]=128|We>>6&63,te[de++]=128|We&63}else{if(de+3>=nt)break;te[de++]=240|We>>18,te[de++]=128|We>>12&63,te[de++]=128|We>>6&63,te[de++]=128|We&63}}return te[de]=0,de-Ze}function tt(G,te,de){return et(G,Jt,te,de)}function Te(G){for(var te=0,de=0;de<G.length;++de){var Se=G.charCodeAt(de);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|G.charCodeAt(++de)&1023),Se<=127?++te:Se<=2047?te+=2:Se<=65535?te+=3:te+=4}return te}var gt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function ut(G,te){Vt.set(G,te)}function gn(G,te,de){for(var Se=0;Se<G.length;++Se)Vt[te++>>0]=G.charCodeAt(Se);de||(Vt[te>>0]=0)}function Yt(G,te){return G%te>0&&(G+=te-G%te),G}var Fn,Vt,Jt,Aa,Dn,Gt,ra,sa,Or;function Ss(G){Fn=G,s.HEAP8=Vt=new Int8Array(G),s.HEAP16=Aa=new Int16Array(G),s.HEAP32=Gt=new Int32Array(G),s.HEAPU8=Jt=new Uint8Array(G),s.HEAPU16=Dn=new Uint16Array(G),s.HEAPU32=ra=new Uint32Array(G),s.HEAPF32=sa=new Float32Array(G),s.HEAPF64=Or=new Float64Array(G)}var cd=s.INITIAL_MEMORY||16777216,Lr,br=[],ep=[],Ao=[],yn=!1,dd=!1,hd=0;function tp(){return ie||hd>0}function md(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)yd(s.preRun.shift());ap(br)}function fd(){yn=!0,ap(ep)}function H0(){dd=!0}function gd(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)bd(s.postRun.shift());ap(Ao)}function yd(G){br.unshift(G)}function $a(G){ep.unshift(G)}function bd(G){Ao.unshift(G)}var ia=0,$o=null,zr=null;function rg(G){ia++,s.monitorRunDependencies&&s.monitorRunDependencies(ia)}function xd(G){if(ia--,s.monitorRunDependencies&&s.monitorRunDependencies(ia),ia==0&&($o!==null&&(clearInterval($o),$o=null),zr)){var te=zr;zr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ns(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",F(G),le=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(G);throw o(te),te}var sg="data:application/octet-stream;base64,";function vd(G){return G.startsWith(sg)}function Ts(G){return G.startsWith("file://")}var bn;bn="tfjs-backend-wasm.wasm",vd(bn)||(bn=y(bn));function np(G){try{if(G==bn&&Z)return new Uint8Array(Z);if(v)return v(G);throw"both async and sync fetching of the wasm failed"}catch(te){Ns(te)}}function ig(){if(!Z&&(h||m)){if(typeof fetch=="function"&&!Ts(bn))return fetch(bn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+bn+"'";return G.arrayBuffer()}).catch(function(){return np(bn)});if(x)return new Promise(function(G,te){x(bn,function(de){G(new Uint8Array(de))},te)})}return Promise.resolve().then(function(){return np(bn)})}function og(){var G={env:Ro,wasi_snapshot_preview1:Ro};function te(Ve,We){var Lt=Ve.exports;s.asm=Lt,ae=s.asm.memory,Ss(ae.buffer),Lr=s.asm.__indirect_function_table,$a(s.asm.__wasm_call_ctors),xd("wasm-instantiate")}rg("wasm-instantiate");function de(Ve){te(Ve.instance)}function Se(Ve){return ig().then(function(We){return WebAssembly.instantiate(We,G)}).then(function(We){return We}).then(Ve,function(We){F("failed to asynchronously prepare wasm: "+We),Ns(We)})}function Ze(){return!Z&&typeof WebAssembly.instantiateStreaming=="function"&&!vd(bn)&&!Ts(bn)&&typeof fetch=="function"?fetch(bn,{credentials:"same-origin"}).then(function(Ve){var We=WebAssembly.instantiateStreaming(Ve,G);return We.then(de,function(Lt){return F("wasm streaming compile failed: "+Lt),F("falling back to ArrayBuffer instantiation"),Se(de)})}):Se(de)}if(s.instantiateWasm)try{var nt=s.instantiateWasm(G,te);return nt}catch(Ve){return F("Module.instantiateWasm callback failed with error: "+Ve),!1}return Ze().catch(o),{}}var j0,q0;function ap(G){for(;G.length>0;){var te=G.shift();if(typeof te=="function"){te(s);continue}var de=te.func;typeof de=="number"?te.arg===void 0?rp(de)():rp(de)(te.arg):de(te.arg===void 0?null:te.arg)}}function Br(G){return G}function wd(G){var te=/\b_Z[\w\d_]+/g;return G.replace(te,function(de){var Se=de;return de===Se?de:Se+" ["+de+"]"})}var Fa=[];function rp(G){var te=Fa[G];return te||(G>=Fa.length&&(Fa.length=G+1),Fa[G]=te=Lr.get(G)),te}function K0(){var G=new Error;if(!G.stack){try{throw new Error}catch(te){G=te}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function Fo(G,te){Lr.set(G,te),Fa[G]=te}function lg(){Ns("")}function sp(){return 2147483648}function kd(G,te,de){Jt.copyWithin(G,te,te+de)}function xn(G){try{return ae.grow(G-Fn.byteLength+65535>>>16),Ss(ae.buffer),1}catch(te){}}function Id(G){var te=Jt.length;G=G>>>0;var de=sp();if(G>de)return!1;for(var Se=1;Se<=4;Se*=2){var Ze=te*(1+.2/Se);Ze=Math.min(Ze,G+100663296);var nt=Math.min(de,Yt(Math.max(G,Ze),65536)),Ve=xn(nt);if(Ve)return!0}return!1}var Do={mappings:{},buffers:[null,[],[]],printChar:function(G,te){var de=Do.buffers[G];te===0||te===10?((G===1?P:F)(je(de,0)),de.length=0):de.push(te)},varargs:void 0,get:function(){Do.varargs+=4;var G=Gt[Do.varargs-4>>2];return G},getStr:function(G){var te=st(G);return te},get64:function(G,te){return G}};function ug(G){return 0}function X0(G,te,de,Se,Ze){}function Y0(G,te,de,Se){for(var Ze=0,nt=0;nt<de;nt++){var Ve=Gt[te>>2],We=Gt[te+4>>2];te+=8;for(var Lt=0;Lt<We;Lt++)Do.printChar(G,Jt[Ve+Lt]);Ze+=We}return Gt[Se>>2]=Ze,0}function pg(G){re(G)}var Sd=!1,Ro={abort:lg,emscripten_get_heap_max:sp,emscripten_memcpy_big:kd,emscripten_resize_heap:Id,fd_close:ug,fd_seek:X0,fd_write:Y0,setTempRet0:pg},kA=og(),J0=s.___wasm_call_ctors=function(){return(J0=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},cg=s._init=function(){return(cg=s._init=s.asm.init).apply(null,arguments)},dg=s._init_with_threads_count=function(){return(dg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Nd=s._get_threads_count=function(){return(Nd=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Td=s._register_tensor=function(){return(Td=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},hg=s._dispose_data=function(){return(hg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Ee=s._dispose=function(){return(Ee=s._dispose=s.asm.dispose).apply(null,arguments)},mg=s._Abs=function(){return(mg=s._Abs=s.asm.Abs).apply(null,arguments)},Cd=s._Add=function(){return(Cd=s._Add=s.asm.Add).apply(null,arguments)},Cs=s._AddN=function(){return(Cs=s._AddN=s.asm.AddN).apply(null,arguments)},Mo=s._All=function(){return(Mo=s._All=s.asm.All).apply(null,arguments)},fg=s._Any=function(){return(fg=s._Any=s.asm.Any).apply(null,arguments)},Z0=s._ArgMax=function(){return(Z0=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},gg=s._AvgPool=function(){return(gg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Q0=s._BatchMatMul=function(){return(Q0=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Es=s._Ceil=function(){return(Es=s._Ceil=s.asm.Ceil).apply(null,arguments)},yg=s._ClipByValue=function(){return(yg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},bg=s._Conv2D=function(){return(bg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},xg=s._Conv2DBackpropInput=function(){return(xg=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},vg=s._Cos=function(){return(vg=s._Cos=s.asm.Cos).apply(null,arguments)},wg=s._Cosh=function(){return(wg=s._Cosh=s.asm.Cosh).apply(null,arguments)},kg=s._CropAndResize=function(){return(kg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Ed=s._Cumsum=function(){return(Ed=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ig=s._DepthToSpace=function(){return(Ig=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Sg=s._DepthwiseConv2dNative=function(){return(Sg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Ng=s._Elu=function(){return(Ng=s._Elu=s.asm.Elu).apply(null,arguments)},Tg=s._Equal=function(){return(Tg=s._Equal=s.asm.Equal).apply(null,arguments)},Cg=s._Exp=function(){return(Cg=s._Exp=s.asm.Exp).apply(null,arguments)},_d=s._FlipLeftRight=function(){return(_d=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Eg=s._Floor=function(){return(Eg=s._Floor=s.asm.Floor).apply(null,arguments)},_g=s._FloorDiv=function(){return(_g=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},_s=s._FusedBatchNorm=function(){return(_s=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},ip=s._FusedConv2D=function(){return(ip=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Ag=s._FusedDepthwiseConv2D=function(){return(Ag=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},$g=s._Gather=function(){return($g=s._Gather=s.asm.Gather).apply(null,arguments)},Fg=s._GatherNd=function(){return(Fg=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Ue=s._Greater=function(){return(Ue=s._Greater=s.asm.Greater).apply(null,arguments)},Dg=s._GreaterEqual=function(){return(Dg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Rg=s._LeakyRelu=function(){return(Rg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Mg=s._Less=function(){return(Mg=s._Less=s.asm.Less).apply(null,arguments)},Pg=s._LessEqual=function(){return(Pg=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Og=s._Log=function(){return(Og=s._Log=s.asm.Log).apply(null,arguments)},Lg=s._LogicalAnd=function(){return(Lg=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},op=s._Max=function(){return(op=s._Max=s.asm.Max).apply(null,arguments)},Ad=s._MaxPool=function(){return(Ad=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},$d=s._Maximum=function(){return($d=s._Maximum=s.asm.Maximum).apply(null,arguments)},zg=s._Mean=function(){return(zg=s._Mean=s.asm.Mean).apply(null,arguments)},Bg=s._Min=function(){return(Bg=s._Min=s.asm.Min).apply(null,arguments)},Wg=s._Minimum=function(){return(Wg=s._Minimum=s.asm.Minimum).apply(null,arguments)},Ug=s._MirrorPad=function(){return(Ug=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Vg=s._Multiply=function(){return(Vg=s._Multiply=s.asm.Multiply).apply(null,arguments)},Gg=s._Neg=function(){return(Gg=s._Neg=s.asm.Neg).apply(null,arguments)},Ct=s._NonMaxSuppressionV3=function(){return(Ct=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Hg=s._NonMaxSuppressionV4=function(){return(Hg=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},jg=s._NonMaxSuppressionV5=function(){return(jg=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},qg=s._NotEqual=function(){return(qg=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Po=s._OneHot=function(){return(Po=s._OneHot=s.asm.OneHot).apply(null,arguments)},Fd=s._PadV2=function(){return(Fd=s._PadV2=s.asm.PadV2).apply(null,arguments)},Dd=s._Pow=function(){return(Dd=s._Pow=s.asm.Pow).apply(null,arguments)},Rd=s._Prelu=function(){return(Rd=s._Prelu=s.asm.Prelu).apply(null,arguments)},Kg=s._Prod=function(){return(Kg=s._Prod=s.asm.Prod).apply(null,arguments)},Md=s._RealDiv=function(){return(Md=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Xg=s._Relu=function(){return(Xg=s._Relu=s.asm.Relu).apply(null,arguments)},e1=s._Relu6=function(){return(e1=s._Relu6=s.asm.Relu6).apply(null,arguments)},Pd=s._ResizeBilinear=function(){return(Pd=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},t1=s._Reverse=function(){return(t1=s._Reverse=s.asm.Reverse).apply(null,arguments)},Yg=s._RotateWithOffset=function(){return(Yg=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Jg=s._Round=function(){return(Jg=s._Round=s.asm.Round).apply(null,arguments)},Zg=s._Rsqrt=function(){return(Zg=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Qg=s._ScatterNd=function(){return(Qg=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},ey=s._SelectV2=function(){return(ey=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},ty=s._Sigmoid=function(){return(ty=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},ny=s._Sin=function(){return(ny=s._Sin=s.asm.Sin).apply(null,arguments)},ay=s._Softmax=function(){return(ay=s._Softmax=s.asm.Softmax).apply(null,arguments)},ry=s._SparseFillEmptyRows=function(){return(ry=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},sy=s._SparseReshape=function(){return(sy=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},iy=s._SparseSegmentReduction=function(){return(iy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},oy=s._Sqrt=function(){return(oy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},ly=s._Square=function(){return(ly=s._Square=s.asm.Square).apply(null,arguments)},uy=s._SquaredDifference=function(){return(uy=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},py=s._Step=function(){return(py=s._Step=s.asm.Step).apply(null,arguments)},cy=s._StridedSlice=function(){return(cy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},dy=s._Sub=function(){return(dy=s._Sub=s.asm.Sub).apply(null,arguments)},hy=s._Sum=function(){return(hy=s._Sum=s.asm.Sum).apply(null,arguments)},my=s._Tan=function(){return(my=s._Tan=s.asm.Tan).apply(null,arguments)},fy=s._Tanh=function(){return(fy=s._Tanh=s.asm.Tanh).apply(null,arguments)},gy=s._Tile=function(){return(gy=s._Tile=s.asm.Tile).apply(null,arguments)},yy=s._TopK=function(){return(yy=s._TopK=s.asm.TopK).apply(null,arguments)},by=s._Transform=function(){return(by=s._Transform=s.asm.Transform).apply(null,arguments)},xy=s._Transpose=function(){return(xy=s._Transpose=s.asm.Transpose).apply(null,arguments)},vy=s.__FusedMatMul=function(){return(vy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},wy=s._malloc=function(){return(wy=s._malloc=s.asm.malloc).apply(null,arguments)},ky=s._free=function(){return(ky=s._free=s.asm.free).apply(null,arguments)},Iy=s.___errno_location=function(){return(Iy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Sy=s._emscripten_main_thread_process_queued_calls=function(){return(Sy=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Od=s.stackSave=function(){return(Od=s.stackSave=s.asm.stackSave).apply(null,arguments)},Ld=s.stackRestore=function(){return(Ld=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},lp=s.stackAlloc=function(){return(lp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Ny=s.dynCall_iijjiiii=function(){return(Ny=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Ty=s.dynCall_jiji=function(){return(Ty=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=_e;var Oo;function up(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}zr=function G(){Oo||pp(),Oo||(zr=G)};function pp(G){if(G=G||p,ia>0||(md(),ia>0))return;function te(){Oo||(Oo=!0,s.calledRun=!0,!le&&(fd(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),gd()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=pp;function n1(G){ue=G,tp()||(s.onExit&&s.onExit(G),le=!0),c(G,new up(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();pp();var Lo;l&&(Lo={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var zo;if(typeof r!="undefined")zo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")zo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Lo){var Cy=zo._dispose;zo._dispose=function(){Cy(),Lo.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),Lo.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Gh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},qp=class{refCount(e){return la("refCount")}incRef(e){return la("incRef")}timerAvailable(){return!0}time(e){return la("time")}read(e){return la("read")}readSync(e){return la("readSync")}readToGPU(e,t){return la("readToGPU")}numDataIds(){return la("numDataIds")}disposeData(e,t){return la("disposeData")}write(e,t,n){return la("write")}move(e,t,n,a,r){return la("move")}memory(){return la("memory")}floatPrecision(){return la("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return la("dispose")}};function la(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Uk(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,fh(e,t,n)}function j$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,fh(e,n,a),fh(t,n,a)}function $p(e,t,n){return Math.max(e,Math.min(t,n))}function q$(e){return e%2===0?e:e+1}function fh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function K$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function X$(e,t){let n=Math.random();return t*n+(1-n)*e}function Y$(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function R(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Nn(e,t,n=""){R(os(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ui(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Hs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||cn(e)&&!n)for(let a=0;a<e.length;++a)Hs(e[a],t,n);else t.push(e);return t}function xt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function J$(e){return e.length===0}function os(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function el(e){return e%1===0}function Z$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function Q$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function eF(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Uk(t),t}function Cp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function tF(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function nF(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Na(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>el(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function Vk(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Na(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function Gk(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Hk(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function jk(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function qk(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function aF(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Yy(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Kk(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Hr(e){return typeof e=="string"||e instanceof String}function Xk(e){return typeof e=="boolean"}function Yk(e){return typeof e=="number"}function Hh(e){return Array.isArray(e)?Hh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":Yk(e)?"float32":Hr(e)?"string":Xk(e)?"bool":"float32"}function Jr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function gh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function ml(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Jk(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=Jk(e+l*o,i,n,a)}return r}function Xo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Jk(0,e,t,n)}function Yb(e,t){let n=jh(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function jh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function rF(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Xo(e,new Float32Array(n));if(t==="int32")return Xo(e,new Int32Array(n));if(t==="bool")return Xo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Jb(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function sF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function iF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Zb(e){return e&&e.then&&typeof e.then=="function"}var d1="tfjsflags",Zk=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=oF,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Zb(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);d1 in e&&e[d1].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=uF(n,a)})}};function oF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(lF(t,a[0],a[1]),a.join("="))),t}function lF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function uF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Qb}var Qb=null;function pF(e){Qb=e}var My;function Qk(){if(My==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");My=e}return My}function cF(){let e=Qk();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ex(e,t){let n=cF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var fl="Abs",gl="Acos",yl="Acosh",ls="Add",pi="AddN",bl="All",xl="Any",ci="ArgMax",Kp="ArgMin",vl="Asin",wl="Asinh",kl="Atan",Il="Atanh",Sl="Atan2",di="AvgPool",qh="AvgPoolGrad",Xp="AvgPool3D",Kh="AvgPool3DGrad",hi="BatchMatMul",Nl="BatchToSpaceND",Xh="Bincount",eI="BroadcastTo",Yh="BroadcastArgs",mi="Cast",fi="Ceil",us="ClipByValue",Jh="Complex",Yp="ComplexAbs",Tl="Concat",gi="Conv2D",Zh="Conv2DBackpropFilter",yi="Conv2DBackpropInput",Jp="Conv3D",Qh="Conv3DBackpropFilterV2",em="Conv3DBackpropInputV2",bi="Cos",xi="Cosh",vi="Cumsum",Cl="CropAndResize",tm="DenseBincount",El="DepthToSpace",wi="DepthwiseConv2dNative",nm="DepthwiseConv2dNativeBackpropFilter",am="DepthwiseConv2dNativeBackpropInput",rm="Diag",Zp="Dilation2D",yh="Dilation2DBackpropInput",bh="Dilation2DBackpropFilter",ki="RealDiv",sm="Einsum",Ii="Elu",im="EluGrad",_l="Erf",Al="Equal",Si="Exp",$l="ExpandDims",Fl="Expm1",om="FFT",Qp="Fill",Dl="FlipLeftRight",Ni="Floor",Ti="FloorDiv",Ci="FusedBatchNorm",Rl="GatherV2",Ml="GatherNd",Pl="Greater",Ei="GreaterEqual",_i="Identity",lm="IFFT",um="Imag",Ol="IsFinite",Ll="IsInf",zl="IsNan",Ai="LeakyRelu",Bl="Less",Wl="LessEqual",pm="LinSpace",$i="Log",Ul="Log1p",Vl="LogicalAnd",ec="LogicalNot",tc="LogicalOr",tI="LogSoftmax",nc="LRN",cm="LRNGrad",Fi="Max",Di="Maximum",Ri="MaxPool",dm="MaxPoolGrad",ac="MaxPool3D",hm="MaxPool3DGrad",mm="MaxPoolWithArgmax",Mi="Mean",Pi="Min",Oi="Minimum",Li="MirrorPad",Gl="Mod",fm="Multinomial",zi="Multiply",Hl="Neg",jl="NotEqual",ql="NonMaxSuppressionV3",Kl="NonMaxSuppressionV4",Xl="NonMaxSuppressionV5",Yl="OnesLike",Bi="OneHot",Jl="Pack",Wi="PadV2",dF="Pool",Ui="Pow",Vi="Prelu",Zl="Prod",rc="Range",gm="Real",Ql="Reciprocal",Gi="Relu",eu="Reshape",sc="ResizeNearestNeighbor",ym="ResizeNearestNeighborGrad",Hi="ResizeBilinear",bm="ResizeBilinearGrad",ji="Relu6",qi="Reverse",Ki="Round",Xi="Rsqrt",tu="ScatterNd",nu="Select",au="Selu",ru="Slice",Yi="Sin",su="Sinh",iu="Sign",Ji="Sigmoid",ou="Softplus",Zi="Sqrt",Qi="Sum",lu="SpaceToBatchND",uu="SplitV",eo="Softmax",ic="SparseFillEmptyRows",pu="SparseReshape",oc="SparseSegmentMean",lc="SparseSegmentSum",xm="SparseToDense",to="SquaredDifference",uc="Square",cu="StridedSlice",vm="StringNGrams",wm="StringSplit",km="StringToHashBucketFast",no="Sub",ao="Tan",ro="Tanh",ps="Tile",du="TopK",hu="Transform",so="Transpose",Im="Unique",mu="Unpack",pc="UnsortedSegmentSum",fu="ZerosLike",cs="Step",xh="FromPixels",gu="RotateWithOffset",js="_FusedMatMul",qs="FusedConv2D",Ks="FusedDepthwiseConv2D";function Gr(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function hF(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var tl=ex("kernelRegistry",()=>new Map),Fp=ex("gradRegistry",()=>new Map);function vh(e,t){let n=tx(e,t);return tl.get(n)}function Jy(e){return Fp.get(e)}function wh(e){let t=tl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function cc(e){let{kernelName:t,backendName:n}=e,a=tx(t,n);tl.has(a)&&Gr(`The kernel '${t}' for backend '${n}' is already registered`),tl.set(a,e)}function nI(e){let{kernelName:t}=e;Fp.has(t)&&Y().getBool("DEBUG")&&Gr(`Overriding the gradient for '${t}'`),Fp.set(t,e)}function mF(e,t){let n=tx(e,t);if(!tl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);tl.delete(n)}function fF(e){if(!Fp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Fp.delete(e)}function gF(e,t){wh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});cc(a)})}function tx(e,t){return`${t}_${e}`}var k={};Re(k,{arraysEqual:()=>os,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Jb,assertNonNull:()=>ui,assertShapesMatch:()=>Nn,bytesFromStringArray:()=>Kk,bytesPerElement:()=>Yy,checkConversionForErrors:()=>jk,clamp:()=>$p,computeStrides:()=>ml,createScalarValue:()=>kF,createShuffledIndices:()=>eF,decodeString:()=>kh,distSquared:()=>Y$,encodeString:()=>hc,fetch:()=>SF,fingerPrint64:()=>wF,flatten:()=>Hs,getArrayFromDType:()=>Hk,getTypedArrayFromDType:()=>Gk,hasEncodingLoss:()=>aF,hexToLong:()=>dc,indexToLoc:()=>iF,inferDtype:()=>Hh,inferFromImplicitShape:()=>nF,isBoolean:()=>Xk,isFunction:()=>Jr,isInt:()=>el,isNumber:()=>Yk,isPromise:()=>Zb,isScalarShape:()=>J$,isString:()=>Hr,isTypedArray:()=>cn,isValidDtype:()=>qk,locToIndex:()=>sF,makeOnesTypedArray:()=>Yb,makeZerosNestedTypedArray:()=>rF,makeZerosTypedArray:()=>jh,nearestDivisor:()=>gh,nearestLargerEven:()=>q$,now:()=>Dp,parseAxisParam:()=>Na,randUniform:()=>X$,repeatedTry:()=>tF,rightPad:()=>Cp,shuffle:()=>Uk,shuffleCombo:()=>j$,sizeFromShape:()=>xt,sizeToSquarishShape:()=>Q$,squeezeShape:()=>Vk,sum:()=>K$,swap:()=>fh,tanh:()=>Z$,toNestedArray:()=>Xo,toTypedArray:()=>Sm});var h1=li(S$()),Ms=h1.default||h1;function dc(e){return Ms.fromString(e,!0,16)}var aI=dc("c3a5c85c97cb3127"),Ds=dc("b492b66fbe98f273"),vn=dc("9ae16a3b2f90404f");function Zy(e){return e.xor(e.shru(47))}function rI(e,t,n){let a=e.slice(t,t+n);return Ms.fromBytes(Array.from(a),!0,!0)}function yt(e,t){return rI(e,t,8)}function m1(e,t){return rI(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Kr(e,t,n=dc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function yF(e,t,n,a,r,s){r=r.add(e),s=Zt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Zt(r,44)),[r.add(a),s.add(i)]}function jd(e,t,n,a){return yF(yt(e,t),yt(e,t+8),yt(e,t+16),yt(e,t+24),n,a)}function bF(e,t=e.length){if(t>=8){let n=vn.add(t*2),a=yt(e,0).add(vn),r=yt(e,t-8),s=Zt(r,37).mul(n).add(a),i=Zt(a,25).add(r).mul(n);return Kr(s,i,n)}if(t>=4){let n=vn.add(t*2),a=m1(e,0);return Kr(a.shl(3).add(t),m1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Zy(vn.mul(s).xor(aI.mul(i))).mul(vn)}return vn}function xF(e,t=e.length){let n=vn.add(t*2),a=yt(e,0).mul(Ds),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(vn);return Kr(Zt(a.add(r),43).add(Zt(s,30)).add(i),a.add(Zt(r.add(vn),18)).add(s),n)}function vF(e,t=e.length){let n=vn.add(t*2),a=yt(e,0).mul(vn),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(vn),o=Zt(a.add(r),43).add(Zt(s,30)).add(i),l=Kr(o,a.add(Zt(r.add(vn),18)).add(s),n),u=yt(e,16).mul(n),p=yt(e,24),d=o.add(yt(e,t-32)).mul(n),c=l.add(yt(e,t-24)).mul(n);return Kr(Zt(u.add(p),43).add(Zt(d,30)).add(c),u.add(Zt(p.add(a),18)).add(d),n)}function wF(e,t=e.length){let n=Ms.fromNumber(81,!0);if(t<=32)return t<=16?bF(e,t):xF(e,t);if(t<=64)return vF(e,t);let a=n,r=n.mul(Ds).add(113),s=Zy(r.mul(vn).add(113)).mul(vn),i=[Ms.UZERO,Ms.UZERO],o=[Ms.UZERO,Ms.UZERO];a=a.mul(vn).add(yt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(Ds),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(Ds),a=a.xor(o[1]),r=r.add(i[0]).add(yt(e,l+40)),s=Zt(s.add(o[0]),33).mul(Ds),i=jd(e,l,i[1].mul(Ds),a.add(o[0])),o=jd(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Ds.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(d),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(yt(e,l+40))),s=Zt(s.add(o[0]),33).mul(d),i=jd(e,l,i[1].mul(d),a.add(o[0])),o=jd(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],Kr(Kr(i[0],o[0],d).add(Zy(r).mul(aI)).add(s),Kr(i[1],o[1],d).add(a),d)}function kF(e,t){return t==="string"?hc(e):Sm([e],t)}function IF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Sm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Hs(e)),Y().getBool("DEBUG")&&jk(e,t),IF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Dp(){return Y().platform.now()}function SF(e,t){return Y().platform.fetch(e,t)}function hc(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function kh(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var NF=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new CF)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Dp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Dp()-i})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{TF(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function TF(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var CF=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Cp(`${a}ms`,9):a.error,o=Cp(e,25),l=t.rank,u=t.size,p=Cp(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function EF(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function _F(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!os(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var f1=20,hp=3,Py=7;function AF(e,t,n,a){let r=ml(t),s=$F(e,t,n,r),i=t.length,o=ah(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function $F(e,t,n,a){let r=xt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?bp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],yp(l[p+d],0,n).length)}return i}function yp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Py))} + ${parseFloat(e[1].toFixed(Py))}j`:Hr(e)?a=`'${e}'`:n==="bool"?a=sI(e):a=parseFloat(e.toFixed(Py)).toString(),Cp(a,t)}function sI(e){return e===0?"false":"true"}function ah(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=bp(e);return[yp(f[0],0,n)]}return n==="bool"?[sI(e[0])]:[e[0].toString()]}if(l===1){if(o>f1){let g=hp*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-hp)*i,o*i));return n==="complex64"&&(y=bp(y),b=bp(b)),["["+y.map((x,v)=>yp(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>yp(x,r[o-hp+v],n)).join(", ")+"]"]}let f=n==="complex64"?bp(e):Array.from(e);return["["+f.map((g,y)=>yp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>f1){for(let f=0;f<hp;f++){let g=f*d,y=g+d;c.push(...ah(e.slice(g,y),u,n,p,r,!1))}c.push("...");for(let f=o-hp;f<o;f++){let g=f*d,y=g+d;c.push(...ah(e.slice(g,y),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,y=g+d;c.push(...ah(e.slice(g,y),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function bp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=xt(e),n!=null){let a=n.length;R(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Hk(t,this.size),this.strides=ml(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Oa().makeTensor(this.values,this.shape,this.dtype)}},Oa=null,jo=null,FF=null;function DF(e){Oa=e}function RF(e){jo=e}function MF(e){FF=e}var Ae=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=xt(e),this.strides=ml(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return jo.buffer(this.shape,this.dtype,e)}bufferSync(){return jo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Xo(this.shape,e,this.dtype==="complex64")}arraySync(){return Xo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Oa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>kh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Oa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Oa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>kh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Oa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Oa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return jo.print(this,e)}clone(){return this.throwIfDisposed(),jo.clone(this)}toString(e=!1){let t=this.dataSync();return AF(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),jo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Oa().makeVariable(this,e,t,n)}};Object.defineProperty(Ae,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ne(){return ex("Tensor",()=>Ae)}ne();var Zr=class extends Ae{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!os(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Oa().disposeTensor(this),this.dataId=e.dataId,Oa().incRef(this,null)}dispose(){Oa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Zr,Symbol.hasInstance,{value:e=>e instanceof Ae&&e.assign!=null&&e.assign instanceof Function});var Wa={};Re(Wa,{assertTypesMatch:()=>iI,getTensorsInContainer:()=>nx,isTensorInList:()=>OF,makeTypesMatch:()=>$t});var Qy;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Qy||(Qy={}));var eb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(eb||(eb={}));var tb;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(tb||(tb={}));var nb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(nb||(nb={}));var ab;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(ab||(ab={}));var PF={float32:nb,int32:eb,bool:tb,complex64:ab};function Ia(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return PF[e][t]}function Nm(e){return Ia(e,"int32")}function $t(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ia(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function iI(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function OF(e,t){return t.some(n=>n.id===e.id)}function nx(e){let t=[];return oI(e,t,new Set),t}function oI(e,t,n){if(e==null)return;if(e instanceof Ae){t.push(e);return}if(!LF(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),oI(s,t,n))}}function LF(e){return Array.isArray(e)||typeof e=="object"}function Oy(e){return e.kernelName!=null}var g1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Rp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new g1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Gr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new NF(this.backendInstance),!0}setupRegisteredKernels(){wh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){wh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof qp)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Gr(`Initialization of backend ${e} failed`),Gr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Gr(`Initialization of backend ${e} failed`),Gr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Rp.nextTensorId++}nextVariableId(){return Rp.nextVariableId++}clone(e){let t=L.runKernel(_i,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernel(mi,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,vh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Oy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Oy(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=vh(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:T,dtype:C}=v;return this.makeTensorFromDataId(w,T,C)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=Oy(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Jy(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Hr(e[0])&&(r=e.map(o=>hc(o)));let s=a.write(r,t,n),i=new Ae(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Kk(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ae(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Zr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Yy(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Zr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Yy(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Jy(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=jh(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=nx(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(r instanceof Ae,()=>"The result y returned by f() must be a tensor.");let s=EF(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?zF(r.shape):n,_F(i,s,l=>this.tidy(l),BF);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return R(Jr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(i=>i instanceof Ae),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),R(n.value instanceof Ae,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(Jr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];R(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(u.every(d=>d instanceof Ae),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Dp(),n=await this.backend.time(e);return n.wallMs=Dp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new g1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Rp.nextTensorId=0;Rp.nextVariableId=0;function zF(e){let t=Yb(xt(e),"float32");return L.makeTensor(t,e,"float32")}function lI(){let e=Qk();if(e._tfengine==null){let t=new Zk(e);e._tfengine=new Rp(t)}return pF(e._tfengine.ENV),DF(()=>e._tfengine),e._tfengine}var L=lI();function BF(e,t){let n={a:e,b:t};return L.runKernel(ls,n)}var mc={};Re(mc,{isBrowser:()=>uI,isMobile:()=>VF,mockIsMobile:()=>UF});function WF(){return typeof navigator!="undefined"&&navigator!=null}var rb;function UF(e){rb=e}function VF(e){if(rb!==void 0)return rb;if(e||WF()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function uI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ha=Y();Ha.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ha.registerFlag("IS_BROWSER",()=>uI());Ha.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ha.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ha.registerFlag("PROD",()=>!1);Ha.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ha.getBool("DEBUG"));Ha.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ha.registerFlag("IS_TEST",()=>!1);Ha.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ha.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function lr(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&pI(e,a,[]),a}function pI(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)pI(e[r],a,n.concat(r))}function y1(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function A(e,t,n,a="numeric"){if(e instanceof Ae)return y1(a,e.dtype,t,n),e;let r=Hh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),y1(a,r,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=lr(e,r);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Sm(e,r):Hs(e,[],!0);return L.makeTensor(i,s,r)}function Mp(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>A(r,`${t}[${s}]`,n,a))}var cI="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+cI;let r=(...s)=>{L.startScope(n);try{let i=a(...s);return Zb(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function GF(e,t){let n=A(e,"real","complex"),a=A(t,"imag","complex");Nn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return L.runKernel(Jh,r)}var Qr=z({complex_:GF});function ds(e,t,n,a){if(a==null&&(a=Hh(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Jb(t);let r=xt(t),s=xt(n);R(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==xt(t.slice(i)):!0;R(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Sm(e,a):Hs(e,[],!0),L.makeTensor(e,t,a)}function Yn(e,t,n){let a=lr(e,n);return ds(e,t,a,n)}var sb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Ih=4;async function HF(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+Ih*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=Ih,m.set(y,f),f+=y.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:jF(s),specs:n}}function dI(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=xt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=sb[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=ZF()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=xt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Ih))[0];r+=Ih;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=sb[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<h.length;y++)h[y]=p[y*2],m[y]=p[y*2+1];let f=Yn(h,l,"float32"),g=Yn(m,l,"float32");n[i]=Qr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=Yn(p,l,o))}return n}function jF(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var ax=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function b1(e){return ax?Buffer.byteLength(e):new Blob([e]).size}function qF(e){if(ax)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function KF(e){if(ax){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function rx(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function x1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function hI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function sx(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function fc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:b1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:b1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XF(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function YF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function JF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function ZF(){let e=XF(),t=YF(),n=JF();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},QF=e=>Ft.registerSaveRouter(e),eD=e=>Ft.registerLoadRouter(e),tD=e=>Ft.getSaveHandlers(e),nD=(e,t)=>Ft.getLoadHandlers(e,t),ib="tensorflowjs",ob=1,zs="models_store",jr="model_info_store";function mI(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function lb(e){let t=e.result;t.createObjectStore(zs,{keyPath:"modelPath"}),t.createObjectStore(jr,{keyPath:"modelPath"})}var Xs=class{constructor(e){if(this.indexedDB=mI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(ib,ob);r.onupgradeneeded=()=>lb(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(zs,"readonly"),o=i.objectStore(zs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=fc(t),o=s.transaction(jr,"readwrite"),l=o.objectStore(jr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(zs,"readwrite");let d=p.objectStore(zs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(jr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};Xs.URL_SCHEME="indexeddb://";var fI=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Xs.URL_SCHEME)?aD(e.slice(Xs.URL_SCHEME.length)):null;Ft.registerSaveRouter(fI);Ft.registerLoadRouter(fI);function aD(e){return new Xs(e)}function rD(e){return e.startsWith(Xs.URL_SCHEME)?e.slice(Xs.URL_SCHEME.length):e}var sD=class{constructor(){this.indexedDB=mI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(ib,ob);n.onupgradeneeded=()=>lb(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(jr,"readonly"),s=r.objectStore(jr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=rD(e),new Promise((t,n)=>{let a=this.indexedDB.open(ib,ob);a.onupgradeneeded=()=>lb(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(jr,"readwrite"),i=s.objectStore(jr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(zs,"readwrite");let d=l.objectStore(zs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},kr="/",qo="tensorflowjs_models",gI="info",iD="model_topology",oD="weight_specs",lD="weight_data",uD="model_metadata";function yI(e){return{info:[qo,e,gI].join(kr),topology:[qo,e,iD].join(kr),weightSpecs:[qo,e,oD].join(kr),weightData:[qo,e,lD].join(kr),modelMetadata:[qo,e,uD].join(kr)}}function bI(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function pD(e){let t=e.split(kr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(kr)}function cD(e){return e.startsWith(Ys.URL_SCHEME)?e.slice(Ys.URL_SCHEME.length):e}var Ys=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=yI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=fc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,qF(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw bI(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=KF(s),t}};Ys.URL_SCHEME="localstorage://";var xI=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ys.URL_SCHEME)?dD(e.slice(Ys.URL_SCHEME.length)):null;Ft.registerSaveRouter(xI);Ft.registerLoadRouter(xI);function dD(e){return new Ys(e)}var hD=class{constructor(){R(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=qo+kr,n=kr+gI;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=pD(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=cD(e);let t=yI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return bI(t),n}},Yo="://",ua=class{constructor(){this.managers={}}static getInstance(){return ua.instance==null&&(ua.instance=new ua),ua.instance}static registerManager(e,t){R(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Yo)&&(e=e.slice(0,e.indexOf(Yo))),R(e.length>0,()=>"scheme must not be an empty string.");let n=ua.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function rh(e){if(e.indexOf(Yo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ua.getSchemes().join(",")}`);return{scheme:e.split(Yo)[0],path:e.split(Yo)[1]}}async function vI(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Ft.getLoadHandlers(e);R(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Ft.getSaveHandlers(t);R(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=rh(e).scheme,l=rh(e).path,u=o===rh(e).scheme,p=await r.load();n&&u&&await ua.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await ua.getManager(o).removeModel(l),d.modelArtifactsInfo}async function mD(){let e=ua.getSchemes(),t={};for(let n of e){let a=await ua.getManager(n).listModels();for(let r in a){let s=n+Yo+r;t[s]=a[r]}}return t}async function fD(e){let t=rh(e);return ua.getManager(t.scheme).removeModel(t.path)}async function gD(e,t){return vI(e,t,!1)}async function yD(e,t){return vI(e,t,!0)}var bD=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new bD);try{ua.registerManager(Ys.URL_SCHEME,new hD)}catch(e){}try{ua.registerManager(Xs.URL_SCHEME,new sD)}catch(e){}}var xD={importFetch:()=>N$()},Ly,vD=class{constructor(){this.util=T$(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Ly==null&&(Ly=xD.importFetch()),Ly(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&!Y().get("IS_BROWSER")&&Y().setPlatform("node",new vD);function He(e,t="float32",n){return t=t||"float32",Jb(e),new jt(e,t,n)}function wD(e,t){let n=A(e,"x","cast");if(!qk(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return L.runKernel(mi,a,r)}var oe=z({cast_:wD});function kD(e){let t={x:A(e,"x","clone","string_or_numeric")};return L.runKernel(_i,t)}var Sr=z({clone_:kD});function wI(e,t=!1){console.log(e.toString(t))}lI();var ID={buffer:He,cast:oe,clone:Sr,print:wI};RF(ID);var Qt={};Re(Qt,{browserFiles:()=>AD,browserHTTPRequest:()=>MD,concatenateArrayBuffers:()=>rx,copyModel:()=>gD,decodeWeights:()=>dI,encodeWeights:()=>HF,fromMemory:()=>OD,getLoadHandlers:()=>nD,getModelArtifactsForJSON:()=>sx,getModelArtifactsInfoForJSON:()=>fc,getSaveHandlers:()=>tD,http:()=>ox,isHTTPScheme:()=>ub,listModels:()=>mD,loadWeights:()=>$D,moveModel:()=>yD,registerLoadRouter:()=>eD,registerSaveRouter:()=>QF,removeModel:()=>fD,weightsLoaderFactory:()=>II,withSaveHandler:()=>LD});var SD="model",ND=".json",TD=".weights.bin";function v1(e){return new Promise(t=>setTimeout(t)).then(e)}var nl=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(nl.URL_SCHEME)&&(e=e.slice(nl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=SD),this.modelJsonFileName=e+ND,this.weightDataFileName=e+TD}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=hI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await v1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await v1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:fc(e)}}}};nl.URL_SCHEME="downloads://";var CD=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=sx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,rx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>x1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=x1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},ED=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nl.URL_SCHEME)?_D(e.slice(nl.URL_SCHEME.length)):null;Ft.registerSaveRouter(ED);function _D(e="model"){return new nl(e)}function AD(e){return new CD(e)}function w1(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){R(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),R(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),R(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function kI(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await w1(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await w1(i,t.onProgress,o,l)}async function $D(e,t="",n,a){return II(r=>kI(r,{requestInit:a}))(e,t,n)}function II(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=sb[y]*xt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,w)=>{v===g.name&&(x(),i[w]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(p[c+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=dI(v,[x.manifestEntry]);for(let T in w)d[T]=w[T]}),c+=m}),d}}var FD="application/octet-stream",DD="application/json",ix=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=hI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:DD}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:FD}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:fc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return sx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=RD(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await kI(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,rx(l)]}};ix.URL_SCHEME_REGEX=/^https?:\/\//;function RD(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function ub(e){return e.match(ix.URL_SCHEME_REGEX)!=null}var SI=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>ub(a)):n=ub(e),n)return ox(e,t)}return null};Ft.registerSaveRouter(SI);Ft.registerLoadRouter(SI);function ox(e,t){return new ix(e,t)}function MD(e,t){return ox(e,t)}var zy=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},PD=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function OD(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new zy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new zy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new zy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function LD(e){return new PD(e)}var NI={};Re(NI,{confusionMatrix:()=>VD});function zD(e,t,n=!1,a=!1){let r=A(e,"a","matMul"),s=A(t,"b","matMul");[r,s]=$t(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return L.runKernel(hi,i,o)}var Fe=z({matMul_:zD});function BD(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:A(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return L.runKernel(Bi,r,s)}var al=z({oneHot_:BD});function WD(e,t){let n=A(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{R(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return L.runKernel(so,a,r)}var Me=z({transpose_:WD});function UD(e,t,n){let a=A(e,"labels","confusionMatrix"),r=A(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),R(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),R(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=al(oe(a,"int32"),n),i=al(oe(r,"int32"),n),o=Me(s),l=Fe(o,i);return oe(l,"int32")}var VD=z({confusionMatrix_:UD}),yu={};Re(yu,{assertAndGetBroadcastShape:()=>ct,getBroadcastDims:()=>TI,getReductionAxes:()=>Wt});function TI(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ct(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var io={};Re(io,{fromPixels:()=>YD,fromPixelsAsync:()=>KD,toPixels:()=>XD});function Tm(e,t,n){if(ui(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=lr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ds(e,t,a,n)}var $s;function CI(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(vh(xh,L.backendName)!=null){let c={pixels:e},h={numChannels:t};return L.runKernel(xh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if($s==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")$s=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else $s=document.createElement("canvas").getContext("2d");$s.canvas.width=l,$s.canvas.height=u,$s.drawImage(e,0,0,l,u),p=$s.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Tm(d,[u,l,t],"int32")}function GD(e){return e!=null&&e.data instanceof Uint8Array}function HD(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function jD(e){return e!=null&&e.width!==0&&e.height!==0}function qD(e){return HD()&&!(e instanceof ImageBitmap)&&jD(e)&&!GD(e)}async function KD(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&qD(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return CI(n,t)}async function XD(e,t){let n=A(e,"img","toPixels");if(!(e instanceof Ae)){let u=n;n=oe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var YD=z({fromPixels_:CI}),lx={};Re(lx,{prepareAndValidate:()=>EI});function EI(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(xt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...ml(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var ux={};Re(ux,{calculateShapes:()=>_I,validateInput:()=>cx,validateUpdateShape:()=>px});function px(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function cx(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}px(n,t,e)}function _I(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=xt(t.shape)/o,u=[...ml(n.slice(0,r)),1],p=xt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var qt={};Re(qt,{assertParamsValid:()=>ZD,computeFlatOffset:()=>aR,computeOutShape:()=>eR,getNormalizedAxes:()=>tR,isSliceContinous:()=>nR,maskToAxes:()=>QD,parseSliceParams:()=>LI,sliceInfo:()=>rR,startForAxis:()=>PI,startIndicesWithElidedDims:()=>DI,stopForAxis:()=>OI,stopIndicesWithElidedDims:()=>RI,stridesForAxis:()=>MI,stridesWithElidedDims:()=>AI});var pb=-2,JD=-1;function ZD(e,t,n){let a=e.shape.length;R(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),R(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)R(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function QD(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function eR(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function AI(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function $I(e,t,n){return n<=e?n:n-(t-1)}function FI(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function tR(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=DI(i,h,m,a,e),d=RI(o,h,m,r,e),c=AI(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=PI(i,a,s,e,h,l),d[h]=OI(o,r,s,e,h,l),c[h]=MI(s,h,l);return{begin:p,end:d,strides:c}}function DI(e,t,n,a,r){let s=[...r],i=FI(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=$I(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function RI(e,t,n,a,r){let s=[...r],i=FI(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=$I(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=$p(0,s[o],r[o])}return s}function MI(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function PI(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=$p(0,i,l-1),i}function OI(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=$p(0,i,l):i=$p(-1,i,l-1),i}function nR(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function aR(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function LI(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{R(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(R(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function rR(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b<d.dims;b++)p&&(1<<b&o)!==0&&d.numAddAxisAfterEllipsis++,1<<b&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};sR(d,c);let h=!0,m=!0,f=!0,g=[],y=[];for(let b=0;b<e.length;++b){if(c.strides[b]===0)throw Error(`strides[${b}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<b),v=e[b];if(v===-1){g.push(x?1:-1);continue}let w=[c.beginMask&1<<b,c.endMask&1<<b],T=[c.strides[b]>0?0:-1,c.strides[b]>0?v:v-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let C=!!(c.beginMask&1<<b&&c.endMask&1<<b);if(c.beginValid&&c.endValid){if(x){let F=c.begin[b]<0?v+c.begin[b]:c.begin[b];if(c.begin[b]=F,c.end[b]=c.begin[b]+1,F<0||F>=v)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=k1(c.begin[b],0,c.strides[b],v,w,T),c.end[b]=k1(c.end[b],1,c.strides[b],v,w,T);let P=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===v;h=h&&P,m=m&&(b===0&&c.strides[b]===1||P)}else h=h&&c.strides[b]===1&&C,m=m&&(b===0&&c.strides[b]===1||C);let _,$=!1;if(c.beginValid&&c.endValid?(_=c.end[b]-c.begin[b],$=!0):x?(_=1,$=!0):C&&v>=0&&(c.strides[b]<0?_=-v:_=v,$=!0),$){let P;_===0||_<0!=c.strides[b]<0?P=0:P=Math.trunc(_/c.strides[b])+(_%c.strides[b]!==0?1:0),g.push(P)}else g.push(-1)}for(let b=0;b<c.finalShapeGatherIndices.length;++b){let x=c.finalShapeGatherIndices[b];x>=0?y.push(g[x]):x===pb&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==pb),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function sR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(pb),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(JD),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function k1(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var se={};Re(se,{Serializable:()=>zI,SerializationMap:()=>Ps,registerClass:()=>hs});var zI=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ps=class{constructor(){this.classNameMap={}}static getMap(){return Ps.instance==null&&(Ps.instance=new Ps),Ps.instance}static register(e){Ps.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function hs(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ps.register(e)}var BI={};Re(BI,{TEST_EPSILON_FLOAT16:()=>WI,encodeStrings:()=>UI,expectArrayBuffersEqual:()=>dR,expectArraysClose:()=>oR,expectArraysEqual:()=>uR,expectNumbersClose:()=>pR,expectPromiseToFail:()=>lR,expectValuesInRange:()=>cR,testEpsilon:()=>dx});var iR=.001,WI=.1;function oR(e,t,n){return n==null&&(n=dx()),cb(e,t,(a,r)=>hx(a,r,n))}function dx(){return L.backend.floatPrecision()===32?iR:WI}function cb(e,t,n){let a=!0;if((cn(e)||cn(t))&&(a=!1),cn(e)&&cn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=lr(e),o=lr(t);if(!os(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=cn(e)?e:Hs(e),s=cn(t)?t:Hs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function lR(e,t){e().then(()=>t.fail(),()=>t())}function uR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Hr(e)||Hr(e[0])||Hr(t)||Hr(t[0])?cb(e,n,(a,r)=>a==r):cb(e,t,(a,r)=>hx(a,r,0))}function pR(e,t,n){if(n==null&&(n=dx()),!hx(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function hx(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function cR(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function dR(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function UI(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?UI(n):e[t]=hc(n)}return e}var hR="3.14.0";function mR(){Y().set("PROD",!0)}function fR(){Y().set("DEBUG",!0)}function gR(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function mx(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}MF(mx);function yR(){L.disposeVariables()}function ar(){return L}function Sh(){return L.memory()}function bR(e){return L.profile(e)}function O(e,t){return L.tidy(e,t)}function De(e){nx(e).forEach(t=>t.dispose())}function en(e){return L.keep(e)}function xR(e){return L.time(e)}function vR(e){return L.setBackend(e)}function wR(){return L.ready()}function kR(){return L.backendName}function IR(e){L.removeBackend(e)}function SR(e){return L.findBackend(e)}function NR(e){return L.findBackendFactory(e)}function Cm(e,t,n=1){return L.registerBackend(e,t,n)}function VI(){return L.backend}function TR(e,t){Y().setPlatform(e,t)}function CR(e,t){let n=A(e,"a","add"),a=A(t,"b","add");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(ls,r)}var J=z({add_:CR});function ER(e,t){let n=A(e,"a","floorDiv"),a=A(t,"b","floorDiv");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Ti,r)}var Em=z({floorDiv_:ER});function _R(e,t){let n=A(e,"a","div"),a=A(t,"b","div");if([n,a]=$t(n,a),n.dtype==="int32"&&a.dtype==="int32")return Em(n,a);let r={a:n,b:a},s={};return L.runKernel(ki,r,s)}var fe=z({div_:_R});function AR(e,t){let n=A(e,"a","mul"),a=A(t,"b","mul");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(zi,r)}var B=z({mul_:AR});function $R(e){let t=A(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Yp,n)}else{let n={x:t};return L.runKernel(fl,n)}}var zt=z({abs_:$R});function FR(e){let t={x:A(e,"x","acos")};return L.runKernel(gl,t)}var fx=z({acos_:FR});function DR(e){let t={x:A(e,"x","acosh")};return L.runKernel(yl,t)}var gx=z({acosh_:DR});function RR(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>A(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!os(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return L.runKernel(pi,a)}var GI=z({addN_:RR});function MR(e,t=null,n=!1){let a={x:A(e,"x","all","bool")},r={axis:t,keepDims:n};return L.runKernel(bl,a,r)}var _m=z({all_:MR});function PR(e,t=null,n=!1){let a={x:A(e,"x","any","bool")},r={axis:t,keepDims:n};return L.runKernel(xl,a,r)}var Pp=z({any_:PR});function OR(e,t=0){let n={x:A(e,"x","argMax")},a={axis:t};return L.runKernel(ci,n,a)}var Js=z({argMax_:OR});function LR(e,t=0){let n={x:A(e,"x","argMin")},a={axis:t};return L.runKernel(Kp,n,a)}var yx=z({argMin_:LR});function zR(e){let t={x:A(e,"x","asin")};return L.runKernel(vl,t)}var bx=z({asin_:zR});function BR(e){let t={x:A(e,"x","asinh")};return L.runKernel(wl,t)}var xx=z({asinh_:BR});function WR(e){let t={x:A(e,"x","atan")};return L.runKernel(kl,t)}var vx=z({atan_:WR});function UR(e,t){let n=A(e,"a","atan2"),a=A(t,"b","atan2");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Sl,r)}var wx=z({atan2_:UR});function VR(e){let t={x:A(e,"x","atanh")};return L.runKernel(Il,t)}var kx=z({atanh_:VR});function GR(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=qI(r);return gc(e,o,n,s,a,null,null,l)}function HI(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Nh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return gc(e,u,n,a,r,s,!1,i)}function HR(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=db(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return jI(e,p,n,a,r,!1,d,s)}function gc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Nh(n),[y,b]=Nh(a),x=Jo(c,y),v=Jo(h,b),{padInfo:w,outHeight:T,outWidth:C}=KR(r,u,p,f,g,x,v,s,o),_=i?m*d:m,$;return o==="channelsFirst"?$=[l,_,T,C]:o==="channelsLast"&&($=[l,T,C,_]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:_,padInfo:w,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:$,filterShape:t}}function jI(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=db(n),[v,w,T]=db(a),C=Jo(h,v),_=Jo(m,w),$=Jo(f,T),{padInfo:P,outDepth:F,outHeight:S,outWidth:M}=XR(r,u,p,d,y,b,x,C,_,$,o),V=s?g*c:g,j;return i==="channelsFirst"?j=[l,V,F,S,M]:i==="channelsLast"&&(j=[l,F,S,M,V]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:F,outHeight:S,outWidth:M,outChannels:V,padInfo:P,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:_,effectiveFilterWidth:$,dilationDepth:v,dilationHeight:w,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function jR(e,t,n,a,r){a==null&&(a=Ix(e,t,n));let s=e[0],i=e[1],o=Us((s-t+2*a)/n+1,r),l=Us((i-t+2*a)/n+1,r);return[o,l]}function qR(e,t,n,a,r,s){r==null&&(r=Ix(e,t,a));let i=e[0],o=e[1],l=e[2],u=Us((i-t+2*r)/a+1,s),p=Us((o-t+2*r)/a+1,s),d=Us((l-t+2*r)/a+1,s);return[u,p,d,n]}function Ix(e,t,n,a=1){let r=Jo(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Nh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function db(e){return typeof e=="number"?[e,e,e]:e}function Jo(e,t){return t<=1?e:e+(e-1)*(t-1)}function KR(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=jR([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=Us((t-s+c+h)/a+1,o),d=Us((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function XR(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=qR([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),w=g-v,T=Math.floor(y/2),C=y-T;d={top:v,bottom:w,left:T,right:C,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function Us(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function es(e){let[t,n,a]=Nh(e);return t===1&&n===1&&a===1}function dr(e,t){return es(e)||es(t)}function qI(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Tn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")R(el(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{R(el(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function YR(e,t){let n={x:A(e,"x","reshape","string_or_numeric")},a={shape:t};return L.runKernel(eu,n,a)}var W=z({reshape_:YR});function JR(e,t,n,a,r){let s=A(e,"x","avgPool","float32"),i=1;R(dr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Tn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(di,u,p);return d=oe(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ma=z({avgPool_:JR});function ZR(e,t,n,a,r,s="NDHWC"){let i=A(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(Xp,u,p);return d=oe(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Sx=z({avgPool3d_:ZR});function QR(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=Mp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Sr(n[0]);let a=n,r={axis:t};return L.runKernel(Tl,a,r)}var Qe=z({concat_:QR});function eM(e){let t={x:A(e,"x","sigmoid","float32")};return L.runKernel(Ji,t)}var da=z({sigmoid_:eM});function tM(e,t,n){let a=A(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return L.runKernel(ru,r,s)}var Ge=z({slice_:tM});function nM(e){let t={x:A(e,"x","tanh","float32")};return L.runKernel(ro,t)}var Zs=z({tanh_:nM});function aM(e,t,n,a,r,s){let i=A(e,"forgetBias","basicLSTMCell"),o=A(t,"lstmKernel","basicLSTMCell"),l=A(n,"lstmBias","basicLSTMCell"),u=A(a,"data","basicLSTMCell"),p=A(r,"c","basicLSTMCell"),d=A(s,"h","basicLSTMCell"),c=Qe([u,d],1),h=Fe(c,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Ge(m,[0,0],y),x=Ge(m,[0,g],y),v=Ge(m,[0,g*2],y),w=Ge(m,[0,g*3],y),T=J(B(da(b),Zs(x)),B(p,da(J(i,v)))),C=B(Zs(T),da(w));return[T,C]}var rM=z({basicLSTMCell_:aM});function sM(e,t,n){let a=A(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);R(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return L.runKernel(Nl,s,i)}var yc=z({batchToSpaceND_:sM});function iM(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function oM(e,t,n,a,r,s){s==null&&(s=.001);let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;a!=null&&(p=A(a,"offset","batchNorm")),R(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:iM(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=L.runKernel(Ci,d,c);return W(h,i.shape)}var Tr=z({batchNorm_:oM});function lM(e,t,n,a,r,s){let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;return a!=null&&(p=A(a,"offset","batchNorm")),R(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),R(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Tr(i,o,l,p,u,s)}var KI=z({batchNorm2d_:lM});function uM(e,t,n,a,r,s){let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;return a!=null&&(p=A(a,"offset","batchNorm")),R(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),R(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Tr(i,o,l,p,u,s)}var XI=z({batchNorm3d_:uM});function pM(e,t,n,a,r,s){let i=A(e,"x","batchNorm"),o=A(t,"mean","batchNorm"),l=A(n,"variance","batchNorm"),u;r!=null&&(u=A(r,"scale","batchNorm"));let p;return a!=null&&(p=A(a,"offset","batchNorm")),R(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),R(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Tr(i,o,l,p,u,s)}var YI=z({batchNorm4d_:pM});function cM(e,t,n){let a=A(e,"x","bincount"),r=A(t,"weights","bincount");R(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return L.runKernel(Xh,s,i)}var Nx=z({bincount_:cM});function dM(e,t){let n=A(e,"s0","broadcastArgs","int32"),a=A(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return L.runKernel(Yh,r)}var JI=z({broadcastArgs_:dM});function hM(e,t){let n=A(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Sr(n);let i={x:n},o={reps:s};return L.runKernel(ps,i,o)}var Zo=z({broadcastTo_:hM});function mM(e){let t={x:A(e,"x","ceil","float32")};return L.runKernel(fi,t)}var Tx=z({ceil_:mM});function fM(e,t,n){let a=A(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return L.runKernel(us,r,s)}var nn=z({clipByValue_:fM});function gM(e){return Qe(e,0)}var ZI=z({concat1d_:gM});function yM(e,t){return Qe(e,t)}var QI=z({concat2d_:yM});function bM(e,t){return Qe(e,t)}var eS=z({concat3d_:bM});function xM(e,t){return Qe(e,t)}var tS=z({concat4d_:xM});function vM(e,t,n,a,r="NHWC",s=[1,1],i){let o=A(e,"x","conv2d","float32"),l=A(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Tn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),R(dr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(gi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=z({conv2d_:vM});function wM(e,t,n,a,r="NWC",s=1,i){let o=A(e,"x","conv1d"),l=A(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),R(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),R(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Tn("conv1d",a,i),R(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),R(dr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),R(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Am=z({conv1d_:wM});function kM(e,t,n,a,r,s="NHWC",i){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),R(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),R(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];R(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Tn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=L.runKernel(yi,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Cx=z({conv2DBackpropInput_:kM});function IM(e,t,n,a,r,s){let i=A(e,"x","conv2dTranspose"),o=A(t,"filter","conv2dTranspose");return Cx(n,i,o,a,r,"NHWC",s)}var $m=z({conv2dTranspose_:IM});function SM(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=A(e,"x","conv3d"),o=A(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),R(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),R(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),R(dr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=L.runKernel(Jp,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Ex=z({conv3d_:SM});function NM(e,t,n,a,r){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];R(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),R(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),R(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=L.runKernel(em,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var nS=z({conv3DBackpropInput_:NM});function TM(e,t,n,a,r){let s=A(e,"x","conv3dTranspose"),i=A(t,"filter","conv3dTranspose");return nS(n,s,i,a,r)}var aS=z({conv3dTranspose_:TM});function CM(e){let t={x:A(e,"x","cos","float32")};return L.runKernel(bi,t)}var bc=z({cos_:CM});function EM(e){let t={x:A(e,"x","cosh","float32")};return L.runKernel(xi,t)}var Fm=z({cosh_:EM});function _M(e,t=0,n=!1,a=!1){let r={x:A(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(vi,r,s)}var Dm=z({cumsum_:_M});function AM(e,t,n,a=!1){let r=A(e,"x","denseBincount"),s=A(t,"weights","denseBincount");R(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),R(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return L.runKernel(tm,i,o)}var rS=z({denseBincount_:AM});function $M(e,t,n="NHWC"){let a=A(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),R(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return L.runKernel(El,o,l)}var _x=z({depthToSpace_:$M});function FM(e,t,n,a,r="NHWC",s=[1,1],i){let o=A(e,"x","depthwiseConv2d","float32"),l=A(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Tn("depthwiseConv2d",a,i);let d={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=L.runKernel(wi,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ms=z({depthwiseConv2d_:FM});function DM(e){let t={x:A(e,"x","diag")};return L.runKernel(rm,t)}var RM=z({diag_:DM});function MM(e,t,n,a,r=[1,1],s="NHWC"){let i=A(e,"x","dilation2d"),o=A(t,"filter","dilation2d");R(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),R(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),R(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=L.runKernel(Zp,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ax=z({dilation2d_:MM});function PM(e,t){let n=A(e,"a","equal","string_or_numeric"),a=A(t,"b","equal","string_or_numeric");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Al,r)}var Jn=z({equal_:PM});function OM(e,t,n){let a=A(t,"a","where"),r=A(n,"b","where"),s=A(e,"condition","where","bool"),i=ct(ct(s.shape,a.shape),r.shape),o=Zo(s,i),l=Zo(a,i),u=Zo(r,i),p={condition:o,t:l,e:u};return L.runKernel(nu,p)}var hn=z({where_:OM});function LM(e){let t={x:A(e,"x","zerosLike")};return L.runKernel(fu,t)}var Ke=z({zerosLike_:LM});function zM(e,t){let n=A(e,"a","div"),a=A(t,"b","div");[n,a]=$t(n,a);let r=fe(n,a),s=Ke(r),i=Jn(a,s);return hn(i,s,r)}var $x=z({divNoNan_:zM});function BM(e,t){let n=A(e,"t1","dot"),a=A(t,"t2","dot");R((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(R(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=Fe(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=Fe(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=Fe(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return Fe(n,i)}}var sS=z({dot_:BM});function WM(e,...t){let n=t.map((r,s)=>A(r,`tensors${s}`,"einsum")),a={equation:e};return L.runKernel(sm,n,a)}var iS=z({einsum_:WM});function UM(e){let t={x:A(e,"x","elu","float32")};return L.runKernel(Ii,t)}var bu=z({elu_:UM});function VM(e){let t=A(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=oe(t,"float32"));let n={x:t};return L.runKernel(_l,n)}var Fx=z({erf_:VM});function GM(e){let t={x:A(e,"x","exp")};return L.runKernel(Si,t)}var mn=z({exp_:GM});function HM(e,t=0){let n=A(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return L.runKernel($l,a,r)}var dn=z({expandDims_:HM});function jM(e){let t={x:A(e,"x","expm1")};return L.runKernel(Fl,t)}var Dx=z({expm1_:jM});function qM(e,t){let n=A(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return L.runKernel(ps,a,r)}var Pn=z({tile_:qM});function KM(e,t,n,a="float32"){t==null&&(t=e);let r=He([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Pn(dn(i,0),[n[0],1,1]);if(n.length===2)return Pn(dn(dn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Pn(dn(dn(dn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Rx=z({eye_:KM});function Cn(e,t,n){let a={shape:e,value:t,dtype:n};return L.runKernel(Qp,{},a)}function XM(e){let t={x:A(e,"x","floor","float32")};return L.runKernel(Ni,t)}var xu=z({floor_:XM});function YM(e,t,n=0,a=0){let r=A(e,"x","gather"),s=A(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return L.runKernel(Rl,i,o)}var Qs=z({gather_:YM});function JM(e,t){let n=A(e,"a","greater","string_or_numeric"),a=A(t,"b","greater","string_or_numeric");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Pl,r)}var Bn=z({greater_:JM});function ZM(e,t){let n=A(e,"a","greaterEqual","string_or_numeric"),a=A(t,"b","greaterEqual","string_or_numeric");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Ei,r)}var fs=z({greaterEqual_:ZM});function QM(e){let t={input:A(e,"input","imag")};return L.runKernel(um,t)}var Rm=z({imag_:QM});function eP(e){let t={x:A(e,"x","isFinite")};return L.runKernel(Ol,t)}var oS=z({isFinite_:eP});function tP(e){let t={x:A(e,"x","isInf")};return L.runKernel(Ll,t)}var lS=z({isInf_:tP});function nP(e){let t={x:A(e,"x","isNaN")};return L.runKernel(zl,t)}var Mx=z({isNaN_:nP});function aP(e,t=.2){let n={x:A(e,"x","leakyRelu")},a={alpha:t};return L.runKernel(Ai,n,a)}var xc=z({leakyRelu_:aP});function rP(e,t){let n=A(e,"a","less","string_or_numeric"),a=A(t,"b","less","string_or_numeric");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Bl,r)}var Mm=z({less_:rP});function sP(e,t){let n=A(e,"a","lessEqual","string_or_numeric"),a=A(t,"b","lessEqual","string_or_numeric");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Wl,r)}var gs=z({lessEqual_:sP});function uS(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return L.runKernel(pm,{},a)}function iP(e,t=5,n=1,a=1,r=.5){let s=A(e,"x","localResponseNormalization");R(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),R(el(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=L.runKernel(nc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Px=z({localResponseNormalization_:iP});function oP(e){let t={x:A(e,"x","log","float32")};return L.runKernel($i,t)}var Zn=z({log_:oP});function lP(e){let t={x:A(e,"x","log1p")};return L.runKernel(Ul,t)}var vc=z({log1p_:lP});function uP(e){return R(Jr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=A(t,"x","tf.grad","string_or_numeric"),r=n!=null?A(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(a),[a],r);return r!=null&&Nn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Pm(i),i[0]})}}function pP(e){return R(Jr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Mp(t,"args","tf.grads","string_or_numeric"),r=n!=null?A(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...a),a,r);return r!=null&&Nn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pm(i),i})}}function cP(e){return R(Jr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof Ae,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=L.gradients(()=>e(t),[t],n);return Pm(a),{grad:a[0],value:r}}}function dP(e){return R(Jr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(r=>r instanceof Ae),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=L.gradients(()=>e(...t),t,n);return n!=null&&Nn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pm(a.grads),a}}function pS(e,t){R(Jr(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(u=>u instanceof Zr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);R(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ur(e){return L.customGrad(e)}function Pm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function hP(e){let t={x:A(e,"x","neg")};return L.runKernel(Hl,t)}var It=z({neg_:hP});function mP(e){let t={x:A(e,"x","softplus")};return L.runKernel(ou,t)}var oo=z({softplus_:mP});function fP(e){let t=A(e,"x","logSigmoid");return ur(n=>({value:It(oo(It(n))),gradFunc:a=>B(a,da(It(n)))}))(t)}var cS=z({logSigmoid_:fP});function gP(e,t=null,n=!1){let a={x:A(e,"x","max")},r={reductionIndices:t,keepDims:n};return L.runKernel(Fi,a,r)}var ka=z({max_:gP});function yP(e,t){let n=A(e,"a","sub"),a=A(t,"b","sub");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(no,r)}var ce=z({sub_:yP});function bP(e,t=null,n=!1){let a=A(e,"x","sum");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(Qi,r,s)}var be=z({sum_:bP});function xP(e,t=-1){let n=A(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ur((a,r)=>{let s=ka(a,t,!0),i=ce(a,s),o=ce(oe(i,"float32"),Zn(be(mn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=mn(p);return ce(l,B(be(l,t,d),c))}}})(n)}var Om=z({logSoftmax_:xP});function Ox(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function dS(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function hS(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function ei(e,t){let n=t.map(a=>1);return dS(e,n,t)}function vP(e,t,n){R(Ox(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function mS(e,t){if(Ox(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Lx(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function wP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function kP(e,t=null,n=!1){let a=A(e,"x","logSumExp"),r=Na(t,a.shape),s=ka(a,r,!0),i=ce(a,s),o=mn(i),l=be(o,r),u=Zn(l),p=J(W(s,u.shape),u);if(n){let d=ei(p.shape,r);return W(p,d)}return p}var zx=z({logSumExp_:kP});function IP(e,t){let n=A(e,"a","logicalAnd","bool"),a=A(t,"b","logicalAnd","bool");ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Vl,r)}var Sa=z({logicalAnd_:IP});function SP(e){let t={x:A(e,"x","logicalNot","bool")};return L.runKernel(ec,t)}var wc=z({logicalNot_:SP});function NP(e,t){let n=A(e,"a","logicalOr","bool"),a=A(t,"b","logicalOr","bool");ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(tc,r)}var Lm=z({logicalOr_:NP});function TP(e,t){let n=A(e,"a","logicalXor","bool"),a=A(t,"b","logicalXor","bool");return ct(n.shape,a.shape),Sa(Lm(e,t),wc(Sa(e,t)))}var fS=z({logicalXor_:TP});function CP(e,t,n,a,r){let s=A(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),R(dr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Tn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Ri,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pt=z({maxPool_:CP});function EP(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=A(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(ac,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Bx=z({maxPool3d_:EP});function _P(e,t,n,a,r=!1){let s={x:A(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=L.runKernel(mm,s,i);return{result:o[0],indexes:o[1]}}var gS=z({maxPoolWithArgmax_:_P});function AP(e,t){let n=A(e,"a","maximum"),a=A(t,"b","maximum");[n,a]=$t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Di,r)}var hr=z({maximum_:AP});function $P(e,t=null,n=!1){let a={x:A(e,"x","mean")},r={axis:t,keepDims:n};return L.runKernel(Mi,a,r)}var _t=z({mean_:$P});function wt(e,t="float32"){if(t==="complex64"){let a=wt(e,"float32"),r=wt(e,"float32");return Qr(a,r)}let n=jh(xt(e),t);return L.makeTensor(n,e,t)}function Kn(e,t="float32"){if(t==="complex64"){let a=Kn(e,"float32"),r=wt(e,"float32");return Qr(a,r)}let n=Yb(xt(e),t);return L.makeTensor(n,e,t)}function FP(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=A(e,"x","meshgrid",e instanceof Ae?e.dtype:"float32");if(t===void 0)return[a];let r=A(t,"y","meshgrid",t instanceof Ae?t.dtype:"float32"),s=xt(a.shape),i=xt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[Fe(Kn([i,1],a.dtype),a),Fe(r,Kn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[Fe(a,Kn([1,i],a.dtype)),Fe(Kn([s,1],r.dtype),r)])}function DP(e,t=null,n=!1){let a={x:A(e,"x","min")},r={axis:t,keepDims:n};return L.runKernel(Pi,a,r)}var Op=z({min_:DP});function RP(e,t){let n=A(e,"a","minimum"),a=A(t,"b","minimum");[n,a]=$t(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Oi,r)}var vu=z({minimum_:RP});function MP(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=A(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)R(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),R(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return L.runKernel(Li,i,s)}var Wx=z({mirrorPad_:MP});function PP(e,t){let n=A(e,"a","mod"),a=A(t,"b","mod");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Gl,r)}var Ux=z({mod_:PP});function OP(e){let t=A(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var lt=z({square_:OP});function LP(e,t=null,n=!1){e=A(e,"x","moments");let a=Na(t,e.shape),r=_t(e,a,n),s=r.shape;n||(s=ei(r.shape,a));let i=lt(ce(oe(e,"float32"),W(r,s))),o=_t(i,a,n);return{mean:r,variance:o}}var zm=z({moments_:LP});function zP(e,t,n,a){let r=A(t,"data","multiRNNCell"),s=Mp(n,"c","multiRNNCell"),i=Mp(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var BP=z({multiRNNCell_:zP});function WP(e,t,n,a=!1){let r=A(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=L.runKernel(fm,o,l);return i===1?W(u,[u.size]):u}var yS=z({multinomial_:WP});function UP(e,t){let n=A(e,"a","notEqual","string_or_numeric"),a=A(t,"b","notEqual","string_or_numeric");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(jl,r)}var ti=z({notEqual_:UP});function VP(e){let t={x:A(e,"x","onesLike")};return L.runKernel(Yl,t)}var Qn=z({onesLike_:VP});function GP(e,t){let n=A(e,"v1","outerProduct"),a=A(t,"v2","outerProduct");R(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return Fe(r,s)}var HP=z({outerProduct_:GP});function jP(e,t,n=0){let a=A(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return L.runKernel(Wi,s,r)}var fa=z({pad_:jP});function qP(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),fa(e,[t],n)}var KP=z({pad1d_:qP});function XP(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fa(e,t,n)}var YP=z({pad2d_:XP});function JP(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fa(e,t,n)}var ZP=z({pad3d_:JP});function QP(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fa(e,t,n)}var eO=z({pad4d_:QP});function tO(e,t,n){let a=A(e,"x","spaceToBatchND");R(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return L.runKernel(lu,r,s)}var kc=z({spaceToBatchND_:tO});function nO(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=A(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(dr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=HI(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=rO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=aO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:kc(l,d,m),b=(n==="avg"?()=>ma(y,t,s,g,i):()=>Pt(y,t,s,g,i))(),x=h?b:yc(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function aO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function rO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var bS=z({pool_:nO});function sO(e,t){let n=A(e,"base","pow"),a=A(t,"exp","pow");[n,a]=$t(n,a);let r={a:n,b:a};return L.runKernel(Ui,r)}var Cr=z({pow_:sO});function iO(e,t){let n=A(e,"x","prelu"),a=A(t,"alpha","prelu"),r={x:n,alpha:a};return L.runKernel(Vi,r)}var Ic=z({prelu_:iO});function oO(e,t=null,n=!1){let a=A(e,"x","prod");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(Zl,r,s)}var Bm=z({prod_:oO});function lO(e,t,n){let a=xt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return L.makeTensor(r,e,n)}var uO=z({rand_:lO}),Vx=li(zk()),Gx=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=Vx.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},pO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Vx.alea(r.toString()),this.randn=new Gx(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},cO=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Vx.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function dO(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new pO(t,n,a,r),i=He(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var hO=z({randomGamma_:dO});function mO(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new Gx(t,n,a,!1,r),i=He(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var xS=z({randomNormal_:mO});function fO(e,t=0,n=1,a="float32",r){let s=He(e,a),i=new cO(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var wu=z({randomUniform_:fO});function rl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return L.runKernel(rc,{},r)}function gO(e){let t={input:A(e,"input","real")};return L.runKernel(gm,t)}var Lp=z({real_:gO});function yO(e){let t={x:A(e,"x","reciprocal")};return L.runKernel(Ql,t)}var Hx=z({reciprocal_:yO});function bO(e){let t={x:A(e,"x","relu")};return L.runKernel(Gi,t)}var Xe=z({relu_:bO});function xO(e){let t={x:A(e,"x","relu6")};return L.runKernel(ji,t)}var Wm=z({relu6_:xO});function vO(e,t){let n={x:A(e,"x","reverse")},a={dims:t};return L.runKernel(qi,n,a)}var ea=z({reverse_:vO});function wO(e){let t=A(e,"x","reverse");return R(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ea(t,0)}var kO=z({reverse1d_:wO});function IO(e,t){let n=A(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ea(n,t)}var SO=z({reverse2d_:IO});function NO(e,t){let n=A(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ea(n,t)}var TO=z({reverse3d_:NO});function CO(e,t){let n=A(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ea(n,t)}var EO=z({reverse4d_:CO});function _O(e){let t={x:A(e,"x","round")};return L.runKernel(Ki,t)}var Um=z({round_:_O});function AO(e){let t={x:A(e,"x","rsqrt","float32")};return L.runKernel(Xi,t)}var Vm=z({rsqrt_:AO});function ke(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ds(e,[],[],t)}function $O(e){let t={x:A(e,"x","selu")};return L.runKernel(au,t)}var Gm=z({selu_:$O});function FO(e,t,n,a,r,s=[1,1],i="NHWC"){let o=A(e,"x","separableConv2d"),l=A(t,"depthwiseFilter","separableConv2d"),u=A(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),R(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];R(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=ms(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var lo=z({separableConv2d_:FO});async function DO(e,t){let n=A(e,"x","setdiff1d"),a=A(t,"y","setdiff1d");R(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new jt([o],n.dtype),u=new jt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var vS=DO;function RO(e){let t={x:A(e,"x","sign")};return L.runKernel(iu,t)}var jx=z({sign_:RO});function MO(e){let t={x:A(e,"x","sin","float32")};return L.runKernel(Yi,t)}var Hm=z({sin_:MO});function PO(e){let t={x:A(e,"x","sinh")};return L.runKernel(su,t)}var jm=z({sinh_:PO});function OO(e,t,n){let a=A(e,"x","slice1d");return R(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Ge(a,[t],[n])}var qm=z({slice1d_:OO});function LO(e,t,n){let a=A(e,"x","slice2d");return R(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Ge(a,t,n)}var qx=z({slice2d_:LO});function zO(e,t,n){let a=A(e,"x","slice3d");return R(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Ge(a,t,n)}var ku=z({slice3d_:zO});function BO(e,t,n){let a=A(e,"x","slice4d");return R(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Ge(a,t,n)}var zp=z({slice4d_:BO});function WO(e,t=-1){let n=A(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return L.runKernel(eo,a,r)}var Xa=z({softmax_:WO});function UO(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(om,t)}var Sc=z({fft_:UO});function VO(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(lm,t)}var sl=z({ifft_:VO});function GO(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=sl(r)}else{let r=[n,2*(t-1)],s=W(Lp(e),[n,t]),i=W(Rm(e),[n,t]),o=ea(Ge(s,[0,1],[n,t-2]),1),l=B(ea(Ge(i,[0,1],[n,t-2]),1),ke(-1)),u=Qe([s,o],1),p=Qe([i,l],1),d=W(Qr(u,p),[r[0],r[1]]);a=sl(d)}if(a=Lp(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Km=z({irfft_:GO});function HO(e,t,n=0){let a={x:A(e,"x","split")},r={numOrSizeSplits:t,axis:n};return L.runKernel(uu,a,r)}var On=z({split_:HO});function jO(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Ge(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,wt(m)],e.shape.length-1),n=t}else r=e;let s=Ke(r),i=W(Qr(r,s),[a,n]),o=Sc(i),l=Math.floor(n/2)+1,u=Lp(o),p=Rm(o),d=On(u,[l,n-l],u.shape.length-1),c=On(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Qr(d[0],c[0]),h)}var Nc=z({rfft_:jO});function qO(e){let t={x:A(e,"x","sqrt","float32")};return L.runKernel(Zi,t)}var ln=z({sqrt_:qO});function KO(e,t){let n=A(e,"a","squaredDifference"),a=A(t,"b","squaredDifference");[n,a]=$t(n,a),ct(n.shape,a.shape);let r={a:n,b:a},s={};return L.runKernel(to,r,s)}var Xm=z({squaredDifference_:KO});function XO(e,t){let n=A(e,"x","squeeze");return W(n,Vk(n.shape,t).newShape)}var pr=z({squeeze_:XO});function YO(e,t=0){let n=Mp(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return L.runKernel(Jl,a,r)}var Mt=z({stack_:YO});function JO(e,t=0){let n={x:A(e,"x","step")},a={alpha:t};return L.runKernel(cs,n,a)}var Iu=z({step_:JO});function ZO(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:A(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel(cu,u,p)}var Kx=z({stridedSlice_:ZO});function QO(e){let t={x:A(e,"x","tan","float32")};return L.runKernel(ao,t)}var Xx=z({tan_:QO});function qe(e,t){ui(e);let n=lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ds(e,null,n,t)}function Ua(e,t,n){if(ui(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=lr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ds(e,t,a,n)}function Ya(e,t,n){if(ui(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=lr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ds(e,t,a,n)}function e3(e,t,n){if(ui(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=lr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ds(e,t,a,n)}function t3(e,t,n){if(ui(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=lr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ds(e,t,a,n)}function n3(e,t=1,n=!0){let a=A(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=L.runKernel(du,s,i);return{values:o,indices:l}}var Yx=z({topk_:n3});function a3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Gx(t,n,a,!0,r),i=He(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Ym=z({truncatedNormal_:a3});function r3(e,t=0){let n=A(e,"x","unique","string_or_numeric");R(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=L.runKernel(Im,a,r);return{values:s,indices:i}}var Th=z({unique_:r3});function s3(e,t,n){let a=A(e,"x","unsortedSegmentSum"),r=A(t,"segmentIds","unsortedSegmentSum","int32");R(el(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return L.runKernel(pc,s,i)}var Jx=z({unsortedSegmentSum_:s3});function i3(e,t=0){let n=A(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return L.runKernel(mu,a,r)}var dt=z({unstack_:i3});function wS(e,t=!0,n,a){return L.makeVariable(e,t,n,a)}function kS(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=He(e,"int32"),r=He([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function o3(e){let t=A(e,"condition","whereAsync","bool"),n=await t.data(),a=kS(t.shape,n);return e!==t&&t.dispose(),a}var Zx=o3;async function l3(e,t,n){let a=A(e,"tensor","boolMask"),r=A(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;R(i>0,()=>"mask cannot be scalar"),Nn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await Zx(d),h=pr(c,[1]),m=Qs(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var u3=l3;function p3(e,t="euclidean",n=null,a=!1){e=A(e,"x","norm");let r=IS(e,t,n),s=r.shape;if(a){let i=Na(n,e.shape);s=ei(r.shape,i)}return W(r,s)}function IS(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return IS(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return be(zt(e),n);if(t===1/0)return ka(zt(e),n);if(t===-1/0)return Op(zt(e),n);if(t==="euclidean"||t===2)return ln(be(Cr(zt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ka(be(zt(e),n[0]),n[1]-1);if(t===1/0)return ka(be(zt(e),n[1]),n[0]);if(t===-1/0)return Op(be(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return ln(be(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Jm=z({norm_:p3});function c3(e,t,n,a,r=!0){let s=A(e,"v","movingAverage"),i=A(t,"x","movingAverage"),o=A(n,"decay","movingAverage");iI(s,i),R(os(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=ce(l,o),p=B(ce(i,s),u);if(r){R(a!=null,()=>"When using zeroDebias: true, step is required.");let d=A(a,"step","movingAverage");p=fe(p,ce(l,Cr(o,d)))}return J(s,p)}var d3=z({movingAverage_:c3});function h3(e,t,n){let a=A(e,"indices","scatterND","int32"),r=A(t,"updates","scatterND");cx(r,a,n);let s={indices:a,updates:r},i={shape:n};return L.runKernel(tu,s,i)}var SS=z({scatterND_:h3});function m3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function f3(e,t,n,a=0){let r=A(e,"sparseIndices","sparseToDense","int32"),s=A(t,"sparseValues","sparseToDense"),i=A(a,"defaultValue","sparseToDense",s.dtype);m3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(xm,o,l)}var Qx=z({sparseToDense_:f3});function g3(e,t){let n=A(t,"indices","gatherND","int32"),a={params:A(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(Ml,a)}var NS=z({gatherND_:g3});function y3(e,t){if(t==null)return e.shape.slice();if(os(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function b3(e,t,n,a){let r=A(e,"x","dropout");if(R(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ae?r.clone():r;let s=y3(r,n),i=1-t,o=fe(xu(J(wu(s,0,1,"float32",a),i)),i);return B(r,o)}var TS=z({dropout_:b3});function CS(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function ev(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return qe(r,"float32")}async function x3(e,t,n=1){let a=A(e,"predictions","inTopK"),r=A(t,"targets","inTopK");R(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),R(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Nn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];R(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=Gk("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Yn(p,r.shape,"bool")}var v3=x3,ts={};Re(ts,{conv2d:()=>I3,depthwiseConv2d:()=>C3,matMul:()=>_3});function w3(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),R(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];R(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),R(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Tn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(Zh,d,c)}var tv=z({conv2DBackpropFilter_:w3});function Zm(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Iu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Qm(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=be(n,a)),W(n,e.shape)}function ef(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return bu(e);if(t==="relu6")return Wm(e);if(t==="prelu")return Ic(e,n);if(t==="leakyrelu")return xc(e,a);if(t==="sigmoid")return da(e);throw new Error(`Unknown fused activation ${t}.`)}var tf=(e,t)=>!(e>0)||t==="linear";function k3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",tf(L.state.gradientDepth,l)===!1){let w=Rt(e,t,n,a,r,s,i);return o!=null&&(w=J(w,o)),ef(w,l,u,p)}let d=A(e,"x","conv2d","float32"),c=A(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Tn("fused conv2d",a,i),R(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),R(dr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=gc(h.shape,c.shape,n,s,a,i),g;o!=null&&(g=A(o,"bias","fused conv2d"),[g]=$t(g,d),ct(f.outShape,g.shape));let y;u!=null&&(y=A(u,"prelu weights","fused conv2d"));let b=(w,T)=>{let[C,_,$,P]=T,F=Zm(w,$,l);R(es(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let S=Cx(_.shape,F,C,n,a),M=tv(_,F,C.shape,n,a),V=[S,M];if(P!=null){let j=Qm(P,F);V.push(j)}return V},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((w,T,C)=>{let _=L.runKernel(qs,x,v);return C([T,w,_]),m&&(_=W(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:b}})(h,c):ur((w,T,C,_)=>{let $=L.runKernel(qs,x,v);return _([T,w,$,C]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,c,g)}var I3=z({fusedConv2d_:k3});function S3(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(nm,u,p)}var ES=z({depthwiseConv2dNativeBackpropFilter_:S3});function N3(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=L.runKernel(am,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var _S=z({depthwiseConv2dNativeBackpropInput_:N3});function T3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(tf(L.state.gradientDepth,l)===!1){let w=ms(e,t,n,a,r,s,i);return o!=null&&(w=J(w,o)),ef(w,l,u,p)}let d=A(e,"x","depthwiseConv2d","float32"),c=A(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),R(dr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Tn("fused depthwiseConv2d",a,i);let f=gc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=A(o,"bias","fused conv2d"),[g]=$t(g,d),ct(f.outShape,g.shape));let y;u!=null&&(y=A(u,"prelu weights","fused depthwiseConv2d"));let b=(w,T)=>{R(es(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,_,$,P]=T,F=Zm(w,$,l),S=_S(_.shape,F,C,n,a,s,i),M=ES(_,F,C.shape,n,a,s,i);if(P!=null){let V=Qm(g,F);return[S,M,V]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((w,T,C)=>{let _=L.runKernel(Ks,x,v);return C([T,w,_]),m&&(_=W(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:b}})(h,c):ur((w,T,C,_)=>{let $=L.runKernel(Ks,x,v);return _([T,w,$,C]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,c,g)}var C3=z({fusedDepthwiseConv2d_:T3});function E3({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(tf(L.state.gradientDepth,s)===!1){let P=Fe(e,t,n,a);return r!=null&&(P=J(P,r)),ef(P,s,i,o)}let l=A(e,"a","fused matMul"),u=A(t,"b","fused matMul");[l,u]=$t(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=xt(m),y=xt(f);R(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=ct(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),v=a?W(u,[y,h,d]):W(u,[y,d,h]),w;r!=null&&(w=A(r,"bias","fused matMul"),[w]=$t(w,l),ct(b,w.shape));let T;i!=null&&(T=A(i,"prelu weights","fused matMul"));let C=(P,F)=>{let[S,M,V,j]=F,q=Zm(W(P,V.shape),V,s),K,Q;if(!n&&!a?(K=Fe(q,M,!1,!0),Q=Fe(S,q,!0,!1)):!n&&a?(K=Fe(q,M,!1,!1),Q=Fe(q,S,!0,!1)):n&&!a?(K=Fe(M,q,!1,!0),Q=Fe(S,q,!1,!1)):(K=Fe(M,q,!0,!0),Q=Fe(q,S,!0,!0)),r!=null){let ee=Qm(j,q);return[K,Q,ee]}else return[K,Q]},_={a:x,b:v,bias:w,preluActivationWeights:T},$={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ur((P,F,S)=>{let M=L.runKernel(js,_,$);return S([P,F,M]),{value:W(M,b),gradFunc:C}})(x,v):ur((P,F,S,M)=>{let V=L.runKernel(js,_,$);return M([P,F,V,S]),{value:W(V,b),gradFunc:C}})(x,v,w)}var _3=z({fusedMatMul_:E3});function A3(e){return ev(e,.54,.46)}var $3=z({hammingWindow_:A3});function F3(e){return ev(e,.5,.5)}var AS=z({hannWindow_:F3});function D3(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ge(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([Ge(e,s,t-o),Cn([o],r)]);i.push(l),s+=n}return i.length===0?Ua([],[0,t]):W(Qe(i),[i.length,t])}var $S=z({frame_:D3});function R3(e,t,n,a,r=AS){a==null&&(a=CS(t));let s=$S(e,t,n),i=B(s,r(t));return Nc(i,a)}var M3=z({stft_:R3});function P3(e,t,n,a,r="bilinear",s=0){let i=A(e,"image","cropAndResize"),o=A(t,"boxes","cropAndResize","float32"),l=A(n,"boxInd","cropAndResize","int32"),u=o.shape[0];R(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),R(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),R(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),R(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),R(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return L.runKernel(Cl,p,d)}var O3=z({cropAndResize_:P3});function L3(e){let t=A(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Dl,n,{})}var z3=z({flipLeftRight_:L3});function B3(e){let t=A(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Pn(t,r)}var W3=z({grayscaleToRGB_:B3});function U3(e,t,n=0,a=.5){let r=A(e,"image","rotateWithOffset","float32");R(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return L.runKernel(gu,s,i)}var V3=z({rotateWithOffset_:U3});function Su(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),R(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),R(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function G3(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=A(e,"boxes","nonMaxSuppression","float32"),i=A(t,"scores","nonMaxSuppression","float32"),o=Su(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return L.runKernel(ql,{boxes:s,scores:i},l)}var H3=z({nonMaxSuppression_:G3});function j3(e,t,n){let a=q3(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function q3(e,t,n){return X3(e,t,n||K3)}function K3(e,t){return e>t?1:e<t?-1:0}function X3(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function FS(e,t,n,a,r){return nv(e,t,n,a,r,0)}function DS(e,t,n,a,r,s){return nv(e,t,n,a,r,0,!1,s,!0)}function RS(e,t,n,a,r,s){return nv(e,t,n,a,r,s,!0)}function nv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(I1);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let w=d.length-1;w>=x;--w){let T=Y3(e,b,d[w]);if(T>=a){v=!0;break}if(g.score=g.score*J3(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,v||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&j3(u,g,I1))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function Y3(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function J3(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function I1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function Z3(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=A(e,"boxes","nonMaxSuppressionAsync"),i=A(t,"scores","nonMaxSuppressionAsync"),o=Su(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=FS(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),qe(d,"int32")}var Q3=Z3;function eL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=A(e,"boxes","nonMaxSuppression"),o=A(t,"scores","nonMaxSuppression"),l=Su(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=L.runKernel(Xl,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var tL=z({nonMaxSuppressionWithScore_:eL});async function nL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=A(e,"boxes","nonMaxSuppressionAsync"),o=A(t,"scores","nonMaxSuppressionAsync"),l=Su(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=RS(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(c,"int32"),selectedScores:qe(h)}}var aL=nL;function rL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=A(e,"boxes","nonMaxSuppression"),o=A(t,"scores","nonMaxSuppression"),l=Su(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=L.runKernel(Kl,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var sL=z({nonMaxSuppressionPadded_:rL});async function iL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=A(e,"boxes","nonMaxSuppressionAsync"),o=A(t,"scores","nonMaxSuppressionAsync"),l=Su(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=DS(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(m,"int32"),validOutputs:ke(f,"int32")}}var oL=iL;function lL(e,t,n=!1,a=!1){let r=A(e,"images","resizeBilinear");R(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(Hi,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var MS=z({resizeBilinear_:lL});function uL(e,t,n=!1,a=!1){let r=A(e,"images","resizeNearestNeighbor");R(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(sc,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var PS=z({resizeNearestNeighbor_:uL});function pL(e,t="binary",n=!1,a=.5){let r=A(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=B(qe([a]),255),p,d,c,h;if(R(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),R(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),R(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=On(r,[1,1,1],-1);let f=B(p,s),g=B(d,i),y=B(c,o);h=J(J(f,g),y)}else h=e;if(t==="otsu"){let f=Nx(oe(Um(h),"int32"),Yn([]),256);u=cL(f,l)}let m=n?gs(h,u):Bn(h,u);return oe(B(m,255),"int32")}function cL(e,t){let n=qe([-1]),a=qe([0]),r=qe([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Ge(e,0,d+1),i=Ge(e,d+1),u=fe(be(s),t),p=fe(be(i),t);let c=be(B(s,rl(0,s.size)));o=fe(c,be(s));let h=Cn(i.shape,s.size),m=J(rl(0,i.size),h),f=B(i,m);l=fe(be(f),be(i));let g=ce(o,l),y=ce(o,l),b=B(u,p);r=B(B(b,g),y);let x=Bn(r,a);a=hn(x,r,a),n=hn(x,qe([d]),n)}return n}var dL=z({threshold_:pL});function hL(e,t,n="nearest",a="constant",r=0,s){let i=A(e,"image","transform","float32"),o=A(t,"transforms","transform","float32");R(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return L.runKernel(hu,l,u)}var mL=z({transform_:hL});function fL(e,t,n){R(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=A(e,"a","bandPart");R(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(rl(0,s,1,"int32"),[-1,1]),l=rl(0,i,1,"int32"),u=ce(o,l),p=Sa(gs(u,ke(+t,"int32")),fs(u,ke(-n,"int32"))),d=wt([s,i],a.dtype);return W(Mt(dt(W(a,[-1,s,i])).map(c=>hn(p,c,d))),r)}var gL=z({bandPart_:fL});function yL(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)R(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=On(e,e.shape[0],0).map(r=>pr(r,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(be(B(n[i],s)),n[i]);s=ce(s,o)}return fe(s,Jm(s,"euclidean"))}));return t?Mt(n,0):n}var bL=z({gramSchmidt_:yL});function xL(e,t=!1){if(R(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return S1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=dt(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=S1(l,t);r.push(u),s.push(p)});let i=W(Mt(r,0),e.shape),o=W(Mt(s,0),e.shape);return[i,o]}}function S1(e,t=!1){return L.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Rx(n),s=Sr(e),i=Ua([[1]],[1,1]),o=Sr(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=L.tidy(()=>{let h=Ge(s,[u,u],[n-u,1]),m=Jm(h),f=Ge(s,[u,u],[1,1]),g=hn(Bn(f,0),Ua([[-1]]),Ua([[1]])),y=ce(f,B(g,m)),b=fe(h,y);b.shape[0]===1?o=Sr(i):o=Qe([i,Ge(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=It(fe(Fe(g,y),m)),v=Ge(s,[u,0],[n-u,a]),w=B(x,o),T=Me(o);if(u===0)s=ce(v,Fe(w,Fe(T,v)));else{let $=ce(v,Fe(w,Fe(T,v)));s=Qe([Ge(s,[0,0],[u,a]),$],0)}let C=Me(w),_=Ge(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ce(_,Fe(Fe(_,o),C));else{let $=ce(_,Fe(Fe(_,o),C));r=Qe([Ge(r,[0,0],[n,u]),$],1)}return[o,s,r]}),De([p,d,c])}return!t&&n>a&&(r=Ge(r,[0,0],[n,a]),s=Ge(s,[0,0],[a,a])),[r,s]})}var vL=z({qr_:xL}),wn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(wn||(wn={}));function wL(e,t,n=wn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=A(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===wn.NONE)return s;if(n===wn.SUM)return be(s);if(n===wn.MEAN){if(r==null)return _t(s);{let i=a.size/r.size,o=fe(be(s),be(r));return i>1?fe(o,ke(i)):o}}if(n===wn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(be(s),ke(a.size));{let i=B(r,Kn(a.shape)),o=oe(be(ti(i,ke(0))),"float32");return fe(be(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Er=z({computeWeightedLoss_:wL});function kL(e,t,n,a=wn.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"labels","absoluteDifference"),s=A(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=A(n,"weights","absoluteDifference")),Nn(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ce(r,s));return Er(o,i,a)}var IL=z({absoluteDifference_:kL});function SL(e,t,n,a,r=wn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","cosineDistance"),i=A(t,"predictions","cosineDistance"),o=null;a!=null&&(o=A(a,"weights","cosineDistance")),Nn(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=ce(l,be(B(s,i),n,!0));return Er(u,o,r)}var NL=z({cosineDistance_:SL});function TL(e,t,n,a=wn.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"labels","hingeLoss"),s=A(t,"predictions","hingeLoss"),i=null;n!=null&&(i=A(n,"weights","hingeLoss")),Nn(r.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);r=ce(B(ke(2),r),o);let l=Xe(ce(o,B(r,s)));return Er(l,i,a)}var CL=z({hingeLoss_:TL});function EL(e,t,n,a=1,r=wn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","huberLoss"),i=A(t,"predictions","huberLoss"),o=null;n!=null&&(o=A(n,"weights","huberLoss")),Nn(s.shape,i.shape,"Error in huberLoss: ");let l=ke(a),u=zt(ce(i,s)),p=vu(u,l),d=ce(u,p),c=J(B(ke(.5),lt(p)),B(l,d));return Er(c,o,r)}var _L=z({huberLoss_:EL});function AL(e,t,n,a=1e-7,r=wn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","logLoss"),i=A(t,"predictions","logLoss"),o=null;n!=null&&(o=A(n,"weights","logLoss")),Nn(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(a),p=It(B(s,Zn(J(i,u)))),d=B(ce(l,s),Zn(J(ce(l,i),u))),c=ce(p,d);return Er(c,o,r)}var $L=z({logLoss_:AL});function FL(e,t,n,a=wn.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"labels","meanSquaredError"),s=A(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=A(n,"weights","meanSquaredError")),Nn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Xm(r,s);return Er(o,i,a)}var DL=z({meanSquaredError_:FL});function RL(e,t){let n=A(e,"labels","sigmoidCrossEntropyWithLogits"),a=A(t,"logits","sigmoidCrossEntropyWithLogits");Nn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=B(a,n),i=vc(mn(It(zt(a))));return J(ce(r,s),i)}function ML(e,t,n,a=0,r=wn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"multiClassLabels","sigmoidCrossEntropy"),i=A(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=A(n,"weights","sigmoidCrossEntropy")),Nn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ke(a),p=ke(1),d=ke(.5);s=J(B(s,ce(p,u)),B(d,u))}let l=RL(s,i);return Er(l,o,r)}var PL=z({sigmoidCrossEntropy_:ML});function OL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ur((a,r,s)=>{let i=zx(r,[n],!0),o=ce(oe(r,"float32"),i);s([a,o]);let l=It(B(o,a));return{value:be(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=ei(u.shape,[n]);return[B(W(u,h),ce(oe(d,"float32"),mn(c))),B(W(u,h),ce(mn(c),oe(d,"float32")))]}}})(e,t)}function LL(e,t,n,a=0,r=wn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"onehotLabels","softmaxCrossEntropy"),i=A(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=A(n,"weights","softmaxCrossEntropy")),Nn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ke(a),p=ke(1),d=ke(s.shape[1]);s=J(B(s,ce(p,u)),fe(u,d))}let l=OL(s,i);return Er(l,o,r)}var zL=z({softmaxCrossEntropy_:LL});function BL(e,t,n,a){let r=A(e,"indices","sparseFillEmptyRows","int32"),s=A(t,"values","sparseFillEmptyRows"),i=A(n,"denseShape","sparseFillEmptyRows","int32"),o=A(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=L.runKernel(ic,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var WL=z({sparseFillEmptyRows_:BL});function UL(e,t,n){let a=A(e,"inputIndices","sparseReshape","int32"),r=A(t,"inputShape","sparseReshape","int32"),s=A(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=L.runKernel(pu,i);return{outputIndices:o[0],outputShape:o[1]}}var VL=z({sparseReshape_:UL});function GL(e,t,n){let a=A(e,"data","sparseSegmentMean"),r=A(t,"indices","sparseSegmentMean","int32"),s=A(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(oc,i)}var HL=z({sparseSegmentMean_:GL});function jL(e,t,n){let a=A(e,"data","sparseSegmentSum"),r=A(t,"indices","sparseSegmentSum","int32"),s=A(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(lc,i)}var qL=z({sparseSegmentSum_:jL});function KL(e,t,n,a,r,s,i,o){let l=A(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=A(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=L.runKernel(vm,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var XL=z({stringNGrams_:KL});function YL(e,t,n=!0){let a=A(e,"input","stringSplit","string"),r=A(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=L.runKernel(wm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var JL=z({stringSplit_:YL});function ZL(e,t){let n=A(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(km,r,a)}var QL=z({stringToHashBucketFast_:ZL}),ez={fft:Sc,ifft:sl,rfft:Nc,irfft:Km},tz={hammingWindow:$3,hannWindow:AS,frame:$S,stft:M3},Xn={flipLeftRight:z3,grayscaleToRGB:W3,resizeNearestNeighbor:PS,resizeBilinear:MS,rotateWithOffset:V3,cropAndResize:O3,nonMaxSuppression:H3,nonMaxSuppressionAsync:Q3,nonMaxSuppressionWithScore:tL,nonMaxSuppressionWithScoreAsync:aL,nonMaxSuppressionPadded:sL,nonMaxSuppressionPaddedAsync:oL,threshold:dL,transform:mL},OS={bandPart:gL,gramSchmidt:bL,qr:vL},nz={absoluteDifference:IL,computeWeightedLoss:Er,cosineDistance:NL,hingeLoss:CL,huberLoss:_L,logLoss:$L,meanSquaredError:DL,sigmoidCrossEntropy:PL,softmaxCrossEntropy:zL},xp={sparseFillEmptyRows:WL,sparseReshape:VL,sparseSegmentMean:HL,sparseSegmentSum:qL},sh={stringNGrams:XL,stringSplit:JL,stringToHashBucketFast:QL},_r=class extends zI{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return De(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return pS(e,t)}dispose(){this.iterations_!=null&&De(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(_r,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var nf=class extends _r{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;O(()=>{let l=J(B(i,this.rho),B(lt(s),1-this.rho)),u=B(fe(ln(J(o,this.epsilon)),ln(J(i,this.epsilon))),s),p=J(B(o,this.rho),B(lt(u),1-this.rho));i.assign(l),o.assign(p);let d=J(B(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(De(this.accumulatedGrads.map(e=>e.variable)),De(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};nf.className="Adadelta";hs(nf);var af=class extends _r{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:O(()=>Cn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;O(()=>{let i=J(s,lt(r));s.assign(i);let o=J(B(fe(r,ln(J(i,L.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&De(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};af.className="Adagrad";hs(af);var rf=class extends _r{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],O(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=ce(1,this.accBeta2);t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:O(()=>Ke(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:O(()=>Ke(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=J(B(u,this.beta1),B(l,1-this.beta1)),c=J(B(p,this.beta2),B(lt(l),1-this.beta2)),h=fe(d,n),m=fe(c,a);u.assign(d),p.assign(c);let f=J(B(fe(h,J(ln(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&De(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),O(()=>{this.accBeta1.assign(Cr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Cr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};rf.className="Adam";hs(rf);var sf=class extends _r{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],O(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=fe(-this.learningRate,J(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ke(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ke(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=J(B(u,this.beta1),B(l,1-this.beta1)),c=B(p,this.beta2),h=zt(l),m=hr(c,h);u.assign(d),p.assign(m);let f=J(B(fe(a,n),fe(d,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&De(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sf.className="Adamax";hs(sf);var Tc=class extends _r{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=L.registeredVariables[t];O(()=>{let s=J(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=en(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Tc.className="SGD";hs(Tc);var of=class extends Tc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&O(()=>{let i,o=J(B(this.m,r),s);this.useNesterov?i=J(B(this.c,J(s,B(o,this.m))),a):i=J(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&De(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};of.className="Momentum";hs(of);var lf=class extends _r{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;O(()=>{let l=J(B(i,this.decay),B(lt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=J(B(u,this.decay),B(s,1-this.decay)),d=fe(B(s,this.learningRate),ln(ce(l,J(lt(p),this.epsilon)))),c=J(B(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=ce(a,c);a.assign(h)}else{let u=J(B(i,this.decay),B(lt(s),1-this.decay)),p=J(B(o,this.momentum),fe(B(s,this.learningRate),ln(J(u,this.epsilon))));i.assign(u),o.assign(p);let d=ce(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&De(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&De(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&De(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};lf.className="RMSProp";hs(lf);var Ur=class{static sgd(e){return new Tc(e)}static momentum(e,t,n=!1){return new of(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new lf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new rf(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new nf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new sf(e,t,n,a,r)}static adagrad(e,t=.1){return new af(e,t)}},Rs={sgd:Ur.sgd,momentum:Ur.momentum,adadelta:Ur.adadelta,adagrad:Ur.adagrad,rmsprop:Ur.rmsprop,adamax:Ur.adamax,adam:Ur.adam},az=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function LS(){return new Promise(e=>az(()=>e()))}var E={};Re(E,{ERF_A1:()=>mz,ERF_A2:()=>fz,ERF_A3:()=>gz,ERF_A4:()=>yz,ERF_A5:()=>bz,ERF_P:()=>hz,PARALLELIZE_THRESHOLD:()=>av,SELU_SCALE:()=>BS,SELU_SCALEALPHA:()=>zS,applyActivation:()=>ef,assertAndGetBroadcastShape:()=>ct,assertAxesAreInnerMostDims:()=>vP,assertParamsConsistent:()=>rz,assignToTypedArray:()=>Sz,axesAreInnerMostDims:()=>Ox,calculateShapes:()=>_I,checkEinsumDimSizes:()=>Az,checkPadOnDimRoundingMode:()=>Tn,combineLocations:()=>dS,complexWithEvenIndex:()=>wz,complexWithOddIndex:()=>kz,computeConv2DInfo:()=>gc,computeConv3DInfo:()=>jI,computeDefaultPad:()=>Ix,computeDilation2DInfo:()=>GR,computeOptimalWindowSize:()=>iz,computeOutAndReduceShapes:()=>hS,computeOutShape:()=>sz,computePool2DInfo:()=>HI,computePool3DInfo:()=>HR,convertConv2DDataFormat:()=>qI,decodeEinsumEquation:()=>Ez,eitherStridesOrDilationsAreOne:()=>dr,expandShapeToKeepDim:()=>ei,exponent:()=>Tz,exponents:()=>Nz,fromStringArrayToUint8:()=>Jz,fromUint8ToStringArray:()=>Yz,getAxesPermutation:()=>mS,getBroadcastDims:()=>TI,getComplexWithIndex:()=>Iz,getEinsumComputePath:()=>$z,getEinsumPermutation:()=>_z,getFusedBiasGradient:()=>Qm,getFusedDyActivation:()=>Zm,getImageCenter:()=>oz,getInnerMostAxes:()=>wP,getPermuted:()=>uz,getReductionAxes:()=>Wt,getReshaped:()=>lz,getReshapedPermuted:()=>pz,getSliceBeginCoords:()=>cz,getSliceSize:()=>dz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>Mz,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>Pz,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>Oz,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>Bz,getSparseReshapeInputOutputMismatchErrorMessage:()=>Uz,getSparseReshapeInputOutputMultipleErrorMessage:()=>Wz,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>Lz,getSparseReshapeNegativeOutputDimErrorMessage:()=>zz,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>jz,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>Vz,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>Gz,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>Hz,getUndoAxesPermutation:()=>Lx,isIdentityPermutation:()=>Fz,log:()=>hF,mergeRealAndImagArrays:()=>xz,prepareAndValidate:()=>EI,prepareSplitSize:()=>Rz,segment_util:()=>WS,shouldFuse:()=>tf,slice_util:()=>qt,splitRealAndImagArrays:()=>vz,tupleValuesAreOne:()=>es,upcastType:()=>Ia,validateInput:()=>cx,validateUpdateShape:()=>px,warn:()=>Gr});function rz(e,t){let n=e[0].length;e.forEach((r,s)=>{R(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)R(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function sz(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var av=30;function iz(e){return e<=av?e:gh(e,Math.floor(Math.sqrt(e)))}function oz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function lz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function uz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function pz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function cz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function dz(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var zS=1.7580993408473768,BS=1.0507009873554805,hz=.3275911,mz=.254829592,fz=-.284496736,gz=1.421413741,yz=-1.453152027,bz=1.061405429;function xz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function vz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function wz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function kz(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Iz(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function Sz(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function Nz(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function Tz(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var By="->",Cz=/->/g,N1=",",T1="...";function Ez(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Cz,"").length)/By.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${By}").`);let[a,r]=e.split(By);R(a.indexOf(T1)===-1,()=>`The ellipsis notation ("${T1}") is not supported yet.`);let s=a.split(N1),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==N1&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function _z(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function Az(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:R(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function $z(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=Dz(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function Fz(e){return e.every((t,n)=>t===n)}function Dz(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function Rz(e,t,n=0){let a=[];if(typeof t=="number")R(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);R(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}R(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function Mz(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function Pz(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function Oz(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function Lz(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function zz(e,t){return`size ${e} must be non-negative, not ${t}`}function Bz(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function Wz(e,t){let n=xt(e),a=xt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function Uz(e,t){let n=xt(e),a=xt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function Vz(){return"segment ids must be >= 0"}function Gz(){return"segment ids are not increasing"}function Hz(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function jz(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var WS={};Re(WS,{collectGatherOpShapeInfo:()=>Xz,computeOutShape:()=>Kz,segOpComputeOptimalWindowSize:()=>qz});function qz(e,t){let n=!1,a;for(e<=av?(a=e,n=!0):a=gh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=gh(e,a+1);return a}function Kz(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function Xz(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function Yz(e){try{return e.map(t=>kh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function Jz(e){return e.map(t=>hc(t))}var mr={};Re(mr,{nonMaxSuppressionV3Impl:()=>FS,nonMaxSuppressionV4Impl:()=>DS,nonMaxSuppressionV5Impl:()=>RS,whereImpl:()=>kS});var US={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Iu(oe(n,"float32"),-1))}}},Zz={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(oe(n,"float32")),r=ln(ce(ke(1),a));return It(fe(e,r))}}}},Qz={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ln(ce(lt(oe(n,"float32")),1));return fe(e,a)}}}},eB={kernelName:ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}},tB={kernelName:pi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},nB={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},aB={kernelName:Kp,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},rB={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ln(ce(ke(1),lt(oe(n,"float32")))))}}},sB={kernelName:wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ln(J(ke(1),lt(oe(n,"float32"))));return fe(e,a)}}}},iB={kernelName:Sl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=J(lt(n),lt(a)),i=B(e,fe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=be(i,o)),W(i,n.shape)},b:()=>{let s=J(lt(n),lt(a)),i=It(B(e,fe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=be(i,o)),W(i,a.shape)}}}},oB={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(lt(oe(n,"float32")),1))}}},lB={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ce(ke(1),lt(oe(n,"float32"))))}}};function uB(e,t,n,a,r,s){let i=A(e,"dy","avgPool3dGrad"),o=A(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),R(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Tn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=L.runKernel(Kh,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var pB=z({avgPool3dGrad_:uB}),cB={kernelName:Xp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>pB(e,a,r,s,i,o)}}};function dB(e,t,n,a,r){let s=A(e,"dy","avgPoolGrad"),i=A(t,"input","avgPoolGrad");R(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),R(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=L.runKernel(qh,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var hB=z({avgPoolGrad_:dB}),mB={kernelName:di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>hB(e,a,r,s,i)}}},fB={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Fe(e,r,!1,!0),b:()=>Fe(a,e,!0,!1)}:!s&&i?{a:()=>Fe(e,r,!1,!1),b:()=>Fe(e,a,!0,!1)}:s&&!i?{a:()=>Fe(r,e,!1,!0),b:()=>Fe(a,e,!1,!1)}:{a:()=>Fe(r,e,!0,!0),b:()=>Fe(e,a,!0,!0)}}},gB={kernelName:Nl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>kc(e,a,r)}}},yB={kernelName:eI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>be(e,o,!0)}}},bB={kernelName:mi,gradFunc:e=>({x:()=>e.clone()})},xB={kernelName:fi,gradFunc:e=>({x:()=>Ke(e)})},vB={kernelName:us,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>hn(Sa(fs(a,r),gs(a,s)),e,Ke(e))}}},wB={kernelName:Yp,inputsToSave:["x"],gradFunc:US.gradFunc},kB={kernelName:Tl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Na(r,t[0].shape)[0],i=a.map(o=>o[s]);return On(e,i,s).map(o=>()=>o)}},IB={kernelName:gi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return R(es(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Cx(a.shape,e,r,i,o,l),filter:()=>tv(a,e,r.shape,i,o,l)}}},SB={kernelName:yi,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>tv(e,a,r.shape,s,i,o,l)}}};function NB(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),R(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),R(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return L.runKernel(Qh,o,l)}var TB=z({conv3DBackpropFilter_:NB}),CB={kernelName:Jp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;R(es(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>nS(i.shape,e,o,r,s),filter:()=>TB(i,e,o.shape,r,s)}}},EB={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(It(Hm(oe(n,"float32"))),e)}}},_B={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(jm(oe(n,"float32")),e)}}},AB={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=mS([r],a.rank),l=Dm(e,r,s,!i);return o!=null&&(l=Me(l,o)),l}}}},$B={kernelName:wi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;R(es(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),R(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),R(dr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Tn("depthwiseConv2d",s,i),{x:()=>_S(l.shape,e,u,r,s,o,i),filter:()=>ES(l,e,u.shape,r,s,o,i)}}},FB={kernelName:Zp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>L.runKernel(yh,s,n),filter:()=>L.runKernel(bh,i,n)}}},DB={kernelName:Ii,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>L.runKernel(im,a)}}},RB={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(mn(It(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},MB={kernelName:Si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},PB={kernelName:$l,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},OB={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,mn(n))}}},LB={kernelName:Ni,gradFunc:e=>({x:()=>Ke(e)})},zB={kernelName:Ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=lt(a);return It(fe(s,oe(o,"float32")))}}}},BB={kernelName:Ci,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ke(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=ce(r,s),c=B(e,l),h=Vm(J(i,ke(a))),m=B(B(B(h,h),h),ke(-.5));return{x:()=>s.rank===1?W(B(B(e,Pn(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,ke(-1)),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},variance:()=>{let f=B(B(m,d),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},scale:()=>{let f=B(d,h),g=B(e,f);return s.rank===1&&(g=be(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=be(f,u)),W(f,s.shape)}}}},WB={kernelName:Rl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Na(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=C1(0,p),m=C1(p+1,p+1+c),f=E1([u,[l],d]),g=W(e,f),y=W(r,[l]),b=E1([[p],h,m]),x=Me(g,b),v=Jx(x,y,a.shape[i]),w=Lx(b);return v=Me(v,w),v},indices:()=>r}}};function C1(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function E1(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var UB={kernelName:Ei,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ke(n),b:()=>Ke(a)}}},VB={kernelName:_i,gradFunc:e=>({x:()=>oe(e,"float32")})},GB={kernelName:Ol,gradFunc:e=>({x:()=>Ke(e)})},HB={kernelName:Ll,gradFunc:e=>({x:()=>Ke(e)})},jB={kernelName:zl,gradFunc:e=>({x:()=>Ke(e)})},qB={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Bn(a,0);return{x:()=>hn(s,e,B(e,r))}}},KB={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(n,1))}}},XB={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,oe(n,"float32"))}}},YB={kernelName:tI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=mn(a);return ce(e,B(be(e,r,!0),s))}}}};function JB(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return L.runKernel(cm,o,l)}var ZB=z({localResponseNormalizationBackprop_:JB}),QB={kernelName:nc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>ZB(a,r,e,s,i,o,l)}}};function VS(e,t,n,a){return t.rank<n.rank&&(t=W(t,ei(t.shape,a))),e.rank<n.rank&&(e=W(e,ei(e.shape,a))),{x:()=>B(e,oe(Jn(n,t),e.dtype))}}var _1={kernelName:Fi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Na(r,s.shape),l=VS(e,i,s,o);return{x:()=>l.x()}}},eW={kernelName:Di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,oe(fs(n,a),"float32")),b:()=>B(e,oe(Mm(n,a),"float32"))}}};function tW(e,t,n,a,r,s,i){let o=A(e,"dy","maxPool3dGrad"),l=A(t,"input","maxPool3dGrad"),u=A(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),R(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Tn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=L.runKernel(hm,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var nW=z({maxPool3dGrad_:tW}),aW={kernelName:ac,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>nW(e,a,r,s,i,o,l)}}};function rW(e,t,n,a,r,s,i){let o=A(e,"dy","maxPoolGrad"),l=A(t,"input","maxPoolGrad"),u=A(n,"output","maxPoolGrad");R(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),R(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),R(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Tn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return L.runKernel(dm,p,d)}var sW=z({maxPoolGrad_:rW}),iW={kernelName:Ri,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>sW(e,a,r,s,i,o)}}},oW={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Na(r,a.shape),i=hS(a.shape,s)[1],o=xt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return fe(B(u,Kn(a.shape,"float32")),o)}}}},lW={kernelName:Pi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Na(r,s.shape),l=VS(e,i,s,o);return{x:()=>l.x()}}},uW={kernelName:Oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,oe(gs(n,a),"float32")),b:()=>B(e,oe(Bn(n,a),"float32"))}}},pW={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ge(e,s,a.shape)}}},cW={kernelName:Gl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?W(be(e,s),n.shape):e},b:()=>{let s=B(e,It(xu(fe(n,a)))),i=Wt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},dW={kernelName:zi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=B(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Wt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},hW={kernelName:Hl,gradFunc:e=>({x:()=>It(e)})},mW={kernelName:Bi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>wt(n.shape,"float32")}}},fW={kernelName:Yl,gradFunc:e=>({x:()=>Ke(e)})},gW={kernelName:Jl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return dt(e,a).map(r=>()=>r)}},A1={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ge(e,s,a.shape)}}},yW={kernelName:Ui,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ct(s.shape,i.shape);return{a:()=>{let l=oe(i,"float32"),u=B(e,B(l,Cr(s,ce(l,ke(1))))),p=Wt(s.shape,o);return p.length>0&&(u=be(u,p)),W(u,s.shape)},b:()=>{let l=Bn(s,0),u=hn(l,Zn(s),Ke(s)),p=B(e,B(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=be(p,d)),W(p,i.shape)}}}},bW={kernelName:Vi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Bn(n,0);return{x:()=>hn(r,e,B(e,a)),alpha:()=>{let s=hn(r,Ke(e),B(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}},xW={kernelName:ki,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=lt(a);return It(fe(s,oe(o,"float32")))}}}},vW={kernelName:Ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,It(lt(n)))}}},wW={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(gs(n,6),Iu(n));return{x:()=>B(e,oe(a,"float32"))}}},kW={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,oe(Iu(n),"float32"))}}},IW={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},SW={kernelName:Hi,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(bm,r,n)}}},NW={kernelName:sc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(ym,r,n)}}},TW={kernelName:qi,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Na(a,e.shape);return{x:()=>ea(e,r)}}},CW={kernelName:Ki,gradFunc:e=>({x:()=>Ke(e)})},EW={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>It(fe(e,B(Cr(n,1.5),2)))}}},_W={kernelName:nu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>oe(Ke(n),"float32"),t:()=>B(e,oe(n,e.dtype)),e:()=>B(e,oe(wc(n),e.dtype))}}},AW={kernelName:au,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Bn(n,ke(0)),r=ke(zS),s=ke(BS),i=B(e,s),o=B(B(e,r),mn(oe(n,"float32")));return hn(a,i,o)}}}},$W={kernelName:Ji,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ce(ke(1),n)))}}},FW={kernelName:iu,gradFunc:e=>({x:()=>Ke(e)})},DW={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(bc(oe(n,"float32")),e)}}},RW={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Fm(oe(n,"float32")),e)}}},MW={kernelName:ru,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=LI(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>fa(e,u)}}},PW={kernelName:eo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>ce(i,B(be(i,[r],s),a))}}},OW={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,da(n))}}},$1={kernelName:lu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>yc(e,a,r)}}},F1={kernelName:uu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},LW={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,B(ln(oe(n,"float32")),2))}}},zW={kernelName:uc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(oe(n,"float32"),2))}}},BW={kernelName:to,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ke(2);return{a:()=>B(e,B(r,ce(n,a))),b:()=>B(e,B(r,ce(a,n)))}}},WW={kernelName:cs,gradFunc:e=>({x:()=>Ke(e)})},UW={kernelName:no,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=be(s,i)),W(It(s),a.shape)}}}},VW={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Na(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=B(i,Kn(a.shape,"float32"));return{x:()=>o}}},GW={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,lt(bc(n)))}}},HW={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ce(ke(1),lt(n)),e)}}},jW={kernelName:ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ke(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,Ge(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,Ge(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,Ge(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=J(s,Ge(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},qW={kernelName:so,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Lx(r);return{x:()=>Me(e,s)}}},KW={kernelName:mu,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Mt(e,r)}}},XW={kernelName:pc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>YW(e,n)}}};function YW(e,t){let n=hr(t,Ke(t)),a=Qs(e,n),r=fs(t,ke(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=dn(r,o+1);r=Sa(r,Kn(a.shape,"bool"));let i=Ke(a);return hn(r,a,i)}var JW={kernelName:fu,gradFunc:e=>({x:()=>Ke(e)})},ZW=[US,Zz,Qz,eB,tB,nB,aB,rB,sB,iB,oB,lB,cB,mB,fB,gB,yB,bB,xB,vB,wB,kB,SB,IB,CB,EB,_B,AB,$B,FB,xW,DB,RB,MB,PB,OB,zB,LB,BB,WB,UB,VB,GB,HB,jB,qB,KB,XB,YB,QB,_1,_1,eW,aW,iW,oW,lW,uW,pW,cW,dW,hW,mW,fW,gW,A1,A1,yW,bW,vW,wW,kW,IW,SW,NW,TW,CW,EW,_W,AW,$W,FW,DW,RW,MW,PW,OW,$1,$1,F1,F1,LW,BW,zW,WW,UW,VW,GW,HW,jW,qW,KW,XW,JW];for(let e of ZW)nI(e);ne().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};ne().prototype.acos=function(){return this.throwIfDisposed(),fx(this)};ne().prototype.acosh=function(){return this.throwIfDisposed(),gx(this)};ne().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};ne().prototype.all=function(e,t){return this.throwIfDisposed(),_m(this,e,t)};ne().prototype.any=function(e,t){return this.throwIfDisposed(),Pp(this,e,t)};ne().prototype.argMax=function(e){return this.throwIfDisposed(),Js(this,e)};ne().prototype.argMin=function(e){return this.throwIfDisposed(),yx(this,e)};ne().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),W(this,[])};ne().prototype.asType=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};ne().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};ne().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};ne().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};ne().prototype.asin=function(){return this.throwIfDisposed(),bx(this)};ne().prototype.asinh=function(){return this.throwIfDisposed(),xx(this)};ne().prototype.atan=function(){return this.throwIfDisposed(),vx(this)};ne().prototype.atan2=function(e){return this.throwIfDisposed(),wx(this,e)};ne().prototype.atanh=function(){return this.throwIfDisposed(),kx(this)};ne().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ma(this,e,t,n,a)};ne().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),yc(this,e,t)};ne().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Tr(this,e,t,n,a,r)};ne().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Zo(this,e)};ne().prototype.cast=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.ceil=function(){return this.throwIfDisposed(),Tx(this)};ne().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),nn(this,e,t)};ne().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ae&&(e=[e]),Qe([this,...e],t)};ne().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Am(this,e,t,n,a,r,s)};ne().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),$m(this,e,t,n,a,r)};ne().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};ne().prototype.cos=function(){return this.throwIfDisposed(),bc(this)};ne().prototype.cosh=function(){return this.throwIfDisposed(),Fm(this)};ne().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Dm(this,e,t,n)};ne().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_x(this,e,t)};ne().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ms(this,e,t,n,a,r,s)};ne().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Ax(this,e,t,n,a,r)};ne().prototype.divNoNan=function(e){return this.throwIfDisposed(),$x(this,e)};ne().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ne().prototype.dot=function(e){return this.throwIfDisposed(),sS(this,e)};ne().prototype.elu=function(){return this.throwIfDisposed(),bu(this)};ne().prototype.equal=function(e){return this.throwIfDisposed(),Jn(this,e)};ne().prototype.erf=function(){return this.throwIfDisposed(),Fx(this)};ne().prototype.exp=function(){return this.throwIfDisposed(),mn(this)};ne().prototype.expandDims=function(e){return this.throwIfDisposed(),dn(this,e)};ne().prototype.expm1=function(){return this.throwIfDisposed(),Dx(this)};ne().prototype.fft=function(){return this.throwIfDisposed(),Sc(this)};ne().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.floor=function(){return this.throwIfDisposed(),xu(this)};ne().prototype.floorDiv=function(e){return this.throwIfDisposed(),Em(this,e)};ne().prototype.gather=function(e,t){return this.throwIfDisposed(),Qs(this,e,t)};ne().prototype.greaterEqual=function(e){return this.throwIfDisposed(),fs(this,e)};ne().prototype.greater=function(e){return this.throwIfDisposed(),Bn(this,e)};ne().prototype.ifft=function(){return this.throwIfDisposed(),sl(this)};ne().prototype.irfft=function(){return this.throwIfDisposed(),Km(this)};ne().prototype.isFinite=function(){return this.throwIfDisposed(),oS(this)};ne().prototype.isInf=function(){return this.throwIfDisposed(),lS(this)};ne().prototype.isNaN=function(){return this.throwIfDisposed(),Mx(this)};ne().prototype.leakyRelu=function(e){return this.throwIfDisposed(),xc(this,e)};ne().prototype.lessEqual=function(e){return this.throwIfDisposed(),gs(this,e)};ne().prototype.less=function(e){return this.throwIfDisposed(),Mm(this,e)};ne().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),Px(this,e,t,n,a)};ne().prototype.logSigmoid=function(){return this.throwIfDisposed(),cS(this)};ne().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Om(this,e)};ne().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),zx(this,e,t)};ne().prototype.log=function(){return this.throwIfDisposed(),Zn(this)};ne().prototype.log1p=function(){return this.throwIfDisposed(),vc(this)};ne().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Sa(this,e)};ne().prototype.logicalNot=function(){return this.throwIfDisposed(),wc(this)};ne().prototype.logicalOr=function(e){return this.throwIfDisposed(),Lm(this,e)};ne().prototype.logicalXor=function(e){return this.throwIfDisposed(),fS(this,e)};ne().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Fe(this,e,t,n)};ne().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Pt(this,e,t,n,a)};ne().prototype.max=function(e,t){return this.throwIfDisposed(),ka(this,e,t)};ne().prototype.maximum=function(e){return this.throwIfDisposed(),hr(this,e)};ne().prototype.mean=function(e,t){return this.throwIfDisposed(),_t(this,e,t)};ne().prototype.min=function(e,t){return this.throwIfDisposed(),Op(this,e,t)};ne().prototype.minimum=function(e){return this.throwIfDisposed(),vu(this,e)};ne().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Wx(this,e,t)};ne().prototype.mod=function(e){return this.throwIfDisposed(),Ux(this,e)};ne().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ne().prototype.neg=function(){return this.throwIfDisposed(),It(this)};ne().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Jm(this,e,t,n)};ne().prototype.notEqual=function(e){return this.throwIfDisposed(),ti(this,e)};ne().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),al(this,e,t,n)};ne().prototype.onesLike=function(){return this.throwIfDisposed(),Qn(this)};ne().prototype.pad=function(e,t){return this.throwIfDisposed(),fa(this,e,t)};ne().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),bS(this,e,t,n,a,r,s)};ne().prototype.pow=function(e){return this.throwIfDisposed(),Cr(this,e)};ne().prototype.prelu=function(e){return this.throwIfDisposed(),Ic(this,e)};ne().prototype.prod=function(e,t){return this.throwIfDisposed(),Bm(this,e,t)};ne().prototype.reciprocal=function(){return this.throwIfDisposed(),Hx(this)};ne().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};ne().prototype.relu6=function(){return this.throwIfDisposed(),Wm(this)};ne().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};ne().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};ne().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),MS(this,e,t,n)};ne().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),PS(this,e,t,n)};ne().prototype.reverse=function(e){return this.throwIfDisposed(),ea(this,e)};ne().prototype.rfft=function(){return this.throwIfDisposed(),Nc(this)};ne().prototype.round=function(){return this.throwIfDisposed(),Um(this)};ne().prototype.rsqrt=function(){return this.throwIfDisposed(),Vm(this)};ne().prototype.selu=function(){return this.throwIfDisposed(),Gm(this)};ne().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),lo(this,e,t,n,a,r,s)};ne().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};ne().prototype.sign=function(){return this.throwIfDisposed(),jx(this)};ne().prototype.sin=function(){return this.throwIfDisposed(),Hm(this)};ne().prototype.sinh=function(){return this.throwIfDisposed(),jm(this)};ne().prototype.slice=function(e,t){return this.throwIfDisposed(),Ge(this,e,t)};ne().prototype.softmax=function(e){return this.throwIfDisposed(),Xa(this,e)};ne().prototype.softplus=function(){return this.throwIfDisposed(),oo(this)};ne().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),kc(this,e,t)};ne().prototype.split=function(e,t){return this.throwIfDisposed(),On(this,e,t)};ne().prototype.sqrt=function(){return this.throwIfDisposed(),ln(this)};ne().prototype.square=function(){return this.throwIfDisposed(),lt(this)};ne().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Xm(this,e)};ne().prototype.squeeze=function(e){return this.throwIfDisposed(),pr(this,e)};ne().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ae?[this,e]:[this,...e];return Mt(n,t)};ne().prototype.step=function(e){return this.throwIfDisposed(),Iu(this,e)};ne().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Kx(this,e,t,n,a,r,s,i,o)};ne().prototype.sub=function(e){return this.throwIfDisposed(),ce(this,e)};ne().prototype.sum=function(e,t){return this.throwIfDisposed(),be(this,e,t)};ne().prototype.tan=function(){return this.throwIfDisposed(),Xx(this)};ne().prototype.tanh=function(){return this.throwIfDisposed(),Zs(this)};ne().prototype.tile=function(e){return this.throwIfDisposed(),Pn(this,e)};ne().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};ne().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};ne().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};ne().prototype.topk=function(e,t){return this.throwIfDisposed(),Yx(this,e,t)};ne().prototype.transpose=function(e){return this.throwIfDisposed(),Me(this,e)};ne().prototype.unique=function(e){return this.throwIfDisposed(),Th(this,e)};ne().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Jx(this,e,t)};ne().prototype.unstack=function(e){return this.throwIfDisposed(),dt(this,e)};ne().prototype.where=function(e,t){return this.throwIfDisposed(),hn(e,this,t)};ne().prototype.zerosLike=function(){return this.throwIfDisposed(),Ke(this)};var GS={};Re(GS,{maxNorm:()=>n4,minMaxNorm:()=>s4,nonNeg:()=>r4,unitNorm:()=>a4});var Wy;function Ht(){return Wy==null&&(Wy=VI().epsilon()),Wy}function ja(){return"channelsLast"}var xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},za=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,za.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},Pe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Pe.prototype)}},HS=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,HS.prototype)}};function ni(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function rr(e,t){if(!e)throw new HS(t)}function D1(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Mn(e){return e.length===1?e[0]:e}function bt(e){return Array.isArray(e)?e:[e]}function vr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Os(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ba={};function rv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function hb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>hb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:hb(a))}}}function Cc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ba)i=ba[s];else if(i=t[s],i==null)throw new H(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new H(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ba?[o,l]=ba.className:i in t&&([o,l]=t[i]),o==null)throw new H(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ba))u[h]=ba[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},ba);for(let h of Object.keys(n))ba[h]=n[h];hb(s.config);let c=l(o,s.config,n,r);return ba=Object.assign({},d),c}else{let u=Object.assign({},ba);for(let d of Object.keys(n))ba[d]=n[d];let p=new o(s.config);return ba=Object.assign({},u),p}}}function QW(e,t){return e<t?-1:e>t?1:0}function qd(e,t){return-1*QW(e,t)}function Xr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function e4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function uo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function sv(e,t,n=0,a=1/0){return rr(n>=0),rr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function tn(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>tn(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${jS(e)}.`)}function jS(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>jS(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function t4(e,t,n){let a=n!=null?n():k.now(),r;return(...s)=>{let i=n!=null?n():k.now();return i-a<t||(a=i,r=e(...s)),r}}function qS(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function iv(e,t){return O(()=>ln(be(B(e,e),t,!0)))}var Ec=class extends se.Serializable{getConfig(){return{}}},ov=class extends Ec{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=iv(e,this.axis),n=nn(t,0,this.maxValue);return B(e,fe(n,J(Ht(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};ov.className="MaxNorm";se.registerClass(ov);var lv=class extends Ec{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>fe(e,J(Ht(),iv(e,this.axis))))}getConfig(){return{axis:this.axis}}};lv.className="UnitNorm";se.registerClass(lv);var uv=class extends Ec{apply(e){return Xe(e)}};uv.className="NonNeg";se.registerClass(uv);var pv=class extends Ec{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=iv(e,this.axis),n=J(B(this.rate,nn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,fe(n,J(Ht(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};pv.className="MinMaxNorm";se.registerClass(pv);var R1={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Kt(e){return rv(e)}function M1(e,t={}){return Cc(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in R1?R1[e]:e,config:{}};return M1(t)}else return e instanceof Ec?e:M1(e)}function n4(e){return new ov(e)}function a4(e){return new lv(e)}function r4(){return new uv}function s4(e){return new pv(e)}var KS={};Re(KS,{constant:()=>E4,glorotNormal:()=>M4,glorotUniform:()=>R4,heNormal:()=>P4,heUniform:()=>O4,identity:()=>F4,leCunNormal:()=>L4,leCunUniform:()=>z4,ones:()=>C4,orthogonal:()=>B4,randomNormal:()=>A4,randomUniform:()=>_4,truncatedNormal:()=>$4,varianceScaling:()=>D4,zeros:()=>T4});var i4=["channelsFirst","channelsLast"],o4=["nearest","bilinear"],l4=["valid","same","causal"],u4=["max","avg"],p4=["sum","mul","concat","ave"],Vo=new Map;function Ot(e){uo(i4,"DataFormat",e)}function c4(e){uo(o4,"InterpolationFormat",e)}function ga(e){uo(l4,"PaddingMode",e)}function XS(e){uo(u4,"PoolMode",e)}var Ep=[],P1="/";function Vs(e,t){Ep.push(e);try{let n=t();return Ep.pop(),n}catch(n){throw Ep.pop(),n}}function d4(){return Ep.length===0?"":Ep.join(P1)+P1}function YS(e){if(!ZS(e))throw new Error("Not a valid tensor name: '"+e+"'");return d4()+e}function JS(e){if(!ZS(e))throw new Error("Not a valid tensor name: '"+e+"'");Vo.has(e)||Vo.set(e,0);let t=Vo.get(e);if(Vo.set(e,Vo.get(e)+1),t>0){let n=`${e}_${t}`;return Vo.set(n,1),n}else return e}var h4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function ZS(e){return!!e.match(h4)}function m4(e){return e===parseInt(e.toString(),10)}function Yr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function il(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ns(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function qa(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function uf(e,t){return oe(e,t)}function _c(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function f4(e,t){return O(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=_c(e,1);return mb(n,[1,t,1])})}function g4(e){let t=[Yr(e.shape)];return W(e,t)}function y4(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Yr(e.shape,1)];return W(e,t)}function Gs(e,t,n){return O(()=>{switch(e.rank){case 1:return qm(e,t,n);case 2:return qx(e,[t,0],[n,e.shape[1]]);case 3:return ku(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return zp(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ge(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ge(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Uy(e,t,n){return O(()=>{switch(e.rank){case 1:return qm(e,t,n);case 2:return qx(e,[0,t],[e.shape[0],n]);case 3:return ku(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return zp(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Kd(e,t,n,a){return O(()=>{switch(e.rank){case 1:return qm(e,t,n);case 2:switch(a){case 1:return Gs(e,t,n);case 2:return Uy(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Gs(e,t,n);case 2:return ku(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Uy(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Gs(e,t,n);case 2:return zp(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return zp(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Uy(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function cv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function O1(e,t){switch(e.rank){case 1:return ZI([e,t]);case 2:return QI([e,t],0);case 3:return eS([e,t],0);case 4:return tS([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function mb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Pn(e,t)}function pf(e,t=0,n=1,a,r){return xS(e,t,n,a,r)}function or(e,t,n,a){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ts.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?fb(e.rank,a,ja()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(Me(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(ts.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?fb(e.rank,a,ja()):null,activation:n}),d)}}function QS(e,t,n){return O(()=>(Array.isArray(t)?t=qe(t,"int32"):t=oe(t,"int32"),Qs(e,t,n)))}function Ac(e){return B(e,e)}function fb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ja(e,t,n){return O(()=>(n==null&&(n=ja()),Ot(n),J(e,fb(e.rank,t,n))))}function b4(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return bu(e)}function x4(e){return O(()=>fe(e,J(zt(e),1)))}function e2(e,t,n,a){return O(()=>TS(e,t,n,a))}function v4(e){return O(()=>{let t=J(.5,B(.2,e));return nn(t,0,1)})}function $c(e,t,n=!1){return n?e():t()}var w4=["fanIn","fanOut","fanAvg"],k4=["normal","uniform","truncatedNormal"];function I4(e){uo(w4,"FanMode",e)}function S4(e){uo(k4,"Distribution",e)}var Ta=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},dv=class extends Ta{apply(e,t){return wt(e,t)}};dv.className="Zeros";se.registerClass(dv);var cf=class extends Ta{apply(e,t){return Kn(e,t)}};cf.className="Ones";se.registerClass(cf);var hv=class extends Ta{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return O(()=>B(ke(this.value),Kn(e,t)))}getConfig(){return{value:this.value}}};hv.className="Constant";se.registerClass(hv);var mv=class extends Ta{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return wu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};mv.className="RandomUniform";se.registerClass(mv);var fv=class extends Ta{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return pf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};fv.className="RandomNormal";se.registerClass(fv);var gv=class extends Ta{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return Ym(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};gv.className="TruncatedNormal";se.registerClass(gv);var yv=class extends Ta{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return O(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Rx(e[0]))})}getConfig(){return{gain:this.gain}}};yv.className="Identity";se.registerClass(yv);function N4(e,t="channelsLast"){let n,a;if(Ot(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Yr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Yr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Yr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var zn=class extends Ta{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,I4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,S4(this.distribution),this.seed=e.seed}apply(e,t){let n=N4(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return Ym(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return wu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};zn.className="VarianceScaling";se.registerClass(zn);var df=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};df.className="GlorotUniform";se.registerClass(df);var hf=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};hf.className="GlorotNormal";se.registerClass(hf);var mf=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};mf.className="HeNormal";se.registerClass(mf);var ff=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};ff.className="HeUniform";se.registerClass(ff);var gf=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};gf.className="LeCunNormal";se.registerClass(gf);var yf=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};yf.className="LeCunNormal";se.registerClass(yf);var bv=class extends Ta{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return O(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=pf(n,0,1,"float32"),r=OS.gramSchmidt(a);return e[0]>e[1]&&(r=Me(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};bv.className="Orthogonal";se.registerClass(bv);var L1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function z1(e,t={}){return Cc(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return rv(e)}function kt(e){if(typeof e=="string"){let t=e in L1?L1[e]:e;if(t==="GlorotNormal")return new hf;if(t==="GlorotUniform")return new df;if(t==="HeNormal")return new mf;if(t==="HeUniform")return new ff;if(t==="LeCunNormal")return new gf;if(t==="LeCunUniform")return new yf;{let n={};return n.className=t,n.config={},z1(n)}}else return e instanceof Ta?e:z1(e)}function T4(){return new dv}function C4(){return new cf}function E4(e){return new hv(e)}function _4(e){return new mv(e)}function A4(e){return new fv(e)}function $4(e){return new gv(e)}function F4(e){return new yv(e)}function D4(e){return new zn(e)}function R4(e){return new df(e)}function M4(e){return new hf(e)}function P4(e){return new mf(e)}function O4(e){return new ff(e)}function L4(e){return new gf(e)}function z4(e){return new yf(e)}function B4(e){return new bv(e)}var t2={};Re(t2,{Layer:()=>Ye,RNN:()=>fr,RNNCell:()=>Pc,activation:()=>kV,add:()=>$V,alphaDropout:()=>mG,average:()=>FV,averagePooling1d:()=>Tw,averagePooling2d:()=>Cw,averagePooling3d:()=>Ew,avgPool1d:()=>WV,avgPool2d:()=>VV,avgPool3d:()=>HV,avgPooling1d:()=>UV,avgPooling2d:()=>GV,avgPooling3d:()=>jV,batchNormalization:()=>LV,bidirectional:()=>iG,concatenate:()=>DV,conv1d:()=>hV,conv2d:()=>mV,conv2dTranspose:()=>fV,conv3d:()=>gV,conv3dTranspose:()=>yV,convLstm2d:()=>nG,convLstm2dCell:()=>aG,cropping2D:()=>xV,dense:()=>IV,depthwiseConv2d:()=>wV,dot:()=>OV,dropout:()=>SV,elu:()=>oV,embedding:()=>AV,flatten:()=>TV,gaussianDropout:()=>hG,gaussianNoise:()=>dG,globalAveragePooling1d:()=>qV,globalAveragePooling2d:()=>KV,globalMaxPool1d:()=>lG,globalMaxPool2d:()=>uG,globalMaxPooling1d:()=>Y2,globalMaxPooling2d:()=>J2,gru:()=>YV,gruCell:()=>JV,input:()=>I2,inputLayer:()=>iV,layerNormalization:()=>zV,leakyReLU:()=>uV,lstm:()=>ZV,lstmCell:()=>QV,masking:()=>fG,maxPool1d:()=>pG,maxPool2d:()=>cG,maxPooling1d:()=>Z2,maxPooling2d:()=>Q2,maxPooling3d:()=>XV,maximum:()=>RV,minimum:()=>MV,multiply:()=>PV,permute:()=>_V,prelu:()=>pV,reLU:()=>lV,repeatVector:()=>CV,reshape:()=>EV,rnn:()=>rG,separableConv2d:()=>bV,simpleRNN:()=>eG,simpleRNNCell:()=>tG,softmax:()=>cV,spatialDropout1d:()=>NV,stackedRNNCells:()=>sG,thresholdedReLU:()=>dV,timeDistributed:()=>oG,upSampling2d:()=>vV,zeroPadding2d:()=>BV});var W4=0;function n2(){return W4++}var Xd={};function bf(e=""){return e in Xd||(Xd[e]=0),Xd[e]+=1,e+Xd[e].toString()}function gb(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ch(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Oe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function it(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Eh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var B1="Variable",a2=class{constructor(e,t="float32",n=B1,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=n2(),n=n==null?B1:n,this.originalName=YS(n),this.name=JS(this.originalName),this.trainable_=a,this.constraint=r,this.val=wS(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),U4(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function U4(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function yb(e){return e.map(t=>t.read())}function xv(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ba=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=n2(),s!=null&&(this.originalName=YS(s),this.name=JS(this.originalName)),this.rank=t.length}},V4=0,xf=class{constructor(e,t){this.callArgs=t,this.id=V4++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},G4=0,Ye=class extends se.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=G4++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+bf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new za(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Mn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Mn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} is not connected, no input to return.`);return Mn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Mn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),a=!0;for(let s of n)if(!(s instanceof Ba)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ba){r=!1;break}if(a===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Vs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of bt(e))s.push(i.shape);this.build(Mn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=bt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Mn(o),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=H4(e),i=this.computeOutputShape(s),o,l=j4(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ba(l,u,this,bt(e),t,this.name,p)):o=new Ba(l,i,this,bt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new xr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new xr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new za(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Eh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return yb(e?this.trainableWeights:this.weights)}setWeights(e){O(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=yb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new H(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}xv(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():kt("zeros"));let l=a.apply(t,n),u=new a2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=bt(e);t=bt(t),n=bt(n),a=bt(a),r=Ch(r),s=Ch(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new xf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function H4(e){e=bt(e);let t=[];for(let n of e)t.push(n.shape);return Mn(t)}function j4(e){return"float32"}function r2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=r2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Nu=class extends Ye{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:bf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ba(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new xf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Nu.className="InputLayer";se.registerClass(Nu);function s2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Nu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Vr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];De(a)}}function i2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var W1;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(W1||(W1={}));var q4=125,ol=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},o2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},K4=class extends ol{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=O(()=>J(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:O(()=>{let a=B(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),en(t[n])}))}},l2=class extends ol{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},u2=class extends ol{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||LS,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=q4),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=t4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Vr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Vr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Vr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Vr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Vr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Vr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Vr(e),await this.trainEnd(e))}};function p2(e,t){return e==null&&(e={}),e instanceof ol?[e]:Array.isArray(e)&&e[0]instanceof ol?e:bt(e).map(n=>new u2(n,t))}var va=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),va.checkForDuplicate(t),va.constructors[e]==null&&(va.constructors[e]=[]),va.constructors[e].push(t)}static checkForDuplicate(e){for(let t in va.constructors)va.constructors[+t].forEach(n=>{if(n===e)throw new H("Duplicate callback constructor.")})}static clear(){va.constructors={}}static createCallbacks(e){let t=[];for(let n in va.constructors){let a=+n;e>=a&&t.push(...va.constructors[a])}return t.map(n=>new n)}};va.constructors={};function c2(e,t,n,a,r,s,i,o,l){let u=new l2,p=[new K4,...va.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new o2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Va(e,t={},n=!1){return Cc(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function _h(e,t){return O(()=>{e.dtype!=="float32"&&(e=oe(e,"float32"));let n=be(Ac(e),t,!0),a=Cn(n.shape,Ht()),r=ln(hr(n,a));return fe(e,r)})}function po(e,t){return O(()=>_t(Ac(ce(t,e)),-1))}function vf(e,t){return O(()=>_t(zt(ce(t,e)),-1))}function Tu(e,t){return O(()=>{let n=ce(e,t),a=nn(zt(e),Ht(),Number.MAX_VALUE),r=zt(fe(n,a));return B(100,_t(r,-1))})}function X4(e,t){return O(()=>{let n=nn(t,Ht(),Number.MAX_VALUE),a=Zn(J(1,n)),r=nn(e,Ht(),Number.MAX_VALUE),s=Zn(J(1,r));return _t(Ac(ce(a,s)),-1)})}function Y4(e,t){return O(()=>{let n=hr(0,ce(1,B(e,t)));return _t(Ac(n),-1)})}function J4(e,t){return O(()=>{let n=hr(0,ce(1,B(e,t)));return _t(n,-1)})}function Z4(e,t){return O(()=>{let n=be(B(e,t),-1),a=ka(B(ce(1,e),t),-1);return hr(0,J(1,ce(a,n)))})}function Q4(e,t){return O(()=>{let n=Math.log(2),a=ce(t,e),r=ce(J(a,oo(B(-2,a))),n);return _t(r,-1)})}function Bp(e,t,n=!1){return O(()=>{if(n)t=Xa(t);else{let a=be(t,t.shape.length-1,!0);t=fe(t,a)}return t=nn(t,Ht(),1-Ht()),It(be(B(oe(e,"float32"),Zn(t)),t.shape.length-1))})}function Ah(e,t,n=!1){return O(()=>{let a=oe(xu(g4(e)),"int32");t=nn(t,Ht(),1-Ht());let r=t.shape,s=W(al(a,r[r.length-1]),r);return Bp(s,t,n)})}function eU(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return O(()=>{let n=Xe(t),a=It(zt(t));return J(ce(n,B(t,e)),vc(mn(a)))})}function wf(e,t){return O(()=>{let n;return n=nn(t,Ht(),1-Ht()),n=Zn(fe(n,ce(1,n))),_t(eU(e,n),-1)})}function tU(e,t){return O(()=>{let n=nn(e,Ht(),1),a=nn(t,Ht(),1);return be(B(e,Zn(fe(n,a))),-1)})}function nU(e,t){return O(()=>{let n=Zn(J(Ht(),t));return _t(ce(t,B(e,n)),-1)})}function vv(e,t){return O(()=>{let n=_h(e,-1),a=_h(t,-1),r=B(n,a);return It(be(r,-1))})}var $h={meanSquaredError:po,meanAbsoluteError:vf,meanAbsolutePercentageError:Tu,meanSquaredLogarithmicError:X4,squaredHinge:Y4,hinge:J4,categoricalHinge:Z4,logcosh:Q4,categoricalCrossentropy:Bp,sparseCategoricalCrossentropy:Ah,binaryCrossentropy:wf,kullbackLeiblerDivergence:tU,poisson:nU,cosineProximity:vv};function Vy(e){if(typeof e=="string"){if(e in $h)return $h[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function wv(e,t){return O(()=>{let n=B(.5,Qn(t)),a=uf(Bn(t,n),e.dtype);return _t(Jn(e,a),-1)})}function kv(e,t){return O(()=>uf(Jn(Js(e,-1),Js(t,-1)),"float32"))}function d2(e,t){return O(()=>oe(be(Sa(Jn(e,1),Jn(t,1))),"float32"))}function aU(e,t){return O(()=>oe(be(Sa(Jn(e,1),Jn(t,0))),"float32"))}function rU(e,t){return O(()=>oe(be(Sa(Jn(e,0),Jn(t,1))),"float32"))}function h2(e,t){return O(()=>{let n=d2(e,t),a=rU(e,t),r=J(n,a);return oe(hn(Bn(r,0),fe(n,r),0),"float32")})}function sU(e,t){return O(()=>{let n=d2(e,t),a=aU(e,t),r=J(n,a);return oe(hn(Bn(r,0),fe(n,r),0),"float32")})}function m2(e,t){return wf(e,t)}function f2(e,t){return e.rank===t.rank&&(e=pr(e,[e.rank-1])),t=Js(t,-1),t.dtype!==e.dtype&&(t=oe(t,e.dtype)),oe(Jn(e,t),"float32")}var iU=po,oU=po,lU=vf,uU=vf,pU=Tu,cU=Tu,Iv=Bp,dU=vv,g2=Ah,Fh={binaryAccuracy:wv,categoricalAccuracy:kv,precision:h2,categoricalCrossentropy:Iv,sparseCategoricalCrossentropy:g2,mse:iU,MSE:oU,mae:lU,MAE:uU,mape:pU,MAPE:cU,cosine:dU};function hU(e){if(typeof e=="string"&&e in Fh)return Fh[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Yd(e){if(rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys($h))if($h[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Fh))if(Fh[n]===e){t=n;break}return t!==void 0?t:e.name}}function mU(e){let t={Adagrad:()=>Rs.adagrad(.01),Adadelta:()=>Rs.adadelta(1,.95,Ht()),Adam:()=>Rs.adam(.001,.9,.999,Ht()),Adamax:()=>Rs.adamax(.002,.9,.999,Ht(),0),RMSProp:()=>Rs.rmsprop(.001,.9,0,Ht()),SGD:()=>Rs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}function U1(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!bb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function bb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!bb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!bb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function fU(e,t,n,a=console.log){let r=yU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),Dh(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?bU(o[p],n,a):xU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=gU(e),u=Eh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function gU(e){let t;return e.collectedTrainableWeights!=null?t=Eh(e.collectedTrainableWeights):t=Eh(e.trainableWeights),t}function yU(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Dh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function bU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];Dh(o,t,n)}function xU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];Dh(p,t,a);for(let d=1;d<i.length;++d)Dh(["","","","",i[d]],t,a)}function y2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Wp(e,t){if(e===null)return null;if(typeof e=="string")return Os(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];y2(t,r,s)?n.push(s):n.push(Wp(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Os(a);n[s]=Wp(r,s)}}return n}}function xb(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];y2(t,r,s)?n.push(s):n.push(xb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=vr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=xb(r,a)}return n}}var Sv="3.14.0";function vU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return oe(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Bs=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Bs)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=vU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ba){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&De(this.id2Mask)}},Gy={},V1={};function vp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().join(","),d,c;if(Gy[p]==null){let m=wU(i,t);d=m.sorted,c=m.recipientCounts,Gy[p]=d,V1[p]=c}d=Gy[p],c={},r||Object.assign(c,V1[p]);let h=new Bs(t);for(let m=0;m<d.length;++m){if(a!=null){let $=Sh().numTensors;$>a.maxNumTensors&&(a.maxNumTensors=$),$<a.minNumTensors&&(a.minNumTensors=$)}let f=d[m],g=f.sourceLayer;if(g instanceof Nu)continue;let y=[],b=[],x=[],v=!1;for(let $ of f.inputs){let P=h.getValue($),F=h.getMask($);y.push(P),b.push(F),F!=null&&(v=!0),r||(c[$.name]--,c[$.name]===0&&!t.hasKey($)&&o.indexOf($.name)===-1&&!P.isDisposed&&$.sourceLayer.stateful!==!0&&x.push(P))}v&&(n=n||{},n.mask=b[0]);let w=bt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let C=IU(f),_=Array.isArray(C)?C:[C];for(let $=0;$<_.length;++$){h.hasKey(_[$])||h.add(_[$],w[$],Array.isArray(T)?T[0]:T);let P=o.indexOf(_[$].name);P!==-1&&(l[P]=w[$])}r||De(x)}return h.disposeMasks(),s?l:l[0]}function wU(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=G1(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=G1(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:kU(a)}}function kU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function G1(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function IU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var nr=class extends Ye{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=bf(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Xr(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Xr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;rr(x===0,"input layer has >1 nodes"),rr(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof Nu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,w,T)=>{(v==null||w==null||T==null)&&(v=y.sourceLayer,w=y.nodeIndex,T=y.tensorIndex);let C=v.inboundNodes[w];if(x.indexOf(C)!==-1)throw new za(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(nr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let _=C.inboundLayers.length;for(let $=0;$<_;$++){let P=C.inputTensors[$],F=C.inboundLayers[$],S=C.nodeIndices[$],M=C.tensorIndices[$];o(P,b,x,F,S,M)}for(b.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let w=y.inboundLayers[v],T=y.nodeIndices[v],C=w.inboundNodes[T],_=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(b+1,_),n[C.id]=C}}let d={};for(let y in t){let b=t[y];b in d||(d[b]=[]),d[b].push(n[y])}let c={};for(let y in a){let b=a[y];b in c||(c[b]=[]),c[b].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(qd);this.layers=[];for(let y of h){let b=c[y];b.sort((x,v)=>{let w=s[x.id],T=s[v.id];return w<T?-1:w>T?1:0});for(let x of b)x instanceof nr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(qd);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new za(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new za(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new xf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new H(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new H(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new H(`${s.length} of ${a} weights are not set: ${s}`)}xv(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Sv}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=xb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return O(()=>{e=bt(e);let n=new Bs;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return vp(this.outputs,n,t)})}computeMask(e,t){return O(()=>{e=bt(e);let n;return t==null?n=ni(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ch(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(qd);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];p.push(x)}let d=u.computeOutputShape(Mn(p)),c=Ch(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];rr(o in n),r.push(n[o])}return Mn(r)}runInternalGraph(e,t){t==null&&(t=ni(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(qd);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=bt(p.call(x,m)),b=bt(p.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=bt(p.call(f,m)),b=bt(p.computeMask(f,g));if(p.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],w=y[x],T=b[x];n[v.id]=[w,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){rr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof nr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=nr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return O(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=nr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=nr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],y=d.nodeIndices[f],b=d.tensorIndices[f],x=nr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],w=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let C=r[v];if(C.inboundNodes.length<=w){i(f,g);return}let _=C.inboundNodes[w];y.push(_.outputTensors[T])}y.length>0&&f.apply(Mn(y),b)}function l(f){let g=f.name,y=Va(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!e4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];rr(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];rr(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){O(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function SU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function b2(e,t){return SU(e,t,"classWeight")}async function x2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=O(()=>{if(e.shape.length===1)return Sr(e);if(e.shape.length===2){if(e.shape[1]>1)return Js(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());De(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),qe(i,"float32")}else return null}function NU(e,t){return B(e,t)}var TU=32;function v2(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=H1("input",e.inputNames,n),i=H1("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function H1(e,t,n){if(n instanceof Ae)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function CU(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function EU(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(j1(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=CU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=p2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=c2(p,d,n.epochs,null,null,_U(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());!a||y<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:w}=v2(e,x.value),T={};T.batch=b,T.size=v[0].shape[0],await c.onBatchBegin(b,T);let C=[];if(n.classWeight!=null){let P=b2(n.classWeight,e.outputNames);for(let F=0;F<P.length;++F)C.push(await x2(w[F],null,P[F]))}let _=v.concat(w).concat(C),$=o(_);De(_);for(let P=0;P<l.length;++P){let F=l[P],S=$[P];T[F]=S,en(S)}await c.onBatchEnd(b,T),i2(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;j1(n.validationData)?v=bt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=bt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?TU:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=v[w]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function _U(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function j1(e){return typeof e.iterator=="function"}function AU(e){return typeof e.next=="function"}async function $U(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Pe("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=AU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=O(()=>{if(u.value){let{xs:p,ys:d}=v2(e,u.value),c=p.concat(d),h=O(()=>r(c));if(De(c),l===0)for(let f=0;f<h.length;++f)s.push(ke(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=O(()=>J(s[f],B(m,g))),l>0&&De(y)}De(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=fe(s[u],o),De(p)}return Mn(s)}function vb(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function wp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Gs(a,t,n-t)):Gs(e,t,n-t)}function Nv(e,t){return O(()=>e==null?null:Array.isArray(e)?e.map(n=>Nv(n,t)):QS(e,t.dtype==="int32"?t:oe(t,"int32")))}function wb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function FU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=qa(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=c2(o,i,s,c,g,h,r,f,d);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await b.onEpochBegin(v);let w={};if(h!=null)throw new Pe("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Pe("batch shuffling is not implemneted yet");p&&k.shuffle(y);let T=qe(y),C=wb(g,r);for(let _=0;_<C.length;++_){let $={};if(await b.onBatchBegin(_,$),O(()=>{let P=C[_][0],F=C[_][1],S=Gs(T,P,F-P);$.batch=_,$.size=F-P;let M=Nv(n,S),V=t(M);for(let j=0;j<a.length;++j){let q=a[j],K=V[j];$[q]=K,en(K)}if(_===C.length-1&&f){let j=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let K=a[q],Q=j[q];en(Q),w["val_"+K]=Q}}}),await b.onBatchEnd(_,$),i2($),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(v,w),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function DU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;vb(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,y;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let _=!0,$=await e.standardizeUserData(l,u,null,null,_,h);p=$[0],d=$[1],y=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let _=Math.floor(r[0].shape[0]*(1-a.validationSplit)),$=r[0].shape[0];p=wp(r,_,$),i=r,r=wp(r,0,_),d=wp(s,_,$),o=s,s=wp(s,0,_),y=p.concat(d)}else a.validationSteps!=null&&(g=!0);let b=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),v=e.getDedupedMetricsNames(),w,T;g?(e.makeTestFunction(),w=e.testFunction,T=v.slice().concat(v.map(_=>"val_"+_))):(w=null,y=[],T=v.slice());let C=p2(a.callbacks,a.yieldEvery);return await FU(e,x,b,v,h,a.epochs,a.verbose,C,w,y,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,La(r,t),La(s,n),La(i,t),La(o,n),La(p,l),La(d,u),c!=null&&De(c)}}function w2(e){let t=[];e instanceof Ae&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(_c(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function La(e,t){if(e==null)return;let n=[];if(t instanceof Ae)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ae)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function RU(e){return e instanceof Ae}function kb(e){return Array.isArray(e)}function q1(e){return!RU(e)&&!kb(e)}function K1(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(kb(e)&&e.length>0)i=!0;else if(q1(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(q1(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new H(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(kb(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=w2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new H(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function MU(e,t,n){let a=Xr(e.map(s=>s.shape[0]));a.sort();let r=Xr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function PU(e,t,n){let a=[po,wf,Bp];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Bp&&s.shape[s.shape.length-1]===1)throw new H(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new H(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function X1(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new H(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function OU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var LU="layers-model",Nr=class extends nr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");fU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=mU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof _r))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new H(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Vy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Vy(s))}else{let s=Vy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Vs("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=OU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Vs("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===wf?["accuracy","acc"].indexOf(c)!==-1?p=wv:["crossentropy","ce"].indexOf(c)!==-1&&(p=m2):this.lossFunctions[s]===Ah?["accuracy","acc"].indexOf(c)!==-1?p=f2:["crossentropy","ce"].indexOf(c)!==-1&&(p=g2):["accuracy","acc"].indexOf(c)!==-1?p=kv:["crossentropy","ce"].indexOf(c)!==-1&&(p=Iv);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=hU(c),u=l+Yd(c);let h;Vs(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;vb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Mn(l)}finally{La(s[0],e),La(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),$U(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Bs;if(e instanceof Ae&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new H(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=vp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ni(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return O(()=>{let a=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");let r=wb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)O(()=>{let o=r[i][0],l=r[i][1],u=wp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Bs(p);return vp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return Mn(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=w2(e);X1(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return vb(a),this.predictLoop(n,a)}finally{La(n,e)}}predictOnBatch(e){X1(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new za("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Ah?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=K1(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=K1(t,this.feedOutputNames,r,!1,"target"),MU(e,t,null),PU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=b2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await x2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return O(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Pe("Verbose mode is not implemented yet.");if(r!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{let o=wb(s,n),l=qe(qa(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=Gs(l,p,d-p),h=Nv(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ke(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],B(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;D1(e,a)>1&&(r+=`_${D1(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Bs(u),d=vp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],d[h]);r[h]!=null&&(m=NU(m,r[h]));let f=_t(m);t.push(f),h===0?c=m:c=J(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=_t(f(a[g],d[g]))}en(m),s.push(m)}return c=_t(c),this.calculateLosses().forEach(h=>{c=J(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>O(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Bs(s),o=vp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=_t(u(r[l],o[l]));l===0?n=p:n=J(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=_t(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return DU(this,e,t,n)}async fitDataset(e,t){return EU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return De(s),La(n[0],e),La(n[1],t),Mn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Sh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Sh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=vr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(Yd(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(Yd(e)));{let e={};for(let t in this.metrics)e[t]=vr(Yd(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wp(e.optimizer_config),n=Va(t),a;if(typeof e.loss=="string")a=Os(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Os(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Os(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Os(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Os(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Qt.getSaveHandlers(e);if(i.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new H(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Qt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:LU,generatedBy:`TensorFlow.js tfjs-layers v${Sv}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Qt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Qt.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(U1(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){U1(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Nr.className="Model";se.registerClass(Nr);var k2=class extends Nr{};k2.className="Functional";se.registerClass(k2);async function zU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Wp(n),r=Va(a,t);if(e.weightsManifest!=null){let s=await Qt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),De(s)}return r}async function BU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Qt.getLoadHandlers(e,t);if(n.length===0)n.push(Qt.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return WU(e,void 0,t)}async function WU(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Va(Wp(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=UU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),De(u),De(p.map(d=>d.tensor))}return o}function UU(e,t){let n=Qt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var ll=class extends Nr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:bf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ll||e instanceof Nr,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=s2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=r2(this.outputs[0])}this.inboundNodes=[],new xf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ni(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(it(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new za("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new za("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new za("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new za("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof ll))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Va(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ll.className="Sequential";se.registerClass(ll);function VU(e){return new Nr(e)}function GU(e){return new ll(e)}function HU(e,t){return t==null&&(t={}),BU(e,t)}function I2(e){return s2(e)}function jU(e,t){va.registerCallbackConstructor(e,t)}var Wn=class extends se.Serializable{getConfig(){return{}}},S2=class extends Wn{apply(e,t=1){return b4(e,t)}};S2.className="elu";se.registerClass(S2);var N2=class extends Wn{apply(e){return Gm(e)}};N2.className="selu";se.registerClass(N2);var T2=class extends Wn{apply(e){return Xe(e)}};T2.className="relu";se.registerClass(T2);var C2=class extends Wn{apply(e){return O(()=>vu(6,Xe(e)))}};C2.className="relu6";se.registerClass(C2);var E2=class extends Wn{apply(e){return e}};E2.className="linear";se.registerClass(E2);var _2=class extends Wn{apply(e){return da(e)}};_2.className="sigmoid";se.registerClass(_2);var A2=class extends Wn{apply(e){return v4(e)}};A2.className="hardSigmoid";se.registerClass(A2);var $2=class extends Wn{apply(e){return oo(e)}};$2.className="softplus";se.registerClass($2);var F2=class extends Wn{apply(e){return x4(e)}};F2.className="softsign";se.registerClass(F2);var D2=class extends Wn{apply(e){return Zs(e)}};D2.className="tanh";se.registerClass(D2);var Tv=class extends Wn{apply(e,t=-1){return Xa(e,t)}};Tv.className="softmax";se.registerClass(Tv);var R2=class extends Wn{apply(e,t=-1){return Om(e,t)}};R2.className="logSoftmax";se.registerClass(R2);var M2=class extends Wn{apply(e,t=1){return O(()=>B(da(B(e,t)),e))}};M2.className="swish";se.registerClass(M2);var P2=class extends Wn{apply(e){return O(()=>B(e,Zs(oo(e))))}};P2.className="mish";se.registerClass(P2);function as(e){return e.getClassName()}function Hy(e,t={}){return Cc(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function rs(e){if(e==null){let t={};return t.className="linear",t.config={},Hy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Hy(t)}else return e instanceof Wn?e:Hy(e)}function Cv(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var O2=class extends se.Serializable{},Fc=class extends O2{constructor(e){super();Cv(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return O(()=>{let t=wt([1]);return this.hasL1&&(t=J(t,be(B(this.l1,zt(e))))),this.hasL2&&(t=J(t,be(B(this.l2,Ac(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Fc.className="L1L2";se.registerClass(Fc);function qU(e){return Cv(e),new Fc({l1:e!=null?e.l1:null,l2:0})}function KU(e){return Cv(e),new Fc({l2:e!=null?e.l2:null,l1:0})}var Y1={l1l2:"L1L2"};function pt(e){return rv(e)}function J1(e,t={}){return Cc(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function St(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Y1?Y1[e]:e,config:{}};return J1(t)}else return e instanceof O2?e:J1(e)}var Ev=class extends Ye{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let n=Xe(e);return this.maxValue!=null&&(n=nn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ev.className="ReLU";se.registerClass(Ev);var _v=class extends Ye{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return xc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};_v.className="LeakyReLU";se.registerClass(_v);var Av=class extends Ye{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=kt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=St(e.alphaRegularizer),this.alphaConstraint=Xt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=it(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Bt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Oe(e),Ic(e,this.alpha.read())}getConfig(){let e={alphaInitializer:At(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:Kt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Av.className="PReLU";se.registerClass(Av);var $v=class extends Ye{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Pe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return bu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$v.className="ELU";se.registerClass($v);var Fv=class extends Ye{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Oe(e);return B(n,oe(Bn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Fv.className="ThresholdedReLU";se.registerClass(Fv);var Dv=class extends Ye{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Tv().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Oe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Dv.className="Softmax";se.registerClass(Dv);function Qo(e,t,n){if(typeof e=="number")return ni(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!m4(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ga(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function sr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ns([n-t,0]);else if(a==="same")e=e*t;else throw new H(`Unsupport padding mode: ${a}.`);return e}function Rv(e,t){return O(()=>(Ot(t),t==="channelsFirst"?Me(e,[0,2,3,1]):e))}function L2(e,t){return O(()=>(Ot(t),t==="channelsFirst"?Me(e,[0,2,3,4,1]):e))}function XU(e,t,n,a=1,r="valid",s,i=1){return O(()=>{if(s==null&&(s=ja()),Ot(s),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Me(e,[0,2,1])),r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Am(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ja(o,n)),o})}function Z1(e,t,n,a=[1,1],r="valid",s,i,o=null){return O(()=>{if(s==null&&(s=ja()),Ot(s),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Rv(e,s);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ts.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Me(l,[0,3,1,2])),l})}function YU(e,t,n,a=[1,1,1],r="valid",s,i){return O(()=>{if(s==null&&(s=ja()),Ot(s),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=L2(e,s);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Ex(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ja(o,n)),s==="channelsFirst"&&(o=Me(o,[0,4,1,2,3])),o})}var Mv=class extends Ye{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Mv.verifyArgs(t),this.rank=e,tn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qo(t.kernelSize,e,"kernelSize"),this.strides=Qo(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ga(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ot(this.dataFormat),this.activation=rs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=kt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Xt(t.biasConstraint),this.biasRegularizer=St(t.biasRegularizer),this.activityRegularizer=St(t.activityRegularizer),this.dilationRate=Qo(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!sv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:as(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Dc=class extends Mv{constructor(e,t){super(e,t);this.kernel=null,Dc.verifyArgs(t),this.filters=t.filters,tn(this.filters,"filters"),this.kernelInitializer=kt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Xt(t.kernelConstraint),this.kernelRegularizer=St(t.kernelRegularizer)}build(e){e=it(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return O(()=>{e=Oe(e);let n,a=this.bias==null?null:this.bias.read(),r=qS(this.activation.getClassName());if(r!=null&&this.rank===2)n=Z1(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=XU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Z1(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=YU(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=it(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ga(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:At(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:Kt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Rc=class extends Dc{constructor(e){super(2,e);Rc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!sv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Rc.className="Conv2D";se.registerClass(Rc);var Mc=class extends Dc{constructor(e){super(3,e);Mc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Mc.className="Conv3D";se.registerClass(Mc);var Pv=class extends Rc{constructor(e){super(e);if(this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=Oe(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=sr(o,d,u,this.padding),m=sr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Me(n,[0,2,3,1]));let g=$m(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Me(g,[0,3,1,2])),this.bias!=null&&(g=Ja(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=sr(t[a],o,s,this.padding),t[r]=sr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Pv.className="Conv2DTranspose";se.registerClass(Pv);var Ov=class extends Mc{constructor(e){super(e);if(this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=Oe(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=sr(l,m,d,this.padding),b=sr(u,f,c,this.padding),x=sr(p,g,h,this.padding),v=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Me(n,[0,2,3,4,1]));let w=aS(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Me(w,[0,4,1,2,3])),this.bias!==null&&(w=Ja(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=sr(t[a],u,i,this.padding),t[r]=sr(t[r],p,o,this.padding),t[s]=sr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ov.className="Conv3DTranspose";se.registerClass(Ov);var z2=class extends Dc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=kt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=St(t.depthwiseRegularizer),this.depthwiseConstraint=Xt(t.depthwiseConstraint),this.pointwiseInitializer=kt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=St(t.pointwiseRegularizer),this.pointwiseConstraint=Xt(t.pointwiseConstraint)}build(e){if(e=it(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Bt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{e=Oe(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Me(e,[0,2,3,1])),n=lo(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ja(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Me(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseConstraint),e.pointwiseConstraint=Kt(this.pointwiseConstraint),e}};z2.className="SeparableConv";var Lv=class extends z2{constructor(e){super(2,e)}};Lv.className="SeparableConv2D";se.registerClass(Lv);var kf=class extends Dc{constructor(e){super(1,e);kf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!sv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};kf.className="Conv1D";se.registerClass(kf);var zv=class extends Ye{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return O(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let n=Kd(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Kd(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Kd(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Kd(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};zv.className="Cropping2D";se.registerClass(zv);var Bv=class extends Ye{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,c4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return O(()=>{let n=Oe(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Me(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Xn.resizeNearestNeighbor(n,[r,s]):Xn.resizeBilinear(n,[r,s]);return Me(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Xn.resizeNearestNeighbor(n,[r,s]):Xn.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Bv.className="UpSampling2D";se.registerClass(Bv);function JU(e,t,n=[1,1],a="valid",r,s){return O(()=>{r==null&&(r=ja()),Ot(r);let i=Rv(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ms(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Me(i,[0,3,1,2])),i})}var Wv=class extends Mv{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=kt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Xt(e.depthwiseConstraint),this.depthwiseRegularizer=St(e.depthwiseRegularizer)}build(e){if(e=it(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{e=Oe(e);let n=JU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ja(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ga(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ga(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=Kt(this.depthwiseRegularizer),e}};Wv.className="DepthwiseConv2D";se.registerClass(Wv);function B2(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function W2(e,t,n,a=!1,r,s,i=!1,o=!1){return O(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(qa(2,l));if(t=Me(t,u),s!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=oe(oe(r,"bool"),"float32"),r.rank===l-1&&(r=dn(r,-1)),r=Me(r,u)),a&&(t=ea(t,0),r!=null&&(r=ea(r,0)));let p=[],d,c=n,h=t.shape[0],m=dt(t),f;r!=null&&(f=dt(r));for(let y=0;y<h;++y){let b=m[y],x=O(()=>e(b,c));if(r==null)d=x[0],c=x[1];else{let v=O(()=>{let w=f[y],T=ce(Qn(w),w),C=J(B(x[0],w),B(c[0],T)),_=c.map(($,P)=>J(B(x[1][P],w),B($,T)));return{output:C,newStates:_}});d=v.output,c=v.newStates}o&&p.push(d)}let g;return o&&(g=Mt(p,1)),[d,g,c]})}var fr=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Nf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return qa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){gb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return O(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Pe("Constants support is not implemented in RNN yet.");gb(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Bt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Bt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>wt([n,a])):this.states_=[wt([n,this.cell.stateSize])];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>wt([n,a])):this.states_[0]=wt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):De(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new H(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>en(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=B2(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Bt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ba){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Oe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new H(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=W2((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return O(()=>{let t=wt(e.shape);return t=be(t,[1,2]),t=_c(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?mb(t,[1,n]):t):this.cell.stateSize>1?[mb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===fr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Va(a,n);return new e(Object.assign(t,{cell:r}))}};fr.className="RNN";se.registerClass(fr);var Pc=class extends Ye{},If=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,tn(this.units,"units"),this.activation=rs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=St(e.kernelRegularizer),this.recurrentRegularizer=St(e.recurrentRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=il([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=il([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>Qn(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>Qn(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=or(B(e,s),this.kernel.read()):r=or(e,this.kernel.read()),this.bias!=null&&(r=Ja(r,this.bias.read())),i!=null&&(n=B(n,i));let o=J(r,or(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:as(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};If.className="SimpleRNNCell";se.registerClass(If);var Uv=class extends fr{constructor(e){e.cell=new If(e);super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Uv.className="SimpleRNN";se.registerClass(Uv);var Sf=class extends Pc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,tn(this.units,"units"),this.activation=rs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=rs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=St(e.kernelRegularizer),this.recurrentRegularizer=St(e.recurrentRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=il([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=il([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>Qn(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>Qn(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let u=or(e,this.kernel.read());this.useBias&&(u=Ja(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=On(p,[2*this.units,this.units],p.rank-1),h=or(a,d),[m,f,g]=On(u,3,u.rank-1),[y,b]=On(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=or(B(o,a),c);l=this.activation.apply(J(g,x));let v=J(B(i,a),B(J(1,It(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:as(this.activation),recurrentActivation:as(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Sf.className="GRUCell";se.registerClass(Sf);var Vv=class extends fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Sf(e);super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Vv.className="GRU";se.registerClass(Vv);var Oc=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,tn(this.units,"units"),this.activation=rs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=rs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=kt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=St(e.kernelRegularizer),this.recurrentRegularizer=St(e.recurrentRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.kernelConstraint=Xt(e.kernelConstraint),this.recurrentConstraint=Xt(e.recurrentConstraint),this.biasConstraint=Xt(e.biasConstraint),this.dropout=il([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=il([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=it(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Ta{apply(i,o){let l=r.apply([s]),u=new cf().apply([s]),p=r.apply([s*2]);return O1(O1(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>Qn(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>Qn(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let d=or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),d=J(d,or(a,this.recurrentKernel.read())),this.useBias&&(d=Ja(d,this.bias.read()));let[c,h,m,f]=On(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=J(B(l,r),B(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=B(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:as(this.activation),recurrentActivation:as(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),recurrentConstraint:Kt(this.recurrentConstraint),biasConstraint:Kt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Oc.className="LSTMCell";se.registerClass(Oc);var Gv=class extends fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Oc(e);super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Gv.className="LSTM";se.registerClass(Gv);var Nf=class extends Pc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return O(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){gb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Vs(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Va(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return yb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}xv(t)}};Nf.className="StackedRNNCells";se.registerClass(Nf);function ss(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):e2(t(),n),o=()=>$c(i,t,a);return!r||r<=1?en(o().clone()):Array(r).fill(void 0).map(o).map(l=>en(l.clone()))}var ZU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},U2=class extends fr{constructor(e){if(e.unroll)throw new Pe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Pe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Bt({ndim:5})]}call(e,t){return O(()=>{if(this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return O(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=wt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>wt(r)):this.states_=[wt(r)];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>wt(r)):this.states_[0]=wt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):De(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>en(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ga(l,a[0],r,s[0],i[0]),d=Ga(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};U2.className="ConvRNN2D";var Tf=class extends Oc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,tn(this.filters,"filters"),this.kernelSize=Qo(n,2,"kernelSize"),this.kernelSize.forEach(o=>tn(o,"kernelSize")),this.strides=Qo(a||1,2,"strides"),this.strides.forEach(o=>tn(o,"strides")),this.padding=r||"valid",ga(this.padding),this.dataFormat=s||"channelsLast",Ot(this.dataFormat),this.dilationRate=Qo(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>tn(o,"dilationRate"))}build(e){var t;e=it(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ta{apply(p,d){let c=l.apply([u]),h=Kn([u]),m=l.apply([u*2]);return cv([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return O(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ss({ones:()=>Qn(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(ee,re,Z)=>!re||!re[Z]?ee:B(re[Z],ee),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ss({ones:()=>Qn(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,w,T]=On(this.kernel.read(),i,b),[C,_,$,P]=this.useBias?On(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,v,_,this.padding),d=this.inputConv(d,w,$,this.padding),c=this.inputConv(c,T,P,this.padding);let[F,S,M,V]=On(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,F),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),y=this.recurrentConv(y,V);let j=this.recurrentActivation.apply(J(u,m)),q=this.recurrentActivation.apply(J(p,f)),K=J(B(q,s),B(j,this.activation.apply(J(d,g)))),Q=B(this.recurrentActivation.apply(J(c,y)),this.activation.apply(K));return[Q,Q,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=ZU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ja(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Tf.className="ConvLSTM2DCell";se.registerClass(Tf);var Hv=class extends U2{constructor(e){let t=new Tf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Hv.className="ConvLSTM2D";se.registerClass(Hv);var Cf=class extends Ye{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return $c(()=>e2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Cf.className="Dropout";se.registerClass(Cf);var jv=class extends Cf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};jv.className="SpatialDropout1D";se.registerClass(jv);var qv=class extends Ye{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,tn(this.units,"units"),this.activation=rs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=kt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=kt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Xt(e.kernelConstraint),this.biasConstraint=Xt(e.biasConstraint),this.kernelRegularizer=St(e.kernelRegularizer),this.biasRegularizer=St(e.biasRegularizer),this.activityRegularizer=St(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=it(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=it(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e),a=qS(this.activation.getClassName()),r;return a!=null?r=or(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=or(n,this.kernel.read()),this.bias!=null&&(r=Ja(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:as(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Kt(this.kernelConstraint),biasConstraint:Kt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qv.className="Dense";se.registerClass(qv);var Kv=class extends Ye{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=it(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Yr(e,1)]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Me(n,a)}return y4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Kv.className="Flatten";se.registerClass(Kv);var Xv=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.activation=rs(e.activation)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.activation.apply(n)})}getConfig(){let e={activation:as(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Xv.className="Activation";se.registerClass(Xv);var Yv=class extends Ye{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return O(()=>(e=Oe(e),f4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Yv.className="RepeatVector";se.registerClass(Yv);var Jv=class extends Ye{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let i=Yr(e);if(s!==null){if(r===0||i%r!==0)throw new H(n);a[s]=i/r}else if(i!==r)throw new H(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Jv.className="Reshape";se.registerClass(Jv);var Zv=class extends Ye{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=qa(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=it(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Me(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Zv.className="Permute";se.registerClass(Zv);var Qv=class extends Ye{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Oe(e),a=-1;return Pp(ti(n,this.maskValue),a)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e),a=-1,r=!0,s=Pp(ti(n,this.maskValue),a,r);return B(n,oe(s,n.dtype))})}};Qv.className="Masking";se.registerClass(Qv);var ew=class extends Ye{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,tn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,tn(this.outputDim,"outputDim"),this.embeddingsInitializer=kt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=St(e.embeddingsRegularizer),this.activityRegularizer=St(e.activityRegularizer),this.embeddingsConstraint=Xt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return O(()=>this.maskZero?(e=Oe(e),ti(e,Ke(e))):null)}computeOutputShape(e){if(e=it(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e);n.dtype!=="int32"&&(n=uf(n,"int32"));let a=QS(this.embeddings.read(),W(n,[n.size]));return W(a,it(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:Kt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ew.className="Embedding";se.registerClass(ew);var co=class extends Ye{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[it(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Xr(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Xr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return O(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ns(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=_c(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(Yr(u.slice(1))));c=Me(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=qa(1,l).concat([0]);n.push(Me(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(Me(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(qa(0,i-1));s=Me(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Xr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return O(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:dn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Sa(n,t[a]);return n})}},tw=class extends co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};tw.className="Add";se.registerClass(tw);var nw=class extends co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};nw.className="Multiply";se.registerClass(nw);var aw=class extends co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return B(1/e.length,t)})}};aw.className="Average";se.registerClass(aw);var rw=class extends co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=hr(t,e[n]);return t})}};rw.className="Maximum";se.registerClass(rw);var sw=class extends co{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=vu(t,e[n]);return t})}};sw.className="Minimum";se.registerClass(sw);var iw=class extends co{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return O(()=>cv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return O(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(oe(Qn(e[s]),"bool")):t[s].rank<e[s].rank?a.push(dn(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return _m(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};iw.className="Concatenate";se.registerClass(iw);function mp(e,t){for(;e<0;)e+=t;return e}function QU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return O(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=be(B(e,t),s[0]):o=be(B(Me(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Fe(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=pr(o,u)}return o.shape.length===1&&(o=dn(o,1)),o})}var ow=class extends co{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new H(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>mp(r,e[s].shape.length)):a=[mp(this.axes,t.shape.length),mp(this.axes,n.shape.length)],this.normalize&&(t=_h(t,a[0]),n=_h(n,a[1])),QU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[mp(this.axes,e.length),mp(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ow.className="Dot";se.registerClass(ow);var lw=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e);return $c(()=>J(pf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};lw.className="GaussianNoise";se.registerClass(lw);var uw=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.rate>0&&this.rate<1?$c(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return B(n,pf(n.shape,1,a))},()=>n,t.training||!1):n})}};uw.className="GaussianDropout";se.registerClass(uw);var pw=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return $c(()=>{let a=Oe(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=fs(wu(n),this.rate);o=uf(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=J(B(a,o),B(J(o,-1),i));return J(B(p,l),u)},()=>Oe(e),t.training||!1)}return e})}};pw.className="AlphaDropout";se.registerClass(pw);function Up(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=KI(e,t,n,a,r,s);else if(e.rank===3)i=XI(e,t,n,a,r,s);else if(e.rank===4)i=YI(e,t,n,a,r,s);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function eV(e,t,n,a,r=.001){return O(()=>{let s=zm(e,a),i=s.mean,o=s.variance;return[Up(e,i,o,n,t,r),i,o]})}function tV(e,t,n,a,r=.001){return O(()=>{let s=zm(e,a),i=s.mean,o=s.variance,l=[];for(let h of qa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[Up(e,u,p,c,d,r),i,o]})}function nV(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),qa(0,e.rank-1))?eV(e,t,n,a,r):tV(e,t,n,a,r)}var cw=class extends Ye{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=kt(e.betaInitializer||"zeros"),this.gammaInitializer=kt(e.gammaInitializer||"ones"),this.movingMeanInitializer=kt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=kt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Xt(e.betaConstraint),this.gammaConstraint=Xt(e.gammaConstraint),this.betaRegularizer=St(e.betaRegularizer),this.gammaRegularizer=St(e.gammaRegularizer)}build(e){e=it(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training,a=Oe(e),r=a.shape,s=r.length,i=qa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ni(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!k.arraysEqual(u,qa(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return Up(a,g,y,b,x,this.epsilon)}else return Up(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=nV(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{O(()=>{let x=1-b,v=g.read(),w=B(ce(v,y),x);g.write(ce(v,w))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:Kt(this.betaConstraint),gammaConstraint:Kt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};cw.className="BatchNormalization";se.registerClass(cw);var dw=class extends Ye{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=kt(e.betaInitializer||"zeros"),this.gammaInitializer=kt(e.gammaInitializer||"ones"),this.betaRegularizer=St(e.betaRegularizer),this.gammaRegularizer=St(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=it(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Xr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Oe(e),a=n.shape,r=a.length;return O(()=>{let{mean:s,variance:i}=zm(n,this.axis,!0),o=ni(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=l(this.gamma.read()),p=l(this.beta.read()),d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Pn(s,d),i=Pn(i,d),u=Pn(u,c),p=Pn(p,c),Up(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};dw.className="LayerNormalization";se.registerClass(dw);function aV(e,t,n){return O(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ja()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],fa(e,a)})}var hw=class extends Ye{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?ja():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return O(()=>aV(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};hw.className="ZeroPadding2D";se.registerClass(hw);function Ef(e,t,n,a,r,s){return O(()=>{Ot(r),XS(s),ga(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=Rv(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Pt(e,t,n,o):i=ma(e,t,n,o),r==="channelsFirst"&&(i=Me(i,[0,3,1,2])),i})}function V2(e,t,n,a,r,s){return O(()=>{Ot(r),XS(s),ga(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=L2(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Bx(e,t,n,o):i=Sx(e,t,n,o),r==="channelsFirst"&&(i=Me(i,[0,4,1,2,3])),i})}var G2=class extends Ye{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(tn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ga(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=it(e);let t=Ga(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return O(()=>{this.invokeCallHook(e,t),e=_c(Oe(e),2);let n=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return pr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},mw=class extends G2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ga(a),Ef(e,t,n,a,r,"max")}};mw.className="MaxPooling1D";se.registerClass(mw);var fw=class extends G2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ga(a),Ef(e,t,n,a,r,"avg")}};fw.className="AveragePooling1D";se.registerClass(fw);var H2=class extends Ye{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];tn(this.poolSize,"poolSize"),tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ga(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ga(t,this.poolSize[0],this.padding,this.strides[0]),n=Ga(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gw=class extends H2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ga(a),Ef(e,t,n,a,r,"max")}};gw.className="MaxPooling2D";se.registerClass(gw);var yw=class extends H2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ga(a),Ef(e,t,n,a,r,"avg")}};yw.className="AveragePooling2D";se.registerClass(yw);var j2=class extends Ye{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];tn(this.poolSize,"poolSize"),tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ga(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ga(t,this.poolSize[0],this.padding,this.strides[0]),n=Ga(n,this.poolSize[1],this.padding,this.strides[1]),a=Ga(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},bw=class extends j2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ga(a),V2(e,t,n,a,r,"max")}};bw.className="MaxPooling3D";se.registerClass(bw);var xw=class extends j2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ga(a),V2(e,t,n,a,r,"avg")}};xw.className="AveragePooling3D";se.registerClass(xw);var q2=class extends Ye{constructor(e){super(e);this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}},vw=class extends q2{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=Oe(e);return _t(n,1)})}};vw.className="GlobalAveragePooling1D";se.registerClass(vw);var ww=class extends q2{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=Oe(e);return ka(n,1)})}};ww.className="GlobalMaxPooling1D";se.registerClass(ww);var K2=class extends Ye{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},kw=class extends K2{call(e,t){return O(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?_t(n,[1,2]):_t(n,[2,3])})}};kw.className="GlobalAveragePooling2D";se.registerClass(kw);var Iw=class extends K2{call(e,t){return O(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?ka(n,[1,2]):ka(n,[2,3])})}};Iw.className="GlobalMaxPooling2D";se.registerClass(Iw);var X2=class extends Ye{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Va(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},Sw=class extends X2{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=it(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=it(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return O(()=>(e=Oe(e),W2((n,a)=>[Oe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Sw.className="TimeDistributed";se.registerClass(Sw);function rV(e){uo(p4,"BidirectionalMergeMode",e)}var sV="concat",Nw=class extends X2{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Va(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Va(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?sV:e.mergeMode,rV(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Mn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=B2(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Bt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ba;for(let l of s)if(l instanceof Ba!==o)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ea(r,1));let i;return this.mergeMode==="concat"?i=cv([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=B(.5,J(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Vs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Vs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Va(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};Nw.className="Bidirectional";se.registerClass(Nw);function iV(e){return new Nu(e)}function oV(e){return new $v(e)}function lV(e){return new Ev(e)}function uV(e){return new _v(e)}function pV(e){return new Av(e)}function cV(e){return new Dv(e)}function dV(e){return new Fv(e)}function hV(e){return new kf(e)}function mV(e){return new Rc(e)}function fV(e){return new Pv(e)}function gV(e){return new Mc(e)}function yV(e){return new Ov(e)}function bV(e){return new Lv(e)}function xV(e){return new zv(e)}function vV(e){return new Bv(e)}function wV(e){return new Wv(e)}function kV(e){return new Xv(e)}function IV(e){return new qv(e)}function SV(e){return new Cf(e)}function NV(e){return new jv(e)}function TV(e){return new Kv(e)}function CV(e){return new Yv(e)}function EV(e){return new Jv(e)}function _V(e){return new Zv(e)}function AV(e){return new ew(e)}function $V(e){return new tw(e)}function FV(e){return new aw(e)}function DV(e){return new iw(e)}function RV(e){return new rw(e)}function MV(e){return new sw(e)}function PV(e){return new nw(e)}function OV(e){return new ow(e)}function LV(e){return new cw(e)}function zV(e){return new dw(e)}function BV(e){return new hw(e)}function Tw(e){return new fw(e)}function WV(e){return Tw(e)}function UV(e){return Tw(e)}function Cw(e){return new yw(e)}function VV(e){return Cw(e)}function GV(e){return Cw(e)}function Ew(e){return new xw(e)}function HV(e){return Ew(e)}function jV(e){return Ew(e)}function qV(e){return new vw(e)}function KV(e){return new kw(e)}function Y2(e){return new ww(e)}function J2(e){return new Iw(e)}function Z2(e){return new mw(e)}function Q2(e){return new gw(e)}function XV(e){return new bw(e)}function YV(e){return new Vv(e)}function JV(e){return new Sf(e)}function ZV(e){return new Gv(e)}function QV(e){return new Oc(e)}function eG(e){return new Uv(e)}function tG(e){return new If(e)}function nG(e){return new Hv(e)}function aG(e){return new Tf(e)}function rG(e){return new fr(e)}function sG(e){return new Nf(e)}function iG(e){return new Nw(e)}function oG(e){return new Sw(e)}var lG=Y2,uG=J2,pG=Z2,cG=Q2;function dG(e){return new lw(e)}function hG(e){return new uw(e)}function mG(e){return new pw(e)}function fG(e){return new Qv(e)}var eN={};Re(eN,{MAPE:()=>TG,MSE:()=>_G,binaryAccuracy:()=>gG,binaryCrossentropy:()=>yG,categoricalAccuracy:()=>xG,categoricalCrossentropy:()=>vG,cosineProximity:()=>IG,mape:()=>CG,meanAbsoluteError:()=>SG,meanAbsolutePercentageError:()=>NG,meanSquaredError:()=>EG,mse:()=>AG,precision:()=>wG,recall:()=>kG,sparseCategoricalAccuracy:()=>bG});function gG(e,t){return wv(e,t)}function yG(e,t){return m2(e,t)}function bG(e,t){return f2(e,t)}function xG(e,t){return kv(e,t)}function vG(e,t){return Iv(e,t)}function wG(e,t){return h2(e,t)}function kG(e,t){return sU(e,t)}function IG(e,t){return vv(e,t)}function SG(e,t){return vf(e,t)}function NG(e,t){return Tu(e,t)}function TG(e,t){return Tu(e,t)}function CG(e,t){return Tu(e,t)}function EG(e,t){return po(e,t)}function _G(e,t){return po(e,t)}function AG(e,t){return po(e,t)}var tN={};Re(tN,{modelFromJSON:()=>zU});var nN={};Re(nN,{l1:()=>FG,l1l2:()=>$G,l2:()=>DG});function $G(e){return new Fc(e)}function FG(e){return qU(e)}function DG(e){return KU(e)}var aN=class extends ol{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Jd(e,t){return e<t}function Q1(e,t){return e>t}var rN=class extends aN{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Jd:this.mode==="max"?this.monitorFunc=Q1:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Q1:this.monitorFunc=Jd,this.monitorFunc===Jd&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Jd?1/0:-1/0}async onEpochEnd(e,t){await Vr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function RG(e){return new rN(e)}var MG={earlyStopping:RG},PG=Y();PG.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var xa;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(xa||(xa={}));var ek;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(ek||(ek={}));var _w={};function OG(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};_w[e]=n}function sN(e){return _w[e]}function LG(e){delete _w[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return kn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>kn(d,n,a,r));let u=kn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:k.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function kn(e,t,n,a){let[r,s]=jn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Rh(r,o)]);return i!==void 0?t[Rh(r,i)][s]:void 0}function zG(e,t,n){return t[Rh(e,n.currentContextId)]}function ir(e,t){let[n,a,r]=jn(e);return[Rh(n,t&&t.currentContextId),a,r]}function Rh(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function ih(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function wr(e){return e.kept?e:Sr(e)}var iN={};Re(iN,{json:()=>BG});var BG=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],oN={};Re(oN,{json:()=>WG});var WG=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],lN={};Re(lN,{json:()=>UG});var UG=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],uN={};Re(uN,{json:()=>VG});var VG=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],pN={};Re(pN,{json:()=>GG});var GG=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],cN={};Re(cN,{json:()=>HG});var HG=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],dN={};Re(dN,{json:()=>jG});var jG=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],hN={};Re(hN,{json:()=>qG});var qG=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],mN={};Re(mN,{json:()=>KG});var KG=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],fN={};Re(fN,{json:()=>XG});var XG=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],gN={};Re(gN,{json:()=>YG});var YG=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],yN={};Re(yN,{json:()=>JG});var JG=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],bN={};Re(bN,{json:()=>ZG});var ZG=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],xN={};Re(xN,{json:()=>QG});var QG=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],vN={};Re(vN,{json:()=>e6});var e6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],wN={};Re(wN,{json:()=>t6});var t6=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],kN={};Re(kN,{json:()=>n6});var n6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],IN={};Re(IN,{json:()=>a6});var a6=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],SN={};Re(SN,{json:()=>r6});var r6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],tk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[iN,oN,lN,uN,pN,cN,dN,hN,mN,fN,gN,yN,bN,xN,vN,wN,kN,IN,SN],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=ir(g),v=i[b];if(v.outputs!=null){let w=v.outputs.indexOf(x);if(w!==-1){let T=`${b}:${w}`;f.inputNames[y]=T}}f.inputs.push(v),v.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=ir(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=ir(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=sN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Ib(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Ib(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Ab(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Ab(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Nb(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Nb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=_b(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=_b(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Sb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Sb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Fb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Fb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Eb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Eb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=$b(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=$b(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Tb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Tb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Cb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Cb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=nk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=ir(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Aw(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=ir(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=ir(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function s6(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function NN(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):s6(e);return t?n:n.toLowerCase()}function Ib(e,t,n,a=!1){let r=e[t];return r!=null?NN(r.s,a):n}function Sb(e,t,n){let a=e[t];return a?a.b:n}function Nb(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function Aw(e){switch(typeof e=="string"&&(e=xa[e]),e){case xa.DT_FLOAT:case xa.DT_HALF:return"float32";case xa.DT_INT32:case xa.DT_INT64:case xa.DT_INT8:case xa.DT_UINT8:return"int32";case xa.DT_BOOL:return"bool";case xa.DT_DOUBLE:return"float32";case xa.DT_STRING:return"string";default:return null}}function nk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Tb(e,t,n){let a=e[t];return a&&a.type?Aw(a.type):n}function Cb(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>Aw(r)):n}function TN(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Eb(e,t,n){let a=e[t];return a&&a.shape?TN(a.shape):n}function _b(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Ab(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>NN(s,a)):n}function $b(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>TN(r)):n}function Fb(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var i6=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return kn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return kn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Nb(this.node.rawAttrs,e,t);if(n.s!=null)return Ib(this.node.rawAttrs,e,t);if(n.b!=null)return Sb(this.node.rawAttrs,e,t);if(n.shape!=null)return Eb(this.node.rawAttrs,e,t);if(n.type!=null)return Tb(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return _b(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ab(this.node.rawAttrs,e,t);if(n.list.shape!=null)return $b(this.node.rawAttrs,e,t);if(n.list.b!=null)return Fb(this.node.rawAttrs,e,t);if(n.list.type!=null)return Cb(this.node.rawAttrs,e,t)}return t}},o6=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[GI(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Ux(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[$x(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Em(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ce(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[vu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[hr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Cr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Xm(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},l6=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[fx(I("x",e,t,n))];case"Acosh":return[gx(I("x",e,t,n))];case"Asin":return[bx(I("x",e,t,n))];case"Asinh":return[xx(I("x",e,t,n))];case"Atan":return[vx(I("x",e,t,n))];case"Atan2":return[wx(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[kx(I("x",e,t,n))];case"Ceil":return[Tx(I("x",e,t,n))];case"Complex":return[Qr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[bc(I("x",e,t,n))];case"Cosh":return[Fm(I("x",e,t,n))];case"Elu":return[bu(I("x",e,t,n))];case"Erf":return[Fx(I("x",e,t,n))];case"Exp":return[mn(I("x",e,t,n))];case"Expm1":return[Dx(I("x",e,t,n))];case"Floor":return[xu(I("x",e,t,n))];case"Log":return[Zn(I("x",e,t,n))];case"Log1p":return[vc(I("x",e,t,n))];case"Imag":return[Rm(I("x",e,t,n))];case"Neg":return[It(I("x",e,t,n))];case"Reciprocal":return[Hx(I("x",e,t,n))];case"Real":return[Lp(I("x",e,t,n))];case"Relu":return[Xe(I("x",e,t,n))];case"Round":return[Um(I("x",e,t,n))];case"Selu":return[Gm(I("x",e,t,n))];case"Sigmoid":return[da(I("x",e,t,n))];case"Sin":return[Hm(I("x",e,t,n))];case"Sign":return[jx(I("x",e,t,n))];case"Sinh":return[jm(I("x",e,t,n))];case"Softplus":return[oo(I("x",e,t,n))];case"Sqrt":return[ln(I("x",e,t,n))];case"Square":return[lt(I("x",e,t,n))];case"Tanh":return[Zs(I("x",e,t,n))];case"Tan":return[Xx(I("x",e,t,n))];case"ClipByValue":return[nn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Wm(I("x",e,t,n))];case"Rsqrt":return[Vm(kn(e.inputNames[0],t,n))];case"Prod":return[Bm(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[xc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Ic(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Mx(kn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wa(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function ak(e){return!(typeof e=="number"||e.some(t=>t<0))}function fp(e,t,n){let a=Db(e,n),r=!ak(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Db(s.shape,a)}),!ak(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Db(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var u6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),en(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),wa(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,en(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Yn([],[0].concat(this.elementShape));let n=this.readMany(e);return wa(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Mt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Yn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return wa(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,dt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];O(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=W(Ge(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Lc=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);wa(t,r.shape,"TensorList shape mismatch: "),en(r)}),this.idTensor=ke(0),this.maxNumElements=a,en(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Lc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);wa(e,this.elementShape,"TensorList shape mismatch: ");let a=fp(this.elementShape,this.tensors,e);return O(()=>{let r=this.tensors.map(s=>W(s,a));return Mt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=fp(this.elementShape,this.tensors,e),a=this.tensors.pop();return wa(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(wa(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");en(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);wa(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=fp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);wa(this.elementShape,t.shape,"TensorList shape mismatch: "),en(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);wa(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=fp(this.elementShape,this.tensors,n);return e.length===0?Yn([],[0].concat(a)):O(()=>{let r=e.map(s=>W(this.tensors[s],a));return Mt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);wa(this.elementShape,t,"TensorList shape mismatch: ");let n=fp(this.elementShape,this.tensors,t);return this.size()===0?Yn([],[0].concat(n)):O(()=>{let a=this.tensors.map(r=>W(r,n));return Qe(a,0)})}};function p6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);wa(r,t,"TensorList shape mismatch: ");let s=dt(e);return new Lc(s,t,a)}function c6(e,t,n){return new Lc([],e,t,n)}function d6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Lc([],n,e.dtype,a),i=dt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function h6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Db(s,n),o=a===0?0:e.size/a,l=O(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=W(Ge(e,h,m),i)}return e.dispose(),p}),u=new Lc([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var m6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[wr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=wr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>kn(r,t,n)!==void 0);if(a){let r=kn(a,t,n);return[wr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[wr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[wr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[wr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),p=new u6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ke(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ke(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=d6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=c6(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=p6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=h6(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function rk(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=I("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=I("strides",e,t,n),d=ih(e,t,n),c=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[m,f]=I("args",e,t,n);i&&(f=m,m=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var f6=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Am(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=ih(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Rt(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=rk(e,t,n);return[ts.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=rk(e,t,n);return[ts.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=ih(e,t,n);return[$m(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=ih(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[ms(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Ex(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ma(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Pt(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=gS(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Sx(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Bx(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[Ax(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},g6=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[Cn(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[uS(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[yS(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[al(a,r,s,i)]}case"Ones":return[Kn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Qn(I("x",e,t,n))];case"RandomUniform":return[wu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[rl(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Ym(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[wt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ke(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function jy(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var y6=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=jy(e,t,n),u=await Xn.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=jy(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Xn.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=jy(e,t,n);return[await Xn.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=oe(I("condition",e,t,n),"bool"),r=[await Zx(a)];return a.dispose(),r}case"ListDiff":return vS(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},b6=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=Yx(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Th(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Th(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},x6=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[kn(e.name,t,n)||a];case"Placeholder":return[kn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[wr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>wr(u));case"Snapshot":let r=I("x",e,t,n);return[wr(r)];case"Shape":return[qe(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>qe(u.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},v6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,en(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),O(()=>{let a=dt(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];en(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return O(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Mt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},w6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new v6(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},k6=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Xn.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Xn.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Xn.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},I6=(e,t,n)=>{switch(e.op){case"Equal":return[Jn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ti(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Bn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[fs(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Mm(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[gs(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Sa(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[wc(I("a",e,t,n))];case"LogicalOr":return[Lm(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[hn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},S6=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Fe(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[iS(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Me(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,p]=I("args",e,t,n);return[ts.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:p,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},N6=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Tr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Tr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Px(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Xa(I("x",e,t,n))];case"LogSoftmax":return[Om(I("x",e,t,n))];case"SparseToDense":return[Qx(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},T6=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ka(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[_t(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Op(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[be(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[_m(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Pp(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Js(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[yx(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Bm(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Dm(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[Nx(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[rS(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},C6=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Qe(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[Qs(a,oe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Qs(s,oe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[ea(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[ea(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Ge(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Kx(d,a,r,s,i,o,l,u,p)]}case"Pack":return O(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=pr(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(pr(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:W(l,s)});return[Mt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return dt(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Pn(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return On(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[SS(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[NS(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Qx(a,s,r,s.dtype===i.dtype?i:oe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},E6=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=xp.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=xp.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[xp.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[xp.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_6=(e,t,n)=>{switch(e.op){case"FFT":return[Sc(I("x",e,t,n))];case"IFFT":return[sl(I("x",e,t,n))];case"RFFT":return[Nc(I("x",e,t,n))];case"IRFFT":return[Km(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},A6=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=sh.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=sh.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[sh.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$6=(e,t,n)=>{switch(e.op){case"Cast":return[oe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[dn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[pr(I("x",e,t,n),a)]}case"Reshape":return[W(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Wx(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[fa(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[kc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[yc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[_x(I("x",e,t,n),a,r)]}case"BroadcastTo":return[Zo(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[JI(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function sk(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return O(()=>o6(s,i,o));case"basic_math":return O(()=>l6(s,i,o));case"control":return m6(s,i,o);case"convolution":return O(()=>f6(s,i,o));case"creation":return O(()=>g6(s,i,o));case"dynamic":return y6(s,i,o);case"evaluation":return O(()=>b6(s,i,o));case"image":return O(()=>k6(s,i,o));case"graph":return O(()=>x6(s,i,o));case"logical":return O(()=>I6(s,i,o));case"matrices":return O(()=>S6(s,i,o));case"normalization":return O(()=>N6(s,i,o));case"reduction":return O(()=>T6(s,i,o));case"slice_join":return O(()=>C6(s,i,o));case"sparse":return O(()=>E6(s,i,o));case"spectral":return O(()=>_6(s,i,o));case"string":return O(()=>A6(s,i,o));case"transformation":return O(()=>$6(s,i,o));case"hash_table":return w6(s,i,o,a);case"custom":let l=sN(s.op);if(l&&l.customExecutor)return l.customExecutor(new i6(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var ik=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function ok(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>jn(c)[0]),p=[];a!=null&&(p=a.map(c=>jn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((CN(c)||P6(c)||O6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function F6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>jn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var D6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],R6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],M6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function CN(e){return D6.indexOf(e.op)>=0}function P6(e){return R6.indexOf(e.op)>=0}function O6(e){return M6.indexOf(e.op)>=0}var Rb=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Rb(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=ok(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return F6(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[jn(p)[0]]),r=t.map(p=>jn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return O(()=>{let p=new ik(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=jn(m),y=[];y[g]=e[m],d[f]=y});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=sk(f,d,p,this._resourceManager);if(k.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>kn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=zG(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=ir(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Y().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new ik(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>kn(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[jn(b)[0]]),i=n.map(b=>jn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=ok(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=jn(b),w=[];w[v]=e[b],h[x]=w});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!CN(b)&&!kn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&I("isConstant",p.node,a,n)&&([d]=ir(p.node.name,n)),a[p.node.name]==null){let c=sk(p.node,a,n,this._resourceManager);d||([d]=ir(p.node.name,n));let h=n.currentContext;k.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=ir(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!kn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!kn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=jn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=jn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},L6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},z6="?tfjs-format=file",B6="model.json",EN=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new L6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Qt.browserHTTPRequest(e,this.loadOptions);else{let t=Qt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Qt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=Qt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Rb(tk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=tk.Instance.transformGraph(e.modelInitializer);this.initializer=new Rb(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Qt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ae)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function W6(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${B6}${z6}`);let n=new EN(e,t);return await n.load(),n}var U6="3.14.0",_N={};Re(_N,{CSVDataset:()=>LN,Dataset:()=>Cu,FileDataSource:()=>HN,TextLineDataset:()=>ON,URLDataSource:()=>jN,array:()=>cH,csv:()=>kH,func:()=>IH,generator:()=>SH,microphone:()=>TH,version_data:()=>CH,webcam:()=>NH,zip:()=>dH});var V6=li(Bk()),G6=li(Bk());function H6(e,t){return Mh(e,t)}function Mh(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(ul(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Mh(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function j6(e,t=$N){return AN(e,t)}function AN(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(ul(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=AN(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function $N(e){return e===null?null:ul(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function FN(e,t){let n=new Map;Mh(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return Mh(e,t,n)}function ul(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=Wk();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ae)&&!(e instanceof Promise)&&!t)}function q6(e){return e==null||K6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ae||k.isTypedArray(e)}function K6(e){return e===null||typeof e!="object"&&typeof e!="function"}function X6(e){return H6(e,Y6)}function Y6(e){return e instanceof Ae?{value:e.clone(),recurse:!1}:ul(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var DN=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$w=class extends DN{constructor(){super($w.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};$w.INITIAL_CAPACITY=32;function RN(e){return new Q6(e)}function Fw(e){return new eH(e)}function J6(e,t){return new MN(e,t)}function Z6(e,t=qr.FAIL){return new uH(e,t)}var an=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new oH(this,e)}filter(e){return new sH(this,e)}map(e){return new iH(this,e)}mapAsync(e){return new lk(this,e)}serialMapAsync(e){return new lk(this,e).serial()}flatmap(e){return new lH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new rH(this,e,t)}columnMajorBatch(e,t=!0,n=$N){return this.rowMajorBatch(e,t).map(a=>j6(a,n))}concatenate(e,t){return new MN(RN([this,e]),t)}take(e){return e<0||e==null?this:new aH(this,e)}skip(e){return e<0||e==null?this:new nH(this,e)}prefetch(e){return new PN(this,e)}shuffle(e,t){return new pH(this,e,t)}serial(){return new tH(this)}},Q6=class extends an{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:X6(e),done:!1}}},eH=class extends an{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},tH=class extends an{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},nH=class extends an{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;De(e.value)}return this.upstream.next()}},aH=class extends an{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},rH=class extends an{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},sH=class extends an{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;De(e.value)}}},iH=class extends an{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Wa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Wa.getTensorsInContainer(n);for(let r of t)Wa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},oH=class extends an{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},lk=class extends an{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Wa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Wa.getTensorsInContainer(n);for(let r of t)Wa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Dw=class extends an{constructor(){super();this.outputQueue=new $w,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},lH=class extends Dw{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Wa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Wa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Wa.isTensorInList(r,a)||r.dispose();return!0}},MN=class extends an{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},qr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(qr||(qr={}));var uH=class extends an{constructor(e,t=qr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof an?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await FN(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case qr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case qr.SHORTEST:return{value:null,done:!0};case qr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},PN=class extends an{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new DN(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},pH=class extends PN{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=G6.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Cu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Hn(async()=>(await n.iterator()).columnMajorBatch(e,t,hH),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Hn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Hn(async()=>(await t.iterator()).filter(a=>O(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Hn(async()=>(await t.iterator()).map(n=>O(()=>e(n))),this.size)}mapAsync(e){let t=this;return Hn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Hn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Hn(async()=>{let a=Fw(async()=>({value:await t.iterator(),done:!1}));return J6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Hn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=V6.alea(t||k.now().toString());return Hn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Hn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Cu.MAX_BUFFER_SIZE=1e4;function Hn(e,t=null){return new class extends Cu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function cH(e){return Hn(async()=>RN(e),e.length)}function dH(e){if(!ul(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Hn(async()=>{let n=await FN(e,a=>{if(a instanceof Cu)return{value:a.iterator(),recurse:!1};if(ul(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Z6(n,qr.SHORTEST)},t)}function hH(e){if(e===null)return null;let t=e[0];return q6(t)?{value:mH(e),recurse:!1}:{value:null,recurse:!0}}function mH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ae?Mt(e):Yn(e)}var ON=class extends Cu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Zd='"',gp=Symbol("out"),uk=Symbol("field"),Qd=Symbol("quote"),qy=Symbol("quoteafterquote"),pk=Symbol("quoteinquote"),LN=class extends Cu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new ON(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=gp;for(let i=0;i<r;i++)switch(s){case gp:switch(e.charAt(i)){case Zd:a=i+1,s=Qd;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=gp;break;default:s=uk,a=i;break}break;case uk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=gp,a=i+1;break;default:}break;case Qd:switch(e.charAt(i)){case Zd:s=qy;break;default:}break;case qy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=gp,a=i+1;break;case Zd:s=Qd;break;default:s=pk;break}break;case pk:switch(e.charAt(i)){case Zd:s=Qd;break;default:}break;default:}if(s===qy?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},zN=class extends an{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new zN(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Yn(n,t)}},BN=class extends an{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ua([s,r,o,i],[1,4])}else this.cropBox=Ua([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new BN(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=io.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return O(()=>{let t=dn(oe(e,"float32"),0),n;n=Xn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},WN=class{},UN=class extends an{split(e){return new fH(this,e)}},fH=class extends UN{constructor(e,t){super();this.upstream=e,this.impl=new gH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gH=class extends Dw{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},yH=class extends an{decodeUTF8(){return new bH(this)}},bH=class extends UN{constructor(e){super();this.upstream=e,this.impl=new xH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},xH=class extends Dw{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Wk();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},VN=class extends yH{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function vH(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=wH(e));let s=await(n||k.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new VN(i,t)}else throw new Error(s.statusText)}var wH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function GN(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var HN=class extends WN{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(GN(this.input)&&Y().get("IS_NODE")){let e=Xb();this.input=e.readFileSync(this.input.substr(7))}return new VN(this.input,this.options)}},jN=class extends WN{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return GN(this.url)?new HN(this.url,this.fileOptions).iterator():vH(this.url,this.fileOptions)}};function kH(e,t={}){return new LN(new jN(e),t)}function IH(e){let t=Fw(e);return Hn(async()=>t)}function SH(e){return Hn(async()=>{let t=await e();return Fw(()=>t.next())})}async function NH(e,t){return BN.create(e,t)}async function TH(e){return zN.create(e)}var CH="3.14.0";function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var EH=mr.whereImpl,Rw=class extends qp{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Gh(this,ar())}nextDataId(){return Rw.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&E.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return ar().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return EH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Rw.nextDataId=0;var qN={};Re(qN,{addImpl:()=>XN,bincountImpl:()=>Pw,bincountReduceImpl:()=>YN,ceilImpl:()=>JN,concatImpl:()=>Ow,equalImpl:()=>ZN,expImpl:()=>eT,expm1Impl:()=>nT,floorImpl:()=>aT,gatherNdImpl:()=>rT,gatherV2Impl:()=>sT,greaterEqualImpl:()=>oT,greaterImpl:()=>iT,lessEqualImpl:()=>uT,lessImpl:()=>lT,linSpaceImpl:()=>pT,logImpl:()=>cT,maxImpl:()=>dT,maximumImpl:()=>hT,minimumImpl:()=>mT,multiplyImpl:()=>Lw,negImpl:()=>fT,notEqualImpl:()=>gT,prodImpl:()=>yT,rangeImpl:()=>Bw,rsqrtImpl:()=>bT,sigmoidImpl:()=>gj,simpleAbsImpl:()=>KN,sliceImpl:()=>Oh,sparseFillEmptyRowsImpl:()=>vT,sparseReshapeImpl:()=>wT,sparseSegmentReductionImpl:()=>Ww,sqrtImpl:()=>xj,squaredDifferenceImpl:()=>kT,stridedSliceImpl:()=>IT,stringNGramsImpl:()=>ST,stringSplitImpl:()=>NT,stringToHashBucketFastImpl:()=>TT,subImpl:()=>CT,tileImpl:()=>ET,topKImpl:()=>AT,transposeImpl:()=>zw,uniqueImpl:()=>$T});function KN(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var _H=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=KN(r),n.makeOutput(a,t.shape,t.dtype)},AH={kernelName:fl,backendName:"cpu",kernelFunc:_H};function Ut(e){return(t,n,a,r,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),p=k.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=E.getBroadcastDims(t,i),g=E.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<p.length;++y){let b=k.indexToLoc(y,o,l),x=b.slice(-d);f.forEach(C=>x[C]=0);let v=k.locToIndex(x,d,h),w=b.slice(-c);g.forEach(C=>w[C]=0);let T=k.locToIndex(w,c,m);p[y]=e(a[v],r[T])}return[p,i]}}function qn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var $H={kernelName:Jh,backendName:"cpu",kernelFunc:qn};function Ph(e,t,n="float32"){if(n==="complex64"){let r=Ph(e,t,"float32"),s=Ph(e,t,"float32");return qn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function cr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var FH={kernelName:_i,backendName:"cpu",kernelFunc:cr};function ai(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var DH={kernelName:gm,backendName:"cpu",kernelFunc:ai};function is(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return cr({inputs:{x:r},backend:n});let i=Ph(n,r.shape,r.dtype),o=is({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=qn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=ai({inputs:{input:r},backend:n}),o=is({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=cr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Ut((p,d)=>p!==d?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var RH={kernelName:mi,backendName:"cpu",kernelFunc:is};function rn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?E.fromUint8ToStringArray(u):u,c=i.dtype==="string"?E.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=is({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=is({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[w,T,C]=n(i.shape,o.shape,h,m,x,v),_=l.makeTensorInfo(C,"float32",w),$=l.makeTensorInfo(C,"float32",T),P=qn({inputs:{real:_,imag:$},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(_),l.disposeIntermediateTensorInfo($),P}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function Mw(e){return(t,n,a,r,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,p=k.computeStrides(o),d=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,o),m=E.getBroadcastDims(n,o),f=E.mergeRealAndImagArrays(a,r),g=E.mergeRealAndImagArrays(s,i),y=t.length,b=k.computeStrides(t),x=n.length,v=k.computeStrides(n);if(h.length+m.length===0)for(let w=0;w<d.length;w++){let T=w%f.length,C=w%g.length,_=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[w]=_.real,c[w]=_.imag}else for(let w=0;w<d.length;w++){let T=k.indexToLoc(w,u,p),C=T.slice(-y);h.forEach(S=>C[S]=0);let _=k.locToIndex(C,y,b),$=T.slice(-x);m.forEach(S=>$[S]=0);let P=k.locToIndex($,x,v),F=e(f[_*2],f[_*2+1],g[P*2],g[P*2+1]);d[w]=F.real,c[w]=F.imag}return[d,c,o]}}var XN=Ut((e,t)=>e+t),MH=Mw((e,t,n,a)=>({real:e+n,imag:t+a})),zc=rn(ls,XN,MH),PH={kernelName:ls,backendName:"cpu",kernelFunc:zc};function Pw(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function YN(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=He([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ys(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function ot(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),p=n||i.dtype,d=k.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function Eu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var JN=ys(e=>Math.ceil(e)),OH=Eu(fi,JN),LH={kernelName:fi,backendName:"cpu",kernelFunc:OH};function Ow(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var ZN=Ut((e,t)=>e===t?1:0),QN=rn(Al,ZN,null,"bool"),zH={kernelName:Al,backendName:"cpu",kernelFunc:QN},eT=ys(e=>Math.exp(e)),tT=Eu(Si,eT,"float32"),BH={kernelName:Si,backendName:"cpu",kernelFunc:tT},nT=ys(e=>Math.expm1(e)),WH=Eu(Fl,nT),UH={kernelName:Fl,backendName:"cpu",kernelFunc:WH},aT=ys(e=>Math.floor(e)),VH=Eu(Ni,aT),GH={kernelName:Ni,backendName:"cpu",kernelFunc:VH};function rT(e,t,n,a,r,s,i,o,l){let u=He([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function sT(e,t,n){let a=He(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var iT=Ut((e,t)=>e>t?1:0),HH=rn(Pl,iT,null,"bool"),jH={kernelName:Pl,backendName:"cpu",kernelFunc:HH},oT=Ut((e,t)=>e>=t?1:0),qH=rn(Ei,oT,null,"bool"),KH={kernelName:Ei,backendName:"cpu",kernelFunc:qH},lT=Ut((e,t)=>e<t?1:0),XH=rn(Bl,lT,null,"bool"),YH={kernelName:Bl,backendName:"cpu",kernelFunc:XH},uT=Ut((e,t)=>e<=t?1:0),JH=rn(Wl,uT,null,"bool"),ZH={kernelName:Wl,backendName:"cpu",kernelFunc:JH};function pT(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var cT=ys(e=>Math.log(e)),QH=Eu($i,cT),ej={kernelName:$i,backendName:"cpu",kernelFunc:QH};function dT(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var hT=Ut((e,t)=>Math.max(e,t)),tj=rn(Di,hT),nj={kernelName:Di,backendName:"cpu",kernelFunc:tj},mT=Ut((e,t)=>Math.min(e,t)),aj=rn(Oi,mT),rj={kernelName:Oi,backendName:"cpu",kernelFunc:aj},Lw=Ut((e,t)=>e*t),sj=Mw((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),_f=rn(zi,Lw,sj),ij={kernelName:zi,backendName:"cpu",kernelFunc:_f};function fT(e,t,n){let a=k.createScalarValue(-1,n);return Lw([],t,a,e,n)}function oj(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=fT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var lj={kernelName:Hl,backendName:"cpu",kernelFunc:oj},gT=Ut((e,t)=>e!==t?1:0),uj=rn(jl,gT,null,"bool"),pj={kernelName:jl,backendName:"cpu",kernelFunc:uj};function zw(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let p=0;p<i;++p){let d=k.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=k.locToIndex(c,s,l);u[h]=e[p]}return u}function ha(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=zw(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var cj={kernelName:so,backendName:"cpu",kernelFunc:ha};function yT(e,t,n,a){let[r,s]=E.computeOutAndReduceShapes(e,a),i=Ia(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function dj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=E.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=ha({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=E.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=yT(d.shape,d.dtype,h,p),y=f;return i&&(y=E.expandShapeToKeepDim(f,l)),c.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var hj={kernelName:Zl,backendName:"cpu",kernelFunc:dj};function Bw(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var bT=ys(e=>1/Math.sqrt(e)),mj=Eu(Xi,bT),fj={kernelName:Xi,backendName:"cpu",kernelFunc:mj},gj=ys(e=>1/(1+Math.exp(-e))),xT=ot(Ji,e=>1/(1+Math.exp(-e))),yj={kernelName:Ji,backendName:"cpu",kernelFunc:xT};function Oh(e,t,n,a,r){let s=qt.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let d=qt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?E.fromUint8ToStringArray(e):e,u=He(a,r,l),p=He(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?E.fromStringArrayToUint8(p.values):p.values}function ri(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=qt.parseSliceParams(r,s,i);qt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=Oh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var bj={kernelName:ru,backendName:"cpu",kernelFunc:ri};function vT(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(E.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*d];if(y<0)throw new Error(E.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(E.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b<o;++b)p[b]=b;return[g,[o,d],y,u,p]}else{let g=m[l-1],y=k.getArrayFromDType(n,g*d),b=k.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let w=e[v*d],T=x[w],C=(w===0?0:m[w-1])+T;x[w]++;for(let _=0;_<d;++_)y[C*d+_]=e[v*d+_];b[C]=a[v],p[v]=C}for(let v=0;v<l;++v)if(x[v]===0){let w=v===0?0:m[v-1];y[w*d+0]=v;for(let T=1;T<d;++T)y[w*d+T]=0;b[w]=i}return[y,[g,d],b,u,p]}}function wT(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(E.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(E.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(E.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(E.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(k.sizeFromShape(l)!==s)throw new Error(E.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=k.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<d;++y)g+=e[f*d+y]*c[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/h[y]),g%=h[y]}return[m,[i,o],l]}function Ww(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(E.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=k.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(E.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f<o){if(b=r[f],y===b){++f;continue}if(y>=b)throw new Error(E.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(E.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(E.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let w=0;w<u;w++)h[y*u+w]+=e[v*u+w]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=b,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var xj=ys(e=>Math.sqrt(e)),vj=ot(Zi,e=>Math.sqrt(e)),wj={kernelName:Zi,backendName:"cpu",kernelFunc:vj},kT=Ut((e,t)=>{let n=e-t;return n*n}),kj=rn(to,kT),Ij={kernelName:to,backendName:"cpu",kernelFunc:kj};function IT(e,t,n,a){let r=He(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var Sj=class{constructor(e,t,n,a,r,s){this.separator=k.encodeString(e),this.nGramWidths=t,this.leftPad=k.encodeString(n),this.rightPad=k.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(y=>h[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=k.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function ST(e,t,n,a,r,s,i,o){return new Sj(n,a,r,s,i,o).compute(e,t)}function Nj(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function NT(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;Nj(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=k.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function TT(e,t){let n=k.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=k.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var CT=Ut((e,t)=>e-t),Tj=Mw((e,t,n,a)=>({real:e-n,imag:t-a})),Uw=rn(no,CT,Tj),Cj={kernelName:no,backendName:"cpu",kernelFunc:Uw};function ET(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=He(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var kp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function _T(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));_T(e,t,c,h)}let r=e[t],s=n,i=a;for(k.swap(e,n,t),kp(e[a],r)>0&&k.swap(e,n,a);s<i;){for(k.swap(e,s,i),s++,i--;kp(e[s],r)<0;)s=s+1;for(;kp(e[i],r)>0;)i=i-1}kp(e[n],r)===0?k.swap(e,n,i):(i=i+1,k.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function AT(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((b,x)=>m[x]={value:b,index:x}),a<m.length&&(_T(m,a),m=m.slice(0,a)),r&&m.sort(kp);let f=d*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let p=t.slice();return p[p.length-1]=a,[He(p,n,l),He(p,"int32",u)]}function $T(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new jt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new jt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Cm("cpu",()=>new Rw,1);var FT=ot(Ii,e=>e>=0?e:Math.exp(e)-1),Ej={kernelName:Ii,backendName:"cpu",kernelFunc:FT};function DT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var _j={kernelName:Ai,backendName:"cpu",kernelFunc:DT},Aj=Ut((e,t)=>e<0?t*e:e);function RT(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=Aj(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var $j={kernelName:Vi,backendName:"cpu",kernelFunc:RT},MT=ot(Gi,e=>Math.max(0,e)),Fj={kernelName:Gi,backendName:"cpu",kernelFunc:MT},PT=ot(ji,e=>Math.min(Math.max(0,e),6)),Dj={kernelName:ji,backendName:"cpu",kernelFunc:PT};function Vw(e,t,n,a,r){if(n==="linear")return cr({inputs:{x:t},backend:e});if(n==="relu")return MT({inputs:{x:t},backend:e});if(n==="elu")return FT({inputs:{x:t},backend:e});if(n==="relu6")return PT({inputs:{x:t},backend:e});if(n==="prelu")return RT({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return DT({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return xT({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Nt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Rj={kernelName:eu,backendName:"cpu",kernelFunc:Nt};function OT(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=yu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);k.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],w=Nt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Nt({inputs:{x:s},backend:n,attrs:{shape:v}}),C=i?w.shape[1]:w.shape[2],_=i?w.shape[2]:w.shape[1],$=o?T.shape[1]:T.shape[2],P=Math.max(g,y),F=n.data.get(w.dataId).values,S=n.data.get(T.dataId).values,M=k.computeStrides(w.shape),V=k.computeStrides(T.shape),[j,q,K]=i?[M[0],1,M[1]]:[M[0],M[1],1],[Q,ee,re]=o?[1,V[1],V[0]]:[V[1],1,V[0]],Z=_*$,ie=He([P,_,$],w.dtype),ae=ie.values,le=n.blockSize;for(let ue=0;ue<P;ue++)for(let we=0;we<_;we+=le)for(let ye=0;ye<$;ye+=le)for(let Ie=0;Ie<C;Ie+=le){let _e=Math.min(we+le,_),$e=Math.min(ye+le,$),Be=Math.min(Ie+le,C);for(let je=we;je<_e;je++)for(let st=ye;st<$e;st++){let et=0;for(let tt=Ie;tt<Be;tt++){let Te=Math.min(ue,g-1)*j,gt=Math.min(ue,y-1)*re,ut=F[Te+je*q+tt*K],gn=S[tt*Q+st*ee+gt];et+=ut*gn}ae[ue*Z+(je*$+st)]+=et}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(b,ie.dtype,ie.values)}var Mj={kernelName:hi,backendName:"cpu",kernelFunc:OT};function Pj(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=OT({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=zc({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=Vw(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var Oj={kernelName:js,backendName:"cpu",kernelFunc:Pj},Lj=ot(gl,e=>Math.acos(e)),zj={kernelName:gl,backendName:"cpu",kernelFunc:Lj},Bj=ot(yl,e=>Math.acosh(e)),Wj={kernelName:yl,backendName:"cpu",kernelFunc:Bj};function Uj(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=He(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Vj={kernelName:pi,backendName:"cpu",kernelFunc:Uj};function Gj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=E.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=ha({inputs:{x:r},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=E.computeOutAndReduceShapes(p.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let w=f[b+v];x=x&&w}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=E.expandShapeToKeepDim(d,o),b=Nt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Hj={kernelName:bl,backendName:"cpu",kernelFunc:Gj};function jj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=E.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=ha({inputs:{x:r},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=E.computeOutAndReduceShapes(p.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let w=f[b+v];x=x||w}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=E.expandShapeToKeepDim(d,o),b=Nt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var qj={kernelName:xl,backendName:"cpu",kernelFunc:jj};function Kj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ha({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=E.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(p),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let w=f[y+v];w>b&&(b=w,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Xj={kernelName:ci,backendName:"cpu",kernelFunc:Kj};function Yj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ha({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=E.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(p),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let w=f[y+v];w<b&&(b=w,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Jj={kernelName:Kp,backendName:"cpu",kernelFunc:Yj},Zj=ot(vl,e=>Math.asin(e)),Qj={kernelName:vl,backendName:"cpu",kernelFunc:Zj},e5=ot(wl,e=>Math.asinh(e)),t5={kernelName:wl,backendName:"cpu",kernelFunc:e5},n5=ot(kl,e=>Math.atan(e)),a5={kernelName:kl,backendName:"cpu",kernelFunc:n5},r5=Ut((e,t)=>Math.atan2(e,t)),s5=rn(Sl,r5),i5={kernelName:Sl,backendName:"cpu",kernelFunc:s5},o5=ot(Il,e=>Math.atanh(e)),l5={kernelName:Il,backendName:"cpu",kernelFunc:o5};function Gw(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=He(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let w=v*y,T=v*a[0];for(let C=0;C<r.inChannels;++C)for(let _=0;_<r.outHeight;++_){let $=_*i-c,P=Math.max(0,$),F=Math.min(r.inHeight,p+$),S=w+_*b;for(let M=0;M<r.outWidth;++M){let V=M*o-h,j=Math.max(0,V),q=Math.min(r.inWidth,d+V),K=m,Q=0,ee=0;for(let Z=P;Z<F;Z+=l){let ie=T+Z*a[1];for(let ae=j;ae<q;ae+=u){let le=ie+ae*a[2],ue=e[le+C];s==="max"&&ue>K?K=ue:s==="avg"&&(Q+=ue,ee++)}if(isNaN(K))break}let re=S+M*x+C;g[re]=s==="avg"?Q/ee:K}}}return f}function LT(e,t,n,a,r=!1,s=!1){let i=He(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=He(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=u;let w=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,_=C;for(;_<0;)_+=p;let $=Math.min(a.inWidth,c+C),P=Number.NEGATIVE_INFINITY,F=-1;for(let S=v;S<w;S+=u){let M=S-x;for(let V=_;V<$;V+=p){let j=V-C,q=f.get(g,S,V,y);q>P&&(P=q,r?F=s?((g*a.inHeight+S)*a.inWidth+V)*a.inChannels+y:(S*a.inWidth+V)*a.inChannels+y:F=M*c+j)}}i.set(F,g,b,T,y)}}return i}function zT(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=He(r.outShape,n),v=x.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],_=r.outShape[4];for(let $=0;$<r.batchSize;++$){let P=$*w,F=$*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let V=M*i-f,j=V;for(;j<0;)j+=u;let q=Math.min(r.inDepth,c+V),K=P+M*T;for(let Q=0;Q<r.outHeight;++Q){let ee=Q*o-g,re=ee;for(;re<0;)re+=p;let Z=Math.min(r.inHeight,h+ee),ie=K+Q*C;for(let ae=0;ae<r.outWidth;++ae){let le=ae*l-y,ue=le;for(;ue<0;)ue+=d;let we=Math.min(r.inWidth,m+le),ye=ie+ae*_,Ie=b,_e=0,$e=0;for(let je=j;je<q;je+=u){let st=F+je*a[1];for(let et=re;et<Z;et+=p){let tt=st+et*a[2];for(let Te=ue;Te<we;Te+=d){let gt=tt+Te*a[3],ut=e[gt+S];if(s==="max"&&ut>Ie?Ie=ut:s==="avg"&&(_e+=ut,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Be=ye+S;v[Be]=s==="avg"?_e/$e:Ie}}}}return x}function u5(e,t){let n=He(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-c,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+b);for(let w=0;w<t.outHeight;++w){let T=w*r-h,C=T;for(;C<0;)C+=o;let _=Math.min(t.inHeight,p+T);for(let $=0;$<t.outWidth;++$){let P=$*s-m,F=P;for(;F<0;)F+=l;let S=Math.min(t.inWidth,d+P),M=Number.NEGATIVE_INFINITY,V=-1;for(let j=x;j<v;j+=i){let q=j-b;for(let K=C;K<_;K+=o){let Q=K-T;for(let ee=F;ee<S;ee+=l){let re=ee-P,Z=e.get(f,j,K,ee,g);Z>=M&&(M=Z,V=q*p*d+Q*p+re)}}}n.set(V,f,y,w,$,g)}}}return n}function p5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=E.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))d=cr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=Gw(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var c5={kernelName:di,backendName:"cpu",kernelFunc:p5};function d5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"avgPool3d");let p=E.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=zT(d,r.shape,r.dtype,k.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var h5={kernelName:Xp,backendName:"cpu",kernelFunc:d5};function m5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"avgPool3DGrad");let p=E.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,v=p.effectiveFilterDepth,w=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=v-1-p.padInfo.front,_=T-1-p.padInfo.left,$=w-1-p.padInfo.top,P=He(s.shape,"float32"),F=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let V=0;V<p.inChannels;++V)for(let j=0;j<p.inDepth;++j)for(let q=0;q<p.inHeight;++q)for(let K=0;K<p.inWidth;++K){let Q=j-C,ee=q-$,re=K-_,Z=0;for(let ie=0;ie<v;ie+=y){let ae=(Q+ie)/d;if(!(ae<0||ae>=p.outDepth||Math.floor(ae)!==ae))for(let le=0;le<w;le+=b){let ue=(ee+le)/c;if(!(ue<0||ue>=p.outHeight||Math.floor(ue)!==ue))for(let we=0;we<T;we+=x){let ye=(re+we)/h;ye<0||ye>=p.outWidth||Math.floor(ye)!==ye||(Z+=S.get(M,ae,ue,ye,V))}}}P.set(Z*F,M,j,q,K,V)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var f5={kernelName:Kh,backendName:"cpu",kernelFunc:m5};function g5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=E.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,v=y-1-p.padInfo.top,w=He(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,_=He(r.shape,"float32",C);for(let $=0;$<p.batchSize;++$)for(let P=0;P<p.inChannels;++P)for(let F=0;F<p.inHeight;++F)for(let S=0;S<p.inWidth;++S){let M=F-v,V=S-x,j=0;for(let q=0;q<y;q+=f){let K=(M+q)/d;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let Q=0;Q<b;Q+=g){let ee=(V+Q)/c;ee<0||ee>=p.outWidth||Math.floor(ee)!==ee||(j+=_.get($,K,ee,P))}}w.set(j*T,$,F,S,P)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var y5={kernelName:qh,backendName:"cpu",kernelFunc:g5};function b5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,v=0,w=0,T=0,C=0;for(let _=0;_<p.length;++_)f[_]=m[v++]+(p[_]-d[w++])*h[T++]/Math.sqrt(c[C++]+u),v>=g&&(v=0),w>=x&&(w=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var x5={kernelName:Ci,backendName:"cpu",kernelFunc:b5};function v5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=E.getReshaped(r.shape,s,o),u=E.getPermuted(l.length,s.length),p=E.getReshapedPermuted(r.shape,s,o),d=E.getSliceBeginCoords(i,s.length),c=E.getSliceSize(p,i,s.length),h=Nt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ha({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Nt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=ri({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var w5={kernelName:Nl,backendName:"cpu",kernelFunc:v5};function k5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=Pw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var I5={kernelName:Xh,backendName:"cpu",kernelFunc:k5};function S5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=E.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var N5={kernelName:Yh,backendName:"cpu",kernelFunc:S5},T5=ot(us,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),C5={kernelName:us,backendName:"cpu",kernelFunc:T5},E5=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},_5={kernelName:Yp,backendName:"cpu",kernelFunc:E5};function pl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var A5={kernelName:um,backendName:"cpu",kernelFunc:pl};function cl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=E.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return cr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>ai({inputs:{input:v},backend:n})),g=o.map(v=>pl({inputs:{input:v},backend:n})),y=cl({inputs:f,backend:n,attrs:{axis:s}}),b=cl({inputs:g,backend:n,attrs:{axis:s}}),x=qn({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=o.map(f=>{let g=k.sizeFromShape(f.shape.slice(s));return Nt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=E.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=Ow(p,i,t[0].dtype,d),h=E.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var $5={kernelName:Tl,backendName:"cpu",kernelFunc:cl};function BT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ve([r,s],"conv2d");let d=E.convertConv2DDataFormat(l),c=E.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new jt(c.outShape,r.dtype),w=k.computeStrides(r.shape),T=k.computeStrides(s.shape),C=w[0],_=x?w[1]:w[2],$=x?w[2]:1,P=x?1:w[1],F=v.strides[0],S=x?v.strides[1]:v.strides[2],M=x?v.strides[2]:1,V=x?1:v.strides[1],j=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,K=v.values;for(let Q=0;Q<c.batchSize;++Q){let ee=Q*C,re=Q*F;for(let Z=0;Z<c.outHeight;++Z){let ie=re+Z*S,ae=Z*c.strideHeight-b;for(let le=0;le<h;++le){let ue=ae+le*f;if(ue<0||ue>=c.inHeight)continue;let we=le*T[0],ye=ee+ue*_;for(let Ie=0;Ie<c.outWidth;++Ie){let _e=ie+Ie*M,$e=Ie*c.strideWidth-y;for(let Be=0;Be<m;++Be){let je=$e+Be*g;if(je<0||je>=c.inWidth)continue;let st=we+Be*T[1],et=ye+je*$,tt=st;for(let Te=0;Te<c.inChannels;++Te){let gt=j[et+Te*P];for(let ut=0;ut<c.outChannels;++ut)K[_e+ut*V]+=gt*q[tt+ut];tt+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,K)}var F5={kernelName:gi,backendName:"cpu",kernelFunc:BT};function D5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ve([r,s],"conv2dBackpropFilter");let d=E.convertConv2DDataFormat(l),c=E.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",b=new jt(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,w=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new jt(r.shape,r.dtype,w),_=new jt(s.shape,s.dtype,T);for(let $=0;$<f;++$){let P=Math.max(0,Math.ceil((v-$)/h)),F=Math.min(c.outHeight,(c.inHeight+v-$)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),V=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let j=0;j<c.inChannels;++j)for(let q=0;q<c.outChannels;++q){let K=0;for(let Q=0;Q<c.batchSize;++Q)for(let ee=P;ee<F;++ee){let re=$+ee*h-v;for(let Z=M;Z<V;++Z){let ie=S+Z*m-x;y?K+=C.get(Q,re,ie,j)*_.get(Q,ee,Z,q):K+=C.get(Q,j,re,ie)*_.get(Q,q,ee,Z)}}b.set(K,$,S,j,q)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var R5={kernelName:Zh,backendName:"cpu",kernelFunc:D5};function M5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ve([r,s],"conv2dBackpropInput");let d=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=E.convertConv2DDataFormat(u),m=E.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new jt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,w]=d,{batchSize:T,filterHeight:C,filterWidth:_,inChannels:$,inHeight:P,inWidth:F,outChannels:S,outHeight:M,outWidth:V,strideHeight:j,strideWidth:q}=m;h=m.dataFormat;let K=C-1-m.padInfo.top,Q=_-1-m.padInfo.left,ee=h==="channelsLast",re=f.strides[0],Z=ee?f.strides[1]:f.strides[2],ie=ee?f.strides[2]:1,ae=ee?1:f.strides[1],le=c[0],ue=ee?c[1]:c[2],we=ee?c[2]:1,ye=ee?1:c[1];for(let Ie=0;Ie<T;++Ie)for(let _e=0;_e<$;++_e)for(let $e=0;$e<P;++$e){let Be=$e-K,je=Math.max(0,Math.ceil(Be/j)),st=Math.min(M,(C+Be)/j);for(let et=0;et<F;++et){let tt=et-Q,Te=Math.max(0,Math.ceil(tt/q)),gt=Math.min(V,(_+tt)/q),ut=0;for(let Yt=je;Yt<st;++Yt){let Fn=Yt*j-Be;for(let Vt=Te;Vt<gt;++Vt){let Jt=Vt*q-tt,Aa=le*Ie+ue*Yt+we*Vt,Dn=x*(C-1-Fn)+v*(_-1-Jt)+w*_e;for(let Gt=0;Gt<S;++Gt){let ra=y[Aa+ye*Gt],sa=b[Dn+Gt];ut+=ra*sa}}}let gn=re*Ie+Z*$e+ie*et+ae*_e;g[gn]=ut}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var P5={kernelName:yi,backendName:"cpu",kernelFunc:M5};function O5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let u=E.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,v=new jt(u.outShape,r.dtype),w=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=v.values,_=k.computeStrides(r.shape),$=k.computeStrides(s.shape);for(let P=0;P<u.batchSize;++P){let F=P*_[0],S=P*v.strides[0];for(let M=0;M<u.outDepth;++M){let V=S+M*v.strides[1],j=M*u.strideDepth-y;for(let q=0;q<p;++q){let K=j+q*h;if(K<0||K>=u.inDepth)continue;let Q=q*$[0],ee=F+K*_[1];for(let re=0;re<u.outHeight;++re){let Z=V+re*v.strides[2],ie=re*u.strideHeight-x;for(let ae=0;ae<d;++ae){let le=ie+ae*m;if(le<0||le>=u.inHeight)continue;let ue=Q+ae*$[1],we=ee+le*_[2];for(let ye=0;ye<u.outWidth;++ye){let Ie=Z+ye*u.outChannels,_e=ye*u.strideWidth-b;for(let $e=0;$e<c;++$e){let Be=_e+$e*f;if(Be<0||Be>=u.inWidth)continue;let je=ue+$e*$[2],st=we+Be*u.inChannels,et=je;for(let tt=0;tt<u.inChannels;++tt){let Te=w[st+tt];for(let gt=0;gt<u.outChannels;++gt)C[Ie+gt]+=Te*T[et+gt];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var L5={kernelName:Jp,backendName:"cpu",kernelFunc:O5};function z5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),p=k.computeStrides(s.shape),d=E.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,y=d.filterWidth,b=new jt(d.filterShape,"float32"),x=b.values,[v,w,T,C]=b.strides,_=n.data.get(s.dataId).values,[$,P,F,S]=p,M=n.data.get(r.dataId).values,[V,j,q,K]=u,Q=d.padInfo.front,ee=d.padInfo.left,re=d.padInfo.top;for(let Z=0;Z<f;++Z){let ie=Math.max(0,Math.ceil((Q-Z)/c)),ae=Math.min(d.outDepth,(d.inDepth+Q-Z)/c),le=Z*v;for(let ue=0;ue<g;++ue){let we=Math.max(0,Math.ceil((re-ue)/h)),ye=Math.min(d.outHeight,(d.inHeight+re-ue)/h),Ie=ue*w+le;for(let _e=0;_e<y;++_e){let $e=Math.max(0,Math.ceil((ee-_e)/m)),Be=Math.min(d.outWidth,(d.inWidth+ee-_e)/m),je=_e*T+Ie;for(let st=0;st<d.inChannels;++st){let et=st*C+je;for(let tt=0;tt<d.outChannels;++tt){let Te=0;for(let gt=0;gt<d.batchSize;++gt){let ut=gt*V,gn=gt*$;for(let Yt=ie;Yt<ae;++Yt){let Fn=(Z+Yt*c-Q)*j+ut,Vt=Yt*P+gn;for(let Jt=we;Jt<ye;++Jt){let Aa=(ue+Jt*h-re)*q+Fn,Dn=Jt*F+Vt;for(let Gt=$e;Gt<Be;++Gt){let ra=(_e+Gt*m-ee)*K+Aa,sa=Gt*S+Dn;Te+=M[ra+st]*_[sa+tt]}}}}x[et+tt]=Te}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var B5={kernelName:Qh,backendName:"cpu",kernelFunc:z5};function W5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),p=k.computeStrides(s.shape),d=E.computeConv3DInfo(l,s.shape,o,1,i),c=new jt(d.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,b=n.data.get(r.dataId).values,[x,v,w,T]=u,C=n.data.get(s.dataId).values,[_,$,P,F]=p,{batchSize:S,filterDepth:M,filterHeight:V,filterWidth:j,inChannels:q,inDepth:K,inHeight:Q,inWidth:ee,outChannels:re,outDepth:Z,outHeight:ie,outWidth:ae,strideDepth:le,strideHeight:ue,strideWidth:we}=d,ye=M-1-d.padInfo.front,Ie=V-1-d.padInfo.top,_e=j-1-d.padInfo.left;for(let $e=0;$e<S;++$e)for(let Be=0;Be<q;++Be)for(let je=0;je<K;++je){let st=je-ye,et=Math.max(0,Math.ceil(st/le)),tt=Math.min(Z,(M+st)/le);for(let Te=0;Te<Q;++Te){let gt=Te-Ie,ut=Math.max(0,Math.ceil(gt/ue)),gn=Math.min(ie,(V+gt)/ue);for(let Yt=0;Yt<ee;++Yt){let Fn=Yt-_e,Vt=Math.max(0,Math.ceil(Fn/we)),Jt=Math.min(ae,(j+Fn)/we),Aa=0;for(let Dn=et;Dn<tt;++Dn){let Gt=Dn*le-st;for(let ra=ut;ra<gn;++ra){let sa=ra*ue-gt;for(let Or=Vt;Or<Jt;++Or){let Ss=Or*we-Fn,cd=x*$e+v*Dn+w*ra+T*Or,Lr=_*(M-1-Gt)+$*(V-1-sa)+P*(j-1-Ss)+F*Be;for(let br=0;br<re;++br){let ep=b[cd+br],Ao=C[Lr+br];Aa+=ep*Ao}}}}h[m*$e+f*je+g*Te+y*Yt+Be]=Aa}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var U5={kernelName:em,backendName:"cpu",kernelFunc:W5},V5=ot(bi,e=>Math.cos(e)),G5={kernelName:bi,backendName:"cpu",kernelFunc:V5},H5=ot(xi,e=>Math.cosh(e)),j5={kernelName:xi,backendName:"cpu",kernelFunc:H5};function q5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=He([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,w=k.computeStrides(r.shape),T=k.computeStrides(y.shape);for(let C=0;C<m;C++){let _=C*4,$=b[_],P=b[_+1],F=b[_+2],S=b[_+3],M=x[C];if(M>=p)continue;let V=f>1?(F-$)*(d-1)/(f-1):0,j=g>1?(S-P)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let K=f>1?$*(d-1)+q*V:.5*($+F)*(d-1);if(K<0||K>d-1){for(let Q=0;Q<g;Q++)for(let ee=0;ee<h;ee++){let re=ee+Q*T[2]+q*T[1]+C*T[0];y.values[re]=u}continue}if(l==="bilinear"){let Q=Math.floor(K),ee=Math.ceil(K),re=K-Q;for(let Z=0;Z<g;Z++){let ie=g>1?P*(c-1)+Z*j:.5*(P+S)*(c-1);if(ie<0||ie>c-1){for(let we=0;we<h;we++){let ye=we+Z*T[2]+q*T[1]+C*T[0];y.values[ye]=u}continue}let ae=Math.floor(ie),le=Math.ceil(ie),ue=ie-ae;for(let we=0;we<h;we++){let ye=we+ae*w[2]+Q*w[1]+M*w[0],Ie=v[ye];ye=we+le*w[2]+Q*w[1]+M*w[0];let _e=v[ye];ye=we+ae*w[2]+ee*w[1]+M*w[0];let $e=v[ye];ye=we+le*w[2]+ee*w[1]+M*w[0];let Be=v[ye],je=Ie+(_e-Ie)*ue,st=$e+(Be-$e)*ue;ye=we+Z*T[2]+q*T[1]+C*T[0],y.values[ye]=je+(st-je)*re}}}else for(let Q=0;Q<g;++Q){let ee=g>1?P*(c-1)+Q*j:.5*(P+S)*(c-1);if(ee<0||ee>c-1){for(let ie=0;ie<h;ie++){let ae=ie+Q*T[2]+q*T[1]+C*T[0];y.values[ae]=u}continue}let re=Math.round(ee),Z=Math.round(K);for(let ie=0;ie<h;ie++){let ae=ie+re*w[2]+Z*w[1]+M*w[0],le=ie+Q*T[2]+q*T[1]+C*T[0];y.values[le]=v[ae]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var K5={kernelName:Cl,backendName:"cpu",kernelFunc:q5};function X5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=E.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=ha({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=E.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=Ia(u.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?0:h[x];else{let v=f(y,b-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=E.getUndoAxesPermutation(l),b=ha({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var Y5={kernelName:vi,backendName:"cpu",kernelFunc:X5};function J5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=Pw(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=YN(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Z5={kernelName:tm,backendName:"cpu",kernelFunc:J5};function Q5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<d;++b){let x=Math.floor(b/s),v=b%s;for(let w=0;w<c;++w){let T=Math.floor(w/s),C=w%s,_=(v*s+C)*h;for(let $=0;$<h;++$){let P=$+_+p*(T+u*(x+l*y));f[g++]=m[P]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var eq={kernelName:El,backendName:"cpu",kernelFunc:Q5};function WT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ve([r,s],"depthwiseConv2DNative");let p=k.computeStrides(r.shape),d=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=E.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,w=h.outChannels/h.inChannels,T=new jt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,_=n.data.get(s.dataId).values,$=T.values;for(let P=0;P<h.batchSize;++P){let F=P*p[0],S=P*T.strides[0];for(let M=0;M<h.outHeight;++M){let V=S+M*T.strides[1],j=M*h.strideHeight-v;for(let q=0;q<m;++q){let K=j+q*g;if(K<0||K>=h.inHeight)continue;let Q=q*d[0],ee=F+K*p[1];for(let re=0;re<h.outWidth;++re){let Z=V+re*T.strides[2],ie=re*h.strideWidth-x;for(let ae=0;ae<f;++ae){let le=ie+ae*y;if(le<0||le>=h.inWidth)continue;let ue=Q+ae*d[1],we=ee+le*h.inChannels,ye=Z,Ie=ue;for(let _e=0;_e<h.inChannels;++_e){let $e=C[we+_e];for(let Be=0;Be<w;++Be)$[ye+Be]+=$e*_[Ie+Be];ye+=w,Ie+=w}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var tq={kernelName:wi,backendName:"cpu",kernelFunc:WT};function nq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let d=E.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new jt(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,x=d.outChannels/d.inChannels,v=n.data.get(r.dataId).values,w=new jt(r.shape,r.dtype,v),T=n.data.get(s.dataId).values,C=new jt(s.shape,s.dtype,T);for(let _=0;_<m;++_){let $=Math.max(0,Math.ceil((b-_)/c)),P=Math.min(d.outHeight,(d.inHeight+b-_)/c);for(let F=0;F<f;++F){let S=Math.max(0,Math.ceil((y-F)/h)),M=Math.min(d.outWidth,(d.inWidth+y-F)/h);for(let V=0;V<d.outChannels;++V){let j=Math.trunc(V/x),q=V%x,K=0;for(let Q=0;Q<d.batchSize;++Q)for(let ee=$;ee<P;++ee){let re=_+ee*c-b;for(let Z=S;Z<M;++Z){let ie=F+Z*h-y;K+=w.get(Q,re,ie,j)*C.get(Q,ee,Z,V)}}g.set(K,_,F,j,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var aq={kernelName:nm,backendName:"cpu",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let d=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=E.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new jt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,w,T]=d,C=n.data.get(s.dataId).values,[_,$,P]=c,{batchSize:F,filterHeight:S,filterWidth:M,inChannels:V,inHeight:j,inWidth:q,outChannels:K,outHeight:Q,outWidth:ee,strideHeight:re,strideWidth:Z}=h,ie=S-1-h.padInfo.top,ae=M-1-h.padInfo.left,le=K/V;for(let ue=0;ue<F;++ue)for(let we=0;we<V;++we)for(let ye=0;ye<j;++ye){let Ie=ye-ie,_e=Math.max(0,Math.ceil(Ie/re)),$e=Math.min(Q,(S+Ie)/re);for(let Be=0;Be<q;++Be){let je=Be-ae,st=Math.max(0,Math.ceil(je/Z)),et=Math.min(ee,(M+je)/Z),tt=0;for(let Te=_e;Te<$e;++Te){let gt=Te*re-Ie;for(let ut=st;ut<et;++ut){let gn=ut*Z-je,Yt=v*ue+w*Te+T*ut,Fn=_*(S-1-gt)+$*(M-1-gn)+P*we;for(let Vt=0;Vt<le;++Vt){let Jt=we*le+Vt,Aa=x[Yt+Jt],Dn=C[Fn+Vt];tt+=Aa*Dn}}}f[g*ue+y*ye+b*Be+we]=tt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var sq={kernelName:am,backendName:"cpu",kernelFunc:rq};function iq(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=He([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var oq={kernelName:rm,backendName:"cpu",kernelFunc:iq},lq={kernelName:Zp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:T,filterWidth:C,dilationHeight:_,dilationWidth:$,outShape:P}=E.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=k.sizeFromShape(P),S=P.length,M=k.getArrayFromDType(a.dtype,F);for(let V=0;V<h;++V)for(let j=0;j<y;++j){let q=j*v-x.top;for(let K=0;K<b;++K){let Q=K*w-x.left;for(let ee=0;ee<g;++ee){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<T;++ie){let ae=q+ie*_;if(ae>=0&&ae<m)for(let le=0;le<C;++le){let ue=Q+le*$;if(ue>=0&&ue<f){let we=k.locToIndex([V,ae,ue,ee],p,k.computeStrides(a.shape)),ye=k.locToIndex([ie,le,ee],c,k.computeStrides(r.shape)),Ie=u[we]+d[ye];Ie>re&&(re=Ie)}}}let Z=k.locToIndex([V,j,K,ee],S,k.computeStrides(P));M[Z]=re}}}return{dataId:l.write(k.toTypedArray(M,a.dtype),P,a.dtype),shape:P,dtype:a.dtype}}},uq={kernelName:bh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=k.toNestedArray(a.shape,u.data.get(a.dataId).values),d=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:T,dilationHeight:C,dilationWidth:_,outShape:$}=E.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===$.length,()=>`Error in ${bh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let P=k.toNestedArray($,u.data.get(s.dataId).values),F=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let V=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Q=Number.MIN_SAFE_INTEGER,ee=0,re=0;for(let Z=0;Z<w;++Z){let ie=V+Z*C;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*_;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Z][ae][K];ue>Q&&(Q=ue,ee=Z,re=ae)}}}F[ee][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(k.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},pq={kernelName:yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=k.toNestedArray(a.shape,u.data.get(a.dataId).values),d=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:T,dilationHeight:C,dilationWidth:_,outShape:$}=E.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===$.length,()=>`Error in ${yh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let P=k.toNestedArray($,u.data.get(s.dataId).values),F=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let V=M*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Q=Number.MIN_SAFE_INTEGER,ee=V<0?0:V,re=q<0?0:q;for(let Z=0;Z<w;++Z){let ie=V+Z*C;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*_;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Z][ae][K];ue>Q&&(Q=ue,ee=ie,re=le)}}}F[S][ee][re][K]+=P[S][M][j][K]}}}return{dataId:u.write(k.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function Bc(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=is({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=cr({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),p=E.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=ha({inputs:{x:o},backend:n,attrs:{perm:p}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=E.computeOutAndReduceShapes(c.shape,d),f=E.upcastType(c.dtype,"int32"),g=Ph(n,h,f),y=k.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<b.length;++v){let w=v*y,T=0;for(let C=0;C<y;++C)T+=x[w+C];b[v]=T}if(i){let v=E.expandShapeToKeepDim(g.shape,u),w=g;g=Nt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var cq={kernelName:Qi,backendName:"cpu",kernelFunc:Bc};function dq(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(r,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=E.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=E.getEinsumPermutation(h,l[g]),x;E.isIdentityPermutation(y)?x=s[g]:(x=ha({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let w=0;w<b.length;++w)v.splice(b[w],0,1);k.arraysEqual(x.shape,v)||(x=Nt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=_f({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Bc({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var hq={kernelName:sm,backendName:"cpu",kernelFunc:dq};function mq(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var fq={kernelName:im,backendName:"cpu",kernelFunc:mq},gq=E.ERF_P,yq=E.ERF_A1,bq=E.ERF_A2,xq=E.ERF_A3,vq=E.ERF_A4,wq=E.ERF_A5,kq=ot(_l,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+gq*n);return t*(1-((((wq*a+vq)*a+xq)*a+bq)*a+yq)*a*Math.exp(-n*n))}),Iq={kernelName:_l,backendName:"cpu",kernelFunc:kq};function Lh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Nt({inputs:{x:r},backend:n,attrs:{shape:o}})}var Sq={kernelName:$l,backendName:"cpu",kernelFunc:Lh},Nq=Ut((e,t)=>e/t),Hw=rn(ki,Nq),Mb={kernelName:ki,backendName:"cpu",kernelFunc:Hw};function UT(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=k.sizeFromShape(u),d=k.getTypedArrayFromDType("float32",p),c=k.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let y=ri({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=ri({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=qn({inputs:{real:y,imag:b},backend:n}),{real:v,imag:w}=Tq(x,t,n),T=E.mergeRealAndImagArrays(v,w);for(let C=0;C<s;C++){let _=E.getComplexWithIndex(T,C);d[g*s+C]=_.real,c[g*s+C]=_.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=qn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function Tq(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Cq(a)){let o=Pb(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=cr({inputs:{x:d},backend:n}),h=Mb.kernelFunc({inputs:{a:u,b:d},backend:n}),m=Mb.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=E.mergeRealAndImagArrays(s,i),l=Eq(o,a,t);return E.splitRealAndImagArrays(l)}}function Cq(e){return(e&e-1)===0}function Pb(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=E.mergeRealAndImagArrays(e,t),i=n/2,o=E.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=qn({inputs:{real:d,imag:c},backend:r}),m=E.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=qn({inputs:{real:b,imag:x},backend:r}),w=Pb(l,u,i,a,r),T=w.real,C=w.imag,_=[T.length],$=r.makeTensorInfo(_,"float32",T),P=r.makeTensorInfo(_,"float32",C),F=qn({inputs:{real:$,imag:P},backend:r}),S=Pb(f,g,i,a,r),M=S.real,V=S.imag,j=[M.length],q=r.makeTensorInfo(j,"float32",M),K=r.makeTensorInfo(j,"float32",V),Q=qn({inputs:{real:q,imag:K},backend:r}),ee=E.exponents(n,a),re=[ee.real.length],Z=r.makeTensorInfo(re,"float32",ee.real),ie=r.makeTensorInfo(re,"float32",ee.imag),ae=qn({inputs:{real:Z,imag:ie},backend:r}),le=_f({inputs:{a:ae,b:Q},backend:r}),ue=zc({inputs:{a:F,b:le},backend:r}),we=Uw({inputs:{a:F,b:le},backend:r}),ye=ai({inputs:{input:ue},backend:r}),Ie=ai({inputs:{input:we},backend:r}),_e=pl({inputs:{input:ue},backend:r}),$e=pl({inputs:{input:we},backend:r}),Be=cl({inputs:[ye,Ie],backend:r,attrs:{axis:0}}),je=cl({inputs:[_e,$e],backend:r,attrs:{axis:0}}),st=r.data.get(Be.dataId).values,et=r.data.get(je.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(je),{real:st,imag:et}}function Eq(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=E.exponent(r*o,t,n),u=E.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),E.assignToTypedArray(a,s,i,r)}return a}function _q(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=Nt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=UT(o,!1,n),u=Nt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var Aq={kernelName:om,backendName:"cpu",kernelFunc:_q};function jw(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return Fq(o,r,i),t.makeTensorInfo(a,i,o)}var $q={kernelName:Qp,backendName:"cpu",kernelFunc:jw};function Fq(e,t,n){e.fill(t)}var Dq={kernelName:Dl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=Math.round(l-f-1),x=c+m+g+y,v=p[x];if(b>=0&&b<l){let w=b*u,T=c+m+w+y;v=p[T]}s[x]=v}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},Rq=Ut((e,t)=>Math.floor(e/t)),Mq=rn(Ti,Rq,null,"int32"),Pq={kernelName:Ti,backendName:"cpu",kernelFunc:Mq};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=BT({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=zc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Vw(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var Lq={kernelName:qs,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=WT({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=zc({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Vw(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var Bq={kernelName:Ks,backendName:"cpu",kernelFunc:zq};function Wq(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=E.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=rT(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var Uq={kernelName:Ml,backendName:"cpu",kernelFunc:Wq};function Vq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=k.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let v=0;v<u.length;++v){let w=u[v];k.assert(w<=p-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=k.sizeFromShape(s.shape),h=E.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=Nt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=Nt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=sT(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var Gq={kernelName:Rl,backendName:"cpu",kernelFunc:Vq};function Hq(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=Nt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=UT(o,!0,n),u=Nt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var jq={kernelName:lm,backendName:"cpu",kernelFunc:Hq},qq=ot(Ol,e=>Number.isFinite(e)?1:0,"bool"),Kq={kernelName:Ol,backendName:"cpu",kernelFunc:qq},Xq=ot(Ll,e=>Math.abs(e)===1/0?1:0,"bool"),Yq={kernelName:Ll,backendName:"cpu",kernelFunc:Xq},Jq=ot(zl,e=>Number.isNaN(e)?1:0,"bool"),Zq={kernelName:zl,backendName:"cpu",kernelFunc:Jq};function Qq(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=pT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var e8={kernelName:pm,backendName:"cpu",kernelFunc:Qq},t8=ot(Ul,e=>Math.log1p(e)),n8={kernelName:Ul,backendName:"cpu",kernelFunc:t8},a8=Ut((e,t)=>e&&t),r8=rn(Vl,a8,null,"bool"),s8={kernelName:Vl,backendName:"cpu",kernelFunc:r8},i8=ot(ec,e=>e?0:1,"bool"),o8={kernelName:ec,backendName:"cpu",kernelFunc:i8},l8=Ut((e,t)=>e||t),u8=rn(tc,l8,null,"bool"),p8={kernelName:tc,backendName:"cpu",kernelFunc:u8};function c8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let v=d[y];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),y=d[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var d8={kernelName:nc,backendName:"cpu",kernelFunc:c8};function h8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ve(i,"LRNGrad");let d=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),y=d;for(let b=0;b<y;b++){let x=b%c,v=b-x+Math.max(0,x-o),w=b-x+Math.min(c,x+o+1),T=0;for(let C=v;C<w;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=v;C<w;C++){let _=-2*u*p*m[C]*f[b]/T;b===C&&(_+=Math.pow(T,-p)),_*=h[b],g[C]+=_}}return n.makeTensorInfo(i.shape,r.dtype,g)}var m8={kernelName:cm,backendName:"cpu",kernelFunc:h8};function VT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=k.parseAxisParam(s,l),d=p,c=E.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let w=0;w<v.length;w++)v[w]=l[c[w]];h=zw(h,l,r.dtype,c,v),d=E.getInnerMostAxes(d.length,u),l=v}ve(r,"max"),E.assertAxesAreInnerMostDims("max",d,u);let[m,f]=E.computeOutAndReduceShapes(l,d),g=k.sizeFromShape(f),y=dT(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=E.expandShapeToKeepDim(m,p)),{dataId:b,shape:x,dtype:r.dtype}}var f8={kernelName:Fi,backendName:"cpu",kernelFunc:VT};function g8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=E.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))d=cr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=Gw(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var y8={kernelName:Ri,backendName:"cpu",kernelFunc:g8};function b8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ve(r,"maxPool3d");let p=E.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=zT(d,r.shape,r.dtype,k.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var x8={kernelName:ac,backendName:"cpu",kernelFunc:b8};function v8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ve([r,s],"maxPool3DGrad");let p=E.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=u5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,v=p.effectiveFilterHeight,w=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=w-1-p.padInfo.left,_=v-1-p.padInfo.top,$=He(s.shape,"float32"),P=n.bufferSync(r);for(let F=0;F<p.batchSize;++F)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let V=0;V<p.inHeight;++V)for(let j=0;j<p.inWidth;++j){let q=M-T,K=V-_,Q=j-C,ee=0;for(let re=0;re<x;re+=g){let Z=(q+re)/h;if(!(Z<0||Z>=p.outDepth||Math.floor(Z)!==Z))for(let ie=0;ie<v;ie+=y){let ae=(K+ie)/m;if(!(ae<0||ae>=p.outHeight||Math.floor(ae)!==ae))for(let le=0;le<w;le+=b){let ue=(Q+le)/f;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let we=x*v*w-1-c.get(F,Z,ae,ue,S),ye=re*v*w+ie*w+le,Ie=we===ye?1:0;Ie!==0&&(ee+=P.get(F,Z,ae,ue,S)*Ie)}}}$.set(ee,F,M,V,j,S)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var w8={kernelName:hm,backendName:"cpu",kernelFunc:v8};function k8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=E.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=He(c.outShape,o.dtype,LT(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,w=v-1-c.padInfo.left,T=x-1-c.padInfo.top,C=He(o.shape,"float32"),_=n.data.get(r.dataId).values,$=He(r.shape,"float32",_);for(let P=0;P<c.batchSize;++P)for(let F=0;F<c.inChannels;++F)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let V=S-T,j=M-w,q=0;for(let K=0;K<x;K+=y){let Q=(V+K)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let ee=0;ee<v;ee+=b){let re=(j+ee)/g;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let Z=x*v-1-m.get(P,Q,re,F),ie=K*v+ee,ae=Z===ie?1:0;ae!==0&&(q+=$.get(P,Q,re,F)*ae)}}C.set(q,P,S,M,F)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var I8={kernelName:dm,backendName:"cpu",kernelFunc:k8};function S8(e,t,n,a,r){let s=k.computeStrides(t),i=Gw(e,t,n,s,r,"max"),o=LT(e,t,n,r,!0,a);return[i.values,o.values]}var N8={kernelName:mm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=E.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=S8(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function T8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=E.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=is({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=Hw({inputs:{a:c,b:d},backend:n});p.push(h);let m=Bc({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var C8={kernelName:Mi,backendName:"cpu",kernelFunc:T8};function E8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=E.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=ha({inputs:{x:r},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=E.computeOutAndReduceShapes(p.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let w=f[b+v];(Number.isNaN(w)||w<x)&&(x=w)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=E.expandShapeToKeepDim(d,o),b=Nt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var _8={kernelName:Pi,backendName:"cpu",kernelFunc:E8};function A8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,g=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=k.indexToLoc(b,f,g);for(let w=0;w<f;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-p:x[w]>=u[w]&&(x[w]=(u[w]-1)*2-x[w]+p);x=x.map((w,T)=>w-l[T]);let v=k.locToIndex(x,c,h);y[b]=d[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var $8={kernelName:Li,backendName:"cpu",kernelFunc:A8},F8=Ut((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),D8=rn(Gl,F8),R8={kernelName:Gl,backendName:"cpu",kernelFunc:D8},M8=li(zk());function GT(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=VT({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=E.expandShapeToKeepDim(u.shape,l),d=Nt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=Uw({inputs:{a:r,b:d},backend:n}),h=tT({inputs:{x:c},backend:n}),m=Bc({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=Nt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=Hw({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var P8={kernelName:eo,backendName:"cpu",kernelFunc:GT};function O8(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:GT({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let y=M8.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let w=0;w<g.length;w++)if(v<g[w]){h[b+x]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var L8={kernelName:fm,backendName:"cpu",kernelFunc:O8},z8=mr.nonMaxSuppressionV3Impl;function B8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=z8(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var W8={kernelName:ql,backendName:"cpu",kernelFunc:B8},U8=mr.nonMaxSuppressionV4Impl;function V8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ve(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=U8(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var G8={kernelName:Kl,backendName:"cpu",kernelFunc:V8},H8=mr.nonMaxSuppressionV5Impl;function j8(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ve(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=H8(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var q8={kernelName:Xl,backendName:"cpu",kernelFunc:j8};function K8(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let p=n.data.get(r.dataId).values;for(let d=0;d<l;++d)p[d]>=0&&p[d]<s&&(u[d*s+p[d]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var X8={kernelName:Bi,backendName:"cpu",kernelFunc:K8};function zh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=ai({inputs:{input:a},backend:n}),s=zh({inputs:{x:r},backend:n}),i=pl({inputs:{input:a},backend:n}),o=zh({inputs:{x:i},backend:n}),l=qn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return jw({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var Y8={kernelName:fu,backendName:"cpu",kernelFunc:zh};function HT(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=ai({inputs:{input:a},backend:n}),s=HT({inputs:{x:r},backend:n}),i=pl({inputs:{input:a},backend:n}),o=zh({inputs:{x:i},backend:n}),l=qn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return jw({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var J8={kernelName:Yl,backendName:"cpu",kernelFunc:HT};function jT(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Lh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{k.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Lh({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=cl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var Z8={kernelName:Jl,backendName:"cpu",kernelFunc:jT};function Q8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=k.sizeFromShape(r.shape),d=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),g=k.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<p;y++){let b=k.indexToLoc(y,d,c).map((v,w)=>v+l[w]),x=k.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var qT={kernelName:Wi,backendName:"cpu",kernelFunc:Q8},eK=Ut((e,t)=>Math.pow(e,t)),tK=rn(Ui,eK),nK={kernelName:Ui,backendName:"cpu",kernelFunc:tK};function aK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=Bw(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var rK={kernelName:rc,backendName:"cpu",kernelFunc:aK},sK=ot(Ql,e=>1/e),iK={kernelName:Ql,backendName:"cpu",kernelFunc:sK};function oK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(k.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,v=y[0]/b[0],w=y[1]/b[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let _;i?_=v*(C+.5)-.5:_=v*C;let $=Math.max(0,Math.floor(_)),P=_-$,F=Math.min(c-1,Math.ceil(_)),S=T*l[0]+$*l[1],M=T*l[0]+F*l[1];for(let V=0;V<p;V++){let j;i?j=w*(V+.5)-.5:j=w*V;let q=Math.max(0,Math.floor(j)),K=j-q,Q=Math.min(h-1,Math.ceil(j)),ee=S+q*l[2],re=M+q*l[2],Z=S+Q*l[2],ie=M+Q*l[2];for(let ae=0;ae<m;ae++){let le=f[ee+ae],ue=f[re+ae],we=f[Z+ae],ye=f[ie+ae],Ie=le+(we-le)*K,_e=ue+(ye-ue)*K,$e=Ie+(_e-Ie)*P;g[x++]=$e}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var lK={kernelName:Hi,backendName:"cpu",kernelFunc:oK};function uK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w<l;w++){let T=w*o[0];for(let C=0;C<c;C++){let _=C*y,$=Math.floor(_),P=Math.min(Math.ceil(_),u-1),F=T+$*o[1],S=T+P*o[1],M=_-$,V=1-M;for(let j=0;j<h;j++){let q=j*b,K=Math.floor(q),Q=Math.min(Math.ceil(q),p-1),ee=q-K,re=1-ee,Z=F+K*o[2],ie=F+Q*o[2],ae=S+K*o[2],le=S+Q*o[2],ue=V*re,we=V*ee,ye=M*re,Ie=M*ee;for(let _e=0;_e<d;_e++){let $e=x[v++];m[Z+_e]+=$e*ue,m[ie+_e]+=$e*we,m[ae+_e]+=$e*ye,m[le+_e]+=$e*Ie}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var pK={kernelName:bm,backendName:"cpu",kernelFunc:uK};function cK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],v=y[1]/b[1],w=0;for(let T=0;T<d;T++){let C=T*l[0];for(let _=0;_<u;_++){let $=i?x*(_+.5):x*_,P=Math.min(c-1,s?Math.round($):Math.floor($));i&&(P=Math.max(0,P));let F=C+P*l[1];for(let S=0;S<p;S++){let M=i?v*(S+.5):v*S,V=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(V=Math.max(0,V));let j=F+V*l[2];for(let q=0;q<m;q++){let K=f[j+q];g[w++]=K}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var dK={kernelName:sc,backendName:"cpu",kernelFunc:cK};function hK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,y=[i&&h>1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],w=1/x,T=1/v,C=Math.ceil(w)*2+2,_=Math.ceil(T)*2+2;for(let $=0;$<u;$++){let P=$*o[0];for(let F=0;F<p;F++){let S=P+F*o[1],M=Math.floor(F*w),V=Math.floor(M-C/2);for(let j=0;j<d;j++){let q=S+j*o[2],K=Math.floor(j*T),Q=Math.floor(K-_/2);for(let ee=0;ee<c;ee++){let re=0;for(let Z=0;Z<C;Z++){let ie=Z+V;if(ie<0||ie>=h)continue;let ae=P+ie*l[1],le=ie*x,ue=Math.min(p-1,i?Math.round(le):Math.floor(le));if(F===ue)for(let we=0;we<_;we++){let ye=we+Q;if(ye<0||ye>=m)continue;let Ie=ae+ye*l[2],_e=ye*v,$e=Math.min(d-1,i?Math.round(_e):Math.floor(_e));j===$e&&(re+=g[Ie+ee])}}f[q+ee]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var mK={kernelName:ym,backendName:"cpu",kernelFunc:hK};function fK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return cr({inputs:{x:r},backend:n});let l=new jt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var gK={kernelName:qi,backendName:"cpu",kernelFunc:fK},yK={kernelName:gu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=E.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*d*p*c;for(let w=0;w<p;w++){let T=w*(d*c);for(let C=0;C<d;C++){let _=C*c;for(let $=0;$<c;$++){let P=[u,w,C,$],F=P[2],S=P[1],M=(F-h)*y-(S-m)*g,V=(F-h)*g+(S-m)*y;M=Math.round(M+h),V=Math.round(V+m);let j=s;if(typeof s!="number"&&($===3?j=f:j=s[$]),M>=0&&M<d&&V>=0&&V<p){let K=V*(d*c),Q=M*c,ee=v+K+Q+$;j=b[ee]}let q=v+T+_+$;l[q]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},bK=ot(Ki,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),xK={kernelName:Ki,backendName:"cpu",kernelFunc:bK};function KT(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return He(n,t.dtype);let h=He(p,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=d[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function vK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=E.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=KT(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var wK={kernelName:tu,backendName:"cpu",kernelFunc:vK};function kK(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=Ia(r.dtype,s.dtype),d=k.makeZerosTypedArray(k.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var IK={kernelName:nu,backendName:"cpu",kernelFunc:kK},SK=E.SELU_SCALEALPHA,NK=E.SELU_SCALE,TK=ot(au,e=>e>=0?NK*e:SK*(Math.exp(e)-1)),CK={kernelName:au,backendName:"cpu",kernelFunc:TK},EK=ot(iu,e=>e<0?-1:e>0?1:0),_K={kernelName:iu,backendName:"cpu",kernelFunc:EK},AK=ot(Yi,e=>Math.sin(e)),$K={kernelName:Yi,backendName:"cpu",kernelFunc:AK},FK=ot(su,e=>Math.sinh(e)),DK={kernelName:su,backendName:"cpu",kernelFunc:FK},RK=11920928955078125e-23,ck=Math.log(RK)+2,MK=ot(ou,e=>{let t=e>-ck,n=e<ck,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),PK={kernelName:ou,backendName:"cpu",kernelFunc:MK};function OK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=qT.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=E.getReshaped(u.shape,s,o,!1),d=E.getPermuted(p.length,s.length,!1),c=E.getReshapedPermuted(u.shape,s,o,!1),h=Nt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=ha({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Nt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var LK={kernelName:lu,backendName:"cpu",kernelFunc:OK};function zK(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=vT(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var BK={kernelName:ic,backendName:"cpu",kernelFunc:zK};function WK(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=wT(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var UK={kernelName:pu,backendName:"cpu",kernelFunc:WK};function VK(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=Ww(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var GK={kernelName:oc,backendName:"cpu",kernelFunc:VK};function HK(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=Ww(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var jK={kernelName:lc,backendName:"cpu",kernelFunc:HK};function qK(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=E.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=KT(m,f,o,c,p,u,l,d,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var KK={kernelName:xm,backendName:"cpu",kernelFunc:qK};function XK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=E.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=ri({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var YK={kernelName:uu,backendName:"cpu",kernelFunc:XK},JK={kernelName:uc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},ZK=ot(cs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),QK={kernelName:cs,backendName:"cpu",kernelFunc:ZK};function eX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),w;if(f)w=Nt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){k.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),C=ri({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});w=Nt({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=IT(h,T,v,b);w=n.makeTensorInfo(m,C.dtype,C.values)}return w}var tX={kernelName:cu,backendName:"cpu",kernelFunc:eX};function nX(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=ST(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var aX={kernelName:vm,backendName:"cpu",kernelFunc:nX};function rX(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=NT(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var sX={kernelName:wm,backendName:"cpu",kernelFunc:rX};function iX(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=TT(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var oX={kernelName:km,backendName:"cpu",kernelFunc:iX},lX=ot(ao,e=>Math.tan(e)),uX={kernelName:ao,backendName:"cpu",kernelFunc:lX},pX=ot(ro,e=>Math.tanh(e)),cX={kernelName:ro,backendName:"cpu",kernelFunc:pX};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=ET(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var hX={kernelName:ps,backendName:"cpu",kernelFunc:dX};function mX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=AT(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var fX={kernelName:du,backendName:"cpu",kernelFunc:mX};function gX(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=k.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],w=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(g));w.fill(l);let T=a.data.get(r.dataId).values,C=a.data.get(s.dataId).values;for(let _=0;_<p;++_){let $=s.shape[0]===1?C:C.subarray(_*8,_*8+8);for(let P=0;P<m;++P)for(let F=0;F<f;++F)for(let S=0;S<h;++S){let M,V=$[6]*F+$[7]*P+1;if(V===0)continue;let j=($[0]*F+$[1]*P+$[2])/V,q=($[3]*F+$[4]*P+$[5])/V,K=dk(j,c,o),Q=dk(q,d,o);switch(i){case"nearest":M=kX(T,d,c,b,x,v,_,Q,K,S,l);break;case"bilinear":M=IX(T,d,c,b,x,v,_,Q,K,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ee=_*b+P*x+F*v+S;w[ee]=M}return a.makeTensorInfo(g,r.dtype,w)}return{dataId:a.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var yX={kernelName:hu,backendName:"cpu",kernelFunc:gX};function dk(e,t,n){switch(n){case"reflect":return bX(e,t);case"wrap":return xX(e,t);case"nearest":return wX(e,t);case"constant":default:return vX(e,t)}}function bX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function xX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function vX(e,t){return e}function wX(e,t){return k.clamp(0,e,t-1)}function Ip(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function kX(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Ip(e,t,n,a,r,s,i,d,c,u,p)}function IX(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Ip(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Ip(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Ip(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Ip(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function SX(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=$T(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var NX={kernelName:Im,backendName:"cpu",kernelFunc:SX};function TX(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=ri({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=Nt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var CX={kernelName:mu,backendName:"cpu",kernelFunc:TX};function EX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=Lh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=QN({inputs:{a:g,b:c},backend:n}),b=is({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=_f({inputs:{a:b,b:r},backend:n}),v=Bc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),p.push(g),p.push(y),p.push(b),p.push(x),p.push(v)}let h=jT({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var _X={kernelName:pc,backendName:"cpu",kernelFunc:EX},AX=[Oj,AH,zj,Wj,PH,Vj,Hj,qj,Xj,Jj,Qj,t5,a5,i5,l5,c5,h5,f5,y5,Mj,x5,w5,I5,N5,RH,LH,C5,$H,_5,$5,F5,R5,P5,L5,B5,U5,G5,j5,K5,Y5,Z5,eq,tq,aq,sq,oq,lq,uq,pq,hq,Ej,fq,zH,Iq,BH,Sq,UH,Aq,$q,Dq,GH,Pq,Lq,Bq,Uq,Gq,jH,KH,FH,jq,A5,Kq,Yq,Zq,_j,YH,ZH,e8,ej,n8,s8,o8,p8,d8,m8,f8,nj,y8,x8,w8,I8,N8,C8,_8,rj,$8,R8,L8,ij,lj,W8,G8,q8,pj,X8,J8,Z8,qT,nK,$j,hj,rK,DH,Mb,iK,Fj,Dj,Rj,lK,pK,dK,mK,gK,yK,xK,fj,wK,IK,CK,yj,_K,$K,DK,bj,P8,PK,LK,BK,UK,GK,jK,KK,YK,wj,JK,Ij,QK,tX,aX,sX,oX,Cj,cq,uX,cX,hX,fX,yX,cj,NX,CX,_X,Y8];for(let e of AX)cc(e);var XT={};Re(XT,{assertNotComplex:()=>Au,bindCanvasToFramebuffer:()=>UX,bindColorTextureToFramebuffer:()=>lh,bindTextureToProgramUniformSampler:()=>cC,bindTextureUnit:()=>lC,bindVertexBufferToProgramAttribute:()=>Ob,callAndCheck:()=>ge,canBeRepresented:()=>JT,createFragmentShader:()=>eC,createFramebuffer:()=>oC,createProgram:()=>tC,createStaticIndexBuffer:()=>rC,createStaticVertexBuffer:()=>aC,createTexture:()=>sC,createVertexShader:()=>QT,getBatchDim:()=>si,getExtensionOrThrow:()=>Sp,getFramebufferErrorMessage:()=>dC,getMaxTexturesInShader:()=>gC,getNumChannels:()=>BX,getProgramUniformLocation:()=>pC,getProgramUniformLocationOrThrow:()=>uC,getRowsCols:()=>ii,getShapeAs3D:()=>uh,getTextureShapeFromLogicalShape:()=>mC,getWebGLDisjointQueryTimerVersion:()=>yC,getWebGLErrorMessage:()=>ZT,getWebGLMaxTextureSize:()=>fC,hasExtension:()=>ca,isCapableOfRenderingToFloatTexture:()=>bC,isDownloadFloatTextureEnabled:()=>xC,isReshapeFree:()=>Gp,isWebGLFenceEnabled:()=>vC,isWebGLVersionEnabled:()=>zb,linkProgram:()=>nC,resetMaxTextureSize:()=>VX,resetMaxTexturesInShader:()=>GX,unbindColorTextureFromFramebuffer:()=>Lb,unbindTextureUnit:()=>WX,validateFramebuffer:()=>Np,validateProgram:()=>oh,validateTextureSize:()=>iC});var Ls={},Ky={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function YT(e,t){Ls[e]=t}function Ka(e,t){if(!(e in Ls)||t!=null){let a=FX(e,t);if(a!==null)Ls[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Ls[e];return n==null||n.isContextLost()?(delete Ls[e],Ka(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Ls[e])}function $X(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function FX(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?$X(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Ls[e]},!1),e===1?n.getContext("webgl",Ky)||n.getContext("experimental-webgl",Ky):n.getContext("webgl2",Ky)}var Vp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Vp||(Vp={}));var pa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pa||(pa={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function Wc(e,t){return[t,e]}function DX(e,t){return e*t}function eh(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function _u(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function RX(e,t){let[n,a]=_u(e,t);return n*a*4}function qw(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return Y().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ge(e,t){let n=t();return Y().getBool("DEBUG")&&MX(e),n}function MX(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+ZT(e,t))}var PX=596e-10,OX=65504;function JT(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||PX<Math.abs(e)&&Math.abs(e)<OX)}function ZT(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Sp(e,t){return Ar(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function QT(e,t){let n=Ar(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function eC(e,t){let n=Ar(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw zX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var LX=/ERROR: [0-9]+:([0-9]+):/g;function zX(e,t){let n=LX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((d,c)=>k.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
|
|
`))}function tC(e){return Ar(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function nC(e,t){if(ge(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function oh(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function aC(e,t){let n=Ar(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function rC(e,t){let n=Ar(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function BX(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function sC(e){return Ar(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function iC(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function oC(e){return Ar(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ob(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ge(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function lC(e,t,n){hC(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function WX(e,t){hC(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uC(e,t,n){return Ar(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function pC(e,t,n){return e.getUniformLocation(t,n)}function cC(e,t,n,a){ge(e,()=>lC(e,t,a)),ge(e,()=>e.uniform1i(n,a))}function UX(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function lh(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Lb(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Np(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+dC(e,t))}function dC(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Ar(e,t,n){let a=ge(e,()=>t());if(a==null)throw new Error(n);return a}function hC(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function si(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ii(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function uh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[si(e),...ii(e)]),t}function mC(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=si(e),s=2,i=2;return e.length&&([s,i]=ii(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function th(e){return e%2===0}function Gp(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||th(n)&&th(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&th(e[0])&&th(t[0])}var ph,ch;function fC(e){if(ph==null){let t=Ka(e);ph=t.getParameter(t.MAX_TEXTURE_SIZE)}return ph}function VX(){ph=null}function GX(){ch=null}function gC(e){if(ch==null){let t=Ka(e);ch=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ch)}function yC(e){if(e===0)return 0;let t,n=Ka(e);return ca(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ca(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ca(e,t){return e.getExtension(t)!=null}function zb(e){try{if(Ka(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function bC(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ca(t,"OES_texture_float"))return!1}else if(!ca(t,"EXT_color_buffer_float"))return!1;return Bb(t)}function xC(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ca(t,"OES_texture_float")||!ca(t,"WEBGL_color_buffer_float"))return!1}else{if(ca(t,"EXT_color_buffer_float"))return Bb(t);let n="EXT_color_buffer_half_float";if(ca(t,n)){let a=t.getExtension(n);return HX(t,a)}return!1}return Bb(t)}function Bb(e){let t=qw(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function HX(e,t){let n=qw(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function vC(e){return e!==2?!1:Ka(e).fenceSync!=null}function Au(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=Y();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>zb(2)?2:zb(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>fC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>gC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:yC(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!mc.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>bC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>xC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>vC(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>mc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function En(){let e,t,n,a,r,s,i,o,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function ho(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Af(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function jX(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function qX(e,t,n="index"){let a=e.map((s,i)=>i),r=jX(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function Kw(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function Xw(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var wC=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:kC}=E;function KX(e,t,n){let a=[];if(e.forEach(c=>{let h=k.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Yw(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
|
|
`),s=e.map(c=>XX(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=En(),l=ZX(o),u,p,d=t7(o);return t.isPacked?(u=YX(t.logicalShape,i,n.enableShapeUniforms),p=e7(o)):(u=JX(t.logicalShape,i,n.enableShapeUniforms),p=QX(o)),n.packedInputs&&(d+=s7),[d,l,p,r,u,s,n.userCode].join(`
|
|
`)}function $u(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return y7(e,t);case 1:return x7(e,t);case 2:return w7(e,t);case 3:return I7(e,t);case 4:return N7(e,t);case 5:return T7(e);case 6:return C7(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function IC(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return g7(e);case 1:return b7(e,t);case 2:return v7(e,t);case 3:return k7(e,t);default:return S7(e,t)}}function XX(e,t,n=!1,a){let r="";n?r+=IC(e,a):r+=$u(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=E7(e,t):r+=_7(e,t)),r}function YX(e,t,n){switch(e.length){case 0:return SC();case 1:return i7(e,t,n);case 2:return m7(e,t,n);case 3:return l7(e,t,n);default:return p7(e,t,n)}}function JX(e,t,n){switch(e.length){case 0:return SC();case 1:return o7(e,t,n);case 2:return f7(e,t,n);case 3:return u7(e,t,n);case 4:return c7(e,t,n);case 5:return d7(e,t);case 6:return h7(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function ZX(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function QX(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function e7(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function t7(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${n7}
|
|
${a7}
|
|
${r7}
|
|
`}var n7=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,a7=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,r7=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,s7=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function SC(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function i7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${a[1]}.0);
|
|
}
|
|
`:a[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${a[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
|
|
}
|
|
`}function o7(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function l7(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function u7(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Af(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let a=ho(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function p7(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
|
|
int b${u} = index / ${i};
|
|
index -= b${u} * ${i};
|
|
`+o,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function c7(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Af(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let a=ho(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${a}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function d7(e,t){let n=ho(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function h7(e,t){let n=ho(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function m7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${a[0]}, ${a[1]}));
|
|
|
|
int index = resTexRC.x * ${a[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function f7(e,t,n){return k.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function mo(e){return`offset${e}`}function g7(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=En();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function y7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=mo(n);if(t)return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,l]=e.shapeInfo.texShape;return`
|
|
float ${a}() {
|
|
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function b7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=En();if(t)return`
|
|
vec4 ${a}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${a}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function x7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int index) {
|
|
${Fu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
|
|
float ${a}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=mo(n);return i===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function v7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=En();if(s!=null&&k.arraysEqual(n,s))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${a}, uv);
|
|
}
|
|
`}function w7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&k.arraysEqual(n,s)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let c=s[0],h=s[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=k.squeezeShape(n),l=i;if(l.length<n.length){let c=Du(e,l),h=["row","col"];return`
|
|
${$u(c,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Ru(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Fu(e)}
|
|
}
|
|
`;let u=s[0],p=s[1],d=mo(a);return p===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${p}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function k7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=Du(e,c),f=["b","row","col"];return`
|
|
${IC(m,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Ru(f,h)});
|
|
}
|
|
`}let o=En();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${p}, b, row, col);
|
|
return ${o.texture2D}(${a}, uv);
|
|
}
|
|
`}function I7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=k.squeezeShape(n),u=o;if(u.length<n.length){let f=Du(e,u),g=["row","col","depth"];return`
|
|
${$u(f,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Ru(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${Fu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${a}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(c===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let m=mo(a);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${a}Shape[1] * ${a}Shape[2];
|
|
int stride1 = ${a}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${c}, index);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function S7(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=En();if(t)return`
|
|
vec4 ${a}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${m};
|
|
int texR = index / ${p};
|
|
int texC = index - texR * ${p};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function N7(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(n);if(l.length<n.length){let b=Du(e,l),x=["row","col","depth","depth2"];return`
|
|
${$u(b,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Ru(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, 1)));
|
|
${Fu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${m}
|
|
${f}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}TexShape[1], ${a}TexShape[0]);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`;let y=mo(a);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${m}
|
|
${f}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${y});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index + ${y});
|
|
return sampleTexture(${a}, uv);
|
|
}
|
|
`}function T7(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Du(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${$u(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${Ru(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Fu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&p==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=mo(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function C7(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let g=Du(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${$u(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${Ru(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${p}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Fu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&d==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=mo(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${p} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Fu(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function E7(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=kC(e.shapeInfo.logicalShape,t.logicalShape),l=ht(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function _7(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ht(l),p=kC(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function ht(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Yw(e,t,n){let{newShape:a,keptDims:r}=k.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!k.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function Du(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ru(e,t){return t.map(n=>e[n]).join(", ")}function A7(e,t,n,a){let r=n.map((v,w)=>{let T={logicalShape:v.shape,texShape:v.isUniform?null:v.texData.texShape,isUniform:v.isUniform,isPacked:v.isUniform?!1:v.texData.isPacked,flatOffset:null};return v.texData!=null&&v.texData.slice!=null&&v.texData.slice.flatOffset>0&&(T.flatOffset=v.texData.slice.flatOffset),{name:t.variableNames[w],shapeInfo:T}}),s=r.map(v=>v.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=KX(r,i,t),l=eC(e.gl,o),u=e.createProgram(l),p=null,d=e.getUniformLocation(u,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(u,"INFINITY",!1));let c=!1,h={},m={},f={};for(let v=0;v<t.variableNames.length;v++){let w=t.variableNames[v];h[w]=e.getUniformLocation(u,w,c),h[`offset${w}`]=e.getUniformLocation(u,`offset${w}`,c),t.enableShapeUniforms&&(m[`${w}Shape`]=e.getUniformLocation(u,`${w}Shape`,c),f[`${w}TexShape`]=e.getUniformLocation(u,`${w}TexShape`,c))}let g,y,b;t.enableShapeUniforms&&(g=e.getUniformLocation(u,"outShape",c),b=e.getUniformLocation(u,"outShapeStrides",c),y=e.getUniformLocation(u,"outTexShape",c));let x=[];return t.customUniforms&&t.customUniforms.forEach((v,w)=>{x[w]=e.getUniformLocation(u,v.name,c)}),{program:t,fragmentShader:l,source:o,webGLProgram:u,uniformLocations:h,customUniformLocations:x,inShapeInfos:s,outShapeInfo:i,infLoc:p,nanLoc:d,inShapesLocations:m,inTexShapesLocations:f,outShapeLocation:g,outShapeStridesLocation:b,outTexShapeLocation:y}}function hk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function $7(e,t,n,a,r){t.program.enableShapeUniforms||(hk(t.inShapeInfos,n),hk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=Yw(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(k.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=k.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function F7(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=Yw(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${w[0]>1}_${w[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let w=k.computeStrides(p);m=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&k.arraysEqual(i.shape,l),y=k.sizeFromShape(i.shape)===1,b=E.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&k.arraysEqual(l,n.texData.texShape),v=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${v}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,s}function Un(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var D7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Vp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Af(["r","c","d"],e):ho(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},R7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Vp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Af(["r","c","d"],e):ho(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},M7=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pa.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
|
|
${wC}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},P7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pa.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
|
|
${wC}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},O7=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?Xw():Kw(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${a}, 0., 0., 0.);
|
|
}
|
|
`}},L7=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${s};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?Xw():Kw(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${a}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},NC={};Re(NC,{bindVertexProgramAttributeStreams:()=>RC,createBufferFromOutputTexture:()=>OC,createFloat16MatrixTexture:()=>AC,createFloat16PackedMatrixTexture:()=>DC,createFloat32MatrixTexture:()=>_C,createIndexBuffer:()=>EC,createPackedMatrixTexture:()=>FC,createUnsignedBytesMatrixTexture:()=>$C,createVertexBuffer:()=>CC,createVertexShader:()=>TC,downloadByteEncodedFloatMatrixFromOutputTexture:()=>zC,downloadFloat32MatrixFromBuffer:()=>LC,downloadMatrixFromPackedOutputTexture:()=>WC,downloadPackedMatrixFromBuffer:()=>BC,getInternalFormatForFloat16MatrixTexture:()=>Zw,getInternalFormatForFloat16PackedMatrixTexture:()=>t0,getInternalFormatForFloat32MatrixTexture:()=>Jw,getInternalFormatForPackedMatrixTexture:()=>e0,getInternalFormatForUnsignedBytesMatrixTexture:()=>Qw,uploadDenseMatrixToTexture:()=>MC,uploadPixelDataToTexture:()=>PC});function TC(e){let t=En(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return QT(e,n)}function CC(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return aC(e,t)}function EC(e){let t=new Uint16Array([0,1,2,2,1,3]);return rC(e,t)}function Uc(e,t,n,a,r,s){iC(t,n);let i=sC(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Y().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ge(e,()=>e.texStorage2D(o,1,a,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function Jw(e){return e.internalFormatFloat}function _C(e,t,n,a){let[r,s]=Wc(t,n);return Uc(e,r,s,Jw(a),a.textureFormatFloat,e.FLOAT)}function Zw(e){return e.internalFormatHalfFloat}function AC(e,t,n,a){let[r,s]=Wc(t,n);return Uc(e,r,s,Zw(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function Qw(e){return e.downloadTextureFormat}function $C(e,t,n,a){let[r,s]=Wc(t,n);return Uc(e,r,s,Qw(a),e.RGBA,e.UNSIGNED_BYTE)}function e0(e){return e.internalFormatPackedFloat}function FC(e,t,n,a){let[r,s]=_u(t,n);return Uc(e,r,s,e0(a),e.RGBA,e.FLOAT)}function t0(e){return e.internalFormatPackedHalfFloat}function DC(e,t,n,a){let[r,s]=_u(t,n);return Uc(e,r,s,t0(a),e.RGBA,a.textureTypeHalfFloat)}function RC(e,t,n){return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ob(e,t,"clipSpacePos",n,3,20,0)&&Ob(e,t,"uv",n,2,20,12)}function MC(e,t,n,a,r,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Y().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function PC(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Y().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Y().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function OC(e,t,n,a){let r=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function LC(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function zC(e,t,n,a){let[r,s]=Wc(t,n),i=4,o=new Uint8Array(DX(t*n,i));return ge(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function BC(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(RX(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function WC(e,t,n){let a=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var dh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,YT(t,e)):this.gl=Ka(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Sp(this.gl,r),ca(this.gl,s))this.textureHalfFloatExtension=Sp(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ca(this.gl,a))this.colorBufferHalfFloatExtension=Sp(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ca(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ca(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=CC(this.gl),this.indexBuffer=EC(this.gl),this.framebuffer=oC(this.gl),this.textureConfig=qw(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),_C(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),AC(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),$C(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),PC(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),MC(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),DC(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),FC(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Lb(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>zC(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return BC(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return LC(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=OC(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>WC(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=TC(t));let n=tC(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),nC(t,n),this.debug&&oh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=RC(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&oh(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?uC(this.gl,e,t):pC(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),cC(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=_u(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&oh(this.gl,this.program),Np(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Sp(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=z7(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),lh(this.gl,e,this.framebuffer),this.debug&&Np(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(lh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Np(this.gl)):Lb(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;lh(a,e,this.framebuffer),this.debug&&Np(a),this.outputTexture=e,ge(a,()=>a.viewport(0,0,t,n)),ge(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function z7(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:B7,bincountImpl:UC,bincountReduceImpl:W7,ceilImpl:U7,concatImpl:V7,equalImpl:G7,expImpl:H7,expm1Impl:j7,floorImpl:q7,gatherNdImpl:K7,gatherV2Impl:X7,greaterImpl:Y7,greaterEqualImpl:J7,lessImpl:Z7,lessEqualImpl:Q7,linSpaceImpl:eY,logImpl:tY,maxImpl:nY,maximumImpl:aY,minimumImpl:rY,multiplyImpl:sY,negImpl:iY,notEqualImpl:oY,prodImpl:lY,rangeImpl:uY,rsqrtImpl:pY,sigmoidImpl:cY,simpleAbsImpl:VC,sliceImpl:dY,sparseFillEmptyRowsImpl:hY,sparseReshapeImpl:mY,sparseSegmentReductionImpl:GC,sqrtImpl:fY,stridedSliceImpl:gY,stringNGramsImpl:yY,stringSplitImpl:bY,stringToHashBucketFastImpl:xY,subImpl:vY,tileImpl:wY,topKImpl:kY,transposeImpl:n0,uniqueImpl:IY}=qN;function HC(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function In(e,t){return t===1?[e]:HC(e,t)}function SY(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var NY=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Un(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=In("rc",this.rank),n=ht(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${s}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${a};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},jC=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${TY(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?Xw():Kw(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function TY(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?qX(["r","c","d"],"inputShape"):ho(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var CY=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=fk(t,n),r=gk(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=mk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===on.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===on.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===on.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=fk(n,a),s=gk(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=mk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function EY(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function mk(e,t,n,a,r){let s=_Y(t,a),i;if(r){let[l,u]=_u(e[0],e[1]);i=l*u}else{let[l,u]=Wc(e[0],e[1]);i=l*u}let o=EY(n,s);return i*o}function _Y(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return e0(t);case on.PACKED_2X2_FLOAT16:return t0(t);case on.UNPACKED_FLOAT32:return Jw(t);case on.UNPACKED_FLOAT16:return Zw(t);case on.PACKED_4X1_UNSIGNED_BYTE:return Qw(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function AY(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function fk(e,t){if(e===pa.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===pa.RENDER||e==null)return AY(t);if(e===pa.DOWNLOAD||e===pa.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function gk(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ir=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ca="if (isnan(x)) return x;",$Y="return x;",yk="return abs(x);",FY="return (x >= 0.0) ? x : (exp(x) - 1.0);",DY=Ca+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,RY=Ca+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Go="return x;",MY="return 1.0 / (1.0 + exp(-1.0 * x));",PY="return x;",OY=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,LY=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,zY=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,BY="return 1.0 / (1.0 + exp(-1.0 * x));",Ws=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},WY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length);let t=e.length,n=In("rc",t),a=ht(t),r=SY(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},UY=mr.whereImpl,VY=1e-7,GY=1e-4,Xy={};function HY(e){return e in Xy||(Xy[e]={}),Xy[e]}var jY=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),qY=600;function KY(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*qY/1024/1024}var $f=class extends qp{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof dh)t=e;else{let n=Ka(Y().getNumber("WEBGL_VERSION"),e);t=new dh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ka(Y().getNumber("WEBGL_VERSION"));t=new dh(n),this.binaryCache=HY(Y().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new CY(this.gpgpu),this.numMBBeforeWarning=KY(),this.texData=new Gh(this,ar())}nextDataId(){return $f.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:pa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:pa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new Ws(i,Go):d=new Ir(i,Go);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=E.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Ws(a,Go):h=new Ir(a,Go);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(Y().getBool("DEBUG")&&!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...eh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=E.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ar().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new Ws(r,Go):c=new Ir(r,Go);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=ar().makeTensorFromDataId(u.dataId,u.shape,u.dtype),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!JT(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...eh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=Y().getBool("WEBGL_PACK")&&a===!0,i=s?uh(t):t,o=s?new P7(i):new M7(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=jY){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return UY(e.shape,t)}packedUnaryOp(e,t,n){let a=new Ws(e.shape,t),r=this.compileAndRun(a,[e],n);return ar().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=VC(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,yk,e.dtype);let t=new Ir(e.shape,yk),n=this.compileAndRun(t,[e]);return ar().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return ar().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new WY(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new NY(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[si(e.shape),...ii(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[si(t),...ii(t)],s=new jC(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=k.sizeFromShape(r),c=t[0]*t[1]*4;k.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=uh(r),o;a?o=new R7(i):o=new D7(i);let l=!0,u=[t!=null?t:eh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Vp.DENSE){let g=s!=null?s:eh(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),k.sizeFromShape(i.shape)===0)return o.values=k.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&k.sizeFromShape(g.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Gp(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=F7(e,u,p),c=this.getAndSaveBinary(d,()=>A7(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),$7(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=Y().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=k.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=O(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?VY:GY}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let p=t.texShape;if(p==null&&(p=mC(n,o),t.texShape=p),r!=null){let d=uh(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=_u(p[0],p[1])),o?c=new L7(d,f):c=new O7(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=pa.PIXELS:b.usage=pa.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],v=!0,w=this.runWebGLProgram(c,[y],a,x,v),T=this.texData.get(w.dataId);t.texture=T.texture,t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,this.disposeIntermediateTensorInfo(y),this.texData.delete(w.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=XY(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};$f.nextDataId=0;function XY(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var YY="3.14.0";function qC(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}mc.isBrowser()&&Cm("webgl",()=>new $f,2);var JY={forceHalfFloat:qC},KC=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,dl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Un(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Ff=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Vc=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Un(r);let s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ht(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?s+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=In("coords",r);this.enableShapeUniforms?s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ta(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var ZY={kernelName:_i,backendName:"webgl",kernelFunc:ta};function bs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=ta({inputs:{x:a},backend:n}),l=ta({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var QY={kernelName:Jh,backendName:"webgl",kernelFunc:bs},XC="return (a < 0.) ? b * a : a;",YC=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function e9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vc(YC,r.shape,i.shape):new dl(XC,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var t9={kernelName:Ai,backendName:"webgl",kernelFunc:e9},JC="return (a < 0.) ? b * a : a;",ZC=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function n9(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vc(ZC,a.shape,r.shape):new dl(JC,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var a9={kernelName:Vi,backendName:"webgl",kernelFunc:n9},Mu="if (isnan(x)) return x;",r9=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,s9=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new Ws(i.shape,t):p=new Ir(i.shape,e),o.runWebGLProgram(p,[i],l)}}function un({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,w]=x,T={dataId:v.dataId,dtype:v.dtype,shape:l.shape},C={dataId:w.dataId,dtype:w.dtype,shape:u.shape},_=new dl(e,l.shape,u.shape);return p.runWebGLProgram(_,[T,C],Ia(v.dtype,w.dtype))}),b=bs({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||Ia(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(m):m,y=l.dtype==="string"?E.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),v=p.makeTensorInfo(x,d),w=p.texData.get(v.dataId);return w.values=b,v}let c=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Vc(t,l.shape,u.shape,n):h=new dl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function Df(e,t=!1){if(e==="linear")return t?PY:$Y;if(e==="relu")return t?LY:DY;if(e==="elu")return t?OY:FY;if(e==="relu6")return t?zY:RY;if(e==="prelu")return t?ZC:JC;if(e==="leakyrelu")return t?YC:XC;if(e==="sigmoid")return t?BY:MY;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var QC=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Un(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${b};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},bk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},xk=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},vk="return a * b;";function a0(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=E.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new xk(bk.REAL,a.shape,r.shape),p=new xk(bk.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=bs({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=sY(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Vc(vk,a.shape,r.shape):i=new dl(vk,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var i9={kernelName:zi,backendName:"webgl",kernelFunc:a0};function o9(e,t,n){let a=[si(e.shape),...ii(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[si(t),...ii(t)],i=new jC(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function me(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!Gp(r.shape,l)&&!(p.texture!==null&&Gp(p.shape,l))?o9(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var l9={kernelName:eu,backendName:"webgl",kernelFunc:me},wk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${k.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},u9=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function p9(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function fo(e,t,n,a){let r=p9(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new wk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new wk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new u9({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var c9=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ht(this.rank),r=d9(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function d9(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var h9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ht(this.rank),r=HC("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Rf(e,t,n){let a=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new h9(e.shape,t):new c9(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function m9(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=E.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Rf(e,l,a),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=E.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=E.expandShapeToKeepDim(d,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,g=me({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),y=Nm(e.dtype),b=fo(g,y,"sum",a),x=me({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(p),x}function Mf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return m9(r,s,i,n)}var f9={kernelName:Qi,backendName:"webgl",kernelFunc:Mf};function Sn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=n0(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Rf(r,s,i);return u}var g9={kernelName:so,backendName:"webgl",kernelFunc:Sn},eE=1e3;function Bh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=k.sizeFromShape(f),b=k.sizeFromShape(g),x=yu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);k.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let v=n?[y,d,h]:[y,h,d],w=a?[b,m,c]:[b,c,m],T=me({inputs:{x:e},backend:r,attrs:{shape:v}}),C=me({inputs:{x:t},backend:r,attrs:{shape:w}}),_=[T,C],$=Math.max(y,b),P=n?T.shape[1]:T.shape[2],F=s!=null,S=i!=null,M=l==="leakyrelu",V=l!=null?Df(l,!0):null,j=F||S||M||V!=null,q;if((h===1||m===1)&&P>eE&&j===!1){let Q=T,ee=C;n&&(Q=Sn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),_.push(Q)),a&&(ee=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),_.push(ee));let re=m!==1,Z=m===1,ie=Q;re&&(ie=me({inputs:{x:Q},backend:r,attrs:{shape:[$,P,1]}}),_.push(ie));let ae=m===1?2:1,le=ee;Z&&(le=me({inputs:{x:ee},backend:r,attrs:{shape:[$,1,P]}}),_.push(le));let ue=a0({inputs:{a:ie,b:le},backend:r});q=Mf({inputs:{x:ue},backend:r,attrs:{axis:ae,keepDims:!0}}),_.push(ue)}else{let Q=Ia(e.dtype,t.dtype),ee=new QC(v,w,[$,h,m],n,a,F,V,S,M),re=[T,C];if(s!=null&&re.push(s),S&&re.push(i),M){let Z=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));re.push(Z),_.push(Z)}q=r.runWebGLProgram(ee,re,Q)}let K=me({inputs:{x:q},backend:r,attrs:{shape:x}});_.push(q);for(let Q of _)r.disposeIntermediateTensorInfo(Q);return K}function y9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return Bh({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var b9={kernelName:js,backendName:"webgl",kernelFunc:y9},kk="return abs(x);";function x9(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=VC(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ws(a.shape,kk):r=new Ir(a.shape,kk),n.runWebGLProgram(r,[a],a.dtype)}var v9={kernelName:fl,backendName:"webgl",kernelFunc:x9},w9=Ca+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,k9=Je({opSnippet:w9}),I9={kernelName:gl,backendName:"webgl",kernelFunc:k9},S9=Ca+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,N9=Je({opSnippet:S9}),T9={kernelName:yl,backendName:"webgl",kernelFunc:N9},Ik="return a + b;",C9=un({opSnippet:Ik,packedOpSnippet:Ik,supportsComplex:!0,cpuKernelImpl:B7}),E9={kernelName:ls,backendName:"webgl",kernelFunc:C9},_9=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},A9=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function hh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return ta({inputs:{x:a[0]},backend:n});if(a.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=hh({inputs:a.slice(0,o),backend:n}),u=hh({inputs:a.slice(o),backend:n});return hh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>Ia(o,l)),s=a.map(o=>o.shape),i=Y().getBool("WEBGL_PACK")?new A9(a[0].shape,s):new _9(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var $9={kernelName:pi,backendName:"webgl",kernelFunc:hh};function F9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=E.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=E.getInnerMostAxes(u.length,o)),E.assertAxesAreInnerMostDims("all",u,o);let[c,h]=E.computeOutAndReduceShapes(d.shape,u),m=k.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=fo(f,f.dtype,"all",n),y;if(i){let b=E.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var D9={kernelName:bl,backendName:"webgl",kernelFunc:F9};function R9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=E.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=E.getInnerMostAxes(u.length,o)),E.assertAxesAreInnerMostDims("any",u,o);let[c,h]=E.computeOutAndReduceShapes(d.shape,u),m=k.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=fo(f,f.dtype,"any",n),y;if(i){let b=E.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var M9={kernelName:xl,backendName:"webgl",kernelFunc:R9},P9=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},O9=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ht(o),u=In("coords",o),p,d;if(s===1){d=o+1;let C=ht(d);p=`
|
|
${C} sourceLocR = ${C}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${C} sourceLocG = ${C}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${C} sourceLocA = ${C}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${C} sourceLocB = ${C}(${u.join()}, 0);
|
|
--${u[o-2]};`}else d=o,p=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=In("sourceLocR",d-1).concat("inIdx.r"),g=In("sourceLocG",d-1).concat("inIdx.g"),y=In("sourceLocB",d-1).concat("inIdx.b"),b=In("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()})));`,w=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function tE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new P9(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=tE(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function nE(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=E.computeOptimalWindowSize(s),o=new O9(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=nE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function aE(e,t,n,a){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=E.computeOutAndReduceShapes(l.shape,r),d=k.sizeFromShape(p),c=me({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=tE(e,c,a);s.push(h);let m=me({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return nE(e,t,a)}function L9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=aE(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var z9={kernelName:ci,backendName:"webgl",kernelFunc:L9};function B9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=E.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=aE(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var W9={kernelName:Kp,backendName:"webgl",kernelFunc:B9},U9=Ca+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,V9=Je({opSnippet:U9}),G9={kernelName:vl,backendName:"webgl",kernelFunc:V9},H9=Ca+"return log(x + sqrt(x * x + 1.0));",j9=Je({opSnippet:H9}),q9={kernelName:wl,backendName:"webgl",kernelFunc:j9},K9=Ca+`
|
|
return atan(x);
|
|
`,X9=Je({opSnippet:K9}),Y9={kernelName:kl,backendName:"webgl",kernelFunc:X9},J9=r9+`
|
|
return atan(a, b);
|
|
`,Z9=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+s9+`
|
|
return result;
|
|
`,Q9=un({opSnippet:J9,packedOpSnippet:Z9}),eJ={kernelName:Sl,backendName:"webgl",kernelFunc:Q9},tJ=Ca+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,nJ=Je({opSnippet:tJ}),aJ={kernelName:Il,backendName:"webgl",kernelFunc:nJ},Hp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,T=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},r0=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,_=`
|
|
if (${b}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${_}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${_}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${_}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${_}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function rJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Au(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=E.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))return ta({inputs:{x:r},backend:n});let d=new Hp(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var sJ={kernelName:di,backendName:"webgl",kernelFunc:rJ};function iJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=E.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new r0(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var oJ={kernelName:Xp,backendName:"webgl",kernelFunc:iJ},lJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${p});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},uJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function pJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=E.computePool3DInfo(i.shape,o,l,d,u,p),h=new uJ(c);return n.runWebGLProgram(h,[r],i.dtype)}var cJ={kernelName:Kh,backendName:"webgl",kernelFunc:pJ};function dJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Au([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=E.computePool2DInfo(i.shape,o,l,1,u),d=new lJ(p);return n.runWebGLProgram(d,[r],i.dtype)}var hJ={kernelName:qh,backendName:"webgl",kernelFunc:dJ};function mJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Bh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var fJ={kernelName:hi,backendName:"webgl",kernelFunc:mJ},gJ=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},yJ=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},bJ=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=Y().getBool("WEBGL_PACK_NORMALIZATION")?new yJ(a.shape,r.shape,s.shape,p,d,l):new gJ(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},xJ={kernelName:Ci,backendName:"webgl",kernelFunc:bJ},vJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ht(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=wJ(this.rank),a,r=e.map((s,i)=>`sourceLoc.${Wb[i]} = start[${i}] + coords.${Wb[i]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Wb=["x","y","z","w","u","v"];function wJ(e){if(e===1)return"sourceLoc";if(e<=6)return Wb.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var kJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ht(this.rank),n=In("coords",this.rank),a=In("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function IJ(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=qt.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Pu(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=qt.parseSliceParams(r,s,i);if(qt.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=dY(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=qt.isSliceContinous(r.shape,o,l);if(u||!p){let d=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kJ(l):new vJ(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),IJ(r,o,l,n)}var SJ={kernelName:ru,backendName:"webgl",kernelFunc:Pu},NJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=E.getReshaped(r.shape,s,o),u=E.getPermuted(l.length,s.length),p=E.getReshapedPermuted(r.shape,s,o),d=E.getSliceBeginCoords(i,s.length),c=E.getSliceSize(p,i,s.length),h=[],m=me({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=me({inputs:{x:f},backend:n,attrs:{shape:p}}),y=Pu({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},TJ={kernelName:Nl,backendName:"webgl",kernelFunc:NJ};function CJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=UC(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var EJ={kernelName:Xh,backendName:"webgl",kernelFunc:CJ};function _J(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=E.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var AJ={kernelName:Yh,backendName:"webgl",kernelFunc:_J},$J="return float(a != b);",rE=un({opSnippet:$J,cpuKernelImpl:oY,dtype:"bool"}),FJ={kernelName:jl,backendName:"webgl",kernelFunc:rE};function Gc(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ta({inputs:{x:r.complexTensorInfos.real},backend:n})}var DJ={kernelName:gm,backendName:"webgl",kernelFunc:Gc},RJ="return float(int(x));";function MJ(e,t){let n=new Ir(e.shape,RJ),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Ub(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return ta({inputs:{x:r},backend:n});let i=wt(r.shape),o=Ub({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=bs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Gc({inputs:{input:r},backend:n}),o=Ub({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=ta({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return MJ(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=rE({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var PJ={kernelName:mi,backendName:"webgl",kernelFunc:Ub},Sk="return ceil(x);",OJ=Je({opSnippet:Sk,packedOpSnippet:Sk,cpuKernelImpl:U7}),LJ={kernelName:fi,backendName:"webgl",kernelFunc:OJ},zJ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},BJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function WJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;Y().getBool("WEBGL_PACK_CLIP")?o=new BJ(r.shape):o=new zJ(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var UJ={kernelName:us,backendName:"webgl",kernelFunc:WJ},VJ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Nk(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function GJ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new VJ(a.shape),i=[Nk(a,r.complexTensorInfos.real),Nk(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var HJ={kernelName:Yp,backendName:"webgl",kernelFunc:GJ},jJ=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},qJ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ht(a),s=In("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${nh(i,l,f)}),
|
|
vec2(${nh(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];d+=`
|
|
return getChannel(
|
|
getT${c}(${nh(i,l,h)}),
|
|
vec2(${nh(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function nh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Pf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ta({inputs:{x:r.complexTensorInfos.imag},backend:n})}var KJ={kernelName:um,backendName:"webgl",kernelFunc:Pf};function Ko(e,t,n){let a=e[0].dtype;if(a==="complex64"){let p=e.map(f=>Gc({inputs:{input:f},backend:n})),d=e.map(f=>Pf({inputs:{input:f},backend:n})),c=Ko(p,t,n),h=Ko(d,t,n),m=bs({inputs:{real:c,imag:h},backend:n});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),d.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let p=e.map(y=>{let b=k.sizeFromShape(y.shape.slice(t));return me({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),d=p.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=E.computeOutShape(p.map(y=>y.shape),1),h=p[0].shape[0]===1,m=V7(d,c,a,h),f=E.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(f,a,m);return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let p=Math.floor(e.length/2),d=Ko(e.slice(0,p),t,n),c=Ko(e.slice(p),t,n),h=Ko([d,c],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new qJ(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,a)}let{tensors2D:s,outShape:i}=XJ(e,t,n),o=new jJ(s.map(p=>p.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(p=>n.disposeIntermediateTensorInfo(p));let u=me({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function XJ(e,t,n){let a=E.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>me({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function sE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=E.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return ta({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return E.assertParamsConsistent(l,s),Ko(o,s,n)}var YJ={kernelName:Tl,backendName:"webgl",kernelFunc:sE},iE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${b}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},JJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ZJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Un(this.outputShape.length);let{dataFormat:n}=t,a=En(),r=n==="channelsLast",s=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.y + ${p};
|
|
pos = rc.x + ${u};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${s}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+p}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${a.output} = result;
|
|
}
|
|
`}};function oE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(!((d===1||c===1)&&p>eE)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&k.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(Gp(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let w=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(w);let T=Bh({a:x,b:w,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);k.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,C.shape=n.outShape,g=ta({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],x=me({inputs:{x:e},backend:a,attrs:{shape:[1,b,n.inChannels]}}),v=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=Bh({a:x,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=me({inputs:{x:w},backend:a,attrs:{shape:n.outShape}}),y.push(x),y.push(v),y.push(w)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function lE({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[f,g],b=!0,x=!1,v=[],w=me({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=me({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});v.push(w),v.push(T);let C=new ZJ(y,n),_=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=a.runWebGLProgram(C,[w],"float32",_),P=me({inputs:{x:$},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push($),v.push(P);let F=r!=null,S=s!=null,M=o==="leakyrelu",V=o?Df(o,!0):null,j=new QC(P.shape,T.shape,[1,g,n.outChannels],b,x,F,V,S,M),q=[P,T];if(r&&q.push(r),S&&q.push(s),M){let re=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));q.push(re),v.push(re)}let K=a.runWebGLProgram(j,q,"float32"),Q=m?[1,c,d,n.outChannels]:[1,n.outChannels,c,d],ee=me({inputs:{x:K},backend:a,attrs:{shape:Q}});v.push(K);for(let re of v)a.disposeIntermediateTensorInfo(re);return ee}function QJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=E.convertConv2DDataFormat(l),c=E.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=oE({x:r,filter:s,convInfo:c,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=lE({x:r,filter:s,convInfo:c,backend:n});else{let f=new iE(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=me({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var eZ={kernelName:gi,backendName:"webgl",kernelFunc:QJ},tZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function sZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=E.convertConv2DDataFormat(l),c=E.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new tZ(c);return n.runWebGLProgram(h,[r,s],"float32")}var iZ={kernelName:Zh,backendName:"webgl",kernelFunc:sZ};function oZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=E.convertConv2DDataFormat(u),c=E.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new nZ(c);return n.runWebGLProgram(h,[r,s],"float32")}var lZ={kernelName:yi,backendName:"webgl",kernelFunc:oZ};function uZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=E.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new JJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var pZ={kernelName:Jp,backendName:"webgl",kernelFunc:uZ};function cZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=E.computeConv3DInfo(r.shape,l,i,1,o),p=new aZ(u);return n.runWebGLProgram(p,[r,s],"float32")}var dZ={kernelName:Qh,backendName:"webgl",kernelFunc:cZ};function hZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=E.computeConv3DInfo(l,s.shape,o,1,i),p=new rZ(u);return n.runWebGLProgram(p,[r,s],"float32")}var mZ={kernelName:em,backendName:"webgl",kernelFunc:hZ},fZ=Mu+`
|
|
return cos(x);
|
|
`,gZ=Je({opSnippet:fZ}),yZ={kernelName:bi,backendName:"webgl",kernelFunc:gZ},bZ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,xZ=Je({opSnippet:bZ}),vZ={kernelName:xi,backendName:"webgl",kernelFunc:xZ},wZ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${b});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},kZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new wZ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},IZ={kernelName:Cl,backendName:"webgl",kernelFunc:kZ},Tk=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${Ck(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ht(a)} coords = getOutputCoords();
|
|
int end = ${Ek(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Ek(a,"coords")} = idx;
|
|
val += getX(${Ck(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Ck(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Ek(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function SZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=E.getAxesPermutation([s],l),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=p.shape[d],h=ta({inputs:{x:p},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new Tk(p.shape,!1,o),g=[[m]],y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new Tk(p.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=E.getUndoAxesPermutation(u),f=Sn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}return h}var NZ={kernelName:vi,backendName:"webgl",kernelFunc:SZ};function TZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=UC(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=W7(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var CZ={kernelName:tm,backendName:"webgl",kernelFunc:TZ},EZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _Z(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new EZ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var AZ={kernelName:El,backendName:"webgl",kernelFunc:_Z},uE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Un(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${s}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},pE=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Un(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;c+=`
|
|
for (int r = 0; r < ${u}; r++) {
|
|
`;for(let g=0;g<p;g++)c+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;c+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,o===1){if(y<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?c+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:c+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):c+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<p)){let b=i%2===0?k.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(c+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):b===1?c+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:c+=`
|
|
xCOffset = xC + ${b};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<p&&(i%2===1?(c+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<p&&(c+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(c+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<p&&(c+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<p&&(c+=`
|
|
wTexel = getW(r, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<p&&(c+=`
|
|
wTexel = getW(r, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}c+=`
|
|
}
|
|
`,c+=`
|
|
}
|
|
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${c}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${f}
|
|
${m}
|
|
setOutput(result);
|
|
}
|
|
`}};function $Z(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),k.assert(E.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=E.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new pE(d):c=new uE(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var FZ={kernelName:wi,backendName:"webgl",kernelFunc:$Z},DZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},RZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function MZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=E.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new DZ(d);return n.runWebGLProgram(c,[r,s],"float32")}var PZ={kernelName:nm,backendName:"webgl",kernelFunc:MZ};function OZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=E.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new RZ(d);return n.runWebGLProgram(c,[r,s],"float32")}var LZ={kernelName:am,backendName:"webgl",kernelFunc:OZ},zZ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function BZ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=me({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new zZ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=me({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var WZ={kernelName:rm,backendName:"webgl",kernelFunc:BZ},UZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function VZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=E.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new UZ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=me({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var GZ={kernelName:Zp,backendName:"webgl",kernelFunc:VZ};function HZ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(r,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=E.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=E.getEinsumPermutation(h,l[g]),x;E.isIdentityPermutation(y)?x=s[g]:(x=Sn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let w=0;w<b.length;++w)v.splice(b[w],0,1);k.arraysEqual(x.shape,v)||(x=me({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=a0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Mf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var jZ={kernelName:sm,backendName:"webgl",kernelFunc:HZ},qZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",KZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,XZ=Je({opSnippet:qZ,packedOpSnippet:KZ}),YZ={kernelName:Ii,backendName:"webgl",kernelFunc:XZ},JZ="return (b >= 1.0) ? a : a * (b + 1.0);",ZZ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,QZ=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vc(ZZ,a.shape,r.shape):new dl(JZ,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},eQ={kernelName:im,backendName:"webgl",kernelFunc:QZ},tQ=`
|
|
return vec4(equal(a, b));
|
|
`,nQ="return float(a == b);",aQ=un({opSnippet:nQ,packedOpSnippet:tQ,dtype:"bool",cpuKernelImpl:G7}),rQ={kernelName:Al,backendName:"webgl",kernelFunc:aQ},sQ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${E.ERF_P};
|
|
float a1 = ${E.ERF_A1};
|
|
float a2 = ${E.ERF_A2};
|
|
float a3 = ${E.ERF_A3};
|
|
float a4 = ${E.ERF_A4};
|
|
float a5 = ${E.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,iQ=Je({opSnippet:sQ}),oQ={kernelName:_l,backendName:"webgl",kernelFunc:iQ},lQ=Mu+`
|
|
return exp(x);
|
|
`,uQ=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cE=Je({opSnippet:lQ,packedOpSnippet:uQ,cpuKernelImpl:H7,dtype:"float32"}),pQ={kernelName:Si,backendName:"webgl",kernelFunc:cE};function Vb(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),me({inputs:{x:s},backend:a,attrs:{shape:o}})}var cQ={kernelName:$l,backendName:"webgl",kernelFunc:Vb},_k="return exp(x) - 1.0;",dQ=Je({opSnippet:_k,packedOpSnippet:_k,cpuKernelImpl:j7}),hQ={kernelName:Fl,backendName:"webgl",kernelFunc:dQ},Ak=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function dE(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=me({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new Ak("real",l,t),p=new Ak("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=bs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=me({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function mQ(e){let{inputs:t,backend:n}=e,{input:a}=t;return dE(a,!1,n)}var fQ={kernelName:om,backendName:"webgl",kernelFunc:mQ},gQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Hc(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new gQ(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var yQ={kernelName:Qp,backendName:"webgl",kernelFunc:Hc},bQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},xQ={kernelName:Dl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new bQ(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},$k="return floor(x);",vQ=Je({opSnippet:$k,packedOpSnippet:$k,cpuKernelImpl:q7}),wQ={kernelName:Ni,backendName:"webgl",kernelFunc:vQ},kQ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,IQ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,SQ=un({opSnippet:kQ,packedOpSnippet:IQ,dtype:"int32"}),NQ={kernelName:Ti,backendName:"webgl",kernelFunc:SQ},TQ=class{constructor(e){this.variableNames=["A"];let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},CQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},EQ={kernelName:xh,backendName:"webgl",kernelFunc:_Q},Ho;function _Q(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];(o||i)&&(Ho==null&&(Ho=document.createElement("canvas").getContext("2d")),Ho.canvas.width=l,Ho.canvas.height=u,Ho.drawImage(r,0,0,l,u),r=Ho.canvas);let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=pa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=Y().getBool("WEBGL_PACK")?new CQ(d):new TQ(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function AQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=E.convertConv2DDataFormat(p),g=E.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=oE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=lE({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,w=o!=null,T=h==="leakyrelu",C=h?Df(h,!1):null,_=new iE(g,v,C,w,T),$=[r,s];if(i&&$.push(i),o&&$.push(o),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));$.push(P),b.push(P)}y=n.runWebGLProgram(_,$,"float32")}let x=me({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var $Q={kernelName:qs,backendName:"webgl",kernelFunc:AQ};function FQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),k.assert(E.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=E.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?Df(c,y):null,x=[r,s],v=i!=null,w=o!=null,T=c==="leakyrelu";if(v&&x.push(i),w&&x.push(o),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(P),m.push(P)}let C;y?C=new pE(g,v,b,w,T):C=new uE(g,v,b,w,T);let _=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(C,x,"float32",_);return m.forEach(P=>n.disposeIntermediateTensorInfo(P)),$}var DQ={kernelName:Ks,backendName:"webgl",kernelFunc:FQ},RQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ht(t.length),r=ht(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function MQ(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=k.sizeFromShape(a.shape),[l,u,p,d]=E.prepareAndValidate(a,r),c=me({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=me({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=K7(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new RQ(i,d,[u,p]),f=n.runWebGLProgram(m,[h,c],h.dtype),g=me({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var PQ={kernelName:Ml,backendName:"webgl",kernelFunc:MQ},OQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ht(this.rank),a=LQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${a}));
|
|
}
|
|
`}};function LQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function hE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0];if(Y().get("DEBUG")){let b=n.readSync(s.dataId),x=r.shape[l];for(let v=0;v<b.length;++v){let w=b[v];k.assert(w<=x-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${x-1}]`)}}let u=E.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=k.sizeFromShape(s.shape),d=[],c=me({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=me({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),v=X7(x,b,m);return d.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new OQ(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=me({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var zQ={kernelName:Rl,backendName:"webgl",kernelFunc:hE},BQ="return float(a > b);",WQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,UQ=un({opSnippet:BQ,packedOpSnippet:WQ,cpuKernelImpl:Y7,dtype:"bool"}),VQ={kernelName:Pl,backendName:"webgl",kernelFunc:UQ},GQ="return float(a >= b);",HQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,jQ=un({opSnippet:GQ,packedOpSnippet:HQ,dtype:"bool",cpuKernelImpl:J7}),qQ={kernelName:Ei,backendName:"webgl",kernelFunc:jQ};function KQ(e){let{inputs:t,backend:n}=e,{input:a}=t;return dE(a,!0,n)}var XQ={kernelName:lm,backendName:"webgl",kernelFunc:KQ},YQ="return float(!isnan(x) && !isinf(x));",JQ=Je({opSnippet:YQ,dtype:"bool"}),ZQ={kernelName:Ol,backendName:"webgl",kernelFunc:JQ},QQ="return float(isinf(x));",eee=Je({opSnippet:QQ,dtype:"bool"}),tee={kernelName:Ll,backendName:"webgl",kernelFunc:eee},nee="return float(isnan(x));",aee=Je({opSnippet:nee,dtype:"bool"}),ree={kernelName:zl,backendName:"webgl",kernelFunc:aee},see="return float(a < b);",iee=`
|
|
return vec4(lessThan(a, b));
|
|
`,oee=un({opSnippet:see,packedOpSnippet:iee,cpuKernelImpl:Z7,dtype:"bool"}),lee={kernelName:Bl,backendName:"webgl",kernelFunc:oee},uee="return float(a <= b);",pee=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,cee=un({opSnippet:uee,packedOpSnippet:pee,cpuKernelImpl:Q7,dtype:"bool"}),dee={kernelName:Wl,backendName:"webgl",kernelFunc:cee};function hee(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=eY(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var mee={kernelName:pm,backendName:"webgl",kernelFunc:hee},fee=Mu+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,gee=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,yee=Je({opSnippet:fee,packedOpSnippet:gee,cpuKernelImpl:tY}),bee={kernelName:$i,backendName:"webgl",kernelFunc:yee},xee=Mu+`
|
|
return log(1.0 + x);
|
|
`,vee=Je({opSnippet:xee}),wee={kernelName:Ul,backendName:"webgl",kernelFunc:vee},kee="return float(a >= 1.0 && b >= 1.0);",Iee=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,See=un({opSnippet:kee,packedOpSnippet:Iee,dtype:"bool"}),Nee={kernelName:Vl,backendName:"webgl",kernelFunc:See},Tee="return float(!(x >= 1.0));",Cee=Je({opSnippet:Tee}),Eee={kernelName:ec,backendName:"webgl",kernelFunc:Cee},_ee="return float(a >= 1.0 || b >= 1.0);",Aee=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,$ee=un({opSnippet:_ee,packedOpSnippet:Aee,dtype:"bool"}),Fee={kernelName:tc,backendName:"webgl",kernelFunc:$ee},Dee=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},Ree=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},Mee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Ree(r.shape,s,i,o,l):new Dee(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Pee={kernelName:nc,backendName:"webgl",kernelFunc:Mee},Oee=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Lee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Oee(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},zee={kernelName:cm,backendName:"webgl",kernelFunc:Lee};function Bee(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=fo(i,e.dtype,"max",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function mE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=E.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let v=n0(b,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let w=n.texData.get(h.dataId);w.values=v}else h=Rf(r,p,n);u=E.getInnerMostAxes(u.length,o)}E.assertAxesAreInnerMostDims("max",u,o);let[m,f]=E.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=E.expandShapeToKeepDim(m,l));let y;if(c){let b=n.texData.get(h.dataId).values,x=nY(b,k.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=Bee(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var Wee={kernelName:Fi,backendName:"webgl",kernelFunc:mE},Uee=KC+`
|
|
return max(a, b);
|
|
`,Vee=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Ff+`
|
|
return result;
|
|
`,Gee=un({opSnippet:Uee,packedOpSnippet:Vee,cpuKernelImpl:aY}),Hee={kernelName:Di,backendName:"webgl",kernelFunc:Gee};function jee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Au(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=E.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&k.arraysEqual(p.inShape,p.outShape))return ta({inputs:{x:r},backend:n});let d=new Hp(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var qee={kernelName:Ri,backendName:"webgl",kernelFunc:jee};function Kee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=E.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new r0(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Xee={kernelName:ac,backendName:"webgl",kernelFunc:Kee},Yee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Jee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${d}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Zee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=E.computePool3DInfo(i.shape,o,l,d,u,p),h=new r0(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new Jee(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Qee={kernelName:hm,backendName:"webgl",kernelFunc:Zee};function ete(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Au([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=E.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new Hp(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Yee(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var tte={kernelName:dm,backendName:"webgl",kernelFunc:ete};function nte(e,t,n,a){let r=new Hp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Hp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var ate={kernelName:mm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(E.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=E.computePool2DInfo(a.shape,r,s,u,i),[d,c]=nte(a,o,p,l);return[d,c]}};function rte(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=fo(i,"float32","mean",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var ste={kernelName:Mi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,p=E.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let C=0;C<v.length;C++)v[C]=a.shape[p[C]];let w=n0(x,a.shape,a.dtype,p,v);m=i.makeTensorInfo(v,a.dtype);let T=i.texData.get(m.dataId);T.values=w}else m=Rf(a,p,i);h.push(m),u=E.getInnerMostAxes(u.length,o)}E.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=E.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=E.expandShapeToKeepDim(f,l));let b=rte(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function ite(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,p=E.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=E.getInnerMostAxes(u.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",u,o);let[c,h]=E.computeOutAndReduceShapes(d.shape,u),m=k.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=fo(f,f.dtype,"min",n),y;if(i){let b=E.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var ote={kernelName:Pi,backendName:"webgl",kernelFunc:ite},lte=KC+`
|
|
return min(a, b);
|
|
`,ute=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Ff+`
|
|
return result;
|
|
`,pte=un({opSnippet:lte,packedOpSnippet:ute,cpuKernelImpl:rY}),cte={kernelName:Oi,backendName:"webgl",kernelFunc:pte},dte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=ht(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},hte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ht(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=In("rc",a),l=In("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},mte=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hte(a.shape,r,s):new dte(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},fte={kernelName:Li,backendName:"webgl",kernelFunc:mte},gte=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,yte=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Ff+`
|
|
return result;
|
|
`,bte=un({opSnippet:gte,packedOpSnippet:yte}),xte={kernelName:Gl,backendName:"webgl",kernelFunc:bte},vte=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},wte=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,kte=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,fE=un({opSnippet:wte,packedOpSnippet:kte,checkOutOfBounds:!0}),Ite={kernelName:ki,backendName:"webgl",kernelFunc:fE},Fk="return a - b;",gE=un({opSnippet:Fk,packedOpSnippet:Fk,supportsComplex:!0,cpuKernelImpl:vY}),Ste={kernelName:no,backendName:"webgl",kernelFunc:gE};function yE(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=mE({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),u=me({inputs:{x:o},backend:n,attrs:{shape:l}}),p=gE({inputs:{a:r,b:u},backend:n}),d=cE({inputs:{x:p},backend:n}),c=Mf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=me({inputs:{x:c},backend:n,attrs:{shape:l}}),m=fE({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Nte={kernelName:eo,backendName:"webgl",kernelFunc:yE};function Tte(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:yE({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new vte(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Cte={kernelName:fm,backendName:"webgl",kernelFunc:Tte},Ete=Ca+`
|
|
return -x;
|
|
`,_te=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Ate(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=iY(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ws(a.shape,_te):r=new Ir(a.shape,Ete),n.runWebGLProgram(r,[a],a.dtype)}var $te={kernelName:Hl,backendName:"webgl",kernelFunc:Ate},Fte=mr.nonMaxSuppressionV3Impl;function Dte(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Fte(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Rte={kernelName:ql,backendName:"webgl",kernelFunc:Dte},Mte=mr.nonMaxSuppressionV4Impl;function Pte(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Mte(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Ote={kernelName:Kl,backendName:"webgl",kernelFunc:Pte},Lte=mr.nonMaxSuppressionV5Impl;function zte(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Lte(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Bte={kernelName:Xl,backendName:"webgl",kernelFunc:zte},Wte=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Ute=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new Wte(l,s,i,o),p=me({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[p],r.dtype);n.disposeIntermediateTensorInfo(p);let c=[...r.shape,s],h=me({inputs:{x:d},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),h},Vte={kernelName:Bi,backendName:"webgl",kernelFunc:Ute};function Wh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=Gc({inputs:{input:a},backend:n}),s=Wh({inputs:{x:r},backend:n}),i=Pf({inputs:{input:a},backend:n}),o=Wh({inputs:{x:i},backend:n}),l=bs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Hc({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Gte={kernelName:fu,backendName:"webgl",kernelFunc:Wh};function bE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=Gc({inputs:{input:a},backend:n}),s=bE({inputs:{x:r},backend:n}),i=Pf({inputs:{input:a},backend:n}),o=Wh({inputs:{x:i},backend:n}),l=bs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Hc({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Hte={kernelName:Yl,backendName:"webgl",kernelFunc:bE};function jte(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Vb({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{k.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Vb({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=sE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var qte={kernelName:Jl,backendName:"webgl",kernelFunc:jte},Kte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=ht(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},Xte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ht(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=In("rc",a),l=In("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${d[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},xE=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(k.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return Hc({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Xte(r.shape,s,i):new Kte(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},Yte={kernelName:Wi,backendName:"webgl",kernelFunc:xE},Jte=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Zte=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Ff+`
|
|
return result;
|
|
`,Qte=un({opSnippet:Jte,packedOpSnippet:Zte}),ene={kernelName:Ui,backendName:"webgl",kernelFunc:Qte};function tne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),p=u,d=E.getAxesPermutation(p,o),c=r;d!=null&&(c=Sn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=E.getInnerMostAxes(p.length,o),l.push(c)),E.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=lY(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=E.computeOutAndReduceShapes(c.shape,p),g=k.sizeFromShape(f),y=me({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=Nm(r.dtype),x=fo(y,b,"prod",n);h=me({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=E.expandShapeToKeepDim(h.shape,u);h=me({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var nne={kernelName:Zl,backendName:"webgl",kernelFunc:tne},vE=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=uY(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},ane={kernelName:rc,backendName:"webgl",kernelFunc:vE},rne="return 1.0 / x;",sne=Je({opSnippet:rne}),ine={kernelName:Ql,backendName:"webgl",kernelFunc:sne},one=Ca+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,lne=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,une=Je({opSnippet:one,packedOpSnippet:lne}),pne={kernelName:Gi,backendName:"webgl",kernelFunc:une},cne=Ca+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,dne=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,hne=Je({opSnippet:cne,packedOpSnippet:dne}),mne={kernelName:ji,backendName:"webgl",kernelFunc:hne},fne=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},gne=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function yne(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new gne(r.shape,l,u,s,i):new fne(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var bne={kernelName:Hi,backendName:"webgl",kernelFunc:yne},xne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function vne(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new xne(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var wne={kernelName:bm,backendName:"webgl",kernelFunc:vne},kne=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Ine=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/p[0]},
|
|
${u[1]/p[1]},
|
|
${u[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Sne(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ine(r.shape,l,u,s,i):new kne(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Nne={kernelName:sc,backendName:"webgl",kernelFunc:Sne},Tne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Cne(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Tne(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Ene={kernelName:ym,backendName:"webgl",kernelFunc:Cne},_ne=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ht(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Ane=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=In("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ht(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${p(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function $ne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return ta({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ane(r.shape,o):new _ne(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Fne={kernelName:qi,backendName:"webgl",kernelFunc:$ne},Dne=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Rne={kernelName:gu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Dne(a.shape,s),[u,p]=E.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Mne=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Pne=Je({opSnippet:Mne}),One={kernelName:Ki,backendName:"webgl",kernelFunc:Pne},Lne="return inversesqrt(x);",zne=Je({opSnippet:Lne,cpuKernelImpl:pY}),Bne={kernelName:Xi,backendName:"webgl",kernelFunc:zne},wE=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ht(r.length),l=ht(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Wne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=E.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=me({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=me({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new wE(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=me({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var Une={kernelName:tu,backendName:"webgl",kernelFunc:Wne},Vne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=ht(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Gne(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Vne(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],Ia(r.dtype,s.dtype))}var Hne={kernelName:nu,backendName:"webgl",kernelFunc:Gne},jne=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${E.SELU_SCALEALPHA};
|
|
float scale = ${E.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,qne=Je({opSnippet:jne}),Kne={kernelName:au,backendName:"webgl",kernelFunc:qne},Xne=Mu+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,Yne=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Jne=Je({opSnippet:Xne,packedOpSnippet:Yne,cpuKernelImpl:cY}),Zne={kernelName:Ji,backendName:"webgl",kernelFunc:Jne},Qne=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,eae=Je({opSnippet:Qne}),tae={kernelName:iu,backendName:"webgl",kernelFunc:eae},nae=Mu+`
|
|
return sin(x);
|
|
`,aae=Je({opSnippet:nae}),rae={kernelName:Yi,backendName:"webgl",kernelFunc:aae},sae=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,iae=Je({opSnippet:sae}),oae={kernelName:su,backendName:"webgl",kernelFunc:iae},lae=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,uae=Je({opSnippet:lae}),pae={kernelName:ou,backendName:"webgl",kernelFunc:uae},cae=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],p=xE({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(p.shape,s,o,!1),c=E.getPermuted(d.length,s.length,!1),h=E.getReshapedPermuted(p.shape,s,o,!1),m=me({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=me({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},dae={kernelName:lu,backendName:"webgl",kernelFunc:cae};function hae(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=hY(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var mae={kernelName:ic,backendName:"webgl",kernelFunc:hae};function fae(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=mY(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var gae={kernelName:pu,backendName:"webgl",kernelFunc:fae};function yae(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=GC(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var bae={kernelName:oc,backendName:"webgl",kernelFunc:yae};function xae(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=GC(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var vae={kernelName:lc,backendName:"webgl",kernelFunc:xae};function wae(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:p,outputSize:d}=E.calculateShapes(s,r,o),c=!1,h=new wE(u,l,r.shape.length,s.shape.length,p,[d,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=me({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var kae={kernelName:xm,backendName:"webgl",kernelFunc:wae};function Iae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=E.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=Pu({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Sae={kernelName:uu,backendName:"webgl",kernelFunc:Iae},Dk="return sqrt(x);",Nae=Je({opSnippet:Dk,packedOpSnippet:Dk,cpuKernelImpl:fY}),Tae={kernelName:Zi,backendName:"webgl",kernelFunc:Nae},Cae="return x * x;",Eae=Je({opSnippet:Cae}),_ae={kernelName:uc,backendName:"webgl",kernelFunc:Eae},Rk="return (a - b) * (a - b);",Aae=un({opSnippet:Rk,packedOpSnippet:Rk}),$ae={kernelName:to,backendName:"webgl",kernelFunc:Aae};function Fae({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ca+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Ir(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Dae={kernelName:cs,backendName:"webgl",kernelFunc:Fae},Rae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ht(n.length),s=ht(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function Mae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),w;if(f)w=me({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){k.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=qt.computeOutShape(b,x,v),_=Pu({inputs:{x:r},backend:n,attrs:{begin:b,size:C}});w=me({inputs:{x:_},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(_)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),_=He(r.shape,r.dtype,C),$=gY(h,_,v,b);w=n.makeTensorInfo(m,r.dtype,$.values)}else{let C=new Rae(b,v,h);w=n.runWebGLProgram(C,[r],r.dtype)}let T=me({inputs:{x:w},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(w),T}var Pae={kernelName:cu,backendName:"webgl",kernelFunc:Mae};function Oae(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=yY(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Lae={kernelName:vm,backendName:"webgl",kernelFunc:Oae};function zae(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=bY(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Bae={kernelName:wm,backendName:"webgl",kernelFunc:zae};function Wae(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=xY(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var Uae={kernelName:km,backendName:"webgl",kernelFunc:Wae},Vae="return tan(x);",Gae=Je({opSnippet:Vae}),Hae={kernelName:ao,backendName:"webgl",kernelFunc:Gae},jae=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,qae=Je({opSnippet:jae}),Kae={kernelName:ro,backendName:"webgl",kernelFunc:qae},Xae=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ht(this.rank),r=Yae(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Yae(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function kE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>k.decodeString(d)):o,u=He(r.shape,r.dtype,l),p=wY(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Xae(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Jae={kernelName:ps,backendName:"webgl",kernelFunc:kE},Zae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Qae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Fs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Mk(e){let t=1;for(;t<e;)t*=2;return t}function ere(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let $=n.readSync(r.dataId),[P,F]=kY($,u,r.dtype,s,i);return[n.makeTensorInfo(P.shape,P.dtype,P.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,Hc({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=k.sizeFromShape(u)/p,f=me({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Fs(n,h);let g=Mk(s),y=Mk(p),b=null,x=()=>b===null?[f,f]:[f,b],v=($,P,F)=>{let S=x(),M=new Zae(F),V=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[$],[P]],j=b;b=n.runWebGLProgram(M,S,"int32",V),Fs(n,j)};for(let $=1;$<g;$*=2){let P=$*2;for(let F=$;F>=1;F/=2)v(P,F,[m,y])}for(let $=y;$>g;$/=2){let P=x(),F=new Qae([m,$/2]),S=[[p],[b===null?1:0],[g]],M=b;b=n.runWebGLProgram(F,P,"int32",S),Fs(n,M);let V=g/2,j=V*2;for(let q=V;q>=1;q/=2)v(j,q,b.shape)}let w=b;b=Pu({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Fs(n,w);let T=hE({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Fs(n,f);let C=u.slice(0,-1);C.push(s),w=b,b=me({inputs:{x:b},attrs:{shape:C},backend:n}),Fs(n,w);let _=T;return T=me({inputs:{x:T},attrs:{shape:C},backend:n}),Fs(n,_),[T,b]}var tre={kernelName:du,backendName:"webgl",kernelFunc:ere},nre=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function are(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new nre(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var rre={kernelName:hu,backendName:"webgl",kernelFunc:are};function sre(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Au(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=IY(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var ire={kernelName:Im,backendName:"webgl",kernelFunc:sre};function ore(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=Pu({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=me({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var lre={kernelName:mu,backendName:"webgl",kernelFunc:ore},ure=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function pre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=E.getAxesPermutation([u],o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=E.getInnerMostAxes(1,o)[0]);let c=E.segment_util.computeOutShape(d.shape,u,i),h=k.sizeFromShape([d.shape[u]]),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Nm(r.dtype),g=(v,w,T,C,_)=>{let $=v.shape[0],P=v.shape[1],F=E.segment_util.segOpComputeOptimalWindowSize(P,_),S={windowSize:F,inSize:P,batchSize:$,numSegments:_},M=new ure(S,w),V=n.compileAndRun(M,[v,T],C);if(l.push(V),V.shape[1]===_)return V;let j=vE({backend:n,attrs:{start:0,stop:_,step:1,dtype:"float32"}}),q=kE({inputs:{x:j},backend:n,attrs:{reps:[P/F]}});return l.push(j),l.push(q),g(V,w,q,C,_)},y=g(m,"unsortedSegmentSum",s,f,i),b=me({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let v=E.getUndoAxesPermutation(p);x=Sn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var cre={kernelName:pc,backendName:"webgl",kernelFunc:pre},dre=[b9,v9,I9,T9,E9,$9,D9,M9,z9,W9,G9,q9,Y9,eJ,aJ,sJ,oJ,cJ,hJ,fJ,xJ,TJ,EJ,AJ,PJ,LJ,UJ,QY,HJ,YJ,eZ,iZ,lZ,pZ,dZ,mZ,yZ,vZ,IZ,NZ,CZ,AZ,FZ,PZ,LZ,WZ,GZ,jZ,YZ,eQ,rQ,oQ,pQ,cQ,hQ,fQ,yQ,xQ,wQ,NQ,EQ,$Q,DQ,PQ,zQ,VQ,qQ,ZY,XQ,KJ,ZQ,tee,ree,t9,lee,dee,mee,bee,wee,Nee,Eee,Fee,Pee,zee,Wee,Hee,qee,Xee,Qee,tte,ate,ste,ote,cte,fte,xte,Cte,i9,$te,Rte,Ote,Bte,FJ,Vte,Hte,qte,Yte,ene,a9,nne,ane,DJ,Ite,ine,pne,mne,l9,bne,wne,Nne,Ene,Fne,Rne,One,Bne,Une,Hne,Kne,Zne,tae,rae,oae,SJ,Nte,pae,dae,mae,gae,bae,vae,kae,Sae,Tae,_ae,$ae,Dae,Pae,Lae,Bae,Uae,Ste,f9,Hae,Kae,Jae,tre,rre,g9,ire,lre,cre,Gte];for(let e of dre)cc(e);var Dt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Dt||(Dt={}));var jp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(jp||(jp={}));var IE;function hre(e){IE=e.wasm.cwrap(js,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function mre(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let _=n.dataIdMap.get(i.dataId);if(_.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${_.shape.length}.`);m=_.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=jp[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=yu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,y,b],r.dtype),w=n.dataIdMap.get(v.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return IE(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,w),v}var fre={kernelName:js,backendName:"wasm",setupFunc:hre,kernelFunc:mre};function pn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return k.sizeFromShape(u.shape)===0||n(l,Dt[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var gre=pn(fl);function _n(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=E.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,Dt[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var yre=!0,bre=_n(ls,yre),SE;function xre(e){SE=e.wasm.cwrap(pi,null,["array","number","number","number"])}function vre(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return SE(s,r.length,Dt[a.dtype],i),a}var wre={kernelName:pi,backendName:"wasm",setupFunc:xre,kernelFunc:vre};function Of(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var kre={kernelName:_i,backendName:"wasm",kernelFunc:Of},NE;function Ire(e){NE=e.wasm.cwrap(so,null,["number","array","number","number","number","array","number"])}function hl(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Nre(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Sre(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Of({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return NE(p,h,l.shape.length,Dt[l.dtype],d,c,s.length),u}function Sre(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Nre(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Tre={kernelName:so,backendName:"wasm",kernelFunc:hl,setupFunc:Ire};function xs(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=E.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=E.getInnerMostAxes(i.length,r),l=hl({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var TE;function Cre(e){TE=e.wasm.cwrap(bl,null,["number, number, number"])}function Ere(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=xs(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;E.assertAxesAreInnerMostDims("all",p,h);let[m,f]=E.computeOutAndReduceShapes(l.shape,p),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;TE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=E.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var _re={kernelName:bl,backendName:"wasm",setupFunc:Cre,kernelFunc:Ere},CE;function Are(e){CE=e.wasm.cwrap(xl,null,["number, number, number"])}function $re(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=xs(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;E.assertAxesAreInnerMostDims("any",p,h);let[m,f]=E.computeOutAndReduceShapes(l.shape,p),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;CE(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=E.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Fre={kernelName:xl,backendName:"wasm",setupFunc:Are,kernelFunc:$re},EE;function Dre(e){EE=e.wasm.cwrap(ci,null,["number","number","number","number","number"])}function Rre(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=xs(s,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),g=l.shape[p[0]];return EE(o,Dt[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Mre={kernelName:ci,backendName:"wasm",kernelFunc:Rre,setupFunc:Dre},_E;function Pre(e){_E=e.wasm.cwrap(di,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ore(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=E.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.strideHeight,b=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let v=a.makeOutput(p.outShape,"float32"),w=a.dataIdMap.get(v.dataId).id;return _E(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,w),v}var Lre={kernelName:di,backendName:"wasm",setupFunc:Pre,kernelFunc:Ore};function Ln(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var zre={kernelName:eu,backendName:"wasm",kernelFunc:Ln},AE;function Bre(e){AE=e.wasm.cwrap(hi,null,["number","array","number","number","array","number","number","number","number"])}function Wre(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=yu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);k.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],w=Ln({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Ln({inputs:{x:s},backend:n,attrs:{shape:v}}),C=n.dataIdMap.get(w.dataId).id,_=n.dataIdMap.get(T.dataId).id,$=i?w.shape[2]:w.shape[1],P=o?T.shape[1]:T.shape[2],F=Math.max(g,y),S=n.makeOutput([F,$,P],w.dtype),M=n.dataIdMap.get(S.dataId).id,V=new Uint8Array(new Int32Array(w.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return AE(C,V,w.shape.length,_,j,T.shape.length,i,o,M),n.disposeData(w.dataId),n.disposeData(T.dataId),S.shape=b,S}var Ure={kernelName:hi,backendName:"wasm",setupFunc:Bre,kernelFunc:Wre};function oi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=qt.parseSliceParams(t,n,a),o=qt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=k.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=qt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Oh(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Vre(l,p[0],c,s,i);else if(h===3)Gre(l,p[0],p[1],c,s,i);else if(h===4)Hre(l,p[0],p[1],p[2],c,s,i);else{let m=Oh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Vre(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Gre(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Hre(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let y=p;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var jre={kernelName:ru,backendName:"wasm",kernelFunc:oi};function qre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((y,b)=>y*b),l=E.getReshaped(r.shape,s,o),u=E.getPermuted(l.length,s.length),p=E.getReshapedPermuted(r.shape,s,o),d=E.getSliceBeginCoords(i,s.length),c=E.getSliceSize(p,i,s.length),h=Ln({inputs:{x:r},backend:n,attrs:{shape:l}}),m=hl({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Ln({inputs:{x:m},backend:n,attrs:{shape:p}}),g=oi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var Kre={kernelName:Nl,backendName:"wasm",kernelFunc:qre};function jc(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Xre={kernelName:mi,backendName:"wasm",kernelFunc:jc},Yre=pn(fi),$E;function Jre(e){$E=e.wasm.cwrap(us,null,["number","number","number","number"])}function Zre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return $E(o,s,i,u),l}var Qre={kernelName:us,backendName:"wasm",setupFunc:Jre,kernelFunc:Zre};function FE(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Of({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(E.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=k.sizeFromShape(x.shape.slice(a));return Ln({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=E.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=Ow(m,r,t[0].dtype,f),y=E.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=E.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,p=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],y=h*g,b=d[f].subarray(y,y+g);c.set(b,m),m+=g}}return i}var ese={kernelName:Tl,backendName:"wasm",kernelFunc:FE},DE;function tse(e){DE=e.wasm.cwrap(gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nse(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=E.convertConv2DDataFormat(c),m=E.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,w=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,_=m.strideWidth,$=m.inChannels,P=m.outChannels,F=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return DE(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,F,w,T,C,_,$,P,M),S}var ase={kernelName:gi,backendName:"wasm",setupFunc:tse,kernelFunc:nse},RE;function rse(e){RE=e.wasm.cwrap(yi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sse(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:w,outWidth:T,strideHeight:C,strideWidth:_}=h,$=f-1-h.padInfo.top,P=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",S=k.computeStrides(h.inShape),M=k.computeStrides(r.shape),[V,j,q]=k.computeStrides(s.shape),K=S[0],Q=F?S[1]:S[2],ee=F?S[2]:1,re=F?1:S[1],Z=M[0],ie=F?M[1]:M[2],ae=F?M[2]:1,le=F?1:M[1],ue=t.makeOutput(h.inShape,"float32"),we=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return RE(ye,Ie,m,f,g,b,x,y,w,T,v,C,_,$,P,V,j,q,K,Q,ee,re,Z,ie,ae,le,we),ue}var ise={kernelName:yi,backendName:"wasm",setupFunc:rse,kernelFunc:sse},ose=pn(bi),lse=pn(xi),Gb;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Gb||(Gb={}));var ME;function use(e){ME=e.wasm.cwrap(Cl,null,["number","number","number","number","array","number","number","number","number","number"])}function pse(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=jc({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return ME(g,y,b,p,w,d,c,Gb[r],s,v),f!=null&&t.disposeData(f.dataId),x}var cse={kernelName:Cl,backendName:"wasm",setupFunc:use,kernelFunc:pse},PE;function dse(e){PE=e.wasm.cwrap(vi,null,["number","number","number","number","number","number"])}function hse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=E.getAxesPermutation([s],l),p=r;u!==null&&(p=hl({inputs:{x:r},attrs:{perm:u},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;PE(m,i?1:0,o?1:0,h,f,Dt[r.dtype]);let g=c;if(u!==null){let y=E.getUndoAxesPermutation(u);g=hl({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var mse={kernelName:vi,backendName:"wasm",setupFunc:dse,kernelFunc:hse},OE;function fse(e){OE=e.wasm.cwrap(El,null,["number","number","number","array","number","array","array","number","number"])}function gse(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return OE(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var yse={kernelName:El,backendName:"wasm",setupFunc:fse,kernelFunc:gse},LE;function bse(e){LE=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xse(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=E.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,w=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,_=h.inChannels,$=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get(F.dataId).id;return LE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,P,v,w,T,C,_,$,S),F}var vse={kernelName:wi,backendName:"wasm",setupFunc:bse,kernelFunc:xse},wse=pn(Ii),kse=!1,Ise=_n(Al,kse,"bool"),Sse=pn(Si,"float32");function Hb(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ln({inputs:{x:r},backend:a,attrs:{shape:o}})}var Nse={kernelName:$l,backendName:"wasm",kernelFunc:Hb};function zE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Tse={kernelName:Qp,backendName:"wasm",kernelFunc:zE},BE;function Cse(e){BE=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number"])}function Ese(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return BE(s,o,l,u,p,i),r}var _se={kernelName:Dl,backendName:"wasm",kernelFunc:Ese,setupFunc:Cse},Ase=pn(Ni),$se=!1,Fse=_n(Ti,$se),WE;function Dse(e){WE=e.wasm.cwrap(Ci,null,["number","number","number","number","number","number","number"])}function Rse(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return WE(p,d,c,h,m,r,g),f}var Mse={kernelName:Ci,backendName:"wasm",setupFunc:Dse,kernelFunc:Rse},UE;function Pse(e){UE=e.wasm.cwrap(qs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ose(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=jp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let w=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,$=f.padInfo.bottom,P=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Q=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Z=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return UE(y,K,Q,ee,b,w,T,v,C,_,$,P,q,F,S,M,V,j,x,g,ie,m||0,Z),re}var Lse={kernelName:qs,backendName:"wasm",setupFunc:Pse,kernelFunc:Ose},VE;function zse(e){VE=e.wasm.cwrap(Ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bse(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=E.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=jp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let w=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,$=f.padInfo.bottom,P=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Q=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Z=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return VE(y,K,Q,ee,b,w,T,v,C,_,$,P,q,F,S,M,V,j,x,g,ie,m||0,Z),re}var Wse={kernelName:Ks,backendName:"wasm",setupFunc:zse,kernelFunc:Bse},GE;function Use(e){GE=e.wasm.cwrap(Ml,null,["number","number","number","number","number","number","array","number"])}function Vse(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=lx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return GE(c,Dt[a.dtype],h,i,d,o,m,f),u}var Gse={kernelName:Ml,backendName:"wasm",setupFunc:Use,kernelFunc:Vse},HE;function Hse(e){HE=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function jse(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let _=u[C];k.assert(_<=p-1&&_>=0,()=>`GatherV2: the index value ${_} is not in [0, ${p-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Ln({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),m=Ln({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(k.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(k.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer);return HE(b,Dt[r.dtype],w,y,x,d.batchSize,T,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var qse={kernelName:Rl,backendName:"wasm",setupFunc:Hse,kernelFunc:jse},Kse=!1,Xse=_n(Pl,Kse,"bool"),Yse=!1,Jse=_n(Ei,Yse,"bool"),jE;function Zse(e){jE=e.wasm.cwrap(Ai,null,["number","number","number","number"])}function Qse(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;jE(r,Dt[t.dtype],n,i)}return s}var eie={kernelName:Ai,backendName:"wasm",setupFunc:Zse,kernelFunc:Qse},tie=!1,nie=_n(Bl,tie,"bool"),aie=!1,rie=_n(Wl,aie,"bool"),sie=pn($i),iie=!1,oie=_n(Vl,iie,"bool"),qE;function lie(e){qE=e.wasm.cwrap(Fi,null,["number","number","number","number"])}function uie(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=xs(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;E.assertAxesAreInnerMostDims("max",p,h);let[m,f]=E.computeOutAndReduceShapes(l.shape,p),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;qE(o,Dt[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=E.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var pie={kernelName:Fi,backendName:"wasm",setupFunc:lie,kernelFunc:uie},cie=!1,die=_n(Di,cie),KE;function hie(e){KE=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mie(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;k.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=E.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,w=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),_=a.dataIdMap.get(C.dataId).id;return KE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,v,w,T,_),C}var fie={kernelName:Ri,backendName:"wasm",setupFunc:hie,kernelFunc:mie},XE;function gie(e){XE=e.wasm.cwrap(Mi,null,["number, number, number"])}function yie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=xs(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=E.getInnerMostAxes(m.length,u.shape.length))}E.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=E.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=jc({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;XE(l,y,v)}if(h&&t.disposeData(p.dataId),s){let v=E.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var bie={kernelName:Mi,backendName:"wasm",setupFunc:gie,kernelFunc:yie},YE;function xie(e){YE=e.wasm.cwrap(Pi,null,["number","number","number","number"])}function vie(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=xs(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;E.assertAxesAreInnerMostDims("min",d,m);let[f,g]=E.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;YE(l,Dt[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=E.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var wie={kernelName:Pi,backendName:"wasm",setupFunc:xie,kernelFunc:vie},kie=!1,Iie=_n(Oi,kie),jb;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(jb||(jb={}));var JE;function Sie(e){JE=e.wasm.cwrap(Li,null,["number","array","number","number","array","array","number","number"])}function Nie(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return JE(i,u,t.shape.length,Dt[t.dtype],c,h,jb[r],l),o}var Tie={kernelName:Li,backendName:"wasm",kernelFunc:Nie,setupFunc:Sie},Cie=!0,Eie=_n(zi,Cie),_ie=pn(Hl);function s0(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var ZE;function Aie(e){ZE=e.wasm.cwrap(ql,"number",["number","number","number","number","number"])}function $ie(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=ZE(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=s0(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Fie={kernelName:ql,backendName:"wasm",setupFunc:Aie,kernelFunc:$ie},QE;function Die(e){QE=e.wasm.cwrap(Kl,"number",["number","number","number","number","number","bool"])}function Rie(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=QE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=s0(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Mie={kernelName:Kl,backendName:"wasm",setupFunc:Die,kernelFunc:Rie},e_;function Pie(e){e_=e.wasm.cwrap(Xl,"number",["number","number","number","number","number","number"])}function Oie(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=e_(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=s0(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Lie={kernelName:Xl,backendName:"wasm",setupFunc:Pie,kernelFunc:Oie},zie=!1,Bie=_n(jl,zie,"bool"),t_;function Wie(e){t_=e.wasm.cwrap(Bi,null,["number","number","number","number","number"])}function Uie(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return t_(p,s,i,o,u),l}var Vie={kernelName:Bi,backendName:"wasm",setupFunc:Wie,kernelFunc:Uie};function Gie(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Hie={kernelName:Yl,backendName:"wasm",kernelFunc:Gie};function jie(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Hb({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{k.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Hb({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=FE({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var qie={kernelName:Jl,backendName:"wasm",kernelFunc:jie},n_;function Kie(e){n_=e.wasm.cwrap(Wi,null,["number","array","number","number","array","array","number","number"])}function Xie(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(k.sizeFromShape(t.shape)===0)return zE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return n_(i,u,t.shape.length,Dt[t.dtype],c,h,r,l),o}var a_={kernelName:Wi,backendName:"wasm",kernelFunc:Xie,setupFunc:Kie},Yie=!1,Jie=_n(Ui,Yie),r_;function Zie(e){r_=e.wasm.cwrap(Vi,null,["number","number","number"])}function Qie(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=jc({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return r_(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var eoe={kernelName:Vi,backendName:"wasm",setupFunc:Zie,kernelFunc:Qie},s_;function toe(e){s_=e.wasm.cwrap(Zl,null,["number","number","number","number"])}function noe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=xs(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=E.getInnerMostAxes(m.length,u.shape.length))}E.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=E.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;s_(l,y,Dt[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=E.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var aoe={kernelName:Zl,backendName:"wasm",setupFunc:toe,kernelFunc:noe},roe=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Bw(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},soe={kernelName:rc,backendName:"wasm",kernelFunc:roe},ioe=!0,ooe=_n(ki,ioe),loe=pn(Gi),uoe=pn(ji),i_;function poe(e){i_=e.wasm.cwrap(Hi,null,["number","number","number","number","number","number","number","number","number","number"])}function coe(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=jc({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return i_(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var doe={kernelName:Hi,backendName:"wasm",setupFunc:poe,kernelFunc:coe},o_;function hoe(e){o_=e.wasm.cwrap(qi,null,["number","array","number","array","number","number"])}function moe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Of({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);o_(l,p,i.length,d,r.shape.length,u);let c=Ln({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var foe={kernelName:qi,backendName:"wasm",kernelFunc:moe,setupFunc:hoe},l_;function goe(e){l_=e.wasm.cwrap(gu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function yoe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=E.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return l_(u,d,c,h,m,s,f,g,v,x.length,p),l}var boe={kernelName:gu,backendName:"wasm",kernelFunc:yoe,setupFunc:goe},xoe=pn(Ki),voe=pn(Xi),u_;function woe(e){u_=e.wasm.cwrap(tu,null,["number","number","number","number","number","number","array","number","number"])}function koe(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=ux.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return u_(h,m,Dt[s.dtype],l,u,p,f,c,g),o}var Ioe={kernelName:tu,backendName:"wasm",setupFunc:woe,kernelFunc:koe},p_;function Soe(e){p_=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Noe(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return p_(i,o,l,h,p),u}var Toe={kernelName:nu,backendName:"wasm",kernelFunc:Noe,setupFunc:Soe},c_;function Coe(e){c_=e.wasm.cwrap(Ji,null,["number","number"])}function Eoe(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||c_(a,s),r}var _oe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Coe,kernelFunc:Eoe},Aoe=pn(Yi),d_;function $oe(e){d_=e.wasm.cwrap(eo,null,["number","number","number","number"])}function Foe(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||d_(r,i,o,l),s}var Doe={kernelName:eo,backendName:"wasm",setupFunc:$oe,kernelFunc:Foe};function Roe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=a_.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=E.getReshaped(u.shape,s,o,!1),d=E.getPermuted(p.length,s.length,!1),c=E.getReshapedPermuted(u.shape,s,o,!1),h=Ln({inputs:{x:u},backend:n,attrs:{shape:p}}),m=hl({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Ln({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Moe={kernelName:lu,backendName:"wasm",kernelFunc:Roe},h_;function Poe(e){h_=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Ooe(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([u],"bool"),x=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([o],a.dtype),w=t.dataIdMap.get(v.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,_=h_(d,c,Dt[r.dtype],o,u,l,h,f,y,x,w,C),$=t.readSync(T.dataId),P;switch($[0]){case 1:{P=E.getSparseFillEmptyRowsIndicesDenseShapeMismatch($[1]);break}case 2:{P=E.getSparseFillEmptyRowsNegativeIndexErrorMessage($[1],$[2]);break}case 3:P=E.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage($[1],$[2],$[3]);break;default:P=""}if(t.disposeData(T.dataId),P)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(P);let F=m,S=g;return _!==p[0]&&(F=oi({inputs:{x:m},attrs:{begin:0,size:[_,l]},backend:t}),S=oi({inputs:{x:g},attrs:{begin:0,size:_},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[F,S,b,v]}var Loe={kernelName:ic,backendName:"wasm",setupFunc:Poe,kernelFunc:Ooe},m_;function zoe(e){m_=e.wasm.cwrap(pu,null,["number","number","number","number","number","number","number"])}function Boe(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=k.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;m_(i,o,l,u,c,m,g);let y=t.readSync(f.dataId),b;switch(y[0]){case 0:{b=E.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=E.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=E.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=E.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=E.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:b=""}if(t.disposeData(f.dataId),b)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(b);return[d,h]}var Woe={kernelName:pu,backendName:"wasm",setupFunc:zoe,kernelFunc:Boe},f_;function g_(e){f_=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function y_(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(E.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;f_(d,Dt[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=E.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=E.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=E.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=E.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Uoe(e){return y_(e,!0)}var Voe={kernelName:oc,backendName:"wasm",setupFunc:g_,kernelFunc:Uoe};function Goe(e){return y_(e,!1)}var Hoe={kernelName:lc,backendName:"wasm",setupFunc:g_,kernelFunc:Goe};function joe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=E.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=oi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var qoe={kernelName:uu,backendName:"wasm",kernelFunc:joe},Koe=pn(Zi),Xoe=pn(uc),Yoe=!0,Joe=_n(to,Yoe),b_;function Zoe(e){b_=e.wasm.cwrap(cs,null,["number","number","number","number"])}function Qoe(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return b_(i,r,Dt[s.dtype],l),o}var ele={kernelName:cs,backendName:"wasm",setupFunc:Zoe,kernelFunc:Qoe},x_;function tle(e){x_=e.wasm.cwrap(cu,null,["number","array","number","array","array","array","array","array","number","number"])}function nle(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=qt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),w;if(f)w=Ln({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){k.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=qt.computeOutShape(b,x,v),C=oi({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});w=Ln({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,_=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),$=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer),V=t.dataIdMap.get(T.dataId).id;x_(C,_,r.shape.length,$,P,F,S,M,h.length,V),w=Ln({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return w}var ale={kernelName:cu,backendName:"wasm",setupFunc:tle,kernelFunc:nle},rle=!0,sle=_n(no,rle),v_;function ile(e){v_=e.wasm.cwrap(Qi,null,["number","number","number","number"])}function ole(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=xs(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=E.getInnerMostAxes(m.length,u.shape.length))}E.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=E.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;v_(l,y,Dt[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=E.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var lle={kernelName:Qi,backendName:"wasm",setupFunc:ile,kernelFunc:ole},ule=pn(ao),ple=pn(ro),w_;function cle(e){w_=e.wasm.cwrap(ps,null,["number","array","number","array","number","number"])}function dle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return w_(s,l,r.shape.length,u,o.length,Dt[p.dtype],d),p}var hle={kernelName:ps,backendName:"wasm",setupFunc:cle,kernelFunc:dle},k_;function mle(e){k_=e.wasm.cwrap(du,null,["number","array","number","number","number","bool","number","number"])}var fle=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return k_(i,o,a.shape.length,Dt[a.dtype],r,s,p,c),[u,d]},gle={kernelName:du,backendName:"wasm",setupFunc:mle,kernelFunc:fle},I_;function yle(e){I_=e.wasm.cwrap(hu,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function ble(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(b.dataId).id,v=t.dataIdMap.get(r.dataId).id,w=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,C;switch(o){case"constant":C=1;break;case"reflect":C=2;break;case"wrap":C=3;break;case"nearest":C=4;break;default:C=1;break}return I_(v,w,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,T,C,l,x),b}var xle={kernelName:hu,backendName:"wasm",setupFunc:yle,kernelFunc:ble};function vle(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=oi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var wle={kernelName:mu,backendName:"wasm",kernelFunc:vle};function kle(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Ile={kernelName:fu,backendName:"wasm",kernelFunc:kle},Sle=[fre,gre,bre,wre,_re,Fre,Mre,Lre,Ure,Kre,Xre,Yre,Qre,ese,ase,ise,ose,lse,cse,mse,yse,vse,wse,Ise,Sse,Nse,Tse,_se,Ase,Fse,Mse,Lse,Wse,Gse,qse,Xse,Jse,kre,eie,nie,rie,sie,oie,pie,die,fie,bie,wie,Iie,Tie,Eie,_ie,Fie,Mie,Lie,Bie,Vie,Hie,qie,a_,Jie,eoe,aoe,soe,ooe,loe,uoe,zre,doe,foe,boe,xoe,voe,Ioe,Toe,_oe,Aoe,jre,Doe,Moe,Loe,Woe,Voe,Hoe,qoe,Koe,Xoe,Joe,ele,ale,sle,lle,ule,ple,hle,gle,xle,Tre,wle,Ile];for(let e of Sle)cc(e);var qb=Y();qb.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));qb.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(qb.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Pk=li(G$()),Nle=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Tle=li(H$()),S_=class extends qp{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(N_),Kb=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Gh(this,ar())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||k.sizeFromShape(s);let o=k.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return _le(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Cle(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function Ok(e,t,n){if(Uh!=null)return Uh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),_p!=null&&_p[a]!=null?_p[a]:n+a}async function Ele(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Nle,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?Ok(e,t,Tp!=null?Tp:l):l+o},i0&&(r.instantiateWasm=Cle(Ok(e,t,Tp!=null?Tp:"")));let s=!1;r.onAbort=()=>{s||Ap||(Ap=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Uh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Pk.default.toString()],{type:"text/javascript"}),i=(0,Pk.default)(r)):i=(0,Tle.default)(r),i.then(o=>{s=!0,Ap=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function _le(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ale=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Uh=null,Tp=null,_p={},Ap=!1,i0=!1;function $le(e,t=!1){if(mx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Ap)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Uh=e,i0=t}function Fle(e,t=!1){if(Ap)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Tp=e;else{_p=e;let n=Ale.filter(a=>_p[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}i0=t}var N_=-1,Kb=-1;function Dle(e){N_=e}function Rle(){if(Kb===-1)throw new Error("WASM backend not initialized.");return Kb}var Mle="3.14.0",Ple=2;Cm("wasm",async()=>{let{wasm:e}=await Ele();return new S_(e)},Ple);var Ole="3.14.0",Lle="3.14.0",zle="3.14.0",Ble="3.14.0",Wle="3.14.0",Ule="3.14.0",Vle="3.14.0",Gle="3.14.0",Hle={tfjs:Ole,"tfjs-core":Lle,"tfjs-data":zle,"tfjs-layers":Ble,"tfjs-converter":Wle,"tfjs-backend-cpu":Ule,"tfjs-backend-webgl":Vle,"tfjs-backend-wasm":Gle};var G_={};Ry(G_,{AnchorPosition:()=>f0,DrawBox:()=>Gf,DrawBoxOptions:()=>g0,DrawFaceLandmarks:()=>w0,DrawFaceLandmarksOptions:()=>v0,DrawTextField:()=>ws,DrawTextFieldOptions:()=>Jc,drawContour:()=>$r,drawDetections:()=>eue,drawFaceExpressions:()=>tue,drawFaceLandmarks:()=>aue});function $r(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var T_={};Ry(T_,{computeReshapedDimensions:()=>u0,getCenterPoint:()=>bo,isDimensions:()=>zf,isEven:()=>Lf,isFloat:()=>l0,isTensor:()=>go,isTensor1D:()=>jle,isTensor2D:()=>o0,isTensor3D:()=>Fr,isTensor4D:()=>ya,isValidNumber:()=>Za,isValidProbablitiy:()=>Ou,range:()=>gr,round:()=>yo});var Vn=class{constructor(t,n){if(!Za(t)||!Za(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new Vn(1/this.width,1/this.height)}};function go(e,t){return e instanceof Ae&&e.shape.length===t}function jle(e){return go(e,1)}function o0(e){return go(e,2)}function Fr(e){return go(e,3)}function ya(e){return go(e,4)}function l0(e){return e%1!==0}function Lf(e){return e%2===0}function yo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function zf(e){return e&&e.width&&e.height}function u0({width:e,height:t},n){let a=n/Math.max(t,e);return new Vn(Math.round(e*a),Math.round(t*a))}function bo(e){return e.reduce((t,n)=>t.add(n),new ze(0,0)).div(new ze(e.length,e.length))}function gr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Za(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Ou(e){return Za(e)&&e>=0&&e<=1}var ze=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new ze(this.x+t.x,this.y+t.y)}sub(t){return new ze(this.x-t.x,this.y-t.y)}mul(t){return new ze(this.x*t.x,this.y*t.y)}div(t){return new ze(this.x/t.x,this.y/t.y)}abs(){return new ze(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new ze(Math.floor(this.x),Math.floor(this.y))}};var ft=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Za)}static assertIsValidBox(t,n,a=!1){if(!ft.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Za),s=[a.x,a.y,a.width,a.height].every(Za);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ft.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new ze(this.left,this.top)}get topRight(){return new ze(this.right,this.top)}get bottomLeft(){return new ze(this.left,this.bottom)}get bottomRight(){return new ze(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ft({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ft({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ft({x:t,y:n,width:a,height:r})}rescale(t){let n=zf(t)?t.width:t,a=zf(t)?t.height:t;return new ft({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ft({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new ft({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ft({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new ft({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var qc=class extends ft{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var xo=class{constructor(t,n,a,r,s){this._imageDims=new Vn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ft(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ft(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new xo(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var Tt=class extends xo{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new Tt(a,r,s)}};function C_(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function E_(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new qc(a,r,s,i)}function __(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(C_(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function yr(e,t){return O(()=>{let[n,a,r]=t,s=Cn([...e.shape.slice(0,3),1],n,"float32"),i=Cn([...e.shape.slice(0,3),1],a,"float32"),o=Cn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return ce(e,l)})}function A_(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,Cn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>oe(c,"float32"));return Qe(d,i)})}function npe(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Bf(e){return 1/(1+Math.exp(-e))}function rpe(e){return Math.log(e/(1-e))}var Kc=class extends ft{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var qle=.5,Kle=.43,Xle=.45,Ea=class{constructor(t,n,a=new ze(0,0)){let{width:r,height:s}=n;this._imgDims=new Vn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new ze(r,s)).add(a))}get shift(){return new ze(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new ze(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new ze(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof Tt?t.box.floor():new ft(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Xle),l=bo(t),u=Math.floor(Math.max(0,l.x-qle*o)),p=Math.floor(Math.max(0,l.y-Kle*o));return new Kc(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=E_(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Yle=class extends Ea{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],bo([t[3],t[4]])]}};var Xc=class extends Ea{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(bo)}};var Wf=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${yo(this.distance)})`:""}`}};var Uf=class extends ft{static assertIsValidLabeledBox(t,n){if(ft.assertIsValidBox(t,n),!Za(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var vs=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new vs(t.label,n)}};var Jle=class extends Uf{static assertIsValidPredictedBox(t,n){if(Uf.assertIsValidLabeledBox(t,n),!Ou(t.score)||!Ou(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function Dr(e){return e.detection instanceof Tt}function Lu(e,t){return{...e,...{detection:t}}}function p0(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Yc(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Vf(e){let t="";if(!e&&Yc())try{e=g$("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function c0(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Vf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function d0(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var sn;function Zle(){if(!sn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return sn}function h0(e){sn=e}function m0(){return d0()?h0(p0()):Yc()?h0(c0()):null}function Qle(e){if(sn||m0(),!sn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=sn.Canvas,Image:n=sn.Image}=e;sn.Canvas=t,sn.Image=n,sn.createCanvasElement=e.createCanvasElement||(()=>new t),sn.createImageElement=e.createImageElement||(()=>new n),sn.ImageData=e.ImageData||sn.ImageData,sn.Video=e.Video||sn.Video,sn.fetch=e.fetch||sn.fetch,sn.readFile=e.readFile||sn.readFile}var at={getEnv:Zle,setEnv:h0,initialize:m0,createBrowserEnv:p0,createFileSystem:Vf,createNodejsEnv:c0,monkeyPatch:Qle,isBrowser:d0,isNodejs:Yc};m0();function zu(e){return!at.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function na(e){let{Canvas:t,CanvasRenderingContext2D:n}=at.getEnv();if(e instanceof n)return e;let a=zu(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var f0=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(f0||{}),Jc=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},ws=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof ws?t.text:t,this.anchor=n,this.options=new Jc(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=zu(t),a=na(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var g0=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Jc({...i,...s})}},Gf=class{constructor(t,n={}){this.box=new ft(t),this.options=new g0(n)}draw(t){let n=na(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new ws([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function eue(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Tt?a.score:Dr(a)?a.detection.score:void 0,s=a instanceof Tt?a.box:Dr(a)?a.detection.box:new ft(a),i=r?`${yo(r)}`:void 0;new Gf(s,{label:i}).draw(e)})}function Hf(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function $_(e){return new Promise((t,n)=>{(e instanceof at.getEnv().Canvas||Hf(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function F_(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=at.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Bu(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t?new Vn(e.naturalWidth,e.naturalHeight):e instanceof n?new Vn(e.videoWidth,e.videoHeight):new Vn(e.width,e.height)}function Wu({width:e,height:t}){let{createCanvasElement:n}=at.getEnv(),a=n();return a.width=e,a.height=t,a}function jf(e,t){let{ImageData:n}=at.getEnv();if(!(e instanceof n)&&!Hf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Bu(e),s=Wu({width:a,height:r});return e instanceof n?na(s).putImageData(e,0,0):na(s).drawImage(e,0,0,a,r),s}async function D_(e,t){let n=t||at.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ya(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await io.toPixels(i,n),i.dispose(),n}function y0(e){let{Image:t,Canvas:n,Video:a}=at.getEnv();return e instanceof t||e instanceof n||e instanceof a}function R_(e,t,n=!1){let{Image:a,Canvas:r}=at.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Wu({width:1,height:1});let s=Bu(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=Wu({width:t,height:t}),p=e instanceof r?e:jf(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&na(u).drawImage(p,c,h,o,l),u}var ks=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Fr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ya(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof at.getEnv().Canvas?a:jf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return gr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return u0({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=gr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ya(i)?i:dn(i);return o=A_(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Xn.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof at.getEnv().Canvas)return io.fromPixels(R_(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Mt(a.map(s=>oe(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof ks)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(zu);return a.forEach((r,s)=>{if(!y0(r)&&!Fr(r)&&!ya(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ya(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>y0(r)&&$_(r))),new ks(a,Array.isArray(e))}async function Zc(e,t){let{Canvas:n}=at.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await D_(o)}let r=na(a);return t.map(i=>i instanceof Tt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=Wu({width:l,height:u});return l>0&&u>0&&na(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Qc(e,t){if(!Fr(e)&&!ya(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ya(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(ya(e)?1:0);return t.map(o=>o instanceof Tt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:u,height:p})=>ku(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Is(e,t){let{fetch:n}=at.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Lde(e){let t=await Is(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return F_(n)}async function M_(e){return(await Is(e)).json()}async function Vde(e){return new Float32Array(await(await Is(e)).arrayBuffer())}function P_(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=at.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function Xde(e){let t=await Is(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return P_(n)}function qf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function O_(e,t){let{manifestUri:n,modelBaseUri:a}=qf(e,t),r=await M_(n);return Qt.loadWeights(r,a)}function nhe(e,t,n=!1){let{width:a,height:r}=n?Bu(t):t;return e.width=a,e.height=r,{width:a,height:r}}var fn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Zr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Zr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Yn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await O_(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=at.getEnv(),{manifestUri:a,modelBaseUri:r}=qf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Qt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Gn(e,t,n){return O(()=>{let a=lo(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function Kf(e,t,n=!1){return O(()=>{let a=Xe(n?J(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Gn(e,t.conv0,[2,2])),r=Gn(a,t.conv1,[1,1]),s=Xe(J(a,r)),i=Gn(s,t.conv2,[1,1]);return Xe(J(a,J(r,i)))})}function ed(e,t,n=!1,a=!0){return O(()=>{let r=Xe(n?J(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Gn(e,t.conv0,a?[2,2]:[1,1])),s=Gn(r,t.conv1,[1,1]),i=Xe(J(r,s)),o=Gn(i,t.conv2,[1,1]),l=Xe(J(r,J(s,o))),u=Gn(l,t.conv3,[1,1]);return Xe(J(r,J(s,J(o,u))))})}function vo(e,t,n="same",a=!1){return O(()=>{let r=J(Rt(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Uu(e,t){return(n,a,r,s)=>{let i=Ya(e(n*a*r*r),[r,r,n,a]),o=qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Xf(e,t){return(n,a,r)=>{let s=Ua(e(n*a),[n,a]),i=qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Yf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Vu(e,t){return(n,a,r)=>{let s=Ya(e(9*n),[3,3,n,1]),i=Ya(e(n*a),[1,1,n,a]),o=qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Yf(s,i,o)}}function Gu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Yf(n,a,r)}}function aa(e,t){return(n,a,r)=>{let s=e[n];if(!go(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function $n(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Jf(e,t){let n=Uu(e,t),a=Vu(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function L_(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock4Params:r}=Jf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Zf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function Qf(e,t){let n=aa(e,t),a=Zf(n),r=Gu(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function z_(e){let t=[],{extractDenseBlock4Params:n}=Qf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var td=class extends fn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=ed(s,n.dense0,!0);return i=ed(i,n.dense1),i=ed(i,n.dense2),i=ed(i,n.dense3),i=ma(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return z_(t)}extractParams(t){return L_(t)}};function nd(e,t){return O(()=>J(Fe(e,t.weights),t.bias))}function B_(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=$n(e),o=Xf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function W_(e){let t=[],n=aa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function eg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var ad=class extends fn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof ks?this.faceFeatureExtractor.forwardInput(t):t;return nd(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return B_(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=eg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),W_(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var U_=["neutral","happy","sad","angry","fearful","disgusted","surprised"],wo=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);U_.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return U_.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var b0=class extends ad{constructor(t=new td){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>Xa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new wo(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function V_(e){return e.expressions instanceof wo}function x0(e,t){return{...e,...{expressions:t}}}function tue(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof wo?s:V_(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Dr(s)?s.detection.box.bottomLeft:a||new ze(0,0);new ws(l.map(d=>`${d.expression} (${yo(d.probability)})`),u).draw(e)})}function Hu(e){return Dr(e)&&e.landmarks instanceof Ea&&e.unshiftedLandmarks instanceof Ea&&e.alignedRect instanceof Tt}function nue(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function rd(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new Tt(e.detection.score,r.rescale(s.reverse()),s),o=nue(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var v0=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},w0=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new v0(n)}draw(t){let n=na(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Xc&&(n.strokeStyle=i,n.lineWidth=s,$r(n,this.faceLandmarks.getJawOutline()),$r(n,this.faceLandmarks.getLeftEyeBrow()),$r(n,this.faceLandmarks.getRightEyeBrow()),$r(n,this.faceLandmarks.getNose()),$r(n,this.faceLandmarks.getLeftEye(),!0),$r(n,this.faceLandmarks.getRightEye(),!0),$r(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function aue(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Ea?a:Hu(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new w0(r).draw(e)})}var H_="1.6.6";function iue(e,t){let n=Uu(e,t),a=Vu(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function j_(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=$n(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=iue(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};gr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function oue(e,t){let n=aa(e,t),a=Zf(n),r=Gu(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function q_(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=oue(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};gr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function K_(e,t,n){return J(Rt(e,t.filters,n,"same"),t.bias)}function k0(e,t,n=!0){let a=n?Xe(e):e;return a=Gn(a,t.separable_conv0,[1,1]),a=Gn(Xe(a),t.separable_conv1,[1,1]),a=Pt(a,[3,3],[2,2],"same"),a=J(a,K_(e,t.expansion_conv,[2,2])),a}function lue(e,t){let n=Gn(Xe(e),t.separable_conv0,[1,1]);return n=Gn(Xe(n),t.separable_conv1,[1,1]),n=Gn(Xe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var I0=class extends fn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=Xe(K_(s,n.entry_flow.conv_in,[2,2]));return i=k0(i,n.entry_flow.reduction_block_0,!1),i=k0(i,n.entry_flow.reduction_block_1),gr(this._numMainBlocks,0,1).forEach(o=>{i=lue(i,n.middle_flow[`main_block_${o}`])}),i=k0(i,n.exit_flow.reduction_block),i=Xe(Gn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return q_(t,this._numMainBlocks)}extractParams(t){return j_(t,this._numMainBlocks)}};function X_(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),r=Xf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function Y_(e){let t=[],n=aa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var S0=(n=>(n.FEMALE="female",n.MALE="male",n))(S0||{});var N0=class extends fn{constructor(t=new I0(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return O(()=>{let a=t instanceof ks?this.faceFeatureExtractor.forwardInput(t):t,r=ma(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=nd(r,n.fc.age).as1D(),i=nd(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return O(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Xa(a)}})}async forward(t){return this.forwardInput(await vt(t))}async predictAgeAndGender(t){let n=await vt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,u)=>({ageTensor:l,genderTensor:s[u]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:u})=>{let p=l.dataSync()[0],d=u.dataSync()[0],c=d>.5,h=c?"male":"female",m=c?d:1-d;return l.dispose(),u.dispose(),{age:p,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return X_(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=eg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),Y_(a)}extractParams(t){let a=t.slice(0,t.length-1539),r=t.slice(t.length-1539);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var sd=class extends ad{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Mt([Cn([68],d,"float32"),Cn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(Cn([s,136],n,"float32")).sub(Mt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Mt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Lf(d)),u=o.filter((p,d)=>!Lf(d));return new Xc(Array(68).fill(0).map((p,d)=>new ze(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var id=class extends sd{constructor(t=new td){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function J_(e){let t=[],{extractDenseBlock3Params:n}=Qf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function Z_(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock3Params:r}=Jf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var T0=class extends fn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=Kf(s,n.dense0,!0);return i=Kf(i,n.dense1),i=Kf(i,n.dense2),i=ma(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return J_(t)}extractParams(t){return Z_(t)}};var C0=class extends sd{constructor(t=new T0){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var uue=class extends id{};function Q_(e,t){return J(B(e,t.weights),t.biases)}function E0(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=J(o,i),o=Q_(o,t.scale),a?Xe(o):o}function eA(e,t){return E0(e,t,[1,1],!0)}function _0(e,t){return E0(e,t,[1,1],!1)}function tg(e,t){return E0(e,t,[2,2],!0,"valid")}function pue(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(l0(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>Me(Ya(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=qe(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=qe(e(o)),p=qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function tA(e){let{extractWeights:t,getRemainingWeights:n}=$n(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=pue(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),w=O(()=>Me(Ua(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:w},paramMappings:a}}function cue(e,t){let n=aa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function nA(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=cue(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!o0(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return An(e,t),{params:v,paramMappings:t}}function Qa(e,t){let n=eA(e,t.conv1);return n=_0(n,t.conv2),n=J(n,e),n=Xe(n),n}function od(e,t){let n=tg(e,t.conv1);n=_0(n,t.conv2);let a=ma(e,2,2,"valid"),r=wt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=wt(o);n=Qe([n,l],1);let u=[...n.shape];u[2]=1;let p=wt(u);n=Qe([n,p],2)}return a=s?Qe([a,r],3):a,n=J(a,n),n=Xe(n),n}var ld=class extends fn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(150,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=tg(s,n.conv32_down);i=Pt(i,3,2,"valid"),i=Qa(i,n.conv32_1),i=Qa(i,n.conv32_2),i=Qa(i,n.conv32_3),i=od(i,n.conv64_down),i=Qa(i,n.conv64_1),i=Qa(i,n.conv64_2),i=Qa(i,n.conv64_3),i=od(i,n.conv128_down),i=Qa(i,n.conv128_1),i=Qa(i,n.conv128_2),i=od(i,n.conv256_down),i=Qa(i,n.conv256_1),i=Qa(i,n.conv256_2),i=od(i,n.conv256_down_out);let o=i.mean([1,2]);return Fe(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=O(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return nA(t)}extractParams(t){return tA(t)}};function Eye(e){let t=new ld;return t.extractWeights(e),t}function A0(e,t){return{...e,...{descriptor:t}}}function Fye(e){return typeof e.age=="number"}function $0(e,t){return{...e,...{age:t}}}function Pye(e){return(e.gender==="male"||e.gender==="female")&&Ou(e.genderProbability)}function F0(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function due(e,t){function n(l,u){let p=Ya(e(9*l),[3,3,l,1]),d=qe(e(l)),c=qe(e(l)),h=qe(e(l)),m=qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Ya(e(l*u*p*p),[p,p,l,u]),m=qe(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),w=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:w}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),w=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),$=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),P=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:w},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:_,class_predictor:$},box_predictor_5:{box_encoding_predictor:P,class_predictor:F}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function aA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=due(n,t),i=r(),o=s(),u={extra_dim:Tm(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function hue(e,t){let n=aa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function rA(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=hue(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Fr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function _a(e,t,n){return O(()=>{let a=Rt(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),nn(a,0,6)})}var mue=.0010000000474974513;function fue(e,t,n){return O(()=>{let a=ms(e,t.filters,n,"same");return a=Tr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,mue),nn(a,0,6)})}function gue(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function sA(e,t){return O(()=>{let n,a=_a(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=gue(o);a=fue(a,s.depthwise_conv,l),a=_a(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function yue(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function iA(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=yue(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function bue(e){let t=dt(Me(e,[1,0])),n=[ce(t[2],t[0]),ce(t[3],t[1])],a=[J(t[0],fe(n[0],2)),J(t[1],fe(n[1],2))];return{sizes:n,centers:a}}function xue(e,t){let{sizes:n,centers:a}=bue(e),r=dt(Me(t,[1,0])),s=fe(B(mn(fe(r[2],5)),n[0]),2),i=J(B(fe(r[0],10),n[0]),a[0]),o=fe(B(mn(fe(r[3],5)),n[1]),2),l=J(B(fe(r[1],10),n[1]),a[1]);return Me(Mt([ce(i,s),ce(l,o),J(i,s),J(l,o)]),[1,0])}function oA(e,t,n){return O(()=>{let a=e.shape[0],r=xue(W(Pn(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=da(Ge(t,[0,0,1],[-1,-1,-1])),i=Ge(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function ko(e,t){return O(()=>{let n=e.shape[0],a=W(vo(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(vo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function lA(e,t,n){return O(()=>{let a=_a(e,n.conv_0,[1,1]),r=_a(a,n.conv_1,[2,2]),s=_a(r,n.conv_2,[1,1]),i=_a(s,n.conv_3,[2,2]),o=_a(i,n.conv_4,[1,1]),l=_a(o,n.conv_5,[2,2]),u=_a(l,n.conv_6,[1,1]),p=_a(u,n.conv_7,[2,2]),d=ko(t,n.box_predictor_0),c=ko(e,n.box_predictor_1),h=ko(r,n.box_predictor_2),m=ko(i,n.box_predictor_3),f=ko(l,n.box_predictor_4),g=ko(p,n.box_predictor_5),y=Qe([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var er=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ju=class extends fn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(512,!1),"float32"),r=ce(fe(a,127.5),1),s=sA(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=lA(s.out,s.conv11,n.prediction_layer);return oA(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new er(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=iA(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=c.map(x=>{let[v,w]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(_=>_*g),[T,C]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(_=>_*f);return new Tt(p[x],new Kc(T,v,C-T,w-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return rA(t)}extractParams(t){return aA(t)}};function vue(e){let t=new ju;return t.extractWeights(e),t}function Ebe(e){return vue(e)}var wue=class extends ju{};var uA=.4,pA=[new ze(.738768,.874946),new ze(2.42204,2.65704),new ze(4.30971,7.04493),new ze(10.246,4.59428),new ze(12.6868,11.8741)],cA=[new ze(1.603231,2.094468),new ze(6.041143,7.080126),new ze(2.882459,3.518061),new ze(4.266906,5.178857),new ze(9.041765,10.66308)],dA=[117.001,114.697,97.404],hA="tiny_yolov2_model",mA="tiny_yolov2_separable_conv_model";var ng=e=>typeof e=="number";function fA(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!ng(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>ng(t.x)&&ng(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(ng)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function qu(e){return O(()=>{let t=B(e,ke(.10000000149011612));return J(Xe(ce(e,t)),t)})}function Rr(e,t){return O(()=>{let n=fa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=ce(n,t.bn.sub),n=B(n,t.bn.truediv),n=J(n,t.conv.bias),qu(n)})}function Mr(e,t){return O(()=>{let n=fa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=lo(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),qu(n)})}function kue(e,t){let n=Uu(e,t);function a(i,o){let l=qe(e(i)),u=qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=Vu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function gA(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=$n(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=kue(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),w=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),_=u(f,g,"conv4"),$=u(g,y,"conv5"),P=b?u(y,b,"conv6"):void 0,F=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:v,conv1:w,conv2:T,conv3:C,conv4:_,conv5:$,conv6:P,conv7:F,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,v=l(d,c,"conv0"),w=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),_=l(f,g,"conv4"),$=l(g,y,"conv5"),P=l(y,b,"conv6"),F=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:w,conv2:T,conv3:C,conv4:_,conv5:$,conv6:P,conv7:F,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Iue(e,t){let n=aa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Gu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function yA(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Iue(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var Pr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var D0=class extends fn{constructor(t){super("TinyYolov2");fA(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Rr(t,n.conv0);return a=Pt(a,[2,2],[2,2],"same"),a=Rr(a,n.conv1),a=Pt(a,[2,2],[2,2],"same"),a=Rr(a,n.conv2),a=Pt(a,[2,2],[2,2],"same"),a=Rr(a,n.conv3),a=Pt(a,[2,2],[2,2],"same"),a=Rr(a,n.conv4),a=Pt(a,[2,2],[2,2],"same"),a=Rr(a,n.conv5),a=Pt(a,[2,2],[1,1],"same"),a=Rr(a,n.conv6),a=Rr(a,n.conv7),vo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?qu(vo(t,n.conv0,"valid",!1)):Mr(t,n.conv0);return a=Pt(a,[2,2],[2,2],"same"),a=Mr(a,n.conv1),a=Pt(a,[2,2],[2,2],"same"),a=Mr(a,n.conv2),a=Pt(a,[2,2],[2,2],"same"),a=Mr(a,n.conv3),a=Pt(a,[2,2],[2,2],"same"),a=Mr(a,n.conv4),a=Pt(a,[2,2],[2,2],"same"),a=Mr(a,n.conv5),a=Pt(a,[2,2],[1,1],"same"),a=n.conv6?Mr(a,n.conv6):a,a=n.conv7?Mr(a,n.conv7):a,vo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let r=oe(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?yr(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await vt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Pr(n),s=await vt(t),i=await this.forwardInput(s,a),o=O(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},u=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let p=u.map(g=>g.box),d=u.map(g=>g.score),c=u.map(g=>g.classScore),h=u.map(g=>this.config.classes[g.label]);return __(p.map(g=>g.rescale(a)),d,this.config.iouThreshold,!0).map(g=>new xo(d[g],c[g],h[g],p[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return yA(t,this.config)}extractParams(t){let n=this.config.filterSizes||D0.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return gA(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,u=t.shape[1],p=this.config.anchors.length,[d,c,h]=O(()=>{let y=t.reshape([u,u,p,this.boxEncodingSize]),b=y.slice([0,0,0,0],[u,u,p,4]),x=y.slice([0,0,0,4],[u,u,p,1]),v=this.withClassScores?Xa(y.slice([0,0,0,5],[u,u,p,this.config.classes.length]),3):ke(0);return[b,x,v]}),m=[],f=await c.array(),g=await d.array();for(let y=0;y<u;y++)for(let b=0;b<u;b++)for(let x=0;x<p;x++){let v=Bf(f[y][b][x][0]);if(!a||v>a){let w=(b+Bf(g[y][b][x][0]))/u*o,T=(y+Bf(g[y][b][x][1]))/u*l,C=Math.exp(g[y][b][x][2])*this.config.anchors[x].x/u*o,_=Math.exp(g[y][b][x][3])*this.config.anchors[x].y/u*l,$=w-C/2,P=T-_/2,F={row:y,col:b,anchor:x},{classScore:S,label:M}=this.withClassScores?await this.extractPredictedClass(h,F):{classScore:1,label:0};m.push({box:new qc($,P,$+C,P+_),score:v,classScore:v*S,label:M,...F})}}return d.dispose(),c.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Ku=D0;Ku.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ud=class extends Ku{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:uA,classes:["face"],...t?{anchors:cA,meanRgb:dA}:{anchors:pA,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Tt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?mA:hA}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function xxe(e,t=!0){let n=new ud(t);return n.extractWeights(e),n}var R0=class extends Pr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tr=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Io(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Hu(l)?r(l):l.detection),i=a||(t instanceof Ae?await Qc(t,s):await Zc(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function Xu(e,t,n,a,r){return Io([e],t,async s=>n(s[0]),a,r)}var bA=.4,xA=[new ze(1.603231,2.094468),new ze(6.041143,7.080126),new ze(2.882459,3.518061),new ze(4.266906,5.178857),new ze(9.041765,10.66308)],vA=[117.001,114.697,97.404];var pd=class extends Ku{constructor(){let t={withSeparableConvs:!0,iouThreshold:bA,classes:["face"],anchors:xA,meanRgb:vA,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new Tt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new ju,tinyFaceDetector:new pd,tinyYolov2:new ud,faceLandmark68Net:new id,faceLandmark68TinyNet:new C0,faceRecognitionNet:new ld,faceExpressionNet:new b0,ageGenderNet:new N0},Sue=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),Xxe=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),Yxe=(e,t)=>rt.tinyYolov2.locateFaces(e,t),Nue=e=>rt.faceLandmark68Net.detectLandmarks(e),Jxe=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),Zxe=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),Qxe=e=>rt.faceExpressionNet.predictExpressions(e),eve=e=>rt.ageGenderNet.predictAgeAndGender(e),Tue=e=>rt.ssdMobilenetv1.load(e),tve=e=>rt.tinyFaceDetector.load(e),nve=e=>rt.tinyYolov2.load(e),ave=e=>rt.faceLandmark68Net.load(e),rve=e=>rt.faceLandmark68TinyNet.load(e),sve=e=>rt.faceRecognitionNet.load(e),ive=e=>rt.faceExpressionNet.load(e),ove=e=>rt.ageGenderNet.load(e),lve=Tue,uve=Sue,pve=Nue;var M0=class extends tr{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Yu=class extends M0{async run(){let t=await this.parentTask,n=await Io(t,this.input,async a=>Promise.all(a.map(r=>rt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>x0(a,n[r]))}withAgeAndGender(){return new Zu(this,this.input)}},Ju=class extends M0{async run(){let t=await this.parentTask;if(!t)return;let n=await Xu(t,this.input,a=>rt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return x0(t,n)}withAgeAndGender(){return new Qu(this,this.input)}},So=class extends Yu{withAgeAndGender(){return new To(this,this.input)}withFaceDescriptors(){return new Eo(this,this.input)}},No=class extends Ju{withAgeAndGender(){return new Co(this,this.input)}withFaceDescriptor(){return new _o(this,this.input)}};var P0=class extends tr{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Zu=class extends P0{async run(){let t=await this.parentTask,n=await Io(t,this.input,async a=>Promise.all(a.map(r=>rt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return $0(F0(a,i,o),s)})}withFaceExpressions(){return new Yu(this,this.input)}},Qu=class extends P0{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Xu(t,this.input,s=>rt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return $0(F0(t,a,r),n)}withFaceExpressions(){return new Ju(this,this.input)}},To=class extends Zu{withFaceExpressions(){return new So(this,this.input)}withFaceDescriptors(){return new Eo(this,this.input)}},Co=class extends Qu{withFaceExpressions(){return new No(this,this.input)}withFaceDescriptor(){return new _o(this,this.input)}};var O0=class extends tr{constructor(t,n){super();this.parentTask=t;this.input=n}},Eo=class extends O0{async run(){let t=await this.parentTask;return(await Io(t,this.input,a=>Promise.all(a.map(r=>rt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>A0(t[r],a))}withFaceExpressions(){return new So(this,this.input)}withAgeAndGender(){return new To(this,this.input)}},_o=class extends O0{async run(){let t=await this.parentTask;if(!t)return;let n=await Xu(t,this.input,a=>rt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return A0(t,n)}withFaceExpressions(){return new No(this,this.input)}withAgeAndGender(){return new Co(this,this.input)}};var L0=class extends tr{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},z0=class extends L0{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await Qc(this.input,n):await Zc(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>rd(s,r[i]))}withFaceExpressions(){return new So(this,this.input)}withAgeAndGender(){return new To(this,this.input)}withFaceDescriptors(){return new Eo(this,this.input)}},B0=class extends L0{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await Qc(this.input,[n]):await Zc(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),rd(t,r)}withFaceExpressions(){return new No(this,this.input)}withAgeAndGender(){return new Co(this,this.input)}withFaceDescriptor(){return new _o(this,this.input)}};var W0=class extends tr{constructor(t,n=new er){super();this.input=t;this.options=n}},ag=class extends W0{async run(){let{input:t,options:n}=this,a;if(n instanceof R0)a=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof er)a=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof Pr)a=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Lu({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new z0(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Yu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Zu(this.runAndExtendWithFaceDetections(),this.input)}},U0=class extends W0{async run(){let t=await new ag(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Lu({},n):void 0)})}withFaceLandmarks(t=!1){return new B0(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Ju(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Qu(this.runAndExtendWithFaceDetection(),this.input)}};function owe(e,t=new er){return new U0(e,t)}function V0(e,t=new er){return new ag(e,t)}async function Cue(e,t){return V0(e,new er(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function hwe(e,t={}){return V0(e,new Pr(t)).withFaceLandmarks().withFaceDescriptors()}var mwe=Cue;function wA(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var G0=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof vs)return i;if(i instanceof Float32Array)return new vs(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new vs(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>wA(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Wf(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new Wf("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>vs.fromJSON(a));return new G0(n,t.distanceThreshold)}};function Fwe(e){let t=new pd;return t.extractWeights(e),t}function Eue(e,t){let{width:n,height:a}=new Vn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Eue(r,{width:n,height:a}));if(Hu(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return rd(Lu(e,r),s)}return Dr(e)?Lu(e,e.detection.forSize(n,a)):e instanceof Ea||e instanceof Tt?e.forSize(n,a):e}var Vwe=H_;export{N0 as AgeGenderNet,qc as BoundingBox,ft as Box,tr as ComposableTask,Eo as ComputeAllFaceDescriptorsTask,O0 as ComputeFaceDescriptorsTaskBase,_o as ComputeSingleFaceDescriptorTask,z0 as DetectAllFaceLandmarksTask,ag as DetectAllFacesTask,L0 as DetectFaceLandmarksTaskBase,W0 as DetectFacesTaskBase,B0 as DetectSingleFaceLandmarksTask,U0 as DetectSingleFaceTask,Vn as Dimensions,U_ as FACE_EXPRESSION_LABELS,Tt as FaceDetection,wue as FaceDetectionNet,b0 as FaceExpressionNet,wo as FaceExpressions,id as FaceLandmark68Net,C0 as FaceLandmark68TinyNet,uue as FaceLandmarkNet,Ea as FaceLandmarks,Yle as FaceLandmarks5,Xc as FaceLandmarks68,Wf as FaceMatch,G0 as FaceMatcher,ld as FaceRecognitionNet,S0 as Gender,Uf as LabeledBox,vs as LabeledFaceDescriptors,ks as NetInput,fn as NeuralNetwork,xo as ObjectDetection,ze as Point,Jle as PredictedBox,Kc as Rect,ju as SsdMobilenetv1,er as SsdMobilenetv1Options,pd as TinyFaceDetector,R0 as TinyFaceDetectorOptions,ud as TinyYolov2,Pr as TinyYolov2Options,mwe as allFaces,Cue as allFacesSsdMobilenetv1,hwe as allFacesTinyYolov2,$_ as awaitMediaLoaded,F_ as bufferToImage,Zxe as computeFaceDescriptor,Wu as createCanvas,jf as createCanvasFromMedia,Ebe as createFaceDetectionNet,Eye as createFaceRecognitionNet,vue as createSsdMobilenetv1,Fwe as createTinyFaceDetector,xxe as createTinyYolov2,V0 as detectAllFaces,Nue as detectFaceLandmarks,Jxe as detectFaceLandmarksTiny,pve as detectLandmarks,owe as detectSingleFace,G_ as draw,at as env,wA as euclideanDistance,$0 as extendWithAge,A0 as extendWithFaceDescriptor,Lu as extendWithFaceDetection,x0 as extendWithFaceExpressions,rd as extendWithFaceLandmarks,F0 as extendWithGender,Qc as extractFaceTensors,Zc as extractFaces,Lde as fetchImage,M_ as fetchJson,Vde as fetchNetWeights,Is as fetchOrThrow,Xde as fetchVideo,na as getContext2dOrThrow,Bu as getMediaDimensions,D_ as imageTensorToCanvas,R_ as imageToSquare,rpe as inverseSigmoid,C_ as iou,y0 as isMediaElement,Hf as isMediaLoaded,Fye as isWithAge,Dr as isWithFaceDetection,V_ as isWithFaceExpressions,Hu as isWithFaceLandmarks,Pye as isWithGender,ove as loadAgeGenderModel,lve as loadFaceDetectionModel,ive as loadFaceExpressionModel,ave as loadFaceLandmarkModel,rve as loadFaceLandmarkTinyModel,sve as loadFaceRecognitionModel,Tue as loadSsdMobilenetv1Model,tve as loadTinyFaceDetectorModel,nve as loadTinyYolov2Model,O_ as loadWeightMap,uve as locateFaces,nhe as matchDimensions,E_ as minBbox,rt as nets,__ as nonMaxSuppression,yr as normalize,A_ as padToSquare,eve as predictAgeAndGender,Qxe as recognizeFaceExpressions,Eue as resizeResults,zu as resolveInput,npe as shuffleArray,Bf as sigmoid,Sue as ssdMobilenetv1,Le as tf,Xxe as tinyFaceDetector,Yxe as tinyYolov2,vt as toNetInput,T_ as utils,fA as validateConfig,Vwe as version};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=face-api.esm.js.map
|