4949 lines
1.1 MiB
4949 lines
1.1 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var _U=Object.create;var BC=Object.defineProperty;var EU=Object.getOwnPropertyDescriptor;var AU=Object.getOwnPropertyNames;var $U=Object.getPrototypeOf,DU=Object.prototype.hasOwnProperty;var Oe=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),Zt=(r,t)=>{for(var e in t)BC(r,e,{get:t[e],enumerable:!0})},FU=(r,t,e,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let o of AU(t))!DU.call(r,o)&&o!==e&&BC(r,o,{get:()=>t[o],enumerable:!(n=EU(t,o))||n.enumerable});return r};var Mu=(r,t,e)=>(e=r!=null?_U($U(r)):{},FU(t||!r||!r.__esModule?BC(e,"default",{value:r,enumerable:!0}):e,r));var H1=Oe((ilt,U1)=>{U1.exports=je;var po=null;try{po=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function je(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}je.prototype.__isLong__;Object.defineProperty(je.prototype,"__isLong__",{value:!0});function zn(r){return(r&&r.__isLong__)===!0}je.isLong=zn;var O1={},M1={};function Wu(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=M1[r],n)?n:(e=Xe(r,(r|0)<0?-1:0,!0),o&&(M1[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=O1[r],n)?n:(e=Xe(r,r<0?-1:0,!1),o&&(O1[r]=e),e))}je.fromInt=Wu;function mo(r,t){if(isNaN(r))return t?Gu:fo;if(t){if(r<0)return Gu;if(r>=B1)return W1}else{if(r<=-L1)return Ln;if(r+1>=L1)return G1}return r<0?mo(-r,t).neg():Xe(r%pm|0,r/pm|0,t)}je.fromNumber=mo;function Xe(r,t,e){return new je(r,t,e)}je.fromBits=Xe;var vx=Math.pow;function QC(r,t,e){if(r.length===0)throw Error("empty string");if(r==="NaN"||r==="Infinity"||r==="+Infinity"||r==="-Infinity")return fo;if(typeof t=="number"?(e=t,t=!1):t=!!t,e=e||10,e<2||36<e)throw RangeError("radix");var n;if((n=r.indexOf("-"))>0)throw Error("interior hyphen");if(n===0)return QC(r.substring(1),t,e).neg();for(var o=mo(vx(e,8)),s=fo,i=0;i<r.length;i+=8){var a=Math.min(8,r.length-i),u=parseInt(r.substring(i,i+a),e);if(a<8){var l=mo(vx(e,a));s=s.mul(l).add(mo(u))}else s=s.mul(o),s=s.add(mo(u))}return s.unsigned=t,s}je.fromString=QC;function qs(r,t){return typeof r=="number"?mo(r,t):typeof r=="string"?QC(r,t):Xe(r.low,r.high,typeof t=="boolean"?t:r.unsigned)}je.fromValue=qs;var P1=1<<16,e4=1<<24,pm=P1*P1,B1=pm*pm,L1=B1/2,z1=Wu(e4),fo=Wu(0);je.ZERO=fo;var Gu=Wu(0,!0);je.UZERO=Gu;var cm=Wu(1);je.ONE=cm;var V1=Wu(1,!0);je.UONE=V1;var JC=Wu(-1);je.NEG_ONE=JC;var G1=Xe(-1,2147483647,!1);je.MAX_VALUE=G1;var W1=Xe(-1,-1,!0);je.MAX_UNSIGNED_VALUE=W1;var Ln=Xe(0,-2147483648,!1);je.MIN_VALUE=Ln;var yt=je.prototype;yt.toInt=function(){return this.unsigned?this.low>>>0:this.low};yt.toNumber=function(){return this.unsigned?(this.high>>>0)*pm+(this.low>>>0):this.high*pm+(this.low>>>0)};yt.toString=function(t){if(t=t||10,t<2||36<t)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(Ln)){var e=mo(t),n=this.div(e),o=n.mul(e).sub(this);return n.toString(t)+o.toInt().toString(t)}else return"-"+this.neg().toString(t);for(var s=mo(vx(t,6),this.unsigned),i=this,a="";;){var u=i.div(s),l=i.sub(u.mul(s)).toInt()>>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c="0"+c;a=""+c+a}};yt.getHighBits=function(){return this.high};yt.getHighBitsUnsigned=function(){return this.high>>>0};yt.getLowBits=function(){return this.low};yt.getLowBitsUnsigned=function(){return this.low>>>0};yt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Ln)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&(t&1<<e)==0;e--);return this.high!=0?e+33:e+1};yt.isZero=function(){return this.high===0&&this.low===0};yt.eqz=yt.isZero;yt.isNegative=function(){return!this.unsigned&&this.high<0};yt.isPositive=function(){return this.unsigned||this.high>=0};yt.isOdd=function(){return(this.low&1)===1};yt.isEven=function(){return(this.low&1)===0};yt.equals=function(t){return zn(t)||(t=qs(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};yt.eq=yt.equals;yt.notEquals=function(t){return!this.eq(t)};yt.neq=yt.notEquals;yt.ne=yt.notEquals;yt.lessThan=function(t){return this.comp(t)<0};yt.lt=yt.lessThan;yt.lessThanOrEqual=function(t){return this.comp(t)<=0};yt.lte=yt.lessThanOrEqual;yt.le=yt.lessThanOrEqual;yt.greaterThan=function(t){return this.comp(t)>0};yt.gt=yt.greaterThan;yt.greaterThanOrEqual=function(t){return this.comp(t)>=0};yt.gte=yt.greaterThanOrEqual;yt.ge=yt.greaterThanOrEqual;yt.compare=function(t){if(zn(t)||(t=qs(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};yt.comp=yt.compare;yt.negate=function(){return!this.unsigned&&this.eq(Ln)?Ln:this.not().add(cm)};yt.neg=yt.negate;yt.add=function(t){zn(t)||(t=qs(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,Xe(m<<16|f,c<<16|p,this.unsigned)};yt.subtract=function(t){return zn(t)||(t=qs(t)),this.add(t.neg())};yt.sub=yt.subtract;yt.multiply=function(t){if(this.isZero())return fo;if(zn(t)||(t=qs(t)),po){var e=po.mul(this.low,this.high,t.low,t.high);return Xe(e,po.get_high(),this.unsigned)}if(t.isZero())return fo;if(this.eq(Ln))return t.isOdd()?Ln:fo;if(t.eq(Ln))return this.isOdd()?Ln:fo;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(z1)&&t.lt(z1))return mo(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,Xe(f<<16|d,p<<16|m,this.unsigned)};yt.mul=yt.multiply;yt.divide=function(t){if(zn(t)||(t=qs(t)),t.isZero())throw Error("division by zero");if(po){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?po.div_u:po.div_s)(this.low,this.high,t.low,t.high);return Xe(e,po.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?Gu:fo;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return Gu;if(t.gt(this.shru(1)))return V1;s=Gu}else{if(this.eq(Ln)){if(t.eq(cm)||t.eq(JC))return Ln;if(t.eq(Ln))return cm;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(fo)?t.isNegative()?cm:JC:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(Ln))return this.unsigned?Gu:fo;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=fo}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:vx(2,a-48),l=mo(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=mo(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=cm),s=s.add(l),o=o.sub(c)}return s};yt.div=yt.divide;yt.modulo=function(t){if(zn(t)||(t=qs(t)),po){var e=(this.unsigned?po.rem_u:po.rem_s)(this.low,this.high,t.low,t.high);return Xe(e,po.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};yt.mod=yt.modulo;yt.rem=yt.modulo;yt.not=function(){return Xe(~this.low,~this.high,this.unsigned)};yt.and=function(t){return zn(t)||(t=qs(t)),Xe(this.low&t.low,this.high&t.high,this.unsigned)};yt.or=function(t){return zn(t)||(t=qs(t)),Xe(this.low|t.low,this.high|t.high,this.unsigned)};yt.xor=function(t){return zn(t)||(t=qs(t)),Xe(this.low^t.low,this.high^t.high,this.unsigned)};yt.shiftLeft=function(t){return zn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?Xe(this.low<<t,this.high<<t|this.low>>>32-t,this.unsigned):Xe(0,this.low<<t-32,this.unsigned)};yt.shl=yt.shiftLeft;yt.shiftRight=function(t){return zn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?Xe(this.low>>>t|this.high<<32-t,this.high>>t,this.unsigned):Xe(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};yt.shr=yt.shiftRight;yt.shiftRightUnsigned=function(t){if(zn(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return Xe(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?Xe(e,0,this.unsigned):Xe(e>>>t-32,0,this.unsigned)};yt.shru=yt.shiftRightUnsigned;yt.shr_u=yt.shiftRightUnsigned;yt.toSigned=function(){return this.unsigned?Xe(this.low,this.high,!1):this};yt.toUnsigned=function(){return this.unsigned?this:Xe(this.low,this.high,!0)};yt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};yt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};yt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};je.fromBytes=function(t,e,n){return n?je.fromBytesLE(t,e):je.fromBytesBE(t,e)};je.fromBytesLE=function(t,e){return new je(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};je.fromBytesBE=function(t,e){return new je(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var N_=Oe(()=>{});var T_=Oe(()=>{});var uE=Oe((lE,pS)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(" "),u.s1=l(" "),u.s2=l(" "),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=l.toString();for(var c=0;c<l.length;c++){a+=l.charCodeAt(c);var p=.02519603282416938*a;a=p>>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(lE,typeof pS=="object"&&pS,typeof define=="function"&&define)});var pE=Oe((cE,mS)=>{(function(r,t,e){function n(i){var a=this,u="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(cE,typeof mS=="object"&&mS,typeof define=="function"&&define)});var fE=Oe((mE,fS)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,l==u.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(mE,typeof fS=="object"&&fS,typeof define=="function"&&define)});var hE=Oe((dE,dS)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],l.x=f,l.i=0,p=256;p>0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(dE,typeof dS=="object"&&dS,typeof define=="function"&&define)});var xE=Oe((gE,hS)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(gE,typeof hS=="object"&&hS,typeof define=="function"&&define)});var bE=Oe((yE,gS)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l<u.length+20;l++)a.b^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.a=i.a,a.b=i.b,a.c=i.c,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(yE,typeof gS=="object"&&gS,typeof define=="function"&&define)});var xS=Oe(()=>{});var wE=Oe((ESt,Hx)=>{(function(r,t){var e=this,n=256,o=6,s=52,i="random",a=t.pow(n,o),u=t.pow(2,s),l=u*2,c=n-1,p;function m(w,v,k){var _=[];v=v==!0?{entropy:!0}:v||{};var $=g(h(v.entropy?[w,b(r)]:w==null?y():w,3),_),D=new f(_),F=function(){for(var P=D.g(o),B=a,U=0;P<u;)P=(P+U)*n,B*=n,U=D.g(1);for(;P>=l;)P/=2,B/=2,U>>>=1;return(P+U)/B};return F.int32=function(){return D.g(4)|0},F.quick=function(){return D.g(4)/4294967296},F.double=F,g(b(D.S),r),(v.pass||k||function(P,B,U,q){return q&&(q.S&&d(q,D),P.state=function(){return d(D,{})}),U?(t[i]=P,B):P})(F,$,"global"in v?v.global:this==t,v.state)}t["seed"+i]=m;function f(w){var v,k=w.length,_=this,$=0,D=_.i=_.j=0,F=_.S=[];for(k||(w=[k++]);$<n;)F[$]=$++;for($=0;$<n;$++)F[$]=F[D=c&D+w[$%k]+(v=F[$])],F[D]=v;(_.g=function(P){for(var B,U=0,q=_.i,j=_.j,K=_.S;P--;)B=K[q=c&q+1],U=U*n+K[c&(K[q]=K[j=c&j+B])+(K[j]=B)];return _.i=q,_.j=j,U})(n)}function d(w,v){return v.i=w.i,v.j=w.j,v.S=w.S.slice(),v}function h(w,v){var k=[],_=typeof w,$;if(v&&_=="object")for($ in w)try{k.push(h(w[$],v-1))}catch(D){}return k.length?k:_=="string"?w:w+"\0"}function g(w,v){for(var k=w+"",_,$=0;$<k.length;)v[c&$]=c&(_^=v[c&$]*19)+k.charCodeAt($++);return b(v)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(e.crypto||e.msCrypto).getRandomValues(w)),b(w)}catch(_){var v=e.navigator,k=v&&v.plugins;return[+new Date,e,k,e.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),r),typeof Hx=="object"&&Hx.exports){Hx.exports=m;try{p=xS()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var yS=Oe((ASt,vE)=>{var uj=uE(),cj=pE(),pj=fE(),mj=hE(),fj=xE(),dj=bE(),lc=wE();lc.alea=uj;lc.xor128=cj;lc.xorwow=pj;lc.xorshift7=mj;lc.xor4096=fj;lc.tychei=dj;vE.exports=lc});var rF=Oe((eF,Tk)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(" "),u.s1=l(" "),u.s2=l(" "),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c<l.length;c++){a+=l.charCodeAt(c);var p=.02519603282416938*a;a=p>>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(eF,typeof Tk=="object"&&Tk,typeof define=="function"&&define)});var oF=Oe((nF,_k)=>{(function(r,t,e){function n(i){var a=this,u="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(nF,typeof _k=="object"&&_k,typeof define=="function"&&define)});var iF=Oe((sF,Ek)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,l==u.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(sF,typeof Ek=="object"&&Ek,typeof define=="function"&&define)});var lF=Oe((aF,Ak)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],l.x=f,l.i=0,p=256;p>0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(aF,typeof Ak=="object"&&Ak,typeof define=="function"&&define)});var cF=Oe((uF,$k)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],y=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,y=Math.max(y,c.length)),f=0,d=-32;d<y;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(uF,typeof $k=="object"&&$k,typeof define=="function"&&define)});var mF=Oe((pF,Dk)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l<u.length+20;l++)a.b^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.a=i.a,a.b=i.b,a.c=i.c,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(pF,typeof Dk=="object"&&Dk,typeof define=="function"&&define)});var dF=Oe((fF,Rb)=>{(function(r,t,e){var n=256,o=6,s=52,i="random",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,v,k){var _=[];v=v==!0?{entropy:!0}:v||{};var $=g(h(v.entropy?[w,b(t)]:w==null?y():w,3),_),D=new f(_),F=function(){for(var P=D.g(o),B=a,U=0;P<u;)P=(P+U)*n,B*=n,U=D.g(1);for(;P>=l;)P/=2,B/=2,U>>>=1;return(P+U)/B};return F.int32=function(){return D.g(4)|0},F.quick=function(){return D.g(4)/4294967296},F.double=F,g(b(D.S),t),(v.pass||k||function(P,B,U,q){return q&&(q.S&&d(q,D),P.state=function(){return d(D,{})}),U?(e[i]=P,B):P})(F,$,"global"in v?v.global:this==e,v.state)}function f(w){var v,k=w.length,_=this,$=0,D=_.i=_.j=0,F=_.S=[];for(k||(w=[k++]);$<n;)F[$]=$++;for($=0;$<n;$++)F[$]=F[D=c&D+w[$%k]+(v=F[$])],F[D]=v;(_.g=function(P){for(var B,U=0,q=_.i,j=_.j,K=_.S;P--;)B=K[q=c&q+1],U=U*n+K[c&(K[q]=K[j=c&j+B])+(K[j]=B)];return _.i=q,_.j=j,U})(n)}function d(w,v){return v.i=w.i,v.j=w.j,v.S=w.S.slice(),v}function h(w,v){var k=[],_=typeof w,$;if(v&&_=="object")for($ in w)try{k.push(h(w[$],v-1))}catch(D){}return k.length?k:_=="string"?w:w+"\0"}function g(w,v){for(var k=w+"",_,$=0;$<k.length;)v[c&$]=c&(_^=v[c&$]*19)+k.charCodeAt($++);return b(v)}function y(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(_){var v=r.navigator,k=v&&v.plugins;return[+new Date,r,k,r.screen,b(t)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),t),typeof Rb=="object"&&Rb.exports){Rb.exports=m;try{p=xS()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):e["seed"+i]=m})(typeof self!="undefined"?self:fF,[],Math)});var Fk=Oe((Lae,hF)=>{var AZ=rF(),$Z=oF(),DZ=iF(),FZ=lF(),RZ=cF(),OZ=mF(),Uc=dF();Uc.alea=AZ;Uc.xor128=$Z;Uc.xorwow=DZ;Uc.xorshift7=FZ;Uc.xor4096=RZ;Uc.tychei=OZ;hF.exports=Uc});var Rk=Oe(()=>{});var Ub=Oe(()=>{});var Og=Oe(()=>{});var kW=Oe(()=>{});var NW=Oe(()=>{});var TW=Oe(()=>{});var _W=Oe((i0,JT)=>{var ZT=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};function e(){return Ot.buffer!=gr&&Wo(Ot.buffer),fp}function n(){return Ot.buffer!=gr&&Wo(Ot.buffer),dp}function o(){return Ot.buffer!=gr&&Wo(Ot.buffer),Ad}function s(){return Ot.buffer!=gr&&Wo(Ot.buffer),Bg}function i(){return Ot.buffer!=gr&&Wo(Ot.buffer),Vg}function a(){return Ot.buffer!=gr&&Wo(Ot.buffer),Gg}function u(){return Ot.buffer!=gr&&Wo(Ot.buffer),Wg}var l=typeof t!="undefined"?t:{},c,p;l.ready=new Promise(function(T,O){c=T,p=O});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f=Object.assign({},l),d=[],h="./this.program",g=(T,O)=>{throw O},y=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=l.ENVIRONMENT_IS_PTHREAD||!1,k="";function _(T){return l.locateFile?l.locateFile(T,k):k+T}var $,D,F,P;function B(T){if(T instanceof Bd)return;X("exiting due to exception: "+T)}var U,q,j;if(w){b?k=Og().dirname(k)+"/":k=__dirname+"/",j=()=>{q||(U=Ub(),q=Og())},$=function(W,Y){return j(),W=q.normalize(W),U.readFileSync(W,Y?void 0:"utf8")},F=O=>{var W=$(O,!0);return W.buffer||(W=new Uint8Array(W)),W},D=(O,W,Y)=>{j(),O=q.normalize(O),U.readFile(O,function(ht,wt){ht?Y(ht):W(wt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(O){if(!(O instanceof Bd))throw O}),process.on("unhandledRejection",function(O){throw O}),g=(O,W)=>{if($u())throw process.exitCode=O,W;B(W),process.exit(O)},l.inspect=function(){return"[Emscripten Module object]"};let T;try{T=kW()}catch(O){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),O}global.Worker=T.Worker}else(y||b)&&(b?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.replace(/[?#].*/,"").lastIndexOf("/")+1):k="",w||($=T=>{var O=new XMLHttpRequest;return O.open("GET",T,!1),O.send(null),O.responseText},b&&(F=T=>{var O=new XMLHttpRequest;return O.open("GET",T,!1),O.responseType="arraybuffer",O.send(null),new Uint8Array(O.response)}),D=(T,O,W)=>{var Y=new XMLHttpRequest;Y.open("GET",T,!0),Y.responseType="arraybuffer",Y.onload=()=>{if(Y.status==200||Y.status==0&&Y.response){O(Y.response);return}W()},Y.onerror=W,Y.send(null)}),P=T=>document.title=T);w&&typeof performance=="undefined"&&(global.performance=NW().performance);var K=console.log.bind(console),Q=console.warn.bind(console);w&&(j(),K=T=>U.writeSync(1,T+`
|
|
`),Q=T=>U.writeSync(2,T+`
|
|
`));var rt=l.print||K,X=l.printErr||Q;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var nt=4;function st(T){st.shown||(st.shown={}),st.shown[T]||(st.shown[T]=1,X(T))}function it(T,O){if(typeof WebAssembly.Function=="function"){for(var W={i:"i32",j:"i64",f:"f32",d:"f64"},Y={parameters:[],results:O[0]=="v"?[]:[W[O[0]]]},ht=1;ht<O.length;++ht)Y.parameters.push(W[O[ht]]);return new WebAssembly.Function(Y,T)}var wt=[1,0,1,96],Tt=O.slice(0,1),Gt=O.slice(1),sr={i:127,j:126,f:125,d:124};wt.push(Gt.length);for(var ht=0;ht<Gt.length;++ht)wt.push(sr[Gt[ht]]);Tt=="v"?wt.push(0):wt=wt.concat([1,sr[Tt]]),wt[1]=wt.length-2;var Ko=new Uint8Array([0,97,115,109,1,0,0,0].concat(wt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),jo=new WebAssembly.Module(Ko),xx=new WebAssembly.Instance(jo,{e:{f:T}}),Vd=xx.exports.f;return Vd}var ft=[],at;function xt(){if(ft.length)return ft.pop();try{qn.grow(1)}catch(T){throw T instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":T}return qn.length-1}function dt(T,O){for(var W=T;W<T+O;W++){var Y=bp(W);Y&&at.set(Y,W)}}var bt=0,kt=T=>{bt=T},At=Atomics.load,Dt=Atomics.store,Kt=Atomics.compareExchange,jt;l.wasmBinary&&(jt=l.wasmBinary);var ce=l.noExitRuntime||!0;typeof WebAssembly!="object"&&gp("no native wasm support detected");var Ot,$e,ke=!1,ae;function Ke(T,O){T||gp(O)}function Re(T){var O=l["_"+T];return O}function rn(T,O,W,Y,ht){var wt={string:function(Mn){var Np=0;if(Mn!=null&&Mn!==0){var S1=(Mn.length<<2)+1;Np=kp(S1),On(Mn,Np,S1)}return Np},array:function(Mn){var Np=kp(Mn.length);return Al(Mn,Np),Np}};function Tt(Mn){return O==="string"?jr(Mn):O==="boolean"?Boolean(Mn):Mn}var Gt=Re(T),sr=[],Ko=0;if(Y)for(var jo=0;jo<Y.length;jo++){var xx=wt[W[jo]];xx?(Ko===0&&(Ko=LC()),sr[jo]=xx(Y[jo])):sr[jo]=Y[jo]}var Vd=Gt.apply(null,sr);function TU(Mn){return Ko!==0&&fx(Ko),Tt(Mn)}return Vd=TU(Vd),Vd}function ze(T,O,W,Y){W=W||[];var ht=W.every(function(Tt){return Tt==="number"}),wt=O!=="string";return wt&&ht&&!Y?Re(T):function(){return rn(T,O,W,arguments,Y)}}var Vo=1;function Rr(T){var O=new TextDecoder(T);this.decode=W=>(W.buffer instanceof SharedArrayBuffer&&(W=new Uint8Array(W)),O.decode.call(O,W))}var nn=typeof TextDecoder!="undefined"?new Rr("utf8"):void 0;function on(T,O,W){for(var Y=O+W,ht=O;T[ht]&&!(ht>=Y);)++ht;if(ht-O>16&&T.subarray&&nn)return nn.decode(T.subarray(O,ht));for(var wt="";O<ht;){var Tt=T[O++];if(!(Tt&128)){wt+=String.fromCharCode(Tt);continue}var Gt=T[O++]&63;if((Tt&224)==192){wt+=String.fromCharCode((Tt&31)<<6|Gt);continue}var sr=T[O++]&63;if((Tt&240)==224?Tt=(Tt&15)<<12|Gt<<6|sr:Tt=(Tt&7)<<18|Gt<<12|sr<<6|T[O++]&63,Tt<65536)wt+=String.fromCharCode(Tt);else{var Ko=Tt-65536;wt+=String.fromCharCode(55296|Ko>>10,56320|Ko&1023)}}return wt}function jr(T,O){return T?on(n(),T,O):""}function so(T,O,W,Y){if(!(Y>0))return 0;for(var ht=W,wt=W+Y-1,Tt=0;Tt<T.length;++Tt){var Gt=T.charCodeAt(Tt);if(Gt>=55296&&Gt<=57343){var sr=T.charCodeAt(++Tt);Gt=65536+((Gt&1023)<<10)|sr&1023}if(Gt<=127){if(W>=wt)break;O[W++]=Gt}else if(Gt<=2047){if(W+1>=wt)break;O[W++]=192|Gt>>6,O[W++]=128|Gt&63}else if(Gt<=65535){if(W+2>=wt)break;O[W++]=224|Gt>>12,O[W++]=128|Gt>>6&63,O[W++]=128|Gt&63}else{if(W+3>=wt)break;O[W++]=240|Gt>>18,O[W++]=128|Gt>>12&63,O[W++]=128|Gt>>6&63,O[W++]=128|Gt&63}}return O[W]=0,W-ht}function On(T,O,W){return so(T,n(),O,W)}function Go(T){for(var O=0,W=0;W<T.length;++W){var Y=T.charCodeAt(W);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|T.charCodeAt(++W)&1023),Y<=127?++O:Y<=2047?O+=2:Y<=65535?O+=3:O+=4}return O}var io=typeof TextDecoder!="undefined"?new Rr("utf-16le"):void 0;function Al(T,O){e().set(T,O)}function Eu(T,O,W){for(var Y=0;Y<T.length;++Y)e()[O++>>0]=T.charCodeAt(Y);W||(e()[O>>0]=0)}function mp(T,O){return T%O>0&&(T+=O-T%O),T}var gr,fp,dp,Ad,Bg,Vg,o1,Gg,Wg;v&&(gr=l.buffer);function Wo(T){gr=T,l.HEAP8=fp=new Int8Array(T),l.HEAP16=Ad=new Int16Array(T),l.HEAP32=Vg=new Int32Array(T),l.HEAPU8=dp=new Uint8Array(T),l.HEAPU16=Bg=new Uint16Array(T),l.HEAPU32=o1=new Uint32Array(T),l.HEAPF32=Gg=new Float32Array(T),l.HEAPF64=Wg=new Float64Array(T)}var Ug=l.INITIAL_MEMORY||16777216;if(v)Ot=l.wasmMemory,gr=l.buffer;else if(l.wasmMemory)Ot=l.wasmMemory;else if(Ot=new WebAssembly.Memory({initial:Ug/65536,maximum:32768,shared:!0}),!(Ot.buffer instanceof SharedArrayBuffer))throw X("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Ot&&(gr=Ot.buffer),Ug=gr.byteLength,Wo(gr);var qn,hp=[],$l=[],u0=[],Hg=[],Au=!1,c0=!1,qg=0;function $u(){return ce||qg>0}function sn(){if(l.preRun)for(typeof l.preRun=="function"&&(l.preRun=[l.preRun]);l.preRun.length;)s1(l.preRun.shift());Yg(hp)}function $d(){Au=!0,!v&&Yg($l)}function p0(){v||(Ut.terminateAllThreads(),c0=!0)}function m0(){if(!v){if(l.postRun)for(typeof l.postRun=="function"&&(l.postRun=[l.postRun]);l.postRun.length;)Dd(l.postRun.shift());Yg(Hg)}}function s1(T){hp.unshift(T)}function i1(T){$l.unshift(T)}function Dd(T){Hg.unshift(T)}var Dl=0,Kg=null,Uo=null;function Fd(T){Dl++,l.monitorRunDependencies&&l.monitorRunDependencies(Dl)}function a1(T){if(Dl--,l.monitorRunDependencies&&l.monitorRunDependencies(Dl),Dl==0&&(Kg!==null&&(clearInterval(Kg),Kg=null),Uo)){var O=Uo;Uo=null,O()}}l.preloadedImages={},l.preloadedAudios={};function gp(T){v?postMessage({cmd:"onAbort",arg:T}):l.onAbort&&l.onAbort(T),T="Aborted("+T+")",X(T),ke=!0,ae=1,T+=". Build with -s ASSERTIONS=1 for more info.";var O=new WebAssembly.RuntimeError(T);throw p(O),O}var f0="data:application/octet-stream;base64,";function Rd(T){return T.startsWith(f0)}function jg(T){return T.startsWith("file://")}var an;an="tfjs-backend-wasm-threaded-simd.wasm",Rd(an)||(an=_(an));function Xg(T){try{if(T==an&&jt)return new Uint8Array(jt);if(F)return F(T);throw"both async and sync fetching of the wasm failed"}catch(O){gp(O)}}function xp(){if(!jt&&(y||b)){if(typeof fetch=="function"&&!jg(an))return fetch(an,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+an+"'";return T.arrayBuffer()}).catch(function(){return Xg(an)});if(D)return new Promise(function(T,O){D(an,function(W){T(new Uint8Array(W))},O)})}return Promise.resolve().then(function(){return Xg(an)})}function d0(){var T={env:lx,wasi_snapshot_preview1:lx};function O(Tt,Gt){var sr=Tt.exports;if(l.asm=sr,v0(l.asm.emscripten_tls_init),qn=l.asm.__indirect_function_table,i1(l.asm.__wasm_call_ctors),$e=Gt,!v){var Ko=Ut.unusedWorkers.length;Ut.unusedWorkers.forEach(function(jo){Ut.loadWasmModuleToWorker(jo,function(){--Ko||a1("wasm-instantiate")})})}}v||Fd("wasm-instantiate");function W(Tt){O(Tt.instance,Tt.module)}function Y(Tt){return xp().then(function(Gt){return WebAssembly.instantiate(Gt,T)}).then(function(Gt){return Gt}).then(Tt,function(Gt){X("failed to asynchronously prepare wasm: "+Gt),gp(Gt)})}function ht(){return!jt&&typeof WebAssembly.instantiateStreaming=="function"&&!Rd(an)&&!jg(an)&&typeof fetch=="function"?fetch(an,{credentials:"same-origin"}).then(function(Tt){var Gt=WebAssembly.instantiateStreaming(Tt,T);return Gt.then(W,function(sr){return X("wasm streaming compile failed: "+sr),X("falling back to ArrayBuffer instantiation"),Y(W)})}):Y(W)}if(l.instantiateWasm)try{var wt=l.instantiateWasm(T,O);return wt}catch(Tt){return X("Module.instantiateWasm callback failed with error: "+Tt),!1}return ht().catch(p),{}}var l1,u1,h0={};function Yg(T){for(;T.length>0;){var O=T.shift();if(typeof O=="function"){O(l);continue}var W=O.func;typeof W=="number"?O.arg===void 0?bp(W)():bp(W)(O.arg):W(O.arg===void 0?null:O.arg)}}function yp(T){var O=LC(),W=T();return fx(O),W}function OW(T){return T}function c1(T){var O=/\b_Z[\w\d_]+/g;return T.replace(O,function(W){var Y=W;return W===Y?W:Y+" ["+W+"]"})}function g0(T){i()[T>>2]=0;var O=Ut.pthreads[T];delete Ut.pthreads[T],O.worker.terminate(),PC(T),Ut.runningWorkers.splice(Ut.runningWorkers.indexOf(O.worker),1),O.worker.pthread=void 0}function x0(T){var O=Ut.pthreads[T];O.worker.postMessage({cmd:"cancel"})}function Zg(T){var O=Ut.pthreads[T];if(O){i()[T>>2]=0;var W=O.worker;Ut.returnWorkerToPool(W)}}function Jg(T){SU(T)}function y0(T){if(T instanceof Bd||T=="unwind")return ae;g(1,T)}var Ut={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){v?Ut.initWorker():Ut.initMainThread()},initMainThread:function(){for(var T=8,O=0;O<T;++O)Ut.allocateUnusedWorker()},initWorker:function(){ce=!1},pthreads:{},setExitStatus:function(T){ae=T},terminateAllThreads:function(){for(var T in Ut.pthreads){var O=Ut.pthreads[T];O&&O.worker&&Ut.returnWorkerToPool(O.worker)}for(var W=0;W<Ut.unusedWorkers.length;++W){var Y=Ut.unusedWorkers[W];Y.terminate()}Ut.unusedWorkers=[]},returnWorkerToPool:function(T){Ut.runWithoutMainThreadQueuedCalls(function(){delete Ut.pthreads[T.pthread.threadInfoStruct],Ut.unusedWorkers.push(T),Ut.runningWorkers.splice(Ut.runningWorkers.indexOf(T),1),PC(T.pthread.threadInfoStruct),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){i()[I1>>2]=0;try{T()}finally{i()[I1>>2]=1}},receiveObjectTransfer:function(T){},threadInit:function(){for(var T in Ut.tlsInitFunctions)Ut.tlsInitFunctions[T]()},loadWasmModuleToWorker:function(T,O){T.onmessage=W=>{var Y=W.data,ht=Y.cmd;if(T.pthread&&(Ut.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=mx()){var wt=Ut.pthreads[Y.targetThread];wt?wt.worker.postMessage(Y,Y.transferList):X('Internal error! Worker sent a message "'+ht+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Ut.currentProxiedOperationCallerThread=void 0;return}ht==="processQueuedMainThreadWork"?y1():ht==="spawnThread"?tx(Y):ht==="cleanupThread"?Zg(Y.thread):ht==="killThread"?g0(Y.thread):ht==="cancelThread"?x0(Y.thread):ht==="loaded"?(T.loaded=!0,O&&O(T),T.runPthread&&(T.runPthread(),delete T.runPthread)):ht==="print"?rt("Thread "+Y.threadId+": "+Y.text):ht==="printErr"?X("Thread "+Y.threadId+": "+Y.text):ht==="alert"?alert("Thread "+Y.threadId+": "+Y.text):Y.target==="setimmediate"?T.postMessage(Y):ht==="onAbort"?l.onAbort&&l.onAbort(Y.arg):X("worker sent an unknown command "+ht),Ut.currentProxiedOperationCallerThread=void 0},T.onerror=W=>{var Y="worker sent an error!";throw X(Y+" "+W.filename+":"+W.lineno+": "+W.message),W},w&&(T.on("message",function(W){T.onmessage({data:W})}),T.on("error",function(W){T.onerror(W)}),T.on("detachedExit",function(){})),T.postMessage({cmd:"load",urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:Ot,wasmModule:$e})},allocateUnusedWorker:function(){var T=_("tfjs-backend-wasm-threaded-simd.worker.js");Ut.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return Ut.unusedWorkers.length==0&&(Ut.allocateUnusedWorker(),Ut.loadWasmModuleToWorker(Ut.unusedWorkers[0])),Ut.unusedWorkers.pop()}};function b0(){var T=mx(),O=i()[T+44>>2],W=i()[T+48>>2],Y=O-W;C1(O,Y),fx(O)}l.establishStackSpace=b0;function Qg(T){if(v)return Ru(1,0,T);try{Jg(T)}catch(O){y0(O)}}var Du=[];function bp(T){var O=Du[T];return O||(T>=Du.length&&(Du.length=T+1),Du[T]=O=qn.get(T)),O}function w0(T,O){return bp(T)(O)}l.invokeEntryPoint=w0;function p1(){var T=new Error;if(!T.stack){try{throw new Error}catch(O){T=O}if(!T.stack)return"(no stack trace available)"}return T.stack.toString()}function v0(T,O,W){Ut.tlsInitFunctions.push(T)}function m1(T,O){qn.set(T,O),Du[T]=O}var Fu;w?Fu=()=>{var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:v?Fu=()=>performance.now()-l.__performance_now_clock_drift:Fu=()=>performance.now();var C0=!0;function I0(T){return i()[x1()>>2]=T,T}function S0(T,O){var W;if(T===0)W=Date.now();else if((T===1||T===4)&&C0)W=Fu();else return I0(28),-1;return i()[O>>2]=W/1e3|0,i()[O+4>>2]=W%1e3*1e3*1e3|0,0}function k0(T,O){return S0(T,O)}function N0(T){b1(T,!b,1,!y),Ut.threadInit()}function T0(T){v?postMessage({cmd:"cleanupThread",thread:T}):Zg(T)}function tx(T){var O=Ut.getNewWorker();if(!O)return 6;Ut.runningWorkers.push(O);var W=Ut.pthreads[T.pthread_ptr]={worker:O,threadInfoStruct:T.pthread_ptr};O.pthread=W;var Y={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr};return O.runPthread=()=>{Y.time=performance.now(),O.postMessage(Y,T.transferList)},O.loaded&&(O.runPthread(),delete O.runPthread),0}function _0(T,O,W,Y){if(typeof SharedArrayBuffer=="undefined")return X("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ht=[],wt=0;if(v&&(ht.length===0||wt))return w1(687865856,T,O,W,Y);if(wt)return wt;var Tt={startRoutine:W,pthread_ptr:T,arg:Y,transferList:ht};return v?(Tt.cmd="spawnThread",postMessage(Tt,ht),0):tx(Tt)}function E0(){return 2097152}function A0(T,O){if(T==O)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var W=Ut.pthreads[T],Y=W&&W.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function $0(){gp("")}function D0(){w||b||st("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function ex(){return 2147483648}function F0(T,O,W){n().copyWithin(T,O,O+W)}function R0(){return w?TW().cpus().length:navigator.hardwareConcurrency}function Ru(T,O){var W=arguments.length-2,Y=arguments;return yp(function(){for(var ht=W,wt=kp(ht*8),Tt=wt>>3,Gt=0;Gt<W;Gt++){var sr=Y[2+Gt];u()[Tt+Gt]=sr}return v1(T,ht,wt,O)})}var Od=[];function O0(T,O,W){Od.length=O;for(var Y=W>>3,ht=0;ht<O;ht++)Od[ht]=u()[Y+ht];var wt=T<0,Tt=wt?h0[-T-1]:tC[T];return Tt.apply(null,Od)}function M0(T){try{return Ot.grow(T-gr.byteLength+65535>>>16),Wo(Ot.buffer),1}catch(O){}}function P0(T){var O=n().length;if(T=T>>>0,T<=O)return!1;var W=ex();if(T>W)return!1;for(var Y=1;Y<=4;Y*=2){var ht=O*(1+.2/Y);ht=Math.min(ht,T+100663296);var wt=Math.min(W,mp(Math.max(T,ht),65536)),Tt=M0(wt);if(Tt)return!0}return!1}var ne={inEventHandler:0,removeAllEventListeners:function(){for(var T=ne.eventHandlers.length-1;T>=0;--T)ne._removeHandler(T);ne.eventHandlers=[],ne.deferredCalls=[]},registerRemoveEventListeners:function(){ne.removeEventListenersRegistered||(u0.push(ne.removeAllEventListeners),ne.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,O,W){function Y(Tt,Gt){if(Tt.length!=Gt.length)return!1;for(var sr in Tt)if(Tt[sr]!=Gt[sr])return!1;return!0}for(var ht in ne.deferredCalls){var wt=ne.deferredCalls[ht];if(wt.targetFunction==T&&Y(wt.argsList,W))return}ne.deferredCalls.push({targetFunction:T,precedence:O,argsList:W}),ne.deferredCalls.sort(function(Tt,Gt){return Tt.precedence<Gt.precedence})},removeDeferredCalls:function(T){for(var O=0;O<ne.deferredCalls.length;++O)ne.deferredCalls[O].targetFunction==T&&(ne.deferredCalls.splice(O,1),--O)},canPerformEventHandlerRequests:function(){return ne.inEventHandler&&ne.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!ne.canPerformEventHandlerRequests())for(var T=0;T<ne.deferredCalls.length;++T){var O=ne.deferredCalls[T];ne.deferredCalls.splice(T,1),--T,O.targetFunction.apply(null,O.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,O){for(var W=0;W<ne.eventHandlers.length;++W)ne.eventHandlers[W].target==T&&(!O||O==ne.eventHandlers[W].eventTypeString)&&ne._removeHandler(W--)},_removeHandler:function(T){var O=ne.eventHandlers[T];O.target.removeEventListener(O.eventTypeString,O.eventListenerFunc,O.useCapture),ne.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var O=function(ht){++ne.inEventHandler,ne.currentEventHandler=T,ne.runDeferredCalls(),T.handlerFunc(ht),ne.runDeferredCalls(),--ne.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=O,T.target.addEventListener(T.eventTypeString,O,T.useCapture),ne.eventHandlers.push(T),ne.registerRemoveEventListeners();else for(var W=0;W<ne.eventHandlers.length;++W)ne.eventHandlers[W].target==T.target&&ne.eventHandlers[W].eventTypeString==T.eventTypeString&&ne._removeHandler(W--)},queueEventHandlerOnThread_iiii:function(T,O,W,Y,ht){yp(function(){var wt=kp(12);i()[wt>>2]=W,i()[wt+4>>2]=Y,i()[wt+8>>2]=ht,MC(T,637534208,O,Y,wt)})},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return Ut.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function L0(T){var O=Go(T)+1,W=OC(O);return On(T,W,O),W}function z0(T,O,W,Y){yp(function(){var ht=kp(12),wt=0;O&&(wt=L0(O)),i()[ht>>2]=wt,i()[ht+4>>2]=W,i()[ht+8>>2]=Y,MC(T,657457152,0,wt,ht)})}function B0(T,O,W,Y){O=O?jr(O):"",z0(T,O,W,Y)}function V0(T){return T>2?jr(T):T}var G0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function W0(T){T=V0(T);var O=G0[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return O}function Md(T){return W0(T)}function rx(T,O,W){var Y=Md(T);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=O,i()[Y.canvasSharedPtr+4>>2]=W),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var ht=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var wt=Y.GLctxObject.GLctx.getParameter(2978);ht=wt[0]===0&&wt[1]===0&&wt[2]===Y.width&&wt[3]===Y.height}Y.width=O,Y.height=W,ht&&Y.GLctxObject.GLctx.viewport(0,0,O,W)}else if(Y.canvasSharedPtr){var Tt=i()[Y.canvasSharedPtr+8>>2];return B0(Tt,T,O,W),1}else return-4;return 0}function nx(T,O,W){return v?Ru(2,1,T,O,W):rx(T,O,W)}function U0(T,O,W){var Y=Md(T);return Y?rx(T,O,W):nx(T,O,W)}function H0(){throw"unwind"}function q0(T){var O=T.getExtension("ANGLE_instanced_arrays");if(O)return T.vertexAttribDivisor=function(W,Y){O.vertexAttribDivisorANGLE(W,Y)},T.drawArraysInstanced=function(W,Y,ht,wt){O.drawArraysInstancedANGLE(W,Y,ht,wt)},T.drawElementsInstanced=function(W,Y,ht,wt,Tt){O.drawElementsInstancedANGLE(W,Y,ht,wt,Tt)},1}function K0(T){var O=T.getExtension("OES_vertex_array_object");if(O)return T.createVertexArray=function(){return O.createVertexArrayOES()},T.deleteVertexArray=function(W){O.deleteVertexArrayOES(W)},T.bindVertexArray=function(W){O.bindVertexArrayOES(W)},T.isVertexArray=function(W){return O.isVertexArrayOES(W)},1}function j0(T){var O=T.getExtension("WEBGL_draw_buffers");if(O)return T.drawBuffers=function(W,Y){O.drawBuffersWEBGL(W,Y)},1}function X0(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var or={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(O){or.lastError||(or.lastError=O)},getNewId:function(T){for(var O=or.counter++,W=T.length;W<O;W++)T[W]=null;return O},getSource:function(T,O,W,Y){for(var ht="",wt=0;wt<O;++wt){var Tt=Y?i()[Y+wt*4>>2]:-1;ht+=jr(i()[W+wt*4>>2],Tt<0?void 0:Tt)}return ht},createContext:function(T,O){T.getContextSafariWebGL2Fixed||(T.getContextSafariWebGL2Fixed=T.getContext,T.getContext=function(ht,wt){var Tt=T.getContextSafariWebGL2Fixed(ht,wt);return ht=="webgl"==Tt instanceof WebGLRenderingContext?Tt:null});var W=T.getContext("webgl",O);if(!W)return 0;var Y=or.registerContext(W,O);return Y},registerContext:function(T,O){var W=OC(8);i()[W+4>>2]=mx();var Y={handle:W,attributes:O,version:O.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=Y),or.contexts[W]=Y,(typeof O.enableExtensionsByDefault=="undefined"||O.enableExtensionsByDefault)&&or.initExtensions(Y),W},makeContextCurrent:function(T){return or.currentContext=or.contexts[T],l.ctx=ax=or.currentContext&&or.currentContext.GLctx,!(T&&!ax)},getContext:function(T){return or.contexts[T]},deleteContext:function(T){or.currentContext===or.contexts[T]&&(or.currentContext=null),typeof ne=="object"&&ne.removeAllHandlersOnTarget(or.contexts[T].GLctx.canvas),or.contexts[T]&&or.contexts[T].GLctx.canvas&&(or.contexts[T].GLctx.canvas.GLctxObject=void 0),g1(or.contexts[T].handle),or.contexts[T]=null},initExtensions:function(T){if(T||(T=or.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var O=T.GLctx;q0(O),K0(O),j0(O),O.disjointTimerQueryExt=O.getExtension("EXT_disjoint_timer_query"),X0(O);var W=O.getSupportedExtensions()||[];W.forEach(function(Y){!Y.includes("lose_context")&&!Y.includes("debug")&&O.getExtension(Y)})}}},Y0=["default","low-power","high-performance"];function Z0(T,O){var W=O>>2,Y=i()[W+6],ht={alpha:!!i()[W+0],depth:!!i()[W+1],stencil:!!i()[W+2],antialias:!!i()[W+3],premultipliedAlpha:!!i()[W+4],preserveDrawingBuffer:!!i()[W+5],powerPreference:Y0[Y],failIfMajorPerformanceCaveat:!!i()[W+7],majorVersion:i()[W+8],minorVersion:i()[W+9],enableExtensionsByDefault:i()[W+10],explicitSwapControl:i()[W+11],proxyContextToMainThread:i()[W+12],renderViaOffscreenBackBuffer:i()[W+13]},wt=Md(T);if(!wt||ht.explicitSwapControl)return 0;var Tt=or.createContext(wt,ht);return Tt}function J0(T,O){return Z0(T,O)}var wp={mappings:{},buffers:[null,[],[]],printChar:function(T,O){var W=wp.buffers[T];O===0||O===10?((T===1?rt:X)(on(W,0)),W.length=0):W.push(O)},varargs:void 0,get:function(){wp.varargs+=4;var T=i()[wp.varargs-4>>2];return T},getStr:function(T){var O=jr(T);return O},get64:function(T,O){return T}};function ox(T){return v?Ru(3,1,T):0}function sx(T,O,W,Y,ht){if(v)return Ru(4,1,T,O,W,Y,ht)}function ix(T,O,W,Y){if(v)return Ru(5,1,T,O,W,Y);for(var ht=0,wt=0;wt<W;wt++){var Tt=i()[O>>2],Gt=i()[O+4>>2];O+=8;for(var sr=0;sr<Gt;sr++)wp.printChar(T,n()[Tt+sr]);ht+=Gt}return i()[Y>>2]=ht,0}function Q0(T){kt(T)}Ut.init();var ax,tC=[null,Qg,nx,ox,sx,ix],f1=!1,lx={__clock_gettime:k0,__emscripten_init_main_thread_js:N0,__emscripten_thread_cleanup:T0,__pthread_create_js:_0,_emscripten_default_pthread_stack_size:E0,_emscripten_notify_thread_queue:A0,abort:$0,emscripten_check_blocking_allowed:D0,emscripten_get_heap_max:ex,emscripten_get_now:Fu,emscripten_memcpy_big:F0,emscripten_num_logical_cores:R0,emscripten_receive_on_main_thread_js:O0,emscripten_resize_heap:P0,emscripten_set_canvas_element_size:U0,emscripten_unwind_to_js_event_loop:H0,emscripten_webgl_create_context:J0,exit:Jg,fd_close:ox,fd_seek:sx,fd_write:ix,memory:Ot||l.wasmMemory,setTempRet0:Q0},d1=d0(),eC=l.___wasm_call_ctors=function(){return(eC=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},rC=l._init=function(){return(rC=l._init=l.asm.init).apply(null,arguments)},nC=l._init_with_threads_count=function(){return(nC=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},oC=l._get_threads_count=function(){return(oC=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},sC=l._register_tensor=function(){return(sC=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},iC=l._dispose_data=function(){return(iC=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},aC=l._dispose=function(){return(aC=l._dispose=l.asm.dispose).apply(null,arguments)},lC=l._Abs=function(){return(lC=l._Abs=l.asm.Abs).apply(null,arguments)},uC=l._Add=function(){return(uC=l._Add=l.asm.Add).apply(null,arguments)},cC=l._AddN=function(){return(cC=l._AddN=l.asm.AddN).apply(null,arguments)},pC=l._All=function(){return(pC=l._All=l.asm.All).apply(null,arguments)},mC=l._Any=function(){return(mC=l._Any=l.asm.Any).apply(null,arguments)},fC=l._ArgMax=function(){return(fC=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},dC=l._AvgPool=function(){return(dC=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},hC=l._BatchMatMul=function(){return(hC=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},gC=l._Ceil=function(){return(gC=l._Ceil=l.asm.Ceil).apply(null,arguments)},xC=l._ClipByValue=function(){return(xC=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},yC=l._Conv2D=function(){return(yC=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},bC=l._Conv2DBackpropInput=function(){return(bC=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},wC=l._Cos=function(){return(wC=l._Cos=l.asm.Cos).apply(null,arguments)},vC=l._Cosh=function(){return(vC=l._Cosh=l.asm.Cosh).apply(null,arguments)},CC=l._CropAndResize=function(){return(CC=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},IC=l._Cumprod=function(){return(IC=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},SC=l._Cumsum=function(){return(SC=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},kC=l._DepthToSpace=function(){return(kC=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},NC=l._DepthwiseConv2dNative=function(){return(NC=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},TC=l._Elu=function(){return(TC=l._Elu=l.asm.Elu).apply(null,arguments)},_C=l._Equal=function(){return(_C=l._Equal=l.asm.Equal).apply(null,arguments)},EC=l._Exp=function(){return(EC=l._Exp=l.asm.Exp).apply(null,arguments)},AC=l._FlipLeftRight=function(){return(AC=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},ux=l._Floor=function(){return(ux=l._Floor=l.asm.Floor).apply(null,arguments)},cx=l._FloorDiv=function(){return(cx=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},Pd=l._FusedBatchNorm=function(){return(Pd=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},$C=l._FusedConv2D=function(){return($C=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},DC=l._FusedDepthwiseConv2D=function(){return(DC=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},vp=l._Gather=function(){return(vp=l._Gather=l.asm.Gather).apply(null,arguments)},Ld=l._GatherNd=function(){return(Ld=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},zd=l._Greater=function(){return(zd=l._Greater=l.asm.Greater).apply(null,arguments)},h1=l._GreaterEqual=function(){return(h1=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},Cp=l._LeakyRelu=function(){return(Cp=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},Ip=l._Less=function(){return(Ip=l._Less=l.asm.Less).apply(null,arguments)},FC=l._LessEqual=function(){return(FC=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},H=l._Log=function(){return(H=l._Log=l.asm.Log).apply(null,arguments)},tt=l._LogicalAnd=function(){return(tt=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},gt=l._Max=function(){return(gt=l._Max=l.asm.Max).apply(null,arguments)},$t=l._MaxPool=function(){return($t=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},de=l._Maximum=function(){return(de=l._Maximum=l.asm.Maximum).apply(null,arguments)},ge=l._Mean=function(){return(ge=l._Mean=l.asm.Mean).apply(null,arguments)},oe=l._Min=function(){return(oe=l._Min=l.asm.Min).apply(null,arguments)},ee=l._Minimum=function(){return(ee=l._Minimum=l.asm.Minimum).apply(null,arguments)},xr=l._MirrorPad=function(){return(xr=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},Ho=l._Multiply=function(){return(Ho=l._Multiply=l.asm.Multiply).apply(null,arguments)},qo=l._Neg=function(){return(qo=l._Neg=l.asm.Neg).apply(null,arguments)},Sp=l._NonMaxSuppressionV3=function(){return(Sp=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},Ou=l._NonMaxSuppressionV4=function(){return(Ou=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},RC=l._NonMaxSuppressionV5=function(){return(RC=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},ln=l._NotEqual=function(){return(ln=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},Fl=l._OneHot=function(){return(Fl=l._OneHot=l.asm.OneHot).apply(null,arguments)},px=l._PadV2=function(){return(px=l._PadV2=l.asm.PadV2).apply(null,arguments)},MW=l._Pow=function(){return(MW=l._Pow=l.asm.Pow).apply(null,arguments)},PW=l._Prelu=function(){return(PW=l._Prelu=l.asm.Prelu).apply(null,arguments)},LW=l._Prod=function(){return(LW=l._Prod=l.asm.Prod).apply(null,arguments)},zW=l._RealDiv=function(){return(zW=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},BW=l._Relu=function(){return(BW=l._Relu=l.asm.Relu).apply(null,arguments)},VW=l._Relu6=function(){return(VW=l._Relu6=l.asm.Relu6).apply(null,arguments)},GW=l._ResizeBilinear=function(){return(GW=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},WW=l._Reverse=function(){return(WW=l._Reverse=l.asm.Reverse).apply(null,arguments)},UW=l._RotateWithOffset=function(){return(UW=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},HW=l._Round=function(){return(HW=l._Round=l.asm.Round).apply(null,arguments)},qW=l._Rsqrt=function(){return(qW=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},KW=l._ScatterNd=function(){return(KW=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},jW=l._SelectV2=function(){return(jW=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},XW=l._Sigmoid=function(){return(XW=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},YW=l._Sin=function(){return(YW=l._Sin=l.asm.Sin).apply(null,arguments)},ZW=l._Softmax=function(){return(ZW=l._Softmax=l.asm.Softmax).apply(null,arguments)},JW=l._SparseFillEmptyRows=function(){return(JW=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},QW=l._SparseReshape=function(){return(QW=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},tU=l._SparseSegmentReduction=function(){return(tU=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},eU=l._Sqrt=function(){return(eU=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},rU=l._Square=function(){return(rU=l._Square=l.asm.Square).apply(null,arguments)},nU=l._SquaredDifference=function(){return(nU=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},oU=l._Step=function(){return(oU=l._Step=l.asm.Step).apply(null,arguments)},sU=l._StridedSlice=function(){return(sU=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},iU=l._Sub=function(){return(iU=l._Sub=l.asm.Sub).apply(null,arguments)},aU=l._Sum=function(){return(aU=l._Sum=l.asm.Sum).apply(null,arguments)},lU=l._Tan=function(){return(lU=l._Tan=l.asm.Tan).apply(null,arguments)},uU=l._Tanh=function(){return(uU=l._Tanh=l.asm.Tanh).apply(null,arguments)},cU=l._Tile=function(){return(cU=l._Tile=l.asm.Tile).apply(null,arguments)},pU=l._TopK=function(){return(pU=l._TopK=l.asm.TopK).apply(null,arguments)},mU=l._Transform=function(){return(mU=l._Transform=l.asm.Transform).apply(null,arguments)},fU=l._Transpose=function(){return(fU=l._Transpose=l.asm.Transpose).apply(null,arguments)},dU=l.__FusedMatMul=function(){return(dU=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},OC=l._malloc=function(){return(OC=l._malloc=l.asm.malloc).apply(null,arguments)},g1=l._free=function(){return(g1=l._free=l.asm.free).apply(null,arguments)},hU=l._emscripten_tls_init=function(){return(hU=l._emscripten_tls_init=l.asm.emscripten_tls_init).apply(null,arguments)},x1=l.___errno_location=function(){return(x1=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},mx=l._pthread_self=function(){return(mx=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},y1=l._emscripten_main_thread_process_queued_calls=function(){return(y1=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},gU=l.__emscripten_thread_crashed=function(){return(gU=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},b1=l.__emscripten_thread_init=function(){return(b1=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},xU=l._emscripten_current_thread_process_queued_calls=function(){return(xU=l._emscripten_current_thread_process_queued_calls=l.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},yU=l._emscripten_main_browser_thread_id=function(){return(yU=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},bU=l._emscripten_sync_run_in_main_thread_2=function(){return(bU=l._emscripten_sync_run_in_main_thread_2=l.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},w1=l._emscripten_sync_run_in_main_thread_4=function(){return(w1=l._emscripten_sync_run_in_main_thread_4=l.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},v1=l._emscripten_run_in_main_runtime_thread_js=function(){return(v1=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},MC=l._emscripten_dispatch_to_thread_=function(){return(MC=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},PC=l.__emscripten_thread_free_data=function(){return(PC=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},wU=l.__emscripten_thread_exit=function(){return(wU=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},vU=l._memalign=function(){return(vU=l._memalign=l.asm.memalign).apply(null,arguments)},C1=l._emscripten_stack_set_limits=function(){return(C1=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},LC=l.stackSave=function(){return(LC=l.stackSave=l.asm.stackSave).apply(null,arguments)},fx=l.stackRestore=function(){return(fx=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},kp=l.stackAlloc=function(){return(kp=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},CU=l.dynCall_iijjiiii=function(){return(CU=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},IU=l.dynCall_jiji=function(){return(IU=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)},I1=l.__emscripten_allow_main_runtime_queued_calls=21464;l.cwrap=ze,l.keepRuntimeAlive=$u,l.PThread=Ut,l.PThread=Ut,l.wasmMemory=Ot,l.ExitStatus=Bd;var dx;function Bd(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}Uo=function T(){dx||zC(),dx||(Uo=T)};function zC(T){if(T=T||d,Dl>0)return;if(v){c(l),$d(),postMessage({cmd:"loaded"});return}if(sn(),Dl>0)return;function O(){dx||(dx=!0,l.calledRun=!0,!ke&&($d(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),m0()))}l.setStatus?(l.setStatus("Running..."),setTimeout(function(){setTimeout(function(){l.setStatus("")},1),O()},1)):O()}l.run=zC;function SU(T,O){if(ae=T,!O&&v)throw Qg(T),"unwind";$u()||p0(),kU(T)}function kU(T){ae=T,$u()||(Ut.terminateAllThreads(),l.onExit&&l.onExit(T),ke=!0),g(T,new Bd(T))}if(l.preInit)for(typeof l.preInit=="function"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();zC();var hx;m&&(hx={uncaughtException:process.listeners("uncaughtException").filter(function(T){return!m.uncaughtException.indexOf(T)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(T){return!m.unhandledRejection.indexOf(T)>-1})});var gx;if(typeof WasmBackendModule!="undefined")gx=WasmBackendModule;else if(typeof t!="undefined")gx=t;else throw new Error("Could not find wasm module in post.js");if(hx){var NU=gx._dispose;gx._dispose=function(){NU(),hx.uncaughtException.forEach(function(T){process.removeListener("uncaughtException",T)}),hx.unhandledRejection.forEach(function(T){process.removeListener("unhandledRejection",T)})}}return t.ready}})();typeof i0=="object"&&typeof JT=="object"?JT.exports=ZT:typeof define=="function"&&define.amd?define([],function(){return ZT}):typeof i0=="object"&&(i0.WasmBackendModuleThreadedSimd=ZT)});var AW=Oe((a0,t1)=>{var QT=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!="undefined"?t:{},n,o;e.ready=new Promise(function(H,tt){n=H,o=tt});var s;typeof process!="undefined"&&process.listeners&&(s={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var i=Object.assign({},e),a=[],u="./this.program",l=(H,tt)=>{throw tt},c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f="";function d(H){return e.locateFile?e.locateFile(H,f):f+H}var h,g,y,b;function w(H){if(H instanceof Ld)return;D("exiting due to exception: "+H)}var v,k,_;m?(p?f=Og().dirname(f)+"/":f=__dirname+"/",_=()=>{k||(v=Ub(),k=Og())},h=function(tt,gt){return _(),tt=k.normalize(tt),v.readFileSync(tt,gt?void 0:"utf8")},y=H=>{var tt=h(H,!0);return tt.buffer||(tt=new Uint8Array(tt)),tt},g=(H,tt,gt)=>{_(),H=k.normalize(H),v.readFile(H,function($t,de){$t?gt($t):tt(de.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),a=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof Ld))throw H}),process.on("unhandledRejection",function(H){throw H}),l=(H,tt)=>{if(Ad())throw process.exitCode=H,tt;w(tt),process.exit(H)},e.inspect=function(){return"[Emscripten Module object]"}):(c||p)&&(p?f=self.location.href:typeof document!="undefined"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf("blob:")!==0?f=f.substr(0,f.replace(/[?#].*/,"").lastIndexOf("/")+1):f="",h=H=>{var tt=new XMLHttpRequest;return tt.open("GET",H,!1),tt.send(null),tt.responseText},p&&(y=H=>{var tt=new XMLHttpRequest;return tt.open("GET",H,!1),tt.responseType="arraybuffer",tt.send(null),new Uint8Array(tt.response)}),g=(H,tt,gt)=>{var $t=new XMLHttpRequest;$t.open("GET",H,!0),$t.responseType="arraybuffer",$t.onload=()=>{if($t.status==200||$t.status==0&&$t.response){tt($t.response);return}gt()},$t.onerror=gt,$t.send(null)},b=H=>document.title=H);var $=e.print||console.log.bind(console),D=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var F=4;function P(H){P.shown||(P.shown={}),P.shown[H]||(P.shown[H]=1,D(H))}function B(H,tt){if(typeof WebAssembly.Function=="function"){for(var gt={i:"i32",j:"i64",f:"f32",d:"f64"},$t={parameters:[],results:tt[0]=="v"?[]:[gt[tt[0]]]},de=1;de<tt.length;++de)$t.parameters.push(gt[tt[de]]);return new WebAssembly.Function($t,H)}var ge=[1,0,1,96],oe=tt.slice(0,1),ee=tt.slice(1),xr={i:127,j:126,f:125,d:124};ge.push(ee.length);for(var de=0;de<ee.length;++de)ge.push(xr[ee[de]]);oe=="v"?ge.push(0):ge=ge.concat([1,xr[oe]]),ge[1]=ge.length-2;var Ho=new Uint8Array([0,97,115,109,1,0,0,0].concat(ge,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),qo=new WebAssembly.Module(Ho),Sp=new WebAssembly.Instance(qo,{e:{f:H}}),Ou=Sp.exports.f;return Ou}var U=[],q;function j(){if(U.length)return U.pop();try{io.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return io.length-1}function K(H,tt){for(var gt=H;gt<H+tt;gt++){var $t=Fd(gt);$t&&q.set($t,gt)}}var Q=0,rt=H=>{Q=H},X;e.wasmBinary&&(X=e.wasmBinary);var nt=e.noExitRuntime||!0;typeof WebAssembly!="object"&&Au("no native wasm support detected");var st,it=!1,ft;function at(H,tt){H||Au(tt)}function xt(H){var tt=e["_"+H];return tt}function dt(H,tt,gt,$t,de){var ge={string:function(ln){var Fl=0;if(ln!=null&&ln!==0){var px=(ln.length<<2)+1;Fl=Pd(px),ce(ln,Fl,px)}return Fl},array:function(ln){var Fl=Pd(ln.length);return ke(ln,Fl),Fl}};function oe(ln){return tt==="string"?Kt(ln):tt==="boolean"?Boolean(ln):ln}var ee=xt(H),xr=[],Ho=0;if($t)for(var qo=0;qo<$t.length;qo++){var Sp=ge[gt[qo]];Sp?(Ho===0&&(Ho=ux()),xr[qo]=Sp($t[qo])):xr[qo]=$t[qo]}var Ou=ee.apply(null,xr);function RC(ln){return Ho!==0&&cx(Ho),oe(ln)}return Ou=RC(Ou),Ou}function bt(H,tt,gt,$t){gt=gt||[];var de=gt.every(function(oe){return oe==="number"}),ge=tt!=="string";return ge&&de&&!$t?xt(H):function(){return dt(H,tt,gt,arguments,$t)}}var kt=1,At=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Dt(H,tt,gt){for(var $t=tt+gt,de=tt;H[de]&&!(de>=$t);)++de;if(de-tt>16&&H.subarray&&At)return At.decode(H.subarray(tt,de));for(var ge="";tt<de;){var oe=H[tt++];if(!(oe&128)){ge+=String.fromCharCode(oe);continue}var ee=H[tt++]&63;if((oe&224)==192){ge+=String.fromCharCode((oe&31)<<6|ee);continue}var xr=H[tt++]&63;if((oe&240)==224?oe=(oe&15)<<12|ee<<6|xr:oe=(oe&7)<<18|ee<<12|xr<<6|H[tt++]&63,oe<65536)ge+=String.fromCharCode(oe);else{var Ho=oe-65536;ge+=String.fromCharCode(55296|Ho>>10,56320|Ho&1023)}}return ge}function Kt(H,tt){return H?Dt(ze,H,tt):""}function jt(H,tt,gt,$t){if(!($t>0))return 0;for(var de=gt,ge=gt+$t-1,oe=0;oe<H.length;++oe){var ee=H.charCodeAt(oe);if(ee>=55296&&ee<=57343){var xr=H.charCodeAt(++oe);ee=65536+((ee&1023)<<10)|xr&1023}if(ee<=127){if(gt>=ge)break;tt[gt++]=ee}else if(ee<=2047){if(gt+1>=ge)break;tt[gt++]=192|ee>>6,tt[gt++]=128|ee&63}else if(ee<=65535){if(gt+2>=ge)break;tt[gt++]=224|ee>>12,tt[gt++]=128|ee>>6&63,tt[gt++]=128|ee&63}else{if(gt+3>=ge)break;tt[gt++]=240|ee>>18,tt[gt++]=128|ee>>12&63,tt[gt++]=128|ee>>6&63,tt[gt++]=128|ee&63}}return tt[gt]=0,gt-de}function ce(H,tt,gt){return jt(H,ze,tt,gt)}function Ot(H){for(var tt=0,gt=0;gt<H.length;++gt){var $t=H.charCodeAt(gt);$t>=55296&&$t<=57343&&($t=65536+(($t&1023)<<10)|H.charCodeAt(++gt)&1023),$t<=127?++tt:$t<=2047?tt+=2:$t<=65535?tt+=3:tt+=4}return tt}var $e=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function ke(H,tt){rn.set(H,tt)}function ae(H,tt,gt){for(var $t=0;$t<H.length;++$t)rn[tt++>>0]=H.charCodeAt($t);gt||(rn[tt>>0]=0)}function Ke(H,tt){return H%tt>0&&(H+=tt-H%tt),H}var Re,rn,ze,Vo,Rr,nn,on,jr,so;function On(H){Re=H,e.HEAP8=rn=new Int8Array(H),e.HEAP16=Vo=new Int16Array(H),e.HEAP32=nn=new Int32Array(H),e.HEAPU8=ze=new Uint8Array(H),e.HEAPU16=Rr=new Uint16Array(H),e.HEAPU32=on=new Uint32Array(H),e.HEAPF32=jr=new Float32Array(H),e.HEAPF64=so=new Float64Array(H)}var Go=e.INITIAL_MEMORY||16777216,io,Al=[],Eu=[],mp=[],gr=!1,fp=!1,dp=0;function Ad(){return nt||dp>0}function Bg(){if(e.preRun)for(typeof e.preRun=="function"&&(e.preRun=[e.preRun]);e.preRun.length;)Wg(e.preRun.shift());Dd(Al)}function Vg(){gr=!0,Dd(Eu)}function o1(){fp=!0}function Gg(){if(e.postRun)for(typeof e.postRun=="function"&&(e.postRun=[e.postRun]);e.postRun.length;)Ug(e.postRun.shift());Dd(mp)}function Wg(H){Al.unshift(H)}function Wo(H){Eu.unshift(H)}function Ug(H){mp.unshift(H)}var qn=0,hp=null,$l=null;function u0(H){qn++,e.monitorRunDependencies&&e.monitorRunDependencies(qn)}function Hg(H){if(qn--,e.monitorRunDependencies&&e.monitorRunDependencies(qn),qn==0&&(hp!==null&&(clearInterval(hp),hp=null),$l)){var tt=$l;$l=null,tt()}}e.preloadedImages={},e.preloadedAudios={};function Au(H){e.onAbort&&e.onAbort(H),H="Aborted("+H+")",D(H),it=!0,ft=1,H+=". Build with -s ASSERTIONS=1 for more info.";var tt=new WebAssembly.RuntimeError(H);throw o(tt),tt}var c0="data:application/octet-stream;base64,";function qg(H){return H.startsWith(c0)}function $u(H){return H.startsWith("file://")}var sn;sn="tfjs-backend-wasm.wasm",qg(sn)||(sn=d(sn));function $d(H){try{if(H==sn&&X)return new Uint8Array(X);if(y)return y(H);throw"both async and sync fetching of the wasm failed"}catch(tt){Au(tt)}}function p0(){if(!X&&(c||p)){if(typeof fetch=="function"&&!$u(sn))return fetch(sn,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+sn+"'";return H.arrayBuffer()}).catch(function(){return $d(sn)});if(g)return new Promise(function(H,tt){g(sn,function(gt){H(new Uint8Array(gt))},tt)})}return Promise.resolve().then(function(){return $d(sn)})}function m0(){var H={env:yp,wasi_snapshot_preview1:yp};function tt(oe,ee){var xr=oe.exports;e.asm=xr,st=e.asm.memory,On(st.buffer),io=e.asm.__indirect_function_table,Wo(e.asm.__wasm_call_ctors),Hg("wasm-instantiate")}u0("wasm-instantiate");function gt(oe){tt(oe.instance)}function $t(oe){return p0().then(function(ee){return WebAssembly.instantiate(ee,H)}).then(function(ee){return ee}).then(oe,function(ee){D("failed to asynchronously prepare wasm: "+ee),Au(ee)})}function de(){return!X&&typeof WebAssembly.instantiateStreaming=="function"&&!qg(sn)&&!$u(sn)&&typeof fetch=="function"?fetch(sn,{credentials:"same-origin"}).then(function(oe){var ee=WebAssembly.instantiateStreaming(oe,H);return ee.then(gt,function(xr){return D("wasm streaming compile failed: "+xr),D("falling back to ArrayBuffer instantiation"),$t(gt)})}):$t(gt)}if(e.instantiateWasm)try{var ge=e.instantiateWasm(H,tt);return ge}catch(oe){return D("Module.instantiateWasm callback failed with error: "+oe),!1}return de().catch(o),{}}var s1,i1;function Dd(H){for(;H.length>0;){var tt=H.shift();if(typeof tt=="function"){tt(e);continue}var gt=tt.func;typeof gt=="number"?tt.arg===void 0?Fd(gt)():Fd(gt)(tt.arg):gt(tt.arg===void 0?null:tt.arg)}}function Dl(H){return H}function Kg(H){var tt=/\b_Z[\w\d_]+/g;return H.replace(tt,function(gt){var $t=gt;return gt===$t?gt:$t+" ["+gt+"]"})}var Uo=[];function Fd(H){var tt=Uo[H];return tt||(H>=Uo.length&&(Uo.length=H+1),Uo[H]=tt=io.get(H)),tt}function a1(){var H=new Error;if(!H.stack){try{throw new Error}catch(tt){H=tt}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function gp(H,tt){io.set(H,tt),Uo[H]=tt}function f0(){Au("")}function Rd(){return 2147483648}function jg(H,tt,gt){ze.copyWithin(H,tt,tt+gt)}function an(H){try{return st.grow(H-Re.byteLength+65535>>>16),On(st.buffer),1}catch(tt){}}function Xg(H){var tt=ze.length;H=H>>>0;var gt=Rd();if(H>gt)return!1;for(var $t=1;$t<=4;$t*=2){var de=tt*(1+.2/$t);de=Math.min(de,H+100663296);var ge=Math.min(gt,Ke(Math.max(H,de),65536)),oe=an(ge);if(oe)return!0}return!1}var xp={mappings:{},buffers:[null,[],[]],printChar:function(H,tt){var gt=xp.buffers[H];tt===0||tt===10?((H===1?$:D)(Dt(gt,0)),gt.length=0):gt.push(tt)},varargs:void 0,get:function(){xp.varargs+=4;var H=nn[xp.varargs-4>>2];return H},getStr:function(H){var tt=Kt(H);return tt},get64:function(H,tt){return H}};function d0(H){return 0}function l1(H,tt,gt,$t,de){}function u1(H,tt,gt,$t){for(var de=0,ge=0;ge<gt;ge++){var oe=nn[tt>>2],ee=nn[tt+4>>2];tt+=8;for(var xr=0;xr<ee;xr++)xp.printChar(H,ze[oe+xr]);de+=ee}return nn[$t>>2]=de,0}function h0(H){rt(H)}var Yg=!1,yp={abort:f0,emscripten_get_heap_max:Rd,emscripten_memcpy_big:jg,emscripten_resize_heap:Xg,fd_close:d0,fd_seek:l1,fd_write:u1,setTempRet0:h0},OW=m0(),c1=e.___wasm_call_ctors=function(){return(c1=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},g0=e._init=function(){return(g0=e._init=e.asm.init).apply(null,arguments)},x0=e._init_with_threads_count=function(){return(x0=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},Zg=e._get_threads_count=function(){return(Zg=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},Jg=e._register_tensor=function(){return(Jg=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},y0=e._dispose_data=function(){return(y0=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},Ut=e._dispose=function(){return(Ut=e._dispose=e.asm.dispose).apply(null,arguments)},b0=e._Abs=function(){return(b0=e._Abs=e.asm.Abs).apply(null,arguments)},Qg=e._Add=function(){return(Qg=e._Add=e.asm.Add).apply(null,arguments)},Du=e._AddN=function(){return(Du=e._AddN=e.asm.AddN).apply(null,arguments)},bp=e._All=function(){return(bp=e._All=e.asm.All).apply(null,arguments)},w0=e._Any=function(){return(w0=e._Any=e.asm.Any).apply(null,arguments)},p1=e._ArgMax=function(){return(p1=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},v0=e._AvgPool=function(){return(v0=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},m1=e._BatchMatMul=function(){return(m1=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},Fu=e._Ceil=function(){return(Fu=e._Ceil=e.asm.Ceil).apply(null,arguments)},C0=e._ClipByValue=function(){return(C0=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},I0=e._Conv2D=function(){return(I0=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},S0=e._Conv2DBackpropInput=function(){return(S0=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},k0=e._Cos=function(){return(k0=e._Cos=e.asm.Cos).apply(null,arguments)},N0=e._Cosh=function(){return(N0=e._Cosh=e.asm.Cosh).apply(null,arguments)},T0=e._CropAndResize=function(){return(T0=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},tx=e._Cumprod=function(){return(tx=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},_0=e._Cumsum=function(){return(_0=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},E0=e._DepthToSpace=function(){return(E0=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},A0=e._DepthwiseConv2dNative=function(){return(A0=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},$0=e._Elu=function(){return($0=e._Elu=e.asm.Elu).apply(null,arguments)},D0=e._Equal=function(){return(D0=e._Equal=e.asm.Equal).apply(null,arguments)},ex=e._Exp=function(){return(ex=e._Exp=e.asm.Exp).apply(null,arguments)},F0=e._FlipLeftRight=function(){return(F0=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},R0=e._Floor=function(){return(R0=e._Floor=e.asm.Floor).apply(null,arguments)},Ru=e._FloorDiv=function(){return(Ru=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},Od=e._FusedBatchNorm=function(){return(Od=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},O0=e._FusedConv2D=function(){return(O0=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},M0=e._FusedDepthwiseConv2D=function(){return(M0=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},P0=e._Gather=function(){return(P0=e._Gather=e.asm.Gather).apply(null,arguments)},ne=e._GatherNd=function(){return(ne=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},L0=e._Greater=function(){return(L0=e._Greater=e.asm.Greater).apply(null,arguments)},z0=e._GreaterEqual=function(){return(z0=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},B0=e._LeakyRelu=function(){return(B0=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},V0=e._Less=function(){return(V0=e._Less=e.asm.Less).apply(null,arguments)},G0=e._LessEqual=function(){return(G0=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},W0=e._Log=function(){return(W0=e._Log=e.asm.Log).apply(null,arguments)},Md=e._LogicalAnd=function(){return(Md=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},rx=e._Max=function(){return(rx=e._Max=e.asm.Max).apply(null,arguments)},nx=e._MaxPool=function(){return(nx=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},U0=e._Maximum=function(){return(U0=e._Maximum=e.asm.Maximum).apply(null,arguments)},H0=e._Mean=function(){return(H0=e._Mean=e.asm.Mean).apply(null,arguments)},q0=e._Min=function(){return(q0=e._Min=e.asm.Min).apply(null,arguments)},K0=e._Minimum=function(){return(K0=e._Minimum=e.asm.Minimum).apply(null,arguments)},j0=e._MirrorPad=function(){return(j0=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},X0=e._Multiply=function(){return(X0=e._Multiply=e.asm.Multiply).apply(null,arguments)},or=e._Neg=function(){return(or=e._Neg=e.asm.Neg).apply(null,arguments)},Y0=e._NonMaxSuppressionV3=function(){return(Y0=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},Z0=e._NonMaxSuppressionV4=function(){return(Z0=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},J0=e._NonMaxSuppressionV5=function(){return(J0=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},wp=e._NotEqual=function(){return(wp=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},ox=e._OneHot=function(){return(ox=e._OneHot=e.asm.OneHot).apply(null,arguments)},sx=e._PadV2=function(){return(sx=e._PadV2=e.asm.PadV2).apply(null,arguments)},ix=e._Pow=function(){return(ix=e._Pow=e.asm.Pow).apply(null,arguments)},Q0=e._Prelu=function(){return(Q0=e._Prelu=e.asm.Prelu).apply(null,arguments)},ax=e._Prod=function(){return(ax=e._Prod=e.asm.Prod).apply(null,arguments)},tC=e._RealDiv=function(){return(tC=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},f1=e._Relu=function(){return(f1=e._Relu=e.asm.Relu).apply(null,arguments)},lx=e._Relu6=function(){return(lx=e._Relu6=e.asm.Relu6).apply(null,arguments)},d1=e._ResizeBilinear=function(){return(d1=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},eC=e._Reverse=function(){return(eC=e._Reverse=e.asm.Reverse).apply(null,arguments)},rC=e._RotateWithOffset=function(){return(rC=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},nC=e._Round=function(){return(nC=e._Round=e.asm.Round).apply(null,arguments)},oC=e._Rsqrt=function(){return(oC=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},sC=e._ScatterNd=function(){return(sC=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},iC=e._SelectV2=function(){return(iC=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},aC=e._Sigmoid=function(){return(aC=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},lC=e._Sin=function(){return(lC=e._Sin=e.asm.Sin).apply(null,arguments)},uC=e._Softmax=function(){return(uC=e._Softmax=e.asm.Softmax).apply(null,arguments)},cC=e._SparseFillEmptyRows=function(){return(cC=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},pC=e._SparseReshape=function(){return(pC=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},mC=e._SparseSegmentReduction=function(){return(mC=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},fC=e._Sqrt=function(){return(fC=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},dC=e._Square=function(){return(dC=e._Square=e.asm.Square).apply(null,arguments)},hC=e._SquaredDifference=function(){return(hC=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},gC=e._Step=function(){return(gC=e._Step=e.asm.Step).apply(null,arguments)},xC=e._StridedSlice=function(){return(xC=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},yC=e._Sub=function(){return(yC=e._Sub=e.asm.Sub).apply(null,arguments)},bC=e._Sum=function(){return(bC=e._Sum=e.asm.Sum).apply(null,arguments)},wC=e._Tan=function(){return(wC=e._Tan=e.asm.Tan).apply(null,arguments)},vC=e._Tanh=function(){return(vC=e._Tanh=e.asm.Tanh).apply(null,arguments)},CC=e._Tile=function(){return(CC=e._Tile=e.asm.Tile).apply(null,arguments)},IC=e._TopK=function(){return(IC=e._TopK=e.asm.TopK).apply(null,arguments)},SC=e._Transform=function(){return(SC=e._Transform=e.asm.Transform).apply(null,arguments)},kC=e._Transpose=function(){return(kC=e._Transpose=e.asm.Transpose).apply(null,arguments)},NC=e.__FusedMatMul=function(){return(NC=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},TC=e._malloc=function(){return(TC=e._malloc=e.asm.malloc).apply(null,arguments)},_C=e._free=function(){return(_C=e._free=e.asm.free).apply(null,arguments)},EC=e.___errno_location=function(){return(EC=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},AC=e._emscripten_main_thread_process_queued_calls=function(){return(AC=e._emscripten_main_thread_process_queued_calls=e.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},ux=e.stackSave=function(){return(ux=e.stackSave=e.asm.stackSave).apply(null,arguments)},cx=e.stackRestore=function(){return(cx=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},Pd=e.stackAlloc=function(){return(Pd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},$C=e.dynCall_iijjiiii=function(){return($C=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},DC=e.dynCall_jiji=function(){return(DC=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=bt;var vp;function Ld(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}$l=function H(){vp||zd(),vp||($l=H)};function zd(H){if(H=H||a,qn>0||(Bg(),qn>0))return;function tt(){vp||(vp=!0,e.calledRun=!0,!it&&(Vg(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),Gg()))}e.setStatus?(e.setStatus("Running..."),setTimeout(function(){setTimeout(function(){e.setStatus("")},1),tt()},1)):tt()}e.run=zd;function h1(H){ft=H,Ad()||(e.onExit&&e.onExit(H),it=!0),l(H,new Ld(H))}if(e.preInit)for(typeof e.preInit=="function"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();zd();var Cp;s&&(Cp={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!s.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!s.unhandledRejection.indexOf(H)>-1})});var Ip;if(typeof t!="undefined")Ip=t;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Ip=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Cp){var FC=Ip._dispose;Ip._dispose=function(){FC(),Cp.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),Cp.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return t.ready}})();typeof a0=="object"&&typeof t1=="object"?t1.exports=QT:typeof define=="function"&&define.amd?define([],function(){return QT}):typeof a0=="object"&&(a0.WasmBackendModule=QT)});var ea=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},Xo=class{refCount(t){return Kn("refCount")}incRef(t){return Kn("incRef")}timerAvailable(){return!0}time(t){return Kn("time")}read(t){return Kn("read")}readSync(t){return Kn("readSync")}readToGPU(t,e){return Kn("readToGPU")}numDataIds(){return Kn("numDataIds")}disposeData(t,e){return Kn("disposeData")}write(t,e,n){return Kn("write")}move(t,e,n,o,s){return Kn("move")}memory(){return Kn("memory")}floatPrecision(){return Kn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Kn("dispose")}};function Kn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function k1(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,yx(r,t,e)}function RU(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,yx(r,e,n),yx(t,e,n)}function Tp(r,t,e){return Math.max(r,Math.min(t,e))}function OU(r){return r%2===0?r:r+1}function yx(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function MU(r){let t=0;for(let e=0;e<r.length;e++)t+=r[e];return t}function PU(r,t){let e=Math.random();return t*e+(1-e)*r}function LU(r,t){let e=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(t[n]);e+=o*o}return e}function A(r,t){if(!r)throw new Error(typeof t=="string"?t:t())}function Me(r,t,e=""){A(Pn(r,t),()=>e+` Shapes ${r} and ${t} must match`)}function jn(r){A(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Yo(r,t=[],e=!1){if(t==null&&(t=[]),Array.isArray(r)||yr(r)&&!e)for(let n=0;n<r.length;++n)Yo(r[n],t,e);else t.push(r);return t}function Qt(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e<r.length;e++)t*=r[e];return t}function zU(r){return r.length===0}function Pn(r,t){if(r===t)return!0;if(r==null||t==null||r.length!==t.length)return!1;for(let e=0;e<r.length;e++)if(r[e]!==t[e])return!1;return!0}function ra(r){return r%1===0}function BU(r){if(Math.tanh!=null)return Math.tanh(r);if(r===1/0)return 1;if(r===-1/0)return-1;{let t=Math.exp(2*r);return(t-1)/(t+1)}}function VU(r){let t=Math.ceil(Math.sqrt(r));return[t,Math.ceil(r/t)]}function GU(r){let t=new Uint32Array(r);for(let e=0;e<r;++e)t[e]=e;return k1(t),t}function Lu(r,t){return t<=r.length?r:r+" ".repeat(t-r.length)}function WU(r,t=n=>0,e){return new Promise((n,o)=>{let s=0,i=()=>{if(r()){n();return}s++;let a=t(s);if(e!=null&&s>=e){o();return}setTimeout(i,a)};i()})}function UU(r,t){let e=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function mr(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),A(r.every(n=>n>=-e&&n<e),()=>`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),A(r.every(n=>ra(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function VC(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:mr(t,r).sort(),i=0;for(let a=0;a<r.length;++a){if(s!=null){if(s[i]===a&&r[a]!==1)throw new Error(`Can't squeeze axis ${a} since its dim '${r[a]}' is not 1`);(s[i]==null||s[i]>a)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function GC(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else throw new Error(`Unknown data type ${r}`);return e}function WC(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else if(r==="string")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function UC(r,t){for(let e=0;e<r.length;e++){let n=r[e];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function HC(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function HU(r,t){return!(t==="complex64"||t==="float32"&&r!=="complex64"||t==="int32"&&r!=="float32"&&r!=="complex64"||t==="bool"&&r==="bool")}function yr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}function bx(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function qC(r){if(r==null)return 0;let t=0;return r.forEach(e=>t+=e.length),t}function Zo(r){return typeof r=="string"||r instanceof String}function N1(r){return typeof r=="boolean"}function T1(r){return typeof r=="number"}function _p(r){return Array.isArray(r)?_p(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?"int32":T1(r)?"float32":Zo(r)?"string":N1(r)?"bool":"float32"}function yi(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Ep(r,t){for(let e=t;e<r;++e)if(r%e===0)return e;return r}function bi(r){let t=r.length;if(t<2)return[];let e=new Array(t-1);e[t-2]=r[t-1];for(let n=t-3;n>=0;--n)e[n]=e[n+1]*r[n+1];return e}function _1(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)o[i]=e[r+i]}else{let s=t[0],i=t.slice(1),a=i.reduce((u,l)=>u*l)*(n?2:1);for(let u=0;u<s;u++)o[u]=_1(r+u*a,i,e,n)}return o}function Pu(r,t,e=!1){if(r.length===0)return t[0];let n=r.reduce((o,s)=>o*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?" for a complex tensor":""}.`);return _1(0,r,t,e)}function Gd(r,t){let e=Ap(r,t);for(let n=0;n<e.length;n++)e[n]=1;return e}function Ap(r,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${t}`)}function qU(r,t){let e=r.reduce((n,o)=>n*o,1);if(t==null||t==="float32")return Pu(r,new Float32Array(e));if(t==="int32")return Pu(r,new Int32Array(e));if(t==="bool")return Pu(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Wd(r){r.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function KU(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=e[o]*r[o];return n}function jU(r,t,e){if(t===0)return[];if(t===1)return[r];let n=new Array(t);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/e[o]),r-=n[o]*e[o];return n[n.length-1]=r,n}function Ud(r){return r&&r.then&&typeof r.then=="function"}var E1="tfjsflags",Hd=class{constructor(t){this.global=t,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=YU,this.populateURLFlags()}setPlatform(t,e){this.platform!=null&&(G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=t,this.platform=e}registerFlag(t,e,n){if(this.flagRegistry[t]={evaluationFn:e,setHook:n},this.urlFlags[t]!=null){let o=this.urlFlags[t];G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Setting feature override from URL ${t}: ${o}.`),this.set(t,o)}}async getAsync(t){return t in this.flags?this.flags[t]:(this.flags[t]=await this.evaluateFlag(t),this.flags[t])}get(t){if(t in this.flags)return this.flags[t];let e=this.evaluateFlag(t);if(Ud(e))throw new Error(`Flag ${t} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[t]=e,this.flags[t]}getNumber(t){return this.get(t)}getBool(t){return this.get(t)}getFlags(){return this.flags}get features(){return this.flags}set(t,e){if(this.flagRegistry[t]==null)throw new Error(`Cannot set flag ${t} as it has not been registered.`);this.flags[t]=e,this.flagRegistry[t].setHook!=null&&this.flagRegistry[t].setHook(e)}evaluateFlag(t){if(this.flagRegistry[t]==null)throw new Error(`Cannot evaluate flag '${t}': no evaluation function found.`);return this.flagRegistry[t].evaluationFn()}setFlags(t){this.flags=Object.assign({},t)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let t=this.getQueryParams(this.global.location.search);E1 in t&&t[E1].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=JU(o,s)})}};function YU(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(ZU(t,n[0],n[1]),n.join("="))),t}function ZU(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||"")}function JU(r,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${r}.`)}function G(){return KC}var KC=null;function A1(r){KC=r}var jC;function XC(){if(jC==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");jC=r}return jC}function QU(){let r=XC();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function qd(r,t){let e=QU();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var wi="Abs",na="Acos",oa="Acosh",Xn="Add",Jo="AddN",sa="All",ia="Any",Qo="ArgMax",Rl="ArgMin",aa="Asin",la="Asinh",ua="Atan",ca="Atanh",pa="Atan2",ts="AvgPool",$p="AvgPoolGrad",Ol="AvgPool3D",Dp="AvgPool3DGrad",es="BatchMatMul",vi="BatchToSpaceND",Fp="Bincount",$1="BroadcastTo",Rp="BroadcastArgs",ao="Cast",rs="Ceil",lo="ClipByValue",Op="Complex",Ml="ComplexAbs",Ci="Concat",ns="Conv2D",Mp="Conv2DBackpropFilter",os="Conv2DBackpropInput",Pl="Conv3D",Pp="Conv3DBackpropFilterV2",Lp="Conv3DBackpropInputV2",ss="Cos",is="Cosh",ma="Cumprod",as="Cumsum",fa="CropAndResize",zp="DenseBincount",da="DepthToSpace",ls="DepthwiseConv2dNative",Bp="DepthwiseConv2dNativeBackpropFilter",Vp="DepthwiseConv2dNativeBackpropInput",Gp="Diag",Ll="Dilation2D",Kd="Dilation2DBackpropInput",jd="Dilation2DBackpropFilter",us="RealDiv",Wp="Einsum",cs="Elu",Up="EluGrad",ha="Erf",ga="Equal",ps="Exp",Ii="ExpandDims",xa="Expm1",Hp="FFT",zl="Fill",ya="FlipLeftRight",ms="Floor",fs="FloorDiv",ds="FusedBatchNorm",Si="GatherV2",ba="GatherNd",wa="Greater",hs="GreaterEqual",uo="Identity",qp="IFFT",Kp="Imag",va="IsFinite",Ca="IsInf",Ia="IsNan",gs="LeakyRelu",Sa="Less",ka="LessEqual",jp="LinSpace",xs="Log",Na="Log1p",Ta="LogicalAnd",zu="LogicalNot",Bu="LogicalOr",D1="LogSoftmax",Xat="LowerBound",Bl="LRN",Xp="LRNGrad",ys="Max",bs="Maximum",ws="MaxPool",Yp="MaxPoolGrad",Vl="MaxPool3D",Zp="MaxPool3DGrad",Jp="MaxPoolWithArgmax",vs="Mean",Cs="Min",Is="Minimum",Ss="MirrorPad",_a="Mod",Qp="Multinomial",ks="Multiply",ki="Neg",Ea="NotEqual",Aa="NonMaxSuppressionV3",$a="NonMaxSuppressionV4",Da="NonMaxSuppressionV5",Ni="OnesLike",Ns="OneHot",Ti="Pack",Ts="PadV2",Yat="Pool",_s="Pow",Es="Prelu",As="Prod",Gl="Range",tm="Real",Fa="Reciprocal",$s="Relu",_i="Reshape",Wl="ResizeNearestNeighbor",em="ResizeNearestNeighborGrad",Ds="ResizeBilinear",rm="ResizeBilinearGrad",Fs="Relu6",Rs="Reverse",Os="Round",Ms="Rsqrt",Ra="ScatterNd",nm="SearchSorted",Ei="Select",Oa="Selu",Ai="Slice",Ps="Sin",Ma="Sinh",Pa="Sign",Ls="Sigmoid",La="Softplus",zs="Sqrt",Bs="Sum",$i="SpaceToBatchND",Di="SplitV",Vs="Softmax",Ul="SparseFillEmptyRows",za="SparseReshape",Hl="SparseSegmentMean",ql="SparseSegmentSum",om="SparseToDense",Gs="SquaredDifference",Kl="Square",Ba="StridedSlice",sm="StringNGrams",im="StringSplit",am="StringToHashBucketFast",Ws="Sub",Us="Tan",Hs="Tanh",Yn="Tile",Va="TopK",Ga="Transform",Zn="Transpose",lm="Unique",Fi="Unpack",jl="UnsortedSegmentSum",Zat="UpperBound",Ri="ZerosLike",co="Step",Xd="FromPixels",Wa="RotateWithOffset",Oi="_FusedMatMul",Mi="FusedConv2D",Pi="FusedDepthwiseConv2D";function Li(...r){G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(...r)}function t4(...r){G().getBool("IS_TEST")||G().getBool("PROD")||console.log(...r)}var um=qd("kernelRegistry",()=>new Map),Yd=qd("gradRegistry",()=>new Map);function Zd(r,t){let e=ZC(r,t);return um.get(e)}function YC(r){return Yd.get(r)}function wx(r){let t=um.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split("_");a===r&&e.push(i)}return e}function Vu(r){let{kernelName:t,backendName:e}=r,n=ZC(t,e);um.has(n)&&Li(`The kernel '${t}' for backend '${e}' is already registered`),um.set(n,r)}function R1(r){let{kernelName:t}=r;Yd.has(t)&&G().getBool("DEBUG")&&Li(`Overriding the gradient for '${t}'`),Yd.set(t,r)}function rlt(r,t){let e=ZC(r,t);if(!um.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);um.delete(e)}function nlt(r){if(!Yd.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);Yd.delete(r)}function olt(r,t){wx(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});Vu(o)})}function ZC(r,t){return`${t}_${r}`}var x={};Zt(x,{arraysEqual:()=>Pn,assert:()=>A,assertNonNegativeIntegerDimensions:()=>Wd,assertNonNull:()=>jn,assertShapesMatch:()=>Me,bytesFromStringArray:()=>qC,bytesPerElement:()=>bx,checkConversionForErrors:()=>UC,clamp:()=>Tp,computeStrides:()=>bi,createScalarValue:()=>a4,createShuffledIndices:()=>GU,decodeString:()=>fm,distSquared:()=>LU,encodeString:()=>Yl,fetch:()=>u4,fingerPrint64:()=>i4,flatten:()=>Yo,getArrayFromDType:()=>WC,getTypedArrayFromDType:()=>GC,hasEncodingLoss:()=>HU,hexToLong:()=>Jd,indexToLoc:()=>jU,inferDtype:()=>_p,inferFromImplicitShape:()=>UU,isBoolean:()=>N1,isFunction:()=>yi,isInt:()=>ra,isNumber:()=>T1,isPromise:()=>Ud,isScalarShape:()=>zU,isString:()=>Zo,isTypedArray:()=>yr,isValidDtype:()=>HC,locToIndex:()=>KU,makeOnesTypedArray:()=>Gd,makeZerosNestedTypedArray:()=>qU,makeZerosTypedArray:()=>Ap,nearestDivisor:()=>Ep,nearestLargerEven:()=>OU,now:()=>qu,parseAxisParam:()=>mr,randUniform:()=>PU,repeatedTry:()=>WU,rightPad:()=>Lu,shuffle:()=>k1,shuffleCombo:()=>RU,sizeFromShape:()=>Qt,sizeToSquarishShape:()=>VU,squeezeShape:()=>VC,sum:()=>MU,swap:()=>yx,tanh:()=>BU,toNestedArray:()=>Pu,toTypedArray:()=>mm});var eI=Mu(H1());var Hu=eI.default||eI;function Jd(r){return Hu.fromString(r,!0,16)}var K1=Jd("c3a5c85c97cb3127"),Uu=Jd("b492b66fbe98f273"),un=Jd("9ae16a3b2f90404f");function tI(r){return r.xor(r.shru(47))}function j1(r,t,e){let n=r.slice(t,t+e);return Hu.fromBytes(Array.from(n),!0,!0)}function Be(r,t){return j1(r,t,8)}function q1(r,t){return j1(r,t,4)}function Er(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function Xl(r,t,e=Jd("9ddfea08eb382d69")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function r4(r,t,e,n,o,s){o=o.add(r),s=Er(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(Er(o,44)),[o.add(n),s.add(i)]}function Cx(r,t,e,n){return r4(Be(r,t),Be(r,t+8),Be(r,t+16),Be(r,t+24),e,n)}function n4(r,t=r.length){if(t>=8){let e=un.add(t*2),n=Be(r,0).add(un),o=Be(r,t-8),s=Er(o,37).mul(e).add(n),i=Er(n,25).add(o).mul(e);return Xl(s,i,e)}if(t>=4){let e=un.add(t*2),n=q1(r,0);return Xl(n.shl(3).add(t),q1(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return tI(un.mul(s).xor(K1.mul(i))).mul(un)}return un}function o4(r,t=r.length){let e=un.add(t*2),n=Be(r,0).mul(Uu),o=Be(r,8),s=Be(r,t-8).mul(e),i=Be(r,t-16).mul(un);return Xl(Er(n.add(o),43).add(Er(s,30)).add(i),n.add(Er(o.add(un),18)).add(s),e)}function s4(r,t=r.length){let e=un.add(t*2),n=Be(r,0).mul(un),o=Be(r,8),s=Be(r,t-8).mul(e),i=Be(r,t-16).mul(un),a=Er(n.add(o),43).add(Er(s,30)).add(i),u=Xl(a,n.add(Er(o.add(un),18)).add(s),e),l=Be(r,16).mul(e),c=Be(r,24),p=a.add(Be(r,t-32)).mul(e),m=u.add(Be(r,t-24)).mul(e);return Xl(Er(l.add(c),43).add(Er(p,30)).add(m),l.add(Er(c.add(n),18)).add(p),e)}function i4(r,t=r.length){let e=Hu.fromNumber(81,!0);if(t<=32)return t<=16?n4(r,t):o4(r,t);if(t<=64)return s4(r,t);let n=e,o=e.mul(Uu).add(113),s=tI(o.mul(un).add(113)).mul(un),i=[Hu.UZERO,Hu.UZERO],a=[Hu.UZERO,Hu.UZERO];n=n.mul(un).add(Be(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=Er(n.add(o).add(i[0]).add(Be(r,u+8)),37).mul(Uu),o=Er(o.add(i[1]).add(Be(r,u+48)),42).mul(Uu),n=n.xor(a[1]),o=o.add(i[0]).add(Be(r,u+40)),s=Er(s.add(a[0]),33).mul(Uu),i=Cx(r,u,i[1].mul(Uu),n.add(a[0])),a=Cx(r,u+32,s.add(a[1]),o.add(Be(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=Uu.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=Er(n.add(o).add(i[0]).add(Be(r,u+8)),37).mul(p),o=Er(o.add(i[1]).add(Be(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(Be(r,u+40))),s=Er(s.add(a[0]),33).mul(p),i=Cx(r,u,i[1].mul(p),n.add(a[0])),a=Cx(r,u+32,s.add(a[1]),o.add(Be(r,u+16))),[s,n]=[n,s],Xl(Xl(i[0],a[0],p).add(tI(o).mul(K1)).add(s),Xl(i[1],a[1],p).add(n),p)}function a4(r,t){return t==="string"?Yl(r):mm([r],t)}function l4(r,t){return r instanceof Float32Array&&t==="float32"||r instanceof Int32Array&&t==="int32"||r instanceof Uint8Array&&t==="bool"}function mm(r,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=Yo(r)),G().getBool("DEBUG")&&UC(r,t),l4(r,t))return r;if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool"){let e=new Uint8Array(r.length);for(let n=0;n<e.length;++n)Math.round(r[n])!==0&&(e[n]=1);return e}else throw new Error(`Unknown data type ${t}`)}function qu(){return G().platform.now()}function u4(r,t){return G().platform.fetch(r,t)}function Yl(r,t="utf-8"){return t=t||"utf-8",G().platform.encode(r,t)}function fm(r,t="utf-8"){return t=t||"utf-8",G().platform.decode(r,t)}var Ix=class{constructor(t,e){this.backendTimer=t,this.logger=e,e==null&&(this.logger=new rI)}profileKernel(t,e,n){let o,s=()=>{o=n()},i,a=qu();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:qu()-a})}if(G().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<o.length;l++){let c=o[l];c.data().then(p=>{c4(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function c4(r,t,e){if(t!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${e}'`),!0}return!1}var rI=class{logKernelProfile(t,e,n,o,s,i){let a=typeof o=="number"?Lu(`${o}ms`,9):o.error,u=Lu(t,25),l=e.rank,c=e.size,p=Lu(e.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||e.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${u} %c${a} %c${l}D ${p} %c${c} %c${m} %c${i}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function X1(r,t,e){let n={},o={};for(let u=0;u<t.length;u++)n[t[u].id]=!0;for(let u=0;u<r.length;u++){let l=r[u],c=l.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<t.length;d++)if(n[m.id]){l.outputs.forEach(h=>n[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(s[l.outputs[p].id]){for(let m in c)s[c[m].id]=!0,i[l.id]=!0;break}}let a=[];for(let u=0;u<r.length;u++){let l=r[u];if(o[l.id]&&i[l.id]){let c={};for(let m in l.inputs){let f=l.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,a.push(p)}}return a}function Y1(r,t,e,n){for(let o=t.length-1;o>=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!Pn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var Z1=20,Qd=3,nI=7;function J1(r,t,e,n){let o=bi(t),s=p4(r,t,e,o),i=t.length,a=Sx(r,t,e,o,s),u=["Tensor"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(a.map(l=>" "+l).join(`
|
|
`)),u.join(`
|
|
`)}function p4(r,t,e,n){let o=Qt(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e==="complex64"?eh(r):r;if(a>1)for(let l=0;l<o/s;l++){let c=l*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],th(u[c+p],0,e).length)}return i}function th(r,t,e){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(nI))} + ${parseFloat(r[1].toFixed(nI))}j`:Zo(r)?n=`'${r}'`:e==="bool"?n=Q1(r):n=parseFloat(r.toFixed(nI)).toString(),Lu(n,t)}function Q1(r){return r===0?"false":"true"}function Sx(r,t,e,n,o,s=!0){let i=e==="complex64"?2:1,a=t[0],u=t.length;if(u===0){if(e==="complex64"){let h=eh(r);return[th(h[0],0,e)]}return e==="bool"?[Q1(r[0])]:[r[0].toString()]}if(u===1){if(a>Z1){let g=Qd*i,y=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-Qd)*i,a*i));return e==="complex64"&&(y=eh(y),b=eh(b)),["["+y.map((w,v)=>th(w,o[v],e)).join(", ")+", ..., "+b.map((w,v)=>th(w,o[a-Qd+v],e)).join(", ")+"]"]}let h=e==="complex64"?eh(r):Array.from(r);return["["+h.map((g,y)=>th(g,o[y],e)).join(", ")+"]"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>Z1){for(let h=0;h<Qd;h++){let g=h*p,y=g+p;m.push(...Sx(r.slice(g,y),l,e,c,o,!1))}m.push("...");for(let h=a-Qd;h<a;h++){let g=h*p,y=g+p;m.push(...Sx(r.slice(g,y),l,e,c,o,h===a-1))}}else for(let h=0;h<a;h++){let g=h*p,y=g+p;m.push(...Sx(r.slice(g,y),l,e,c,o,h===a-1))}let f=u===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
|
|
`;for(let h=2;h<u;h++)d+=`
|
|
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function eh(r){let t=[];for(let e=0;e<r.length;e+=2)t.push([r[e],r[e+1]]);return t}var pe=class{constructor(t,e,n){if(this.dtype=e,this.shape=t.slice(),this.size=Qt(t),n!=null){let o=n.length;A(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||WC(e,this.size),this.strides=bi(t)}set(t,...e){e.length===0&&(e=[0]),A(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;o<t.length-1;++o)n+=this.strides[o]*t[o];return this.values[n]}locToIndex(t){if(this.rank===0)return 0;if(this.rank===1)return t[0];let e=t[t.length-1];for(let n=0;n<t.length-1;++n)e+=this.strides[n]*t[n];return e}indexToLoc(t){if(this.rank===0)return[];if(this.rank===1)return[t];let e=new Array(this.shape.length);for(let n=0;n<e.length-1;++n)e[n]=Math.floor(t/this.strides[n]),t-=e[n]*this.strides[n];return e[e.length-1]=t,e}get rank(){return this.shape.length}toTensor(){return Ks().makeTensor(this.values,this.shape,this.dtype)}},Ks=null,dm=null,m4=null;function t_(r){Ks=r}function e_(r){dm=r}function r_(r){m4=r}var zt=class{constructor(t,e,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=t.slice(),this.dtype=e||"float32",this.size=Qt(t),this.strides=bi(t),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let t=await this.data();return dm.buffer(this.shape,this.dtype,t)}bufferSync(){return dm.buffer(this.shape,this.dtype,this.dataSync())}async array(){let t=await this.data();return Pu(this.shape,t,this.dtype==="complex64")}arraySync(){return Pu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let t=Ks().read(this.dataId);if(this.dtype==="string"){let e=await t;try{return e.map(n=>fm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return t}dataToGPU(t){return this.throwIfDisposed(),Ks().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=Ks().readSync(this.dataId);if(this.dtype==="string")try{return t.map(e=>fm(e))}catch(e){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return t}async bytes(){this.throwIfDisposed();let t=await Ks().read(this.dataId);return this.dtype==="string"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(Ks().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(t=!1){return dm.print(this,t)}clone(){return this.throwIfDisposed(),dm.clone(this)}toString(t=!1){let e=this.dataSync();return J1(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),dm.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),Ks().makeVariable(this,t,e,n)}};Object.defineProperty(zt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function L(){return qd("Tensor",()=>zt)}L();var Ua=class extends zt{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!Pn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);Ks().disposeTensor(this),this.dataId=t.dataId,Ks().incRef(this,null)}dispose(){Ks().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Ua,Symbol.hasInstance,{value:r=>r instanceof zt&&r.assign!=null&&r.assign instanceof Function});var ho={};Zt(ho,{assertTypesMatch:()=>uI,getTensorsInContainer:()=>rh,isTensorInList:()=>d4,makeTypesMatch:()=>Xt});var oI;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(oI||(oI={}));var sI;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(sI||(sI={}));var iI;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(iI||(iI={}));var aI;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(aI||(aI={}));var lI;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(lI||(lI={}));var f4={float32:aI,int32:sI,bool:iI,complex64:lI};function ar(r,t){if(r==="string"||t==="string"){if(r==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${r} with ${t}`)}return f4[r][t]}function Ku(r){return ar(r,"int32")}function Xt(r,t){if(r.dtype===t.dtype)return[r,t];let e=ar(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function uI(r,t){A(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function d4(r,t){return t.some(e=>e.id===r.id)}function rh(r){let t=[];return n_(r,t,new Set),t}function n_(r,t,e){if(r==null)return;if(r instanceof zt){t.push(r);return}if(!h4(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),n_(s,t,e))}}function h4(r){return Array.isArray(r)||typeof r=="object"}function cI(r){return r.kernelName!=null}var kx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},Zl=class{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new kx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:t,asyncInit:e}=this.initializeBackendsAndReturnBest();if(e)throw new Error(`The highest priority backend '${t}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(t)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(t){if(!(t in this.registry))if(t in this.registryFactory){let{asyncInit:e}=this.initializeBackend(t);if(e)return null}else return null;return this.registry[t]}findBackendFactory(t){return t in this.registryFactory?this.registryFactory[t].factory:null}registerBackend(t,e,n=1){return t in this.registryFactory?(Li(`${t} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[t]={factory:e,priority:n},!0)}async setBackend(t){if(this.registryFactory[t]==null)throw new Error(`Backend name '${t}' not found in registry`);if(this.backendName=t,this.registry[t]==null){this.backendInstance=null;let{success:e,asyncInit:n}=this.initializeBackend(t);if(!(n?await e:e))return!1}return this.backendInstance=this.registry[t],this.setupRegisteredKernels(),this.profiler=new Ix(this.backendInstance),!0}setupRegisteredKernels(){wx(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){wx(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof Xo)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(i=>o<this.pendingBackendInitId?!1:(this.registry[t]=i,this.pendingBackendInit=null,!0)).catch(i=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,Li(`Initialization of backend ${t} failed`),Li(i.stack||i.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[t]=n,{success:!0,asyncInit:!1}}catch(n){return Li(`Initialization of backend ${t} failed`),Li(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(t){if(!(t in this.registryFactory))throw new Error(`${t} backend not found in registry`);this.backendName===t&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,t in this.registry&&(this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t]),delete this.registryFactory[t],this.backendName===t&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((t,e)=>this.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(t,e){let n=this.state.tensorInfo.get(e),o=n.backend,s=this.readSync(e),i=o.refCount(e);o.disposeData(e,!0),n.backend=t,t.move(e,s,n.shape,n.dtype,i),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(t,e){let n=null;if(e==null){if(typeof t!="function")throw new Error("Please provide a function to tidy()");e=t}else{if(typeof t!="string"&&!(t instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof e!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=t}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return Zl.nextTensorId++}nextVariableId(){return Zl.nextVariableId++}clone(t){let e=E.runKernel(uo,{x:t}),n={x:t},o=i=>({x:()=>{let a="float32",u={x:i},l={dtype:a};return E.runKernel(ao,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(Zd(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype==="complex64"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=cI(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(cI(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let y=Zd(d,this.backendName);A(y!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=y.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let v=w.map(k=>k.rank!=null?k:this.makeTensorFromTensorInfo(k));if(o){let k=this.getTensorsForGradient(d,h,v);n=this.saveTensorsForBackwardMode(k)}return v}}else{let{forwardFunc:d}=t,h=g=>{!o||(n=g.map(y=>this.keep(this.clone(y))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let y=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,y),y}}let{inputs:c,attrs:p}=t,m=cI(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=YC(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(A(Array.isArray(e),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=t;n==="string"&&Zo(t[0])&&(s=t.map(u=>Yl(u)));let i=o.write(s,e,n),a=new zt(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n==="string"){let u=this.state.tensorInfo.get(i),l=qC(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||"float32";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new zt(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new Ua(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype==="string"&&this.state.numStringTensors++;let n=0;t.dtype!=="complex64"&&t.dtype!=="string"&&(n=t.size*bx(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof Ua||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!=="complex64"&&t.dtype!=="string"){let n=t.size*bx(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=YC(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=Ap(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:"unnamed scope",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=rh(t),n=new Set(e.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let i=this.state.activeScope.track[s];!i.kept&&!n.has(i.id)&&i.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],e.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(A(e.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",t));A(s instanceof zt,()=>"The result y returned by f() must be a tensor.");let i=X1(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let a={};a[s.id]=n==null?g4(s.shape):n,Y1(a,i,l=>this.tidy(l),x4);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return A(yi(t),()=>"The f passed in customGrad(f) must be a function."),(...e)=>{A(e.every(a=>a instanceof zt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),A(n.value instanceof zt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(yi(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];A(c.length===e.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(m=>m instanceof zt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=qu(),n=await this.backend.time(t);return n.wallMs=qu()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new kx;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Zl.nextTensorId=0;Zl.nextVariableId=0;function g4(r){let t=Gd(Qt(r),"float32");return E.makeTensor(t,r,"float32")}function pI(){let r=XC();if(r._tfengine==null){let t=new Hd(r);r._tfengine=new Zl(t)}return A1(r._tfengine.ENV),t_(()=>r._tfengine),r._tfengine}var E=pI();function x4(r,t){let e={a:r,b:t};return E.runKernel(Xn,e)}var Jl={};Zt(Jl,{isBrowser:()=>fI,isMobile:()=>w4,mockIsMobile:()=>b4});function y4(){return typeof navigator!="undefined"&&navigator!=null}var mI;function b4(r){mI=r}function w4(r){if(mI!==void 0)return mI;if(r||y4()){if(r||(r=navigator),r.product==="ReactNative")return!0;let t=r.userAgent||r.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function fI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var go=G();go.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});go.registerFlag("IS_BROWSER",()=>fI());go.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");go.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));go.registerFlag("PROD",()=>!1);go.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>go.getBool("DEBUG"));go.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);go.registerFlag("IS_TEST",()=>!1);go.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);go.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);go.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Or(r,t){let e=r;if(yr(r))return t==="string"?[]:[r.length];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||yr(e)&&t!=="string";)n.push(e.length),e=e[0];return Array.isArray(r)&&G().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&s_(r,n,[]),n}function s_(r,t,e){if(e=e||[],!Array.isArray(r)&&!yr(r)){A(t.length===0,()=>`Element arr[${e.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${e.join("][")}] should be a primitive, but is an array of ${r.length} elements`),A(r.length===t[0],()=>`Element arr[${e.join("][")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o<r.length;++o)s_(r[o],n,e.concat(o))}function o_(r,t,e,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==t||r==="numeric"&&t==="string")throw new Error(`Argument '${e}' passed to '${n}' must be ${r} tensor, but got ${t} tensor`)}}function C(r,t,e,n="numeric"){if(r instanceof zt)return o_(n,r.dtype,t,e),r;let o=_p(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),o_(n,o,t,e),r==null||!yr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let u=r==null?"null":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Or(r,o);!yr(r)&&!Array.isArray(r)&&(r=[r]);let a=o!=="string"?mm(r,o):Yo(r,[],!0);return E.makeTensor(a,s,o)}function Ha(r,t,e,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,i)=>C(s,`${t}[${i}]`,e,n))}var i_="__op";function N(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith("_")&&(e=e.substring(0,e.length-1)),e=e+i_;let o=(...s)=>{E.startScope(e);try{let i=n(...s);return Ud(i)&&console.error("Cannot return a Promise inside of tidy."),E.endScope(i),i}catch(i){throw E.endScope(null),i}};return Object.defineProperty(o,"name",{value:e,configurable:!0}),o}function v4(r,t){let e=C(r,"real","complex"),n=C(t,"imag","complex");Me(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return E.runKernel(Op,o)}var cn=N({complex_:v4});function pn(r,t,e,n){if(n==null&&(n=_p(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!yr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Wd(t);let o=Qt(t),s=Qt(e);A(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i<e.length;++i){let a=e[i],u=i===e.length-1?a!==Qt(t.slice(i)):!0;A(e[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!yr(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!=="string"?mm(r,n):Yo(r,[],!0),E.makeTensor(r,t,n)}function Ar(r,t,e){let n=Or(r,e);return pn(r,t,n,e)}var nh={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Nx=4;async function l_(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i<o.length;++i){let a=o[i],u=Array.isArray(r)?r[i].tensor:r[a];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${a}': ${u.dtype}`);let l={name:a,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let m=await u.bytes(),f=m.reduce((g,y)=>g+y.length,0)+Nx*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let y=m[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);d.set(b,h),h+=Nx,d.set(y,h),h+=y.length}p(d)});n.push(c)}else n.push(u.data());t!=null&&(l.group=t),e.push(l)}let s=await Promise.all(n);return{data:C4(s),specs:e}}function Tx(r,t){let e={},n,o=0;for(let s of t){let i=s.name,a=s.dtype,u=s.shape,l=Qt(u),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(a!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${a}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=nh[p.dtype],f=r.slice(o,o+l*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(a==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=N4()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(a==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*m}else if(a==="string"){let p=Qt(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+Nx))[0];o+=Nx;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=nh[a],m=r.slice(o,o+l*p);if(a==="float32")c=new Float32Array(m);else if(a==="int32")c=new Int32Array(m);else if(a==="bool")c=new Uint8Array(m);else if(a==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let y=0;y<f.length;y++)f[y]=c[y*2],d[y]=c[y*2+1];let h=Ar(f,u,"float32"),g=Ar(d,u,"float32");e[i]=cn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*p}a!=="complex64"&&(e[i]=Ar(c,u,a))}return e}function C4(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var dI=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function a_(r){return dI?Buffer.byteLength(r):new Blob([r]).size}function u_(r){if(dI)return Buffer.from(r).toString("base64");let t=new Uint8Array(r),e="";for(let n=0,o=t.length;n<o;n++)e+=String.fromCharCode(t[n]);return btoa(e)}function c_(r){if(dI){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(r),e=new Uint8Array(t.length);for(let n=0;n<t.length;++n)e.set([t.charCodeAt(n)],n);return e.buffer}function hm(r){if(r.length===1)return r[0];let t=0;r.forEach(o=>{t+=o.byteLength});let e=new Uint8Array(t),n=0;return r.forEach(o=>{e.set(new Uint8Array(o),n),n+=o.byteLength}),e.buffer}function hI(r){let t="/";for(r=r.trim();r.endsWith(t);)r=r.slice(0,r.length-1);let e=r.split(t);return e[e.length-1]}function _x(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy,weightsManifest:t};return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),e}async function gm(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy};if(r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),r.weightsManifest!=null){let[n,o]=await t(r.weightsManifest);e.weightSpecs=n,e.weightData=o}return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),e}function zi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:a_(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:a_(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function I4(){let r=e=>{let n=e<<13,o=0;for(;(n&8388608)===0;)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function S4(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function k4(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function N4(){let r=I4(),t=S4(),e=k4();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i<n.length;i++){let a=n[i],u=r[e[a>>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var Ne=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ne.instance==null&&(Ne.instance=new Ne),Ne.instance}static registerSaveRouter(t){Ne.getInstance().saveRouters.push(t)}static registerLoadRouter(t){Ne.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return Ne.getHandlers(t,"save")}static getLoadHandlers(t,e){return Ne.getHandlers(t,"load",e)}static getHandlers(t,e,n){let o=[];return(e==="load"?Ne.getInstance().loadRouters:Ne.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},p_=r=>Ne.registerSaveRouter(r),m_=r=>Ne.registerLoadRouter(r),f_=r=>Ne.getSaveHandlers(r),d_=(r,t)=>Ne.getLoadHandlers(r,t);var gI="tensorflowjs",xI=1,ju="models_store",Ql="model_info_store";function h_(){if(!G().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function yI(r){let t=r.result;t.createObjectStore(ju,{keyPath:"modelPath"}),t.createObjectStore(Ql,{keyPath:"modelPath"})}var Bi=class{constructor(t){if(this.indexedDB=h_(),t==null||!t)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open(gI,xI);s.onupgradeneeded=()=>yI(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(ju,"readonly"),l=a.objectStore(ju).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{let a=zi(e),u=i.transaction(Ql,"readwrite"),l=u.objectStore(Ql),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a}),p;c.onsuccess=()=>{p=i.transaction(ju,"readwrite");let f=p.objectStore(ju).put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a});f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(Ql);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};Bi.URL_SCHEME="indexeddb://";var g_=r=>G().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Bi.URL_SCHEME)?T4(r.slice(Bi.URL_SCHEME.length)):null;Ne.registerSaveRouter(g_);Ne.registerLoadRouter(g_);function T4(r){return new Bi(r)}function _4(r){return r.startsWith(Bi.URL_SCHEME)?r.slice(Bi.URL_SCHEME.length):r}var Ex=class{constructor(){this.indexedDB=h_()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open(gI,xI);n.onupgradeneeded=()=>yI(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(Ql,"readonly"),a=s.objectStore(Ql).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=_4(t),new Promise((e,n)=>{let o=this.indexedDB.open(gI,xI);o.onupgradeneeded=()=>yI(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(Ql,"readwrite"),a=i.objectStore(Ql),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(ju,"readwrite");let f=l.objectStore(ju).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var qa="/",xm="tensorflowjs_models",x_="info",E4="model_topology",A4="weight_specs",$4="weight_data",D4="model_metadata";function y_(r){return{info:[xm,r,x_].join(qa),topology:[xm,r,E4].join(qa),weightSpecs:[xm,r,A4].join(qa),weightData:[xm,r,$4].join(qa),modelMetadata:[xm,r,D4].join(qa)}}function b_(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function F4(r){let t=r.split(qa);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(qa)}function R4(r){return r.startsWith(Vi.URL_SCHEME)?r.slice(Vi.URL_SCHEME.length):r}var Vi=class{constructor(t){if(!G().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,t==null||!t)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=t,this.keys=y_(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=zi(t);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,u_(t.weightData));let s={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw b_(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=c_(i),e}};Vi.URL_SCHEME="localstorage://";var w_=r=>G().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Vi.URL_SCHEME)?O4(r.slice(Vi.URL_SCHEME.length)):null;Ne.registerSaveRouter(w_);Ne.registerLoadRouter(w_);function O4(r){return new Vi(r)}var Ax=class{constructor(){A(G().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let t={},e=xm+qa,n=qa+x_;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(e)&&s.endsWith(n)){let i=F4(s);t[i]=JSON.parse(this.LS.getItem(s))}}return t}async removeModel(t){t=R4(t);let e=y_(t);if(this.LS.getItem(e.info)==null)throw new Error(`Cannot find model at path '${t}'`);let n=JSON.parse(this.LS.getItem(e.info));return b_(e),n}};var ym="://",Xr=class{constructor(){this.managers={}}static getInstance(){return Xr.instance==null&&(Xr.instance=new Xr),Xr.instance}static registerManager(t,e){A(t!=null,()=>"scheme must not be undefined or null."),t.endsWith(ym)&&(t=t.slice(0,t.indexOf(ym))),A(t.length>0,()=>"scheme must not be an empty string.");let n=Xr.getInstance();A(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=this.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(this.getInstance().managers)}};function $x(r){if(r.indexOf(ym)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Xr.getSchemes().join(",")}`);return{scheme:r.split(ym)[0],path:r.split(ym)[1]}}async function v_(r,t,e=!1){A(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=Ne.getLoadHandlers(r);A(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),A(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=Ne.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=$x(r).scheme,u=$x(r).path,l=a===$x(r).scheme,c=await o.load();e&&l&&await Xr.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await Xr.getManager(a).removeModel(u),p.modelArtifactsInfo}async function C_(){let r=Xr.getSchemes(),t={};for(let e of r){let n=await Xr.getManager(e).listModels();for(let o in n){let s=e+ym+o;t[s]=n[o]}}return t}async function I_(r){let t=$x(r);return Xr.getManager(t.scheme).removeModel(t.path)}async function S_(r,t){return v_(r,t,!1)}async function k_(r,t){return v_(r,t,!0)}var bI=class{fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}};if(G().get("IS_BROWSER")){G().setPlatform("browser",new bI);try{Xr.registerManager(Vi.URL_SCHEME,new Ax)}catch(r){}try{Xr.registerManager(Bi.URL_SCHEME,new Ex)}catch(r){}}var M4={importFetch:()=>N_()},wI;var vI=class{constructor(){this.util=T_(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return G().global.fetch!=null?G().global.fetch(t,e):(wI==null&&(wI=M4.importFetch()),wI(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?"":new this.util.TextDecoder(e).decode(t)}};G().get("IS_NODE")&&!G().get("IS_BROWSER")&&G().setPlatform("node",new vI);function Ct(r,t="float32",e){return t=t||"float32",Wd(r),new pe(r,t,e)}function P4(r,t){let e=C(r,"x","cast");if(!HC(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&e.dtype!=="string"||t!=="string"&&e.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:e},o={dtype:t};return E.runKernel(ao,n,o)}var Z=N({cast_:P4});function L4(r){let e={x:C(r,"x","clone","string_or_numeric")};return E.runKernel(uo,e)}var Nn=N({clone_:L4});function CI(r,t=!1){console.log(r.toString(t))}pI();var z4={buffer:Ct,cast:Z,clone:Nn,print:CI};e_(z4);var Mr={};Zt(Mr,{browserFiles:()=>E_,browserHTTPRequest:()=>D_,concatenateArrayBuffers:()=>hm,copyModel:()=>S_,decodeWeights:()=>Tx,encodeWeights:()=>l_,fromMemory:()=>F_,fromMemorySync:()=>_I,getLoadHandlers:()=>d_,getModelArtifactsForJSON:()=>gm,getModelArtifactsInfoForJSON:()=>zi,getSaveHandlers:()=>f_,http:()=>Fx,isHTTPScheme:()=>Dx,listModels:()=>C_,loadWeights:()=>A_,moveModel:()=>k_,registerLoadRouter:()=>m_,registerSaveRouter:()=>p_,removeModel:()=>I_,weightsLoaderFactory:()=>NI,withSaveHandler:()=>R_,withSaveHandlerSync:()=>O_});var B4="model",V4=".json",G4=".weights.bin";function __(r){return new Promise(t=>setTimeout(t)).then(r)}var Ka=class{constructor(t){if(!G().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");t.startsWith(Ka.URL_SCHEME)&&(t=t.slice(Ka.URL_SCHEME.length)),(t==null||t.length===0)&&(t=B4),this.modelJsonFileName=t+V4,this.weightDataFileName=t+G4}async save(t){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let e=window.URL.createObjectURL(new Blob([t.weightData],{type:"application/octet-stream"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:t.weightSpecs}],o=_x(t,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),i=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(i.download=this.modelJsonFileName,i.href=s,await __(()=>i.dispatchEvent(new MouseEvent("click"))),t.weightData!=null){let a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=e,await __(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:zi(t)}}}};Ka.URL_SCHEME="downloads://";var II=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=gm(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,hm(i)])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>hI(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=hI(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},W4=r=>G().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ka.URL_SCHEME)?U4(r.slice(Ka.URL_SCHEME.length)):null;Ne.registerSaveRouter(W4);function U4(r="model"){return new Ka(r)}function E_(r){return new II(r)}function SI(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){A(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function a(u,l){A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),A(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function kI(r,t){t==null&&(t={});let e=t.fetchFunc==null?G().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),o=0,s=.5,a=(t.onProgress==null?await Promise.all(n):await SI(n,t.onProgress,o,s)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(a):await SI(a,t.onProgress,u,l)}async function A_(r,t="",e,n){return NI(i=>kI(i,{requestInit:n}))(r,t,e)}function NI(r){return async(t,e="",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=nh[y]*Qt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((v,k)=>{v===g.name&&(w(),i[k]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
|
|
Manifest JSON has weights with names: ${a.join(", ")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith("/")?"":"/")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=0;for(let v=0;v<d;v++)h+=c[m+v].byteLength;let g=new ArrayBuffer(h),y=new Uint8Array(g),b=0;for(let v=0;v<d;v++){let k=new Uint8Array(c[m+v]);y.set(k,b),b+=k.byteLength}s[f].forEach(v=>{let k=g.slice(v.groupOffset,v.groupOffset+v.sizeBytes),_=Tx(k,[v.manifestEntry]);for(let $ in _)p[$]=_[$]}),m+=d}),p}}var H4="application/octet-stream",q4="application/json",oh=class{constructor(t,e){if(this.DEFAULT_METHOD="POST",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.onProgress=e.onProgress,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(A(typeof e.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=e.fetchFunc):this.fetch=G().platform.fetch,A(t!=null&&t.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(t)&&A(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=e.requestInit||{}}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:t.weightSpecs}],o=_x(t,n);e.body.append("model.json",new Blob([JSON.stringify(o)],{type:q4}),"model.json"),t.weightData!=null&&e.body.append("model.weights.bin",new Blob([t.weightData],{type:H4}),"model.weights.bin");let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:zi(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?i+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":i+=" Please make sure the server is serving valid JSON for this request.",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return gm(e,s=>this.loadWeights(s))}async loadWeights(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=K4(e),s=this.weightPathPrefix||n,i=[];for(let c of t)i.push(...c.weights);let a=[],u=[];for(let c of t)for(let p of c.paths)this.weightUrlConverter!=null?u.push(this.weightUrlConverter(p)):a.push(s+p+o);this.weightUrlConverter&&a.push(...await Promise.all(u));let l=await kI(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[i,hm(l)]}};oh.URL_SCHEME_REGEX=/^https?:\/\//;function K4(r){let t=r.lastIndexOf("/"),e=r.lastIndexOf("?"),n=r.substring(0,t),o=e>t?r.substring(e):"";return[n+"/",o]}function Dx(r){return r.match(oh.URL_SCHEME_REGEX)!=null}var $_=(r,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>Dx(n)):e=Dx(r),e)return Fx(r,t)}return null};Ne.registerSaveRouter($_);Ne.registerLoadRouter($_);function Fx(r,t){return new oh(r,t)}function D_(r,t){return Fx(r,t)}var sh=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},Rx=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},TI=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function F_(r,t,e,n){let o=arguments;return new TI(_I(...o))}function _I(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new sh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sh({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function R_(r){return new Rx(r)}function O_(r){return new Rx(r)}var L_={};Zt(L_,{confusionMatrix:()=>P_});function j4(r,t,e=!1,n=!1){let o=C(r,"a","matMul"),s=C(t,"b","matMul");[o,s]=Xt(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return E.runKernel(es,i,a)}var Bt=N({matMul_:j4});function X4(r,t,e=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:C(r,"indices","oneHot","int32")},i={depth:t,onValue:e,offValue:n};return E.runKernel(Ns,s,i)}var js=N({oneHot_:X4});function qct(){G().set("PROD",!0)}function Kct(){G().set("DEBUG",!0)}function jct(){G().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function EI(r){G().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}r_(EI);function Xct(){E.disposeVariables()}function xo(){return E}function ih(){return E.memory()}function Yct(r){return E.profile(r)}function V(r,t){return E.tidy(r,t)}function _t(r){rh(r).forEach(e=>e.dispose())}function Pe(r){return E.keep(r)}function Zct(r){return E.time(r)}function Y4(r){return E.setBackend(r)}function Jct(){return E.ready()}function Qct(){return E.backendName}function tpt(r){E.removeBackend(r)}function ept(r){return E.findBackend(r)}function rpt(r){return E.findBackendFactory(r)}function bm(r,t,e=1){return E.registerBackend(r,t,e)}function M_(){return E.backend}function npt(r,t){G().setPlatform(r,t)}function Z4(r){let e={input:C(r,"input","imag")};return E.runKernel(Kp,e)}var ja=N({imag_:Z4});function J4(r){let e={x:C(r,"x","neg")};return E.runKernel(ki,e)}var qt=N({neg_:J4});function Q4(r){let e={input:C(r,"input","real")};return E.runKernel(tm,e)}var Gi=N({real_:Q4});function tH(r,t,e){let n=C(r,"x","transpose");if(t==null&&(t=n.shape.map((i,a)=>a).reverse()),A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype==="complex64"?V(()=>{let i=Gi(n),a=ja(n);return i=E.runKernel(Zn,{x:i},s),a=E.runKernel(Zn,{x:a},s),e&&(a=qt(a)),cn(i,a)}):E.runKernel(Zn,o,s)}var Mt=N({transpose_:tH});function eH(r,t,e){let n=C(r,"labels","confusionMatrix"),o=C(t,"predictions","confusionMatrix");A(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),A(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),A(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),A(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),A(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=js(Z(n,"int32"),e),i=js(Z(o,"int32"),e),a=Mt(s),u=Bt(a,i);return Z(u,"int32")}var P_=N({confusionMatrix_:eH});var Pr={};Zt(Pr,{assertAndGetBroadcastShape:()=>Lt,getBroadcastDims:()=>z_,getReductionAxes:()=>xe});function z_(r,t){let e=r.length,n=[];for(let o=0;o<e;o++){let s=e-1-o,i=r[s]||1;(t[t.length-1-o]||1)>1&&i===1&&n.unshift(s)}return n}function xe(r,t){let e=[];for(let n=0;n<t.length;n++){let o=r[r.length-n-1],s=t.length-n-1,i=t[s];(o==null||o===1&&i>1)&&e.unshift(s)}return e}function Lt(r,t){let e=[],n=Math.max(r.length,t.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let i=t[t.length-o-1];if(i==null&&(i=1),s===1)e.unshift(i);else if(i===1)e.unshift(s);else if(s!==i){let a=`Operands could not be broadcast together with shapes ${r} and ${t}.`;throw Error(a)}else e.unshift(s)}return e}var Ox={};Zt(Ox,{fromPixels:()=>lH,fromPixelsAsync:()=>iH,toPixels:()=>aH});function AI(r,t,e){if(jn(r),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Or(r,e);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return pn(r,t,n,e)}var Xu;function B_(r,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(o&&o&&r.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(Zd(Xd,E.backendName)!=null){let d={pixels:r},h={numChannels:t};return E.runKernel(Xd,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext("2d").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if(Xu==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Xu=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Xu=document.createElement("canvas").getContext("2d");Xu.canvas.width=l,Xu.canvas.height=c,Xu.drawImage(r,0,0,l,c),p=Xu.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h<d;h++)for(let g=0;g<t;++g)m[h*t+g]=p[h*4+g]}return AI(m,[c,l,t],"int32")}function rH(r){return r!=null&&r.data instanceof Uint8Array}function nH(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function oH(r){return r!=null&&r.width!==0&&r.height!==0}function sH(r){return nH()&&!(r instanceof ImageBitmap)&&oH(r)&&!rH(r)}async function iH(r,t=3){let e=null;if(G().getBool("WRAP_TO_IMAGEBITMAP")&&sH(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?e=n:e=r}else e=r;return B_(e,t)}async function aH(r,t){let e=C(r,"img","toPixels");if(!(r instanceof zt)){let l=e;e=Z(l,"int32"),l.dispose()}if(e.rank!==2&&e.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${e.rank}.`);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(e.dtype!=="float32"&&e.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${e.dtype}. Please use float32 or int32 tensors.`);let i=await e.data(),a=e.dtype==="float32"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l<n*o;++l){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=i[l*s+m];if(e.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=o,t.height=n;let l=t.getContext("2d"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}var lH=N({fromPixels_:B_});var Mx={};Zt(Mx,{prepareAndValidate:()=>V_});function V_(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(Qt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;p<o.length-1;++p)i*=o[p];let a=r.shape,u=o.slice();u.pop();let l=1;for(let p=s;p<e;++p)l*=a[p],u.push(a[p]);let c=[...bi(r.shape).map(p=>p/l),1].slice(0,s);return[u,i,l,c]}var ah={};Zt(ah,{calculateShapes:()=>G_,validateInput:()=>Px,validateUpdateShape:()=>$I});function $I(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(e.rank-o))throw new Error(s+` Output shape length < ${n+(e.rank-o)}`);if(e.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let i=0;i<o;++i)if(e.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${e.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<e.rank-o;++i)if(e.shape[i+o]!==r[i+n])throw new Error(s+` updates.shape[${i+o}] (${e.shape[i+o]}) != shape[${i+o}] (${r[i+o]})`)}function Px(r,t,e){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(e.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${e}`);if(e.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}$I(e,t,r)}function G_(r,t,e){let n=t.shape.length,o=n>1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p<s;++p)i*=e[p];let a=o<1?1:o,u=Qt(t.shape)/a,l=[...bi(e.slice(0,o)),1],c=Qt(e);return{sliceRank:o,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}var Ve={};Zt(Ve,{assertParamsValid:()=>cH,computeFlatOffset:()=>hH,computeOutShape:()=>mH,getNormalizedAxes:()=>fH,isSliceContinous:()=>dH,maskToAxes:()=>pH,parseSliceParams:()=>FI,sliceInfo:()=>gH,startForAxis:()=>Y_,startIndicesWithElidedDims:()=>K_,stopForAxis:()=>Z_,stopIndicesWithElidedDims:()=>j_,stridesForAxis:()=>X_,stridesWithElidedDims:()=>U_});var DI=-2,uH=-1;function cH(r,t,e){let n=r.shape.length;A(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),A(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)A(t[o]+e[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function pH(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function mH(r,t,e){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((t[o]-r[o])/e[o]);return n}function U_(r,t,e,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<e;s++)s===0?o[t]=1:(o.splice(t,0,1),o.pop());return o}function H_(r,t,e){return e<=r?e:e-(t-1)}function q_(r,t){let e=[];for(let n=0;n<r;n++)e.push(t+n);return e}function fH(r,t,e,n,o,s,i,a,u){let l=r.length,c=new Array(l),p=new Array(l),m=new Array(l);if(t.length&&e>0){let f=t[0],d=e+1;c=K_(i,f,d,n,r),p=j_(a,f,d,o,r),m=U_(s,f,d,r)}else for(let f=0;f<l;f++)c[f]=Y_(i,n,s,r,f,u),p[f]=Z_(a,o,s,r,f,u),m[f]=X_(s,f,u);return{begin:c,end:p,strides:m}}function K_(r,t,e,n,o){let s=[...o],i=q_(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=0;else{let u=H_(t,e,a),l=n[u];r&1<<u&&(l=0),s[a]=l}return s}function j_(r,t,e,n,o){let s=[...o],i=q_(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=H_(t,e,a),l=n[u];r&1<<u&&(l=Number.MAX_SAFE_INTEGER),s[a]=l}for(let a=0;a<s.length;a++){let u=o[a];s[a]<0&&(s[a]+=u),s[a]=Tp(0,s[a],o[a])}return s}function X_(r,t,e){let n=r[t];return(e&1<<t||n==null)&&(n=1),n}function Y_(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=Tp(0,i,u-1),i}function Z_(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=Tp(0,i,u):i=Tp(-1,i,u-1),i}function dH(r,t,e){let n=e.length;for(let o=0;o<e.length;o++)if(e[o]>1){n=o;break}for(let o=n+1;o<e.length;o++)if(t[o]>0||e[o]!==r[o])return!1;return!0}function hH(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)e+=r[n]*t[n];return e}function FI(r,t,e){let n,o=r.shape.length;typeof t=="number"?n=[t,...new Array(o-1).fill(0)]:t.length<o?n=t.concat(new Array(o-t.length).fill(0)):n=t.slice(),n.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return e==null?s=new Array(o).fill(-1):typeof e=="number"?s=[e,...new Array(o-1).fill(-1)]:e.length<o?s=e.concat(new Array(o-e.length).fill(-1)):s=e,s=s.map((i,a)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function gH(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w<p.dims;w++)c&&(1<<w&a)!==0&&p.numAddAxisAfterEllipsis++,1<<w&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let m={dims:r.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};xH(p,m);let f=!0,d=!0,h=!0,g=[],y=[];for(let w=0;w<r.length;++w){if(m.strides[w]===0)throw Error(`strides[${w}] must be non-zero`);let v=!!(m.shrinkAxisMask&1<<w),k=r[w];if(k===-1){g.push(v?1:-1);continue}let _=[m.beginMask&1<<w,m.endMask&1<<w],$=[m.strides[w]>0?0:-1,m.strides[w]>0?k:k-1];if(v&&m.strides[w]<=0)throw Error("only stride 1 allowed on non-range indexing.");h=h&&m.strides[w]===1;let D=!!(m.beginMask&1<<w&&m.endMask&1<<w);if(m.beginValid&&m.endValid){if(v){let U=m.begin[w]<0?k+m.begin[w]:m.begin[w];if(m.begin[w]=U,m.end[w]=m.begin[w]+1,U<0||U>=k)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=W_(m.begin[w],0,m.strides[w],k,_,$),m.end[w]=W_(m.end[w],1,m.strides[w],k,_,$);let B=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===k;f=f&&B,d=d&&(w===0&&m.strides[w]===1||B)}else f=f&&m.strides[w]===1&&D,d=d&&(w===0&&m.strides[w]===1||D);let F,P=!1;if(m.beginValid&&m.endValid?(F=m.end[w]-m.begin[w],P=!0):v?(F=1,P=!0):D&&k>=0&&(m.strides[w]<0?F=-k:F=k,P=!0),P){let B;F===0||F<0!=m.strides[w]<0?B=0:B=Math.trunc(F/m.strides[w])+(F%m.strides[w]!==0?1:0),g.push(B)}else g.push(-1)}for(let w=0;w<m.finalShapeGatherIndices.length;++w){let v=m.finalShapeGatherIndices[w];v>=0?y.push(g[v]):v===DI&&y.push(1)}return{finalShapeSparse:y.filter((w,v)=>m.finalShapeGatherIndices[v]!==DI),finalShape:y,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function xH(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<r.dims;n++)if(1<<n&r.ellipsisMask){let o=Math.min(t.dims-(r.dims-n)+1+r.numAddAxisAfterEllipsis,t.dims);for(;e<o;e++)t.begin[e]=0,t.end[e]=0,t.strides[e]=1,t.beginMask|=1<<e,t.endMask|=1<<e,t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[e]=n}else if(1<<n&r.newAxisMask)t.finalShapeGatherIndices.push(DI),t.finalShapeGatherIndicesSparse.push(-1);else{if(e===t.begin.length)throw Error(`Index out of range using input dim ${e}; input has only ${t.dims} dims, ${t.begin.length}.`);r.begin!=null&&(t.begin[e]=r.begin[n]),r.end!=null&&(t.end[e]=r.end[n]),t.strides[e]=r.strides[n],r.beginMask&1<<n&&(t.beginMask|=1<<e),r.endMask&1<<n&&(t.endMask|=1<<e),r.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(uH),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<e):(t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[e]=n,e++}}function W_(r,t,e,n,o,s){if(o[t])return e>0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var et={};Zt(et,{Serializable:()=>lh,SerializationMap:()=>Wi,registerClass:()=>Tn});var lh=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},Wi=class{constructor(){this.classNameMap={}}static getMap(){return Wi.instance==null&&(Wi.instance=new Wi),Wi.instance}static register(t){Wi.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function Tn(r){A(r.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),A(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Wi.register(r)}var eE={};Zt(eE,{TEST_EPSILON_FLOAT16:()=>J_,encodeStrings:()=>tE,expectArrayBuffersEqual:()=>IH,expectArraysClose:()=>bH,expectArraysEqual:()=>vH,expectNumbersClose:()=>Q_,expectPromiseToFail:()=>wH,expectValuesInRange:()=>CH,testEpsilon:()=>Lx});var yH=.001,J_=.1;function bH(r,t,e){return e==null&&(e=Lx()),RI(r,t,(n,o)=>OI(n,o,e))}function Lx(){return E.backend.floatPrecision()===32?yH:J_}function RI(r,t,e){let n=!0;if((yr(r)||yr(t))&&(n=!1),yr(r)&&yr(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Or(r),a=Or(t);if(!Pn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=yr(r)?r:Yo(r),s=yr(t)?t:Yo(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let a=o[i],u=s[i];if(!e(a,u))throw new Error(`Arrays differ: actual[${i}] = ${a}, expected[${i}] = ${u}.
|
|
Actual: ${o}.
|
|
Expected: ${s}.`)}}function wH(r,t){r().then(()=>t.fail(),()=>t())}function vH(r,t){let e=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Zo(r)||Zo(r[0])||Zo(t)||Zo(t[0])?RI(r,e,(n,o)=>n==o):RI(r,t,(n,o)=>OI(n,o,0))}function Q_(r,t,e){if(e==null&&(e=Lx()),!OI(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`)}function OI(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function CH(r,t,e){for(let n=0;n<r.length;n++)if(r[n]<t||r[n]>e)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function IH(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o<n.length;o++)if(e[o]!==n[o])throw new Error(`Expected ArrayBuffer value at ${o} to be ${n[o]} but got ${e[o]} instead`)}function tE(r){for(let t=0;t<r.length;t++){let e=r[t];Array.isArray(e)?tE(e):r[t]=Yl(e)}return r}var rE="3.18.0";function SH(r,t){let e=C(r,"a","add"),n=C(t,"b","add");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(Xn,o)}var J=N({add_:SH});function kH(r,t){let e=C(r,"a","floorDiv"),n=C(t,"b","floorDiv");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(fs,o)}var Yu=N({floorDiv_:kH});function NH(r,t){let e=C(r,"a","div"),n=C(t,"b","div");if([e,n]=Xt(e,n),e.dtype==="int32"&&n.dtype==="int32")return Yu(e,n);let o={a:e,b:n},s={};return E.runKernel(us,o,s)}var ct=N({div_:NH});function TH(r,t){let e=C(r,"a","mul"),n=C(t,"b","mul");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(ks,o)}var M=N({mul_:TH});function _H(r){let t=C(r,"x","abs");if(t.dtype==="complex64"){let e={x:t};return E.runKernel(Ml,e)}else{let e={x:t};return E.runKernel(wi,e)}}var Te=N({abs_:_H});function EH(r){let e={x:C(r,"x","acos")};return E.runKernel(na,e)}var uh=N({acos_:EH});function AH(r){let e={x:C(r,"x","acosh")};return E.runKernel(oa,e)}var ch=N({acosh_:AH});function $H(r){A(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),A(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>C(o,`tensors${s}`,"addN")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!Pn(o.shape,e.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return E.runKernel(Jo,n)}var MI=N({addN_:$H});function DH(r,t=null,e=!1){let o={x:C(r,"x","all","bool")},s={axis:t,keepDims:e};return E.runKernel(sa,o,s)}var Zu=N({all_:DH});function FH(r,t=null,e=!1){let o={x:C(r,"x","any","bool")},s={axis:t,keepDims:e};return E.runKernel(ia,o,s)}var tu=N({any_:FH});function RH(r,t=0){let n={x:C(r,"x","argMax")},o={axis:t};return E.runKernel(Qo,n,o)}var Xs=N({argMax_:RH});function OH(r,t=0){let n={x:C(r,"x","argMin")},o={axis:t};return E.runKernel(Rl,n,o)}var ph=N({argMin_:OH});function MH(r){let e={x:C(r,"x","asin")};return E.runKernel(aa,e)}var mh=N({asin_:MH});function PH(r){let e={x:C(r,"x","asinh")};return E.runKernel(la,e)}var fh=N({asinh_:PH});function LH(r){let e={x:C(r,"x","atan")};return E.runKernel(ua,e)}var dh=N({atan_:LH});function zH(r,t){let e=C(r,"a","atan2"),n=C(t,"b","atan2");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(pa,o)}var hh=N({atan2_:zH});function BH(r){let e={x:C(r,"x","atanh")};return E.runKernel(ca,e)}var gh=N({atanh_:BH});function VH(r,t,e,n,o="NHWC",s){let i=r[3],a=[...t,i],u=oE(o);return Qu(r,a,e,s,n,null,null,u)}function LI(r,t,e,n,o,s,i="channelsLast"){let[a,u]=zx(t),l;if(i==="channelsLast")l=[a,u,r[3],r[3]];else if(i==="channelsFirst")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return Qu(r,l,e,n,o,s,!1,i)}function GH(r,t,e,n,o,s,i="NDHWC"){let[a,u,l]=PI(t),c,p;if(i==="NDHWC")p="channelsLast",c=[a,u,l,r[4],r[4]];else if(i==="NCDHW")p="channelsFirst",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return nE(r,c,e,n,o,!1,p,s)}function Qu(r,t,e,n,o,s,i=!1,a="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(a==="channelsLast")[u,l,c,p]=r;else if(a==="channelsFirst")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=zx(e),[y,b]=zx(n),w=wm(m,y),v=wm(f,b),{padInfo:k,outHeight:_,outWidth:$}=HH(o,l,c,h,g,w,v,s,a),D=i?d*p:d,F;return a==="channelsFirst"?F=[u,D,_,$]:a==="channelsLast"&&(F=[u,_,$,D]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:_,outWidth:$,outChannels:D,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:r,outShape:F,filterShape:t}}function nE(r,t,e,n,o,s=!1,i="channelsLast",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,m]=r;else if(i==="channelsFirst")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[y,b,w]=PI(e),[v,k,_]=PI(n),$=wm(f,v),D=wm(d,k),F=wm(h,_),{padInfo:P,outDepth:B,outHeight:U,outWidth:q}=qH(o,l,c,p,y,b,w,$,D,F,a),j=s?g*m:g,K;return i==="channelsFirst"?K=[u,j,B,U,q]:i==="channelsLast"&&(K=[u,B,U,q,j]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:B,outHeight:U,outWidth:q,outChannels:j,padInfo:P,strideDepth:y,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:$,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:v,dilationHeight:k,dilationWidth:_,inShape:r,outShape:K,filterShape:t}}function WH(r,t,e,n,o){n==null&&(n=zI(r,t,e));let s=r[0],i=r[1],a=Ju((s-t+2*n)/e+1,o),u=Ju((i-t+2*n)/e+1,o);return[a,u]}function UH(r,t,e,n,o,s){o==null&&(o=zI(r,t,n));let i=r[0],a=r[1],u=r[2],l=Ju((i-t+2*o)/n+1,s),c=Ju((a-t+2*o)/n+1,s),p=Ju((u-t+2*o)/n+1,s);return[l,c,p,e]}function zI(r,t,e,n=1){let o=wm(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function zx(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function PI(r){return typeof r=="number"?[r,r,r]:r}function wm(r,t){return t<=1?r:r+(r-1)*(t-1)}function HH(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r=="number"){l={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=WH([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),y=f-g;l={top:d,bottom:h,left:g,right:y,type:"SAME"}}else if(r==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r=="object"){let m=u==="channelsLast"?r[1][0]:r[2][0],f=u==="channelsLast"?r[1][1]:r[2][1],d=u==="channelsLast"?r[2][0]:r[3][0],h=u==="channelsLast"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Ju((t-s+m+f)/n+1,a),p=Ju((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function qH(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=UH([t,e,n,1],a,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,y=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,v=Math.floor(g/2),k=g-v,_=Math.floor(y/2),$=y-_;p={top:v,bottom:k,left:_,right:$,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((t-a+1)/o),f=Math.ceil((e-u+1)/s),d=Math.ceil((n-l+1)/i);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Ju(r,t){if(!t)return Math.trunc(r);switch(t){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function Jn(r){let[t,e,n]=zx(r);return t===1&&e===1&&n===1}function $r(r,t){return Jn(r)||Jn(t)}function oE(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function _e(r,t,e){if(e!=null){if(typeof t=="string")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t=="number")A(ra(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(o=>{A(ra(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function KH(r,t){let n={x:C(r,"x","reshape","string_or_numeric")},o={shape:t};return E.runKernel(_i,n,o)}var R=N({reshape_:KH});function jH(r,t,e,n,o){let s=C(r,"x","avgPool","float32"),i=1;A($r(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),_e("avgPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=E.runKernel(ts,l,c);return p=Z(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Xa=N({avgPool_:jH});function XH(r,t,e,n,o,s="NDHWC"){let i=C(r,"x","avgPool3d","float32"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_e("avgPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=E.runKernel(Ol,l,c);return p=Z(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var xh=N({avgPool3d_:XH});function YH(r,t=0){A(r.length>=1,()=>"Pass at least one tensor to concat");let e=Ha(r,"tensors","concat","string_or_numeric");if(e[0].dtype==="complex64"&&e.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),e.length===1)return Nn(e[0]);let n=e,o={axis:t};return E.runKernel(Ci,n,o)}var se=N({concat_:YH});function ZH(r){let e={x:C(r,"x","sigmoid","float32")};return E.runKernel(Ls,e)}var Lr=N({sigmoid_:ZH});function JH(r,t,e){let n=C(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:t,size:e};return E.runKernel(Ai,o,s)}var Ft=N({slice_:JH});function QH(r){let e={x:C(r,"x","tanh","float32")};return E.runKernel(Hs,e)}var Ys=N({tanh_:QH});function tq(r,t,e,n,o,s){let i=C(r,"forgetBias","basicLSTMCell"),a=C(t,"lstmKernel","basicLSTMCell"),u=C(e,"lstmBias","basicLSTMCell"),l=C(n,"data","basicLSTMCell"),c=C(o,"c","basicLSTMCell"),p=C(s,"h","basicLSTMCell"),m=se([l,p],1),f=Bt(m,a),d=J(f,u),h=d.shape[0],g=d.shape[1]/4,y=[h,g],b=Ft(d,[0,0],y),w=Ft(d,[0,g],y),v=Ft(d,[0,g*2],y),k=Ft(d,[0,g*3],y),_=J(M(Lr(b),Ys(w)),M(c,Lr(J(i,v)))),$=M(Ys(_),Lr(k));return[_,$]}var eq=N({basicLSTMCell_:tq});function rq(r,t,e){let n=C(r,"x","batchToSpaceND"),o=t.reduce((a,u)=>a*u);A(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),A(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),A(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return E.runKernel(vi,s,i)}var Ya=N({batchToSpaceND_:rq});function sE(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function nq(r,t,e,n,o,s){s==null&&(s=.001);let i=C(r,"x","batchNorm"),a=C(t,"mean","batchNorm"),u=C(e,"variance","batchNorm"),l;o!=null&&(l=C(o,"scale","batchNorm"));let c;n!=null&&(c=C(n,"offset","batchNorm")),A(a.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(c==null||a.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(l==null||a.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:sE(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=E.runKernel(ds,m,f);return R(d,i.shape)}var yo=N({batchNorm_:nq});function oq(r,t,e,n,o,s){let i=C(r,"x","batchNorm"),a=C(t,"mean","batchNorm"),u=C(e,"variance","batchNorm"),l;o!=null&&(l=C(o,"scale","batchNorm"));let c;return n!=null&&(c=C(n,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),yo(i,a,u,c,l,s)}var BI=N({batchNorm2d_:oq});function sq(r,t,e,n,o,s){let i=C(r,"x","batchNorm"),a=C(t,"mean","batchNorm"),u=C(e,"variance","batchNorm"),l;o!=null&&(l=C(o,"scale","batchNorm"));let c;return n!=null&&(c=C(n,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),yo(i,a,u,c,l,s)}var VI=N({batchNorm3d_:sq});function iq(r,t,e,n,o,s){let i=C(r,"x","batchNorm"),a=C(t,"mean","batchNorm"),u=C(e,"variance","batchNorm"),l;o!=null&&(l=C(o,"scale","batchNorm"));let c;return n!=null&&(c=C(n,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),yo(i,a,u,c,l,s)}var GI=N({batchNorm4d_:iq});function aq(r,t,e){let n=C(r,"x","bincount"),o=C(t,"weights","bincount");A(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),A(e>=0,()=>`size must be non-negative, but got ${e}.`),A(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return E.runKernel(Fp,s,i)}var yh=N({bincount_:aq});function lq(r,t){let e=C(r,"s0","broadcastArgs","int32"),n=C(t,"s1","broadcastArgs","int32");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return E.runKernel(Rp,o)}var WI=N({broadcastArgs_:lq});function uq(r,t){let e=C(r,"broadcastTo","x"),n=e.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<e.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${e.rank}.`);if(t.length>e.rank){let l=e.shape.slice();for(;l.length<t.length;)l.unshift(1);e=R(e,l)}let o=e.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Nn(e);let a={x:e},u={reps:s};return E.runKernel(Yn,a,u)}var Za=N({broadcastTo_:uq});function cq(r){let e={x:C(r,"x","ceil","float32")};return E.runKernel(rs,e)}var bh=N({ceil_:cq});function pq(r,t,e){let n=C(r,"x","clipByValue");A(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`);let o={x:n},s={clipValueMin:t,clipValueMax:e};return E.runKernel(lo,o,s)}var br=N({clipByValue_:pq});function mq(r){return se(r,0)}var UI=N({concat1d_:mq});function fq(r,t){return se(r,t)}var HI=N({concat2d_:fq});function dq(r,t){return se(r,t)}var qI=N({concat3d_:dq});function hq(r,t){return se(r,t)}var KI=N({concat4d_:hq});function gq(r,t,e,n,o="NHWC",s=[1,1],i){let a=C(r,"x","conv2d","float32"),u=C(t,"filter","conv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),_e("conv2d",n,i);let p=o==="NHWC"?l.shape[3]:l.shape[1];A(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),A($r(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=E.runKernel(ns,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var mn=N({conv2d_:gq});function xq(r,t,e,n,o="NWC",s=1,i){let a=C(r,"x","conv1d"),u=C(t,"filter","conv1d"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),A(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),A(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),_e("conv1d",n,i),A(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),A($r(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),A(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=mn(m,p,[1,e],n,"NHWC",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var tc=N({conv1d_:xq});function yq(r,t,e,n,o,s="NHWC",i){A(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),A(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),A(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),A(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s==="NHWC"?a[3]:a[1],p=s==="NHWC"?u.shape[3]:u.shape[1];A(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),A(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),_e("conv2dDerInput",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=E.runKernel(os,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vm=N({conv2DBackpropInput_:yq});function bq(r,t,e,n,o,s){let i=C(r,"x","conv2dTranspose"),a=C(t,"filter","conv2dTranspose");return vm(e,i,a,n,o,"NHWC",s)}var ec=N({conv2dTranspose_:bq});function wq(r,t,e,n,o="NDHWC",s=[1,1,1]){let i=C(r,"x","conv3d"),a=C(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),A(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),A(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),A($r(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),A(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=E.runKernel(Pl,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var wh=N({conv3d_:wq});function vq(r,t,e,n,o){A(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),A(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),A(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=E.runKernel(Lp,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Bx=N({conv3DBackpropInput_:vq});function Cq(r,t,e,n,o){let s=C(r,"x","conv3dTranspose"),i=C(t,"filter","conv3dTranspose");return Bx(e,s,i,n,o)}var jI=N({conv3dTranspose_:Cq});function Iq(r){let e={x:C(r,"x","cos","float32")};return E.runKernel(ss,e)}var Ja=N({cos_:Iq});function Sq(r){let e={x:C(r,"x","cosh","float32")};return E.runKernel(is,e)}var rc=N({cosh_:Sq});function kq(r,t=0,e=!1,n=!1){let s={x:C(r,"x","cumprod")},i={axis:t,exclusive:e,reverse:n};return E.runKernel(ma,s,i)}var eu=N({cumprod_:kq});function Nq(r,t=0,e=!1,n=!1){let s={x:C(r,"x","cumsum")},i={axis:t,exclusive:e,reverse:n};return E.runKernel(as,s,i)}var nc=N({cumsum_:Nq});function Tq(r,t,e,n=!1){let o=C(r,"x","denseBincount"),s=C(t,"weights","denseBincount");A(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),A(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),A(e>=0,()=>`size must be non-negative, but got ${e}.`),A(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return E.runKernel(zp,i,a)}var XI=N({denseBincount_:Tq});function _q(r,t,e="NHWC"){let n=C(r,"x","depthToSpace","float32"),o=e==="NHWC"?n.shape[1]:n.shape[2],s=e==="NHWC"?n.shape[2]:n.shape[3],i=e==="NHWC"?n.shape[3]:n.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${o} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${n.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return E.runKernel(da,a,u)}var vh=N({depthToSpace_:_q});function Eq(r,t,e,n,o="NHWC",s=[1,1],i){let a=C(r,"x","depthwiseConv2d","float32"),u=C(t,"filter","depthwiseConv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),_e("depthwiseConv2d",n,i);let p={x:l,filter:u},m={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},f=E.runKernel(ls,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Zs=N({depthwiseConv2d_:Eq});function Aq(r){let e={x:C(r,"x","diag")};return E.runKernel(Gp,e)}var $q=N({diag_:Aq});function Dq(r,t,e,n,o=[1,1],s="NHWC"){let i=C(r,"x","dilation2d"),a=C(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=E.runKernel(Ll,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ch=N({dilation2d_:Dq});function Fq(r,t){let e=C(r,"a","equal","string_or_numeric"),n=C(t,"b","equal","string_or_numeric");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(ga,o)}var Sr=N({equal_:Fq});function Rq(r,t,e){let n=C(t,"a","where"),o=C(e,"b","where"),s=C(r,"condition","where","bool"),i=Lt(Lt(s.shape,n.shape),o.shape),a=Za(s,i),u=Za(n,i),l=Za(o,i),c={condition:a,t:u,e:l};return E.runKernel(Ei,c)}var Ee=N({where_:Rq});function Oq(r){let e={x:C(r,"x","zerosLike")};return E.runKernel(Ri,e)}var St=N({zerosLike_:Oq});function Mq(r,t){let e=C(r,"a","div"),n=C(t,"b","div");[e,n]=Xt(e,n);let o=ct(e,n),s=St(o),i=Sr(n,s);return Ee(i,s,o)}var Ih=N({divNoNan_:Mq});function Pq(r,t){let e=C(r,"t1","dot"),n=C(t,"t2","dot");A((e.rank===1||e.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(A(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Bt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Bt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Bt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Bt(e,i)}}var YI=N({dot_:Pq});function Lq(r,...t){let e=t.map((o,s)=>C(o,`tensors${s}`,"einsum")),n={equation:r};return E.runKernel(Wp,e,n)}var ZI=N({einsum_:Lq});function zq(r){let e={x:C(r,"x","elu","float32")};return E.runKernel(cs,e)}var Js=N({elu_:zq});function Bq(r){let t=C(r,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Z(t,"float32"));let e={x:t};return E.runKernel(ha,e)}var Sh=N({erf_:Bq});function JI(r,t){for(let e=0;e<r.length;++e)if(r[r.length-e-1]!==t-1-e)return!1;return!0}function iE(r,t,e){let n=r.length+t.length,o=[],s=0,i=0;for(let a=0;a<n;a++)e.indexOf(a)===-1?o.push(r[s++]):o.push(t[i++]);return o}function QI(r,t){let e=[],n=r.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&e.push(r[s]);let o=t.map(s=>r[s]);return[e,o]}function bo(r,t){let e=t.map(n=>1);return iE(r,e,t)}function Vq(r,t,e){A(JI(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function tS(r,t){if(JI(r,t))return null;let e=[];for(let n=0;n<t;++n)r.indexOf(n)===-1&&e.push(n);return r.forEach(n=>e.push(n)),e}function kh(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function Gq(r,t){let e=[];for(let n=t-r;n<t;++n)e.push(n);return e}function Wq(r,t=null,e=!1){let o={x:C(r,"x","max")},s={reductionIndices:t,keepDims:e};return E.runKernel(ys,o,s)}var Dr=N({max_:Wq});function Uq(r,t=null,e=!1){let o={x:C(r,"x","min")},s={axis:t,keepDims:e};return E.runKernel(Cs,o,s)}var ru=N({min_:Uq});function Hq(r,t){let e=C(r,"base","pow"),n=C(t,"exp","pow");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(_s,o)}var Yr=N({pow_:Hq});function pt(r,t){if((yr(r)&&t!=="string"||Array.isArray(r))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&yr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return pn(r,[],[],t)}function qq(r){let e={x:C(r,"x","sqrt","float32")};return E.runKernel(zs,e)}var ye=N({sqrt_:qq});function Kq(r){let t=C(r,"x","square"),e={};return E.runKernel("Square",{x:t},e)}var Wt=N({square_:Kq});function jq(r,t=null,e=!1){let n=C(r,"x","sum");n.dtype==="bool"&&(n=Z(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return E.runKernel(Bs,o,s)}var mt=N({sum_:jq});function Xq(r,t="euclidean",e=null,n=!1){r=C(r,"x","norm");let o=aE(r,t,e),s=o.shape;if(n){let i=mr(e,r.shape);s=bo(o.shape,i)}return R(o,s)}function aE(r,t,e=null){if(r.rank===0)return Te(r);if(r.rank!==1&&e===null)return aE(R(r,[-1]),t,e);if(r.rank===1||typeof e=="number"||Array.isArray(e)&&e.length===1){if(t===1)return mt(Te(r),e);if(t===1/0)return Dr(Te(r),e);if(t===-1/0)return ru(Te(r),e);if(t==="euclidean"||t===2)return ye(mt(Yr(Te(r),pt(2,"int32")),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(e)&&e.length===2){if(t===1)return Dr(mt(Te(r),e[0]),e[1]-1);if(t===1/0)return Dr(mt(Te(r),e[1]),e[0]);if(t===-1/0)return ru(mt(Te(r),e[1]),e[0]);if(t==="fro"||t==="euclidean")return ye(mt(Wt(r),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${e}`)}var nu=N({norm_:Xq});function Yq(r,t=null,e=!1){return nu(r,"euclidean",t,e)}var Nh=N({euclideanNorm_:Yq});function Zq(r){let e={x:C(r,"x","exp")};return E.runKernel(ps,e)}var Ye=N({exp_:Zq});function Jq(r,t=0){let e=C(r,"x","expandDims","string_or_numeric");A(t<=e.rank,()=>"Axis must be <= rank of the tensor");let n={input:e},o={dim:t};return E.runKernel(Ii,n,o)}var fr=N({expandDims_:Jq});function Qq(r){let e={x:C(r,"x","expm1")};return E.runKernel(xa,e)}var Th=N({expm1_:Qq});function tK(r,t){let e=C(r,"x","tile","string_or_numeric");A(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return E.runKernel(Yn,n,o)}var kr=N({tile_:tK});function eK(r,t,e,n="float32"){t==null&&(t=r);let o=Ct([r,t],n),s=r<=t?r:t;for(let a=0;a<s;++a)o.set(1,a,a);let i=R(o.toTensor(),[r,t]);if(e==null)return i;if(e.length===1)return kr(fr(i,0),[e[0],1,1]);if(e.length===2)return kr(fr(fr(i,0),0),[e[0],e[1],1,1]);if(e.length===3)return kr(fr(fr(fr(i,0),0),0),[e[0],e[1],e[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${e.length}D.`)}var Cm=N({eye_:eK});function Qs(r,t,e){let n={shape:r,value:t,dtype:e};return E.runKernel(zl,{},n)}function rK(r){let e={x:C(r,"x","floor","float32")};return E.runKernel(ms,e)}var ti=N({floor_:rK});function nK(r,t,e=0,n=0){let o=C(r,"x","gather"),s=C(t,"indices","gather","int32"),i={x:o,indices:s},a={axis:e,batchDims:n};return E.runKernel(Si,i,a)}var wo=N({gather_:nK});function oK(r,t){let e=C(r,"a","greater","string_or_numeric"),n=C(t,"b","greater","string_or_numeric");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(wa,o)}var Ge=N({greater_:oK});function sK(r,t){let e=C(r,"a","greaterEqual","string_or_numeric"),n=C(t,"b","greaterEqual","string_or_numeric");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(hs,o)}var _n=N({greaterEqual_:sK});function iK(r){let e={x:C(r,"x","isFinite")};return E.runKernel(va,e)}var rS=N({isFinite_:iK});function aK(r){let e={x:C(r,"x","isInf")};return E.runKernel(Ca,e)}var nS=N({isInf_:aK});function lK(r){let e={x:C(r,"x","isNaN")};return E.runKernel(Ia,e)}var _h=N({isNaN_:lK});function uK(r,t=.2){let n={x:C(r,"x","leakyRelu")},o={alpha:t};return E.runKernel(gs,n,o)}var Qa=N({leakyRelu_:uK});function cK(r,t){let e=C(r,"a","less","string_or_numeric"),n=C(t,"b","less","string_or_numeric");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(Sa,o)}var oc=N({less_:cK});function pK(r,t){let e=C(r,"a","lessEqual","string_or_numeric"),n=C(t,"b","lessEqual","string_or_numeric");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(ka,o)}var En=N({lessEqual_:pK});function oS(r,t,e){if(e<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:t,num:e};return E.runKernel(jp,{},n)}function mK(r,t=5,e=1,n=1,o=.5){let s=C(r,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),A(ra(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=E.runKernel(Bl,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Eh=N({localResponseNormalization_:mK});function fK(r){let e={x:C(r,"x","log","float32")};return E.runKernel(xs,e)}var wr=N({log_:fK});function dK(r){let e={x:C(r,"x","log1p")};return E.runKernel(Na,e)}var tl=N({log1p_:dK});function hK(r){return A(yi(r),()=>"The f passed in grad(f) must be a function"),(t,e)=>{let n=C(t,"x","tf.grad","string_or_numeric"),o=e!=null?C(e,"dy","tf.grad"):null;return E.tidy(()=>{let{value:s,grads:i}=E.gradients(()=>r(n),[n],o);return o!=null&&Me(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Gx(i),i[0]})}}function gK(r){return A(yi(r),()=>"The f passed in grads(f) must be a function"),(t,e)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Ha(t,"args","tf.grads","string_or_numeric"),o=e!=null?C(e,"dy","tf.grads"):null;return E.tidy(()=>{let{value:s,grads:i}=E.gradients(()=>r(...n),n,o);return o!=null&&Me(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Gx(i),i})}}function xK(r){return A(yi(r),()=>"The f passed in valueAndGrad(f) must be a function"),(t,e)=>{A(t instanceof zt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(e==null||e instanceof zt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=E.gradients(()=>r(t),[t],e);return Gx(n),{grad:n[0],value:o}}}function yK(r){return A(yi(r),()=>"The f passed in valueAndGrads(f) must be a function"),(t,e)=>{A(Array.isArray(t)&&t.every(o=>o instanceof zt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(e==null||e instanceof zt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=E.gradients(()=>r(...t),t,e);return e!=null&&Me(n.value.shape,e.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Gx(n.grads),n}}function Vx(r,t){A(yi(r),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(l=>l instanceof Ua),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let e=t!=null;if(!e){t=[];for(let l in E.registeredVariables)t.push(E.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=E.gradients(r,t,null,s);A(a.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function fn(r){return E.customGrad(r)}function Gx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function bK(r){let e={x:C(r,"x","softplus")};return E.runKernel(La,e)}var vo=N({softplus_:bK});function wK(r){let t=C(r,"x","logSigmoid");return fn(n=>({value:qt(vo(qt(n))),gradFunc:i=>M(i,Lr(qt(n)))}))(t)}var sS=N({logSigmoid_:wK});function vK(r,t){let e=C(r,"a","sub"),n=C(t,"b","sub");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(Ws,o)}var lt=N({sub_:vK});function CK(r,t=-1){let e=C(r,"logits","logSoftmax");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return fn((o,s)=>{let a=Dr(o,t,!0),u=lt(o,a),l=lt(Z(u,"float32"),wr(mt(Ye(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Ye(f);return lt(p,M(mt(p,t,d),h))}}})(e)}var sc=N({logSoftmax_:CK});function IK(r,t=null,e=!1){let n=C(r,"x","logSumExp"),o=mr(t,n.shape),s=Dr(n,o,!0),i=lt(n,s),a=Ye(i),u=mt(a,o),l=wr(u),c=J(R(s,l.shape),l);if(e){let p=bo(c.shape,o);return R(c,p)}return c}var Ah=N({logSumExp_:IK});function SK(r,t){let e=C(r,"a","logicalAnd","bool"),n=C(t,"b","logicalAnd","bool");Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(Ta,o)}var Nr=N({logicalAnd_:SK});function kK(r){let e={x:C(r,"x","logicalNot","bool")};return E.runKernel(zu,e)}var el=N({logicalNot_:kK});function NK(r,t){let e=C(r,"a","logicalOr","bool"),n=C(t,"b","logicalOr","bool");Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(Bu,o)}var ic=N({logicalOr_:NK});function TK(r,t){let e=C(r,"a","logicalXor","bool"),n=C(t,"b","logicalXor","bool");return Lt(e.shape,n.shape),Nr(ic(r,t),el(Nr(r,t)))}var iS=N({logicalXor_:TK});var Wx=2147483648;function _K(r,t,e="left"){let n=C(r,"sortedSequence","searchSorted"),o=C(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(a.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Qt(u.shape)>=Wx)throw new Error(`values tensor size must less than ${Wx}`);if(a.shape[1]>=Wx)throw new Error(`trailing dim_size must less than ${Wx} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return E.runKernel(nm,l,c)}var Ux=N({searchSorted_:_K});function aS(r,t){return Ux(r,t,"left")}function EK(r,t,e,n,o){let s=C(r,"x","maxPool"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),A($r(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),_e("maxPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=E.runKernel(ws,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var rl=N({maxPool_:EK});function AK(r,t=[1,1,1],e,n,o,s="NDHWC"){let i=C(r,"x","maxPool3d"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_e("maxPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=E.runKernel(Vl,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var $h=N({maxPool3d_:AK});function $K(r,t,e,n,o=!1){let i={x:C(r,"x","maxPoolWithArgmax")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=E.runKernel(Jp,i,a);return{result:u[0],indexes:u[1]}}var lS=N({maxPoolWithArgmax_:$K});function DK(r,t){let e=C(r,"a","maximum"),n=C(t,"b","maximum");[e,n]=Xt(e,n),e.dtype==="bool"&&(e=Z(e,"int32"),n=Z(n,"int32")),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(bs,o)}var dn=N({maximum_:DK});function FK(r,t=null,e=!1){let o={x:C(r,"x","mean")},s={axis:t,keepDims:e};return E.runKernel(vs,o,s)}var be=N({mean_:FK});function we(r,t="float32"){if(t==="complex64"){let n=we(r,"float32"),o=we(r,"float32");return cn(n,o)}let e=Ap(Qt(r),t);return E.makeTensor(e,r,t)}function lr(r,t="float32"){if(t==="complex64"){let n=lr(r,"float32"),o=we(r,"float32");return cn(n,o)}let e=Gd(Qt(r),t);return E.makeTensor(e,r,t)}function RK(r,t,{indexing:e="xy"}={}){if(e!=="xy"&&e!=="ij")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=C(r,"x","meshgrid",r instanceof zt?r.dtype:"float32");if(t===void 0)return[n];let o=C(t,"y","meshgrid",t instanceof zt?t.dtype:"float32"),s=Qt(n.shape),i=Qt(o.shape);return e==="xy"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Bt(lr([i,1],n.dtype),n),Bt(o,lr([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Bt(n,lr([1,i],n.dtype)),Bt(lr([s,1],o.dtype),o)])}function OK(r,t){let e=C(r,"a","minimum"),n=C(t,"b","minimum");[e,n]=Xt(e,n),e.dtype==="bool"&&(e=Z(e,"int32"),n=Z(n,"int32")),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(Is,o)}var ei=N({minimum_:OK});function MK(r,t,e){A(e==="reflect"||e==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=C(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e==="reflect"?1:0;for(let a=0;a<n.rank;a++)A(t[a].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return E.runKernel(Ss,i,s)}var Dh=N({mirrorPad_:MK});function PK(r,t){let e=C(r,"a","mod"),n=C(t,"b","mod");[e,n]=Xt(e,n);let o={a:e,b:n};return E.runKernel(_a,o)}var Fh=N({mod_:PK});function LK(r,t=null,e=!1){r=C(r,"x","moments");let n=mr(t,r.shape),o=be(r,n,e),s=o.shape;e||(s=bo(o.shape,n));let i=Wt(lt(Z(r,"float32"),R(o,s))),a=be(i,n,e);return{mean:o,variance:a}}var Im=N({moments_:LK});function zK(r,t,e,n){let o=C(t,"data","multiRNNCell"),s=Ha(e,"c","multiRNNCell"),i=Ha(n,"h","multiRNNCell"),a=o,u=[];for(let p=0;p<r.length;p++){let m=r[p](a,s[p],i[p]);u.push(m[0]),u.push(m[1]),a=m[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var BK=N({multiRNNCell_:zK});function VK(r,t,e,n=!1){let o=C(r,"logits","multinomial"),s=o.size,i=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=E.runKernel(Qp,u,l);return i===1?R(c,[c.size]):c}var uS=N({multinomial_:VK});function GK(r,t){let e=C(r,"a","notEqual","string_or_numeric"),n=C(t,"b","notEqual","string_or_numeric");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n};return E.runKernel(Ea,o)}var Co=N({notEqual_:GK});function WK(r){let e={x:C(r,"x","onesLike")};return E.runKernel(Ni,e)}var dr=N({onesLike_:WK});function UK(r,t){let e=C(r,"v1","outerProduct"),n=C(t,"v2","outerProduct");A(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Bt(o,s)}var HK=N({outerProduct_:UK});function qK(r,t,e=0){let n=C(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:t,constantValue:e},s={x:n};return E.runKernel(Ts,s,o)}var Zr=N({pad_:qK});function KK(r,t,e=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Zr(r,[t],e)}var jK=N({pad1d_:KK});function XK(r,t,e=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(r,t,e)}var YK=N({pad2d_:XK});function ZK(r,t,e=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(r,t,e)}var JK=N({pad3d_:ZK});function QK(r,t,e=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(r,t,e)}var tj=N({pad4d_:QK});function ej(r,t,e){let n=C(r,"x","spaceToBatchND");A(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),A(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),A(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return E.runKernel($i,o,s)}var nl=N({spaceToBatchND_:ej});function rj(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=C(r,"x","maxPool"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A($r(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=LI(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n==="same"?m=oj([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=nj([c.inHeight,c.inWidth],p,m),g=f?n:"valid",y=f?u:nl(u,p,d),w=(e==="avg"?()=>Xa(y,t,s,g,i):()=>rl(y,t,s,g,i))(),v=f?w:Ya(w,p,h);return l?R(v,[v.shape[1],v.shape[2],v.shape[3]]):v}function nj(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function oj(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var cS=N({pool_:rj});function sj(r,t){let e=C(r,"x","prelu"),n=C(t,"alpha","prelu"),o={x:e,alpha:n};return E.runKernel(Es,o)}var ol=N({prelu_:sj});function ij(r,t=null,e=!1){let n=C(r,"x","prod");n.dtype==="bool"&&(n=Z(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return E.runKernel(As,o,s)}var ac=N({prod_:ij});function aj(r,t,e){let n=Qt(r),o=null;if(e==null||e==="float32")o=new Float32Array(n);else if(e==="int32")o=new Int32Array(n);else if(e==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;s<n;s++)o[s]=t();return E.makeTensor(o,r,e)}var lj=N({rand_:aj});var jx=Mu(yS());var uc=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=jx.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype==="float32"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},qx=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=jx.alea(s.toString()),this.randn=new uc(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),s<e||Math.log(s)<n)break}return i=1/this.beta*this.d*i,this.alpha<1&&(i*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(i)}convertValue(t){return this.dtype==="float32"?t:Math.round(t)}},Kx=class{constructor(t=0,e=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=jx.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function hj(r,t,e=1,n="float32",o){if(e==null&&(e=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new qx(t,e,n,o),i=Ct(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var gj=N({randomGamma_:hj});function xj(r,t=0,e=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new uc(t,e,n,!1,o),i=Ct(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var Xx=N({randomNormal_:xj});function yj(r,t=0,e=1,n="float32",o){let s=Ct(r,n),i=new Kx(t,e,null,o);for(let a=0;a<s.values.length;a++)s.values[a]=i.nextValue();return s.toTensor()}var ri=N({randomUniform_:yj});function sl(r,t,e=1,n="float32"){if(e===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:t,step:e,dtype:n};return E.runKernel(Gl,{},o)}function bj(r){let e={x:C(r,"x","reciprocal")};return E.runKernel(Fa,e)}var Rh=N({reciprocal_:bj});function wj(r){let e={x:C(r,"x","relu")};return E.runKernel($s,e)}var Tr=N({relu_:wj});function vj(r){let e={x:C(r,"x","relu6")};return E.runKernel(Fs,e)}var cc=N({relu6_:vj});function Cj(r,t){let n={x:C(r,"x","reverse")},o={dims:t};return E.runKernel(Rs,n,o)}var ir=N({reverse_:Cj});function Ij(r){let t=C(r,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ir(t,0)}var Sj=N({reverse1d_:Ij});function kj(r,t){let e=C(r,"x","reverse");return A(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),ir(e,t)}var Nj=N({reverse2d_:kj});function Tj(r,t){let e=C(r,"x","reverse");return A(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),ir(e,t)}var _j=N({reverse3d_:Tj});function Ej(r,t){let e=C(r,"x","reverse");return A(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),ir(e,t)}var Aj=N({reverse4d_:Ej});function $j(r){let e={x:C(r,"x","round")};return E.runKernel(Os,e)}var pc=N({round_:$j});function Dj(r){let e={x:C(r,"x","rsqrt","float32")};return E.runKernel(Ms,e)}var mc=N({rsqrt_:Dj});function Fj(r){let e={x:C(r,"x","selu")};return E.runKernel(Oa,e)}var fc=N({selu_:Fj});function Rj(r,t,e,n,o,s=[1,1],i="NHWC"){let a=C(r,"x","separableConv2d"),u=C(t,"depthwiseFilter","separableConv2d"),l=C(e,"pointwiseFilter","separableConv2d"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),A(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];A(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=Zs(c,u,n,o,i,s),g=mn(d,l,1,"valid",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Oh=N({separableConv2d_:Rj});async function Oj(r,t){let e=C(r,"x","setdiff1d"),n=C(t,"y","setdiff1d");A(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),A(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),A(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c<o.length;c++)i.has(o[c])||a++;let u=new pe([a],e.dtype),l=new pe([a],"int32");for(let c=0,p=0;c<o.length;c++)i.has(o[c])||(u.values[p]=o[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var bS=Oj;function Mj(r){let e={x:C(r,"x","sign")};return E.runKernel(Pa,e)}var Mh=N({sign_:Mj});function Pj(r){let e={x:C(r,"x","sin","float32")};return E.runKernel(Ps,e)}var dc=N({sin_:Pj});function Lj(r){let e={x:C(r,"x","sinh")};return E.runKernel(Ma,e)}var hc=N({sinh_:Lj});function zj(r,t,e){let n=C(r,"x","slice1d");return A(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Ft(n,[t],[e])}var Ph=N({slice1d_:zj});function Bj(r,t,e){let n=C(r,"x","slice2d");return A(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Ft(n,t,e)}var Yx=N({slice2d_:Bj});function Vj(r,t,e){let n=C(r,"x","slice3d");return A(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Ft(n,t,e)}var Lh=N({slice3d_:Vj});function Gj(r,t,e){let n=C(r,"x","slice4d");return A(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Ft(n,t,e)}var Sm=N({slice4d_:Gj});function Wj(r,t=-1){let e=C(r,"logits","softmax","float32");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return E.runKernel(Vs,n,o)}var il=N({softmax_:Wj});function Uj(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return E.runKernel(Hp,t)}var al=N({fft_:Uj});function Hj(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return E.runKernel(qp,t)}var Ui=N({ifft_:Hj});function qj(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=Ui(o)}else{let o=[e,2*(t-1)],s=R(Gi(r),[e,t]),i=R(ja(r),[e,t]),a=ir(Ft(s,[0,1],[e,t-2]),1),u=M(ir(Ft(i,[0,1],[e,t-2]),1),pt(-1)),l=se([s,a],1),c=se([i,u],1),p=R(cn(l,c),[o[0],o[1]]);n=Ui(p)}if(n=Gi(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var gc=N({irfft_:qj});function Kj(r,t,e=0){let o={x:C(r,"x","split")},s={numOrSizeSplits:t,axis:e};return E.runKernel(Di,o,s)}var ur=N({split_:Kj});function jj(r,t){A(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t<e){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Ft(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=se([r,we(d)],r.shape.length-1),e=t}else o=r;let s=St(o),i=R(cn(o,s),[n,e]),a=al(i),u=Math.floor(e/2)+1,l=Gi(a),c=ja(a),p=ur(l,[u,e-u],l.shape.length-1),m=ur(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(cn(p[0],m[0]),f)}var ll=N({rfft_:jj});function Xj(r,t){let e=C(r,"a","squaredDifference"),n=C(t,"b","squaredDifference");[e,n]=Xt(e,n),Lt(e.shape,n.shape);let o={a:e,b:n},s={};return E.runKernel(Gs,o,s)}var xc=N({squaredDifference_:Xj});function Yj(r,t){let e=C(r,"x","squeeze");return R(e,VC(e.shape,t).newShape)}var zr=N({squeeze_:Yj});function Zj(r,t=0){let e=Ha(r,"tensors","stack","string_or_numeric");A(e.length>=1,()=>"Pass at least one tensor to tf.stack"),e.length>0&&A(t<=e[0].rank,()=>"Axis must be <= rank of the tensor");let n=e,o={axis:t};return E.runKernel(Ti,n,o)}var Ze=N({stack_:Zj});function Jj(r,t=0){let n={x:C(r,"x","step")},o={alpha:t};return E.runKernel(co,n,o)}var ni=N({step_:Jj});function Qj(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:C(r,"x","stridedSlice","string_or_numeric")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return E.runKernel(Ba,c,p)}var zh=N({stridedSlice_:Qj});function t6(r){let e={x:C(r,"x","tan","float32")};return E.runKernel(Us,e)}var Bh=N({tan_:t6});function Fe(r,t){jn(r);let e=Or(r,t);if(e.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return pn(r,null,e,t)}function Hi(r,t,e){if(jn(r),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Or(r,e);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return pn(r,t,n,e)}function e6(r,t,e){if(jn(r),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Or(r,e);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return pn(r,t,n,e)}function r6(r,t,e){if(jn(r),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Or(r,e);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return pn(r,t,n,e)}function n6(r,t,e){if(jn(r),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Or(r,e);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,pn(r,t,n,e)}function o6(r,t=1,e=!0){let n=C(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=E.runKernel(Va,s,i);return{values:a,indices:u}}var Vh=N({topk_:o6});function s6(r,t=0,e=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new uc(t,e,n,!0,o),i=Ct(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var yc=N({truncatedNormal_:s6});function i6(r,t=0){let e=C(r,"x","unique","string_or_numeric");A(e.rank>0,()=>"The input tensor must be at least 1D");let n={x:e},o={axis:t},[s,i]=E.runKernel(lm,n,o);return{values:s,indices:i}}var km=N({unique_:i6});function a6(r,t,e){let n=C(r,"x","unsortedSegmentSum"),o=C(t,"segmentIds","unsortedSegmentSum","int32");A(ra(e),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},i={numSegments:e};return E.runKernel(jl,s,i)}var Gh=N({unsortedSegmentSum_:a6});function l6(r,t=0){let e=C(r,"x","unstack","string_or_numeric");A(t>=-e.shape.length&&t<e.shape.length,()=>`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return E.runKernel(Fi,n,o)}var vr=N({unstack_:l6});function wS(r,t){return Ux(r,t,"right")}function vS(r,t=!0,e,n){return E.makeVariable(r,t,e,n)}function Zx(r,t){let e=[];for(let s=0;s<t.length;s++)t[s]&&e.push(s);let n=Ct(r,"int32"),o=Ct([e.length,r.length],"int32");for(let s=0;s<e.length;s++){let i=n.indexToLoc(e[s]),a=s*r.length;o.values.set(i,a)}return o.toTensor()}async function u6(r){let t=C(r,"condition","whereAsync","bool"),e=await t.data(),n=Zx(t.shape,e);return r!==t&&t.dispose(),n}var Wh=u6;async function c6(r,t,e){let n=C(r,"tensor","boolMask"),o=C(t,"mask","boolMask","bool"),s=e==null?0:e,i=o.rank,a=n.shape;A(i>0,()=>"mask cannot be scalar"),Me(a.slice(s,s+i),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let h=s;h<s+i;h++)u*=a[h];let l=a.slice(0,s).concat([u],a.slice(s+i)),c=R(n,l),p=R(o,[-1]),m=await Wh(p),f=zr(m,[1]),d=wo(c,f,s);return r!==n&&n.dispose(),t!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var i_t=c6;function p6(r,t,e,n,o=!0){let s=C(r,"v","movingAverage"),i=C(t,"x","movingAverage"),a=C(e,"decay","movingAverage");uI(s,i),A(Pn(s.shape,i.shape),()=>"Shape mismatch in v and x");let u=pt(1),l=lt(u,a),c=M(lt(i,s),l);if(o){A(n!=null,()=>"When using zeroDebias: true, step is required.");let p=C(n,"step","movingAverage");c=ct(c,lt(u,Yr(a,p)))}return J(s,c)}var x_t=N({movingAverage_:p6});function m6(r,t,e){let n=C(r,"indices","scatterND","int32"),o=C(t,"updates","scatterND");Px(o,n,e);let s={indices:n,updates:o},i={shape:e};return E.runKernel(Ra,s,i)}var CE=N({scatterND_:m6});function IE(r,t,e,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function d6(r,t,e,n=0){let o=C(r,"sparseIndices","sparseToDense","int32"),s=C(t,"sparseValues","sparseToDense","string_or_numeric"),i=C(n,"defaultValue","sparseToDense",s.dtype);IE(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return E.runKernel(om,a,u)}var Jx=N({sparseToDense_:d6});function h6(r,t){let e=C(t,"indices","gatherND","int32"),o={params:C(r,"x","gatherND","string_or_numeric"),indices:e};return E.runKernel(ba,o)}var SE=N({gatherND_:h6});function kE(r,t){if(t==null)return r.shape.slice();if(Pn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n<r.shape.length;n++)t[n]==null&&r.shape[n]!=null?e.push(r.shape[n]):e.push(t[n]);return e}return t}function g6(r,t,e,n){let o=C(r,"x","dropout");if(A(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof zt?o.clone():o;let s=kE(o,e),i=1-t,a=ct(ti(J(ri(s,0,1,"float32",n),i)),i);return M(o,a)}var NE=N({dropout_:g6});function TE(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function Qx(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let i=2*Math.PI*s/(r+n-1);o[s]=t-e*Math.cos(i)}return Fe(o,"float32")}async function x6(r,t,e=1){let n=C(r,"predictions","inTopK"),o=C(t,"targets","inTopK");A(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),A(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),Me(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];A(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=GC("bool",u);for(let p=0;p<u;p++){let m=p*l,f=i.subarray(m,m+l),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<e;h++)if(d[h].index===a[p]){c[p]=1;break}}return r!==n&&n.dispose(),t!==o&&o.dispose(),Ar(c,o.shape,"bool")}var Y_t=x6;var Io={};Zt(Io,{conv2d:()=>_E,depthwiseConv2d:()=>EE,matMul:()=>AE});function y6(r,t,e,n,o,s="NHWC",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),A(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),A(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s==="NHWC"?a.shape[3]:a.shape[1],c=s==="NHWC"?u.shape[3]:u.shape[1];A(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),A(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),_e("conv2dDerFilter",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return E.runKernel(Mp,p,m)}var Nm=N({conv2DBackpropFilter_:y6});function bc(r,t,e){if(e==null||e==="linear")return r;if(e==="relu")return M(r,ni(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function wc(r,t){let e=t,n=xe(r.shape,t.shape);return n.length>0&&(e=mt(e,n)),R(e,r.shape)}function vc(r,t,e,n){if(t==="linear")return r;if(t==="relu")return Tr(r);if(t==="elu")return Js(r);if(t==="relu6")return cc(r);if(t==="prelu")return ol(r,e);if(t==="leakyrelu")return Qa(r,n);if(t==="sigmoid")return Lr(r);throw new Error(`Unknown fused activation ${t}.`)}var Cc=(r,t)=>!(r>0)||t==="linear";function b6({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",Cc(E.state.gradientDepth,u)===!1){A(o==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let _=mn(r,t,e,n,o,s,i);return a!=null&&(_=J(_,a)),vc(_,u,l,c)}let p=C(r,"x","conv2d","float32"),m=C(t,"filter","conv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),_e("fused conv2d",n,i);let h=o==="NHWC"?f.shape[3]:f.shape[1];A(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),A($r(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=Qu(f.shape,m.shape,e,s,n,i),y;a!=null&&(y=C(a,"bias","fused conv2d"),[y]=Xt(y,p),o==="NHWC"?Lt(g.outShape,y.shape):(A(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),A(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let _=l.shape;if(A(_.length<=1||_.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${_.length}.`),_.length===1)A(_[0]===1||_[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${_}) is not compatible with the number of output channels (${g.outChannels}).`);else if(_.length===3)try{Lt(_,g.outShape)}catch($){let D=`Error in fused conv2d: PReLU activation weights (${_}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(D)}b=C(l,"prelu weights","fused conv2d")}let w=(_,$)=>{A(o==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[D,F,P,B]=$,U=bc(_,P,u);A(Jn(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let q=vm(F.shape,U,D,e,n),j=Nm(F,U,D.shape,e,n),K=[q,j];if(B!=null){let Q=wc(B,U);K.push(Q)}return K},v={x:f,filter:m,bias:y,preluActivationWeights:b},k={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?fn(($,D,F)=>{let P=E.runKernel(Mi,v,k);return F([D,$,P]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:w}})(f,m):fn(($,D,F,P)=>{let B=E.runKernel(Mi,v,k);return P([D,$,B,F]),d&&(B=R(B,[B.shape[1],B.shape[2],B.shape[3]])),{value:B,gradFunc:w}})(f,m,y)}var _E=N({fusedConv2d_:b6});function w6(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return E.runKernel(Bp,l,c)}var ty=N({depthwiseConv2dNativeBackpropFilter_:w6});function v6(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=E.runKernel(Vp,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ey=N({depthwiseConv2dNativeBackpropInput_:v6});function C6({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(Cc(E.state.gradientDepth,u)===!1){let k=Zs(r,t,e,n,o,s,i);return a!=null&&(k=J(k,a)),vc(k,u,l,c)}let p=C(r,"x","depthwiseConv2d","float32"),m=C(t,"filter","depthwiseConv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),A(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),A($r(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_e("fused depthwiseConv2d",n,i);let h=Qu(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=C(a,"bias","fused conv2d"),[g]=Xt(g,p),Lt(h.outShape,g.shape));let y;l!=null&&(y=C(l,"prelu weights","fused depthwiseConv2d"));let b=(k,_)=>{A(Jn(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[$,D,F,P]=_,B=bc(k,F,u),U=ey(D.shape,B,$,e,n,s,i),q=ty(D,B,$.shape,e,n,s,i);if(P!=null){let j=wc(g,B);return[U,q,j]}return[U,q]},w={x:f,filter:m,bias:g,preluActivationWeights:y},v={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?fn((_,$,D)=>{let F=E.runKernel(Pi,w,v);return D([$,_,F]),d&&(F=R(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):fn((_,$,D,F)=>{let P=E.runKernel(Pi,w,v);return F([$,_,P,D]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(f,m,g)}var EE=N({fusedDepthwiseConv2d_:C6});function I6({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:a}){if(Cc(E.state.gradientDepth,s)===!1){let B=Bt(r,t,e,n);return o!=null&&(B=J(B,o)),vc(B,s,i,a)}let u=C(r,"a","fused matMul"),l=C(t,"b","fused matMul");[u,l]=Xt(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=Qt(d),y=Qt(h);A(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=Lt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),v=e?R(u,[g,c,m]):R(u,[g,m,c]),k=n?R(l,[y,f,p]):R(l,[y,p,f]),_;o!=null&&(_=C(o,"bias","fused matMul"),[_]=Xt(_,u),Lt(w,_.shape));let $;i!=null&&($=C(i,"prelu weights","fused matMul"));let D=(B,U)=>{let[q,j,K,Q]=U,rt=bc(R(B,K.shape),K,s),X,nt;if(!e&&!n?(X=Bt(rt,j,!1,!0),nt=Bt(q,rt,!0,!1)):!e&&n?(X=Bt(rt,j,!1,!1),nt=Bt(rt,q,!0,!1)):e&&!n?(X=Bt(j,rt,!1,!0),nt=Bt(q,rt,!1,!1)):(X=Bt(j,rt,!0,!0),nt=Bt(rt,q,!0,!0)),o!=null){let st=wc(Q,rt);return[X,nt,st]}else return[X,nt]},F={a:v,b:k,bias:_,preluActivationWeights:$},P={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?fn((U,q,j)=>{let K=E.runKernel(Oi,F,P);return j([U,q,K]),{value:R(K,w),gradFunc:D}})(v,k):fn((U,q,j,K)=>{let Q=E.runKernel(Oi,F,P);return K([U,q,Q,j]),{value:R(Q,w),gradFunc:D}})(v,k,_)}var AE=N({fusedMatMul_:I6});function S6(r){return Qx(r,.54,.46)}var $E=N({hammingWindow_:S6});function k6(r){return Qx(r,.5,.5)}var ry=N({hannWindow_:k6});function N6(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Ft(r,s,t)),s+=e;if(n)for(;s<r.size;){let a=s+t-r.size,u=se([Ft(r,s,t-a),Qs([a],o)]);i.push(u),s+=e}return i.length===0?Hi([],[0,t]):R(se(i),[i.length,t])}var ny=N({frame_:N6});function T6(r,t,e,n,o=ry){n==null&&(n=TE(t));let s=ny(r,t,e),i=M(s,o(t));return ll(i,n)}var DE=N({stft_:T6});function _6(r,t,e,n,o="bilinear",s=0){let i=C(r,"image","cropAndResize"),a=C(t,"boxes","cropAndResize","float32"),u=C(e,"boxInd","cropAndResize","int32"),l=a.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),A(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),A(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),A(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),A(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return E.runKernel(fa,c,p)}var FE=N({cropAndResize_:_6});function E6(r){let t=C(r,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return E.runKernel(ya,e,{})}var RE=N({flipLeftRight_:E6});function A6(r){let t=C(r,"image","grayscaleToRGB"),e=t.rank-1,n=t.shape[e];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,kr(t,o)}var OE=N({grayscaleToRGB_:A6});function $6(r,t,e=0,n=.5){let o=C(r,"image","rotateWithOffset","float32");A(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return E.runKernel(Wa,s,i)}var ME=N({rotateWithOffset_:$6});function So(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),A(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),A(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),A(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function D6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=C(r,"boxes","nonMaxSuppression","float32"),i=C(t,"scores","nonMaxSuppression","float32"),a=So(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return E.runKernel(Aa,{boxes:s,scores:i},u)}var PE=N({nonMaxSuppression_:D6});function LE(r,t,e){let n=F6(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function F6(r,t,e){return O6(r,t,e||R6)}function R6(r,t){return r>t?1:r<t?-1:0}function O6(r,t,e){let n=0,o=r.length,s=0,i=!1;for(;n<o;){s=n+(o-n>>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function oy(r,t,e,n,o){return CS(r,t,e,n,o,0)}function sy(r,t,e,n,o,s){return CS(r,t,e,n,o,0,!1,s,!0)}function iy(r,t,e,n,o,s){return CS(r,t,e,n,o,s,!0)}function CS(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>o&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(zE);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<e&&l.length>0;){let g=l.pop(),{score:y,boxIndex:b,suppressBeginIndex:w}=g;if(y<o)break;let v=!1;for(let k=p.length-1;k>=w;--k){let _=M6(r,b,p[k]);if(_>=n){v=!0;break}if(g.score=g.score*P6(n,c,_),g.score<=o)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),m.push(g.score)):g.score>o&&LE(l,g,zE))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function M6(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),y=Math.min(a,p),b=Math.min(u,m),w=Math.max(y-h,0)*Math.max(b-g,0);return w/(f+d-w)}function P6(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function zE(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function L6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=C(r,"boxes","nonMaxSuppressionAsync"),i=C(t,"scores","nonMaxSuppressionAsync"),a=So(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=oy(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Fe(p,"int32")}var BE=L6;function z6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=C(r,"boxes","nonMaxSuppression"),a=C(t,"scores","nonMaxSuppression"),u=So(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=E.runKernel(Da,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var VE=N({nonMaxSuppressionWithScore_:z6});async function B6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=C(r,"boxes","nonMaxSuppressionAsync"),a=C(t,"scores","nonMaxSuppressionAsync"),u=So(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=iy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Fe(m,"int32"),selectedScores:Fe(f)}}var GE=B6;function V6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=C(r,"boxes","nonMaxSuppression"),a=C(t,"scores","nonMaxSuppression"),u=So(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=E.runKernel($a,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var WE=N({nonMaxSuppressionPadded_:V6});async function G6(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=C(r,"boxes","nonMaxSuppressionAsync"),a=C(t,"scores","nonMaxSuppressionAsync"),u=So(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=sy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Fe(d,"int32"),validOutputs:pt(h,"int32")}}var UE=G6;function W6(r,t,e=!1,n=!1){let o=C(r,"images","resizeBilinear");A(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(n===!1||e===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=E.runKernel(Ds,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var ay=N({resizeBilinear_:W6});function U6(r,t,e=!1,n=!1){let o=C(r,"images","resizeNearestNeighbor");A(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(n===!1||e===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=E.runKernel(Wl,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var ly=N({resizeNearestNeighbor_:U6});function H6(r,t="binary",e=!1,n=.5){let o=C(r,"image","threshold"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=M(Fe([n]),255),c,p,m,f;if(A(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),A(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),A(o.dtype==="int32"||o.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=ur(o,[1,1,1],-1);let g=M(c,s),y=M(p,i),b=M(m,a);f=J(J(g,y),b)}else f=r;if(t==="otsu"){let g=yh(Z(pc(f),"int32"),Ar([]),256);l=q6(g,u)}let d=e?En(f,l):Ge(f,l);return Z(M(d,255),"int32")}function q6(r,t){let e=Fe([-1]),n=Fe([0]),o=Fe([0]),s,i,a,u,l,c;for(let p=0;p<r.size-1;p++){s=Ft(r,0,p+1),i=Ft(r,p+1),l=ct(mt(s),t),c=ct(mt(i),t);let m=mt(M(s,sl(0,s.size)));a=ct(m,mt(s));let f=Qs(i.shape,s.size),d=J(sl(0,i.size),f),h=M(i,d);u=ct(mt(h),mt(i));let g=lt(a,u),y=lt(a,u),b=M(l,c);o=M(M(b,g),y);let w=Ge(o,n);n=Ee(w,o,n),e=Ee(w,Fe([p]),e)}return e}var HE=N({threshold_:H6});function K6(r,t,e="nearest",n="constant",o=0,s){let i=C(r,"image","transform","float32"),a=C(t,"transforms","transform","float32");A(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return E.runKernel(Ga,u,l)}var qE=N({transform_:K6});function j6(r,t,e){A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`);let n=C(r,"a","bandPart");A(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(e<=i))throw new Error(`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),e<0&&(e=i);let a=R(sl(0,s,1,"int32"),[-1,1]),u=sl(0,i,1,"int32"),l=lt(a,u),c=Nr(En(l,pt(+t,"int32")),_n(l,pt(-e,"int32"))),p=we([s,i],n.dtype);return R(Ze(vr(R(n,[-1,s,i])).map(m=>Ee(c,m,p))),o)}var KE=N({bandPart_:j6});function X6(r){let t;if(Array.isArray(r)){t=!1,A(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)A(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=ur(r,r.shape[0],0).map(o=>zr(o,[0]));A(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o<r.length;++o)e.push(E.tidy(()=>{let s=n[o];if(o>0)for(let i=0;i<o;++i){let a=M(mt(M(e[i],s)),e[i]);s=lt(s,a)}return ct(s,nu(s,"euclidean"))}));return t?Ze(e,0):e}var jE=N({gramSchmidt_:X6});function Y6(r,t=!1){if(A(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return XE(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=vr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=XE(u,t);o.push(l),s.push(c)});let i=R(Ze(o,0),r.shape),a=R(Ze(s,0),r.shape);return[i,a]}}function XE(r,t=!1){return E.tidy(()=>{A(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=Cm(e),s=Nn(r),i=Hi([[1]],[1,1]),a=Nn(i),u=e>=n?n:e;for(let l=0;l<u;++l){let c=s,p=a,m=o;[a,s,o]=E.tidy(()=>{let f=Ft(s,[l,l],[e-l,1]),d=nu(f),h=Ft(s,[l,l],[1,1]),g=Ee(Ge(h,0),Hi([[-1]]),Hi([[1]])),y=lt(h,M(g,d)),b=ct(f,y);b.shape[0]===1?a=Nn(i):a=se([i,Ft(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=qt(ct(Bt(g,y),d)),v=Ft(s,[l,0],[e-l,n]),k=M(w,a),_=Mt(a);if(l===0)s=lt(v,Bt(k,Bt(_,v)));else{let F=lt(v,Bt(k,Bt(_,v)));s=se([Ft(s,[0,0],[l,n]),F],0)}let $=Mt(k),D=Ft(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=lt(D,Bt(Bt(D,a),$));else{let F=lt(D,Bt(Bt(D,a),$));o=se([Ft(o,[0,0],[e,l]),F],1)}return[a,s,o]}),_t([c,p,m])}return!t&&e>n&&(o=Ft(o,[0,0],[e,n]),s=Ft(s,[0,0],[n,n])),[o,s]})}var YE=N({qr_:Y6});var Je;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Je||(Je={}));function Z6(r,t,e=Je.SUM_BY_NONZERO_WEIGHTS){let n=C(r,"losses","computeWeightedLoss"),o=null;t!=null&&(o=C(t,"weights","computeWeightedLoss"));let s=o==null?n:M(n,o);if(e===Je.NONE)return s;if(e===Je.SUM)return mt(s);if(e===Je.MEAN){if(o==null)return be(s);{let i=n.size/o.size,a=ct(mt(s),mt(o));return i>1?ct(a,pt(i)):a}}if(e===Je.SUM_BY_NONZERO_WEIGHTS){if(o==null)return ct(mt(s),pt(n.size));{let i=M(o,lr(n.shape)),a=Z(mt(Co(i,pt(0))),"float32");return ct(mt(s),a)}}throw Error(`Unknown reduction: ${e}`)}var Br=N({computeWeightedLoss_:Z6});function J6(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,"labels","absoluteDifference"),s=C(t,"predictions","absoluteDifference"),i=null;e!=null&&(i=C(e,"weights","absoluteDifference")),Me(o.shape,s.shape,"Error in absoluteDifference: ");let a=Te(lt(o,s));return Br(a,i,n)}var ZE=N({absoluteDifference_:J6});function Q6(r,t,e,n,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,"labels","cosineDistance"),i=C(t,"predictions","cosineDistance"),a=null;n!=null&&(a=C(n,"weights","cosineDistance")),Me(s.shape,i.shape,"Error in cosineDistance: ");let u=pt(1),l=lt(u,mt(M(s,i),e,!0));return Br(l,a,o)}var JE=N({cosineDistance_:Q6});function t5(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,"labels","hingeLoss"),s=C(t,"predictions","hingeLoss"),i=null;e!=null&&(i=C(e,"weights","hingeLoss")),Me(o.shape,s.shape,"Error in hingeLoss: ");let a=pt(1);o=lt(M(pt(2),o),a);let u=Tr(lt(a,M(o,s)));return Br(u,i,n)}var QE=N({hingeLoss_:t5});function e5(r,t,e,n=1,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,"labels","huberLoss"),i=C(t,"predictions","huberLoss"),a=null;e!=null&&(a=C(e,"weights","huberLoss")),Me(s.shape,i.shape,"Error in huberLoss: ");let u=pt(n),l=Te(lt(i,s)),c=ei(l,u),p=lt(l,c),m=J(M(pt(.5),Wt(c)),M(u,p));return Br(m,a,o)}var tA=N({huberLoss_:e5});function r5(r,t,e,n=1e-7,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,"labels","logLoss"),i=C(t,"predictions","logLoss"),a=null;e!=null&&(a=C(e,"weights","logLoss")),Me(s.shape,i.shape,"Error in logLoss: ");let u=pt(1),l=pt(n),c=qt(M(s,wr(J(i,l)))),p=M(lt(u,s),wr(J(lt(u,i),l))),m=lt(c,p);return Br(m,a,o)}var eA=N({logLoss_:r5});function n5(r,t,e,n=Je.SUM_BY_NONZERO_WEIGHTS){let o=C(r,"labels","meanSquaredError"),s=C(t,"predictions","meanSquaredError"),i=null;e!=null&&(i=C(e,"weights","meanSquaredError")),Me(o.shape,s.shape,"Error in meanSquaredError: ");let a=xc(o,s);return Br(a,i,n)}var rA=N({meanSquaredError_:n5});function o5(r,t){let e=C(r,"labels","sigmoidCrossEntropyWithLogits"),n=C(t,"logits","sigmoidCrossEntropyWithLogits");Me(e.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Tr(n),s=M(n,e),i=tl(Ye(qt(Te(n))));return J(lt(o,s),i)}function s5(r,t,e,n=0,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,"multiClassLabels","sigmoidCrossEntropy"),i=C(t,"logits","sigmoidCrossEntropy"),a=null;if(e!=null&&(a=C(e,"weights","sigmoidCrossEntropy")),Me(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let l=pt(n),c=pt(1),p=pt(.5);s=J(M(s,lt(c,l)),M(p,l))}let u=o5(s,i);return Br(u,a,o)}var nA=N({sigmoidCrossEntropy_:s5});function i5(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return fn((o,s,i)=>{let u=Ah(s,[e],!0),l=lt(Z(s,"float32"),u);i([o,l]);let c=qt(M(l,o));return{value:mt(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,y=bo(f.shape,[e]);return[M(R(f,y),lt(Z(h,"float32"),Ye(g))),M(R(f,y),lt(Ye(g),Z(h,"float32")))]}}})(r,t)}function a5(r,t,e,n=0,o=Je.SUM_BY_NONZERO_WEIGHTS){let s=C(r,"onehotLabels","softmaxCrossEntropy"),i=C(t,"logits","softmaxCrossEntropy"),a=null;if(e!=null&&(a=C(e,"weights","softmaxCrossEntropy")),Me(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let l=pt(n),c=pt(1),p=pt(s.shape[1]);s=J(M(s,lt(c,l)),ct(l,p))}let u=i5(s,i);return Br(u,a,o)}var oA=N({softmaxCrossEntropy_:a5});function l5(r,t,e,n){let o=C(r,"indices","sparseFillEmptyRows","int32"),s=C(t,"values","sparseFillEmptyRows"),i=C(e,"denseShape","sparseFillEmptyRows","int32"),a=C(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=E.runKernel(Ul,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var sA=N({sparseFillEmptyRows_:l5});function u5(r,t,e){let n=C(r,"inputIndices","sparseReshape","int32"),o=C(t,"inputShape","sparseReshape","int32"),s=C(e,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=E.runKernel(za,i);return{outputIndices:a[0],outputShape:a[1]}}var iA=N({sparseReshape_:u5});function c5(r,t,e){let n=C(r,"data","sparseSegmentMean"),o=C(t,"indices","sparseSegmentMean","int32"),s=C(e,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return E.runKernel(Hl,i)}var aA=N({sparseSegmentMean_:c5});function p5(r,t,e){let n=C(r,"data","sparseSegmentSum"),o=C(t,"indices","sparseSegmentSum","int32"),s=C(e,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return E.runKernel(ql,i)}var lA=N({sparseSegmentSum_:p5});function m5(r,t,e,n,o,s,i,a){let u=C(r,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=C(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=E.runKernel(sm,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var uA=N({stringNGrams_:m5});function f5(r,t,e=!0){let n=C(r,"input","stringSplit","string"),o=C(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=E.runKernel(im,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var cA=N({stringSplit_:f5});function d5(r,t){let e=C(r,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let o={input:e};return E.runKernel(am,o,n)}var pA=N({stringToHashBucketFast_:d5});var XRt={fft:al,ifft:Ui,rfft:ll,irfft:gc},tOt={hammingWindow:$E,hannWindow:ry,frame:ny,stft:DE},hn={flipLeftRight:RE,grayscaleToRGB:OE,resizeNearestNeighbor:ly,resizeBilinear:ay,rotateWithOffset:ME,cropAndResize:FE,nonMaxSuppression:PE,nonMaxSuppressionAsync:BE,nonMaxSuppressionWithScore:VE,nonMaxSuppressionWithScoreAsync:GE,nonMaxSuppressionPadded:WE,nonMaxSuppressionPaddedAsync:UE,threshold:HE,transform:qE},mA={bandPart:KE,gramSchmidt:jE,qr:YE},TOt={absoluteDifference:ZE,computeWeightedLoss:Br,cosineDistance:JE,hingeLoss:QE,huberLoss:tA,logLoss:eA,meanSquaredError:rA,sigmoidCrossEntropy:nA,softmaxCrossEntropy:oA},Uh={sparseFillEmptyRows:sA,sparseReshape:iA,sparseSegmentMean:aA,sparseSegmentSum:lA},uy={stringNGrams:uA,stringSplit:cA,stringToHashBucketFast:pA};var Vr=class extends lh{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return _t(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Vx(t,e)}dispose(){this.iterations_!=null&&_t(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:pt(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(Vr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var ou=class extends Vr{constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=E.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:V(()=>St(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:V(()=>St(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;V(()=>{let c=J(M(u,this.rho),M(Wt(a),1-this.rho)),p=M(ct(ye(J(l,this.epsilon)),ye(J(u,this.epsilon))),a),m=J(M(l,this.rho),M(Wt(p),1-this.rho));u.assign(c),l.assign(m);let f=J(M(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_t(this.accumulatedGrads.map(t=>t.variable)),_t(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};ou.className="Adadelta";Tn(ou);var su=class extends Vr{constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=E.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:V(()=>Qs(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;V(()=>{let u=J(a,Wt(i));a.assign(u);let l=J(M(ct(i,ye(J(u,E.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_t(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};su.className="Adagrad";Tn(su);var iu=class extends Vr{constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=pt(e).variable(),this.accBeta2=pt(n).variable()}),o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);V(()=>{let n=lt(1,this.accBeta1),o=lt(1,this.accBeta2);e.forEach((s,i)=>{let a=E.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:V(()=>St(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:V(()=>St(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=J(M(c,this.beta1),M(l,1-this.beta1)),f=J(M(p,this.beta2),M(Wt(l),1-this.beta2)),d=ct(m,n),h=ct(f,o);c.assign(m),p.assign(f);let g=J(M(ct(d,J(ye(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign(M(this.accBeta1,this.beta1)),this.accBeta2.assign(M(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_t(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&_t(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),V(()=>{this.accBeta1.assign(Yr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Yr(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};iu.className="Adam";Tn(iu);var au=class extends Vr{constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=pt(0).variable(),this.accBeta1=pt(e).variable()}),o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);V(()=>{let n=lt(1,this.accBeta1),o=ct(-this.learningRate,J(M(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=E.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:St(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:St(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=J(M(c,this.beta1),M(l,1-this.beta1)),f=M(p,this.beta2),d=Te(l),h=dn(f,d);c.assign(m),p.assign(h);let g=J(M(ct(o,n),ct(m,J(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(M(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_t(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&_t(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(t){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};au.className="Adamax";Tn(au);var qi=class extends Vr{constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=E.registeredVariables[n];V(()=>{let a=J(M(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=Pe(pt(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};qi.className="SGD";Tn(qi);var lu=class extends qi{constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=pt(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=E.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:V(()=>St(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&V(()=>{let u,l=J(M(this.m,i),a);this.useNesterov?u=J(M(this.c,J(a,M(l,this.m))),s):u=J(M(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_t(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};lu.className="Momentum";Tn(lu);var uu=class extends Vr{constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=E.backend.epsilon()),t==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=E.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:V(()=>St(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:V(()=>St(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:V(()=>St(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;V(()=>{let c=J(M(u,this.decay),M(Wt(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=J(M(p,this.decay),M(a,1-this.decay)),f=ct(M(a,this.learningRate),ye(lt(c,J(Wt(m),this.epsilon)))),d=J(M(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=lt(s,d);s.assign(h)}else{let p=J(M(u,this.decay),M(Wt(a),1-this.decay)),m=J(M(l,this.momentum),ct(M(a,this.learningRate),ye(J(p,this.epsilon))));u.assign(p),l.assign(m);let f=lt(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_t(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_t(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&_t(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};uu.className="RMSProp";Tn(uu);var oi=class{static sgd(t){return new qi(t)}static momentum(t,e,n=!1){return new lu(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new uu(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new iu(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new ou(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new au(t,e,n,o,s)}static adagrad(t,e=.1){return new su(t,e)}};var Ic={sgd:oi.sgd,momentum:oi.momentum,adadelta:oi.adadelta,adagrad:oi.adagrad,rmsprop:oi.rmsprop,adamax:oi.adamax,adam:oi.adam};var h5=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function Hh(){return new Promise(r=>h5(()=>r()))}var S={};Zt(S,{ERF_A1:()=>N5,ERF_A2:()=>T5,ERF_A3:()=>_5,ERF_A4:()=>E5,ERF_A5:()=>A5,ERF_P:()=>k5,PARALLELIZE_THRESHOLD:()=>cy,SELU_SCALE:()=>SS,SELU_SCALEALPHA:()=>IS,applyActivation:()=>vc,assertAndGetBroadcastShape:()=>Lt,assertAxesAreInnerMostDims:()=>Vq,assertParamsConsistent:()=>g5,assignToTypedArray:()=>M5,axesAreInnerMostDims:()=>JI,calculateShapes:()=>G_,checkEinsumDimSizes:()=>G5,checkPadOnDimRoundingMode:()=>_e,combineLocations:()=>iE,complexWithEvenIndex:()=>F5,complexWithOddIndex:()=>R5,computeConv2DInfo:()=>Qu,computeConv3DInfo:()=>nE,computeDefaultPad:()=>zI,computeDilation2DInfo:()=>VH,computeOptimalWindowSize:()=>y5,computeOutAndReduceShapes:()=>QI,computeOutShape:()=>x5,computePool2DInfo:()=>LI,computePool3DInfo:()=>GH,convertConv2DDataFormat:()=>oE,decodeEinsumEquation:()=>B5,eitherStridesOrDilationsAreOne:()=>$r,expandShapeToKeepDim:()=>bo,exponent:()=>L5,exponents:()=>P5,fromStringArrayToUint8:()=>uX,fromUint8ToStringArray:()=>lX,getAxesPermutation:()=>tS,getBroadcastDims:()=>z_,getComplexWithIndex:()=>O5,getEinsumComputePath:()=>W5,getEinsumPermutation:()=>V5,getFusedBiasGradient:()=>wc,getFusedDyActivation:()=>bc,getImageCenter:()=>b5,getInnerMostAxes:()=>Gq,getPermuted:()=>v5,getReductionAxes:()=>xe,getReshaped:()=>w5,getReshapedPermuted:()=>C5,getSliceBeginCoords:()=>I5,getSliceSize:()=>S5,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>K5,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>j5,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>X5,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>J5,getSparseReshapeInputOutputMismatchErrorMessage:()=>tX,getSparseReshapeInputOutputMultipleErrorMessage:()=>Q5,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>Y5,getSparseReshapeNegativeOutputDimErrorMessage:()=>Z5,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>oX,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>eX,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>rX,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>nX,getUndoAxesPermutation:()=>kh,isIdentityPermutation:()=>U5,log:()=>t4,mergeRealAndImagArrays:()=>$5,prepareAndValidate:()=>V_,prepareSplitSize:()=>q5,segment_util:()=>NS,shouldFuse:()=>Cc,slice_util:()=>Ve,splitRealAndImagArrays:()=>D5,tupleValuesAreOne:()=>Jn,upcastType:()=>ar,validateInput:()=>Px,validateUpdateShape:()=>$I,warn:()=>Li});function g5(r,t){let e=r[0].length;r.forEach((o,s)=>{A(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),A(t>=0&&t<e,()=>`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i<e;i++)A(i===t||o[i]===n[i],()=>`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function x5(r,t){let e=r[0].slice();for(let n=1;n<r.length;n++)e[t]+=r[n][t];return e}var cy=30;function y5(r){return r<=cy?r:Ep(r,Math.floor(Math.sqrt(r)))}function b5(r,t,e){let n=e*(typeof r=="number"?r:r[0]),o=t*(typeof r=="number"?r:r[1]);return[n,o]}function w5(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i<s;++i)o=o.concat([r[i+1]/t[i],t[i]]);o=o.concat(r.slice(s+1))}return o}function v5(r,t,e=!0){let n=[];if(e){n.push(t);for(let o=t+1;o<r;++o)o<=2*t?(n.push(o),n.push(o-(t+1))):n.push(o)}else{let o=[],s=[];for(let i=1;i<r;++i)i>=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function C5(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s<r.length;++s)s<=t.length?n?o.push(t[s-1]*r[s]):o.push(r[s]/t[s-1]):o.push(r[s]);return o}function I5(r,t){let e=[0];for(let n=0;n<t;++n)e.push(r[n][0]);return e}function S5(r,t,e){let n=r.slice(0,1);for(let o=0;o<e;++o)n.push(r[o+1]-t[o][0]-t[o][1]);return n}var IS=1.7580993408473768,SS=1.0507009873554805;var k5=.3275911,N5=.254829592,T5=-.284496736,_5=1.421413741,E5=-1.453152027,A5=1.061405429;function $5(r,t){if(r.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${t.length}.`);let e=new Float32Array(r.length*2);for(let n=0;n<e.length;n+=2)e[n]=r[n/2],e[n+1]=t[n/2];return e}function D5(r){let t=new Float32Array(r.length/2),e=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)t[n/2]=r[n],e[n/2]=r[n+1];return{real:t,imag:e}}function F5(r){let t=Math.ceil(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=0;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function R5(r){let t=Math.floor(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=2;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function O5(r,t){let e=r[t*2],n=r[t*2+1];return{real:e,imag:n}}function M5(r,t,e,n){r[n*2]=t,r[n*2+1]=e}function P5(r,t){let e=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(t?2:-2)*Math.PI*(o/r);e[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:e,imag:n}}function L5(r,t,e){let n=(e?2:-2)*Math.PI*(r/t),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var kS="->",z5=/->/g,fA=",",dA="...";function B5(r,t){r=r.replace(/\s/g,"");let e=(r.length-r.replace(z5,"").length)/kS.length;if(e<1)throw new Error("Equations without an arrow are not supported.");if(e>1)throw new Error(`Equation must contain exactly one arrow ("${kS}").`);let[n,o]=r.split(kS);A(n.indexOf(dA)===-1,()=>`The ellipsis notation ("${dA}") is not supported yet.`);let s=n.split(fA),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let a=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;m<n.length;++m){let f=n[m];a.indexOf(f)===-1&&f!==fA&&a.push(f)}let u=new Array(s.length);for(let m=0;m<i;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);u[m]=[];for(let f=0;f<s[m].length;++f)u[m].push(a.indexOf(s[m][f]))}let l=a.length,c=o.length,p=[];for(let m=c;m<l;++m)p.push(m);return{allDims:a,summedDims:p,idDims:u}}function V5(r,t){let e=new Array(r);e.fill(-1);for(let o=0;o<t.length;++o)e[t[o]]=o;let n=[];for(let o=0;o<r;++o)e[o]===-1&&n.push(o);return e=e.filter(o=>o!==-1),{permutationIndices:e,expandDims:n}}function G5(r,t,e){let n=new Array(r);for(let o=0;o<e.length;++o){let s=e[o].shape;for(let i=0;i<t[o].length;++i)n[t[o][i]]===void 0?n[t[o][i]]=s[i]:A(n[t[o][i]]===s[i],()=>`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function W5(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;i<o;++i)n.push([]);let s=[];for(let i=0;i<e.length;++i){let a=e[i],u=H5(t,a);for(let l of u)s.indexOf(l)===-1&&(n[i].push(l),s.push(l))}return{path:e,steps:n}}function U5(r){return r.every((t,e)=>t===e)}function H5(r,t){let e=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(t)!==-1||t===-1)&&e.push(n);return e}function q5(r,t,e=0){let n=[];if(typeof t=="number")A(r.shape[e]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);A(o<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}A(r.shape[e]===t.reduce((i,a)=>i+a),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function K5(r){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${r}`}function j5(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function X5(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function Y5(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function Z5(r,t){return`size ${r} must be non-negative, not ${t}`}function J5(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function Q5(r,t){let e=Qt(r),n=Qt(t);return`Input to reshape is a SparseTensor with ${e}
|
|
dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function tX(r,t){let e=Qt(r),n=Qt(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function eX(){return"segment ids must be >= 0"}function rX(){return"segment ids are not increasing"}function nX(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function oX(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var NS={};Zt(NS,{collectGatherOpShapeInfo:()=>aX,computeOutShape:()=>iX,segOpComputeOptimalWindowSize:()=>sX});function sX(r,t){let e=!1,n;for(r<=cy?(n=r,e=!0):n=Ep(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=Ep(r,n+1);return n}function iX(r,t,e){let n=[],o=r.length;for(let s=0;s<o;s++)s!==t?n.push(r[s]):n.push(e);return n}function aX(r,t,e,n){let o=t.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
|
|
${s}).`);if(e<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${e}).`);for(let p=0;p<n;++p)if(r.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=r.shape[e],a=[],u=1,l=1,c=1;for(let p=0;p<n;++p)a.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<e;p++)a.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<o;p++)a.push(t.shape[p]);for(let p=e+1;p<s;p++)a.push(r.shape[p]),c*=r.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:a}}function lX(r){try{return r.map(t=>fm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function uX(r){return r.map(t=>Yl(t))}var Gr={};Zt(Gr,{nonMaxSuppressionV3Impl:()=>oy,nonMaxSuppressionV4Impl:()=>sy,nonMaxSuppressionV5Impl:()=>iy,whereImpl:()=>Zx});var py={kernelName:wi,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,ni(Z(e,"float32"),-1))}}};var hA={kernelName:na,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Wt(Z(e,"float32")),o=ye(lt(pt(1),n));return qt(ct(r,o))}}}};var gA={kernelName:oa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=ye(lt(Wt(Z(e,"float32")),1));return ct(r,n)}}}};var xA={kernelName:Xn,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=r,u=xe(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=xe(n.shape,o);return u.length>0&&(a=mt(a,u)),R(a,n.shape)}}}};var yA={kernelName:Jo,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var bA={kernelName:Qo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>St(e)}}};var wA={kernelName:Rl,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>St(e)}}};var vA={kernelName:aa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,ye(lt(pt(1),Wt(Z(e,"float32")))))}}};var CA={kernelName:la,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=ye(J(pt(1),Wt(Z(e,"float32"))));return ct(r,n)}}}};var IA={kernelName:pa,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=J(Wt(e),Wt(n)),u=M(r,ct(n,a)),l=xe(e.shape,o);return l.length>0&&(u=mt(u,l)),R(u,e.shape)},b:()=>{let a=J(Wt(e),Wt(n)),u=qt(M(r,ct(e,a))),l=xe(n.shape,o);return l.length>0&&(u=mt(u,l)),R(u,n.shape)}}}};var SA={kernelName:ua,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,J(Wt(Z(e,"float32")),1))}}};var kA={kernelName:ca,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,lt(pt(1),Wt(Z(e,"float32"))))}}};function cX(r,t,e,n,o,s){let i=C(r,"dy","avgPool3dGrad"),a=C(t,"input","avgPool3dGrad"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),A(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),_e("avgPool3dGrad",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=E.runKernel(Dp,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var NA=N({avgPool3dGrad_:cX});var TA={kernelName:Ol,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>NA(r,n,o,s,i,a)}}};function pX(r,t,e,n,o){let s=C(r,"dy","avgPoolGrad"),i=C(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),A(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=E.runKernel($p,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var _A=N({avgPoolGrad_:pX});var EA={kernelName:ts,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>_A(r,n,o,s,i)}}};var AA={kernelName:es,inputsToSave:["a","b"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Bt(r,o,!1,!0),b:()=>Bt(n,r,!0,!1)}:!s&&i?{a:()=>Bt(r,o,!1,!1),b:()=>Bt(r,n,!0,!1)}:s&&!i?{a:()=>Bt(o,r,!1,!0),b:()=>Bt(n,r,!1,!1)}:{a:()=>Bt(o,r,!0,!0),b:()=>Bt(r,n,!0,!0)}}};var $A={kernelName:vi,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>nl(r,n,o)}}};var DA={kernelName:$1,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u<i.length;u++)i[u]>1&&a.push(u);return{x:()=>mt(r,a,!0)}}};var FA={kernelName:ao,gradFunc:r=>({x:()=>r.clone()})};var RA={kernelName:rs,gradFunc:r=>({x:()=>St(r)})};var OA={kernelName:lo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>Ee(Nr(_n(n,o),En(n,s)),r,St(r))}}};var MA={kernelName:Ml,inputsToSave:["x"],gradFunc:py.gradFunc};var PA={kernelName:Ci,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=mr(o,t[0].shape)[0],i=n.map(u=>u[s]);return ur(r,i,s).map(u=>()=>u)}};var LA={kernelName:ns,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return A(Jn(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>vm(n.shape,r,o,i,a,u),filter:()=>Nm(n,r,o.shape,i,a,u)}}};var zA={kernelName:os,inputsToSave:["dy","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>mn(r,o,s,i,a,1,u),filter:()=>Nm(r,n,o.shape,s,i,a,u)}}};function mX(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),A(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),A(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return E.runKernel(Pp,a,u)}var BA=N({conv3DBackpropFilter_:mX});var VA={kernelName:Pl,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;A(Jn(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>Bx(i.shape,r,a,o,s),filter:()=>BA(i,r,a.shape,o,s)}}};var GA={kernelName:ss,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(qt(dc(Z(e,"float32"))),r)}}};var WA={kernelName:is,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(hc(Z(e,"float32")),r)}}};var UA={kernelName:as,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=tS([o],n.rank),u=nc(r,o,s,!i);return a!=null&&(u=Mt(u,a)),u}}}};var HA={kernelName:ls,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;A(Jn(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),A($r(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),_e("depthwiseConv2d",s,i),{x:()=>ey(u.shape,r,l,o,s,a,i),filter:()=>ty(u,r,l.shape,o,s,a,i)}}};var qA={kernelName:Ll,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>E.runKernel(Kd,s,e),filter:()=>E.runKernel(jd,i,e)}}};var KA={kernelName:cs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>E.runKernel(Up,n)}}};var jA={kernelName:ha,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=M(Ye(qt(Wt(e))),2/Math.sqrt(Math.PI));return{x:()=>M(r,n)}}};var XA={kernelName:ps,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,e)}}};var YA={kernelName:Ii,inputsToSave:["input"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var ZA={kernelName:xa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,Ye(e))}}};var JA={kernelName:ms,gradFunc:r=>({x:()=>St(r)})};var QA={kernelName:fs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=ct(r,Z(n,"float32")),u=xe(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=M(r,Z(e,"float32")),u=xe(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Wt(n);return qt(ct(a,Z(l,"float32")))}}}};var t2={kernelName:ds,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?pt(1):a,l=xe(s.shape,o.shape),c=[];if(s.rank===1){for(let v=0;v<o.shape.length-1;++v)c.push(o.shape[v]);c.push(1)}let p=lt(o,s),m=M(r,u),f=mc(J(i,pt(n))),d=M(M(M(f,f),f),pt(-.5));return{x:()=>s.rank===1?R(M(M(r,kr(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R(M(M(r,f),u),o.shape),mean:()=>{let v=M(M(f,pt(-1)),m);return s.rank===1&&(v=mt(v,l)),R(v,s.shape)},variance:()=>{let v=M(M(d,p),m);return s.rank===1&&(v=mt(v,l)),R(v,s.shape)},scale:()=>{let v=M(p,f),k=M(r,v);return s.rank===1&&(k=mt(k,l)),R(k,s.shape)},offset:()=>{let v=r;return s.rank===1&&(v=mt(v,l)),R(v,s.shape)}}}};var n2={kernelName:Si,inputsToSave:["x","indices"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s}=e,i=mr(s,n.shape)[0];return{x:()=>{let u=n.shape,l=o.size,c=u.slice(0,i),p=c.length,m=u.slice(s,u.length).slice(1),f=m.length,d=e2(0,p),h=e2(p+1,p+1+f),g=r2([c,[l],m]),y=R(r,g),b=R(o,[l]),w=r2([[p],d,h]),v=Mt(y,w),k=Gh(v,b,n.shape[i]),_=kh(w);return k=Mt(k,_),k},indices:()=>o}}};function e2(r,t){let e=[];for(let n=r;n<t;++n)e.push(n);return e}function r2(r){let t=[];for(let e=0;e<r.length;++e)for(let n=0;n<r[e].length;++n)t.push(r[e][n]);return t}var o2={kernelName:hs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>St(e),b:()=>St(n)}}};var s2={kernelName:uo,gradFunc:r=>({x:()=>Z(r,"float32")})};var i2={kernelName:va,gradFunc:r=>({x:()=>St(r)})};var a2={kernelName:Ca,gradFunc:r=>({x:()=>St(r)})};var l2={kernelName:Ia,gradFunc:r=>({x:()=>St(r)})};var u2={kernelName:gs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Ge(n,0);return{x:()=>Ee(s,r,M(r,o))}}};var c2={kernelName:Na,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,J(e,1))}}};var p2={kernelName:xs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Z(e,"float32"))}}};var m2={kernelName:D1,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=Ye(n);return lt(r,M(mt(r,o,!0),i))}}}};function fX(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return E.runKernel(Xp,a,u)}var f2=N({localResponseNormalizationBackprop_:fX});var d2={kernelName:Bl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>f2(n,o,r,s,i,a,u)}}};function my(r,t,e,n){return t.rank<e.rank&&(t=R(t,bo(t.shape,n))),r.rank<e.rank&&(r=R(r,bo(r.shape,n))),{x:()=>M(r,Z(Sr(e,t),r.dtype))}}var TS={kernelName:ys,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=mr(o,s.shape),u=my(r,i,s,a);return{x:()=>u.x()}}};var h2={kernelName:bs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>M(r,Z(_n(e,n),"float32")),b:()=>M(r,Z(oc(e,n),"float32"))}}};function dX(r,t,e,n,o,s,i){let a=C(r,"dy","maxPool3dGrad"),u=C(t,"input","maxPool3dGrad"),l=C(e,"output","maxPool3dGrad"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),A(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),_e("maxPool3dGrad",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=E.runKernel(Zp,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var g2=N({maxPool3dGrad_:dX});var x2={kernelName:Vl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>g2(r,n,o,s,i,a,u)}}};function hX(r,t,e,n,o,s,i){let a=C(r,"dy","maxPoolGrad"),u=C(t,"input","maxPoolGrad"),l=C(e,"output","maxPoolGrad");A(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),A(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),A(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),_e("maxPoolGrad",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return E.runKernel(Yp,c,p)}var y2=N({maxPoolGrad_:hX});var b2={kernelName:ws,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>y2(r,n,o,s,i,a)}}};var w2={kernelName:vs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=mr(o,n.shape),a=QI(n.shape,s)[1],u=Qt(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return ct(M(p,lr(n.shape,"float32")),u)}}}};var v2={kernelName:Cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=mr(o,s.shape),u=my(r,i,s,a);return{x:()=>u.x()}}};var C2={kernelName:Is,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>M(r,Z(En(e,n),"float32")),b:()=>M(r,Z(Ge(e,n),"float32"))}}};var I2={kernelName:Ss,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ft(r,s,n.shape)}}};var S2={kernelName:_a,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=xe(e.shape,o);return a.length>0?R(mt(r,a),e.shape):r},b:()=>{let a=M(r,qt(ti(ct(e,n)))),u=xe(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var k2={kernelName:ks,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=M(r,Z(n,"float32")),u=xe(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=M(r,Z(e,"float32")),u=xe(n.shape,o);return u.length>0?R(mt(a,u),n.shape):a}}}};var N2={kernelName:ki,gradFunc:r=>({x:()=>qt(r)})};var T2={kernelName:Ns,inputsToSave:["indices"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>we(e.shape,"float32")}}};var _2={kernelName:Ni,gradFunc:r=>({x:()=>St(r)})};var E2={kernelName:Ti,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return vr(r,n).map(s=>()=>s)}};var _S={kernelName:Ts,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ft(r,s,n.shape)}}};var A2={kernelName:_s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=Lt(s.shape,i.shape);return{a:()=>{let c=Z(i,"float32"),p=M(r,M(c,Yr(s,lt(c,pt(1))))),m=xe(s.shape,a);return m.length>0&&(p=mt(p,m)),R(p,s.shape)},b:()=>{let c=Ge(s,0),p=Ee(c,wr(s),St(s)),m=M(r,M(o,p)),f=xe(i.shape,a);return f.length>0&&(m=mt(m,f)),R(m,i.shape)}}}};var $2={kernelName:Es,inputsToSave:["x","alpha"],gradFunc:(r,t)=>{let[e,n]=t,o=Ge(e,0);return{x:()=>Ee(o,r,M(r,n)),alpha:()=>{let s=Ee(o,St(r),M(r,e)),i=xe(n.shape,r.shape);return i.length>0&&(s=mt(s,i)),R(s,n.shape)}}}};function gX(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=eu(r,e,!0,!1),i=eu(r,e,!0,!0),a=M(s,i);return M(o,a)}function xX(r,t,e){let n=r.shape.length,o=n-e.length,s=S.getAxesPermutation(e,n),i=r;s!=null&&(i=Mt(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=gX(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=S.getUndoAxesPermutation(s);p=Mt(p,m)}return p}var D2={kernelName:As,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o=="number"?s=[o]:s=o,{x:()=>xX(n,r,s)}}};var F2={kernelName:us,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=ct(r,Z(n,"float32")),u=xe(e.shape,o);return u.length>0?R(mt(a,u),e.shape):a},b:()=>{let a=M(r,Z(e,"float32")),u=xe(n.shape,o);u.length>0&&(a=R(mt(a,u),n.shape));let l=Wt(n);return qt(ct(a,Z(l,"float32")))}}}};var R2={kernelName:Fa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,qt(Wt(e)))}}};var O2={kernelName:Fs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=M(En(e,6),ni(e));return{x:()=>M(r,Z(n,"float32"))}}};var M2={kernelName:$s,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,Z(ni(e),"float32"))}}};var P2={kernelName:_i,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var L2={kernelName:Ds,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>E.runKernel(rm,o,e)}}};var z2={kernelName:Wl,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>E.runKernel(em,o,e)}}};var B2={kernelName:Rs,gradFunc:(r,t,e)=>{let{dims:n}=e,o=mr(n,r.shape);return{x:()=>ir(r,o)}}};var V2={kernelName:Os,gradFunc:r=>({x:()=>St(r)})};var G2={kernelName:Ms,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>qt(ct(r,M(Yr(e,1.5),2)))}}};var W2={kernelName:Ei,inputsToSave:["condition"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>Z(St(e),"float32"),t:()=>M(r,Z(e,r.dtype)),e:()=>M(r,Z(el(e),r.dtype))}}};var U2={kernelName:Oa,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ge(e,pt(0)),o=pt(IS),s=pt(SS),i=M(r,s),a=M(M(r,o),Ye(Z(e,"float32")));return Ee(n,i,a)}}}};var H2={kernelName:Ls,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,M(e,lt(pt(1),e)))}}};var q2={kernelName:Pa,gradFunc:r=>({x:()=>St(r)})};var K2={kernelName:Ps,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(Ja(Z(e,"float32")),r)}}};var j2={kernelName:Ma,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(rc(Z(e,"float32")),r)}}};var X2={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=FI(n,o,s),l=[];for(let c=0;c<r.rank;c++)l.push([a[c],i[c]-a[c]-u[c]]);return{x:()=>Zr(r,l)}}};var Y2={kernelName:Vs,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=M(r,n);return{logits:()=>lt(i,M(mt(i,[o],s),n))}}};var Z2={kernelName:La,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,Lr(e))}}};var ES={kernelName:$i,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>Ya(r,n,o)}}};var AS={kernelName:Di,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>se(r,n)}}};var J2={kernelName:zs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,M(ye(Z(e,"float32")),2))}}};var Q2={kernelName:Kl,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(r,M(Z(e,"float32"),2))}}};var t$={kernelName:Gs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=pt(2);return{a:()=>M(r,M(o,lt(e,n))),b:()=>M(r,M(o,lt(n,e)))}}};var e$={kernelName:co,gradFunc:r=>({x:()=>St(r)})};var r$={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Lt(e.shape,n.shape);return{a:()=>{let a=r,u=xe(e.shape,o);return u.length>0&&(a=mt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=xe(n.shape,o);return u.length>0&&(a=mt(a,u)),R(qt(a),n.shape)}}}};var n$={kernelName:Bs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;mr(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=M(a,lr(n.shape,"float32"));return{x:()=>u}}};var o$={kernelName:Us,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Wt(Ja(e)))}}};var s$={kernelName:Hs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>M(lt(pt(1),Wt(e)),r)}}};var i$={kernelName:Yn,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=St(n);if(n.rank===1)for(let a=0;a<o[0];++a)i=J(i,Ft(r,[a*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)i=J(i,Ft(r,[a*n.shape[0],u*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)i=J(i,Ft(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)for(let c=0;c<o[3];++c)i=J(i,Ft(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return i}}}};var a$={kernelName:Zn,gradFunc:(r,t,e)=>{let n=e,{perm:o}=n,s=kh(o);return{x:()=>Mt(r,s)}}};var l$={kernelName:Fi,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>Ze(r,o)}}};var u$={kernelName:jl,inputsToSave:["segmentIds"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>yX(r,e)}}};function yX(r,t){let e=dn(t,St(t)),n=wo(r,e),o=_n(t,pt(0,"int32")),s=n.rank-o.rank;for(let a=0;a<s;++a)o=fr(o,a+1);o=Nr(o,lr(n.shape,"bool"));let i=St(n);return Ee(o,n,i)}var c$={kernelName:Ri,gradFunc:r=>({x:()=>St(r)})};var bX=[py,hA,gA,xA,yA,bA,wA,vA,CA,IA,SA,kA,TA,EA,AA,$A,DA,FA,RA,OA,MA,PA,zA,LA,VA,GA,WA,UA,HA,qA,F2,KA,jA,XA,YA,ZA,QA,JA,t2,n2,o2,s2,i2,a2,l2,u2,c2,p2,m2,d2,TS,TS,h2,x2,b2,w2,v2,C2,I2,S2,k2,N2,T2,_2,E2,_S,_S,A2,$2,D2,R2,O2,M2,P2,L2,z2,B2,V2,G2,W2,U2,H2,q2,K2,j2,X2,Y2,Z2,ES,ES,AS,AS,J2,t$,Q2,e$,r$,n$,o$,s$,i$,a$,l$,u$,c$];for(let r of bX)R1(r);L().prototype.abs=function(){return this.throwIfDisposed(),Te(this)};L().prototype.acos=function(){return this.throwIfDisposed(),uh(this)};L().prototype.acosh=function(){return this.throwIfDisposed(),ch(this)};L().prototype.add=function(r){return this.throwIfDisposed(),J(this,r)};L().prototype.all=function(r,t){return this.throwIfDisposed(),Zu(this,r,t)};L().prototype.any=function(r,t){return this.throwIfDisposed(),tu(this,r,t)};L().prototype.argMax=function(r){return this.throwIfDisposed(),Xs(this,r)};L().prototype.argMin=function(r){return this.throwIfDisposed(),ph(this,r)};L().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),R(this,[])};L().prototype.asType=function(r){return this.throwIfDisposed(),Z(this,r)};L().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};L().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};L().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};L().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};L().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};L().prototype.asin=function(){return this.throwIfDisposed(),mh(this)};L().prototype.asinh=function(){return this.throwIfDisposed(),fh(this)};L().prototype.atan=function(){return this.throwIfDisposed(),dh(this)};L().prototype.atan2=function(r){return this.throwIfDisposed(),hh(this,r)};L().prototype.atanh=function(){return this.throwIfDisposed(),gh(this)};L().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),Xa(this,r,t,e,n)};L().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),Ya(this,r,t)};L().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),yo(this,r,t,e,n,o)};L().prototype.broadcastTo=function(r){return this.throwIfDisposed(),Za(this,r)};L().prototype.cast=function(r){return this.throwIfDisposed(),Z(this,r)};L().prototype.ceil=function(){return this.throwIfDisposed(),bh(this)};L().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),br(this,r,t)};L().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof zt&&(r=[r]),se([this,...r],t)};L().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),tc(this,r,t,e,n,o,s)};L().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),ec(this,r,t,e,n,o)};L().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),mn(this,r,t,e,n,o,s)};L().prototype.cos=function(){return this.throwIfDisposed(),Ja(this)};L().prototype.cosh=function(){return this.throwIfDisposed(),rc(this)};L().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),eu(this,r,t,e)};L().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),nc(this,r,t,e)};L().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),vh(this,r,t)};L().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Zs(this,r,t,e,n,o,s)};L().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),Ch(this,r,t,e,n,o)};L().prototype.divNoNan=function(r){return this.throwIfDisposed(),Ih(this,r)};L().prototype.div=function(r){return this.throwIfDisposed(),ct(this,r)};L().prototype.dot=function(r){return this.throwIfDisposed(),YI(this,r)};L().prototype.elu=function(){return this.throwIfDisposed(),Js(this)};L().prototype.equal=function(r){return this.throwIfDisposed(),Sr(this,r)};L().prototype.erf=function(){return this.throwIfDisposed(),Sh(this)};L().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Nh(this,r,t)};L().prototype.exp=function(){return this.throwIfDisposed(),Ye(this)};L().prototype.expandDims=function(r){return this.throwIfDisposed(),fr(this,r)};L().prototype.expm1=function(){return this.throwIfDisposed(),Th(this)};L().prototype.fft=function(){return this.throwIfDisposed(),al(this)};L().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};L().prototype.floor=function(){return this.throwIfDisposed(),ti(this)};L().prototype.floorDiv=function(r){return this.throwIfDisposed(),Yu(this,r)};L().prototype.gather=function(r,t){return this.throwIfDisposed(),wo(this,r,t)};L().prototype.greaterEqual=function(r){return this.throwIfDisposed(),_n(this,r)};L().prototype.greater=function(r){return this.throwIfDisposed(),Ge(this,r)};L().prototype.ifft=function(){return this.throwIfDisposed(),Ui(this)};L().prototype.irfft=function(){return this.throwIfDisposed(),gc(this)};L().prototype.isFinite=function(){return this.throwIfDisposed(),rS(this)};L().prototype.isInf=function(){return this.throwIfDisposed(),nS(this)};L().prototype.isNaN=function(){return this.throwIfDisposed(),_h(this)};L().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Qa(this,r)};L().prototype.lessEqual=function(r){return this.throwIfDisposed(),En(this,r)};L().prototype.less=function(r){return this.throwIfDisposed(),oc(this,r)};L().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),Eh(this,r,t,e,n)};L().prototype.logSigmoid=function(){return this.throwIfDisposed(),sS(this)};L().prototype.logSoftmax=function(r){return this.throwIfDisposed(),sc(this,r)};L().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),Ah(this,r,t)};L().prototype.log=function(){return this.throwIfDisposed(),wr(this)};L().prototype.log1p=function(){return this.throwIfDisposed(),tl(this)};L().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Nr(this,r)};L().prototype.logicalNot=function(){return this.throwIfDisposed(),el(this)};L().prototype.logicalOr=function(r){return this.throwIfDisposed(),ic(this,r)};L().prototype.logicalXor=function(r){return this.throwIfDisposed(),iS(this,r)};L().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Bt(this,r,t,e)};L().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),rl(this,r,t,e,n)};L().prototype.max=function(r,t){return this.throwIfDisposed(),Dr(this,r,t)};L().prototype.maximum=function(r){return this.throwIfDisposed(),dn(this,r)};L().prototype.mean=function(r,t){return this.throwIfDisposed(),be(this,r,t)};L().prototype.min=function(r,t){return this.throwIfDisposed(),ru(this,r,t)};L().prototype.minimum=function(r){return this.throwIfDisposed(),ei(this,r)};L().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),Dh(this,r,t)};L().prototype.mod=function(r){return this.throwIfDisposed(),Fh(this,r)};L().prototype.mul=function(r){return this.throwIfDisposed(),M(this,r)};L().prototype.neg=function(){return this.throwIfDisposed(),qt(this)};L().prototype.norm=function(r,t,e){return this.throwIfDisposed(),nu(this,r,t,e)};L().prototype.notEqual=function(r){return this.throwIfDisposed(),Co(this,r)};L().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),js(this,r,t,e)};L().prototype.onesLike=function(){return this.throwIfDisposed(),dr(this)};L().prototype.pad=function(r,t){return this.throwIfDisposed(),Zr(this,r,t)};L().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),cS(this,r,t,e,n,o,s)};L().prototype.pow=function(r){return this.throwIfDisposed(),Yr(this,r)};L().prototype.prelu=function(r){return this.throwIfDisposed(),ol(this,r)};L().prototype.prod=function(r,t){return this.throwIfDisposed(),ac(this,r,t)};L().prototype.reciprocal=function(){return this.throwIfDisposed(),Rh(this)};L().prototype.relu=function(){return this.throwIfDisposed(),Tr(this)};L().prototype.relu6=function(){return this.throwIfDisposed(),cc(this)};L().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};L().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};L().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),ay(this,r,t,e)};L().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),ly(this,r,t,e)};L().prototype.reverse=function(r){return this.throwIfDisposed(),ir(this,r)};L().prototype.rfft=function(){return this.throwIfDisposed(),ll(this)};L().prototype.round=function(){return this.throwIfDisposed(),pc(this)};L().prototype.rsqrt=function(){return this.throwIfDisposed(),mc(this)};L().prototype.selu=function(){return this.throwIfDisposed(),fc(this)};L().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Oh(this,r,t,e,n,o,s)};L().prototype.sigmoid=function(){return this.throwIfDisposed(),Lr(this)};L().prototype.sign=function(){return this.throwIfDisposed(),Mh(this)};L().prototype.sin=function(){return this.throwIfDisposed(),dc(this)};L().prototype.sinh=function(){return this.throwIfDisposed(),hc(this)};L().prototype.slice=function(r,t){return this.throwIfDisposed(),Ft(this,r,t)};L().prototype.softmax=function(r){return this.throwIfDisposed(),il(this,r)};L().prototype.softplus=function(){return this.throwIfDisposed(),vo(this)};L().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),nl(this,r,t)};L().prototype.split=function(r,t){return this.throwIfDisposed(),ur(this,r,t)};L().prototype.sqrt=function(){return this.throwIfDisposed(),ye(this)};L().prototype.square=function(){return this.throwIfDisposed(),Wt(this)};L().prototype.squaredDifference=function(r){return this.throwIfDisposed(),xc(this,r)};L().prototype.squeeze=function(r){return this.throwIfDisposed(),zr(this,r)};L().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof zt?[this,r]:[this,...r];return Ze(e,t)};L().prototype.step=function(r){return this.throwIfDisposed(),ni(this,r)};L().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),zh(this,r,t,e,n,o,s,i,a)};L().prototype.sub=function(r){return this.throwIfDisposed(),lt(this,r)};L().prototype.sum=function(r,t){return this.throwIfDisposed(),mt(this,r,t)};L().prototype.tan=function(){return this.throwIfDisposed(),Bh(this)};L().prototype.tanh=function(){return this.throwIfDisposed(),Ys(this)};L().prototype.tile=function(r){return this.throwIfDisposed(),kr(this,r)};L().prototype.toBool=function(){return this.throwIfDisposed(),Z(this,"bool")};L().prototype.toFloat=function(){return this.throwIfDisposed(),Z(this,"float32")};L().prototype.toInt=function(){return this.throwIfDisposed(),Z(this,"int32")};L().prototype.topk=function(r,t){return this.throwIfDisposed(),Vh(this,r,t)};L().prototype.transpose=function(r){return this.throwIfDisposed(),Mt(this,r)};L().prototype.unique=function(r){return this.throwIfDisposed(),km(this,r)};L().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),Gh(this,r,t)};L().prototype.unstack=function(r){return this.throwIfDisposed(),vr(this,r)};L().prototype.where=function(r,t){return this.throwIfDisposed(),Ee(r,this,t)};L().prototype.zerosLike=function(){return this.throwIfDisposed(),St(this)};var An=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,An.prototype)}},Wr=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Wr.prototype)}},z=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,z.prototype)}},Nt=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Nt.prototype)}},Tm=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Tm.prototype)}};var qh=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;e<this.maxEntries-t;e++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=t}};function No(r,t){if(Array.isArray(r)){let e=[];for(let n=0;n<t;n++)e=e.concat(r);return e}else{let e=new Array(t);return e.fill(r),e}}function to(r,t){if(!r)throw new Tm(t)}function DS(r,t){let e=0;for(let n of r)n===t&&e++;return e}function _r(r){return r.length===1?r[0]:r}function ve(r){return Array.isArray(r)?r:[r]}function To(r){let e=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return e[0]!=="_"?e:"private"+e}function ul(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(t,e)=>e.toUpperCase())}var ko={};function _m(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function $S(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(t=>$S(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[e]=n.value:$S(n))}}}function Ki(r,t={},e={},n="object",o=!1){if(typeof r=="string"){let s=r,i;if(s in e)i=e[s];else if(s in ko)i=ko[s];else if(i=t[s],i==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in ko?[a,u]=ko.className:i in t&&([a,u]=t[i]),a==null)throw new z(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(ko))l[f]=ko[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},ko);for(let f of Object.keys(e))ko[f]=e[f];$S(s.config);let m=u(a,s.config,e,o);return ko=Object.assign({},p),m}else{let l=Object.assign({},ko);for(let p of Object.keys(e))ko[p]=e[p];let c=new a(s.config);return ko=Object.assign({},l),c}}}function wX(r,t){return r<t?-1:r>t?1:0}function Kh(r,t){return-1*wX(r,t)}function _o(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function p$(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function ji(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new z(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function fy(r,t,e=0,n=1/0){return to(e>=0),to(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function tr(r,t){Array.isArray(r)?(x.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>tr(e,`element ${n+1} of ${t}`))):x.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${m$(r)}.`)}function m$(r){return r===null?"null":Array.isArray(r)?"["+r.map(t=>m$(t)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function f$(r,t,e){let n=e!=null?e():x.now(),o;return(...i)=>{let a=e!=null?e():x.now();return a-n<t||(n=a,o=r(...i)),o}}function dy(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}var vX=0;function gy(){return vX++}var hy={};function cu(r=""){return r in hy||(hy[r]=0),hy[r]+=1,r+hy[r].toString()}var d$=["channelsFirst","channelsLast"],h$=["nearest","bilinear"],g$=["valid","same","causal"],x$=["max","avg"],y$=["sum","mul","concat","ave"];var Em=new Map;function Le(r){ji(d$,"DataFormat",r)}function w$(r){ji(h$,"InterpolationFormat",r)}function gn(r){ji(g$,"PaddingMode",r)}function FS(r){ji(x$,"PoolMode",r)}var jh=[],b$="/";function ii(r,t){jh.push(r);try{let e=t();return jh.pop(),e}catch(e){throw jh.pop(),e}}function CX(){return jh.length===0?"":jh.join(b$)+b$}function xy(r){if(!v$(r))throw new Error("Not a valid tensor name: '"+r+"'");return CX()+r}function yy(r){if(!v$(r))throw new Error("Not a valid tensor name: '"+r+"'");Em.has(r)||Em.set(r,0);let t=Em.get(r);if(Em.set(r,Em.get(r)+1),t>0){let e=`${r}_${t}`;return Em.set(e,1),e}else return r}var IX=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function v$(r){return!!r.match(IX)}function C$(r){return r===parseInt(r.toString(),10)}function Eo(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;o<e;++o)n*=r[o];return n}function Sc(r){if(r.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n<t&&(t=n)}return t}function ai(r){if(r.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n>t&&(t=n)}return t}function Jr(r,t){if(t<r)throw new z(`end (${t}) < begin (${r}) is forbidden.`);let e=[];for(let n=r;n<t;++n)e.push(n);return e}var RS;function cr(){return RS==null&&(RS=M_().epsilon()),RS}function xn(){return"channelsLast"}function kc(r,t){return Z(r,t)}function pl(r,t=-1){let e=r.shape.slice();return t<0&&(t=e.length+t+1),e.splice(t,0,1),R(r,e)}function I$(r,t){return V(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=pl(r,1);return wy(e,[1,t,1])})}function S$(r){let t=[Eo(r.shape)];return R(r,t)}function k$(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],Eo(r.shape,1)];return R(r,t)}function cl(r,t,e){return V(()=>{switch(r.rank){case 1:return Ph(r,t,e);case 2:return Yx(r,[t,0],[e,r.shape[1]]);case 3:return Lh(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return Sm(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Ft(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Ft(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function OS(r,t,e){return V(()=>{switch(r.rank){case 1:return Ph(r,t,e);case 2:return Yx(r,[0,t],[r.shape[0],e]);case 3:return Lh(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return Sm(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Xh(r,t,e,n){return V(()=>{switch(r.rank){case 1:return Ph(r,t,e);case 2:switch(n){case 1:return cl(r,t,e);case 2:return OS(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return cl(r,t,e);case 2:return Lh(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return OS(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return cl(r,t,e);case 2:return Sm(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return Sm(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return OS(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Am(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),se(r,t)}function PS(r,t){switch(r.rank){case 1:return UI([r,t]);case 2:return HI([r,t],0);case 3:return qI([r,t],0);case 4:return KI([r,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function wy(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return kr(r,t)}function $m(r,t=0,e=1,n,o){return Xx(r,t,e,n,o)}function Ao(r,t,e,n){if(r.rank<2||t.rank<2)throw new Nt(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new Nt(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return Io.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?MS(r.rank,n,xn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Mt(t,c),[u,-1]);let p=[...o,...l],m=!1,f=!1;return R(Io.matMul({a:r,b:t,transposeA:m,transposeB:f,bias:n?MS(r.rank,n,xn()):null,activation:e}),p)}}function vy(r,t,e){return V(()=>(Array.isArray(t)?t=Fe(t,"int32"):t=Z(t,"int32"),wo(r,t,e)))}function Nc(r){return M(r,r)}function MS(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function yn(r,t,e){return V(()=>(e==null&&(e=xn()),Le(e),J(r,MS(r.rank,t,e))))}function N$(r,t=1){if(t!==1)throw new Nt(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Js(r)}function T$(r){return V(()=>ct(r,J(Te(r),1)))}function Cy(r,t,e,n){return V(()=>NE(r,t,e,n))}function _$(r){return V(()=>{let t=J(.5,M(.2,r));return br(t,0,1)})}function pu(r,t,e=!1){return e?r():t()}var E$=["fanIn","fanOut","fanAvg"],A$=["normal","uniform","truncatedNormal"];function SX(r){ji(E$,"FanMode",r)}function kX(r){ji(A$,"Distribution",r)}var wn=class extends et.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Dm=class extends wn{apply(t,e){return we(t,e)}};Dm.className="Zeros";et.registerClass(Dm);var mu=class extends wn{apply(t,e){return lr(t,e)}};mu.className="Ones";et.registerClass(mu);var Fm=class extends wn{constructor(t){if(super(),typeof t!="object")throw new z(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new z(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return V(()=>M(pt(this.value),lr(t,e)))}getConfig(){return{value:this.value}}};Fm.className="Constant";et.registerClass(Fm);var Rm=class extends wn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return ri(t,this.minval,this.maxval,e)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Rm.className="RandomUniform";et.registerClass(Rm);var Om=class extends wn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Nt(`randomNormal does not support dType ${e}.`);return $m(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Om.className="RandomNormal";et.registerClass(Om);var Mm=class extends wn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Nt(`truncatedNormal does not support dType ${e}.`);return yc(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Mm.className="TruncatedNormal";et.registerClass(Mm);var Pm=class extends wn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return V(()=>{if(t.length!==2||t[0]!==t[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return M(this.gain,Cm(t[0]))})}getConfig(){return{gain:this.gain}}};Pm.className="Identity";et.registerClass(Pm);function NX(r,t="channelsLast"){let e,n;if(Le(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t==="channelsFirst"){let o=Eo(r,2);e=r[1]*o,n=r[0]*o}else if(t==="channelsLast"){let o=Eo(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=Eo(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var Ur=class extends wn{constructor(t){if(super(),t.scale<0)throw new z(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?"fanIn":t.mode,SX(this.mode),this.distribution=t.distribution==null?"normal":t.distribution,kX(this.distribution),this.seed=t.seed}apply(t,e){let n=NX(t),o=n[0],s=n[1],i=this.scale;if(this.mode==="fanIn"?i/=Math.max(1,o):this.mode==="fanOut"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution==="normal"){let a=Math.sqrt(i);if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Nt(`${this.getClassName()} does not support dType ${e}.`);return yc(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return ri(t,-a,a,e)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Ur.className="VarianceScaling";et.registerClass(Ur);var Tc=class extends Ur{constructor(t){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Ur.className}};Tc.className="GlorotUniform";et.registerClass(Tc);var _c=class extends Ur{constructor(t){super({scale:1,mode:"fanAvg",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Ur.className}};_c.className="GlorotNormal";et.registerClass(_c);var Ec=class extends Ur{constructor(t){super({scale:2,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Ur.className}};Ec.className="HeNormal";et.registerClass(Ec);var Ac=class extends Ur{constructor(t){super({scale:2,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Ur.className}};Ac.className="HeUniform";et.registerClass(Ac);var $c=class extends Ur{constructor(t){super({scale:1,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Ur.className}};$c.className="LeCunNormal";et.registerClass($c);var Dc=class extends Ur{constructor(t){super({scale:1,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Ur.className}};Dc.className="LeCunNormal";et.registerClass(Dc);var Lm=class extends wn{constructor(t){if(super(),this.DEFAULT_GAIN=1,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed,this.seed!=null)throw new Nt("Random seed is not implemented for Orthogonal Initializer yet.")}apply(t,e){return V(()=>{if(t.length<2)throw new Nt("Shape must be at least 2D.");t[0]*t[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${t[0]*t[1]}) elements: Slowness may result.`);let n=t[0]>t[1]?[t[1],t[0]]:t,o=$m(n,0,1,"float32"),s=mA.gramSchmidt(o);return t[0]>t[1]&&(s=Mt(s)),M(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Lm.className="Orthogonal";et.registerClass(Lm);var $$={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function D$(r,t={}){return Ki(r,et.SerializationMap.getMap().classNameMap,t,"initializer")}function Ae(r){return _m(r)}function he(r){if(typeof r=="string"){let t=r in $$?$$[r]:r;if(t==="GlorotNormal")return new _c;if(t==="GlorotUniform")return new Tc;if(t==="HeNormal")return new Ec;if(t==="HeUniform")return new Ac;if(t==="LeCunNormal")return new $c;if(t==="LeCunUniform")return new Dc;{let e={};return e.className=t,e.config={},D$(e)}}else return r instanceof wn?r:D$(r)}function Iy(r){return Array.isArray(r)&&Array.isArray(r[0])}function zm(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Pt(r){let t;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);t=r[0]}else t=r;return t}function te(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Bm(r){let t=0;for(let e of r)e.shape.length===0?t+=1:t+=e.shape.reduce((n,o)=>n*o);return t}var R$="Variable",Yh=class{constructor(t,e="float32",n=R$,o=!0,s=null){this.dtype=e==null?"float32":e,this.shape=t.shape,this.id=gy(),n=n==null?R$:n,this.originalName=xy(n),this.name=yy(this.originalName),this.trainable_=o,this.constraint=s,this.val=vS(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),_X(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function _X(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(t.shape))}function Zh(r){return r.map(t=>t.read())}function Vm(r){r.forEach(t=>{t[0].write(t[1])})}var Ce=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},Qr=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=gy(),i!=null&&(this.originalName=xy(i),this.name=yy(this.originalName)),this.rank=e.length}},EX=0,ml=class{constructor(t,e){this.callArgs=e,this.id=EX++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},AX=0,Vt=class extends et.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=AX++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=To(n)+"_"+cu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o="float32"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+"_ib-"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new Wr(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new z(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return _r(this.getNodeAtIndex(t,"input").inputTensors)}getOutputAt(t){return _r(this.getNodeAtIndex(t,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new An(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new An(`Layer ${this.name} is not connected, no input to return.`);return _r(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new An(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new An(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return _r(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(t){if(t=ve(t),this.inputSpec==null||this.inputSpec.length===0)return;let e=ve(this.inputSpec);if(t.length!==e.length)throw new z(`Layer ${this.name} expects ${e.length} inputs, but it received ${t.length} input tensors. Input received: ${t}`);for(let n=0;n<t.length;n++){let o=t[n],s=e[n];if(s==null)continue;let i=o.rank;if(s.ndim!=null&&i!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${i}`);if(s.maxNDim!=null&&i>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${i}`);if(s.minNDim!=null&&i<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${i}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let a=o.shape;for(let u in s.axes){let l=Number(u),c=s.axes[u],p=l>=0?a[l]:a[a.length+l];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${a}.`)}}if(s.shape!=null)for(let a=0;a<s.shape.length;++a){let u=s.shape[a],l=o.shape[a];if(u!=null&&l!=null&&u!==l)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(t,e){return t}invokeCallHook(t,e){this._callHook!=null&&this._callHook(t,e)}setCallHook(t){this._callHook=t}clearCallHook(){this._callHook=null}apply(t,e){e=e||{},this.assertNotDisposed();let n=ve(t),o=!0;for(let i of n)if(!(i instanceof Qr)){o=!1;break}let s=!0;for(let i of n)if(i instanceof Qr){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return ii(this.name,()=>{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of ve(t))i.push(a.shape);this.build(_r(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e),a=ve(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=_r(u),this.activityRegularizer!=null)throw new Nt("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}else{let i=$X(t),a=this.computeOutputShape(i),u,l=DX(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new Qr(l,c,this,ve(t),e,this.name,p)):u=new Qr(l,a,this,ve(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new Nt("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new An(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new An(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Wr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Bm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return Zh(t?this.trainableWeights:this.weights)}setWeights(t){V(()=>{let e=this.weights;if(e.length!==t.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=Zh(e);for(let s=0;s<o.length;++s){let i=o[s],a=e[s],u=t[s];if(!x.arraysEqual(i.shape,u.shape))throw new z(`Layer weight shape ${i.shape} not compatible with provided weight shape ${u.shape}`);n.push([a,u])}Vm(n)})}addWeight(t,e,n,o,s,i,a,u){if(this._addedWeightNames.indexOf(t)!==-1)throw new z(`Duplicate weight name ${t} for layer ${this.name}`);this._addedWeightNames.push(t),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=u!=null?u():he("zeros"));let l=o.apply(e,n),c=new Yh(l,n,t,i,a);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=ve(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}addInboundNode(t,e,n,o,s,i,a=null){let u=ve(t);e=ve(e),n=ve(n),o=ve(o),s=zm(s),i=zm(i);let l=[],c=[],p=[];for(let m of u)l.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new ml({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:p,inputTensors:u,outputTensors:e,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:i},a);for(let m=0;m<e.length;m++)e[m].sourceLayer=this,e[m].nodeIndex=this.inboundNodes.length-1,e[m].tensorIndex=m}getConfig(){let t={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(t.batchInputShape=this.batchInputShape),this.dtype!=null&&(t.dtype=this.dtype),t}disposeWeights(){return this.weights.forEach(t=>t.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function $X(r){r=ve(r);let t=[];for(let e of r)t.push(e.shape);return _r(t)}function DX(r){return"float32"}function LS(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],a=n.inboundLayers[s],u=n.nodeIndices[s],l=LS(i,a,u);for(let c of l)o.indexOf(c)===-1&&o.push(c)}return o}}}var li=class extends Vt{constructor(t){if(super({dtype:t.dtype,name:t.name!=null?t.name:cu("input").toString()}),t.batchSize==null&&(t.batchSize=null),t.sparse==null&&(t.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=t.sparse,t.inputShape!=null&&t.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let e=t.batchInputShape;if(e==null){if(t.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");e=[t.batchSize].concat(t.inputShape)}else if(t.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=t.dtype||"float32";this.batchInputShape=e,this.dtype=n,this.inputSpec=[{shape:e}];let o=new Qr(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new ml({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[e],outputShapes:[e]})}apply(t,e){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};li.className="InputLayer";et.registerClass(li);function Sy(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=r.batchShape;r.shape!=null&&t==null&&(t=[null].concat(r.shape));let e=r.dtype;return e==null&&(e="float32"),new li({batchInputShape:t,name:r.name,dtype:e,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}function FX(r,t){if(r.dtype==null||r.dtype===t.dtype)return t;try{return Z(t,r.dtype)}catch(e){throw new z(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var $o=class{constructor(t){if(this.id2Value={},this.id2Mask={},this.name2Id={},t instanceof $o)for(let e in t.id2Value)this.id2Value[e]=t.id2Value[e],e in t.id2Mask&&(this.id2Mask[e]=t.id2Mask[e]);else{if(t==null)return;for(let e of t)this.add(e.key,e.value)}}add(t,e,n){if(this.id2Value[t.id]==null)this.id2Value[t.id]=FX(t,e),this.name2Id[t.name]=t.id,n!=null&&(this.id2Mask[t.id]=n);else throw new z(`Duplicate key: name=${t.name}, id=${t.id}`);return this}addFeed(t){this.add(t.key,t.value)}hasKey(t){return this.id2Value[t.id]!=null}names(){return Object.keys(this.name2Id)}getValue(t){if(t instanceof Qr){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Value[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Value[e]}}getMask(t){if(t instanceof Qr){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Mask[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Mask[e]}}disposeMasks(){this.id2Mask!=null&&_t(this.id2Mask)}},ky=new qh,Ny=new qh;function M$(r){ky!=null&&ky.setMaxEntries(r),Ny!=null&&Ny.setMaxEntries(r)}function Fc(r,t,e,n){let o=e==null?!1:e.training,s=Array.isArray(r),i=s?r:[r],a=i.map(d=>d.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(",")+"|"+t.names().sort().join(","),p=ky.get(c),m;if(p==null){let d=RX(i,t);p=d.sorted,m=d.recipientCounts,ky.put(c,p),Ny.put(c,m)}m={},o||Object.assign(m,Ny.get(c));let f=new $o(t);for(let d=0;d<p.length;++d){if(n!=null){let F=ih().numTensors;F>n.maxNumTensors&&(n.maxNumTensors=F),F<n.minNumTensors&&(n.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof li)continue;let y=[],b=[],w=[],v=!1;for(let F of h.inputs){let P=f.getValue(F),B=f.getMask(F);y.push(P),b.push(B),B!=null&&(v=!0),o||(m[F.name]--,m[F.name]===0&&!t.hasKey(F)&&a.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&w.push(P))}v&&(e=e||{},e.mask=b[0]);let k=ve(g.apply(y,e)),_=null;g.supportsMasking&&(_=g.computeMask(y,b));let $=MX(h),D=Array.isArray($)?$:[$];for(let F=0;F<D.length;++F){f.hasKey(D[F])||f.add(D[F],k[F],Array.isArray(_)?_[0]:_);let P=a.indexOf(D[F].name);P!==-1&&(u[P]=k[F])}o||_t(w)}return f.disposeMasks(),s?u:u[0]}function RX(r,t){x.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let e=[],n={};if(r.length===1){let o=O$(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=O$(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:OX(n)}}function OX(r){let t={};for(let e in r)t[e]=r[e].size;return t}function O$(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function MX(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){e=n;break}t=r.sourceLayer.getOutputAt(e)}return t}var PX=G();PX.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,M$);var z$={};Zt(z$,{maxNorm:()=>LX,minMaxNorm:()=>VX,nonNeg:()=>BX,unitNorm:()=>zX});function zS(r,t){return V(()=>ye(mt(M(r,r),t,!0)))}var Rc=class extends et.Serializable{getConfig(){return{}}},Gm=class extends Rc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return V(()=>{let e=zS(t,this.axis),n=br(e,0,this.maxValue);return M(t,ct(n,J(cr(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Gm.className="MaxNorm";et.registerClass(Gm);var Wm=class extends Rc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return V(()=>ct(t,J(cr(),zS(t,this.axis))))}getConfig(){return{axis:this.axis}}};Wm.className="UnitNorm";et.registerClass(Wm);var Um=class extends Rc{apply(t){return Tr(t)}};Um.className="NonNeg";et.registerClass(Um);var Hm=class extends Rc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return V(()=>{let e=zS(t,this.axis),n=J(M(this.rate,br(e,this.minValue,this.maxValue)),M(1-this.rate,e));return M(t,ct(n,J(cr(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Hm.className="MinMaxNorm";et.registerClass(Hm);var P$={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function We(r){return _m(r)}function L$(r,t={}){return Ki(r,et.SerializationMap.getMap().classNameMap,t,"constraint")}function Ue(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in P$?P$[r]:r,config:{}};return L$(e)}else return r instanceof Rc?r:L$(r)}function LX(r){return new Gm(r)}function zX(r){return new Wm(r)}function BX(){return new Um}function VX(r){return new Hm(r)}var B$={};Zt(B$,{constant:()=>UX,glorotNormal:()=>ZX,glorotUniform:()=>YX,heNormal:()=>JX,heUniform:()=>QX,identity:()=>jX,leCunNormal:()=>t8,leCunUniform:()=>e8,ones:()=>WX,orthogonal:()=>r8,randomNormal:()=>qX,randomUniform:()=>HX,truncatedNormal:()=>KX,varianceScaling:()=>XX,zeros:()=>GX});function GX(){return new Dm}function WX(){return new mu}function UX(r){return new Fm(r)}function HX(r){return new Rm(r)}function qX(r){return new Om(r)}function KX(r){return new Mm(r)}function jX(r){return new Pm(r)}function XX(r){return new Ur(r)}function YX(r){return new Tc(r)}function ZX(r){return new _c(r)}function JX(r){return new Ec(r)}function QX(r){return new Ac(r)}function t8(r){return new $c(r)}function e8(r){return new Dc(r)}function r8(r){return new Lm(r)}var yD={};Zt(yD,{Layer:()=>Vt,RNN:()=>Dn,RNNCell:()=>gl,activation:()=>xY,add:()=>NY,alphaDropout:()=>u7,average:()=>TY,averagePooling1d:()=>QS,averagePooling2d:()=>tk,averagePooling3d:()=>ek,avgPool1d:()=>MY,avgPool2d:()=>LY,avgPool3d:()=>BY,avgPooling1d:()=>PY,avgPooling2d:()=>zY,avgPooling3d:()=>VY,batchNormalization:()=>FY,bidirectional:()=>e7,concatenate:()=>_Y,conv1d:()=>lY,conv2d:()=>uY,conv2dTranspose:()=>cY,conv3d:()=>pY,conv3dTranspose:()=>mY,convLstm2d:()=>ZY,convLstm2dCell:()=>JY,cropping2D:()=>dY,dense:()=>yY,depthwiseConv2d:()=>gY,dot:()=>DY,dropout:()=>bY,elu:()=>rY,embedding:()=>kY,flatten:()=>vY,gaussianDropout:()=>l7,gaussianNoise:()=>a7,globalAveragePooling1d:()=>GY,globalAveragePooling2d:()=>WY,globalMaxPool1d:()=>n7,globalMaxPool2d:()=>o7,globalMaxPooling1d:()=>dD,globalMaxPooling2d:()=>hD,gru:()=>HY,gruCell:()=>qY,input:()=>KS,inputLayer:()=>eY,layerNormalization:()=>RY,leakyReLU:()=>oY,lstm:()=>KY,lstmCell:()=>jY,masking:()=>c7,maxPool1d:()=>s7,maxPool2d:()=>i7,maxPooling1d:()=>gD,maxPooling2d:()=>xD,maxPooling3d:()=>UY,maximum:()=>EY,minimum:()=>AY,multiply:()=>$Y,permute:()=>SY,prelu:()=>sY,reLU:()=>nY,repeatVector:()=>CY,reshape:()=>IY,rnn:()=>QY,separableConv2d:()=>fY,simpleRNN:()=>XY,simpleRNNCell:()=>YY,softmax:()=>iY,spatialDropout1d:()=>wY,stackedRNNCells:()=>t7,thresholdedReLU:()=>aY,timeDistributed:()=>r7,upSampling2d:()=>hY,zeroPadding2d:()=>OY});async function Xi(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;s<o.length;++s)r[e[s]]=o[s][0];_t(n)}}function Ty(r){if(r!=null)for(let t in r){let e=r[t];typeof e!="number"&&e.dispose()}}var V$;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(V$||(V$={}));var n8=125,fl=class{constructor(){this.validationData=null}setParams(t){this.params=t}async onEpochBegin(t,e){}async onEpochEnd(t,e){}async onBatchBegin(t,e){}async onBatchEnd(t,e){}async onTrainBegin(t){}async onTrainEnd(t){}setModel(t){}},_y=class{constructor(t,e=10){t==null&&(t=[]),this.callbacks=t,this.queueLength=e}append(t){this.callbacks.push(t)}setParams(t){for(let e of this.callbacks)e.setParams(t)}setModel(t){for(let e of this.callbacks)e.setModel(t)}async onEpochBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochBegin(t,e)}async onEpochEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochEnd(t,e)}async onBatchBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchBegin(t,e)}async onBatchEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchEnd(t,e)}async onTrainBegin(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainBegin(t)}async onTrainEnd(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainEnd(t)}},BS=class extends fl{constructor(){super()}async onEpochBegin(t){this.seen=0,this.totals={}}async onBatchEnd(t,e){e==null&&(e={});let n=e.size==null?0:e.size;this.seen+=n;for(let o in e){let s=e[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let i;o in this.totals?i=this.totals[o]:this.totals[o]=0;let a=V(()=>J(this.totals[o],M(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?e[n]=this.totals[n]/this.seen:V(()=>{let o=M(ct(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),Pe(e[n])}))}},Ey=class extends fl{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;a<i.length;++a)if(typeof i[a]!="number"){let u=i[a];t.push(u.data()),e.push(s),n.push(a)}}let o=await Promise.all(t);for(let s=0;s<o.length;++s)this.history[e[s]][n[s]].dispose(),this.history[e[s]][n[s]]=o[s][0]}},Ay=class extends fl{constructor(t,e){if(super(),this.currentEpoch=0,this.nowFunc=t.nowFunc,this.nextFrameFunc=t.nextFrameFunc||Hh,this.yieldEvery=e||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=n8),this.yieldEvery==="never"&&t.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");x.isNumber(this.yieldEvery)&&(this.maybeWait=f$(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=t.onTrainBegin,this.trainEnd=t.onTrainEnd,this.epochBegin=t.onEpochBegin,this.epochEnd=t.onEpochEnd,this.batchBegin=t.onBatchBegin,this.batchEnd=t.onBatchEnd,this.yield=t.onYield}async maybeWait(t,e,n){let o=[];this.yield!=null&&(await Xi(n),o.push(this.yield(t,e,n))),o.push(this.nextFrameFunc()),await Promise.all(o)}async onEpochBegin(t,e){this.currentEpoch=t,this.epochBegin!=null&&(await Xi(e),await this.epochBegin(t,e))}async onEpochEnd(t,e){let n=[];this.epochEnd!=null&&(await Xi(e),n.push(this.epochEnd(t,e))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(t,e){this.batchBegin!=null&&(await Xi(e),await this.batchBegin(t,e))}async onBatchEnd(t,e){let n=[];this.batchEnd!=null&&(await Xi(e),n.push(this.batchEnd(t,e))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):x.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,t,e)),await Promise.all(n)}async onTrainBegin(t){this.trainBegin!=null&&(await Xi(t),await this.trainBegin(t))}async onTrainEnd(t){this.trainEnd!=null&&(await Xi(t),await this.trainEnd(t))}};function $y(r,t){return r==null&&(r={}),r instanceof fl?[r]:Array.isArray(r)&&r[0]instanceof fl?r:ve(r).map(n=>new Ay(n,t))}var vn=class{constructor(){}static registerCallbackConstructor(t,e){x.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),vn.checkForDuplicate(e),vn.constructors[t]==null&&(vn.constructors[t]=[]),vn.constructors[t].push(e)}static checkForDuplicate(t){for(let e in vn.constructors)vn.constructors[+e].forEach(o=>{if(o===t)throw new z("Duplicate callback constructor.")})}static clear(){vn.constructors={}}static createCallbacks(t){let e=[];for(let n in vn.constructors){let o=+n;t>=o&&e.push(...vn.constructors[o])}return e.map(n=>new n)}};vn.constructors={};function Dy(r,t,e,n,o,s,i,a,u){let l=new Ey,c=[new BS,...vn.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new _y(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function Cn(r,t={},e=!1){return Ki(r,et.SerializationMap.getMap().classNameMap,t,"layer",e)}function Jh(r,t){return V(()=>{r.dtype!=="float32"&&(r=Z(r,"float32"));let e=mt(Nc(r),t,!0),n=Qs(e.shape,cr()),o=ye(dn(e,n));return ct(r,o)})}function Yi(r,t){return V(()=>be(Nc(lt(t,r)),-1))}function qm(r,t){return V(()=>be(Te(lt(t,r)),-1))}function fu(r,t){return V(()=>{let e=lt(r,t),n=br(Te(r),cr(),Number.MAX_VALUE),o=Te(ct(e,n));return M(100,be(o,-1))})}function o8(r,t){return V(()=>{let e=br(t,cr(),Number.MAX_VALUE),n=wr(J(1,e)),o=br(r,cr(),Number.MAX_VALUE),s=wr(J(1,o));return be(Nc(lt(n,s)),-1)})}function s8(r,t){return V(()=>{let e=dn(0,lt(1,M(r,t)));return be(Nc(e),-1)})}function i8(r,t){return V(()=>{let e=dn(0,lt(1,M(r,t)));return be(e,-1)})}function a8(r,t){return V(()=>{let e=mt(M(r,t),-1),n=Dr(M(lt(1,r),t),-1);return dn(0,J(1,lt(n,e)))})}function l8(r,t){return V(()=>{let e=Math.log(2),n=lt(t,r),o=lt(J(n,vo(M(-2,n))),e);return be(o,-1)})}function Oc(r,t,e=!1){return V(()=>{if(e)t=il(t);else{let n=mt(t,t.shape.length-1,!0);t=ct(t,n)}return t=br(t,cr(),1-cr()),qt(mt(M(Z(r,"float32"),wr(t)),t.shape.length-1))})}function Km(r,t,e=!1){return V(()=>{let n=Z(ti(S$(r)),"int32");t=br(t,cr(),1-cr());let o=t.shape,s=R(js(n,o[o.length-1]),o);return Oc(s,t,e)})}function u8(r,t){if(!x.arraysEqual(r.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return V(()=>{let e=Tr(t),n=qt(Te(t));return J(lt(e,M(t,r)),tl(Ye(n)))})}function jm(r,t){return V(()=>{let e;return e=br(t,cr(),1-cr()),e=wr(ct(e,lt(1,e))),be(u8(r,e),-1)})}function c8(r,t){return V(()=>{let e=br(r,cr(),1),n=br(t,cr(),1);return mt(M(r,wr(ct(e,n))),-1)})}function p8(r,t){return V(()=>{let e=wr(J(cr(),t));return be(lt(t,M(r,e)),-1)})}function tg(r,t){return V(()=>{let e=Jh(r,-1),n=Jh(t,-1),o=M(e,n);return qt(mt(o,-1))})}var Qh={meanSquaredError:Yi,meanAbsoluteError:qm,meanAbsolutePercentageError:fu,meanSquaredLogarithmicError:o8,squaredHinge:s8,hinge:i8,categoricalHinge:a8,logcosh:l8,categoricalCrossentropy:Oc,sparseCategoricalCrossentropy:Km,binaryCrossentropy:jm,kullbackLeiblerDivergence:c8,poisson:p8,cosineProximity:tg};function Fy(r){if(typeof r=="string"){if(r in Qh)return Qh[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return r}function eg(r,t){return V(()=>{let e=M(.5,dr(t)),n=kc(Ge(t,e),r.dtype);return be(Sr(r,n),-1)})}function rg(r,t){return V(()=>kc(Sr(Xs(r,-1),Xs(t,-1)),"float32"))}function W$(r,t){return V(()=>Z(mt(Nr(Sr(r,1),Sr(t,1))),"float32"))}function m8(r,t){return V(()=>Z(mt(Nr(Sr(r,1),Sr(t,0))),"float32"))}function f8(r,t){return V(()=>Z(mt(Nr(Sr(r,0),Sr(t,1))),"float32"))}function VS(r,t){return V(()=>{let e=W$(r,t),n=f8(r,t),o=J(e,n);return Z(Ee(Ge(o,0),ct(e,o),0),"float32")})}function U$(r,t){return V(()=>{let e=W$(r,t),n=m8(r,t),o=J(e,n);return Z(Ee(Ge(o,0),ct(e,o),0),"float32")})}function Oy(r,t){return jm(r,t)}function My(r,t){return r.rank===t.rank&&(r=zr(r,[r.rank-1])),t=Xs(t,-1),t.dtype!==r.dtype&&(t=Z(t,r.dtype)),Z(Sr(r,t),"float32")}var d8=Yi,h8=Yi,g8=qm,x8=qm,y8=fu,b8=fu,ng=Oc,w8=tg,GS=Km,Ry={binaryAccuracy:eg,categoricalAccuracy:rg,precision:VS,categoricalCrossentropy:ng,sparseCategoricalCrossentropy:GS,mse:d8,MSE:h8,mae:g8,MAE:x8,mape:y8,MAPE:b8,cosine:w8};function H$(r){if(typeof r=="string"&&r in Ry)return Ry[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function og(r){if(to(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let t;for(let e of Object.keys(Qh))if(Qh[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(Ry))if(Ry[e]===r){t=e;break}return t!==void 0?t:r.name}}function K$(r){let t={Adagrad:()=>Ic.adagrad(.01),Adadelta:()=>Ic.adadelta(1,.95,cr()),Adam:()=>Ic.adam(.001,.9,.999,cr()),Adamax:()=>Ic.adamax(.002,.9,.999,cr(),0),RMSProp:()=>Ic.rmsprop(.001,.9,0,cr()),SGD:()=>Ic.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new z(`Unknown Optimizer ${r}`)}function US(r,t,e=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!WS(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function WS(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!="string"||!WS(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!WS(t))return!1;return!0}else return!1;else{let t=typeof r;return t==="string"||t==="number"||t==="boolean"}}function j$(r,t,e,n=console.log){let o=I8(r),s=["Layer (type)","Input Shape","Output shape","Param #"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push("Receives inputs"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n("_".repeat(t)),Py(s,e,n),n("=".repeat(t));let a=r.layers;for(let c=0;c<a.length;++c)o?S8(a[c],e,n):k8(a[c],e,i,n),n((c===a.length-1?"=":"_").repeat(t));r.checkTrainableWeightsConsistency();let u=C8(r),l=Bm(r.nonTrainableWeights);n(`Total params: ${u+l}`),n(`Trainable params: ${u}`),n(`Non-trainable params: ${l}`),n("_".repeat(t))}function C8(r){let t;return r.collectedTrainableWeights!=null?t=Bm(r.collectedTrainableWeights):t=Bm(r.trainableWeights),t}function I8(r){let t=!0,e=[],n=[];for(let o in r.nodesByDepth)e.push(r.nodesByDepth[o]);for(let o of e){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Py(r,t,e=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,t[o]),n+=" ".repeat(t[o]-n.length);e(n)}function S8(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){o="multiple"}try{n=JSON.stringify(r.outputShape)}catch(u){n="multiple"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];Py(a,t,e)}function k8(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){s="multiple"}try{o=JSON.stringify(r.outputShape)}catch(p){o="multiple"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m<p.inboundLayers.length;++m){let f=p.inboundLayers[m].name,d=p.nodeIndices[m],h=p.tensorIndices[m];i.push(`${f}[${d}][${h}]`)}let a=r.name,u=r.getClassName(),l=i.length===0?"":i[0],c=[`${a} (${u})`,s,o,r.countParams().toString(),l];Py(c,t,n);for(let p=1;p<i.length;++p)Py(["","","","",i[p]],t,n)}function X$(r,t,e){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&t===0&&typeof e=="string"}function Mc(r,t){if(r===null)return null;if(typeof r=="string")return ul(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];X$(t,o,s)?e.push(s):e.push(Mc(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")e[n]=o;else{let s=ul(n);e[s]=Mc(o,s)}}return e}}function Ly(r,t){if(r==null)return null;if(typeof r=="string")return To(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];X$(t,o,s)?e.push(s):e.push(Ly(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n],s=To(n);(n==="name"||n==="className")&&typeof o=="string"?e[s]=o:e[s]=Ly(o,n)}return e}}var Xm="3.18.0";var Bn=class extends Vt{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=cu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],_o(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);_o(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,v=b.nodeIndex,k=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(k)}for(let b of this.inputs){let w=b.sourceLayer,v=b.nodeIndex,k=b.tensorIndex;to(v===0,"input layer has >1 nodes"),to(k===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof li))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${t.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,v,k,_,$)=>{(k==null||_==null||$==null)&&(k=b.sourceLayer,_=b.nodeIndex,$=b.tensorIndex);let D=k.inboundNodes[_];if(v.indexOf(D)!==-1)throw new Wr(`The tensor ${b.name} at layer "${k.name}" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(Bn.nodeKey(k,_)),k.id in i||(i[k.id]=Object.keys(i).length),v.indexOf(D)===-1&&v.push(D);let F=D.inboundLayers.length;for(let P=0;P<F;P++){let B=D.inputTensors[P],U=D.inboundLayers[P],q=D.nodeIndices[P],j=D.tensorIndices[P];u(B,w,v,U,q,j)}for(w.push(D);v.indexOf(D)>=0;)v.splice(v.indexOf(D),1);a.push(D)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],v=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,v),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let k=0;k<b.inboundLayers.length;k++){let _=b.inboundLayers[k],$=b.nodeIndices[k],D=_.inboundNodes[$],F=e[D.id]==null?0:e[D.id];e[D.id]=Math.max(w+1,F),n[D.id]=D}}let m={};for(let b in e){let w=e[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Kh);this.layers=[];for(let b of d){let w=f[b];w.sort((v,k)=>{let _=i[v.id],$=i[k.id];return _<$?-1:_>$?1:0});for(let v of w)v instanceof Bn&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Kh);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let v=w.outboundLayer;if(v!=null){for(let k of w.inputTensors)if(h.indexOf(k)===-1)throw new Wr(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${v.name}". The following previous layers were accessed without issue: ${g}`);for(let k of w.outputTensors)h.push(k);g.push(v.name)}}this.nodesByDepth=m;let y=this.layers.map(b=>b.name);for(let b of y){let w=y.filter(v=>v===b).length;if(w!==1)throw new Wr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(y))}this.outboundNodes=[],this.inboundNodes=[],new ml({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0;for(let i of this.layers)for(let a of i.weights){if(n[a.originalName]!=null)throw new z(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,o++}let s=[];for(let i in t){let a=i;if(n[i]==null){let u=i.split("/");a=u.slice(0,-2).concat([u[u.length-1]]).join("/")}if(n[a]!=null)s.push([n[a],t[i]]);else if(e)throw new z(`Provided weight data has no target variable: ${i}`);delete n[a]}if(e){let i=[];for(let a in n)i.push(a);if(i.length>0)throw new z(`${i.length} of ${o} weights are not set: ${i}`)}Vm(s)}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${Xm}`,e.backend="TensorFlow.js",e}toJSON(t,e=!0){let n=Ly(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return V(()=>{t=ve(t);let n=new $o;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],t[o]);return Fc(this.outputs,n,e)})}computeMask(t,e){return V(()=>{t=ve(t);let n;return e==null?n=No(null,t.length):n=ve(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=zm(t);if(e.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;a<e.length;a++){let u=this.inputLayers[a],l=e[a],c=u.name+"_0_0";n[c]=l}let o=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(Kh);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<l.inboundLayers.length;h++){let g=l.inboundLayers[h],y=l.nodeIndices[h],b=l.tensorIndices[h],w=`${g.name}_${y}_${b}`,v=n[w];p.push(v)}let m=c.computeOutputShape(_r(p)),f=zm(m),d=c.inboundNodes.indexOf(l);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],i=[];for(let a=0;a<this.outputLayers.length;a++){let u=this.outputLayers[a],l=this.outputLayersNodeIndices[a],c=this.outputLayersTensorIndices[a],p=`${u.name}_${l}_${c}`;i.push(p)}for(let a=0;a<i.length;a++){let u=i[a];to(u in n),s.push(n[u])}return _r(s)}runInternalGraph(t,e){e==null&&(e=No(null,t.length));let n={};for(let u=0;u<this.inputs.length;++u){let l=this.inputs[u],c=t[u],p=e[u];n[l.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(u=>parseInt(u,10)).sort(Kh);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,y,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[v,k]=d[0];h.mask==null&&(h.mask=k),b=ve(p.call(v,h)),w=ve(p.computeMask(v,k)),g=[v],y=[k]}else g=d.map(v=>v[0]),y=d.map(v=>v[1]),h.mask==null&&(h.mask=y),b=ve(p.call(g,h)),w=ve(p.computeMask(g,y));if(p.activityRegularizer)throw new Nt("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<f.length;++v){let k=f[v],_=b[v],$=w[v];n[k.id]=[_,$]}}}}let s=[],i=[],a=[];for(let u of this.outputs){to(u.id in n,`Could not compute output ${u.name} : ${u.id}`);let[l,c]=n[u.id];a.push(l.shape),s.push(l),i.push(c)}return[s,i,a]}buildNodeConversionMap(t){let e={},n;for(let o of this.layers){n=o instanceof Bn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let i=Bn.nodeKey(o,s);this.containerNodes.has(i)&&(e[i]=n,n+=1)}}return e}getLayer(t,e){if(e!=null){if(this.layers.length<=e)throw new z(`Was asked to retrieve layer at index ${e}, but model only has ${this.layers.length} layer(s).`);return this.layers[e]}else if(t==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===t)return n;throw new z(`No such layer: ${t}`)}calculateLosses(){return V(()=>{let t=[];for(let e of this.layers)for(let n=0;n<e.inboundNodes.length;++n){let o=Bn.nodeKey(e,n);this.containerNodes.has(o)&&t.push(...e.calculateLosses())}return t})}getConfig(){let t={name:this.name},e=this.buildNodeConversionMap(this.layers),n=[];for(let i of this.layers){let a=i.getClassName(),u=i.getConfig(),l=[];for(let p=0;p<i.inboundNodes.length;p++){let m=i.inboundNodes[p],f=Bn.nodeKey(i,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${i.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let y=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],v=Bn.nodeKey(y,b),k=e[v];k==null&&(k=0),h.push([y.name,k,w,d])}l.push(h)}}}let c={};c.name=i.name,c.className=a,c.config=u,c.inboundNodes=l,n.push(c)}t.layers=n;let o=[];for(let i=0;i<this.inputLayers.length;i++){let a=this.inputLayers[i],u=this.inputLayersNodeIndices[i],l=Bn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.inputLayersTensorIndices[i];o.push([a.name,c,p])}t.inputLayers=o;let s=[];for(let i=0;i<this.outputLayers.length;i++){let a=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=Bn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.outputLayersTensorIndices[i];s.push([a.name,c,p])}return t.outputLayers=s,t}static fromConfig(t,e,n={},o=!1){let s={},i={};function a(g,y){g.name in i?i[g.name].push(y):i[g.name]=[y]}function u(g,y){let b=[],w;for(let v of y){let k=v[0],_=v[1],$=v[2];if(w=v[3]==null?{}:v[3],!(k in s)){a(g,y);return}let D=s[k];if(D.inboundNodes.length<=_){a(g,y);return}let F=D.inboundNodes[_];b.push(F.outputTensors[$])}b.length>0&&g.apply(_r(b),w)}function l(g){let y=g.name,b=Cn(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[y]=b,g.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${v}`);a(b,v)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!p$(i);)for(let g of p){let y=s[g.name];if(y.name in i){let b=i[y.name];delete i[y.name];for(let w of b)u(y,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let y=g[0],b=g[1],w=g[2];to(y in s);let k=s[y].inboundNodes[b].outputTensors;m.push(k[w])}let h=e.outputLayers;for(let g of h){let y=g[0],b=g[1],w=g[2];to(y in s);let k=s[y].inboundNodes[b].outputTensors;f.push(k[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function N8(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function zy(r,t){return N8(r,t,"classWeight")}async function By(r,t,e,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(e!=null){let o=V(()=>{if(r.shape.length===1)return Nn(r);if(r.shape.length===2){if(r.shape[1]>1)return Xs(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());_t(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Fe(i,"float32")}else return null}function Y$(r,t){return M(r,t)}var T8=32;function Q$(r,t){let e,n,o=t;e=o.xs,n=o.ys,x.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Z$("input",r.inputNames,e),i=Z$("output",r.outputNames,n),a=s[0].shape[0];x.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),x.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u<s.length;u++)x.assert(s[u].shape[0]===a,()=>`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u<i.length;u++)x.assert(i[u].shape[0]===a,()=>`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function Z$(r,t,e){if(e instanceof zt)return[e];if(Array.isArray(e))return x.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function _8(r){if(r.length===3)throw new Nt("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function tD(r,t,e){let n=e.batchesPerEpoch!=null;if(x.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),x.assert(e!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),x.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),x.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),x.assert(e.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(J$(e.validationData))x.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=_8(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=$y(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=Dy(c,p,e.epochs,null,null,E8(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d<e.epochs;){let g={};await m.onEpochBegin(d);let y=0,b=0;for(n||(h=await t.iterator());!n||y<e.batchesPerEpoch;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${e.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${e.batchesPerEpoch*e.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:v,ys:k}=Q$(r,w.value),_={};_.batch=b,_.size=v[0].shape[0],await m.onBatchBegin(b,_);let $=[];if(e.classWeight!=null){let P=zy(e.classWeight,r.outputNames);for(let B=0;B<P.length;++B)$.push(await By(k[B],null,P[B]))}let D=v.concat(k).concat($),F=a(D);_t(D);for(let P=0;P<u.length;++P){let B=u[P],U=F[P];_[B]=U,Pe(U)}await m.onBatchEnd(b,_),Ty(_),b++,y++}if(n?y>=e.batchesPerEpoch:w.done){if(o){let v;J$(e.validationData)?v=ve(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):v=ve(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?T8:e.validationBatchSize,verbose:0}));for(let k=0;k<r.metricsNames.length;++k)g[`val_${r.metricsNames[k]}`]=v[k]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function E8(r,t){let e=null;return t.batchesPerEpoch!=null?e=t.batchesPerEpoch:Number.isFinite(r.size)&&(e=r.size),e}function J$(r){return typeof r.iterator=="function"}function A8(r){return typeof r.next=="function"}async function eD(r,t,e){e=e||{};let n=e.batches!=null,o=r.testFunction,s=[];if(e.verbose>0)throw new Nt("Verbose mode is not implemented yet.");x.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=A8(t)?t:await t.iterator(),a=0,u=0;for(;!n||u<e.batches;){let l=await i.next();if(s=V(()=>{if(l.value){let{xs:c,ys:p}=Q$(r,l.value),m=c.concat(p),f=V(()=>o(m));if(_t(m),u===0)for(let h=0;h<f.length;++h)s.push(pt(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],y=s[h];s[h]=V(()=>J(s[h],M(d,g))),u>0&&_t(y)}_t(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<s.length;++l){let c=s[l];s[l]=ct(s[l],a),_t(c)}return _r(s)}function Vy(r){x.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Ym(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>cl(n,t,e-t)):cl(r,t,e-t)}function Gy(r,t){return V(()=>r==null?null:Array.isArray(r)?r.map(e=>Gy(e,t)):vy(r,t.dtype==="int32"?t:Z(t,"int32")))}function Wy(r,t){let e=[],n=0,o=null;for(;n<r;)o=n+t,o>=r&&(o=r),e.push([n,o]),n=o;return e}async function $8(r,t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(e,o,f,"steps_per_epoch"),y;g!=null&&(y=Jr(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=Dy(a,i,s,m,g,f,o,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let v=m;v<s;++v){await b.onEpochBegin(v);let k={};if(f!=null)throw new Nt("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Nt("batch shuffling is not implemneted yet");c&&x.shuffle(y);let _=Fe(y),$=Wy(g,o);for(let D=0;D<$.length;++D){let F={};if(await b.onBatchBegin(D,F),V(()=>{let P=$[D][0],B=$[D][1],U=cl(_,P,B-P);F.batch=D,F.size=B-P;let q=Gy(e,U),j=t(q);for(let K=0;K<n.length;++K){let Q=n[K],rt=j[K];F[Q]=rt,Pe(rt)}if(D===$.length-1&&h){let K=r.testLoop(u,l,o);for(let Q=0;Q<n.length;++Q){let rt=n[Q],X=K[Q];Pe(X),k["val_"+rt]=X}}}),await b.onBatchEnd(D,F),Ty(F),r.stopTraining_)break}_.dispose()}if(await b.onEpochEnd(v,k),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function rD(r,t,e,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,i,a,u,l,c,p,m;try{let f=n.batchSize==null?32:n.batchSize;Vy(f);let d=!1,h=await r.standardizeUserData(t,e,n.sampleWeight,n.classWeight,d,f);o=h[0],s=h[1],m=h[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new Nt("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let F=!0,P=await r.standardizeUserData(u,l,null,null,F,f);c=P[0],p=P[1],y=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let F=Math.floor(o[0].shape[0]*(1-n.validationSplit)),P=o[0].shape[0];c=Ym(o,F,P),i=o,o=Ym(o,0,F),p=Ym(s,F,P),a=s,s=Ym(s,0,F),y=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);r.checkTrainableWeightsConsistency();let w=r.makeTrainFunction(),v=r.getDedupedMetricsNames(),k,_;g?(r.makeTestFunction(),k=r.testFunction,_=v.slice().concat(v.map(F=>"val_"+F))):(k=null,y=[],_=v.slice());let $=$y(n.callbacks,n.yieldEvery);return await $8(r,w,b,v,f,n.epochs,n.verbose,$,k,y,n.shuffle,_,n.initialEpoch,null,null)}finally{r.isTraining=!1,Do(o,t),Do(s,e),Do(i,t),Do(a,e),Do(c,u),Do(p,l),m!=null&&_t(m)}}function HS(r){let t=[];r instanceof zt&&(r=[r]);for(let e=0;e<r.length;++e){let n=r[e];if(n.rank===1)t.push(pl(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function Do(r,t){if(r==null)return;let e=[];if(t instanceof zt)e.push(t.id);else if(Array.isArray(t))t.forEach(o=>e.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof zt)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function D8(r){return r instanceof zt}function qS(r){return Array.isArray(r)}function nD(r){return!D8(r)&&!qS(r)}function oD(r,t,e,n=!0,o=""){if(t==null||t.length===0){if(r!=null){let i=!1;if(qS(r)&&r.length>0)i=!0;else if(nD(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(nD(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(r[i])}}else if(qS(r)){if(r=r,r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new z(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=HS(s),e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s). but got array with shape ${a.shape}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c>=0&&l!==c)throw new z(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function F8(r,t,e){let n=_o(r.map(s=>s.shape[0]));n.sort();let o=_o(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!x.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function R8(r,t,e){let n=[Yi,jm,Oc];for(let o=0;o<r.length;++o){let s=r[o],i=t[o],a=e[o];if(i!=null){if(i===Oc&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let u=s.shape.slice(1),l=a.slice(1);for(let c=0;c<u.length;++c){let p=u[c],m=l[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${a}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function sD(r,t,e,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(t.length>1)throw new z(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s), but got array with shape ${JSON.stringify(a.shape)}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c!==l)throw new z(`Error when checking ${o}: expected ${t[i]} to have shape ${JSON.stringify(e[i])} but got array with shape ${JSON.stringify(a.shape)}.`)}}}function O8(r,t){if(r==null||Array.isArray(r)&&r.length===0)return t.map(n=>[]);let e;if(typeof r=="string"||typeof r=="function")e=[r];else if(Array.isArray(r)||typeof r=="object")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var M8="layers-model",Vn=class extends Bn{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");j$(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer=="string")this.optimizer_=K$(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof Vr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!="string"&&typeof t.loss!="function"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new z(`Unknown entry in loss dictionary: "${i}". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output "${i}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(Fy(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>Fy(a))}else{let i=Fy(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i<this.outputs.length;++i){let a=this.internalOutputShapes[i],u=this.outputNames[i];this.feedOutputNames.push(u),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[i])}let n=[];this.metrics=t.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ii("loss",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=this.lossFunctions[i];this.outputs.length>1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+"_loss"))}});let o=O8(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};ii("metric",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=o[i];(l=>{let c="",p,m,f;for(let d of l){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===jm?["accuracy","acc"].indexOf(d)!==-1?m=eg:["crossentropy","ce"].indexOf(d)!==-1&&(m=Oy):this.lossFunctions[i]===Km?["accuracy","acc"].indexOf(d)!==-1?m=My:["crossentropy","ce"].indexOf(d)!==-1&&(m=GS):["accuracy","acc"].indexOf(d)!==-1?m=rg:["crossentropy","ce"].indexOf(d)!==-1&&(m=ng);let y;["accuracy","acc"].indexOf(d)!==-1?y="acc":["crossentropy","ce"].indexOf(d)!==-1&&(y="ce"),f=m,p=c+y}else f=H$(d),p=c+og(d);let h;ii(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;Vy(o);let s=!0,i=this.standardizeUserDataXY(t,e,s,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return _r(l)}finally{Do(i[0],t),Do(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),eD(this,t,e)}checkNumSamples(t,e,n,o="steps"){let s;if(n!=null){if(s=null,e!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new $o;if(t instanceof zt&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new z(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;u<this.inputs.length;++u)i.add(this.inputs[u],t[u])}else for(let u of this.inputs){let l=t[u.name];if(l==null)throw new z(`No value is provided for the model's input ${u.name}`);i.add(u,l)}let a=Fc(s,i);return n?a:a[0]}retrieveSymbolicTensors(t){let e=No(null,t.length),n=t.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],i=s.map(a=>a.name);for(let a=0;a<t.length;++a){let u=i.indexOf(t[a]);if(u!==-1&&(e[a]=s[u],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return V(()=>{let o=this.checkNumSamples(t);if(n)throw new Nt("Verbose predictLoop() is not implemented yet.");let s=Wy(o,e),i=this.outputs.map(a=>[]);for(let a=0;a<s.length;++a)V(()=>{let l=s[a][0],c=s[a][1],p=Ym(t,l,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new $o(m);return Fc(this.outputs,f)}).forEach((l,c)=>i[c].push(l));return _r(i.map(a=>se(a,0)))})}predict(t,e={}){let n=HS(t);sD(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return Vy(o),this.predictLoop(n,o)}finally{Do(n,t)}}predictOnBatch(t){sD(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new Wr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let i=0;i<this.feedOutputShapes.length;++i){let a=this.feedOutputShapes[i];this.feedLossFns[i]===Km?s.push(a.slice(0,a.length-1).concat([1])):s.push(a)}if(t=oD(t,this.feedInputNames,this.feedInputShapes,!1,"input"),e=oD(e,this.feedOutputNames,s,!1,"target"),F8(t,e,null),R8(e,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&t[0].shape[0]%o!==0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(o!=null){let c=zy(o,this.outputNames);l=[];for(let p=0;p<c.length;++p)l.push(await By(u[p],null,c[p]))}return[a,u,l]}testLoop(t,e,n,o=0,s){return V(()=>{let i=this.checkNumSamples(e,n,s,"steps"),a=[];if(o>0)throw new Nt("Verbose mode is not implemented yet.");if(s!=null)throw new Nt("steps mode in testLoop() is not implemented yet");{let u=Wy(i,n),l=Fe(Jr(0,i));for(let c=0;c<u.length;++c){let p=u[c][0],m=u[c][1],f=cl(l,p,m-p),d=Gy(e,f),h=t(d);if(c===0)for(let g=0;g<h.length;++g)a.push(pt(0));for(let g=0;g<h.length;++g){let y=h[g];a[g]=J(a[g],M(m-p,y))}}for(let c=0;c<a.length;++c)a[c]=ct(a[c],i)}return a})}getDedupedMetricsNames(){let t=this.metricsNames,e=[];for(let n=0;n<t.length;++n){let o=t[n],s=o;DS(t,o)>1&&(s+=`_${DS(t.slice(0,n),o)}`),e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new $o(p),f=Fc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let y=this.lossFunctions[h](o[h],f[h]);s[h]!=null&&(y=Y$(y,s[h]));let b=be(y);e.push(b),h===0?d=y:d=J(d,y)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=e[h];else{let y=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=be(y(o[b],f[b]))}Pe(g),i.push(g)}return d=be(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read()),l=!0;return[this.optimizer_.minimize(a,l,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>V(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l<this.inputs.length;++l)i.push({key:this.inputs[l],value:o[l]});let a=new $o(i),u=Fc(this.outputs,a);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],p=be(c(s[l],u[l]));l===0?n=p:n=J(n,p),e.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],p=this.metricsTensors[l][1],m=be(c(s[p],u[p]));e.push(m)}return e})}async fit(t,e,n={}){return rD(this,t,e,n)}async fitDataset(t,e){return tD(this,t,e)}async trainOnBatch(t,e){let n=await this.standardizeUserData(t,e),o=n[0],s=n[1],a=this.makeTrainFunction()(o.concat(s)),u=[];for(let l of a){let c=await l.data();u.push(c[0])}return _t(a),Do(n[0],t),Do(n[1],e),_r(u)}getNamedWeights(t){let e=[],n=t!=null&&t.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let i=0;i<o.length;++i)n&&!o[i].trainable||e.push({name:o[i].originalName,tensor:s[i]});return e}set stopTraining(t){this.stopTraining_=t}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(t){this.optimizer_!==t&&(this.optimizer_=t,this.isOptimizerOwned=!1)}dispose(){let t=super.dispose();if(t.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let e=ih().numTensors;this.optimizer_.dispose(),t.numDisposedVariables+=e-ih().numTensors}return t}getLossIdentifiers(){let t;if(typeof this.loss=="string")t=To(this.loss);else if(Array.isArray(this.loss)){for(let e of this.loss)if(typeof e!="string")throw new Error("Serialization of non-string loss is not supported.");t=this.loss.map(e=>To(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]=="string")t[o]=To(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return t}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[To(og(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>To(og(t)));{let t={};for(let e in this.metrics)t[e]=To(og(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(t.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(t.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let e=Mc(t.optimizer_config),n=Cn(e),o;if(typeof t.loss=="string")o=ul(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>ul(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=ul(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>ul(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=ul(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t=="string"){let l=Mr.getSaveHandlers(t);if(l.length===0)throw new z(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new z(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Mr.encodeWeights(this.getNamedWeights(e)),o=!1,s=null,a={modelTopology:this.toJSON(s,o),format:M8,generatedBy:`TensorFlow.js tfjs-layers v${Xm}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:p}=await Mr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=Mr.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(US(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){US(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};Vn.className="Model";et.registerClass(Vn);var Uy=class extends Vn{};Uy.className="Functional";et.registerClass(Uy);async function iD(r,t){"modelTopology"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=Mc(e),o=Cn(n,t);if(r.weightsManifest!=null){let s=await Mr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),_t(s)}return o}async function aD(r,t){if(t==null&&(t={}),typeof r=="string"){let e=Mr.getLoadHandlers(r,t);if(e.length===0)e.push(Mr.browserHTTPRequest(r,t));else if(e.length>1)throw new z(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return P8(r,void 0,t)}async function P8(r,t,e){if(e==null&&(e={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=Cn(Mc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=L8(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),_t(l),_t(c.map(p=>p.tensor))}return a}function L8(r,t){let e=Mr.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var Zi=class extends Vn{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:cu("sequential_"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof Zi||t instanceof Vn,n;if(e){if(n=t,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=Sy({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+"_input"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=LS(this.outputs[0])}this.inboundNodes=[],new ml({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:No(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(te(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Vn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new Wr("The model needs to be compiled before being used.");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new Wr("The model needs to be compiled before being used.");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new Wr("The model needs to be compiled before being used.");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new Wr("The model needs to be compiled before being used.");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=e}else x.assert(e.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof Zi))throw new Nt(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=Cn(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};Zi.className="Sequential";et.registerClass(Zi);function z8(r){return new Vn(r)}function B8(r){return new Zi(r)}function V8(r,t){return t==null&&(t={}),aD(r,t)}function KS(r){return Sy(r)}function G8(r,t){vn.registerCallbackConstructor(r,t)}var tn=class extends et.Serializable{getConfig(){return{}}},Hy=class extends tn{apply(t,e=1){return N$(t,e)}};Hy.className="elu";et.registerClass(Hy);var qy=class extends tn{apply(t){return fc(t)}};qy.className="selu";et.registerClass(qy);var Ky=class extends tn{apply(t){return Tr(t)}};Ky.className="relu";et.registerClass(Ky);var jy=class extends tn{apply(t){return V(()=>ei(6,Tr(t)))}};jy.className="relu6";et.registerClass(jy);var Xy=class extends tn{apply(t){return t}};Xy.className="linear";et.registerClass(Xy);var Yy=class extends tn{apply(t){return Lr(t)}};Yy.className="sigmoid";et.registerClass(Yy);var Zy=class extends tn{apply(t){return _$(t)}};Zy.className="hardSigmoid";et.registerClass(Zy);var Jy=class extends tn{apply(t){return vo(t)}};Jy.className="softplus";et.registerClass(Jy);var Qy=class extends tn{apply(t){return T$(t)}};Qy.className="softsign";et.registerClass(Qy);var tb=class extends tn{apply(t){return Ys(t)}};tb.className="tanh";et.registerClass(tb);var Zm=class extends tn{apply(t,e=-1){return il(t,e)}};Zm.className="softmax";et.registerClass(Zm);var eb=class extends tn{apply(t,e=-1){return sc(t,e)}};eb.className="logSoftmax";et.registerClass(eb);var rb=class extends tn{apply(t,e=1){return V(()=>M(Lr(M(t,e)),t))}};rb.className="swish";et.registerClass(rb);var nb=class extends tn{apply(t){return V(()=>M(t,Ys(vo(t))))}};nb.className="mish";et.registerClass(nb);function ui(r){return r.getClassName()}function jS(r,t={}){return Ki(r,et.SerializationMap.getMap().classNameMap,t,"activation")}function ci(r){if(r==null){let t={};return t.className="linear",t.config={},jS(t)}if(typeof r=="string"){let t={};return t.className=r,t.config={},jS(t)}else return r instanceof tn?r:jS(r)}function XS(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var ob=class extends et.Serializable{},du=class extends ob{constructor(t){super(),XS(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return V(()=>{let e=we([1]);return this.hasL1&&(e=J(e,mt(M(this.l1,Te(t))))),this.hasL2&&(e=J(e,mt(M(this.l2,Nc(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};du.className="L1L2";et.registerClass(du);function cD(r){return XS(r),new du({l1:r!=null?r.l1:null,l2:0})}function pD(r){return XS(r),new du({l2:r!=null?r.l2:null,l1:0})}var lD={l1l2:"L1L2"};function me(r){return _m(r)}function uD(r,t={}){return Ki(r,et.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ie(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in lD?lD[r]:r,config:{}};return uD(e)}else return r instanceof ob?r:uD(r)}var Jm=class extends Vt{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=Pt(t);let n=Tr(t);return this.maxValue!=null&&(n=br(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};Jm.className="ReLU";et.registerClass(Jm);var Qm=class extends Vt{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Pt(t);return Qa(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};Qm.className="LeakyReLU";et.registerClass(Qm);var tf=class extends Vt{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER="zeros",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=he(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ie(t.alphaRegularizer),this.alphaConstraint=Ue(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes=="number")this.sharedAxes=[t.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=te(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight("alpha",e,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<t.length;++o)n[o]=t[o];this.inputSpec=[new Ce({ndim:t.length,axes:n})],this.built=!0}call(t,e){return t=Pt(t),ol(t,this.alpha.read())}getConfig(){let t={alphaInitializer:Ae(this.alphaInitializer),alphaRegularizer:me(this.alphaRegularizer),alphaConstraint:We(this.alphaConstraint),sharedAxes:this.sharedAxes},e=super.getConfig();return Object.assign(t,e),t}};tf.className="PReLU";et.registerClass(tf);var ef=class extends Vt{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA=1,t==null&&(t={}),t.alpha!=null&&t.alpha!==this.DEFAULT_ALPHA)throw new Nt(`Non-default alpha value (${t.alpha}) is not supported by the ELU layer yet.`);this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Pt(t);return Js(n)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};ef.className="ELU";et.registerClass(ef);var rf=class extends Vt{constructor(t){super(t==null?{}:t),this.DEFAULT_THETA=1,t==null&&(t={}),this.theta=t.theta==null?this.DEFAULT_THETA:t.theta}call(t,e){let n=Pt(t);return M(n,Z(Ge(n,this.theta),"float32"))}computeOutputShape(t){return t}getConfig(){let t={theta:this.theta},e=super.getConfig();return Object.assign(t,e),t}};rf.className="ThresholdedReLU";et.registerClass(rf);var nf=class extends Vt{constructor(t){super(t==null?{}:t),this.DEFAULT_AXIS=1,t==null&&(t={}),this.softmax=new Zm().apply,this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis}call(t,e){let n=Pt(t);return this.softmax(n,this.axis)}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};nf.className="Softmax";et.registerClass(nf);function hu(r,t,e){if(typeof r=="number")return No(r,t);if(r.length!==t)throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n<t;++n){let o=r[n];if(!C$(o))throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function $n(r,t,e,n,o=1){if(r==null)return r;let s=t+(t-1)*(o-1),i;return e==="same"?i=r:i=r-s+1,Math.floor((i+n-1)/n)}function pi(r,t,e,n){if(r==null)return null;if(n==="valid")r=r*t+ai([e-t,0]);else if(n==="same")r=r*t;else throw new z(`Unsupport padding mode: ${n}.`);return r}function sg(r,t){return V(()=>(Le(t),t==="channelsFirst"?Mt(r,[0,2,3,1]):r))}function YS(r,t){return V(()=>(Le(t),t==="channelsFirst"?Mt(r,[0,2,3,4,1]):r))}function U8(r,t,e,n=1,o="valid",s,i=1){return V(()=>{if(s==null&&(s=xn()),Le(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(r=Mt(r,[0,2,1])),o==="causal")throw new Nt("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let a=tc(r,t,n,o==="same"?"same":"valid","NWC",i);return e!=null&&(a=yn(a,e)),a})}function mD(r,t,e,n=[1,1],o="valid",s,i,a=null){return V(()=>{if(s==null&&(s=xn()),Le(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=sg(r,s);if(o==="causal")throw new Nt("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=Io.conv2d({x:u,filter:t,strides:n,pad:o==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:e,activation:a}),s==="channelsFirst"&&(u=Mt(u,[0,3,1,2])),u})}function H8(r,t,e,n=[1,1,1],o="valid",s,i){return V(()=>{if(s==null&&(s=xn()),Le(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=YS(r,s);if(o==="causal")throw new Nt("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return a=wh(a,t,n,o==="same"?"same":"valid","NDHWC",i),e!=null&&(a=yn(a,e)),s==="channelsFirst"&&(a=Mt(a,[0,4,1,2,3])),a})}var Pc=class extends Vt{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Pc.verifyArgs(e),this.rank=t,tr(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Nt(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=hu(e.kernelSize,t,"kernelSize"),this.strides=hu(e.strides==null?1:e.strides,t,"strides"),this.padding=e.padding==null?"valid":e.padding,gn(this.padding),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Le(this.dataFormat),this.activation=ci(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=he(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ue(e.biasConstraint),this.biasRegularizer=Ie(e.biasRegularizer),this.activityRegularizer=Ie(e.activityRegularizer),this.dilationRate=hu(e.dilationRate==null?1:e.dilationRate,t,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(to("kernelSize"in t,"required key 'kernelSize' not in config"),typeof t.kernelSize!="number"&&!fy(t.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ui(this.activation),useBias:this.useBias,biasInitializer:Ae(this.biasInitializer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),biasConstraint:We(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},gu=class extends Pc{constructor(t,e){super(t,e),this.kernel=null,gu.verifyArgs(e),this.filters=e.filters,tr(this.filters,"filters"),this.kernelInitializer=he(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ue(e.kernelConstraint),this.kernelRegularizer=Ie(e.kernelRegularizer)}build(t){t=te(t);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return V(()=>{t=Pt(t);let n,o=this.bias==null?null:this.bias.read(),s=dy(this.activation.getClassName());if(s!=null&&this.rank===2)n=mD(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=U8(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=mD(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=H8(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Nt("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=te(t);let e=[],n=this.dataFormat==="channelsLast"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s<n.length;++s){let i=$n(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);e.push(i)}let o=[t[0]];return this.dataFormat==="channelsLast"?(o=o.concat(e),o.push(this.filters)):(o.push(this.filters),o=o.concat(e)),o}getConfig(){let t={filters:this.filters,kernelInitializer:Ae(this.kernelInitializer),kernelRegularizer:me(this.kernelRegularizer),kernelConstraint:We(this.kernelConstraint)},e=super.getConfig();return Object.assign(t,e),t}static verifyArgs(t){if(!("filters"in t)||typeof t.filters!="number"||t.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(t.filters)}`)}},dl=class extends gu{constructor(t){super(2,t),dl.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!fy(t.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};dl.className="Conv2D";et.registerClass(dl);var hl=class extends gu{constructor(t){super(3,t),hl.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};hl.className="Conv3D";et.registerClass(hl);var of=class extends dl{constructor(t){if(super(t),this.inputSpec=[new Ce({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=te(t),t.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ce({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return V(()=>{let n=Pt(t);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat==="channelsFirst"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=pi(u,m,c,this.padding),h=pi(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Mt(n,[0,2,3,1]));let y=ec(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(y=Mt(y,[0,3,1,2])),this.bias!=null&&(y=yn(y,this.bias.read(),this.dataFormat)),this.activation!=null&&(y=this.activation.apply(y)),y})}computeOutputShape(t){t=te(t);let e=t.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=pi(e[o],u,i,this.padding),e[s]=pi(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};of.className="Conv2DTranspose";et.registerClass(of);var sf=class extends hl{constructor(t){if(super(t),this.inputSpec=[new Ce({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=te(t),t.length!==5)throw new z("Input should have rank 5; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ce({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return V(()=>{let n=Pt(t);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat==="channelsFirst"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],y=this.strides[2],b=pi(l,h,m,this.padding),w=pi(c,g,f,this.padding),v=pi(p,y,d,this.padding),k=[s,b,w,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Mt(n,[0,2,3,4,1]));let _=jI(n,this.kernel.read(),k,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(_=Mt(_,[0,4,1,2,3])),this.bias!==null&&(_=yn(_,this.bias.read(),this.dataFormat)),this.activation!==null&&(_=this.activation.apply(_)),_})}computeOutputShape(t){t=te(t);let e=t.slice(),n,o,s,i;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=pi(e[o],c,a,this.padding),e[s]=pi(e[s],p,u,this.padding),e[i]=pi(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};sf.className="Conv3DTranspose";et.registerClass(sf);var sb=class extends gu{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(e.padding!=null&&e.padding!=="same"&&e.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=he(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ie(e.depthwiseRegularizer),this.depthwiseConstraint=Ue(e.depthwiseConstraint),this.pointwiseInitializer=he(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ie(e.pointwiseRegularizer),this.pointwiseConstraint=Ue(e.pointwiseConstraint)}build(t){if(t=te(t),t.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(t)}`);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(t[e])}`);let n=t[e],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let a=0;a<this.rank;++a)s.push(1);s.push(n*this.depthMultiplier,this.filters);let i=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,i,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,i,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,i,this.biasConstraint):this.bias=null,this.inputSpec=[new Ce({ndim:this.rank+2,axes:{[e]:n}})],this.built=!0}call(t,e){return V(()=>{t=Pt(t);let n;if(this.rank===1)throw new Nt("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(t=Mt(t,[0,2,3,1])),n=Oh(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Mt(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=Ae(this.depthwiseInitializer),t.pointwiseInitializer=Ae(this.pointwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.pointwiseRegularizer=me(this.pointwiseRegularizer),t.depthwiseConstraint=We(this.depthwiseConstraint),t.pointwiseConstraint=We(this.pointwiseConstraint),t}};sb.className="SeparableConv";var af=class extends sb{constructor(t){super(2,t)}};af.className="SeparableConv2D";et.registerClass(af);var xu=class extends gu{constructor(t){super(1,t),xu.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!fy(t.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};xu.className="Conv1D";et.registerClass(xu);var lf=class extends Vt{constructor(t){super(t),typeof t.cropping=="number"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]=="number"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?"channelsLast":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat==="channelsFirst"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return V(()=>{if(t=Pt(t),this.dataFormat==="channelsLast"){let n=Xh(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Xh(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Xh(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Xh(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};lf.className="Cropping2D";et.registerClass(lf);var uf=class extends Vt{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),this.interpolation=t.interpolation==null?"nearest":t.interpolation,w$(this.interpolation)}computeOutputShape(t){if(this.dataFormat==="channelsFirst"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return V(()=>{let n=Pt(t),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Mt(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation==="nearest"?hn.resizeNearestNeighbor(n,[s,i]):hn.resizeBilinear(n,[s,i]);return Mt(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation==="nearest"?hn.resizeNearestNeighbor(n,[s,i]):hn.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};uf.className="UpSampling2D";et.registerClass(uf);function q8(r,t,e=[1,1],n="valid",o,s){return V(()=>{o==null&&(o=xn()),Le(o);let i=sg(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Zs(i,t,e,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(i=Mt(i,[0,3,1,2])),i})}var cf=class extends Pc{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=he(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ue(t.depthwiseConstraint),this.depthwiseRegularizer=Ie(t.depthwiseRegularizer)}build(t){if(t=te(t),t.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat==="channelsFirst"?1:3;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return V(()=>{t=Pt(t);let n=q8(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=te(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=$n(e,this.kernelSize[0],this.padding,this.strides[0]),i=$n(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=Ae(this.depthwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.depthwiseConstraint=We(this.depthwiseRegularizer),t}};cf.className="DepthwiseConv2D";et.registerClass(cf);function ZS(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function JS(r,t,e,n=!1,o,s,i=!1,a=!1){return V(()=>{let u=t.shape.length;if(u<3)throw new z(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(Jr(2,u));if(t=Mt(t,l),s!=null)throw new Nt("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=Z(Z(o,"bool"),"float32"),o.rank===u-1&&(o=fr(o,-1)),o=Mt(o,l)),n&&(t=ir(t,0),o!=null&&(o=ir(o,0)));let c=[],p,m=e,f=t.shape[0],d=vr(t),h;o!=null&&(h=vr(o));for(let y=0;y<f;++y){let b=d[y],w=V(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let v=V(()=>{let k=h[y],_=lt(dr(k),k),$=J(M(w[0],k),M(m[0],_)),D=m.map((F,P)=>J(M(w[1][P],k),M(F,_)));return{output:$,newStates:D}});p=v.output,m=v.newStates}a&&c.push(p)}let g;return a&&(g=Ze(c,1)),[p,g,m]})}var Dn=class extends Vt{constructor(t){super(t);let e;if(t.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(t.cell)?e=new Bc({cells:t.cell}):e=t.cell,e.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new Ce({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Jr(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){Iy(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return V(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;n<t;++n)e.push(null);return e}else return this.states_}set states(t){this.states_=t}build(t){if(this.numConstants!=null)throw new Nt("Constants support is not implemented in RNN yet.");Iy(t)&&(t=t[0]),t=t;let n=this.stateful?t[0]:null,o=t.slice(2);this.inputSpec[0]=new Ce({shape:[n,null,...o]});let s=[t[0]].concat(t.slice(2));this.cell.build(s);let i;if(Array.isArray(this.cell.stateSize)?i=this.cell.stateSize:i=[this.cell.stateSize],this.stateSpec!=null){if(!x.arraysEqual(this.stateSpec.map(a=>a.shape[a.shape.length-1]),i))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new Ce({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){V(()=>{if(!this.stateful)throw new An("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>we([n,o])):this.states_=[we([n,this.cell.stateSize])];else if(t==null)_t(this.states_),this.keptStates!=null&&(_t(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>we([n,o])):this.states_[0]=we([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):_t(this.states_);for(let o=0;o<this.states_.length;++o){let s=t[o],i=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,a=[n,i];if(!x.arraysEqual(s.shape,a))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>Pe(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=ZS(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ce({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof Qr){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return V(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=Pt(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new z(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let a={training:o},l=JS((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return V(()=>{let e=we(t.shape);return e=mt(e,[1,2]),e=pl(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?wy(e,[1,n]):e):this.cell.stateSize>1?[wy(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Dn.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,t,e)}static fromConfig(t,e,n={}){let o=e.cell,s=Cn(o,n);return new t(Object.assign(e,{cell:s}))}};Dn.className="RNN";et.registerClass(Dn);var gl=class extends Vt{},Lc=class extends gl{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,tr(this.units,"units"),this.activation=ci(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ie(t.kernelRegularizer),this.recurrentRegularizer=Ie(t.recurrentRegularizer),this.biasRegularizer=Ie(t.biasRegularizer),this.kernelConstraint=Ue(t.kernelConstraint),this.recurrentConstraint=Ue(t.recurrentConstraint),this.biasConstraint=Ue(t.biasConstraint),this.dropout=Sc([1,ai([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Sc([1,ai([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=te(t),this.kernel=this.addWeight("kernel",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return V(()=>{if(t=t,t.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=yl({ones:()=>dr(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=yl({ones:()=>dr(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=Ao(M(t,i),this.kernel.read()):s=Ao(t,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),a!=null&&(n=M(n,a));let u=J(s,Ao(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:ui(this.activation),useBias:this.useBias,kernelInitializer:Ae(this.kernelInitializer),recurrentInitializer:Ae(this.recurrentInitializer),biasInitializer:Ae(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:We(this.kernelConstraint),recurrentConstraint:We(this.recurrentConstraint),biasConstraint:We(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},t,e)}};Lc.className="SimpleRNNCell";et.registerClass(Lc);var pf=class extends Dn{constructor(t){t.cell=new Lc(t),super(t)}call(t,e){return V(()=>{this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};pf.className="SimpleRNN";et.registerClass(pf);var zc=class extends gl{constructor(t){if(super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=t.units,tr(this.units,"units"),this.activation=ci(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=ci(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ie(t.kernelRegularizer),this.recurrentRegularizer=Ie(t.recurrentRegularizer),this.biasRegularizer=Ie(t.biasRegularizer),this.kernelConstraint=Ue(t.kernelConstraint),this.recurrentConstraint=Ue(t.recurrentConstraint),this.biasConstraint=Ue(t.biasConstraint),this.dropout=Sc([1,ai([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Sc([1,ai([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=te(t);let e=t[t.length-1];this.kernel=this.addWeight("kernel",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return V(()=>{if(t=t,t.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=yl({ones:()=>dr(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=yl({ones:()=>dr(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0<this.dropout&&this.dropout<1&&(t=M(t,s[0]));let c=Ao(t,this.kernel.read());this.useBias&&(c=yn(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=M(o,i[0]));let p=this.recurrentKernel.read(),[m,f]=ur(p,[2*this.units,this.units],p.rank-1),d=Ao(o,m),[h,g,y]=ur(c,3,c.rank-1),[b,w]=ur(d,2,d.rank-1);a=this.recurrentActivation.apply(J(h,b)),u=this.recurrentActivation.apply(J(g,w));let v=Ao(M(u,o),f);l=this.activation.apply(J(y,v));let k=J(M(a,o),M(J(1,qt(a)),l));return[k,k]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:ui(this.activation),recurrentActivation:ui(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ae(this.kernelInitializer),recurrentInitializer:Ae(this.recurrentInitializer),biasInitializer:Ae(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:We(this.kernelConstraint),recurrentConstraint:We(this.recurrentConstraint),biasConstraint:We(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},t,e)}};zc.className="GRUCell";et.registerClass(zc);var mf=class extends Dn{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new zc(t),super(t)}call(t,e){return V(()=>{this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};mf.className="GRU";et.registerClass(mf);var xl=class extends gl{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,tr(this.units,"units"),this.activation=ci(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=ci(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=Ie(t.kernelRegularizer),this.recurrentRegularizer=Ie(t.recurrentRegularizer),this.biasRegularizer=Ie(t.biasRegularizer),this.kernelConstraint=Ue(t.kernelConstraint),this.recurrentConstraint=Ue(t.recurrentConstraint),this.biasConstraint=Ue(t.biasConstraint),this.dropout=Sc([1,ai([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Sc([1,ai([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=te(t);let n=t[t.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends wn{apply(u,l){let c=s.apply([i]),p=new mu().apply([i]),m=s.apply([i*2]);return PS(PS(c,p),m)}},e.className="CustomInit",e)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return V(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=yl({ones:()=>dr(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=yl({ones:()=>dr(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0<this.dropout&&this.dropout<1&&(t=M(t,i[0]));let m=Ao(t,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=M(o,a[0])),m=J(m,Ao(o,this.recurrentKernel.read())),this.useBias&&(m=yn(m,this.bias.read()));let[f,d,h,g]=ur(m,4,m.rank-1);u=this.recurrentActivation.apply(f),l=this.recurrentActivation.apply(d),c=J(M(l,s),M(u,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let y=M(p,this.activation.apply(c));return[y,y,c]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:ui(this.activation),recurrentActivation:ui(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ae(this.kernelInitializer),recurrentInitializer:Ae(this.recurrentInitializer),biasInitializer:Ae(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:We(this.kernelConstraint),recurrentConstraint:We(this.recurrentConstraint),biasConstraint:We(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},t,e)}};xl.className="LSTMCell";et.registerClass(xl);var ff=class extends Dn{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new xl(t),super(t)}call(t,e){return V(()=>{this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};ff.className="LSTM";et.registerClass(ff);var Bc=class extends gl{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return V(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a<this.cells.length;++a){let u=this.cells[a];n=o[a],a===0?i=[t[0]].concat(n):i=[i[0]].concat(n),i=u.call(i,e),s.push(i.slice(1))}n=[];for(let a of s.slice().reverse())n.push(...a);return[i[0]].concat(n)})}build(t){Iy(t)&&(t=t[0]),t=t;let e;this.cells.forEach((n,o)=>{ii(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign({},t,o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(Cn(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return Zh(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;i<n.weights.length;++i)e.push([n.weights[i],s[i]])}Vm(e)}};Bc.className="StackedRNNCells";et.registerClass(Bc);function yl(r){let{ones:t,rate:e,training:n=!1,count:o=1,dropoutFunc:s}=r,i=()=>s!=null?s(t(),e):Cy(t(),e),a=()=>pu(i,t,n);return!o||o<=1?Pe(a().clone()):Array(o).fill(void 0).map(a).map(l=>Pe(l.clone()))}var K8=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)t.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(e[n[o]]=r[n[o]]);return e};var ib=class extends Dn{constructor(t){if(t.unroll)throw new Nt("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(t.cell))throw new Nt("It is not possible at the moment to stack convolutional cells.");super(t),this.inputSpec=[new Ce({ndim:5})]}call(t,e){return V(()=>{if(this.cell.dropoutMask!=null&&(_t(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_t(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new z("ConvRNN2D cell does not support constants");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return V(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=we(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){V(()=>{if(!this.stateful)throw new An("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>we(s)):this.states_=[we(s)];else if(t==null)_t(this.states_),this.keptStates!=null&&(_t(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>we(s)):this.states_[0]=we(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):_t(this.states_);for(let a=0;a<this.states_.length;++a){let u=t[a],l=s;if(!x.arraysEqual(u.shape,l))throw new z(`State ${a} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${u.shape}`);this.states_[a]=u}}this.states_=this.states_.map(a=>Pe(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e==="channelsFirst",l=t[u?3:2],c=t[u?4:3],p=$n(l,o[0],s,i[0],a[0]),m=$n(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};ib.className="ConvRNN2D";var Vc=class extends xl{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign({},t,{units:e})),this.filters=e,tr(this.filters,"filters"),this.kernelSize=hu(n,2,"kernelSize"),this.kernelSize.forEach(u=>tr(u,"kernelSize")),this.strides=hu(o||1,2,"strides"),this.strides.forEach(u=>tr(u,"strides")),this.padding=s||"valid",gn(this.padding),this.dataFormat=i||"channelsLast",Le(this.dataFormat),this.dilationRate=hu(a||1,2,"dilationRate"),this.dilationRate.forEach(u=>tr(u,"dilationRate"))}build(t){var e;t=te(t);let n=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends wn{apply(m,f){let d=l.apply([c]),h=lr([c]),g=l.apply([c*2]);return Am([d,h,g])}},e.className="CustomInit",e)}else u=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return V(()=>{if(t.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=yl({ones:()=>dr(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(st,it,ft)=>!it||!it[ft]?st:M(it[ft],st),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=yl({ones:()=>dr(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),y=l(s,d,2),b=l(s,d,3),w=3,[v,k,_,$]=ur(this.kernel.read(),a,w),[D,F,P,B]=this.useBias?ur(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,v,D,this.padding),p=this.inputConv(p,k,F,this.padding),m=this.inputConv(m,_,P,this.padding),f=this.inputConv(f,$,B,this.padding);let[U,q,j,K]=ur(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,U),g=this.recurrentConv(g,q),y=this.recurrentConv(y,j),b=this.recurrentConv(b,K);let Q=this.recurrentActivation.apply(J(c,h)),rt=this.recurrentActivation.apply(J(p,g)),X=J(M(rt,i),M(Q,this.activation.apply(J(m,y)))),nt=M(this.recurrentActivation.apply(J(f,b)),this.activation.apply(X));return[nt,nt,X]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=K8(t,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,o)}inputConv(t,e,n,o){let s=mn(t,e,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?yn(s,n,this.dataFormat):s}recurrentConv(t,e){return mn(t,e,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Vc.className="ConvLSTM2DCell";et.registerClass(Vc);var df=class extends ib{constructor(t){let e=new Vc(t);super(Object.assign({},t,{cell:e}))}static fromConfig(t,e){return new t(e)}};df.className="ConvLSTM2D";et.registerClass(df);var Gc=class extends Vt{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?e[o]:this.noiseShape[o]);return n}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t);if(0<this.rate&&this.rate<1){let o=e.training==null?!1:e.training,s=this.getNoiseShape(n);return pu(()=>Cy(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};Gc.className="Dropout";et.registerClass(Gc);var hf=class extends Gc{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};hf.className="SpatialDropout1D";et.registerClass(hf);var gf=class extends Vt{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,tr(this.units,"units"),this.activation=ci(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ue(t.kernelConstraint),this.biasConstraint=Ue(t.biasConstraint),this.kernelRegularizer=Ie(t.kernelRegularizer),this.biasRegularizer=Ie(t.biasRegularizer),this.activityRegularizer=Ie(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=te(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=te(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t),o=dy(this.activation.getClassName()),s;return o!=null?s=Ao(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=Ao(n,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:ui(this.activation),useBias:this.useBias,kernelInitializer:Ae(this.kernelInitializer),biasInitializer:Ae(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:We(this.kernelConstraint),biasConstraint:We(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};gf.className="Dense";et.registerClass(gf);var xf=class extends Vt{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=te(t);for(let e of t.slice(1))if(e==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[t[0],Eo(t,1)]}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=Mt(n,o)}return k$(n)})}getConfig(){let t={};this.dataFormat!=null&&(t.dataFormat=this.dataFormat);let e=super.getConfig();return Object.assign(t,e),t}};xf.className="Flatten";et.registerClass(xf);var yf=class extends Vt{constructor(t){super(t),this.supportsMasking=!0,this.activation=ci(t.activation)}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t);return this.activation.apply(n)})}getConfig(){let t={activation:ui(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};yf.className="Activation";et.registerClass(yf);var bf=class extends Vt{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return V(()=>(t=Pt(t),I$(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};bf.className="RepeatVector";et.registerClass(bf);var wf=class extends Vt{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e<this.targetShape.length;++e)this.isUnknown(this.targetShape[e])&&(this.targetShape[e]=null)}isUnknown(t){return t<0||t==null}fixUnknownDimension(t,e){let n="Total size of new array must be unchanged.",o=e.slice(),s=1,i=null;for(let u=0;u<o.length;++u){let l=o[u];if(this.isUnknown(l))if(i===null)i=u;else throw new z("Can only specifiy one unknown dimension.");else s*=l}let a=Eo(t);if(i!==null){if(s===0||a%s!==0)throw new z(n);o[i]=a/s}else if(a!==s)throw new z(n);return o}computeOutputShape(t){let e=!1;for(let n=0;n<t.length;++n)if(this.isUnknown(t[n])){e=!0;break}return e?t.slice(0,1).concat(this.targetShape):t.slice(0,1).concat(this.fixUnknownDimension(t.slice(1),this.targetShape))}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};wf.className="Reshape";et.registerClass(wf);var vf=class extends Vt{constructor(t){if(super(t),t.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${t.dims} instead.`);let e=Jr(1,t.dims.length+1);if(!x.arraysEqual(t.dims.slice().sort(),e))throw new Error("Invalid permutation `dims`: "+JSON.stringify(t.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ce({ndim:this.dims.length+1})]}computeOutputShape(t){t=te(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Mt(Pt(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};vf.className="Permute";et.registerClass(vf);var Cf=class extends Vt{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=Pt(t),o=-1;return tu(Co(n,this.maskValue),o)}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t),o=-1,s=!0,i=tu(Co(n,this.maskValue),o,s);return M(n,Z(i,n.dtype))})}};Cf.className="Masking";et.registerClass(Cf);var If=class extends Vt{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(ve(t.inputLength))}this.inputDim=t.inputDim,tr(this.inputDim,"inputDim"),this.outputDim=t.outputDim,tr(this.outputDim,"outputDim"),this.embeddingsInitializer=he(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ie(t.embeddingsRegularizer),this.activityRegularizer=Ie(t.activityRegularizer),this.embeddingsConstraint=Ue(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return V(()=>this.maskZero?(t=Pt(t),Co(t,St(t))):null)}computeOutputShape(t){if(t=te(t),this.inputLength==null)return[...t,this.outputDim];let e=ve(this.inputLength);if(e.length!==t.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o<e.length;++o){let s=e[o],i=t[o+1];if(s!=null&&i!=null&&s!==i)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);s==null&&(e[n]=i),n++}}return[t[0],...e,this.outputDim]}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t);n.dtype!=="int32"&&(n=kc(n,"int32"));let o=vy(this.embeddings.read(),R(n,[n.size]));return R(o,te(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ae(this.embeddingsInitializer),embeddingsRegularizer:me(this.embeddingsRegularizer),activityRegularizer:me(this.activityRegularizer),embeddingsConstraint:We(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};If.className="Embedding";et.registerClass(If);var bl=class extends Vt{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new Nt}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length<e.length)return this.computeElementwiseOpOutputShape(e,t);if(e.length===0)return t;let n=t.slice(0,t.length-e.length);for(let o=0;o<e.length;++o){let s=t[t.length-e.length+o],i=e[o];if(s==null||i==null||s<0||i<0)n.push(null);else if(s===1)n.push(i);else if(i===1)n.push(s);else{if(s!==i)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(t)+" "+JSON.stringify(e));n.push(s)}}return n}build(t){if(Array.isArray(t)&&!Array.isArray(t[0])&&(t=[te(t)]),t=t,t.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${t.length} input(s).`);let e=[];for(let s of t)s!=null&&s[0]!==null&&e.push(s[0]);if(e=_o(e),e.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;s<t.length;++s){let i=t[s]==null?null:t[s].slice(1);n=this.computeElementwiseOpOutputShape(n,i)}let o=t.map(s=>s.length);t.indexOf(null)===-1&&_o(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return V(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=ai(o);for(let i of t){let a=i.rank;for(let u=0;u<s-a;++u)i=pl(i,1);n.push(i)}return this.mergeFunction(n)}else{let s=!1;for(let u of t){let l=u.rank;if(l==null){let c=u.shape,p=c[0],m=c.slice(1).concat([p]),f=R(u,[p].concat(Eo(c.slice(1))));f=Mt(f,[1,0]),f=R(f,m),n.push(f),s=!0}else if(l>1){let c=Jr(1,l).concat([0]);n.push(Mt(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Mt(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(Jr(0,a-1));i=Mt(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o<t.length;++o){let s=t[o]==null?null:t[o].slice(1);e=this.computeElementwiseOpOutputShape(e,s)}let n=[];for(let o of t)o!=null&&o[0]!==null&&n.push(o[0]);return n=_o(n),n.length===1?e=n.concat(e):e=[null].concat(e),e}computeMask(t,e){return V(()=>{if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an Array");if(!Array.isArray(t))throw new z("`inputs` should be an Array");if(e.length!==t.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:fr(o,0));let n=e[0];for(let o=1;o<e.length-1;++o)n=Nr(n,e[o]);return n})}},Sf=class extends bl{constructor(t){super(t)}mergeFunction(t){return V(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=J(e,t[n]);return e})}};Sf.className="Add";et.registerClass(Sf);var kf=class extends bl{constructor(t){super(t)}mergeFunction(t){return V(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=M(e,t[n]);return e})}};kf.className="Multiply";et.registerClass(kf);var Nf=class extends bl{constructor(t){super(t)}mergeFunction(t){return V(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=J(e,t[n]);return M(1/t.length,e)})}};Nf.className="Average";et.registerClass(Nf);var Tf=class extends bl{constructor(t){super(t)}mergeFunction(t){return V(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=dn(e,t[n]);return e})}};Tf.className="Maximum";et.registerClass(Tf);var _f=class extends bl{constructor(t){super(t)}mergeFunction(t){return V(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=ei(e,t[n]);return e})}};_f.className="Minimum";et.registerClass(_f);var Ef=class extends bl{constructor(t){super(t),this.DEFAULT_AXIS=-1,t==null&&(t={}),this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){if(!(Array.isArray(t)&&Array.isArray(t[0]))||t.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");t=t;let e=!0;for(let o of t)if(o!=null){e=!1;break}if(e)return;let n=[];for(let o=0;o<t.length;++o){let s=t[o].slice();s.splice(this.axis,1);let i=!1;for(let a of n)if(x.arraysEqual(a,s)){i=!0;break}i||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(t))}mergeFunction(t){return V(()=>Am(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(t))throw new z("`inputs` should be an array for Concatenate");if(e.length!==t.length)throw new z(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return V(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i<t.length;++i)e[i]==null?o.push(Z(dr(t[i]),"bool")):e[i].rank<t[i].rank?o.push(fr(e[i],-1)):o.push(e[i]);let s=se(o,this.axis);return Zu(s,-1,!1)})}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};Ef.className="Concatenate";et.registerClass(Ef);function ig(r,t){for(;r<0;)r+=t;return r}function j8(r,t,e){if(r.shape.length>3||t.shape.length>3)throw new Nt("batchDot is not implemented for tensors of 4D or higher rank yet");if(x.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),x.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e=="number"&&(e=[e,e]),r.dtype==="complex64"||t.dtype==="complex64")throw new Nt("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return V(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;l<i;++l)u.push(1);t=R(t,t.shape.concat(u))}else if(o>n){i=o-n;let u=[];for(let l=0;l<i;++l)u.push(1);r=R(r,r.shape.concat(u))}else i=0;let a;if(r.shape.length===2&&t.shape.length===2)s[0]===s[1]?a=mt(M(r,t),s[0]):a=mt(M(Mt(r,[1,0]),t),s[1]);else{let u=s[0]!==r.shape.length-1,l=s[1]===t.shape.length-1;a=Bt(r,t,u,l)}if(i>0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);a=zr(a,l)}return a.shape.length===1&&(a=fr(a,1)),a})}var Af=class extends bl{constructor(t){super(t),this.axes=t.axes,this.normalize=t.normalize==null?!1:t.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){x.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new Nt("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>ig(s,t[i].shape.length)):o=[ig(this.axes,e.shape.length),ig(this.axes,n.shape.length)],this.normalize&&(e=Jh(e,o[0]),n=Jh(n,o[1])),j8(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[ig(this.axes,t.length),ig(this.axes,e.length)],n}computeOutputShape(t){x.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new Nt("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Af.className="Dot";et.registerClass(Af);var $f=class extends Vt{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t);return pu(()=>J($m(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};$f.className="GaussianNoise";et.registerClass($f);var Df=class extends Vt{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return V(()=>{this.invokeCallHook(t,e);let n=Pt(t);return this.rate>0&&this.rate<1?pu(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return M(n,$m(n.shape,1,s))},()=>n,e.training||!1):n})}};Df.className="GaussianDropout";et.registerClass(Df);var Ff=class extends Vt{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||Pt(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return pu(()=>{let s=Pt(t),i=1.6732632423543772,a=1.0507009873554805,u=-i*a,l=_n(ri(n),this.rate);l=kc(l,"float32");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=J(M(s,l),M(J(l,-1),u));return J(M(m,c),p)},()=>Pt(t),e.training||!1)}return t})}};Ff.className="AlphaDropout";et.registerClass(Ff);function ag(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=BI(r,t,e,n,o,s);else if(r.rank===3)i=VI(r,t,e,n,o,s);else if(r.rank===4)i=GI(r,t,e,n,o,s);else throw new Nt(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function X8(r,t,e,n,o=.001){return V(()=>{let s=Im(r,n),i=s.mean,a=s.variance;return[ag(r,i,a,e,t,o),i,a]})}function Y8(r,t,e,n,o=.001){return V(()=>{let s=Im(r,n),i=s.mean,a=s.variance,u=[];for(let d of Jr(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[ag(r,l,c,m,p,o),i,a]})}function Z8(r,t,e,n,o=.001){return x.arraysEqual(n.slice().sort(),Jr(0,r.rank-1))?X8(r,t,e,n,o):Y8(r,t,e,n,o)}var Rf=class extends Vt{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=he(t.betaInitializer||"zeros"),this.gammaInitializer=he(t.gammaInitializer||"ones"),this.movingMeanInitializer=he(t.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=he(t.movingVarianceInitializer||"ones"),this.betaConstraint=Ue(t.betaConstraint),this.gammaConstraint=Ue(t.gammaConstraint),this.betaRegularizer=Ie(t.betaRegularizer),this.gammaRegularizer=Ie(t.gammaRegularizer)}build(t){t=te(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new z(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new Ce({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return V(()=>{let n=e.training==null?!1:e.training,o=Pt(t),s=o.shape,i=s.length,a=Jr(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=No(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!x.arraysEqual(c,Jr(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),v=this.center?R(this.beta.read(),l):null,k=this.scale?R(this.gamma.read(),l):null;return ag(o,b,w,v,k,this.epsilon)}else return ag(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=Z8(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,v)=>{V(()=>{let k=1-v,_=b.read(),$=M(lt(_,w),k);b.write(lt(_,$))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ae(this.betaInitializer),gammaInitializer:Ae(this.gammaInitializer),movingMeanInitializer:Ae(this.movingMeanInitializer),movingVarianceInitializer:Ae(this.movingVarianceInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer),betaConstraint:We(this.betaConstraint),gammaConstraint:We(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};Rf.className="BatchNormalization";et.registerClass(Rf);var Of=class extends Vt{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=he(t.betaInitializer||"zeros"),this.gammaInitializer=he(t.gammaInitializer||"ones"),this.betaRegularizer=Ie(t.betaRegularizer),this.gammaRegularizer=Ie(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=te(t);let e=t.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=e);for(let s of this.axis)if(s<0||s>=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==_o(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=Pt(t),o=n.shape,s=o.length;return V(()=>{let{mean:a,variance:u}=Im(n,this.axis,!0),l=No(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return a=kr(a,f),u=kr(u,f),p!=null&&(p=kr(p,d)),m!=null&&(m=kr(m,d)),ag(n,a,u,m,p,this.epsilon)})}getConfig(){let t={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ae(this.betaInitializer),gammaInitializer:Ae(this.gammaInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer)},e=super.getConfig();return Object.assign(t,e),t}};Of.className="LayerNormalization";et.registerClass(Of);function J8(r,t,e){return V(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(e==null&&(e=xn()),e!=="channelsLast"&&e!=="channelsFirst")throw new z(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Zr(r,n)})}var Mf=class extends Vt{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?xn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding=="number")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]=="number")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){t=te(t);let e,n;return this.dataFormat==="channelsFirst"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return V(()=>J8(Pt(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};Mf.className="ZeroPadding2D";et.registerClass(Mf);function mb(r,t,e,n,o,s){return V(()=>{Le(o),FS(s),gn(n),e==null&&(e=[1,1]),n==null&&(n="valid"),o==null&&(o=xn()),s==null&&(s="max"),r=sg(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=rl(r,t,e,a):i=Xa(r,t,e,a),o==="channelsFirst"&&(i=Mt(i,[0,3,1,2])),i})}function fD(r,t,e,n,o,s){return V(()=>{Le(o),FS(s),gn(n),e==null&&(e=[1,1,1]),n==null&&(n="valid"),o==null&&(o=xn()),s==null&&(s="max"),r=YS(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=$h(r,t,e,a):i=xh(r,t,e,a),o==="channelsFirst"&&(i=Mt(i,[0,4,1,2,3])),i})}var ab=class extends Vt{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize=="number")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]=="number")this.poolSize=t.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(tr(this.poolSize,"poolSize"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides=="number")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]=="number")this.strides=t.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);tr(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,gn(this.padding),this.inputSpec=[new Ce({ndim:3})]}computeOutputShape(t){t=te(t);let e=$n(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return V(()=>{this.invokeCallHook(t,e),t=pl(Pt(t),2);let n=this.poolingFunction(Pt(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return zr(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Pf=class extends ab{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),gn(o),mb(t,e,n,o,s,"max")}};Pf.className="MaxPooling1D";et.registerClass(Pf);var Lf=class extends ab{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),gn(o),mb(t,e,n,o,s,"avg")}};Lf.className="AveragePooling1D";et.registerClass(Lf);var lb=class extends Vt{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];tr(this.poolSize,"poolSize"),tr(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),gn(this.padding),this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){t=te(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2];return e=$n(e,this.poolSize[0],this.padding,this.strides[0]),n=$n(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return V(()=>(this.invokeCallHook(t,e),this.poolingFunction(Pt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},zf=class extends lb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),gn(o),mb(t,e,n,o,s,"max")}};zf.className="MaxPooling2D";et.registerClass(zf);var Bf=class extends lb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),gn(o),mb(t,e,n,o,s,"avg")}};Bf.className="AveragePooling2D";et.registerClass(Bf);var ub=class extends Vt{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];tr(this.poolSize,"poolSize"),tr(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),gn(this.padding),this.inputSpec=[new Ce({ndim:5})]}computeOutputShape(t){t=te(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[4]:t[3];return e=$n(e,this.poolSize[0],this.padding,this.strides[0]),n=$n(n,this.poolSize[1],this.padding,this.strides[1]),o=$n(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return V(()=>(this.invokeCallHook(t,e),this.poolingFunction(Pt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Vf=class extends ub{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),gn(o),fD(t,e,n,o,s,"max")}};Vf.className="MaxPooling3D";et.registerClass(Vf);var Gf=class extends ub{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Le(s),gn(o),fD(t,e,n,o,s,"avg")}};Gf.className="AveragePooling3D";et.registerClass(Gf);var cb=class extends Vt{constructor(t){super(t),this.inputSpec=[new Ce({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new Nt}},Wf=class extends cb{constructor(t){super(t||{})}call(t,e){return V(()=>{let n=Pt(t);return be(n,1)})}};Wf.className="GlobalAveragePooling1D";et.registerClass(Wf);var Uf=class extends cb{constructor(t){super(t||{})}call(t,e){return V(()=>{let n=Pt(t);return Dr(n,1)})}};Uf.className="GlobalMaxPooling1D";et.registerClass(Uf);var pb=class extends Vt{constructor(t){super(t),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Le(this.dataFormat),this.inputSpec=[new Ce({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat==="channelsLast"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new Nt}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Hf=class extends pb{call(t,e){return V(()=>{let n=Pt(t);return this.dataFormat==="channelsLast"?be(n,[1,2]):be(n,[2,3])})}};Hf.className="GlobalAveragePooling2D";et.registerClass(Hf);var qf=class extends pb{call(t,e){return V(()=>{let n=Pt(t);return this.dataFormat==="channelsLast"?Dr(n,[1,2]):Dr(n,[2,3])})}};qf.className="GlobalMaxPooling2D";et.registerClass(qf);var fb=class extends Vt{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=Cn(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},Kf=class extends fb{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=te(t),t.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=te(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return V(()=>(t=Pt(t),JS((i,a)=>[Pt(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};Kf.className="TimeDistributed";et.registerClass(Kf);function Q8(r){ji(y$,"BidirectionalMergeMode",r)}var tY="concat",jf=class extends fb{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=Cn(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=Cn(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?tY:t.mergeMode,Q8(this.mergeMode),t.weights)throw new Nt("weights support is not implemented for Bidirectional layer yet.");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):_r(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=ZS(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");e.initialState=n,i.push(...n);let c=n.map(p=>new Ce({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new Nt("Support for constants in Bidirectional layers is not implemented yet.");let u=i[0]instanceof Qr;for(let l of i)if(l instanceof Qr!==u)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return V(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=ir(s,1));let a;return this.mergeMode==="concat"?a=Am([o,s]):this.mergeMode==="sum"?a=J(o,s):this.mergeMode==="ave"?a=M(.5,J(o,s)):this.mergeMode==="mul"?a=M(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){ii(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),ii(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=Cn(e.layer);if(delete e.layer,e.numConstants!=null)throw new Nt("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=e;return o.layer=n,new t(o)}};jf.className="Bidirectional";et.registerClass(jf);function eY(r){return new li(r)}function rY(r){return new ef(r)}function nY(r){return new Jm(r)}function oY(r){return new Qm(r)}function sY(r){return new tf(r)}function iY(r){return new nf(r)}function aY(r){return new rf(r)}function lY(r){return new xu(r)}function uY(r){return new dl(r)}function cY(r){return new of(r)}function pY(r){return new hl(r)}function mY(r){return new sf(r)}function fY(r){return new af(r)}function dY(r){return new lf(r)}function hY(r){return new uf(r)}function gY(r){return new cf(r)}function xY(r){return new yf(r)}function yY(r){return new gf(r)}function bY(r){return new Gc(r)}function wY(r){return new hf(r)}function vY(r){return new xf(r)}function CY(r){return new bf(r)}function IY(r){return new wf(r)}function SY(r){return new vf(r)}function kY(r){return new If(r)}function NY(r){return new Sf(r)}function TY(r){return new Nf(r)}function _Y(r){return new Ef(r)}function EY(r){return new Tf(r)}function AY(r){return new _f(r)}function $Y(r){return new kf(r)}function DY(r){return new Af(r)}function FY(r){return new Rf(r)}function RY(r){return new Of(r)}function OY(r){return new Mf(r)}function QS(r){return new Lf(r)}function MY(r){return QS(r)}function PY(r){return QS(r)}function tk(r){return new Bf(r)}function LY(r){return tk(r)}function zY(r){return tk(r)}function ek(r){return new Gf(r)}function BY(r){return ek(r)}function VY(r){return ek(r)}function GY(r){return new Wf(r)}function WY(r){return new Hf(r)}function dD(r){return new Uf(r)}function hD(r){return new qf(r)}function gD(r){return new Pf(r)}function xD(r){return new zf(r)}function UY(r){return new Vf(r)}function HY(r){return new mf(r)}function qY(r){return new zc(r)}function KY(r){return new ff(r)}function jY(r){return new xl(r)}function XY(r){return new pf(r)}function YY(r){return new Lc(r)}function ZY(r){return new df(r)}function JY(r){return new Vc(r)}function QY(r){return new Dn(r)}function t7(r){return new Bc(r)}function e7(r){return new jf(r)}function r7(r){return new Kf(r)}var n7=dD,o7=hD,s7=gD,i7=xD;function a7(r){return new $f(r)}function l7(r){return new Df(r)}function u7(r){return new Ff(r)}function c7(r){return new Cf(r)}var bD={};Zt(bD,{MAPE:()=>v7,MSE:()=>S7,binaryAccuracy:()=>p7,binaryCrossentropy:()=>m7,categoricalAccuracy:()=>d7,categoricalCrossentropy:()=>h7,cosineProximity:()=>y7,mape:()=>C7,meanAbsoluteError:()=>b7,meanAbsolutePercentageError:()=>w7,meanSquaredError:()=>I7,mse:()=>k7,precision:()=>g7,recall:()=>x7,sparseCategoricalAccuracy:()=>f7});function p7(r,t){return eg(r,t)}function m7(r,t){return Oy(r,t)}function f7(r,t){return My(r,t)}function d7(r,t){return rg(r,t)}function h7(r,t){return ng(r,t)}function g7(r,t){return VS(r,t)}function x7(r,t){return U$(r,t)}function y7(r,t){return tg(r,t)}function b7(r,t){return qm(r,t)}function w7(r,t){return fu(r,t)}function v7(r,t){return fu(r,t)}function C7(r,t){return fu(r,t)}function I7(r,t){return Yi(r,t)}function S7(r,t){return Yi(r,t)}function k7(r,t){return Yi(r,t)}var wD={};Zt(wD,{modelFromJSON:()=>iD});var vD={};Zt(vD,{l1:()=>T7,l1l2:()=>N7,l2:()=>_7});function N7(r){return new du(r)}function T7(r){return cD(r)}function _7(r){return pD(r)}var hb=class extends fl{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof Vn))throw new Error("model must be a LayersModel, not some other Container");this.model=t}};function db(r,t){return r<t}function CD(r,t){return r>t}var gb=class extends hb{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new Nt("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=t.monitor||"val_loss",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||"auto",this.baseline=t.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=db:this.mode==="max"?this.monitorFunc=CD:this.monitor.indexOf("acc")!==-1?this.monitorFunc=CD:this.monitorFunc=db,this.monitorFunc===db&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===db?1/0:-1/0}async onEpochEnd(t,e){await Xi(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function E7(r){return new gb(r)}var A7={earlyStopping:E7};var $7=G();$7.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,r=>{r&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var eo;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_QINT16=15]="DT_QINT16",r[r.DT_QUINT16=16]="DT_QUINT16",r[r.DT_UINT16=17]="DT_UINT16",r[r.DT_COMPLEX128=18]="DT_COMPLEX128",r[r.DT_HALF=19]="DT_HALF",r[r.DT_RESOURCE=20]="DT_RESOURCE",r[r.DT_VARIANT=21]="DT_VARIANT",r[r.DT_UINT32=22]="DT_UINT32",r[r.DT_UINT64=23]="DT_UINT64",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",r[r.DT_QINT16_REF=115]="DT_QINT16_REF",r[r.DT_QUINT16_REF=116]="DT_QUINT16_REF",r[r.DT_UINT16_REF=117]="DT_UINT16_REF",r[r.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",r[r.DT_HALF_REF=119]="DT_HALF_REF",r[r.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",r[r.DT_VARIANT_REF=121]="DT_VARIANT_REF",r[r.DT_UINT32_REF=122]="DT_UINT32_REF",r[r.DT_UINT64_REF=123]="DT_UINT64_REF"})(eo||(eo={}));var ID;(function(r){let t;(function(e){e[e.LEGACY=0]="LEGACY",e[e.V1=1]="V1",e[e.V2=2]="V2"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(ID||(ID={}));var rk={};function F7(r,t){let e={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:t};rk[r]=e}function xb(r){return rk[r]}function R7(r){delete rk[r]}function I(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd;if(s.type==="tensor")return Cr(t.inputNames[s.inputIndexStart],e,n,o);if(s.type==="tensors")return t.inputNames.slice(a,u).map(m=>Cr(m,e,n,o));let l=Cr(t.inputNames.slice(a)[0],e,n,o),c=l.dataSync();return s.type==="number"?c[0]:x.toNestedArray(l.shape,c)}let i=t.attrParams[r];return i&&i.value}function Cr(r,t,e,n){let[o,s]=In(r);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[yb(o,a)]);return i!==void 0?t[yb(o,i)][s]:void 0}function SD(r,t,e){return t[yb(r,e.currentContextId)]}function Fo(r,t){let[e,n,o]=In(r);return[yb(e,t&&t.currentContextId),n,o]}function yb(r,t){return t?`${r}-${t}`:r}function In(r){let t=r.split(":");if(t.length===1)return[r,0,void 0];let e=t[0],n=t.length===3?t[1]:void 0,o=Number(t[t.length-1]);return[e,o,n]}function lg(r,t,e){let n=I("pad",r,t,e);if(n==="explicit"){n=I("explicitPaddings",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function mi(r){return r.kept?r:Nn(r)}var nk={};Zt(nk,{json:()=>O7});var O7=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var ok={};Zt(ok,{json:()=>M7});var M7=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var sk={};Zt(sk,{json:()=>P7});var P7=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}];var ik={};Zt(ik,{json:()=>L7});var L7=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var ak={};Zt(ak,{json:()=>z7});var z7=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var lk={};Zt(lk,{json:()=>B7});var B7=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var uk={};Zt(uk,{json:()=>V7});var V7=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var ck={};Zt(ck,{json:()=>G7});var G7=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var pk={};Zt(pk,{json:()=>W7});var W7=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var mk={};Zt(mk,{json:()=>U7});var U7=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}];var fk={};Zt(fk,{json:()=>H7});var H7=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var dk={};Zt(dk,{json:()=>q7});var q7=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}];var hk={};Zt(hk,{json:()=>K7});var K7=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var gk={};Zt(gk,{json:()=>j7});var j7=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var xk={};Zt(xk,{json:()=>X7});var X7=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var yk={};Zt(yk,{json:()=>Y7});var Y7=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}];var bk={};Zt(bk,{json:()=>Z7});var Z7=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var wk={};Zt(wk,{json:()=>J7});var J7=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}];var vk={};Zt(vk,{json:()=>Q7});var Q7=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}];var ug=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let t=[nk,ok,sk,ik,ak,lk,uk,ck,pk,mk,fk,dk,hk,gk,xk,yk,bk,wk,vk],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((y,b)=>{let[w,,v]=Fo(y),k=a[w];if(k.outputs!=null){let _=k.outputs.indexOf(v);if(_!==-1){let $=`${w}:${_}`;g.inputNames[b]=$}}g.inputs.push(k),k.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=Fo(h),y=a[g];y!=null&&(y.signatureKey=p[h],l.push(y))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Fo(h),y=a[g];y&&(y.signatureKey=c[h],u.push(y))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=xb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith("^")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case"string":a=bb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=bb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":a=Nb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Nb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":a=vb(t.attr,s.tfName,s.defaultValue||0),a===void 0&&!!s.tfDeprecatedName&&(a=vb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":a=kb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=kb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":a=wb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=wb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":a=_b(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=_b(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":a=Sb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Sb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":a=Tb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Tb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":a=Cb(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Cb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":a=Ib(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=Ib(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":a=kD(t.attr,s.tfName,s.defaultValue),a===void 0&&!!s.tfDeprecatedName&&(a=kD(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=Fo(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Ck(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=Fo(f),y=s[h];if(y.outputs!=null){let b=y.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(y),y.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=Fo(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function tZ(r){let t=G().global;if(typeof t.atob!="undefined")return t.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function ND(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):tZ(r);return t?e:e.toLowerCase()}function bb(r,t,e,n=!1){let o=r[t];return o!=null?ND(o.s,n):e}function wb(r,t,e){let n=r[t];return n?n.b:e}function vb(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o=="number"?o:parseInt(o,10)}function Ck(r){switch(typeof r=="string"&&(r=eo[r]),r){case eo.DT_FLOAT:case eo.DT_HALF:return"float32";case eo.DT_INT32:case eo.DT_INT64:case eo.DT_INT8:case eo.DT_UINT8:return"int32";case eo.DT_BOOL:return"bool";case eo.DT_DOUBLE:return"float32";case eo.DT_STRING:return"string";default:return null}}function kD(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function Cb(r,t,e){let n=r[t];return n&&n.type?Ck(n.type):e}function Ib(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>Ck(o)):e}function TD(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Sb(r,t,e){let n=r[t];return n&&n.shape?TD(n.shape):e}function kb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):e}function Nb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>ND(s,n)):e}function Tb(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>TD(o)):e}function _b(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var Eb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return Cr(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return Cr(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return vb(this.node.rawAttrs,t,e);if(n.s!=null)return bb(this.node.rawAttrs,t,e);if(n.b!=null)return wb(this.node.rawAttrs,t,e);if(n.shape!=null)return Sb(this.node.rawAttrs,t,e);if(n.type!=null)return Cb(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return kb(this.node.rawAttrs,t,e);if(n.list.s!=null)return Nb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Tb(this.node.rawAttrs,t,e);if(n.list.b!=null)return _b(this.node.rawAttrs,t,e);if(n.list.type!=null)return Ib(this.node.rawAttrs,t,e)}return e}};var _D=(r,t,e)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",r,t,e),I("b",r,t,e))];case"AddN":return[MI(I("tensors",r,t,e))];case"FloorMod":case"Mod":return[Fh(I("a",r,t,e),I("b",r,t,e))];case"Mul":return[M(I("a",r,t,e),I("b",r,t,e))];case"RealDiv":case"Div":return[ct(I("a",r,t,e),I("b",r,t,e))];case"DivNoNan":return[Ih(I("a",r,t,e),I("b",r,t,e))];case"FloorDiv":return[Yu(I("a",r,t,e),I("b",r,t,e))];case"Sub":return[lt(I("a",r,t,e),I("b",r,t,e))];case"Minimum":return[ei(I("a",r,t,e),I("b",r,t,e))];case"Maximum":return[dn(I("a",r,t,e),I("b",r,t,e))];case"Pow":return[Yr(I("a",r,t,e),I("b",r,t,e))];case"SquaredDifference":return[xc(I("a",r,t,e),I("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var ED=(r,t,e)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Te(I("x",r,t,e))];case"Acos":return[uh(I("x",r,t,e))];case"Acosh":return[ch(I("x",r,t,e))];case"Asin":return[mh(I("x",r,t,e))];case"Asinh":return[fh(I("x",r,t,e))];case"Atan":return[dh(I("x",r,t,e))];case"Atan2":return[hh(I("x",r,t,e),I("y",r,t,e))];case"Atanh":return[gh(I("x",r,t,e))];case"Ceil":return[bh(I("x",r,t,e))];case"Complex":return[cn(I("real",r,t,e),I("imag",r,t,e))];case"Cos":return[Ja(I("x",r,t,e))];case"Cosh":return[rc(I("x",r,t,e))];case"Elu":return[Js(I("x",r,t,e))];case"Erf":return[Sh(I("x",r,t,e))];case"Exp":return[Ye(I("x",r,t,e))];case"Expm1":return[Th(I("x",r,t,e))];case"Floor":return[ti(I("x",r,t,e))];case"Log":return[wr(I("x",r,t,e))];case"Log1p":return[tl(I("x",r,t,e))];case"Imag":return[ja(I("x",r,t,e))];case"Neg":return[qt(I("x",r,t,e))];case"Reciprocal":return[Rh(I("x",r,t,e))];case"Real":return[Gi(I("x",r,t,e))];case"Relu":return[Tr(I("x",r,t,e))];case"Round":return[pc(I("x",r,t,e))];case"Selu":return[fc(I("x",r,t,e))];case"Sigmoid":return[Lr(I("x",r,t,e))];case"Sin":return[dc(I("x",r,t,e))];case"Sign":return[Mh(I("x",r,t,e))];case"Sinh":return[hc(I("x",r,t,e))];case"Softplus":return[vo(I("x",r,t,e))];case"Sqrt":return[ye(I("x",r,t,e))];case"Square":return[Wt(I("x",r,t,e))];case"Tanh":return[Ys(I("x",r,t,e))];case"Tan":return[Bh(I("x",r,t,e))];case"ClipByValue":return[br(I("x",r,t,e),I("clipValueMin",r,t,e),I("clipValueMax",r,t,e))];case"Relu6":return[cc(I("x",r,t,e))];case"Rsqrt":return[mc(Cr(r.inputNames[0],t,e))];case"Prod":return[ac(I("x",r,t,e),I("axes",r,t,e))];case"LeakyRelu":return[Qa(I("x",r,t,e),I("alpha",r,t,e))];case"Prelu":return[ol(I("x",r,t,e),I("alpha",r,t,e))];case"IsNan":return[_h(Cr(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Gn(r,t,e=""){if(!(typeof r=="number"||typeof t=="number")){x.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=t[n];x.assert(o<0||s<0||o===s,()=>e+` Shapes ${r} and ${t} must match`)}}}function AD(r){return!(typeof r=="number"||r.some(t=>t<0))}function Xf(r,t,e){let n=Ab(r,e),o=!AD(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=Ab(s.shape,n)}),!AD(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function Ab(r,t){if(typeof r=="number")return t;if(typeof t=="number")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n<r.length;++n){let o=r[n],s=t[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var $b=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=pt(0),Pe(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},
|
|
because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Gn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,Pe(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o<this.size();o++)t.push(o)}if(t.length===0)return Ar([],[0].concat(this.elementShape));let n=this.readMany(t);return Gn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Ze(n,0)}concat(t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${t}`);if(this.size()===0)return Ar([],[0].concat(this.elementShape));let e=[];for(let o=0;o<this.size();o++)e.push(o);let n=this.readMany(e);return Gn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),se(n,0)}scatter(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let n=Math.max(...t);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,vr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];V(()=>{e=R(e,[1,n,s]);for(let u=0;u<t.length;++u){let l=u===0?0:o[u-1],c=[0,l,0],p=[1,t[u],s];i[u]=R(Ft(e,c,p),this.elementShape)}return i});let a=[];for(let u=0;u<t.length;u++)a[u]=u;this.writeMany(a,i)}};var wl=class{constructor(t,e,n,o=-1){this.tensors=t,this.elementShape=e,this.elementDtype=n,t!=null&&t.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Gn(e,s.shape,"TensorList shape mismatch: "),Pe(s)}),this.idTensor=pt(0),this.maxNumElements=o,Pe(this.idTensor)}get id(){return this.idTensor.id}copy(){return new wl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Gn(t,this.elementShape,"TensorList shape mismatch: ");let o=Xf(this.elementShape,this.tensors,t);return V(()=>{let s=this.tensors.map(i=>R(i,o));return Ze(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Xf(this.elementShape,this.tensors,t),o=this.tensors.pop();return Gn(o.shape,t,"TensorList shape mismatch: "),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Gn(t.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Pe(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new wl([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;n<Math.min(this.tensors.length,t);++n)e.tensors[n]=this.tensors[n];return e}getItem(t,e,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(t<0||t>this.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Gn(this.tensors[t].shape,e,"TensorList shape mismatch: ");let o=Xf(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Gn(this.elementShape,e.shape,"TensorList shape mismatch: "),Pe(e),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Gn(this.elementShape,n,"TensorList shape mismatch: "),t=t.slice(0,this.size());let o=Xf(this.elementShape,this.tensors,n);return t.length===0?Ar([],[0].concat(o)):V(()=>{let s=t.map(i=>R(this.tensors[i],o));return Ze(s,0)})}concat(t,e){if(!!t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Gn(this.elementShape,e,"TensorList shape mismatch: ");let n=Xf(this.elementShape,this.tensors,e);return this.size()===0?Ar([],[0].concat(n)):V(()=>{let o=this.tensors.map(s=>R(s,n));return se(o,0)})}};function $D(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Gn(o,t,"TensorList shape mismatch: ");let s=vr(r);return new wl(s,t,n)}function DD(r,t,e){return new wl([],r,t,e)}function FD(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new wl([],e,r.dtype,n),i=vr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function RD(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=Ab(s,e),a=n===0?0:r.size/n,u=V(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p<t.length;++p){let m=p===0?0:o[p-1],f=[0,m,0],d=[1,t[p],a];c[p]=R(Ft(r,f,d),i)}return r.dispose(),c}),l=new wl([],e,r.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var OD=async(r,t,e)=>{switch(r.op){case"If":case"StatelessIf":{let n=I("thenBranch",r,t,e),o=I("elseBranch",r,t,e),s=I("cond",r,t,e),i=I("args",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case"While":case"StatelessWhile":{let n=I("body",r,t,e),o=I("cond",r,t,e),s=I("args",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case"LoopCond":{let n=I("pred",r,t,e);return[mi(n)]}case"Switch":{let n=I("pred",r,t,e),o=I("data",r,t,e);return o.kept||(o=mi(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>Cr(o,t,e)!==void 0);if(n){let o=Cr(n,t,e);return[mi(o)]}return}case"Enter":{let n=I("frameName",r,t,e),o=I("tensor",r,t,e);return e.enterFrame(n),[mi(o)]}case"Exit":{let n=I("tensor",r,t,e);return e.exitFrame(),[mi(n)]}case"NextIteration":{let n=I("tensor",r,t,e);return e.nextIteration(),[mi(n)]}case"TensorArrayV3":{let n=I("size",r,t,e),o=I("dtype",r,t,e),s=I("elementShape",r,t,e),i=I("dynamicSize",r,t,e),a=I("clearAfterRead",r,t,e),u=I("identicalElementShapes",r,t,e),l=I("name",r,t,e),c=new $b(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,pt(1)]}case"TensorArrayWriteV3":{let n=I("tensorArrayId",r,t,e),o=I("index",r,t,e),s=I("tensor",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case"TensorArrayReadV3":{let n=I("tensorArrayId",r,t,e),o=I("index",r,t,e);return[e.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=I("tensorArrayId",r,t,e),o=I("indices",r,t,e),s=I("dtype",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=I("tensorArrayId",r,t,e),o=I("indices",r,t,e),s=I("tensor",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=I("tensorArrayId",r,t,e),o=e.getTensorArray(n.id),s=I("dtype",r,t,e);return[o.concat(s)]}case"TensorArraySplitV3":{let n=I("tensorArrayId",r,t,e),o=I("tensor",r,t,e),s=I("lengths",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case"TensorArraySizeV3":{let n=I("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return[pt(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=I("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=I("tensorListId",r,t,e),o=I("index",r,t,e),s=I("tensor",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case"TensorListGetItem":{let n=I("tensorListId",r,t,e),o=I("index",r,t,e),s=I("elementShape",r,t,e),i=I("elementDType",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=I("indices",r,t,e),o=I("tensor",r,t,e),s=I("elementShape",r,t,e),i=I("numElements",r,t,e),a=FD(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=I("elementShape",r,t,e),o=I("elementDType",r,t,e),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,r,t,e),a=DD(n,o,i);return e.addTensorList(a),[a.idTensor]}case"TensorListGather":{let n=I("tensorListId",r,t,e),o=I("indices",r,t,e),s=I("elementShape",r,t,e),i=I("elementDType",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case"TensorListStack":{let n=I("tensorListId",r,t,e),o=I("elementShape",r,t,e),s=I("elementDType",r,t,e),i=I("numElements",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case"TensorListFromTensor":{let n=I("tensor",r,t,e),o=I("elementShape",r,t,e),s=I("elementDType",r,t,e),i=$D(n,o,s);return e.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=I("tensorListId",r,t,e),o=e.getTensorList(n.id),s=I("dtype",r,t,e),i=I("elementShape",r,t,e);return[o.concat(s,i)]}case"TensorListPushBack":{let n=I("tensorListId",r,t,e),o=I("tensor",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=I("tensorListId",r,t,e),o=I("elementShape",r,t,e),s=I("elementDType",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=I("tensor",r,t,e),o=I("elementShape",r,t,e),s=I("lengths",r,t,e),i=RD(n,s,o);return e.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=I("tensorListId",r,t,e),o=e.getTensorList(n.id);return[pt(o.size(),"int32")]}case"TensorListResize":{let n=I("tensorListId",r,t,e),o=I("size",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function MD(r,t,e){let[n,o]=I("fusedOps",r,t,e),s=n==="biasadd",i=!s,a=o==="prelu",u=n==="fusedbatchnorm",l=I("numArgs",r,t,e);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&s&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",r,t,e),p=lg(r,t,e),m=I("dataFormat",r,t,e).toUpperCase(),f=I("dilations",r,t,e),[d,h]=I("args",r,t,e);i&&(h=d,d=void 0);let g=I("leakyreluAlpha",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var PD=(r,t,e)=>{switch(r.op){case"Conv1D":{let n=I("stride",r,t,e),o=I("pad",r,t,e),s=I("dataFormat",r,t,e).toUpperCase(),i=I("dilation",r,t,e);return[tc(I("x",r,t,e),I("filter",r,t,e),n,o,s,i)]}case"Conv2D":{let n=I("strides",r,t,e),o=lg(r,t,e),s=I("dataFormat",r,t,e).toUpperCase(),i=I("dilations",r,t,e);return[mn(I("x",r,t,e),I("filter",r,t,e),[n[1],n[2]],o,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:o,dataFormat:s,dilations:i,biasArg:a,preluArg:u,activationFunc:l,leakyreluAlpha:c}=MD(r,t,e);return[Io.conv2d({x:I("x",r,t,e),filter:I("filter",r,t,e),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[i[1],i[2]],bias:a,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:o,dataFormat:s,dilations:i,biasArg:a,preluArg:u,activationFunc:l,leakyreluAlpha:c}=MD(r,t,e);return[Io.depthwiseConv2d({x:I("x",r,t,e),filter:I("filter",r,t,e),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[i[1],i[2]],bias:a,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=I("outputShape",r,t,e),o=I("strides",r,t,e),s=lg(r,t,e);return[ec(I("x",r,t,e),I("filter",r,t,e),n,[o[1],o[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=I("strides",r,t,e),o=lg(r,t,e),s=I("dilations",r,t,e),i=I("dataFormat",r,t,e).toUpperCase();return[Zs(I("input",r,t,e),I("filter",r,t,e),[n[1],n[2]],o,i,[s[1],s[2]])]}case"Conv3D":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("dataFormat",r,t,e).toUpperCase(),i=I("dilations",r,t,e);return[wh(I("x",r,t,e),I("filter",r,t,e),[n[1],n[2],n[3]],o,s,[i[1],i[2],i[3]])]}case"AvgPool":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("kernelSize",r,t,e);return[Xa(I("x",r,t,e),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPool":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("kernelSize",r,t,e);return[rl(I("x",r,t,e),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPoolWithArgmax":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("kernelSize",r,t,e),i=I("includeBatchInIndex",r,t,e),{result:a,indexes:u}=lS(I("x",r,t,e),[s[1],s[2]],[n[1],n[2]],o,i);return[a,u]}case"AvgPool3D":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("kernelSize",r,t,e);return[xh(I("x",r,t,e),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"MaxPool3D":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("kernelSize",r,t,e);return[$h(I("x",r,t,e),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"Dilation2D":{let n=I("strides",r,t,e),o=I("pad",r,t,e),s=I("dilations",r,t,e),i=n[1],a=n[2],u=s[1],l=s[2];return[Ch(I("x",r,t,e),I("filter",r,t,e),[i,a],o,[u,l],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var LD=(r,t,e)=>{switch(r.op){case"Fill":{let n=I("shape",r,t,e),o=I("dtype",r,t,e),s=I("value",r,t,e);return[Qs(n,s,o)]}case"LinSpace":{let n=I("start",r,t,e),o=I("stop",r,t,e),s=I("num",r,t,e);return[oS(n,o,s)]}case"Multinomial":{let n=I("logits",r,t,e),o=I("numSamples",r,t,e),s=I("seed",r,t,e);return[uS(n,o,s)]}case"OneHot":{let n=I("indices",r,t,e),o=I("depth",r,t,e),s=I("onValue",r,t,e),i=I("offValue",r,t,e);return[js(n,o,s,i)]}case"Ones":return[lr(I("shape",r,t,e),I("dtype",r,t,e))];case"OnesLike":return[dr(I("x",r,t,e))];case"RandomUniform":return[ri(I("shape",r,t,e),I("minval",r,t,e),I("maxval",r,t,e),I("dtype",r,t,e))];case"Range":{let n=I("start",r,t,e),o=I("stop",r,t,e),s=I("step",r,t,e);return[sl(n,o,s,I("dtype",r,t,e))]}case"TruncatedNormal":{let n=I("shape",r,t,e),o=I("mean",r,t,e),s=I("stdDev",r,t,e),i=I("seed",r,t,e);return[yc(n,o,s,I("dtype",r,t,e),i)]}case"Zeros":return[we(I("shape",r,t,e),I("dtype",r,t,e))];case"ZerosLike":return[St(I("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ik(r,t,e){let n=I("boxes",r,t,e),o=I("scores",r,t,e),s=I("maxOutputSize",r,t,e),i=I("iouThreshold",r,t,e),a=I("scoreThreshold",r,t,e),u=I("softNmsSigma",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var zD=async(r,t,e)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}=Ik(r,t,e),l=await hn.nonMaxSuppressionWithScoreAsync(n,o,s,i,a,u);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a}=Ik(r,t,e),u=I("padToMaxOutputSize",r,t,e),l=await hn.nonMaxSuppressionPaddedAsync(n,o,s,i,a,u);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a}=Ik(r,t,e);return[await hn.nonMaxSuppressionAsync(n,o,s,i,a)]}case"Where":{let n=Z(I("condition",r,t,e),"bool"),o=[await Wh(n)];return n.dispose(),o}case"ListDiff":return bS(I("x",r,t,e),I("y",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var BD=(r,t,e)=>{switch(r.op){case"LowerBound":{let n=I("sortedSequence",r,t,e),o=I("values",r,t,e);return[aS(n,o)]}case"TopKV2":{let n=I("x",r,t,e),o=I("k",r,t,e),s=I("sorted",r,t,e),i=Vh(n,o,s);return[i.values,i.indices]}case"UpperBound":{let n=I("sortedSequence",r,t,e),o=I("values",r,t,e);return[wS(n,o)]}case"Unique":{let n=I("x",r,t,e),o=km(n);return[o.values,o.indices]}case"UniqueV2":{let n=I("x",r,t,e),o=I("axis",r,t,e),s=km(n,o);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var VD=(r,t,e)=>{switch(r.op){case"Const":return t[r.name];case"PlaceholderWithDefault":let n=I("default",r,t,e);return[Cr(r.name,t,e)||n];case"Placeholder":return[Cr(r.name,t,e)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=I("x",r,t,e);return[mi(l)]}case"IdentityN":return I("x",r,t,e).map(l=>mi(l));case"Snapshot":let o=I("x",r,t,e);return[mi(o)];case"Shape":return[Fe(I("x",r,t,e).shape,"int32")];case"ShapeN":return I("x",r,t,e).map(l=>Fe(l.shape));case"Size":return[pt(I("x",r,t,e).size,"int32")];case"Rank":return[pt(I("x",r,t,e).rank,"int32")];case"NoOp":return[pt(1)];case"Print":let s=I("x",r,t,e),i=I("data",r,t,e),a=I("message",r,t,e),u=I("summarize",r,t,e);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(a);for(let l=0;l<i.length;l++)console.log(Array.prototype.slice.call(i[l].dataSync()).slice(0,u));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Db=class{constructor(t,e){this.keyDType=t,this.valueDType=e,this.handle=pt(0),this.tensorMap=new Map,Pe(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(t=>t.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return pt(this.size(),"int32")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),V(()=>{let o=vr(e),s=n.length,i=o.length;x.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a<s;a++){let u=n[a],l=o[a];Pe(l),this.tensorMap.set(u,l)}return this.handle})}async find(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return V(()=>{let o=[];for(let s=0;s<n.length;s++){let i=n[s],a=this.findWithDefault(i,e);o.push(a)}return Ze(o)})}findWithDefault(t,e){let n=this.tensorMap.get(t);return n!=null?n:e}checkKeyAndValueTensor(t,e){if(t.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${t.dtype}`);if(e.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${e.dtype}`)}};var GD=async(r,t,e,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=I("keyDType",r,t,e),s=I("valueDType",r,t,e),i=new Db(o,s);return n.addHashTable(r.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=I("tableHandle",r,t,e,n),s=I("keys",r,t,e),i=I("values",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let o=I("tableHandle",r,t,e,n),s=I("keys",r,t,e),i=I("defaultValue",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=I("tableHandle",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var WD=(r,t,e)=>{switch(r.op){case"ResizeBilinear":{let n=I("images",r,t,e),o=I("size",r,t,e),s=I("alignCorners",r,t,e),i=I("halfPixelCenters",r,t,e);return[hn.resizeBilinear(n,[o[0],o[1]],s,i)]}case"ResizeNearestNeighbor":{let n=I("images",r,t,e),o=I("size",r,t,e),s=I("alignCorners",r,t,e),i=I("halfPixelCenters",r,t,e);return[hn.resizeNearestNeighbor(n,[o[0],o[1]],s,i)]}case"CropAndResize":{let n=I("image",r,t,e),o=I("boxes",r,t,e),s=I("boxInd",r,t,e),i=I("cropSize",r,t,e),a=I("method",r,t,e),u=I("extrapolationValue",r,t,e);return[hn.cropAndResize(n,o,s,i,a,u)]}case"ImageProjectiveTransformV3":{let n=I("images",r,t,e),o=I("transforms",r,t,e),s=I("outputShape",r,t,e),i=I("fillValue",r,t,e),a=I("interpolation",r,t,e),u=I("fillMode",r,t,e);return[hn.transform(n,o,a.toLowerCase(),u.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var UD=(r,t,e)=>{switch(r.op){case"Equal":return[Sr(I("a",r,t,e),I("b",r,t,e))];case"NotEqual":return[Co(I("a",r,t,e),I("b",r,t,e))];case"Greater":return[Ge(I("a",r,t,e),I("b",r,t,e))];case"GreaterEqual":return[_n(I("a",r,t,e),I("b",r,t,e))];case"Less":return[oc(I("a",r,t,e),I("b",r,t,e))];case"LessEqual":return[En(I("a",r,t,e),I("b",r,t,e))];case"LogicalAnd":return[Nr(I("a",r,t,e),I("b",r,t,e))];case"LogicalNot":return[el(I("a",r,t,e))];case"LogicalOr":return[ic(I("a",r,t,e),I("b",r,t,e))];case"Select":case"SelectV2":return[Ee(I("condition",r,t,e),I("a",r,t,e),I("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var HD=(r,t,e)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Bt(I("a",r,t,e),I("b",r,t,e),I("transposeA",r,t,e),I("transposeB",r,t,e))];case"Einsum":return[ZI(I("equation",r,t,e),...I("tensors",r,t,e))];case"Transpose":return[Mt(I("x",r,t,e),I("perm",r,t,e))];case"_FusedMatMul":let[n,o]=I("fusedOps",r,t,e),s=n==="biasadd",i=o==="prelu",a=I("numArgs",r,t,e),u=I("leakyreluAlpha",r,t,e);if(s){if(i&&a!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,c]=I("args",r,t,e);return[Io.matMul({a:I("a",r,t,e),b:I("b",r,t,e),transposeA:I("transposeA",r,t,e),transposeB:I("transposeB",r,t,e),bias:l,activation:o,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var qD=(r,t,e)=>{switch(r.op){case"EuclideanNorm":return[Nh(I("x",r,t,e),I("axis",r,t,e),I("keepDims",r,t,e))];case"FusedBatchNorm":case"FusedBatchNormV2":return[yo(I("x",r,t,e),I("mean",r,t,e),I("variance",r,t,e),I("offset",r,t,e),I("scale",r,t,e),I("epsilon",r,t,e))];case"FusedBatchNormV3":return[yo(I("x",r,t,e),I("mean",r,t,e),I("variance",r,t,e),I("offset",r,t,e),I("scale",r,t,e),I("epsilon",r,t,e))];case"LRN":return[Eh(I("x",r,t,e),I("radius",r,t,e),I("bias",r,t,e),I("alpha",r,t,e),I("beta",r,t,e))];case"Softmax":return[il(I("x",r,t,e))];case"LogSoftmax":return[sc(I("x",r,t,e))];case"SparseToDense":return[Jx(I("sparseIndices",r,t,e),I("outputShape",r,t,e),I("sparseValues",r,t,e),I("defaultValue",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var KD=(r,t,e)=>{switch(r.op){case"Max":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[Dr(I("x",r,t,e),i,a)]}case"Mean":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[be(I("x",r,t,e),i,a)]}case"Min":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[ru(I("x",r,t,e),i,a)]}case"Sum":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[mt(I("x",r,t,e),i,a)]}case"All":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[Zu(I("x",r,t,e),i,a)]}case"Any":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[tu(I("x",r,t,e),i,a)]}case"ArgMax":{let i=I("axis",r,t,e);return[Xs(I("x",r,t,e),i)]}case"ArgMin":{let i=I("axis",r,t,e);return[ph(I("x",r,t,e),i)]}case"Prod":{let i=I("axis",r,t,e),a=I("keepDims",r,t,e);return[ac(I("x",r,t,e),i,a)]}case"Cumprod":{let i=I("axis",r,t,e),a=I("exclusive",r,t,e),u=I("reverse",r,t,e);return[eu(I("x",r,t,e),i,a,u)]}case"Cumsum":{let i=I("axis",r,t,e),a=I("exclusive",r,t,e),u=I("reverse",r,t,e);return[nc(I("x",r,t,e),i,a,u)]}case"Bincount":let n=I("x",r,t,e),o=I("weights",r,t,e),s=I("size",r,t,e);return[yh(n,o,s)];case"DenseBincount":{let i=I("x",r,t,e),a=I("weights",r,t,e),u=I("size",r,t,e),l=I("binaryOutput",r,t,e);return[XI(i,a,u,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jD=(r,t,e)=>{switch(r.op){case"ConcatV2":case"Concat":{let n=I("n",r,t,e),o=I("axis",r,t,e),s=I("tensors",r,t,e);return s=s.slice(0,n),[se(s,o)]}case"Gather":{let n=I("x",r,t,e),o=I("indices",r,t,e);return[wo(n,Z(o,"int32"),0)]}case"GatherV2":{let n=I("axis",r,t,e),o=I("batchDims",r,t,e),s=I("x",r,t,e),i=I("indices",r,t,e);return[wo(s,Z(i,"int32"),n,o)]}case"Reverse":{let n=I("dims",r,t,e),o=[];for(let i=0;i<n.length;i++)n[i]&&o.push(i);let s=I("x",r,t,e);return[ir(s,o)]}case"ReverseV2":{let n=I("axis",r,t,e),o=I("x",r,t,e);return[ir(o,n)]}case"Slice":{let n=I("begin",r,t,e),o=I("size",r,t,e);return[Ft(I("x",r,t,e),n,o)]}case"StridedSlice":{let n=I("begin",r,t,e),o=I("end",r,t,e),s=I("strides",r,t,e),i=I("beginMask",r,t,e),a=I("endMask",r,t,e),u=I("ellipsisMask",r,t,e),l=I("newAxisMask",r,t,e),c=I("shrinkAxisMask",r,t,e),p=I("x",r,t,e);return[zh(p,n,o,s,i,a,u,l,c)]}case"Pack":return V(()=>{let n=I("axis",r,t,e),o=I("tensors",r,t,e),s=o[0].shape,i=zr(o[0]).shape,a=o.map(u=>{let l=x.arraysEqual(u.shape,s);if(!l&&!x.arraysEqual(zr(u).shape,i))throw new Error("the input tensors shape does not match");return l?u:R(u,s)});return[Ze(a,n)]});case"Unpack":{let n=I("axis",r,t,e),o=I("tensor",r,t,e);return vr(o,n)}case"Tile":{let n=I("reps",r,t,e);return[kr(I("x",r,t,e),n)]}case"Split":case"SplitV":{let n=I("axis",r,t,e),o=I("numOrSizeSplits",r,t,e),s=I("x",r,t,e);return ur(s,o,n)}case"ScatterNd":{let n=I("indices",r,t,e),o=I("values",r,t,e),s=I("shape",r,t,e);return[CE(n,o,s)]}case"GatherNd":{let n=I("x",r,t,e),o=I("indices",r,t,e);return[SE(n,o)]}case"SparseToDense":{let n=I("sparseIndices",r,t,e),o=I("outputShape",r,t,e),s=I("sparseValues",r,t,e),i=I("defaultValue",r,t,e);return[Jx(n,s,o,s.dtype===i.dtype?i:Z(i,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var XD=(r,t,e)=>{switch(r.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:o,emptyRowIndicator:s,reverseIndexMap:i}=Uh.sparseFillEmptyRows(I("indices",r,t,e),I("values",r,t,e),I("denseShape",r,t,e),I("defaultValue",r,t,e));return[n,o,s,i]}case"SparseReshape":{let{outputIndices:n,outputShape:o}=Uh.sparseReshape(I("inputIndices",r,t,e),I("inputShape",r,t,e),I("newShape",r,t,e));return[n,o]}case"SparseSegmentMean":return[Uh.sparseSegmentMean(I("data",r,t,e),I("indices",r,t,e),I("segmentIds",r,t,e))];case"SparseSegmentSum":return[Uh.sparseSegmentSum(I("data",r,t,e),I("indices",r,t,e),I("segmentIds",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var YD=(r,t,e)=>{switch(r.op){case"FFT":return[al(I("x",r,t,e))];case"IFFT":return[Ui(I("x",r,t,e))];case"RFFT":return[ll(I("x",r,t,e))];case"IRFFT":return[gc(I("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var ZD=(r,t,e)=>{switch(r.op){case"StringNGrams":{let{nGrams:n,nGramsSplits:o}=uy.stringNGrams(I("data",r,t,e),I("dataSplits",r,t,e),I("separator",r,t,e),I("nGramWidths",r,t,e),I("leftPad",r,t,e),I("rightPad",r,t,e),I("padWidth",r,t,e),I("preserveShortSequences",r,t,e));return[n,o]}case"StringSplit":{let{indices:n,values:o,shape:s}=uy.stringSplit(I("input",r,t,e),I("delimiter",r,t,e),I("skipEmpty",r,t,e));return[n,o,s]}case"StringToHashBucketFast":return[uy.stringToHashBucketFast(I("input",r,t,e),I("numBuckets",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var JD=(r,t,e)=>{switch(r.op){case"Cast":return[Z(I("x",r,t,e),I("dtype",r,t,e))];case"ExpandDims":{let n=I("axis",r,t,e);return[fr(I("x",r,t,e),n)]}case"Squeeze":{let n=I("axis",r,t,e);return[zr(I("x",r,t,e),n)]}case"Reshape":return[R(I("x",r,t,e),I("shape",r,t,e))];case"MirrorPad":return[Dh(I("x",r,t,e),I("padding",r,t,e),I("mode",r,t,e))];case"PadV2":case"Pad":return[Zr(I("x",r,t,e),I("padding",r,t,e),I("constantValue",r,t,e))];case"SpaceToBatchND":{let n=I("blockShape",r,t,e),o=I("paddings",r,t,e);return[nl(I("x",r,t,e),n,o)]}case"BatchToSpaceND":{let n=I("blockShape",r,t,e),o=I("crops",r,t,e);return[Ya(I("x",r,t,e),n,o)]}case"DepthToSpace":{let n=I("blockSize",r,t,e),o=I("dataFormat",r,t,e).toUpperCase();return[vh(I("x",r,t,e),n,o)]}case"BroadcastTo":return[Za(I("x",r,t,e),I("shape",r,t,e))];case"BroadcastArgs":return[WI(I("s0",r,t,e),I("s1",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Sk(r,t,e,n){let o=((s,i,a)=>{switch(s.category){case"arithmetic":return V(()=>_D(s,i,a));case"basic_math":return V(()=>ED(s,i,a));case"control":return OD(s,i,a);case"convolution":return V(()=>PD(s,i,a));case"creation":return V(()=>LD(s,i,a));case"dynamic":return zD(s,i,a);case"evaluation":return V(()=>BD(s,i,a));case"image":return V(()=>WD(s,i,a));case"graph":return V(()=>VD(s,i,a));case"logical":return V(()=>UD(s,i,a));case"matrices":return V(()=>HD(s,i,a));case"normalization":return V(()=>qD(s,i,a));case"reduction":return V(()=>KD(s,i,a));case"slice_join":return V(()=>jD(s,i,a));case"sparse":return V(()=>XD(s,i,a));case"spectral":return V(()=>YD(s,i,a));case"string":return V(()=>ZD(s,i,a));case"transformation":return V(()=>JD(s,i,a));case"hash_table":return GD(s,i,a,n);case"custom":let u=xb(s.op);if(u&&u.customExecutor)return u.customExecutor(new Eb(s,i,a));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return x.isPromise(o)?o.then(s=>[].concat(s)):[].concat(o)}var cg=class{constructor(t={},e={},n={},o={}){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;e<this.contexts.length-1;e++){let n=this.contexts.slice(0,this.contexts.length-e);t.push(this.contextIdforContexts(n))}t.push(""),this._currentContextIds=t}contextIdforContexts(t){return t?t.map(e=>e.id===0&&e.iterationId===0?"":`${e.frameName}-${e.iterationId}`).join("/"):""}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function kk(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=Object.keys(r).map(m=>In(m)[0]),c=[];n!=null&&(c=n.map(m=>In(m.name)[0]));let p=[...t];for(;p.length>0;){let m=p.pop();if((Nk(m)||IZ(m)||SZ(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&l.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function QD(r,t,e){let{usedNodes:n,inputs:o}=e,s=[],i=Object.keys(o).map(c=>In(c)[0]).map(c=>r.nodes[c]),a=r.initNodes;i.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),a!=null&&a.forEach(c=>{n.has(c.name)&&s.push(c)});let u=new Set,l=[];for(;s.length>0;){let c=s.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(p=>{!u.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>u.has(m.name))&&s.push(p)})}return l}var wZ=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],vZ=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],CZ=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Nk(r){return wZ.indexOf(r.op)>=0}function IZ(r){return vZ.indexOf(r.op)>=0}function SZ(r){return CZ.indexOf(r.op)>=0}var Wc=class{constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new Wc(t.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(t){let e=Object.keys(t).map(n=>t[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(t,e){let n=kk(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let a=e.map(l=>l.name),u=Object.keys(t);throw new Error(`Cannot compute the outputs [${a}] from the provided inputs [${u}]. Missing the following inputs: [${o}]`)}return QD(this.graph,this.weightMap,n)}execute(t,e){t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(p=>this.graph.nodes[In(p)[0]]),s=e.map(p=>In(p)[0]),i=s.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),i.length===0&&(i=this._outputs);let a=this.getCompilationKey(o,i),u=this.compiledMap.get(a);u==null&&(u=this.compile(t,i),this.compiledMap.set(a,u));let l={},c={};return V(()=>{let p=new cg(this.weightMap,l,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(t).forEach(h=>{let[g,y]=In(h),b=[];b[y]=t[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<u.length;h++){let g=u[h];if(!m[g.name]){let y=Sk(g,m,p,this._resourceManager);if(x.isPromise(y))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=y,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),e.map(h=>Cr(h,m,p))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){e.category==="control"||i.indexOf(t)!==-1||(n[t].forEach(u=>{u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length)}),e.inputs.forEach(u=>{if(u.category!=="control"){let l=SD(u.name,n,o);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!s.has(c.id)){let p=a[c.id];if(p===1){if(!this.keepTensorForDebug)c.dispose();else{let[m,f]=Fo(e.name,o);this.intermediateTensors[m]?this.intermediateTensors[m][f]=c:(this.intermediateTensors[m]=[],this.intermediateTensors[m][f]=c)}delete a[c.id]}else p!=null&&a[c.id]--}})}}))}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(t=>this.intermediateTensors[t].forEach(e=>e.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(t=>{this.tensorsMap[t].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let t in this.intermediateTensors)this.intermediateTensors[t].forEach(e=>e.dispose()),delete this.intermediateTensors[t]}async _executeAsync(t,e,n=!1,o={},s={}){n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepTensorForDebug=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){console.warn(c.message)}this.resetIntermediateTensors();let i=new cg(this.weightMap,o,s,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(t,i,e,n);let a=e.map(c=>Cr(c,this.tensorsMap,i)),u=a.map(c=>c.id),l=Object.keys(t).map(c=>t[c].id);return this.keepIds=new Set([...u,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&i.dispose(this.keepIds),a}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(w=>this.graph.nodes[In(w)[0]]),a=n.map(w=>In(w)[0]),u=a.map(w=>this.graph.nodes[w]);u.length===0&&(u=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:p,syncInputs:m}=kk(t,u,this.weightMap,this._initNodes),f=[...i,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:e.currentContext})),d=Object.assign({},this.weightMap);Object.keys(t).forEach(w=>{let[v,k]=In(w),_=[];_[k]=t[w],d[v]=_});let h={},g=this.getFrozenTensorIds(d),y={};for(;f.length>0;){let w=this.processStack(i,f,e,d,y,g,a,h,l);await Promise.all(w)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=u.filter(w=>!Nk(w)&&!Cr(w.name,d,e)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&I("isConstant",p.node,o,n)&&([m]=Fo(p.node.name,n)),o[p.node.name]==null){let f=Sk(p.node,o,n,this._resourceManager);m||([m]=Fo(p.node.name,n));let d=n.currentContext;x.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=Fo(a.name,n);s[u]||!i.has(a.name)||(a.op==="Merge"?a.inputNames.some(l=>!!Cr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!Cr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=In(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);x.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&x.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){let e={};for(let n in t)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];e[o.name]=t[n]}else e[n]=t[n];return e}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=In(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[e]!=null?this._signature.outputs[e].name:e,{})}checkOutputs(t){t.forEach(e=>{let[n]=In(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var Fb=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var kZ="?tfjs-format=file",NZ="model.json",pg=class{constructor(t,e={}){this.modelUrl=t,this.loadOptions=e,this.version="n/a",e==null&&(this.loadOptions={}),this.resourceManager=new Fb}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=Mr.browserHTTPRequest(t,this.loadOptions);else{let e=Mr.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(Mr.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let t=this.handler.load();return x.isPromise(t)?t.then(e=>this.loadSync(e)):this.loadSync(t)}loadSync(t){this.artifacts=t;let e=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${e.versions.producer}.${e.versions.minConsumer}`;let o=Mr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Wc(ug.Instance.transformGraph(e,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=ug.Instance.transformGraph(t.modelInitializer);this.initializer=new Wc(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(t,e){if(typeof t=="string"){let n=Mr.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return t.save(this.artifacts)}predict(t,e){return this.execute(t,this.outputNodes)}normalizeInputs(t){if(!(t instanceof zt)&&!Array.isArray(t))return t;if(t=Array.isArray(t)?t:[t],t.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${t.length} input tensors.`);return this.inputNodes.reduce((e,n,o)=>(e[n]=t[o],e),{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}execute(t,e){t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=this.executor.execute(t,e);return n.length>1?n:n[0]}async executeAsync(t,e){t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function TZ(r,t={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof r=="string"&&(r=EZ(r));let e=new pg(r,t);return await e.load(),e}function _Z(r){if(r==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!r.load)throw new Error(`modelUrl IO Handler ${r} has no load function`);let t=new pg(r);return t.load(),t}function EZ(r){return r.endsWith("/")||(r=r+"/"),`${r}${NZ}${kZ}`}var tF="3.18.0";var OF={};Zt(OF,{CSVDataset:()=>Jf,Dataset:()=>fi,FileDataSource:()=>nd,TextLineDataset:()=>Zf,URLDataSource:()=>od,array:()=>kF,csv:()=>AF,func:()=>$F,generator:()=>DF,microphone:()=>RF,version_data:()=>tN,webcam:()=>FF,zip:()=>NF});var SF=Mu(Fk());var vF=Mu(Fk());function gF(r,t){return Ob(r,t)}function Ob(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob=="function"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error("Circular references are not supported.");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(yu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=Ob(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function xF(r,t=Ok){return yF(r,t)}function yF(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error("Circular references are not supported.");let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(yu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=yF(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function Ok(r){return r===null?null:yu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function Mb(r,t){let e=new Map;Ob(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(x.isPromise(s)){let i=await s;e.set(o,i)}}return Ob(r,t,e)}function yu(r){let t=!1;if(G().get("IS_BROWSER"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=Rk();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof zt)&&!(r instanceof Promise)&&!t)}function bF(r){return r==null||MZ(r)||Array.isArray(r)||typeof r=="object"&&r instanceof zt||x.isTypedArray(r)}function MZ(r){return r===null||typeof r!="object"&&typeof r!="function"}function wF(r){return gF(r,PZ)}function PZ(r){return r instanceof zt?{value:r.clone(),recurse:!1}:yu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var Yf=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(t<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError("Can't get item at a negative index.");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError("Can't set item at a negative index.");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var Hc=class extends Yf{constructor(){super(Hc.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;o<n;o++)e[o]=this.get(this.wrap(this.begin+o));this.data=e,this.capacity=t,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Hc.INITIAL_CAPACITY=32;function jk(r){return new Mk(r)}function mg(r){return new Pk(r)}function CF(r,t){return new Lb(r,t)}function IF(r,t=vl.FAIL){return new qk(r,t)}var er=class{async toArray(){let t=[],e=await this.next();for(;!e.done;)t.push(e.value),e=await this.next();return t}async toArrayForTest(){let t=this.prefetch(100),e=[],n=await t.next();for(;!n.done;)e.push(n.value),n=await t.next();return e}async resolveFully(){let t=await this.next();for(;!t.done;)t=await this.next()}async resolveWhile(t){let e=await this.next(),n=t(e.value);for(;!e.done&&n;)e=await this.next(),n=t(e.value)}handleErrors(t){return new Uk(this,t)}filter(t){return new Gk(this,t)}map(t){return new Wk(this,t)}mapAsync(t){return new Pb(this,t)}serialMapAsync(t){return new Pb(this,t).serial()}flatmap(t){return new Hk(this,t)}async forEachAsync(t){return this.map(t).resolveFully()}async serialForEach(t){return this.serialMapAsync(t).resolveWhile(e=>e===!0)}rowMajorBatch(t,e=!0){return new Vk(this,t,e)}columnMajorBatch(t,e=!0,n=Ok){return this.rowMajorBatch(t,e).map(s=>xF(s,n))}concatenate(t,e){return new Lb(jk([this,t]),e)}take(t){return t<0||t==null?this:new Bk(this,t)}skip(t){return t<0||t==null?this:new zk(this,t)}prefetch(t){return new zb(this,t)}shuffle(t,e){return new Kk(this,t,e)}serial(){return new Lk(this)}},Mk=class extends er{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:wF(t),done:!1}}},Pk=class extends er{constructor(t){super(),this.nextFn=t}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},Lk=class extends er{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},zk=class extends er{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let t=await this.upstream.next();if(t.done)return t;_t(t.value)}return this.upstream.next()}},Bk=class extends er{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Vk=class extends er{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length<this.batchSize;){let e=await this.upstream.next();if(e.done)return this.enableSmallLastBatch&&t.length>0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},Gk=class extends er{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;_t(t.value)}}},Wk=class extends er{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=ho.getTensorsInContainer(t.value),n=this.transform(t.value),o=ho.getTensorsInContainer(n);for(let s of e)ho.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Uk=class extends er{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},Pb=class extends er{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=ho.getTensorsInContainer(t.value),n=await this.transform(t.value),o=ho.getTensorsInContainer(n);for(let s of e)ho.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},qc=class extends er{constructor(){super(),this.outputQueue=new Hc,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Hk=class extends qc{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=ho.getTensorsInContainer(t.value),n=this.transform(t.value),o=ho.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)ho.isTensorInList(s,o)||s.dispose();return!0}},Lb=class extends er{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},vl;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(vl||(vl={}));var qk=class extends er{constructor(t,e=vl.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof er?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await Mb(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case vl.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case vl.SHORTEST:return{value:null,done:!0};case vl.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},zb=class extends er{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new Yf(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},Kk=class extends zb{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=vF.alea(n||x.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var fi=class{constructor(){this.size=null}batch(t,e=!0){let n=this;x.assert(t>0,()=>`batchSize needs to be positive, but it is
|
|
${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),Fn(async()=>(await n.iterator()).columnMajorBatch(t,e,LZ),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,Fn(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,Fn(async()=>(await e.iterator()).filter(o=>V(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return Fn(async()=>(await e.iterator()).map(n=>V(()=>t(n))),this.size)}mapAsync(t){let e=this;return Fn(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let e=this;return Fn(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,Fn(async()=>{let o=mg(async()=>({value:await e.iterator(),done:!1}));return CF(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size<t||t===void 0||t<0)?n=0:n=null,Fn(async()=>(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=SF.alea(e||x.now().toString());return Fn(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,Fn(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};fi.MAX_BUFFER_SIZE=1e4;function Fn(r,t=null){return new class extends fi{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function kF(r){return Fn(async()=>jk(r),r.length)}function NF(r){if(!yu(r))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(r))for(let e=0;e<r.length;e++)t=t==null?r[e].size:Math.min(t,r[e].size);else if(r instanceof Object)for(let e in r)t=t==null?r[e].size:Math.min(t,r[e].size);return Fn(async()=>{let e=await Mb(r,n=>{if(n instanceof fi)return{value:n.iterator(),recurse:!1};if(yu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return IF(e,vl.SHORTEST)},t)}function LZ(r){if(r===null)return null;let t=r[0];return bF(t)?{value:zZ(r),recurse:!1}:{value:null,recurse:!0}}function zZ(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof zt?Ze(r):Ar(r)}var Zf=class extends fi{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var Bb='"',fg=Symbol("out"),TF=Symbol("field"),Vb=Symbol("quote"),Xk=Symbol("quoteafterquote"),_F=Symbol("quoteinquote"),Jf=class extends fi{constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Zf(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(x.assert(e.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=e.delimiter?e.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&t&&x.assert(t.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+t.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(x.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let n=e.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let i=this.fullColumnNames[s],a=this.columnConfigs?this.columnConfigs[i]:null;if(!(this.configuredColumnsOnly&&!a)){let u=e[s],l=null;if(u==="")if(a&&a.default!==void 0)l=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${i} is empty in this line: ${t}`);l=void 0}else{let c=Number(u);if(isNaN(c))a&&a.dtype==="bool"?l=this.getBoolean(u):l=u;else if(!a||!a.dtype)l=c;else switch(a.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(u);break;default:l=c}}a&&a.isLabel?o[i]=l:n[i]=l}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(t){return t==="1"||t.toLowerCase()==="true"?1:0}parseRow(t,e=!0){let n=[],o=0,s=t.length,i=fg;for(let a=0;a<s;a++)switch(i){case fg:switch(t.charAt(a)){case Bb:o=a+1,i=Vb;break;case this.delimiter:if(o=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),i=fg;break;default:i=TF,o=a;break}break;case TF:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a)),i=fg,o=a+1;break;default:}break;case Vb:switch(t.charAt(a)){case Bb:i=Xk;break;default:}break;case Xk:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a-1)),i=fg,o=a+1;break;case Bb:i=Vb;break;default:i=_F;break}break;case _F:switch(t.charAt(a)){case Bb:i=Vb;break;default:}break;default:}if(i===Xk?n.push(t.substring(o,s-1)):n.push(t.substring(o)),e&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var Qf=class extends er{constructor(t){super(),this.microphoneConfig=t,this.isClosed=!1,this.fftSize=t.fftSize||1024;let e=Math.log2(this.fftSize);if(this.fftSize<0||e<4||e>14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(t={}){if(!G().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let e=new Qf(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(x.sizeFromShape(e));return n.set(t,n.length-t.length),Ar(n,e)}};var td=class extends er{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Fe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=Hi([i,s,u,a],[1,4])}else this.cropBox=Hi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(t,e={}){if(!G().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!t){if(t=document.createElement("video"),!e.resizeWidth||!e.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new td(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&x.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=Ox.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return V(()=>{let e=fr(Z(t,"float32"),0),n;n=hn.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var ed=class{};var dg=class extends er{split(t){return new Yk(this,t)}},Yk=class extends dg{constructor(t,e){super(),this.upstream=t,this.impl=new Zk(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Zk=class extends qc{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var Gb=class extends er{decodeUTF8(){return new Jk(this)}},Jk=class extends dg{constructor(t){super(),this.upstream=t,this.impl=new Qk(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Qk=class extends qc{constructor(t){if(super(),this.upstream=t,G().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:e}=Rk();this.decoder=new e("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return G().get("IS_BROWSER")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var rd=class extends Gb{constructor(t,e={}){super(),this.file=t,this.options=e,x.assert(t instanceof Uint8Array||(G().get("IS_BROWSER")?t instanceof File||t instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));e(u)},s.onabort=a=>n(new Error("Aborted")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function EF(r,t={},e){let n,o;typeof r=="string"?n=r:(n=r.url,o=BZ(r));let s=await(e||x.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new rd(i,t)}else throw new Error(s.statusText)}var BZ=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function Wb(r){return typeof r=="string"&&r.slice(0,7)==="file://"}var nd=class extends ed{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(Wb(this.input)&&G().get("IS_NODE")){let t=Ub();this.input=t.readFileSync(this.input.slice(7))}return new rd(this.input,this.options)}};var od=class extends ed{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return Wb(this.url)?new nd(this.url,this.fileOptions).iterator():EF(this.url,this.fileOptions)}};function AF(r,t={}){return new Jf(new od(r),t)}function $F(r){let t=mg(r);return Fn(async()=>t)}function DF(r){return Fn(async()=>{let t=await r();return mg(()=>t.next())})}async function FF(r,t){return td.create(r,t)}async function RF(r){return Qf.create(r)}var tN="3.18.0";function ot(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&x.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var VZ=Gr.whereImpl,bu=class extends Xo{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new ea(this,xo())}nextDataId(){return bu.nextDataId++}write(t,e,n){this.firstUse&&(this.firstUse=!1,G().get("IS_NODE")&&S.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&x.isString(n[0])){let s=n.map(i=>x.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return this.data.get(t).values}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>x.decodeString(o));return Ct(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ct(t.shape,t.dtype,e)}makeOutput(t,e,n){return xo().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=x.now();return t(),{kernelMs:x.now()-e}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(t){ot([t],"where");let e=this.readSync(t.dataId);return VZ(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};bu.nextDataId=0;var sw={};Zt(sw,{addImpl:()=>rN,bincountImpl:()=>ad,bincountReduceImpl:()=>Hb,ceilImpl:()=>nN,concatImpl:()=>Kc,equalImpl:()=>oN,expImpl:()=>iN,expm1Impl:()=>lN,floorImpl:()=>uN,gatherNdImpl:()=>qb,gatherV2Impl:()=>Kb,greaterEqualImpl:()=>pN,greaterImpl:()=>cN,lessEqualImpl:()=>fN,lessImpl:()=>mN,linSpaceImpl:()=>jb,logImpl:()=>dN,maxImpl:()=>Xb,maximumImpl:()=>hN,minimumImpl:()=>gN,multiplyImpl:()=>hg,negImpl:()=>xN,notEqualImpl:()=>yN,prodImpl:()=>bN,rangeImpl:()=>Xc,rsqrtImpl:()=>wN,scatterImpl:()=>Cl,sigmoidImpl:()=>iR,simpleAbsImpl:()=>eN,sliceImpl:()=>Yc,sparseFillEmptyRowsImpl:()=>Yb,sparseReshapeImpl:()=>Zb,sparseSegmentReductionImpl:()=>ud,sqrtImpl:()=>uR,squaredDifferenceImpl:()=>CN,stridedSliceImpl:()=>Jb,stringNGramsImpl:()=>Qb,stringSplitImpl:()=>tw,stringToHashBucketFastImpl:()=>ew,subImpl:()=>SN,tileImpl:()=>rw,topKImpl:()=>nw,transposeImpl:()=>ld,uniqueImpl:()=>ow});function eN(r){let t=new Float32Array(r.length);for(let e=0;e<r.length;++e)t[e]=Math.abs(r[e]);return t}var GZ=r=>{let{x:t}=r.inputs,e=r.backend;ot(t,"abs");let n=new Float32Array(x.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=eN(o),e.makeOutput(n,t.shape,t.dtype)},MF={kernelName:wi,backendName:"cpu",kernelFunc:GZ};function re(r){return(t,e,n,o,s)=>{let i=S.assertAndGetBroadcastShape(t,e),a=i.length,u=x.computeStrides(i),l=x.sizeFromShape(i),c=x.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=x.computeStrides(t),d=x.computeStrides(e),h=S.getBroadcastDims(t,i),g=S.getBroadcastDims(e,i);if(h.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=r(n[y%n.length],o[y%o.length]);else for(let y=0;y<c.length;++y){let b=x.indexToLoc(y,a,u),w=b.slice(-p);h.forEach($=>w[$]=0);let v=x.locToIndex(w,p,f),k=b.slice(-m);g.forEach($=>k[$]=0);let _=x.locToIndex(k,m,d);c[y]=r(n[v],o[_])}return[c,i]}}function Ir(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,"complex64"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,"float32",s),imag:e.makeTensorInfo(o.shape,"float32",i)},a}var PF={kernelName:Op,backendName:"cpu",kernelFunc:Ir};function sd(r,t,e="float32"){if(e==="complex64"){let o=sd(r,t,"float32"),s=sd(r,t,"float32");return Ir({inputs:{real:o,imag:s},backend:r})}let n=x.makeZerosTypedArray(x.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function qr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var LF={kernelName:uo,backendName:"cpu",kernelFunc:qr};function Ro(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var zF={kernelName:tm,backendName:"cpu",kernelFunc:Ro};function Oo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return qr({inputs:{x:o},backend:e});let i=sd(e,o.shape,o.dtype),a=Oo({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=Ir({inputs:{real:a,imag:i},backend:e});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=Ro({inputs:{input:o},backend:e}),a=Oo({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!x.hasEncodingLoss(o.dtype,s)){let i=qr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=e.data.get(o.dataId).values,a=Int32Array.from(i);return e.makeTensorInfo(o.shape,"int32",a)}if(s==="bool"){let i=e.data.get(o.dataId).values,a=x.toTypedArray([0],o.dtype),[u,l]=re((c,p)=>c!==p?1:0)(o.shape,[],i,a,"bool");return e.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var BF={kernelName:ao,backendName:"cpu",kernelFunc:Oo};function ie(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;ot([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype==="string"?S.fromUint8ToStringArray(l):l,m=i.dtype==="string"?S.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype==="complex64"||a.dtype==="complex64"){let l=Oo({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=Oo({inputs:{x:a},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(h.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(y.dataId).values,v=u.data.get(b.dataId).values,[k,_,$]=e(i.shape,a.shape,f,d,w,v),D=u.makeTensorInfo($,"float32",k),F=u.makeTensorInfo($,"float32",_),P=Ir({inputs:{real:D,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo(D),u.disposeIntermediateTensorInfo(F),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function id(r){return(t,e,n,o,s,i)=>{let a=S.assertAndGetBroadcastShape(t,e),u=x.sizeFromShape(a),l=a.length,c=x.computeStrides(a),p=x.getTypedArrayFromDType("float32",u),m=x.getTypedArrayFromDType("float32",u),f=S.getBroadcastDims(t,a),d=S.getBroadcastDims(e,a),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,i),y=t.length,b=x.computeStrides(t),w=e.length,v=x.computeStrides(e);if(f.length+d.length===0)for(let k=0;k<p.length;k++){let _=k%h.length,$=k%g.length,D=r(h[_*2],h[_*2+1],g[$*2],g[$*2+1]);p[k]=D.real,m[k]=D.imag}else for(let k=0;k<p.length;k++){let _=x.indexToLoc(k,l,c),$=_.slice(-y);f.forEach(U=>$[U]=0);let D=x.locToIndex($,y,b),F=_.slice(-w);d.forEach(U=>F[U]=0);let P=x.locToIndex(F,w,v),B=r(h[D*2],h[D*2+1],g[P*2],g[P*2+1]);p[k]=B.real,m[k]=B.imag}return[p,m,a]}}var rN=re((r,t)=>r+t),WZ=id((r,t,e,n)=>({real:r+e,imag:t+n})),Ji=ie(Xn,rN,WZ),VF={kernelName:Xn,backendName:"cpu",kernelFunc:Ji};function ad(r,t,e,n,o){let s=x.sizeFromShape(n),i=x.makeZerosTypedArray(o,e);for(let a=0;a<r.length;a++){let u=r[a];if(u<0)throw new Error("Input x must be non-negative!");u>=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function Hb(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=Ct([o,e],t.dtype);for(let a=0;a<o;a++)for(let u=0;u<s;u++){let l=r.get(a,u);if(l<0)throw new Error("Input x must be non-negative!");l>=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}function Sn(r){return(t,e,n)=>{let o=x.getTypedArrayFromDType(e,t.length);for(let s=0;s<t.length;++s)o[s]=r(t[s],n);return o}}function Et(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;if(ot(i,r),i.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let a=s,u=a.data.get(i.dataId).values,l=x.sizeFromShape(i.shape),c=e||i.dtype,p=x.getArrayFromDType(c,l);for(let m=0;m<l;++m)p[m]=t(u[m],o);return a.makeTensorInfo(i.shape,c,p)}}function Mo(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;if(ot(i,r),i.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let a=s,u=a.data.get(i.dataId).values,l=e||i.dtype,c=t(u,l,o);return a.makeTensorInfo(i.shape,l,c)}}var nN=Sn(r=>Math.ceil(r)),UZ=Mo(rs,nN),GF={kernelName:rs,backendName:"cpu",kernelFunc:UZ};function Kc(r,t,e,n){let o=x.getArrayFromDType(e,x.sizeFromShape(t));if(n&&e!=="string"){let s=0;r.forEach(i=>{let a=x.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e==="string"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+s;for(let p=0;p<i.shape[1];++p)o[c+p]=a[u++]}s+=i.shape[1]})}return o}var oN=re((r,t)=>r===t?1:0),sN=ie(ga,oN,null,"bool"),WF={kernelName:ga,backendName:"cpu",kernelFunc:sN};var iN=Sn(r=>Math.exp(r)),aN=Mo(ps,iN,"float32"),UF={kernelName:ps,backendName:"cpu",kernelFunc:aN};var lN=Sn(r=>Math.expm1(r)),HZ=Mo(xa,lN),HF={kernelName:xa,backendName:"cpu",kernelFunc:HZ};var uN=Sn(r=>Math.floor(r)),qZ=Mo(ms,uN),qF={kernelName:ms,backendName:"cpu",kernelFunc:qZ};function qb(r,t,e,n,o,s,i,a,u){let l=Ct([n,s],e);for(let c=0;c<n;c++){let p=[],m=0;for(let f=0;f<o;f++){let d=r[c*o+f];m+=d*i[f],p.push(d)}if(m<0||m>=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;f<s;f++)l.values[c*s+f]=t.get(...t.indexToLoc(m*s+f))}return l}function Kb(r,t,e){let n=Ct(e,r.dtype);for(let o=0;o<n.size;++o){let i=n.indexToLoc(o).slice(),a=i[0],u=i[2],l=t.locToIndex([a,u]);i[2]=t.values[l];let c=r.locToIndex(i);0<=c&&c<r.values.length&&(n.values[o]=r.values[c])}return n}var cN=re((r,t)=>r>t?1:0),KZ=ie(wa,cN,null,"bool"),KF={kernelName:wa,backendName:"cpu",kernelFunc:KZ};var pN=re((r,t)=>r>=t?1:0),jZ=ie(hs,pN,null,"bool"),jF={kernelName:hs,backendName:"cpu",kernelFunc:jZ};var mN=re((r,t)=>r<t?1:0),XZ=ie(Sa,mN,null,"bool"),XF={kernelName:Sa,backendName:"cpu",kernelFunc:XZ};var fN=re((r,t)=>r<=t?1:0),YZ=ie(ka,fN,null,"bool"),YF={kernelName:ka,backendName:"cpu",kernelFunc:YZ};function jb(r,t,e){let n=(t-r)/(e-1),o=x.makeZerosTypedArray(e,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var dN=Sn(r=>Math.log(r)),ZZ=Mo(xs,dN),ZF={kernelName:xs,backendName:"cpu",kernelFunc:ZZ};function Xb(r,t,e,n){let o=x.getTypedArrayFromDType(n,x.sizeFromShape(e));for(let s=0;s<o.length;++s){let i=s*t,a=r[i];for(let u=0;u<t;++u){let l=r[i+u];(Number.isNaN(l)||l>a)&&(a=l)}o[s]=a}return o}var hN=re((r,t)=>Math.max(r,t)),JZ=ie(bs,hN),JF={kernelName:bs,backendName:"cpu",kernelFunc:JZ};var gN=re((r,t)=>Math.min(r,t)),QZ=ie(Is,gN),QF={kernelName:Is,backendName:"cpu",kernelFunc:QZ};var hg=re((r,t)=>r*t),t9=id((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),jc=ie(ks,hg,t9),tR={kernelName:ks,backendName:"cpu",kernelFunc:jc};function xN(r,t,e){let n=x.createScalarValue(-1,e);return hg([],t,n,r,e)}function e9(r){let{inputs:t,backend:e}=r,{x:n}=t;ot(n,"neg");let o=e.data.get(n.dataId).values,[s,i]=xN(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var eR={kernelName:ki,backendName:"cpu",kernelFunc:e9};var yN=re((r,t)=>r!==t?1:0),r9=ie(Ea,yN,null,"bool"),rR={kernelName:Ea,backendName:"cpu",kernelFunc:r9};function ld(r,t,e,n,o){let s=t.length,i=x.sizeFromShape(t),a=x.computeStrides(t),u=x.computeStrides(o),l=x.getTypedArrayFromDType(e,x.sizeFromShape(o));for(let c=0;c<i;++c){let p=x.indexToLoc(c,s,a),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=x.locToIndex(m,s,u);l[f]=r[c]}return l}function He(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{perm:s}=e;ot(o,"transpose");let i=o.shape.length,a=new Array(i);for(let p=0;p<a.length;p++)a[p]=o.shape[s[p]];let u=n.data.get(o.dataId).values,l=ld(u,o.shape,o.dtype,s,a);return{dataId:n.write(l,a,o.dtype),shape:a,dtype:o.dtype}}var nR={kernelName:Zn,backendName:"cpu",kernelFunc:He};function bN(r,t,e,n){let[o,s]=S.computeOutAndReduceShapes(r,n),i=ar(t,"int32"),a=x.makeZerosTypedArray(x.sizeFromShape(o),i),u=x.sizeFromShape(s);for(let l=0;l<a.length;++l){let c=l*u,p=1;for(let m=0;m<u;++m)p*=e[c+m];a[l]=p}return{outVals:a,outShape:o,outDtype:i}}function n9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;ot(o,"prod");let a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=S.getAxesPermutation(u,a),c=u,p=o,m=[];l!=null&&(p=He({inputs:{x:o},backend:e,attrs:{perm:l}}),m.push(p),c=S.getInnerMostAxes(c.length,a));let f=e.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=bN(p.shape,p.dtype,f,c),y=h;return i&&(y=S.expandShapeToKeepDim(h,u)),m.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(y,g,d)}var oR={kernelName:As,backendName:"cpu",kernelFunc:n9};function Xc(r,t,e,n){let o=r===t,s=r<t&&e<0,i=t<r&&e>1;if(o||s||i)return x.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=x.makeZerosTypedArray(a,n);t<r&&e===1&&(e=-1),u[0]=r;for(let l=1;l<u.length;l++)u[l]=u[l-1]+e;return u}var wN=Sn(r=>1/Math.sqrt(r)),o9=Mo(Ms,wN),sR={kernelName:Ms,backendName:"cpu",kernelFunc:o9};function Cl(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return Ct(e,t.dtype);let f=Ct(c,t.dtype);typeof u=="string"||typeof u=="number"?f.values.fill(u):typeof u=="boolean"&&f.values.fill(+u);for(let d=0;d<s;d++){let h=[],g=0;for(let y=0;y<i;y++){let b=p[d*i+y];h.push(b),g+=b*a[y]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let y=0;y<o;y++)l?f.values[g*o+y]+=m[d*o+y]:f.values[g*o+y]=t.rank===0?m[0]:m[d*o+y]}return f}var iR=Sn(r=>1/(1+Math.exp(-r))),vN=Et(Ls,r=>1/(1+Math.exp(-r))),aR={kernelName:Ls,backendName:"cpu",kernelFunc:vN};function Yc(r,t,e,n,o){let s=Ve.isSliceContinous(n,t,e),i=x.sizeFromShape(e),a=x.computeStrides(n);if(s){let p=Ve.computeFlatOffset(t,a);return o==="string"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o==="string"?S.fromUint8ToStringArray(r):r,l=Ct(n,o,u),c=Ct(e,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+t[h]);c.set(l.get(...f),...m)}return o==="string"?S.fromStringArrayToUint8(c.values):c.values}function Po(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;ot(o,"slice");let[a,u]=Ve.parseSliceParams(o,s,i);Ve.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=Yc(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var lR={kernelName:Ai,backendName:"cpu",kernelFunc:Po};function Yb(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=x.getArrayFromDType(e,0),y=x.getArrayFromDType(o,0);return[g,[0,p],y,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g<a;++g){let y=r[g*p];if(y<0)throw new Error(S.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,u));++d[y],m=m&&y>=f,f=y}let h=!0;for(let g=0;g<u;++g){let y=d[g]===0;l[g]=y,h=h&&!y,d[g]=Math.max(d[g],1),g>0&&(d[g]+=d[g-1])}if(h&&m){let g=r,y=n;for(let b=0;b<a;++b)c[b]=b;return[g,[a,p],y,l,c]}else{let g=d[u-1],y=x.getArrayFromDType(e,g*p),b=x.getArrayFromDType(o,g),w=new Array(u).fill(0);for(let v=0;v<a;++v){let k=r[v*p],_=w[k],$=(k===0?0:d[k-1])+_;w[k]++;for(let D=0;D<p;++D)y[$*p+D]=r[v*p+D];b[$]=n[v],c[v]=$}for(let v=0;v<u;++v)if(w[v]===0){let _=v===0?0:d[v-1];y[_*p+0]=v;for(let $=1;$<p;++$)y[_*p+$]=0;b[_]=i}return[y,[g,p],b,l,c]}}function Zb(r,t,e,n,o){let s=x.sizeFromShape(n),i=t[0],a=o.length,u=[],l=1,c=-1;for(let g=0;g<a;++g){let y=o[g];if(y===-1){if(c!==-1)throw new Error(S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(y<0)throw new Error(S.getSparseReshapeNegativeOutputDimErrorMessage(g,y));l*=y,u.push(y)}}if(c!==-1){if(l<=0)throw new Error(S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(s/l);if(l*g!==s)throw new Error(S.getSparseReshapeInputOutputMultipleErrorMessage(n,u));u[c]=g}if(x.sizeFromShape(u)!==s)throw new Error(S.getSparseReshapeInputOutputMismatchErrorMessage(n,u));let m=n.length,f=[];if(m>0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=x.getArrayFromDType(e,i*a);for(let g=0;g<i;++g){let y=0;for(let b=0;b<m;++b)y+=r[g*m+b]*f[b];for(let b=0;b<a;++b)h[g*a+b]=Math.trunc(y/d[b]),y%=d[b]}return[h,[i,a],u]}function ud(r,t,e,n,o,s=!1,i=0){let a=n.length,u=[t[0],r.length/t[0]],l=u[1],p=a>0?o[a-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,v)=>w*v,1),d=x.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,y=0,b=o[h];for(;;){let w=0;if(g<a){if(w=o[g],b===w){++g;continue}if(b>=w)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>y&&d.fill(i,y*l,b*l);for(let v=h;v<g;++v){let k=n[v];if(k<0||k>=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v,n[v],u[0]));for(let _=0;_<l;_++)d[b*l+_]+=r[k*l+_]}if(s)for(let v=0;v<l;v++)d[b*l+v]/=g-h;if(h=g,++g,y=b+1,b=w,g>a)break}return y<p&&d.fill(i,y*l,p*l),[d,m]}var uR=Sn(r=>Math.sqrt(r)),s9=Et(zs,r=>Math.sqrt(r)),cR={kernelName:zs,backendName:"cpu",kernelFunc:s9};var CN=re((r,t)=>{let e=r-t;return e*e}),i9=ie(Gs,CN),pR={kernelName:Gs,backendName:"cpu",kernelFunc:i9};function Jb(r,t,e,n){let o=Ct(r,t.dtype);for(let s=0;s<o.size;s++){let i=o.indexToLoc(s),a=new Array(i.length);for(let u=0;u<a.length;u++)a[u]=i[u]*e[u]+n[u];o.set(t.get(...a),...i)}return o}var IN=class{constructor(t,e,n,o,s,i){this.separator=x.encodeString(t),this.nGramWidths=e,this.leftPad=x.encodeString(n),this.rightPad=x.encodeString(o),this.padWidth=s,this.preserveShort=i}getPadWidth(t){return Math.min(this.padWidth<0?t-1:this.padWidth,t-1)}getNumNGrams(t,e){let n=this.getPadWidth(e);return Math.max(0,t+2*n-e+1)}createNGrams(t,e,n,o,s,i){for(let a=0;a<s;++a){let u=this.getPadWidth(i),l=Math.max(0,u-a),c=Math.max(0,u-(s-(a+1))),p=i-(l+c),m=e+(l>0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;b<p;++b)f+=t[m+b].length;f+=c*this.rightPad.length,f+=(l+c+p-1)*this.separator.length,n[o+a]=new Uint8Array(f);let h=n[o+a],g=0,y=b=>b.forEach(w=>h[g++]=w);for(let b=0;b<l;++b)y(this.leftPad),y(this.separator);for(let b=0;b<p-1;++b)y(t[m+b]),y(this.separator);if(p>0){y(t[m+p-1]);for(let b=0;b<c;++b)y(this.separator),y(this.rightPad)}else{for(let b=0;b<c-1;++b)y(this.rightPad),y(this.separator);y(this.rightPad)}}}compute(t,e){let n=t.length,o=e.length;if(o>0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l<o;++l){let c=e[l]>=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=x.getArrayFromDType("int32",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u<s;++u){let l=e[u],c=i[u];if(this.nGramWidths.forEach(p=>{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth,f=1;this.createNGrams(t,l,a,c,f,m)}}return[a,i]}};function Qb(r,t,e,n,o,s,i,a){return new IN(e,n,o,s,i,a).compute(r,t)}function a9(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;s<r.length;++s)n.push(r.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=r.indexOf(s);for(;i!==-1;){let a=r.subarray(0,i);(!e||a.length!==0)&&n.push(a),r=r.subarray(i+1),i=r.indexOf(s)}(!e||r.length!==0)&&n.push(r);return}let o=0;for(let s=0;s<r.length+1;s++)if(s===r.length||t.indexOf(r[s])!==-1){let i=r.subarray(o,s);(!e||i.length!==0)&&n.push(i),o=s+1}}function tw(r,t,e){let n=r.length,o=[],s=0,i=0,a=new Array(n);for(let m=0;m<n;++m){let f=o.length;a9(r[m],t,e,o);let d=o.length-f;a[m]=d,s+=d,i=Math.max(i,d)}let u=x.getArrayFromDType("int32",s*2),l=new Array(s),c=[n,i],p=0;for(let m=0;m<n;++m)for(let f=0;f<a[m];++f)u[p*2]=m,u[p*2+1]=f,l[p]=o[p],++p;return[u,l,c]}function ew(r,t){let e=x.getArrayFromDType("int32",r.length);for(let n=0;n<r.length;++n)e[n]=x.fingerPrint64(r[n]).modulo(t).getLowBitsUnsigned();return e}var SN=re((r,t)=>r-t),l9=id((r,t,e,n)=>({real:r-e,imag:t-n})),gg=ie(Ws,SN,l9),mR={kernelName:Ws,backendName:"cpu",kernelFunc:gg};function rw(r,t){let e=new Array(r.rank);for(let o=0;o<e.length;o++)e[o]=r.shape[o]*t[o];let n=Ct(e,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),i=new Array(r.rank);for(let u=0;u<i.length;u++)i[u]=s[u]%r.shape[u];let a=r.locToIndex(i);n.values[o]=r.values[a]}return n}var xg=(r,t)=>{let e=t.value-r.value;return e===0?r.index-t.index:e};function fR(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));fR(r,t,m,f)}let o=r[t],s=e,i=n;for(x.swap(r,e,t),xg(r[n],o)>0&&x.swap(r,e,n);s<i;){for(x.swap(r,s,i),s++,i--;xg(r[s],o)<0;)s=s+1;for(;xg(r[i],o)>0;)i=i-1}xg(r[e],o)===0?x.swap(r,e,i):(i=i+1,x.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function nw(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=x.getTypedArrayFromDType(e,i*n),l=x.getTypedArrayFromDType("int32",i*n);for(let p=0;p<i;p++){let m=p*a,f=r.subarray(m,m+a),d=new Array(f.length);f.forEach((b,w)=>d[w]={value:b,index:w}),n<d.length&&(fR(d,n),d=d.slice(0,n)),o&&d.sort(xg);let h=p*n,g=u.subarray(h,h+n),y=l.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,y[b]=d[b].index}let c=t.slice();return c[c.length-1]=n,[Ct(c,e,u),Ct(c,"int32",l)]}function ow(r,t,e,n){let o=x.parseAxisParam(t,e)[0],s=[1,e[0],1];for(let d=0;d<o;d++)s[0]*=e[d];s[1]=e[o];for(let d=o+1;d<e.length;d++)s[2]*=e[d];let i={},a=new Int32Array(e[o]),u=new pe(s,n,r),l=[],c=s[0]===1&&s[2]===1;for(let d=0;d<e[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(u.get(y,d,b));h=g.join(",")}if(i[h]!==void 0)a[d]=i[h];else{let g=Object.keys(i).length;i[h]=g,a[d]=g,l.push(d)}}let p=s.slice();p[1]=Object.keys(i).length;let m=new pe(p,n);l.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)m.set(u.get(g,d,y),g,h,y)});let f=e.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:a}}bm("cpu",()=>new bu,1);var kN=Et(cs,r=>r>=0?r:Math.exp(r)-1),dR={kernelName:cs,backendName:"cpu",kernelFunc:kN};function NN(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;ot([o],"leakyRelu");let i=x.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=x.getTypedArrayFromDType("float32",i);for(let l=0;l<a.length;l++)u[l]=a[l]<0?s*a[l]:a[l];return e.makeTensorInfo(o.shape,"float32",u)}var hR={kernelName:gs,backendName:"cpu",kernelFunc:NN};var c9=re((r,t)=>r<0?t*r:r);function TN(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;ot([n,o],"prelu");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=c9(n.shape,o.shape,s,i,"float32");return e.makeTensorInfo(u,"float32",a)}var gR={kernelName:Es,backendName:"cpu",kernelFunc:TN};var _N=Et($s,r=>Math.max(0,r)),xR={kernelName:$s,backendName:"cpu",kernelFunc:_N};var EN=Et(Fs,r=>Math.min(Math.max(0,r),6)),yR={kernelName:Fs,backendName:"cpu",kernelFunc:EN};function Zc(r,t,e,n,o){if(e==="linear")return qr({inputs:{x:t},backend:r});if(e==="relu")return _N({inputs:{x:t},backend:r});if(e==="elu")return kN({inputs:{x:t},backend:r});if(e==="relu6")return EN({inputs:{x:t},backend:r});if(e==="prelu")return TN({inputs:{x:t,alpha:n},backend:r});if(e==="leakyrelu")return NN({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e==="sigmoid")return vN({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function Jt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=x.sizeFromShape(o.shape),a=x.inferFromImplicitShape(s,i),u=x.sizeFromShape(a);x.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var bR={kernelName:_i,backendName:"cpu",kernelFunc:Jt};function AN(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;ot([o,s],"matMul");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),w=Pr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let v=i?[g,c,m]:[g,m,c],k=a?[y,f,p]:[y,p,f],_=Jt({inputs:{x:o},backend:e,attrs:{shape:v}}),$=Jt({inputs:{x:s},backend:e,attrs:{shape:k}}),D=i?_.shape[1]:_.shape[2],F=i?_.shape[2]:_.shape[1],P=a?$.shape[1]:$.shape[2],B=Math.max(g,y),U=e.data.get(_.dataId).values,q=e.data.get($.dataId).values,j=x.computeStrides(_.shape),K=x.computeStrides($.shape),[Q,rt,X]=i?[j[0],1,j[1]]:[j[0],j[1],1],[nt,st,it]=a?[1,K[1],K[0]]:[K[1],1,K[0]],ft=F*P,at=Ct([B,F,P],_.dtype),xt=at.values,dt=e.blockSize;for(let bt=0;bt<B;bt++)for(let kt=0;kt<F;kt+=dt)for(let At=0;At<P;At+=dt)for(let Dt=0;Dt<D;Dt+=dt){let Kt=Math.min(kt+dt,F),jt=Math.min(At+dt,P),ce=Math.min(Dt+dt,D);for(let Ot=kt;Ot<Kt;Ot++)for(let $e=At;$e<jt;$e++){let ke=0;for(let ae=Dt;ae<ce;ae++){let Ke=Math.min(bt,g-1)*Q,Re=Math.min(bt,y-1)*it,rn=U[Ke+Ot*rt+ae*X],ze=q[ae*nt+$e*st+Re];ke+=rn*ze}xt[bt*ft+(Ot*P+$e)]+=ke}}return e.disposeIntermediateTensorInfo(_),e.disposeIntermediateTensorInfo($),e.makeTensorInfo(w,at.dtype,at.values)}var wR={kernelName:es,backendName:"cpu",kernelFunc:AN};function p9(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=AN({inputs:{a:o,b:s},attrs:{transposeA:u,transposeB:l},backend:e}),i&&(f=Ji({inputs:{a:m,b:i},backend:e}),h.push(m),m=f),c&&(d=Zc(e,m,c,a,p),h.push(m),m=d);for(let y of h)e.disposeIntermediateTensorInfo(y);return m}var vR={kernelName:Oi,backendName:"cpu",kernelFunc:p9};var m9=Et(na,r=>Math.acos(r)),CR={kernelName:na,backendName:"cpu",kernelFunc:m9};var f9=Et(oa,r=>Math.acosh(r)),IR={kernelName:oa,backendName:"cpu",kernelFunc:f9};function d9(r){let{inputs:t,backend:e}=r,n=t;ot(t,"addN");let o=n.map(a=>e.data.get(a.dataId).values),s=Ct(n[0].shape,n[0].dtype),i=s.values;for(let a=0;a<n.length;a++){let u=o[a];for(let l=0;l<i.length;l++)i[l]+=u[l]}return e.makeTensorInfo(s.shape,s.dtype,s.values)}var SR={kernelName:Jo,backendName:"cpu",kernelFunc:d9};function h9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;ot(o,"all");let a=x.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=He({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let v=0;v<f;++v){let k=h[b+v];w=w&&k}d[y]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let y=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:y}});return e.disposeIntermediateTensorInfo(g),b}return g}var kR={kernelName:sa,backendName:"cpu",kernelFunc:h9};function g9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;ot(o,"any");let a=x.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=He({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let v=0;v<f;++v){let k=h[b+v];w=w||k}d[y]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let y=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:y}});return e.disposeIntermediateTensorInfo(g),b}return g}var NR={kernelName:ia,backendName:"cpu",kernelFunc:g9};function x9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;ot(o,"argMax");let i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=He({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let v=0;v<d;++v){let k=h[y+v];k>b&&(b=k,w=v)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var TR={kernelName:Qo,backendName:"cpu",kernelFunc:x9};function y9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;ot(o,"argMin");let i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=He({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=x.sizeFromShape(c),f=x.makeZerosTypedArray(m,"int32"),d=x.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let y=g*d,b=h[y],w=0;for(let v=0;v<d;++v){let k=h[y+v];k<b&&(b=k,w=v)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var _R={kernelName:Rl,backendName:"cpu",kernelFunc:y9};var b9=Et(aa,r=>Math.asin(r)),ER={kernelName:aa,backendName:"cpu",kernelFunc:b9};var w9=Et(la,r=>Math.asinh(r)),AR={kernelName:la,backendName:"cpu",kernelFunc:w9};var v9=Et(ua,r=>Math.atan(r)),$R={kernelName:ua,backendName:"cpu",kernelFunc:v9};var C9=re((r,t)=>Math.atan2(r,t)),I9=ie(pa,C9),DR={kernelName:pa,backendName:"cpu",kernelFunc:I9};var S9=Et(ca,r=>Math.atanh(r)),FR={kernelName:ca,backendName:"cpu",kernelFunc:S9};function cd(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ct(o.outShape,e),g=h.values,y=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let v=0;v<o.batchSize;++v){let k=v*y,_=v*n[0];for(let $=0;$<o.inChannels;++$)for(let D=0;D<o.outHeight;++D){let F=D*i-m,P=Math.max(0,F),B=Math.min(o.inHeight,c+F),U=k+D*b;for(let q=0;q<o.outWidth;++q){let j=q*a-f,K=Math.max(0,j),Q=Math.min(o.inWidth,p+j),rt=d,X=0,nt=0;for(let it=P;it<B;it+=u){let ft=_+it*n[1];for(let at=K;at<Q;at+=l){let xt=ft+at*n[2],dt=r[xt+$];s==="max"&&dt>rt?rt=dt:s==="avg"&&(X+=dt,nt++)}if(isNaN(rt))break}let st=U+q*w+$;g[st]=s==="avg"?X/nt:rt}}}return h}function iw(r,t,e,n,o=!1,s=!1){let i=Ct(n.outShape,"int32"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=Ct(t,e,r);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let b=0;b<n.outHeight;++b){let w=b*a-f,v=w;for(;v<0;)v+=l;let k=Math.min(n.inHeight,p+w);for(let _=0;_<n.outWidth;++_){let $=_*u-d,D=$;for(;D<0;)D+=c;let F=Math.min(n.inWidth,m+$),P=Number.NEGATIVE_INFINITY,B=-1;for(let U=v;U<k;U+=l){let q=U-w;for(let j=D;j<F;j+=c){let K=j-$,Q=h.get(g,U,j,y);Q>P&&(P=Q,o?B=s?((g*n.inHeight+U)*n.inWidth+j)*n.inChannels+y:(U*n.inWidth+j)*n.inChannels+y:B=q*m+K)}}i.set(B,g,b,_,y)}}return i}function aw(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,y=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ct(o.outShape,e),v=w.values,k=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],_=o.outShape[2]*o.outShape[3]*o.outShape[4],$=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let F=0;F<o.batchSize;++F){let P=F*k,B=F*n[0];for(let U=0;U<o.inChannels;++U)for(let q=0;q<o.outDepth;++q){let j=q*i-h,K=j;for(;K<0;)K+=l;let Q=Math.min(o.inDepth,m+j),rt=P+q*_;for(let X=0;X<o.outHeight;++X){let nt=X*a-g,st=nt;for(;st<0;)st+=c;let it=Math.min(o.inHeight,f+nt),ft=rt+X*$;for(let at=0;at<o.outWidth;++at){let xt=at*u-y,dt=xt;for(;dt<0;)dt+=p;let bt=Math.min(o.inWidth,d+xt),kt=ft+at*D,At=b,Dt=0,Kt=0;for(let ce=K;ce<Q;ce+=l){let Ot=B+ce*n[1];for(let $e=st;$e<it;$e+=c){let ke=Ot+$e*n[2];for(let ae=dt;ae<bt;ae+=p){let Ke=ke+ae*n[3],Re=r[Ke+U];if(s==="max"&&Re>At?At=Re:s==="avg"&&(Dt+=Re,Kt++),isNaN(At))break}if(isNaN(At))break}if(isNaN(At))break}let jt=kt+U;v[jt]=s==="avg"?Dt/Kt:At}}}}return w}function RR(r,t){let e=Ct(t.outShape,"int32"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h<t.batchSize;++h)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*n-m,w=b;for(;w<0;)w+=i;let v=Math.min(t.inDepth,l+b);for(let k=0;k<t.outHeight;++k){let _=k*o-f,$=_;for(;$<0;)$+=a;let D=Math.min(t.inHeight,c+_);for(let F=0;F<t.outWidth;++F){let P=F*s-d,B=P;for(;B<0;)B+=u;let U=Math.min(t.inWidth,p+P),q=Number.NEGATIVE_INFINITY,j=-1;for(let K=w;K<v;K+=i){let Q=K-b;for(let rt=$;rt<D;rt+=a){let X=rt-_;for(let nt=B;nt<U;nt+=u){let st=nt-P,it=r.get(h,K,rt,nt,g);it>=q&&(q=it,j=Q*c*p+X*c+st)}}}e.set(j,h,y,k,F,g)}}}return e}function k9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;ot(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=qr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=x.computeStrides(o.shape),d=cd(m,o.shape,o.dtype,f,c,"avg");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var OR={kernelName:ts,backendName:"cpu",kernelFunc:k9};function N9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;ot(o,"avgPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=aw(p,o.shape,o.dtype,x.computeStrides(o.shape),c,"avg");return e.makeTensorInfo(m.shape,"float32",m.values)}var MR={kernelName:Ol,backendName:"cpu",kernelFunc:N9};function T9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;ot([o,s],"avgPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,v=c.effectiveFilterDepth,k=c.effectiveFilterHeight,_=c.effectiveFilterWidth,$=v-1-c.padInfo.front,D=_-1-c.padInfo.left,F=k-1-c.padInfo.top,P=Ct(s.shape,"float32"),B=1/(d*h*g),U=e.bufferSync(o);for(let q=0;q<c.batchSize;++q)for(let j=0;j<c.inChannels;++j)for(let K=0;K<c.inDepth;++K)for(let Q=0;Q<c.inHeight;++Q)for(let rt=0;rt<c.inWidth;++rt){let X=K-$,nt=Q-F,st=rt-D,it=0;for(let ft=0;ft<v;ft+=y){let at=(X+ft)/p;if(!(at<0||at>=c.outDepth||Math.floor(at)!==at))for(let xt=0;xt<k;xt+=b){let dt=(nt+xt)/m;if(!(dt<0||dt>=c.outHeight||Math.floor(dt)!==dt))for(let bt=0;bt<_;bt+=w){let kt=(st+bt)/f;if(kt<0||kt>=c.outWidth||Math.floor(kt)!==kt)continue;it+=U.get(q,at,dt,kt,j)}}}P.set(it*B,q,K,Q,rt,j)}return e.makeTensorInfo(P.shape,P.dtype,P.values)}var PR={kernelName:Dp,backendName:"cpu",kernelFunc:T9};function _9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;ot([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,v=y-1-c.padInfo.top,k=Ct(i.shape,"float32"),_=1/(f*d),$=e.data.get(o.dataId).values,D=Ct(o.shape,"float32",$);for(let F=0;F<c.batchSize;++F)for(let P=0;P<c.inChannels;++P)for(let B=0;B<c.inHeight;++B)for(let U=0;U<c.inWidth;++U){let q=B-v,j=U-w,K=0;for(let Q=0;Q<y;Q+=h){let rt=(q+Q)/p;if(!(rt<0||rt>=c.outHeight||Math.floor(rt)!==rt))for(let X=0;X<b;X+=g){let nt=(j+X)/m;if(nt<0||nt>=c.outWidth||Math.floor(nt)!==nt)continue;K+=D.get(F,rt,nt,P)}}k.set(K*_,F,B,U,P)}return e.makeTensorInfo(k.shape,k.dtype,k.values)}var LR={kernelName:$p,backendName:"cpu",kernelFunc:_9};function E9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;x.assert(a.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(s==null||a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ot([o,a,u,s,i],"batchNorm");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,y=f.length,b=m.length,w=p.length,v=0,k=0,_=0,$=0;for(let D=0;D<c.length;++D)h[D]=d[v++]+(c[D]-p[k++])*f[_++]/Math.sqrt(m[$++]+l),v>=g&&(v=0),k>=w&&(k=0),_>=y&&(_=0),$>=b&&($=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var zR={kernelName:ds,backendName:"cpu",kernelFunc:E9};function A9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;ot([o],"batchToSpaceND");let a=s.reduce((y,b)=>y*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=Jt({inputs:{x:o},backend:e,attrs:{shape:u}}),d=He({inputs:{x:f},backend:e,attrs:{perm:l}}),h=Jt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Po({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var BR={kernelName:vi,backendName:"cpu",kernelFunc:A9};function $9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=ad(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var VR={kernelName:Fp,backendName:"cpu",kernelFunc:$9};function D9(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var GR={kernelName:Rp,backendName:"cpu",kernelFunc:D9};var F9=Et(lo,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r<e.clipValueMin?e.clipValueMin:r}),WR={kernelName:lo,backendName:"cpu",kernelFunc:F9};var R9=r=>{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(x.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;l<a.length;l++){let c=a[l],p=u[l];n[l]=Math.hypot(c,p)}return e.makeOutput(n,t.shape,"float32")},UR={kernelName:Ml,backendName:"cpu",kernelFunc:R9};function Qi(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.imag,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var HR={kernelName:Kp,backendName:"cpu",kernelFunc:Qi};function wu(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=x.parseAxisParam(o,t[0].shape)[0],i=S.computeOutShape(t.map(h=>h.shape),s);if(x.sizeFromShape(i)===0)return e.makeTensorInfo(i,t[0].dtype,[]);let a=t.filter(h=>x.sizeFromShape(h.shape)>0);if(a.length===1)return qr({inputs:{x:a[0]},backend:e});let u=a.map(h=>h.shape);if(S.assertParamsConsistent(u,s),a[0].dtype==="complex64"){let h=a.map(v=>Ro({inputs:{input:v},backend:e})),g=a.map(v=>Qi({inputs:{input:v},backend:e})),y=wu({inputs:h,backend:e,attrs:{axis:s}}),b=wu({inputs:g,backend:e,attrs:{axis:s}}),w=Ir({inputs:{real:y,imag:b},backend:e});return h.forEach(v=>e.disposeIntermediateTensorInfo(v)),g.forEach(v=>e.disposeIntermediateTensorInfo(v)),e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(b),w}let l=a.map(h=>{let g=x.sizeFromShape(h.shape.slice(s));return Jt({inputs:{x:h},backend:e,attrs:{shape:[-1,g]}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));i=S.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=Kc(c,i,t[0].dtype,p),f=S.computeOutShape(a.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var qR={kernelName:Ci,backendName:"cpu",kernelFunc:wu};function $N(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;ot([o,s],"conv2d");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,y=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",v=new pe(m.outShape,o.dtype),k=x.computeStrides(o.shape),_=x.computeStrides(s.shape),$=k[0],D=w?k[1]:k[2],F=w?k[2]:1,P=w?1:k[1],B=v.strides[0],U=w?v.strides[1]:v.strides[2],q=w?v.strides[2]:1,j=w?1:v.strides[1],K=e.data.get(o.dataId).values,Q=e.data.get(s.dataId).values,rt=v.values;for(let X=0;X<m.batchSize;++X){let nt=X*$,st=X*B;for(let it=0;it<m.outHeight;++it){let ft=st+it*U,at=it*m.strideHeight-b;for(let xt=0;xt<f;++xt){let dt=at+xt*h;if(dt<0||dt>=m.inHeight)continue;let bt=xt*_[0],kt=nt+dt*D;for(let At=0;At<m.outWidth;++At){let Dt=ft+At*q,Kt=At*m.strideWidth-y;for(let jt=0;jt<d;++jt){let ce=Kt+jt*g;if(ce<0||ce>=m.inWidth)continue;let Ot=bt+jt*_[1],$e=kt+ce*F,ke=Ot;for(let ae=0;ae<m.inChannels;++ae){let Ke=K[$e+ae*P];for(let Re=0;Re<m.outChannels;++Re)rt[Dt+Re*j]+=Ke*Q[ke+Re];ke+=m.outChannels}}}}}}return e.makeTensorInfo(v.shape,v.dtype,rt)}var KR={kernelName:ns,backendName:"cpu",kernelFunc:$N};function O9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n;ot([o,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,y=m.dataFormat==="channelsLast",b=new pe(m.filterShape,"float32"),w=m.padInfo.left,v=m.padInfo.top,k=e.data.get(o.dataId).values,_=e.data.get(s.dataId).values,$=new pe(o.shape,o.dtype,k),D=new pe(s.shape,s.dtype,_);for(let F=0;F<h;++F){let P=Math.max(0,Math.ceil((v-F)/f)),B=Math.min(m.outHeight,(m.inHeight+v-F)/f);for(let U=0;U<g;++U){let q=Math.max(0,Math.ceil((w-U)/d)),j=Math.min(m.outWidth,(m.inWidth+w-U)/d);for(let K=0;K<m.inChannels;++K)for(let Q=0;Q<m.outChannels;++Q){let rt=0;for(let X=0;X<m.batchSize;++X)for(let nt=P;nt<B;++nt){let st=F+nt*f-v;for(let it=q;it<j;++it){let ft=U+it*d-w;y?rt+=$.get(X,st,ft,K)*D.get(X,nt,it,Q):rt+=$.get(X,K,st,ft)*D.get(X,Q,nt,it)}}b.set(rt,F,U,K,Q)}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var jR={kernelName:Mp,backendName:"cpu",kernelFunc:O9};function M9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n;ot([o,s],"conv2dBackpropInput");let p=x.computeStrides(s.shape),m=x.computeStrides(o.shape),f=S.convertConv2DDataFormat(l),d=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,f),h=new pe(d.inShape,"float32"),g=h.values,y=e.data.get(o.dataId).values,b=e.data.get(s.dataId).values,[w,v,k]=p,{batchSize:_,filterHeight:$,filterWidth:D,inChannels:F,inHeight:P,inWidth:B,outChannels:U,outHeight:q,outWidth:j,strideHeight:K,strideWidth:Q}=d;f=d.dataFormat;let rt=$-1-d.padInfo.top,X=D-1-d.padInfo.left,nt=f==="channelsLast",st=h.strides[0],it=nt?h.strides[1]:h.strides[2],ft=nt?h.strides[2]:1,at=nt?1:h.strides[1],xt=m[0],dt=nt?m[1]:m[2],bt=nt?m[2]:1,kt=nt?1:m[1];for(let At=0;At<_;++At)for(let Dt=0;Dt<F;++Dt)for(let Kt=0;Kt<P;++Kt){let jt=Kt-rt,ce=Math.max(0,Math.ceil(jt/K)),Ot=Math.min(q,($+jt)/K);for(let $e=0;$e<B;++$e){let ke=$e-X,ae=Math.max(0,Math.ceil(ke/Q)),Ke=Math.min(j,(D+ke)/Q),Re=0;for(let ze=ce;ze<Ot;++ze){let Vo=ze*K-jt;for(let Rr=ae;Rr<Ke;++Rr){let nn=Rr*Q-ke,on=xt*At+dt*ze+bt*Rr,jr=w*($-1-Vo)+v*(D-1-nn)+k*Dt;for(let so=0;so<U;++so){let On=y[on+kt*so],Go=b[jr+so];Re+=On*Go}}}let rn=st*At+it*Kt+ft*$e+at*Dt;g[rn]=Re}}return e.makeTensorInfo(h.shape,h.dtype,h.values)}var XR={kernelName:os,backendName:"cpu",kernelFunc:M9};function P9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;ot([o,s],"conv3d");let l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=l,y=g.front,b=g.left,w=g.top,v=new pe(l.outShape,o.dtype),k=e.data.get(o.dataId).values,_=e.data.get(s.dataId).values,$=v.values,D=x.computeStrides(o.shape),F=x.computeStrides(s.shape);for(let P=0;P<l.batchSize;++P){let B=P*D[0],U=P*v.strides[0];for(let q=0;q<l.outDepth;++q){let j=U+q*v.strides[1],K=q*l.strideDepth-y;for(let Q=0;Q<c;++Q){let rt=K+Q*f;if(rt<0||rt>=l.inDepth)continue;let X=Q*F[0],nt=B+rt*D[1];for(let st=0;st<l.outHeight;++st){let it=j+st*v.strides[2],ft=st*l.strideHeight-w;for(let at=0;at<p;++at){let xt=ft+at*d;if(xt<0||xt>=l.inHeight)continue;let dt=X+at*F[1],bt=nt+xt*D[2];for(let kt=0;kt<l.outWidth;++kt){let At=it+kt*l.outChannels,Dt=kt*l.strideWidth-b;for(let Kt=0;Kt<m;++Kt){let jt=Dt+Kt*h;if(jt<0||jt>=l.inWidth)continue;let ce=dt+Kt*F[2],Ot=bt+jt*l.inChannels,$e=ce;for(let ke=0;ke<l.inChannels;++ke){let ae=k[Ot+ke];for(let Ke=0;Ke<l.outChannels;++Ke)$[At+Ke]+=ae*_[$e+Ke];$e+=l.outChannels}}}}}}}}return e.makeTensorInfo(v.shape,v.dtype,v.values)}var YR={kernelName:Pl,backendName:"cpu",kernelFunc:P9};function L9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;ot([o,s],"conv3dBackpropFilterV2");let l=x.computeStrides(o.shape),c=x.computeStrides(s.shape),p=S.computeConv3DInfo(o.shape,u,i,1,a),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new pe(p.filterShape,"float32"),w=b.values,[v,k,_,$]=b.strides,D=e.data.get(s.dataId).values,[F,P,B,U]=c,q=e.data.get(o.dataId).values,[j,K,Q,rt]=l,X=p.padInfo.front,nt=p.padInfo.left,st=p.padInfo.top;for(let it=0;it<h;++it){let ft=Math.max(0,Math.ceil((X-it)/m)),at=Math.min(p.outDepth,(p.inDepth+X-it)/m),xt=it*v;for(let dt=0;dt<g;++dt){let bt=Math.max(0,Math.ceil((st-dt)/f)),kt=Math.min(p.outHeight,(p.inHeight+st-dt)/f),At=dt*k+xt;for(let Dt=0;Dt<y;++Dt){let Kt=Math.max(0,Math.ceil((nt-Dt)/d)),jt=Math.min(p.outWidth,(p.inWidth+nt-Dt)/d),ce=Dt*_+At;for(let Ot=0;Ot<p.inChannels;++Ot){let $e=Ot*$+ce;for(let ke=0;ke<p.outChannels;++ke){let ae=0;for(let Ke=0;Ke<p.batchSize;++Ke){let Re=Ke*j,rn=Ke*F;for(let ze=ft;ze<at;++ze){let Rr=(it+ze*m-X)*K+Re,nn=ze*P+rn;for(let on=bt;on<kt;++on){let so=(dt+on*f-st)*Q+Rr,On=on*B+nn;for(let Go=Kt;Go<jt;++Go){let Al=(Dt+Go*d-nt)*rt+so,Eu=Go*U+On;ae+=q[Al+Ot]*D[Eu+ke]}}}}w[$e+ke]=ae}}}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var ZR={kernelName:Pp,backendName:"cpu",kernelFunc:L9};function z9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;ot([o],"conv3dBackpropInputV2");let l=x.computeStrides(o.shape),c=x.computeStrides(s.shape),p=S.computeConv3DInfo(u,s.shape,a,1,i),m=new pe(p.inShape,"float32"),f=m.values,[d,h,g,y]=m.strides,b=e.data.get(o.dataId).values,[w,v,k,_]=l,$=e.data.get(s.dataId).values,[D,F,P,B]=c,{batchSize:U,filterDepth:q,filterHeight:j,filterWidth:K,inChannels:Q,inDepth:rt,inHeight:X,inWidth:nt,outChannels:st,outDepth:it,outHeight:ft,outWidth:at,strideDepth:xt,strideHeight:dt,strideWidth:bt}=p,kt=q-1-p.padInfo.front,At=j-1-p.padInfo.top,Dt=K-1-p.padInfo.left;for(let Kt=0;Kt<U;++Kt)for(let jt=0;jt<Q;++jt)for(let ce=0;ce<rt;++ce){let Ot=ce-kt,$e=Math.max(0,Math.ceil(Ot/xt)),ke=Math.min(it,(q+Ot)/xt);for(let ae=0;ae<X;++ae){let Ke=ae-At,Re=Math.max(0,Math.ceil(Ke/dt)),rn=Math.min(ft,(j+Ke)/dt);for(let ze=0;ze<nt;++ze){let Vo=ze-Dt,Rr=Math.max(0,Math.ceil(Vo/bt)),nn=Math.min(at,(K+Vo)/bt),on=0;for(let jr=$e;jr<ke;++jr){let so=jr*xt-Ot;for(let On=Re;On<rn;++On){let Go=On*dt-Ke;for(let io=Rr;io<nn;++io){let Al=io*bt-Vo,Eu=w*Kt+v*jr+k*On+_*io,mp=D*(q-1-so)+F*(j-1-Go)+P*(K-1-Al)+B*jt;for(let gr=0;gr<st;++gr){let fp=b[Eu+gr],dp=$[mp+gr];on+=fp*dp}}}}f[d*Kt+h*ce+g*ae+y*ze+jt]=on}}}return e.makeTensorInfo(m.shape,m.dtype,m.values)}var JR={kernelName:Lp,backendName:"cpu",kernelFunc:z9};var B9=Et(ss,r=>Math.cos(r)),QR={kernelName:ss,backendName:"cpu",kernelFunc:B9};var V9=Et(is,r=>Math.cosh(r)),tO={kernelName:is,backendName:"cpu",kernelFunc:V9};function G9(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,y=Ct([d,h,g,f],"float32"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,v=e.data.get(o.dataId).values,k=x.computeStrides(o.shape),_=x.computeStrides(y.shape);for(let $=0;$<d;$++){let D=$*4,F=b[D],P=b[D+1],B=b[D+2],U=b[D+3],q=w[$];if(q>=c)continue;let j=h>1?(B-F)*(p-1)/(h-1):0,K=g>1?(U-P)*(m-1)/(g-1):0;for(let Q=0;Q<h;Q++){let rt=h>1?F*(p-1)+Q*j:.5*(F+B)*(p-1);if(rt<0||rt>p-1){for(let X=0;X<g;X++)for(let nt=0;nt<f;nt++){let st=nt+X*_[2]+Q*_[1]+$*_[0];y.values[st]=l}continue}if(u==="bilinear"){let X=Math.floor(rt),nt=Math.ceil(rt),st=rt-X;for(let it=0;it<g;it++){let ft=g>1?P*(m-1)+it*K:.5*(P+U)*(m-1);if(ft<0||ft>m-1){for(let bt=0;bt<f;bt++){let kt=bt+it*_[2]+Q*_[1]+$*_[0];y.values[kt]=l}continue}let at=Math.floor(ft),xt=Math.ceil(ft),dt=ft-at;for(let bt=0;bt<f;bt++){let kt=bt+at*k[2]+X*k[1]+q*k[0],At=v[kt];kt=bt+xt*k[2]+X*k[1]+q*k[0];let Dt=v[kt];kt=bt+at*k[2]+nt*k[1]+q*k[0];let Kt=v[kt];kt=bt+xt*k[2]+nt*k[1]+q*k[0];let jt=v[kt],ce=At+(Dt-At)*dt,Ot=Kt+(jt-Kt)*dt;kt=bt+it*_[2]+Q*_[1]+$*_[0],y.values[kt]=ce+(Ot-ce)*st}}}else for(let X=0;X<g;++X){let nt=g>1?P*(m-1)+X*K:.5*(P+U)*(m-1);if(nt<0||nt>m-1){for(let ft=0;ft<f;ft++){let at=ft+X*_[2]+Q*_[1]+$*_[0];y.values[at]=l}continue}let st=Math.round(nt),it=Math.round(rt);for(let ft=0;ft<f;ft++){let at=ft+st*k[2]+it*k[1]+q*k[0],xt=ft+X*_[2]+Q*_[1]+$*_[0];y.values[xt]=v[at]}}}}return e.makeTensorInfo(y.shape,y.dtype,y.values)}var eO={kernelName:fa,backendName:"cpu",kernelFunc:G9};function W9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;ot(o,"cumprod");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=He({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ar(l.dtype,"int32"),m=x.makeOnesTypedArray(x.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(y,b)=>y+d-b-1:(y,b)=>y+b;for(let y=0;y<f.length;y+=d)for(let b=0;b<d;b++){let w=h(y,b);if(b===0)m[w]=i?1:f[w];else{let v=h(y,b-1);m[w]=i?f[v]*m[v]:f[w]*m[v]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let y=S.getUndoAxesPermutation(u),b=He({inputs:{x:g},backend:e,attrs:{perm:y}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var rO={kernelName:ma,backendName:"cpu",kernelFunc:W9};function U9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;ot(o,"cumsum");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=He({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ar(l.dtype,"int32"),m=x.makeZerosTypedArray(x.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(y,b)=>y+d-b-1:(y,b)=>y+b;for(let y=0;y<f.length;y+=d)for(let b=0;b<d;b++){let w=h(y,b);if(b===0)m[w]=i?0:f[w];else{let v=h(y,b-1);m[w]=i?f[v]+m[v]:f[w]+m[v]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let y=S.getUndoAxesPermutation(u),b=He({inputs:{x:g},backend:e,attrs:{perm:y}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var nO={kernelName:as,backendName:"cpu",kernelFunc:U9};function H9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=ad(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=Hb(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var oO={kernelName:zp,backendName:"cpu",kernelFunc:H9};function q9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n;x.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let y=0;y<a;++y)for(let b=0;b<p;++b){let w=Math.floor(b/s),v=b%s;for(let k=0;k<m;++k){let _=Math.floor(k/s),$=k%s,D=(v*s+$)*f;for(let F=0;F<f;++F){let B=F+D+c*(_+l*(w+u*y));h[g++]=d[B]}}}return e.makeTensorInfo([a,p,m,f],o.dtype,h)}var sO={kernelName:da,backendName:"cpu",kernelFunc:q9};function DN(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n;ot([o,s],"depthwiseConv2DNative");let c=x.computeStrides(o.shape),p=x.computeStrides(s.shape),m=u;m==null&&(m=[1,1]),x.assert(S.eitherStridesOrDilationsAreOne(i,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:y,padInfo:b}=f,w=b.left,v=b.top,k=f.outChannels/f.inChannels,_=new pe(f.outShape,o.dtype),$=e.data.get(o.dataId).values,D=e.data.get(s.dataId).values,F=_.values;for(let P=0;P<f.batchSize;++P){let B=P*c[0],U=P*_.strides[0];for(let q=0;q<f.outHeight;++q){let j=U+q*_.strides[1],K=q*f.strideHeight-v;for(let Q=0;Q<d;++Q){let rt=K+Q*g;if(rt<0||rt>=f.inHeight)continue;let X=Q*p[0],nt=B+rt*c[1];for(let st=0;st<f.outWidth;++st){let it=j+st*_.strides[2],ft=st*f.strideWidth-w;for(let at=0;at<h;++at){let xt=ft+at*y;if(xt<0||xt>=f.inWidth)continue;let dt=X+at*p[1],bt=nt+xt*f.inChannels,kt=it,At=dt;for(let Dt=0;Dt<f.inChannels;++Dt){let Kt=$[bt+Dt];for(let jt=0;jt<k;++jt)F[kt+jt]+=Kt*D[At+jt];kt+=k,At+=k}}}}}}return e.makeTensorInfo(_.shape,_.dtype,_.values)}var iO={kernelName:ls,backendName:"cpu",kernelFunc:DN};function K9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n;ot([o,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new pe(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,v=e.data.get(o.dataId).values,k=new pe(o.shape,o.dtype,v),_=e.data.get(s.dataId).values,$=new pe(s.shape,s.dtype,_);for(let D=0;D<d;++D){let F=Math.max(0,Math.ceil((b-D)/m)),P=Math.min(p.outHeight,(p.inHeight+b-D)/m);for(let B=0;B<h;++B){let U=Math.max(0,Math.ceil((y-B)/f)),q=Math.min(p.outWidth,(p.inWidth+y-B)/f);for(let j=0;j<p.outChannels;++j){let K=Math.trunc(j/w),Q=j%w,rt=0;for(let X=0;X<p.batchSize;++X)for(let nt=F;nt<P;++nt){let st=D+nt*m-b;for(let it=U;it<q;++it){let ft=B+it*f-y;rt+=k.get(X,st,ft,K)*$.get(X,nt,it,j)}}g.set(rt,D,B,K,Q)}}}return e.makeTensorInfo(g.shape,g.dtype,g.values)}var aO={kernelName:Bp,backendName:"cpu",kernelFunc:K9};function j9(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n;ot([o,s],"depthwiseConv2DNativeBackpropInput");let p=x.computeStrides(o.shape),m=x.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),d=new pe(f.inShape,"float32"),h=d.values,[g,y,b]=d.strides,w=e.data.get(o.dataId).values,[v,k,_]=p,$=e.data.get(s.dataId).values,[D,F,P]=m,{batchSize:B,filterHeight:U,filterWidth:q,inChannels:j,inHeight:K,inWidth:Q,outChannels:rt,outHeight:X,outWidth:nt,strideHeight:st,strideWidth:it}=f,ft=U-1-f.padInfo.top,at=q-1-f.padInfo.left,xt=rt/j;for(let dt=0;dt<B;++dt)for(let bt=0;bt<j;++bt)for(let kt=0;kt<K;++kt){let At=kt-ft,Dt=Math.max(0,Math.ceil(At/st)),Kt=Math.min(X,(U+At)/st);for(let jt=0;jt<Q;++jt){let ce=jt-at,Ot=Math.max(0,Math.ceil(ce/it)),$e=Math.min(nt,(q+ce)/it),ke=0;for(let ae=Dt;ae<Kt;++ae){let Ke=ae*st-At;for(let Re=Ot;Re<$e;++Re){let rn=Re*it-ce,ze=v*dt+k*ae+_*Re,Vo=D*(U-1-Ke)+F*(q-1-rn)+P*bt;for(let Rr=0;Rr<xt;++Rr){let nn=bt*xt+Rr,on=w[ze+nn],jr=$[Vo+Rr];ke+=on*jr}}}h[g*dt+y*kt+b*jt+bt]=ke}}return e.makeTensorInfo(d.shape,d.dtype,d.values)}var lO={kernelName:Vp,backendName:"cpu",kernelFunc:j9};function X9(r){let{inputs:t,backend:e}=r,{x:n}=t,o=x.sizeFromShape(n.shape),s=e.data.get(n.dataId).values,i=Ct([o,o],n.dtype),a=i.values;for(let l=0;l<s.length;l++)a[l*o+l]=s[l];let u=[...n.shape,...n.shape];return e.makeTensorInfo(u,i.dtype,i.values)}var uO={kernelName:Gp,backendName:"cpu",kernelFunc:X9};var cO={kernelName:Ll,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:y,outWidth:b,padInfo:w,strideHeight:v,strideWidth:k,filterHeight:_,filterWidth:$,dilationHeight:D,dilationWidth:F,outShape:P}=S.computeDilation2DInfo(n.shape,o.shape,s,i,"NHWC",a),B=x.sizeFromShape(P),U=P.length,q=x.getArrayFromDType(n.dtype,B);for(let K=0;K<f;++K)for(let Q=0;Q<y;++Q){let rt=Q*v-w.top;for(let X=0;X<b;++X){let nt=X*k-w.left;for(let st=0;st<g;++st){let it=Number.MIN_SAFE_INTEGER;for(let at=0;at<_;++at){let xt=rt+at*D;if(xt>=0&&xt<d)for(let dt=0;dt<$;++dt){let bt=nt+dt*F;if(bt>=0&&bt<h){let kt=x.locToIndex([K,xt,bt,st],c,x.computeStrides(n.shape)),At=x.locToIndex([at,dt,st],m,x.computeStrides(o.shape)),Dt=l[kt]+p[At];Dt>it&&(it=Dt)}}}let ft=x.locToIndex([K,Q,X,st],U,x.computeStrides(P));q[ft]=it}}}return{dataId:u.write(x.toTypedArray(q,n.dtype),P,n.dtype),shape:P,dtype:n.dtype}}};var pO={kernelName:jd,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=x.toNestedArray(n.shape,l.data.get(n.dataId).values),p=x.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:v,filterHeight:k,filterWidth:_,dilationHeight:$,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);x.assert(s.rank===F.length,()=>`Error in ${jd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=x.toNestedArray(F,l.data.get(s.dataId).values),B=x.makeZerosNestedTypedArray(o.shape,o.dtype);for(let q=0;q<m;++q)for(let j=0;j<g;++j){let K=j*w-b.top;for(let Q=0;Q<y;++Q){let rt=Q*v-b.left;for(let X=0;X<h;++X){let nt=Number.MIN_SAFE_INTEGER,st=0,it=0;for(let ft=0;ft<k;++ft){let at=K+ft*$;if(at>=0&&at<f)for(let xt=0;xt<_;++xt){let dt=rt+xt*D;if(dt>=0&&dt<d){let bt=c[q][at][dt][X]+p[ft][xt][X];bt>nt&&(nt=bt,st=ft,it=xt)}}}B[st][it][X]+=P[q][j][Q][X]}}}return{dataId:l.write(x.toTypedArray(B,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var mO={kernelName:Kd,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=x.toNestedArray(n.shape,l.data.get(n.dataId).values),p=x.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:y,padInfo:b,strideHeight:w,strideWidth:v,filterHeight:k,filterWidth:_,dilationHeight:$,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);x.assert(s.rank===F.length,()=>`Error in ${Kd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=x.toNestedArray(F,l.data.get(s.dataId).values),B=x.makeZerosNestedTypedArray(n.shape,n.dtype);for(let q=0;q<m;++q)for(let j=0;j<g;++j){let K=j*w-b.top;for(let Q=0;Q<y;++Q){let rt=Q*v-b.left;for(let X=0;X<h;++X){let nt=Number.MIN_SAFE_INTEGER,st=K<0?0:K,it=rt<0?0:rt;for(let ft=0;ft<k;++ft){let at=K+ft*$;if(at>=0&&at<f)for(let xt=0;xt<_;++xt){let dt=rt+xt*D;if(dt>=0&&dt<d){let bt=c[q][at][dt][X]+p[ft][xt][X];bt>nt&&(nt=bt,st=at,it=dt)}}}B[q][st][it][X]+=P[q][j][Q][X]}}}return{dataId:l.write(x.toTypedArray(B,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Il(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;ot(o,"sum");let a;o.dtype==="bool"?a=Oo({inputs:{x:o},backend:e,attrs:{dtype:"int32"}}):a=qr({inputs:{x:o},backend:e});let u=a.shape.length,l=x.parseAxisParam(s,a.shape),c=S.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=He({inputs:{x:a},backend:e,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=sd(e,f,h),y=x.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let v=0;v<b.length;++v){let k=v*y,_=0;for(let $=0;$<y;++$)_+=w[k+$];b[v]=_}if(i){let v=S.expandShapeToKeepDim(g.shape,l),k=g;g=Jt({inputs:{x:g},backend:e,attrs:{shape:v}}),e.disposeIntermediateTensorInfo(k)}return e.disposeIntermediateTensorInfo(a),c!=null&&e.disposeIntermediateTensorInfo(m),g}var fO={kernelName:Bs,backendName:"cpu",kernelFunc:Il};function Y9(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:y,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(y)?w=s[g]:(w=He({inputs:{x:s[g]},backend:e,attrs:{perm:y}}),d.push(w));let v=w.shape.slice();for(let k=0;k<b.length;++k)v.splice(b[k],0,1);x.arraysEqual(w.shape,v)||(w=Jt({inputs:{x:w},backend:e,attrs:{shape:v}}),d.push(w)),m===null?m=w:(m=jc({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=Il({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var dO={kernelName:Wp,backendName:"cpu",kernelFunc:Y9};function Z9(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;ot([n,o],"eluGrad");let s=new Float32Array(x.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,"float32",s)}var hO={kernelName:Up,backendName:"cpu",kernelFunc:Z9};var J9=S.ERF_P,Q9=S.ERF_A1,tJ=S.ERF_A2,eJ=S.ERF_A3,rJ=S.ERF_A4,nJ=S.ERF_A5,oJ=Et(ha,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+J9*e);return t*(1-((((nJ*n+rJ)*n+eJ)*n+tJ)*n+Q9)*n*Math.exp(-e*e))}),gO={kernelName:ha,backendName:"cpu",kernelFunc:oJ};function pd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(x.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),Jt({inputs:{x:o},backend:e,attrs:{shape:a}})}var xO={kernelName:Ii,backendName:"cpu",kernelFunc:pd};var sJ=re((r,t)=>r/t),yg=ie(us,sJ),bg={kernelName:us,backendName:"cpu",kernelFunc:yg};function lw(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=x.sizeFromShape(l),p=x.getTypedArrayFromDType("float32",c),m=x.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let y=Po({inputs:{x:a},backend:e,attrs:{begin:[g,0],size:[1,s]}}),b=Po({inputs:{x:u},backend:e,attrs:{begin:[g,0],size:[1,s]}}),w=Ir({inputs:{real:y,imag:b},backend:e}),{real:v,imag:k}=iJ(w,t,e),_=S.mergeRealAndImagArrays(v,k);for(let $=0;$<s;$++){let D=S.getComplexWithIndex(_,$);p[g*s+$]=D.real,m[g*s+$]=D.imag}e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(w)}let f=e.makeTensorInfo(l,"float32",p),d=e.makeTensorInfo(l,"float32",m),h=Ir({inputs:{real:f,imag:d},backend:e});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}function iJ(r,t,e){let n=x.sizeFromShape(r.shape),o=e.data.get(r.dataId),s=e.data.get(o.complexTensorInfos.real.dataId).values,i=e.data.get(o.complexTensorInfos.imag.dataId).values;if(aJ(n)){let a=FN(s,i,n,t,e),u=[r.shape[0],r.shape[1]];if(t){let l=e.makeTensorInfo(u,"float32",a.real),c=e.makeTensorInfo(u,"float32",a.imag),p=e.makeTensorInfo([],"float32",x.createScalarValue(n,"float32")),m=qr({inputs:{x:p},backend:e}),f=bg.kernelFunc({inputs:{a:l,b:p},backend:e}),d=bg.kernelFunc({inputs:{a:c,b:m},backend:e}),h=e.data.get(f.dataId).values,g=e.data.get(d.dataId).values;return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return a}else{let a=S.mergeRealAndImagArrays(s,i),u=lJ(a,n,t);return S.splitRealAndImagArrays(u)}}function aJ(r){return(r&r-1)===0}function FN(r,t,e,n,o){if(e===1)return{real:r,imag:t};let s=S.mergeRealAndImagArrays(r,t),i=e/2,a=S.complexWithEvenIndex(s),u=a.real,l=a.imag,c=[u.length],p=o.makeTensorInfo(c,"float32",u),m=o.makeTensorInfo(c,"float32",l),f=Ir({inputs:{real:p,imag:m},backend:o}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,y=[h.length],b=o.makeTensorInfo(y,"float32",h),w=o.makeTensorInfo(y,"float32",g),v=Ir({inputs:{real:b,imag:w},backend:o}),k=FN(u,l,i,n,o),_=k.real,$=k.imag,D=[_.length],F=o.makeTensorInfo(D,"float32",_),P=o.makeTensorInfo(D,"float32",$),B=Ir({inputs:{real:F,imag:P},backend:o}),U=FN(h,g,i,n,o),q=U.real,j=U.imag,K=[q.length],Q=o.makeTensorInfo(K,"float32",q),rt=o.makeTensorInfo(K,"float32",j),X=Ir({inputs:{real:Q,imag:rt},backend:o}),nt=S.exponents(e,n),st=[nt.real.length],it=o.makeTensorInfo(st,"float32",nt.real),ft=o.makeTensorInfo(st,"float32",nt.imag),at=Ir({inputs:{real:it,imag:ft},backend:o}),xt=jc({inputs:{a:at,b:X},backend:o}),dt=Ji({inputs:{a:B,b:xt},backend:o}),bt=gg({inputs:{a:B,b:xt},backend:o}),kt=Ro({inputs:{input:dt},backend:o}),At=Ro({inputs:{input:bt},backend:o}),Dt=Qi({inputs:{input:dt},backend:o}),Kt=Qi({inputs:{input:bt},backend:o}),jt=wu({inputs:[kt,At],backend:o,attrs:{axis:0}}),ce=wu({inputs:[Dt,Kt],backend:o,attrs:{axis:0}}),Ot=o.data.get(jt.dataId).values,$e=o.data.get(ce.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(v),o.disposeIntermediateTensorInfo(F),o.disposeIntermediateTensorInfo(P),o.disposeIntermediateTensorInfo(B),o.disposeIntermediateTensorInfo(Q),o.disposeIntermediateTensorInfo(rt),o.disposeIntermediateTensorInfo(X),o.disposeIntermediateTensorInfo(it),o.disposeIntermediateTensorInfo(ft),o.disposeIntermediateTensorInfo(at),o.disposeIntermediateTensorInfo(xt),o.disposeIntermediateTensorInfo(dt),o.disposeIntermediateTensorInfo(bt),o.disposeIntermediateTensorInfo(kt),o.disposeIntermediateTensorInfo(Dt),o.disposeIntermediateTensorInfo(At),o.disposeIntermediateTensorInfo(Kt),o.disposeIntermediateTensorInfo(jt),o.disposeIntermediateTensorInfo(ce),{real:Ot,imag:$e}}function lJ(r,t,e){let n=new Float32Array(t*2);for(let o=0;o<t;o++){let s=0,i=0;for(let a=0;a<t;a++){let u=S.exponent(o*a,t,e),l=S.getComplexWithIndex(r,a);s+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}e&&(s/=t,i/=t),S.assignToTypedArray(n,s,i,o)}return n}function uJ(r){let{inputs:t,backend:e}=r,{input:n}=t,o=x.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Jt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=lw(a,!1,e),l=Jt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var yO={kernelName:Hp,backendName:"cpu",kernelFunc:uJ};function wg(r){let{backend:t,attrs:e}=r,{shape:n,value:o,dtype:s}=e,i=s||x.inferDtype(o),a=x.getArrayFromDType(i,x.sizeFromShape(n));return cJ(a,o,i),t.makeTensorInfo(n,i,a)}var bO={kernelName:zl,backendName:"cpu",kernelFunc:wg};function cJ(r,t,e){r.fill(t)}var wO={kernelName:ya,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,o=e,s=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<i;m++){let f=m*u*a*l;for(let d=0;d<a;d++){let h=d*(u*l);for(let g=0;g<u;g++){let y=g*l;for(let b=0;b<l;b++){let w=Math.round(u-g-1),v=f+h+y+b,k=c[v];if(w>=0&&w<u){let _=w*l,$=f+h+_+b;k=c[$]}s[v]=k}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var pJ=re((r,t)=>Math.floor(r/t)),mJ=ie(fs,pJ,null,"int32"),vO={kernelName:fs,backendName:"cpu",kernelFunc:mJ};function fJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=$N({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=Jt({inputs:{x:i},backend:e,attrs:{shape:[i.shape[0],1,1]}});h=Ji({inputs:{a:h,b:y},backend:e}),e.disposeIntermediateTensorInfo(y)}else h=Ji({inputs:{a:h,b:i},backend:e});e.disposeIntermediateTensorInfo(g)}if(f){let g=h;if(c==="NCHW"&&f==="prelu"&&a.shape.length===1&&a.shape[0]!==1){let y=Jt({inputs:{x:a},backend:e,attrs:{shape:[a.shape[0],1,1]}});h=Zc(e,h,f,y,d),e.disposeIntermediateTensorInfo(y)}else h=Zc(e,h,f,a,d);e.disposeIntermediateTensorInfo(g)}return h}var CO={kernelName:Mi,backendName:"cpu",kernelFunc:fJ};function dJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=DN({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;h=Ji({inputs:{a:h,b:i},backend:e}),e.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=Zc(e,h,f,a,d),e.disposeIntermediateTensorInfo(g)}return h}var IO={kernelName:Pi,backendName:"cpu",kernelFunc:dJ};function hJ(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=x.sizeFromShape(n.shape),i=o.shape,a=i[i.length-1],[u,l,c,p]=S.prepareAndValidate(n,o);if(l===0)return e.makeTensorInfo(u,n.dtype,[]);let m=e.data.get(o.dataId).values,f=e.bufferSync(n),d=qb(m,f,n.dtype,l,a,c,p,n.shape,s);return e.makeTensorInfo(u,n.dtype,d.values)}var SO={kernelName:ba,backendName:"cpu",kernelFunc:hJ};function gJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n;ot([o,s],"gatherV2");let u=x.parseAxisParam(i,o.shape)[0],l=e.data.get(s.dataId).values,c=o.shape[u];for(let v=0;v<l.length;++v){let k=l[v];x.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=x.sizeFromShape(s.shape),f=S.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=Jt({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=Jt({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],y=e.bufferSync(h),b=e.bufferSync(d),w=Kb(b,y,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var kO={kernelName:Si,backendName:"cpu",kernelFunc:gJ};function xJ(r){let{inputs:t,backend:e}=r,{input:n}=t,o=x.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Jt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=lw(a,!0,e),l=Jt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var NO={kernelName:qp,backendName:"cpu",kernelFunc:xJ};var yJ=Et(va,r=>Number.isFinite(r)?1:0,"bool"),TO={kernelName:va,backendName:"cpu",kernelFunc:yJ};var bJ=Et(Ca,r=>Math.abs(r)===1/0?1:0,"bool"),_O={kernelName:Ca,backendName:"cpu",kernelFunc:bJ};var wJ=Et(Ia,r=>Number.isNaN(r)?1:0,"bool"),EO={kernelName:Ia,backendName:"cpu",kernelFunc:wJ};function vJ(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=jb(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var AO={kernelName:jp,backendName:"cpu",kernelFunc:vJ};var CJ=Et(Na,r=>Math.log1p(r)),$O={kernelName:Na,backendName:"cpu",kernelFunc:CJ};var IJ=re((r,t)=>r&&t),SJ=ie(Ta,IJ,null,"bool"),DO={kernelName:Ta,backendName:"cpu",kernelFunc:SJ};var kJ=Et(zu,r=>r?0:1,"bool"),FO={kernelName:zu,backendName:"cpu",kernelFunc:kJ};var NJ=re((r,t)=>r||t),TJ=ie(Bu,NJ,null,"bool"),RO={kernelName:Bu,backendName:"cpu",kernelFunc:TJ};function _J(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;ot(o,"LRN");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=x.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,y=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;y<=b;y++){let v=p[y];w+=v*v}return w}for(let h=0;h<m;h++){let g=d(h),y=p[h]*Math.pow(i+a*g,-u);f[h]=y}return e.makeTensorInfo(o.shape,o.dtype,f)}var OO={kernelName:Bl,backendName:"cpu",kernelFunc:_J};function EJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;ot(i,"LRNGrad");let p=x.sizeFromShape(i.shape),m=i.shape[3],f=e.data.get(i.dataId).values,d=e.data.get(o.dataId).values,h=e.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let w=b%m,v=b-w+Math.max(0,w-a),k=b-w+Math.min(m,w+a+1),_=0;for(let $=v;$<k;$++)_+=Math.pow(d[$],2);_=l*_+u;for(let $=v;$<k;$++){let D=-2*l*c*d[$]*h[b]/_;b===$&&(D+=Math.pow(_,-c)),D*=f[b],g[$]+=D}}return e.makeTensorInfo(i.shape,o.dtype,g)}var MO={kernelName:Xp,backendName:"cpu",kernelFunc:EJ};function RN(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=e,u=o.shape,l=u.length,c=x.parseAxisParam(s,u),p=c,m=S.getAxesPermutation(p,l),f=a.data.get(o.dataId).values;if(m!=null){let v=new Array(l);for(let k=0;k<v.length;k++)v[k]=u[m[k]];f=ld(f,u,o.dtype,m,v),p=S.getInnerMostAxes(p.length,l),u=v}ot(o,"max"),S.assertAxesAreInnerMostDims("max",p,l);let[d,h]=S.computeOutAndReduceShapes(u,p),g=x.sizeFromShape(h),y=Xb(f,g,d,o.dtype),b=a.write(y,d,o.dtype),w=d;return i&&(w=S.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var PO={kernelName:ys,backendName:"cpu",kernelFunc:RN};function AJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;ot(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))p=qr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=x.computeStrides(o.shape),d=cd(m,o.shape,o.dtype,f,c,"max");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var LO={kernelName:ws,backendName:"cpu",kernelFunc:AJ};function $J(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;ot(o,"maxPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=aw(p,o.shape,o.dtype,x.computeStrides(o.shape),c,"max");return e.makeTensorInfo(m.shape,"float32",m.values)}var zO={kernelName:Vl,backendName:"cpu",kernelFunc:$J};function DJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;ot([o,s],"maxPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=RR(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,_=w-1-c.padInfo.front,$=k-1-c.padInfo.left,D=v-1-c.padInfo.top,F=Ct(s.shape,"float32"),P=e.bufferSync(o);for(let B=0;B<c.batchSize;++B)for(let U=0;U<c.inChannels;++U)for(let q=0;q<c.inDepth;++q)for(let j=0;j<c.inHeight;++j)for(let K=0;K<c.inWidth;++K){let Q=q-_,rt=j-D,X=K-$,nt=0;for(let st=0;st<w;st+=g){let it=(Q+st)/f;if(!(it<0||it>=c.outDepth||Math.floor(it)!==it))for(let ft=0;ft<v;ft+=y){let at=(rt+ft)/d;if(!(at<0||at>=c.outHeight||Math.floor(at)!==at))for(let xt=0;xt<k;xt+=b){let dt=(X+xt)/h;if(dt<0||dt>=c.outWidth||Math.floor(dt)!==dt)continue;let bt=w*v*k-1-m.get(B,it,at,dt,U),kt=st*v*k+ft*k+xt,At=bt===kt?1:0;if(At===0)continue;nt+=P.get(B,it,at,dt,U)*At}}}F.set(nt,B,q,j,K,U)}return e.makeTensorInfo(F.shape,F.dtype,F.values)}var BO={kernelName:Zp,backendName:"cpu",kernelFunc:DJ};function FJ(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;ot([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=Ct(m.outShape,a.dtype,iw(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,y=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,v=m.effectiveFilterWidth,k=v-1-m.padInfo.left,_=w-1-m.padInfo.top,$=Ct(a.shape,"float32"),D=e.data.get(o.dataId).values,F=Ct(o.shape,"float32",D);for(let P=0;P<m.batchSize;++P)for(let B=0;B<m.inChannels;++B)for(let U=0;U<m.inHeight;++U)for(let q=0;q<m.inWidth;++q){let j=U-_,K=q-k,Q=0;for(let rt=0;rt<w;rt+=y){let X=(j+rt)/h;if(!(X<0||X>=m.outHeight||Math.floor(X)!==X))for(let nt=0;nt<v;nt+=b){let st=(K+nt)/g;if(st<0||st>=m.outWidth||Math.floor(st)!==st)continue;let it=w*v-1-d.get(P,X,st,B),ft=rt*v+nt,at=it===ft?1:0;if(at===0)continue;Q+=F.get(P,X,st,B)*at}}$.set(Q,P,U,q,B)}return e.makeTensorInfo($.shape,$.dtype,$.values)}var VO={kernelName:Yp,backendName:"cpu",kernelFunc:FJ};function GO(r,t,e,n,o){let s=x.computeStrides(t),i=cd(r,t,e,s,o,"max"),a=iw(r,t,e,o,!0,n);return[i.values,a.values]}var WO={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;ot(n,"MaxPoolWithArgmax");let l=u.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=GO(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function RJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=x.parseAxisParam(s,o.shape),l=S.computeOutAndReduceShapes(o.shape,a)[1],c=x.sizeFromShape(l),p=[],m=e.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Oo({inputs:{x:o},backend:e,attrs:{dtype:"float32"}});p.push(f);let d=yg({inputs:{a:f,b:m},backend:e});p.push(d);let h=Il({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var UO={kernelName:vs,backendName:"cpu",kernelFunc:RJ};function OJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;ot(o,"min");let a=x.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=He({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=x.sizeFromShape(m),d=x.makeZerosTypedArray(x.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let y=0;y<d.length;++y){let b=y*f,w=h[b];for(let v=0;v<f;++v){let k=h[b+v];(Number.isNaN(k)||k<w)&&(w=k)}d[y]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let y=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:y}});return e.disposeIntermediateTensorInfo(g),b}return g}var HO={kernelName:Cs,backendName:"cpu",kernelFunc:OJ};function MJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,mode:i}=n;ot(o,"mirrorPad");let a=s.map((w,v)=>w[0]+o.shape[v]+w[1]),u=s.map(w=>w[0]),l=s.map((w,v)=>w[0]+o.shape[v]),c=i==="reflect"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=x.computeStrides(o.shape),d=x.sizeFromShape(a),h=a.length,g=x.computeStrides(a),y=x.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let v=x.indexToLoc(w,h,g);for(let _=0;_<h;_++)v[_]<u[_]?v[_]=u[_]*2-v[_]-c:v[_]>=l[_]&&(v[_]=(l[_]-1)*2-v[_]+c);v=v.map((_,$)=>_-u[$]);let k=x.locToIndex(v,m,f);y[w]=p[k]}return{dataId:e.write(y,a,o.dtype),shape:a,dtype:o.dtype}}var qO={kernelName:Ss,backendName:"cpu",kernelFunc:MJ};var PJ=re((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),LJ=ie(_a,PJ),KO={kernelName:_a,backendName:"cpu",kernelFunc:LJ};var XO=Mu(yS());function ON(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=x.parseAxisParam([a],o.shape),l=RN({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=Jt({inputs:{x:l},backend:e,attrs:{shape:c}}),m=gg({inputs:{a:o,b:p},backend:e}),f=aN({inputs:{x:m},backend:e}),d=Il({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=Jt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=yg({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var jO={kernelName:Vs,backendName:"cpu",kernelFunc:ON};function zJ(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;ot(o,"multinomial");let u=a?o:ON({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=x.makeZerosTypedArray(x.sizeFromShape(m),"int32");for(let d=0;d<l;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let y=XO.alea(i.toString()),b=d*s;for(let w=0;w<s;++w){let v=y();f[b+w]=g.length;for(let k=0;k<g.length;k++)if(v<g[k]){f[b+w]=k;break}}}return a||e.disposeIntermediateTensorInfo(u),e.makeTensorInfo(m,"int32",f)}var YO={kernelName:Qp,backendName:"cpu",kernelFunc:zJ};var BJ=Gr.nonMaxSuppressionV3Impl;function VJ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n;ot(o,"NonMaxSuppression");let l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,{selectedIndices:p}=BJ(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var ZO={kernelName:Aa,backendName:"cpu",kernelFunc:VJ};var GJ=Gr.nonMaxSuppressionV4Impl;function WJ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n;ot(o,"NonMaxSuppressionPadded");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=GJ(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var JO={kernelName:$a,backendName:"cpu",kernelFunc:WJ};var UJ=Gr.nonMaxSuppressionV5Impl;function HJ(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n;ot(o,"NonMaxSuppressionWithScore");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:y}=UJ(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var QO={kernelName:Da,backendName:"cpu",kernelFunc:HJ};function qJ(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{depth:s,onValue:i,offValue:a}=n;ot(o,"oneHot");let u=x.sizeFromShape(o.shape),l=new Float32Array(u*s);l.fill(a);let c=e.data.get(o.dataId).values;for(let p=0;p<u;++p)c[p]>=0&&c[p]<s&&(l[p*s+c[p]]=i);return e.makeTensorInfo([...o.shape,s],"int32",l)}var tM={kernelName:Ns,backendName:"cpu",kernelFunc:qJ};function vg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Ro({inputs:{input:n},backend:e}),s=vg({inputs:{x:o},backend:e}),i=Qi({inputs:{input:n},backend:e}),a=vg({inputs:{x:i},backend:e}),u=Ir({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return wg({backend:e,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var eM={kernelName:Ri,backendName:"cpu",kernelFunc:vg};function rM(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Ro({inputs:{input:n},backend:e}),s=rM({inputs:{x:o},backend:e}),i=Qi({inputs:{input:n},backend:e}),a=vg({inputs:{x:i},backend:e}),u=Ir({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return wg({backend:e,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var nM={kernelName:Ni,backendName:"cpu",kernelFunc:rM};function MN(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return pd({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=pd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=wu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var oM={kernelName:Ti,backendName:"cpu",kernelFunc:MN};function KJ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;ot(o,"pad");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=x.sizeFromShape(o.shape),p=o.shape.length,m=x.computeStrides(o.shape),f=x.sizeFromShape(a),d=a.length,h=x.computeStrides(a),g=x.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;b<c;b++){let v=x.indexToLoc(b,p,m).map((_,$)=>_+u[$]),k=x.locToIndex(v,d,h);g[k]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var uw={kernelName:Ts,backendName:"cpu",kernelFunc:KJ};var jJ=re((r,t)=>Math.pow(r,t)),XJ=ie(_s,jJ),sM={kernelName:_s,backendName:"cpu",kernelFunc:XJ};function YJ(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=Xc(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var iM={kernelName:Gl,backendName:"cpu",kernelFunc:YJ};var ZJ=Et(Fa,r=>1/r),aM={kernelName:Fa,backendName:"cpu",kernelFunc:ZJ};function JJ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;ot(o,"resizeBilinear");let u=x.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(x.sizeFromShape([p,l,c,d])),y=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,v=y[0]/b[0],k=y[1]/b[1];for(let _=0;_<p;_++)for(let $=0;$<l;$++){let D;i?D=v*($+.5)-.5:D=v*$;let F=Math.max(0,Math.floor(D)),P=D-F,B=Math.min(m-1,Math.ceil(D)),U=_*u[0]+F*u[1],q=_*u[0]+B*u[1];for(let j=0;j<c;j++){let K;i?K=k*(j+.5)-.5:K=k*j;let Q=Math.max(0,Math.floor(K)),rt=K-Q,X=Math.min(f-1,Math.ceil(K)),nt=U+Q*u[2],st=q+Q*u[2],it=U+X*u[2],ft=q+X*u[2];for(let at=0;at<d;at++){let xt=h[nt+at],dt=h[st+at],bt=h[it+at],kt=h[ft+at],At=xt+(bt-xt)*rt,Dt=dt+(kt-dt)*rt,Kt=At+(Dt-At)*P;g[w++]=Kt}}}return e.makeTensorInfo([p,l,c,d],"float32",g)}var lM={kernelName:Ds,backendName:"cpu",kernelFunc:JJ};function QJ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;ot([s,o],"resizeBilinearGrad");let a=x.computeStrides(o.shape),[u,l,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(u*l*c*p),h=[i&&m>1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],y=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,v=0;for(let k=0;k<u;k++){let _=k*a[0];for(let $=0;$<m;$++){let D=$*y,F=Math.floor(D),P=Math.min(Math.ceil(D),l-1),B=_+F*a[1],U=_+P*a[1],q=D-F,j=1-q;for(let K=0;K<f;K++){let Q=K*b,rt=Math.floor(Q),X=Math.min(Math.ceil(Q),c-1),nt=Q-rt,st=1-nt,it=B+rt*a[2],ft=B+X*a[2],at=U+rt*a[2],xt=U+X*a[2],dt=j*st,bt=j*nt,kt=q*st,At=q*nt;for(let Dt=0;Dt<p;Dt++){let Kt=w[v++];d[it+Dt]+=Kt*dt,d[ft+Dt]+=Kt*bt,d[at+Dt]+=Kt*kt,d[xt+Dt]+=Kt*At}}}}return e.makeTensorInfo([u,c,l,p],"float32",d)}var uM={kernelName:rm,backendName:"cpu",kernelFunc:QJ};function tQ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;ot(o,"resizeNearestNeighbor");let u=x.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(p*l*c*d),y=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=y[0]/b[0],v=y[1]/b[1],k=0;for(let _=0;_<p;_++){let $=_*u[0];for(let D=0;D<l;D++){let F=i?w*(D+.5):w*D,P=Math.min(m-1,s?Math.round(F):Math.floor(F));i&&(P=Math.max(0,P));let B=$+P*u[1];for(let U=0;U<c;U++){let q=i?v*(U+.5):v*U,j=Math.min(f-1,s?Math.round(q):Math.floor(q));i&&(j=Math.max(0,j));let K=B+j*u[2];for(let Q=0;Q<d;Q++){let rt=h[K+Q];g[k++]=rt}}}}return e.makeTensorInfo([p,l,c,d],o.dtype,g)}var cM={kernelName:Wl,backendName:"cpu",kernelFunc:tQ};function eQ(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;ot([s,o],"resizeNearestNeighborGrad");let a=x.computeStrides(o.shape),u=x.computeStrides(s.shape),[l,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(l*c*p*m),g=e.data.get(s.dataId).values,y=[i&&f>1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=y[0]/b[0],v=y[1]/b[1],k=1/w,_=1/v,$=Math.ceil(k)*2+2,D=Math.ceil(_)*2+2;for(let F=0;F<l;F++){let P=F*a[0];for(let B=0;B<c;B++){let U=P+B*a[1],q=Math.floor(B*k),j=Math.floor(q-$/2);for(let K=0;K<p;K++){let Q=U+K*a[2],rt=Math.floor(K*_),X=Math.floor(rt-D/2);for(let nt=0;nt<m;nt++){let st=0;for(let it=0;it<$;it++){let ft=it+j;if(ft<0||ft>=f)continue;let at=P+ft*u[1],xt=ft*w,dt=Math.min(c-1,i?Math.round(xt):Math.floor(xt));if(B===dt)for(let bt=0;bt<D;bt++){let kt=bt+X;if(kt<0||kt>=d)continue;let At=at+kt*u[2],Dt=kt*v,Kt=Math.min(p-1,i?Math.round(Dt):Math.floor(Dt));K===Kt&&(st+=g[At+nt])}}h[Q+nt]=st}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var pM={kernelName:em,backendName:"cpu",kernelFunc:eQ};function rQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;ot(o,"reverse");let i=o.shape.length,a=x.parseAxisParam(s,o.shape);if(i===0)return qr({inputs:{x:o},backend:e});let u=new pe(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),m=p.slice();a.forEach(f=>m[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var mM={kernelName:Rs,backendName:"cpu",kernelFunc:rQ};var fM={kernelName:Wa,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=x.getTypedArrayFromDType(n.dtype,x.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=S.getImageCenter(i,c,p),h=255,g=Math.sin(o),y=Math.cos(o),b=a.data.get(n.dataId).values;for(let v=0;v<l;v++){let k=v*p*c*m;for(let _=0;_<c;_++){let $=_*(p*m);for(let D=0;D<p;D++){let F=D*m;for(let P=0;P<m;P++){let B=[l,_,D,P],U=B[2],q=B[1],j=(U-f)*y-(q-d)*g,K=(U-f)*g+(q-d)*y;j=Math.round(j+f),K=Math.round(K+d);let Q=s;if(typeof s!="number"&&(P===3?Q=h:Q=s[P]),j>=0&&j<p&&K>=0&&K<c){let X=K*(p*m),nt=j*m,st=k+X+nt+P;Q=b[st]}let rt=k+$+F+P;u[rt]=Q}}}}return{dataId:a.write(u,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var nQ=Et(Os,r=>{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),dM={kernelName:Os,backendName:"cpu",kernelFunc:nQ};function oQ(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=Cl(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var hM={kernelName:Ra,backendName:"cpu",kernelFunc:oQ};function sQ(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<t?e=o+1:n=o;return n}function iQ(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<=t?e=o+1:n=o;return n}function gM(r,t,e,n,o,s){let i=x.getArrayFromDType("int32",e*o);for(let a=0;a<e;++a){let u=r.slice(a*n,(a+1)*n),l=a*o;for(let c=0;c<o;++c)i[l+c]=s==="left"?sQ(u,t[c+l]):iQ(u,t[c+l])}return i}function aQ(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=gM(a,u,o.shape[0],o.shape[1],s.shape[1],i);return e.makeTensorInfo(s.shape,"int32",l)}var xM={kernelName:nm,backendName:"cpu",kernelFunc:aQ};function lQ(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t;ot([n,o,s],"select");let i=n.shape.length,a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=ar(o.dtype,s.dtype),p=x.makeZerosTypedArray(x.sizeFromShape(o.shape),c),m=0,f=i===0||i>1||o.shape.length===1?1:x.sizeFromShape(o.shape.slice(1));for(let d=0;d<a.length;d++)for(let h=0;h<f;h++)a[d]===1?p[m++]=u[d]:p[m++]=l[d];return e.makeTensorInfo(o.shape,c,p)}var yM={kernelName:Ei,backendName:"cpu",kernelFunc:lQ};var uQ=S.SELU_SCALEALPHA,cQ=S.SELU_SCALE,pQ=Et(Oa,r=>r>=0?cQ*r:uQ*(Math.exp(r)-1)),bM={kernelName:Oa,backendName:"cpu",kernelFunc:pQ};var mQ=Et(Pa,r=>r<0?-1:r>0?1:0),wM={kernelName:Pa,backendName:"cpu",kernelFunc:mQ};var fQ=Et(Ps,r=>Math.sin(r)),vM={kernelName:Ps,backendName:"cpu",kernelFunc:fQ};var dQ=Et(Ma,r=>Math.sinh(r)),CM={kernelName:Ma,backendName:"cpu",kernelFunc:dQ};var hQ=11920928955078125e-23,IM=Math.log(hQ)+2,gQ=Et(La,r=>{let t=r>-IM,e=r<IM,n=Math.exp(r),o;return e?o=n:t?o=r:o=Math.log(1+n),o}),SM={kernelName:La,backendName:"cpu",kernelFunc:gQ};function xQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;ot([o],"spaceToBatchND");let a=x.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let _=1+s.length;_<o.shape.length;++_)u.push([0,0]);let l=uw.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=Jt({inputs:{x:l},backend:e,attrs:{shape:c}}),b=He({inputs:{x:h},backend:e,attrs:{perm:p}}),k=Jt({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(b),k}var kM={kernelName:$i,backendName:"cpu",kernelFunc:xQ};function yQ(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=e.data.get(i.dataId).values[0],[p,m,f,d,h]=Yb(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var NM={kernelName:Ul,backendName:"cpu",kernelFunc:yQ};function bQ(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=Zb(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var TM={kernelName:za,backendName:"cpu",kernelFunc:bQ};function wQ(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=ud(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var _M={kernelName:Hl,backendName:"cpu",kernelFunc:wQ};function vQ(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=ud(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var EM={kernelName:ql,backendName:"cpu",kernelFunc:vQ};function CQ(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case"bool":{let g=e.bufferSync(s),y=Boolean(e.data.get(i.dataId).values[0]);h=Cl(d,g,a,m,c,l,u,p,y,f);break}case"float32":{let g=e.bufferSync(s),y=e.data.get(i.dataId).values[0];h=Cl(d,g,a,m,c,l,u,p,y,f);break}case"int32":{let g=e.bufferSync(s),y=e.data.get(i.dataId).values[0];h=Cl(d,g,a,m,c,l,u,p,y,f);break}case"string":{let g=e.bufferSync(s),y=x.decodeString(e.data.get(i.dataId).values[0]);h=Cl(d,g,a,m,c,l,u,p,y,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var AM={kernelName:om,backendName:"cpu",kernelFunc:CQ};function IQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=x.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Po({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var $M={kernelName:Di,backendName:"cpu",kernelFunc:IQ};var DM={kernelName:Kl,backendName:"cpu",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;ot(e,"square");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a<o.length;++a){let u=o[a];s[a]=u*u}return{dataId:n.write(s,e.shape,e.dtype),shape:e.shape,dtype:e.dtype}}};var SQ=Et(co,(r,t)=>{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),FM={kernelName:co,backendName:"cpu",kernelFunc:SQ};function kQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;ot(o,"stridedSlice");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:y,begin:b,end:w,strides:v}=Ve.sliceInfo(o.shape,s,i,a,u,l,c,p,m),k;if(h)k=Jt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||y){x.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let _=Ve.computeOutShape(b,w,v),$=Po({inputs:{x:o},backend:e,attrs:{begin:b,size:_}});k=Jt({inputs:{x:$},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo($)}else{let _=e.bufferSync(o),$=Jb(f,_,v,b);k=e.makeTensorInfo(d,$.dtype,$.values)}return k}var RM={kernelName:Ba,backendName:"cpu",kernelFunc:kQ};function NQ(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=Qb(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var OM={kernelName:sm,backendName:"cpu",kernelFunc:NQ};function TQ(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=tw(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var MM={kernelName:im,backendName:"cpu",kernelFunc:TQ};function _Q(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.data.get(s.dataId).values,a=ew(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var PM={kernelName:am,backendName:"cpu",kernelFunc:_Q};var EQ=Et(Us,r=>Math.tan(r)),LM={kernelName:Us,backendName:"cpu",kernelFunc:EQ};var AQ=Et(Hs,r=>Math.tanh(r)),zM={kernelName:Hs,backendName:"cpu",kernelFunc:AQ};function $Q(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;ot(o,"tile");let i=rw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var BM={kernelName:Yn,backendName:"cpu",kernelFunc:$Q};function DQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;ot(o,"topk");let a=e.data.get(o.dataId).values,[u,l]=nw(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var VM={kernelName:Va,backendName:"cpu",kernelFunc:DQ};function FQ(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],y=x.computeStrides(o.shape),b=y[0],w=y[1],v=y[2],k=x.getTypedArrayFromDType(o.dtype,x.sizeFromShape(g));k.fill(u);let _=n.data.get(o.dataId).values,$=n.data.get(s.dataId).values;for(let F=0;F<c;++F){let P=s.shape[0]===1?$:$.subarray(F*8,F*8+8);for(let B=0;B<d;++B)for(let U=0;U<h;++U)for(let q=0;q<f;++q){let j,K=P[6]*U+P[7]*B+1;if(K===0)continue;let Q=(P[0]*U+P[1]*B+P[2])/K,rt=(P[3]*U+P[4]*B+P[5])/K,X=GM(Q,m,a),nt=GM(rt,p,a);switch(i){case"nearest":j=LQ(_,p,m,b,w,v,F,nt,X,q,u);break;case"bilinear":j=zQ(_,p,m,b,w,v,F,nt,X,q,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let st=F*b+B*w+U*v+q;k[st]=j}return n.makeTensorInfo(g,o.dtype,k)}return{dataId:n.write(k,g,o.dtype),shape:o.shape,dtype:o.dtype}}var WM={kernelName:Ga,backendName:"cpu",kernelFunc:FQ};function GM(r,t,e){switch(e){case"reflect":return RQ(r,t);case"wrap":return OQ(r,t);case"nearest":return PQ(r,t);case"constant":default:return MQ(r,t)}}function RQ(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=2*t;e<n&&(e=n*Math.trunc(-e/n)+e),e=e<-t?e+n:-e-1}else if(e>t-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return x.clamp(0,e,t-1)}function OQ(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return x.clamp(0,e,t-1)}function MQ(r,t){return r}function PQ(r,t){return x.clamp(0,r,t-1)}function Cg(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&a<t&&0<=u&&u<e?r[p]:c}function LQ(r,t,e,n,o,s,i,a,u,l,c){let p=Math.round(a),m=Math.round(u);return Cg(r,t,e,n,o,s,i,p,m,l,c)}function zQ(r,t,e,n,o,s,i,a,u,l,c){let p=Math.floor(a),m=Math.floor(u),f=p+1,d=m+1,h=(d-u)*Cg(r,t,e,n,o,s,i,p,m,l,c)+(u-m)*Cg(r,t,e,n,o,s,i,p,d,l,c),g=(d-u)*Cg(r,t,e,n,o,s,i,f,m,l,c)+(u-m)*Cg(r,t,e,n,o,s,i,f,d,l,c);return(f-a)*h+(a-p)*g}function BQ(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;ot(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:a,outputShape:u,indices:l}=ow(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var UM={kernelName:lm,backendName:"cpu",kernelFunc:BQ};function VQ(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape.length,a=o.shape[s],u=new Array(i-1),l=0;for(let f=0;f<i;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(a);for(let f=0;f<m.length;f++){c[s]=f;let d=Po({inputs:{x:o},backend:e,attrs:{begin:c,size:p}});m[f]=Jt({inputs:{x:d},backend:e,attrs:{shape:u}}),e.disposeIntermediateTensorInfo(d)}return m}var HM={kernelName:Fi,backendName:"cpu",kernelFunc:VQ};function GQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n;ot(o,"unsortedSegmentSum");let a=o.shape.length,u=s.shape.length,l=[],c=[],p=a-u,m=s;for(let d=0;d<p;++d){let h=pd({inputs:{input:m},backend:e,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<i;++d){let h=x.createScalarValue(d,"int32"),g=e.makeTensorInfo([],"int32",h),y=sN({inputs:{a:g,b:m},backend:e}),b=Oo({inputs:{x:y},backend:e,attrs:{dtype:"float32"}}),w=jc({inputs:{a:b,b:o},backend:e}),v=Il({inputs:{x:w},backend:e,attrs:{axis:0,keepDims:!1}});l.push(v),c.push(g),c.push(y),c.push(b),c.push(w),c.push(v)}let f=MN({inputs:l,backend:e,attrs:{axis:0}});return c.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var qM={kernelName:jl,backendName:"cpu",kernelFunc:GQ};var WQ=[vR,MF,CR,IR,VF,SR,kR,NR,TR,_R,ER,AR,$R,DR,FR,OR,MR,PR,LR,wR,zR,BR,VR,GR,BF,GF,WR,PF,UR,qR,KR,jR,XR,YR,ZR,JR,QR,tO,eO,rO,nO,oO,sO,iO,aO,lO,uO,cO,pO,mO,dO,dR,hO,WF,gO,UF,xO,HF,yO,bO,wO,qF,vO,CO,IO,SO,kO,KF,jF,LF,NO,HR,TO,_O,EO,hR,XF,YF,AO,ZF,$O,DO,FO,RO,OO,MO,PO,JF,LO,zO,BO,VO,WO,UO,HO,QF,qO,KO,YO,tR,eR,ZO,JO,QO,rR,tM,nM,oM,uw,sM,gR,oR,iM,zF,bg,aM,xR,yR,bR,lM,uM,cM,pM,mM,fM,dM,sR,hM,xM,yM,bM,aR,wM,vM,CM,lR,jO,SM,kM,NM,TM,_M,EM,AM,$M,cR,DM,pR,FM,RM,OM,MM,PM,mR,fO,LM,zM,BM,VM,WM,nR,UM,HM,qM,eM];for(let r of WQ)Vu(r);var dd={};Zt(dd,{assertNotComplex:()=>di,bindCanvasToFramebuffer:()=>JQ,bindColorTextureToFramebuffer:()=>Ng,bindTextureToProgramUniformSampler:()=>QN,bindTextureUnit:()=>YM,bindVertexBufferToProgramAttribute:()=>dw,callAndCheck:()=>vt,canBeRepresented:()=>VN,createFragmentShader:()=>WN,createFramebuffer:()=>YN,createProgram:()=>UN,createStaticIndexBuffer:()=>KN,createStaticVertexBuffer:()=>qN,createTexture:()=>jN,createVertexShader:()=>GN,getBatchDim:()=>kl,getExtensionOrThrow:()=>md,getFramebufferErrorMessage:()=>ZM,getMaxTexturesInShader:()=>rT,getNumChannels:()=>YQ,getProgramUniformLocation:()=>JN,getProgramUniformLocationOrThrow:()=>ZN,getRowsCols:()=>Nl,getShapeAs3D:()=>Tg,getTextureShapeFromLogicalShape:()=>tT,getWebGLDisjointQueryTimerVersion:()=>nT,getWebGLErrorMessage:()=>XM,getWebGLMaxTextureSize:()=>eT,hasExtension:()=>Un,isCapableOfRenderingToFloatTexture:()=>oT,isDownloadFloatTextureEnabled:()=>sT,isReshapeFree:()=>Cu,isWebGLFenceEnabled:()=>iT,isWebGLVersionEnabled:()=>gw,linkProgram:()=>HN,logShaderSourceAndInfoLog:()=>fw,resetMaxTextureSize:()=>QQ,resetMaxTexturesInShader:()=>ttt,unbindColorTextureFromFramebuffer:()=>hw,unbindTextureUnit:()=>ZQ,validateFramebuffer:()=>fd,validateProgram:()=>kg,validateTextureSize:()=>XN});var Jc={},PN={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function LN(r,t){Jc[r]=t}function Wn(r,t){if(!(r in Jc)||t!=null){let n=HQ(r,t);if(n!==null)Jc[r]=n;else return console.log("Could not get context for WebGL version",r),null}let e=Jc[r];return e==null||e.isContextLost()?(delete Jc[r],Wn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Jc[r])}function UQ(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function HQ(r,t){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=t==null?UQ(r):t;return e.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Jc[r]},!1),r===1?e.getContext("webgl",PN)||e.getContext("experimental-webgl",PN):e.getContext("webgl2",PN)}var vu;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(vu||(vu={}));var Kr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Kr||(Kr={}));var Fr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Fr||(Fr={}));function Qc(r,t){return[t,r]}function KM(r,t){return r*t}function Ig(r){let t=x.sizeFromShape(r),e=Math.ceil(t/4);return x.sizeToSquarishShape(e)}function ta(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function jM(r,t){let[e,n]=ta(r,t);return e*n*4}function Sg(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return G().getNumber("WEBGL_VERSION")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function vt(r,t){let e=t();return G().getBool("DEBUG")&&qQ(r),e}function qQ(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error("WebGL Error: "+XM(r,t))}var KQ=596e-10,jQ=65504;function VN(r){return!!(G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||KQ<Math.abs(r)&&Math.abs(r)<jQ)}function XM(r,t){switch(t){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function md(r,t){return Sl(r,()=>r.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function GN(r,t){let e=Sl(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(vt(r,()=>r.shaderSource(e,t)),vt(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error("Failed to compile vertex shader.");return e}function WN(r,t){let e=Sl(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(vt(r,()=>r.shaderSource(e,t)),vt(r,()=>r.compileShader(e)),G().get("ENGINE_COMPILE_ONLY"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw fw(t,r.getShaderInfoLog(e)),new Error("Failed to compile fragment shader.");return e}var XQ=/ERROR: [0-9]+:([0-9]+):/g;function fw(r,t){let e=XQ.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`
|
|
`),s=o.length.toString().length+2,i=o.map((p,m)=>x.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;p<i.length;p++)a=Math.max(i[p].length,a);let u=i.slice(0,n-1),l=i.slice(n-1,n),c=i.slice(n);console.log(u.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${x.rightPad(l[0],a)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function UN(r){return Sl(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function HN(r,t){if(vt(r,()=>r.linkProgram(t)),!G().get("ENGINE_COMPILE_ONLY")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function kg(r,t){if(vt(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function qN(r,t){let e=Sl(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return vt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),vt(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function KN(r,t){let e=Sl(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return vt(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),vt(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function YQ(){return G().getNumber("WEBGL_VERSION")===2?1:4}function jN(r){return Sl(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function XN(r,t){let e=G().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function YN(r){return Sl(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function dw(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(vt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),vt(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),vt(r,()=>r.enableVertexAttribArray(a)),!0)}function YM(r,t,e){JM(r,e),vt(r,()=>r.activeTexture(r.TEXTURE0+e)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function ZQ(r,t){JM(r,t),vt(r,()=>r.activeTexture(r.TEXTURE0+t)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function ZN(r,t,e){return Sl(r,()=>r.getUniformLocation(t,e),'uniform "'+e+'" not present in program.')}function JN(r,t,e){return r.getUniformLocation(t,e)}function QN(r,t,e,n){vt(r,()=>YM(r,t,n)),vt(r,()=>r.uniform1i(e,n))}function JQ(r){vt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),vt(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),vt(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function Ng(r,t,e){vt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),vt(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function hw(r,t){vt(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),vt(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function fd(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+ZM(r,t))}function ZM(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Sl(r,t,e){let n=vt(r,()=>t());if(n==null)throw new Error(e);return n}function JM(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(n<r.TEXTURE0||n>e){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function kl(r,t=2){return x.sizeFromShape(r.slice(0,r.length-t))}function Nl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Tg(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[kl(r),...Nl(r)]),t}function tT(r,t=!1){let e=G().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(e=e*2,r=r.map((o,s)=>s>=r.length-2?x.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=x.squeezeShape(r).newShape);let n=x.sizeFromShape(r);if(r.length<=1&&n<=e)return[1,n];if(r.length===2&&r[0]<=e&&r[1]<=e)return r;if(r.length===3&&r[0]*r[1]<=e&&r[2]<=e)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=e&&r[1]*r[2]<=e)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e)return[r[0],r[1]*r[2]*r[3]];if(t){let o=kl(r),s=2,i=2;return r.length&&([s,i]=Nl(r)),n=o*(s/2)*(i/2),x.sizeToSquarishShape(n).map(a=>a*2)}return x.sizeToSquarishShape(n)}function cw(r){return r%2===0}function Cu(r,t){if(r=r.slice(-2),t=t.slice(-2),x.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r.slice(-1)[0],n=t.slice(-1)[0];if(e===n||cw(e)&&cw(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&cw(r[0])&&cw(t[0])}var pw,mw;function eT(r){if(pw==null){let t=Wn(r);pw=t.getParameter(t.MAX_TEXTURE_SIZE)}return pw}function QQ(){pw=null}function ttt(){mw=null}function rT(r){if(mw==null){let t=Wn(r);mw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,mw)}function nT(r){if(r===0)return 0;let t,e=Wn(r);return Un(e,"EXT_disjoint_timer_query_webgl2")&&r===2?t=2:Un(e,"EXT_disjoint_timer_query")?t=1:t=0,t}function Un(r,t){return r.getExtension(t)!=null}function gw(r){try{if(Wn(r)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function oT(r){if(r===0)return!1;let t=Wn(r);if(r===1){if(!Un(t,"OES_texture_float"))return!1}else if(!Un(t,"EXT_color_buffer_float"))return!1;return BN(t)}function sT(r){if(r===0)return!1;let t=Wn(r);if(r===1){if(!Un(t,"OES_texture_float")||!Un(t,"WEBGL_color_buffer_float"))return!1}else{if(Un(t,"EXT_color_buffer_float"))return BN(t);let n="EXT_color_buffer_half_float";if(Un(t,n)){let o=t.getExtension(n);return ett(t,o)}return!1}return BN(t)}function BN(r){let t=Sg(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,n,o,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function ett(r,t){let e=Sg(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,o,s,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function iT(r){return r!==2?!1:Wn(r).fenceSync!=null}function di(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&x.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Rt=G();Rt.registerFlag("HAS_WEBGL",()=>Rt.getNumber("WEBGL_VERSION")>0);Rt.registerFlag("WEBGL_VERSION",()=>gw(2)?2:gw(1)?1:0);Rt.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Rt.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Rt.get("WEBGL_VERSION")===2);Rt.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Rt.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Rt.registerFlag("WEBGL_PACK",()=>Rt.getBool("HAS_WEBGL"));Rt.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_CLIP",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_PACK_REDUCE",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_LAZILY_UNPACK",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_CONV_IM2COL",()=>Rt.getBool("WEBGL_PACK"));Rt.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>eT(Rt.getNumber("WEBGL_VERSION")));Rt.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>rT(Rt.getNumber("WEBGL_VERSION")));Rt.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Rt.getNumber("WEBGL_VERSION");return r===0?0:nT(r)});Rt.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Rt.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Jl.isMobile());Rt.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>oT(Rt.getNumber("WEBGL_VERSION")));Rt.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Rt.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Rt.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Rt.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>sT(Rt.getNumber("WEBGL_VERSION")));Rt.registerFlag("WEBGL_FENCE_API_ENABLED",()=>iT(Rt.getNumber("WEBGL_VERSION")));Rt.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Rt.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Rt.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Rt.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Jl.isMobile()?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});Rt.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Rt.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Rt.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Rt.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function qe(){let r,t,e,n,o,s,i,a,u,l;return G().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",t="in",e="out",n="in",o="texture",s="outputColor",i="out vec4 outputColor;",a=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,u="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(r="",t="attribute",e="varying",n="varying",o="texture2D",s="gl_FragColor",i="",a=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,u=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function hi(r,t,e="index"){let n=x.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join("")}function tp(r,t,e="index"){let n=x.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join("")}function rtt(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function QM(r,t,e="index"){let n=r.map((s,i)=>i),o=rtt(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join("")}function hd(r){let t=x.computeStrides(r).map(e=>e.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function gd(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var xw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`;var{getBroadcastDims:tP}=S;function eP(r,t,e){let n=[];if(r.forEach(f=>{let d=x.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:""};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=yw(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:""};`)});let o=n.join(`
|
|
`),s=r.map(f=>ntt(f,t,e.packedInputs,e.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,a=qe(),u=itt(a),l,c,p=utt(a);return t.isPacked?(l=ott(t.logicalShape,i,e.enableShapeUniforms),c=ltt(a)):(l=stt(t.logicalShape,i,e.enableShapeUniforms),c=att(a)),e.packedInputs&&(p+=ftt),[p,u,c,o,l,s,e.userCode].join(`
|
|
`)}function yd(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return ktt(r,t);case 1:return Ttt(r,t);case 2:return Ett(r,t);case 3:return $tt(r,t);case 4:return Ftt(r,t);case 5:return Rtt(r);case 6:return Ott(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function rP(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return Stt(r);case 1:return Ntt(r,t);case 2:return _tt(r,t);case 3:return Att(r,t);default:return Dtt(r,t)}}function ntt(r,t,e=!1,n){let o="";e?o+=rP(r,n):o+=yd(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Mtt(r,t):o+=Ptt(r,t)),o}function ott(r,t,e){switch(r.length){case 0:return nP();case 1:return dtt(r,t,e);case 2:return Ctt(r,t,e);case 3:return gtt(r,t,e);default:return ytt(r,t,e)}}function stt(r,t,e){switch(r.length){case 0:return nP();case 1:return htt(r,t,e);case 2:return Itt(r,t,e);case 3:return xtt(r,t,e);case 4:return btt(r,t,e);case 5:return wtt(r,t);case 6:return vtt(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function itt(r){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${r.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function att(r){return`
|
|
void setOutput(float val) {
|
|
${r.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function ltt(r){return`
|
|
void setOutput(vec4 val) {
|
|
${r.output} = val;
|
|
}
|
|
`}function utt(r){return`${r.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${r.varyingFs} vec2 resultUV;
|
|
${r.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${r.defineSpecialNaN}
|
|
${r.defineSpecialInf}
|
|
${r.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${ctt}
|
|
${ptt}
|
|
${mtt}
|
|
`}var ctt=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,ptt=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,mtt=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,ftt=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function nP(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function dtt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?e?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:e?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function htt(r,t,e){return t[0]===1?e?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?e?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:e?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function gtt(r,t,e){if(e)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function xtt(r,t,e){if(e)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${tp(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let n=hi(["r","c","d"],r);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function ytt(r,t,e){if(e)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a="",u="b, r, c";for(let l=2;l<r.length-1;l++)i*=r[r.length-l-1],a=`
|
|
int b${l} = index / ${i};
|
|
index -= b${l} * ${i};
|
|
`+a,u=`b${l}, `+u;return`
|
|
ivec${r.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
int b = index / ${s};
|
|
index -= b * ${s};
|
|
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec${r.length}(${u});
|
|
}
|
|
`}function btt(r,t,e){if(e)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${tp(["r","c","d","d2"],r)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let n=hi(["r","c","d","d2"],r);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function wtt(r,t){let e=hi(["r","c","d","d2","d3"],r);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${e}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function vtt(r,t){let e=hi(["r","c","d","d2","d3","d4"],r);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${e}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Ctt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(x.arraysEqual(r,t))return e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let o=Math.ceil(r[1]/2);return e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Itt(r,t,e){return x.arraysEqual(r,t)?e?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:r[1]===1?e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:r[0]===1?e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:e?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${r[1]};
|
|
int c = index - r * ${r[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ep(r){return`offset${r}`}function Stt(r){let t=r.name,e="get"+t.charAt(0).toUpperCase()+t.slice(1),n=qe();return`
|
|
vec4 ${e}() {
|
|
return ${n.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function ktt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${n}() {return ${e};}`;let[o,s]=r.shapeInfo.texShape;if(o===1&&s===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let i=ep(e);if(t)return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;let[a,u]=r.shapeInfo.texShape;return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${a}, ${u}, ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function Ntt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,s=qe();if(t)return`
|
|
vec4 ${n}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`;let i=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`}function Ttt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${bd(r)}
|
|
}
|
|
`;let o=r.shapeInfo.texShape,s=o[0],i=o[1];if(i===1&&s===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let a=ep(e);return i===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / float(${e}TexShape[0]));
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${s}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:s===1?t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / float(${e}TexShape[1]), 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:t?`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function _tt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=s[0],a=s[1],u=qe();if(s!=null&&x.arraysEqual(e,s))return t?`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${i}.0);
|
|
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${o}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],c=Math.ceil(e[1]/2);return`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`}function Ett(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape;if(s!=null&&x.arraysEqual(e,s)){if(t)return`
|
|
float ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=s[0],f=s[1];return`
|
|
float ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:a}=x.squeezeShape(e),u=i;if(u.length<e.length){let m=wd(r,u),f=["row","col"];return`
|
|
${yd(m,t)}
|
|
float ${o}(int row, int col) {
|
|
return ${o}(${vd(f,a)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let l=s[0],c=s[1],p=ep(n);return c===1?t?`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?t?`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${o}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${e[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Att(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(e[0]===1){let m=e.slice(1),f=[1,2],d=wd(r,m),h=["b","row","col"];return`
|
|
${rP(d,t)}
|
|
vec4 ${o}(int b, int row, int col) {
|
|
return ${o}(${vd(h,f)});
|
|
}
|
|
`}let a=qe();if(t)return`
|
|
vec4 ${o}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=i[0],l=i[1],c=Math.ceil(e[2]/2),p=c*Math.ceil(e[1]/2);return`
|
|
vec4 ${o}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${u}, ${l}, ${p}, ${c}, b, row, col);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function $tt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[1]*e[2],i=e[2],{newShape:a,keptDims:u}=x.squeezeShape(e),l=a;if(l.length<e.length){let h=wd(r,l),g=["row","col","depth"];return`
|
|
${yd(h,t)}
|
|
float ${o}(int row, int col, int depth) {
|
|
return ${o}(${vd(g,u)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${s}, ${i}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let c=r.shapeInfo.texShape,p=c[0],m=c[1],f=r.shapeInfo.flatOffset;if(m===s&&f==null)return t?`
|
|
float ${o}(int row, int col, int depth) {
|
|
int stride1 = ${n}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&f==null)return t?`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let d=ep(n);return t?`
|
|
float ${o}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${n}Shape[1] * ${n}Shape[2];
|
|
int stride1 = ${n}Shape[2];
|
|
int index = row * ${s} + col * ${i} + depth + ${d};
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s} + col * ${i} + depth + ${d};
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Dtt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=qe();if(t)return`
|
|
vec4 ${n}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${e}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${e}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${e}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${o.texture2D}(${e}, uv);
|
|
}
|
|
`;let s=r.shapeInfo.logicalShape,i=s.length,a=r.shapeInfo.texShape,u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],l=u[0],c=u[1],p=Math.ceil(s[i-1]/2),m=p*Math.ceil(s[i-2]/2),f="int b, int row, int col",d=`b * ${m} + (row / 2) * ${p} + (col / 2)`;for(let h=2;h<i-1;h++)f=`int b${h}, `+f,m*=s[i-h-1],d=`b${h} * ${m} + `+d;return`
|
|
vec4 ${n}(${f}) {
|
|
int index = ${d};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
|
|
return ${o.texture2D}(${e}, uv);
|
|
}
|
|
`}function Ftt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[3],i=e[2]*s,a=e[1]*i,{newShape:u,keptDims:l}=x.squeezeShape(e);if(u.length<e.length){let b=wd(r,u),w=["row","col","depth","depth2"];return`
|
|
${yd(b,t)}
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
return ${o}(${vd(w,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${i}, ${s}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1],d=`int stride2 = ${n}Shape[3];`,h=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(f===a&&c==null)return t?`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
${d}
|
|
${h}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===s&&c==null)return t?`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}TexShape[1], ${n}TexShape[0]);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${e[1]*e[2]}, ${e[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let y=ep(n);return t?`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${d}
|
|
${h}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} +
|
|
depth * ${s} + depth2;
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index + ${y});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Rtt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=t[4],s=t[3]*o,i=t[2]*s,a=t[1]*i,{newShape:u,keptDims:l}=x.squeezeShape(t);if(u.length<t.length){let h=wd(r,u),g=["row","col","depth","depth2","depth3"];return`
|
|
${yd(h)}
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${n}(${vd(g,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${i}, ${s}, ${o})) +
|
|
depth3;
|
|
${bd(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===a&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;if(f===o&&c==null)return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;let d=ep(e);return`
|
|
float ${n}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} + depth * ${s} +
|
|
depth2 * ${o} + depth3 + ${d};
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function Ott(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),{newShape:o,keptDims:s}=x.squeezeShape(t);if(o.length<t.length){let g=wd(r,o),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${yd(g)}
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${n}(${vd(y,s)});
|
|
}
|
|
`}let i=t[5],a=t[4]*i,u=t[3]*a,l=t[2]*u,c=t[1]*l;if(r.shapeInfo.isUniform)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${l}, ${u}, ${a})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${bd(r)}
|
|
}
|
|
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${u}, ${a}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;if(d===i&&p==null)return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`;let h=ep(e);return`
|
|
float ${n}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${l} + depth * ${u} +
|
|
depth2 * ${a} + depth3 * ${i} + depth4 + ${h};
|
|
vec2 uv = uvFromFlat(${f}, ${d}, index);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function bd(r){let t=r.name,e=x.sizeFromShape(r.shapeInfo.logicalShape);return e<2?`return ${t};`:`
|
|
for (int i = 0; i < ${e}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Mtt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,i=t.logicalShape.length,a=tP(r.shapeInfo.logicalShape,t.logicalShape),u=Ht(i),l=i-s,c,p=["x","y","z","w","u","v"];s===0?c="":i<2&&a.length>=1?c="coords = 0;":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`
|
|
`);let m="";i<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(", ");let f="return outputValue;",h=x.sizeFromShape(r.shapeInfo.logicalShape)===1,y=x.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!y)f=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(h&&!y)i===1?f=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:f=`
|
|
return vec4(outputValue.x);
|
|
`;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f="return vec4(outputValue.x);":a.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":a.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${o}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${n}(${m});
|
|
${f}
|
|
}
|
|
`}function Ptt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&x.arraysEqual(i,s))return`
|
|
float ${o}() {
|
|
return sampleTexture(${e}, resultUV);
|
|
}
|
|
`;let l=Ht(u),c=tP(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=["x","y","z","w","u","v"];a===0?m="":u<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
|
|
`);let d="";return u<2&&a>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
|
|
float ${o}() {
|
|
${l} coords = getOutputCoords();
|
|
${m}
|
|
return get${n}(${d});
|
|
}
|
|
`}function Ht(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function yw(r,t,e){let{newShape:n,keptDims:o}=x.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!x.arraysEqual(t,e)&&n.length<s||i;return{useSqueezeShape:u,uniformShape:u?a:t,keptDims:o}}function wd(r,t){let e=JSON.parse(JSON.stringify(r));return e.shapeInfo.logicalShape=t,e}function vd(r,t){return t.map(e=>r[e]).join(", ")}function sP(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=eP(o,i,t),u=WN(r.gl,a),l=r.createProgram(u);return G().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},aT(r,t,l))}function aT(r,t,e){let n={},o={},s={},i=[],a,u,l,c=null,p=null;p=r.getUniformLocation(e,"NAN",!1),G().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(e,"INFINITY",!1));let m=!1;for(let f=0;f<t.variableNames.length;f++){let d=t.variableNames[f];n[d]=r.getUniformLocation(e,d,m),n[`offset${d}`]=r.getUniformLocation(e,`offset${d}`,m),t.enableShapeUniforms&&(o[`${d}Shape`]=r.getUniformLocation(e,`${d}Shape`,m),s[`${d}TexShape`]=r.getUniformLocation(e,`${d}TexShape`,m))}return t.enableShapeUniforms&&(a=r.getUniformLocation(e,"outShape",m),l=r.getUniformLocation(e,"outShapeStrides",m),u=r.getUniformLocation(e,"outTexShape",m)),t.customUniforms&&t.customUniforms.forEach((f,d)=>{i[d]=r.getUniformLocation(e,f.name,m)}),{uniformLocations:n,customUniformLocations:i,infLoc:c,nanLoc:p,inShapesLocations:o,inTexShapesLocations:s,outShapeLocation:a,outShapeStridesLocation:l,outTexShapeLocation:u}}function oP(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!x.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!x.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function iP(r,t,e,n,o){t.program.enableShapeUniforms||(oP(t.inShapeInfos,e),oP([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),G().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN),e.forEach((u,l)=>{let c=t.program.variableNames[l],p=t.uniformLocations[c],m=t.uniformLocations[`offset${c}`],f=t.inShapesLocations[`${c}Shape`],d=t.inTexShapesLocations[`${c}TexShape`];if(f){let{uniformShape:h}=yw(t.program.packedInputs,u.shape,u.texData.texShape);switch(h.length){case 1:r.gl.uniform1iv(f,new Int32Array(h));break;case 2:r.gl.uniform2iv(f,new Int32Array(h));break;case 3:r.gl.uniform3iv(f,new Int32Array(h));break;case 4:r.gl.uniform4iv(f,new Int32Array(h));break;default:break}}if(d&&r.gl.uniform2i(d,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(x.sizeFromShape(u.shape)<2)r.gl.uniform1f(p,u.uniformValues[0]);else{let h=u.uniformValues;h instanceof Float32Array||(h=new Float32Array(h)),r.gl.uniform1fv(p,h)}return}u.texData.slice!=null&&m!=null&&r.gl.uniform1i(m,u.texData.slice.flatOffset),r.setInputMatrixTexture(u.texData.texture.texture,p,l)}});let a=t.outShapeLocation;if(a)switch(n.shape.length){case 1:r.gl.uniform1iv(a,new Int32Array(n.shape));break;case 2:r.gl.uniform2iv(a,new Int32Array(n.shape));break;case 3:r.gl.uniform3iv(a,new Int32Array(n.shape));break;case 4:r.gl.uniform4iv(a,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let u=x.computeStrides(n.shape);switch(n.shape.length){case 2:r.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:r.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:r.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&r.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&o&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],p=o[l];if(u.type==="float")r.gl.uniform1fv(c,p);else if(u.type==="vec2")r.gl.uniform2fv(c,p);else if(u.type==="vec3")r.gl.uniform3fv(c,p);else if(u.type==="vec4")r.gl.uniform4fv(c,p);else if(u.type==="int")r.gl.uniform1iv(c,p);else if(u.type==="ivec2")r.gl.uniform2iv(c,p);else if(u.type==="ivec3")r.gl.uniform3iv(c,p);else if(u.type==="ivec4")r.gl.uniform4iv(c,p);else throw Error(`uniform type ${u.type} is not supported yet.`)}),r.executeProgram()}function aP(r,t,e){let n="";t.concat(e).forEach(i=>{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=yw(r.packedInputs,i.shape,u),m="",f="",d="";if(c.length===1&&r.packedInputs){let k=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${k[0]>1}_${k[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let k=x.computeStrides(c);d=`${k[0]===u[1]}_${k[k.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&x.arraysEqual(i.shape,u),y=x.sizeFromShape(i.shape)===1,b=S.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&x.arraysEqual(u,e.texData.texShape),v=r.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:""}_${c.length}_${y}_${b}_${g}_${m}_${f}_${d}_${v}_${a}`}else{let u=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o+`${G().getNumber("WEBGL_VERSION")}`,s}function De(r){return G().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&r<=4}var bw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=vu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=qe();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?tp(["r","c","d"],t):hi(["r","c","d"],t)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${e.output} = result;
|
|
}
|
|
`}};var ww=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=vu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=qe();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?tp(["r","c","d"],t):hi(["r","c","d"],t)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${e.output} = result;
|
|
}
|
|
`}};var vw=class{constructor(t){this.variableNames=["A"],this.outTexUsage=Kr.DOWNLOAD;let e=qe();this.outputShape=t,this.userCode=`
|
|
${xw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${e.output} = encode_float(x);
|
|
}
|
|
`}};var Cw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Kr.DOWNLOAD;let e=qe();this.outputShape=t,this.userCode=`
|
|
${xw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${e.output} = encode_float(x);
|
|
}
|
|
`}};var Iw=class{constructor(t,e=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=qe();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let o="result";e&&(o="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?gd():hd(t)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${o}, 0., 0., 0.);
|
|
}
|
|
`}};var Sw=class{constructor(t,e=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=qe();this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let o="",s="result";e&&(s="floor(result * 255. + 0.5)");for(let i=0;i<=1;i++)for(let a=0;a<=1;a++){let u=i*2+a;o+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${a} < ${this.enableShapeUniforms?"outShape[2]":`${t[2]}`}) {
|
|
localCoords[2] += ${a};
|
|
if (localCoords[1] + ${i} < ${this.enableShapeUniforms?"outShape[1]":`${t[1]}`}) {
|
|
localCoords[1] += ${i};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${u}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${u}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${u}] = values[2];
|
|
} else {
|
|
result[${u}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?gd():hd(t)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${o}
|
|
|
|
${n.output} = ${s};
|
|
}
|
|
`}};var ST={};Zt(ST,{bindVertexProgramAttributeStreams:()=>gT,createBufferFromOutputTexture:()=>bT,createFloat16MatrixTexture:()=>mT,createFloat16PackedMatrixTexture:()=>hT,createFloat32MatrixTexture:()=>pT,createIndexBuffer:()=>cT,createPackedMatrixTexture:()=>dT,createUnsignedBytesMatrixTexture:()=>fT,createVertexBuffer:()=>uT,createVertexShader:()=>lT,downloadByteEncodedFloatMatrixFromOutputTexture:()=>vT,downloadFloat32MatrixFromBuffer:()=>wT,downloadMatrixFromPackedOutputTexture:()=>IT,downloadPackedMatrixFromBuffer:()=>CT,getInternalFormatForFloat16MatrixTexture:()=>Nw,getInternalFormatForFloat16PackedMatrixTexture:()=>Ew,getInternalFormatForFloat32MatrixTexture:()=>kw,getInternalFormatForPackedMatrixTexture:()=>_w,getInternalFormatForUnsignedBytesMatrixTexture:()=>Tw,uploadDenseMatrixToTexture:()=>xT,uploadPixelDataToTexture:()=>yT});function lT(r){let t=qe(),e=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return GN(r,e)}function uT(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return qN(r,t)}function cT(r){let t=new Uint16Array([0,1,2,2,1,3]);return KN(r,t)}function _g(r,t,e,n,o,s){XN(t,e);let i=jN(r),a=r.TEXTURE_2D;return vt(r,()=>r.bindTexture(a,i)),vt(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),vt(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),vt(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),vt(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),G().getNumber("WEBGL_VERSION")===1?vt(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):vt(r,()=>r.texStorage2D(a,1,n,t,e)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function kw(r){return r.internalFormatFloat}function pT(r,t,e,n){let[o,s]=Qc(t,e);return _g(r,o,s,kw(n),n.textureFormatFloat,r.FLOAT)}function Nw(r){return r.internalFormatHalfFloat}function mT(r,t,e,n){let[o,s]=Qc(t,e);return _g(r,o,s,Nw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Tw(r){return r.downloadTextureFormat}function fT(r,t,e,n){let[o,s]=Qc(t,e);return _g(r,o,s,Tw(n),r.RGBA,r.UNSIGNED_BYTE)}function _w(r){return r.internalFormatPackedFloat}function dT(r,t,e,n){let[o,s]=ta(t,e);return _g(r,o,s,_w(n),r.RGBA,r.FLOAT)}function Ew(r){return r.internalFormatPackedHalfFloat}function hT(r,t,e,n){let[o,s]=ta(t,e);return _g(r,o,s,Ew(n),r.RGBA,n.textureTypeHalfFloat)}function gT(r,t,e){return vt(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),dw(r,t,"clipSpacePos",e,3,20,0)&&dw(r,t,"uv",e,2,20,12)}function xT(r,t,e,n,o,s){vt(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),G().getNumber("WEBGL_VERSION")===2?vt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):vt(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function yT(r,t,e){vt(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?G().getNumber("WEBGL_VERSION")===2?vt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):vt(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):G().getNumber("WEBGL_VERSION")===2?vt(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):vt(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),vt(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function bT(r,t,e,n){let o=r.createBuffer();vt(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return vt(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),vt(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),vt(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function wT(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function vT(r,t,e,n){let[o,s]=Qc(t,e),i=4,a=new Uint8Array(KM(t*e,i));return vt(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function CT(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array(jM(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function IT(r,t,e){let n=new Float32Array(t*e*4);return vt(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var rp=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let e=G().getNumber("WEBGL_VERSION");t!=null?(this.gl=t,LN(e,t)):this.gl=Wn(e);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),G().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",i="OES_texture_half_float";if(this.textureFloatExtension=md(this.gl,s),Un(this.gl,i))this.textureHalfFloatExtension=md(this.gl,i);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Un(this.gl,o))this.colorBufferHalfFloatExtension=md(this.gl,o);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Un(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Un(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=uT(this.gl),this.indexBuffer=cT(this.gl),this.framebuffer=YN(this.gl),this.textureConfig=Sg(this.gl,this.textureHalfFloatExtension)}get debug(){return G().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let t=this.gl;vt(t,()=>t.finish()),vt(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),vt(t,()=>t.deleteFramebuffer(this.framebuffer)),vt(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),vt(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),vt(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),pT(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),mT(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),fT(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),yT(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),xT(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),hT(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),dT(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(hw(this.gl,this.framebuffer),this.outputTexture=null),vt(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>vT(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return CT(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return wT(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=bT(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(G().getBool("WEBGL_FENCE_API_ENABLED")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>IT(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=lT(e));let n=UN(e);return vt(e,()=>e.attachShader(n,this.vertexShader)),vt(e,()=>e.attachShader(n,t)),HN(e,n),this.debug&&kg(e,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=gT(e,this.program,this.vertexBuffer)),n}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&vt(this.gl,()=>this.gl.deleteProgram(t))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&kg(this.gl,this.program),vt(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?ZN(this.gl,t,e):JN(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),vt(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),QN(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=ta(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&kg(this.gl,this.program),fd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;this.debug&&this.debugValidate(),vt(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),vt(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=md(this.gl,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await x.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(t,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=Btt(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),!(this.itemsToPoll.length>1)&&x.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(t){this.throwIfDisposed(),Ng(this.gl,t,this.framebuffer),this.debug&&fd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ng(this.gl,this.outputTexture,this.framebuffer),this.debug&&fd(this.gl)):hw(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;Ng(o,t,this.framebuffer),this.debug&&fd(o),this.outputTexture=t,vt(o,()=>o.viewport(0,0,e,n)),vt(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),vt(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Btt(r){let t=0;for(;t<r.length&&r[t]();++t);return t-1}var{addImpl:lP,bincountImpl:Aw,bincountReduceImpl:uP,ceilImpl:cP,concatImpl:pP,equalImpl:mP,expImpl:fP,expm1Impl:dP,floorImpl:hP,gatherNdImpl:gP,gatherV2Impl:xP,greaterImpl:yP,greaterEqualImpl:bP,lessImpl:wP,lessEqualImpl:vP,linSpaceImpl:CP,logImpl:IP,maxImpl:SP,maximumImpl:kP,minimumImpl:NP,multiplyImpl:TP,negImpl:_P,notEqualImpl:EP,prodImpl:AP,rangeImpl:$P,rsqrtImpl:DP,scatterImpl:FP,sigmoidImpl:RP,simpleAbsImpl:$w,sliceImpl:OP,sparseFillEmptyRowsImpl:MP,sparseReshapeImpl:PP,sparseSegmentReductionImpl:Dw,sqrtImpl:LP,stridedSliceImpl:zP,stringNGramsImpl:BP,stringSplitImpl:VP,stringToHashBucketFastImpl:GP,subImpl:WP,tileImpl:UP,topKImpl:HP,transposeImpl:np,uniqueImpl:qP}=sw;function kT(r,t){return["x","y","z","w","u","v"].slice(0,t).map(e=>`${r}.${e}`)}function rr(r,t){return t===1?[r]:kT(r,t)}function KP(r,t){if(r===1)return"rc";let e="";for(let n=0;n<r;n++)e+=t[n],n<r-1&&(e+=",");return e}var Fw=class{constructor(t){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.enableShapeUniforms=De(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let e=rr("rc",this.rank),n=Ht(this.rank),o=this.getOutOfBoundsCondition(e),s=this.getSetup(e),i=this.getOutput(e);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${o}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(t){let e=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let i=2;i<this.rank;i++)s=`${t[t.length-1-i]},`+s;e.push(s)}return e}getOutOfBoundsCondition(t){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let e="";for(let n=this.rank-2;n<this.rank;n++)e+=`${t[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(e+="||");return e}getSetup(t){if(this.rank===1)return"";let e=t.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],o=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${e[0]};
|
|
int c = ${e[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${o};
|
|
`}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),
|
|
cEdge ? 0. : getA(${e[1]}),
|
|
rEdge ? 0. : getA(${e[2]}),
|
|
rEdge || cEdge ? 0. : getA(${e[3]})`}};var Cd=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2===1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
|
|
${s}
|
|
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${o}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${o>0?"}":""}
|
|
`}this.userCode=`
|
|
${Vtt(e,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?gd():hd(t)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":t[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":t[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Vtt(r,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?QM(["r","c","d"],"inputShape"):hi(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Rw=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(t,e,n){let o=XP(e,n),s=YP(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=jP(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].shift();return this.usedTextures[s].push(u),u}let a;return o===Fr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Fr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Fr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Fr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Fr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=XP(n,o),i=YP(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=jP(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=G().get("WEBGL_DELETE_TEXTURE_THRESHOLD");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l.indexOf(t);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Gtt(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function jP(r,t,e,n,o){let s=Wtt(t,n),i;if(o){let[u,l]=ta(r[0],r[1]);i=u*l}else{let[u,l]=Qc(r[0],r[1]);i=u*l}let a=Gtt(e,s);return i*a}function Wtt(r,t){switch(r){case Fr.PACKED_2X2_FLOAT32:return _w(t);case Fr.PACKED_2X2_FLOAT16:return Ew(t);case Fr.UNPACKED_FLOAT32:return kw(t);case Fr.UNPACKED_FLOAT16:return Nw(t);case Fr.PACKED_4X1_UNSIGNED_BYTE:return Tw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function Utt(r){return G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?Fr.PACKED_2X2_FLOAT32:Fr.UNPACKED_FLOAT32:r?Fr.PACKED_2X2_FLOAT16:Fr.UNPACKED_FLOAT16}function XP(r,t){if(r===Kr.UPLOAD)return Fr.PACKED_2X2_FLOAT32;if(r===Kr.RENDER||r==null)return Utt(t);if(r===Kr.DOWNLOAD||r===Kr.PIXELS)return Fr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function YP(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var en=class{constructor(t,e){this.variableNames=["A"],this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},hr="if (isnan(x)) return x;",ZP="return x;",NT="return abs(x);";var JP="return (x >= 0.0) ? x : (exp(x) - 1.0);",QP=hr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,tL=hr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,op="return x;",eL="return 1.0 / (1.0 + exp(-1.0 * x));";var nL="return x;",oL=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,sL=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,iL=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,aL="return 1.0 / (1.0 + exp(-1.0 * x));",ro=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}};var Ow=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let e=t.length,n=rr("rc",e),o=Ht(e),s=KP(e,n),i=n.slice(-2),a=e<=1?"rc":`vec2(${i.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${s});
|
|
|
|
setOutput(getChannel(packedInput, ${a}));
|
|
}
|
|
`}};var qtt=Gr.whereImpl,Ktt=1e-7,jtt=1e-4,Mw={};function Xtt(r){return r in Mw||(Mw[r]={}),Mw[r]}var Ytt=G().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),Ztt=600;function Jtt(){return G().global.screen==null?1024:G().global.screen.height*G().global.screen.width*window.devicePixelRatio*Ztt/1024/1024}var Iu=class extends Xo{constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!G().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let e;if(t!=null){if(t instanceof rp)e=t;else{let n=Wn(G().getNumber("WEBGL_VERSION"),t);e=new rp(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Wn(G().getNumber("WEBGL_VERSION"));e=new rp(n),this.binaryCache=Xtt(G().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Rw(this.gpgpu),this.numMBBeforeWarning=Jtt(),this.texData=new ea(this,xo())}nextDataId(){return Iu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(t,e,n){if((G().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||G().getBool("DEBUG"))&&this.checkNumericalProblems(t),n==="complex64"&&t!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:Kr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(G().getBool("DEBUG")&&this.checkNumericalProblems(e),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(t,{shape:n,dtype:o,values:e,usage:Kr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new ro(a,op):m=new en(a,op);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o==="string")return n;let l=this.activeTimers!=null,c;l&&(c=x.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=x.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new ro(o,op):d=new en(o,op);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(G().getBool("DEBUG")&&!G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&G().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(i!=="complex64"&&G().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...Ig(o))}this.pendingRead.set(t,[]),i!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(i==="complex64"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=x.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;vt(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&xo().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(i!=null){let f;u?f=new ro(s,op):f=new en(s,op);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let c=this.decode(t,e.customTexShape),p=xo().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>x.decodeString(o));return Ct(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ct(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e<t.length;e++){let n=t[e];if(!VN(n))throw G().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(t){let{shape:e,dtype:n,isPacked:o}=this.texData.get(t),s=x.sizeFromShape(e);if(G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(t),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture.texture,...Ig(e)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let i=G().getBool("WEBGL_PACK")&&o===!0,a=i?Tg(e):e,u=i?new Cw(a):new vw(a),l=this.runWebGLProgram(u,[{shape:a,dtype:n,dataId:t}],"float32"),c=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=x.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=x.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let u=await Promise.all(s);a.kernelMs=x.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:x.now(),endMs:null}}endTimer(t){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),t):(t.endMs=x.now(),t)}async getQueryTime(t){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=Ytt){return G().getBool("WEBGL_CPU_FORWARD")&&t.every(n=>this.texData.get(n.dataId).texture==null&&x.sizeFromShape(n.shape)<e)}getGPGPUContext(){return this.gpgpu}where(t){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let e=t.dataSync();return qtt(t.shape,e)}packedUnaryOp(t,e,n){let o=new ro(t.shape,e),s=this.compileAndRun(o,[t],n);return xo().makeTensorFromTensorInfo(s)}abs(t){if(this.shouldExecuteOnCPU([t])&&t.dtype!=="complex64"){let o=$w(this.texData.get(t.dataId).values);return this.makeOutput(t.shape,t.dtype,o)}if(G().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,NT,t.dtype);let e=new en(t.shape,NT),n=this.compileAndRun(e,[t]);return xo().makeTensorFromTensorInfo(n)}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&x.isString(n[0])){let s=n.map(i=>x.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return xo().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new Ow(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new Fw(t.shape),n=!0;return this.runWebGLProgram(e,[t],t.dtype,null,n)}packedReshape(t,e){let n=[kl(t.shape),...Nl(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[kl(e),...Nl(e)],i=new Cd(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=x.sizeFromShape(s),f=e[0]*e[1]*4;x.assert(m<=f,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let a=Tg(s),u;o?u=new ww(a):u=new bw(a);let l=!0,c=[e!=null?e:Ig(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===vu.DENSE){let y=i!=null?i:Ig(t.outputShape);u.texShape=y.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),x.sizeFromShape(a.shape)===0)return u.values=x.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(y=>{if(y.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(y.dataId);if(b.texture==null){if(!t.packedInputs&&x.sizeFromShape(y.shape)<=G().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:y.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=y.shape)}if(this.uploadToGPU(y.dataId),!!b.isPacked!=!!t.packedInputs)y=b.isPacked?this.unpackTensor(y):this.packTensor(y),l.push(y),b=this.texData.get(y.dataId);else if(b.isPacked&&!Cu(b.shape,y.shape)){let w=y,v=y.shape;y.shape=b.shape,y=this.packedReshape(y,v),l.push(y),b=this.texData.get(y.dataId),w.shape=v}return{shape:y.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=aP(t,c,p),f=this.getAndSaveBinary(m,()=>sP(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),G().get("ENGINE_COMPILE_ONLY")||iP(this.gpgpu,f,c,p,o),l.forEach(y=>this.disposeIntermediateTensorInfo(y)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=G().get("WEBGL_FLUSH_THRESHOLD");if(g>0){let y=x.now();y-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=y)}if(!G().getBool("WEBGL_LAZILY_UNPACK")&&u.isPacked&&s===!1){let y=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),y}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(G().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!G().get("WEBGL_RENDER_FLOAT32_ENABLED")){let t=G().getBool("DEBUG");G().set("DEBUG",!1);let e=this.abs(pt(1e-8)).dataSync()[0];if(G().set("DEBUG",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Ktt:jtt}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=x.now());let p=e.texShape;if(p==null&&(p=tT(n,u),e.texShape=p),s!=null){let m=Tg(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=ta(p[0],p[1])),u?f=new Sw(m,g):f=new Iw(m,g);let y=g?[h,d]:p,b=this.makeTensorInfo(y,o),w=this.texData.get(b.dataId);g?w.usage=Kr.PIXELS:w.usage=Kr.UPLOAD,w.texShape=y,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let v=[[h,d]],k=!0,_=this.runWebGLProgram(f,[b],o,v,k),$=this.texData.get(_.dataId);e.texShape=$.texShape,e.isPacked=$.isPacked,e.usage=$.usage,G().get("ENGINE_COMPILE_ONLY")?this.disposeData(_.dataId):(e.texture=$.texture,e.values=null,this.texData.delete(_.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=x.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return this.releaseGPUData(t),e!=null&&(n.values=Qtt(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*x.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await Hh(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(fw(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,t]of Object.entries(this.binaryCache)){let{uniformLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,inShapesLocations:i,inTexShapesLocations:a,outShapeLocation:u,outShapeStridesLocation:l,outTexShapeLocation:c}=aT(this.gpgpu,t.program,t.webGLProgram);t.uniformLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.inShapesLocations=i,t.inTexShapesLocations=a,t.outShapeLocation=u,t.outShapeStridesLocation=l,t.outTexShapeLocation=c}}};Iu.nextDataId=0;function Qtt(r,t){if(t==="float32"||t==="complex64")return r;if(t==="int32"||t==="bool"){let e=t==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<e.length;++n)e[n]=Math.round(r[n]);return e}else throw new Error(`Unknown dtype ${t}`)}var lL="3.18.0";function uL(){G().set("WEBGL_FORCE_F16_TEXTURES",!0)}Jl.isBrowser()&&bm("webgl",()=>new Iu,2);var bNe={forceHalfFloat:uL};var Pw=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`;var no=class{constructor(t,e,n){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=De(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}};var Su=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;var Lo=class{constructor(t,e,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=De(s);let i="";if(o)if(s===0||x.sizeFromShape(this.outputShape)===1)i=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(i=`
|
|
${Ht(s)} coords = getOutputCoords();
|
|
`,s===1)this.enableShapeUniforms?i+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:i+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let u=rr("coords",s);this.enableShapeUniforms?i+=`
|
|
bool nextRowOutOfBounds =
|
|
(${u[s-2]} + 1) >= outShape[${s} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${u[s-1]} + 1) >= outShape[${s} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:i+=`
|
|
bool nextRowOutOfBounds =
|
|
(${u[s-2]} + 1) >= ${this.outputShape[s-2]};
|
|
bool nextColOutOfBounds =
|
|
(${u[s-1]} + 1) >= ${this.outputShape[s-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${i}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function nr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var cL={kernelName:uo,backendName:"webgl",kernelFunc:nr};function Rn(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,"complex64"),i=e.texData.get(s.dataId),a=nr({inputs:{x:n},backend:e}),u=nr({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var pL={kernelName:Op,backendName:"webgl",kernelFunc:Rn};var TT="return (a < 0.) ? b * a : a;",_T=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function tet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],"float32",x.createScalarValue(s,"float32")),a=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Lo(_T,o.shape,i.shape):new no(TT,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],"float32");return e.disposeIntermediateTensorInfo(i),u}var mL={kernelName:gs,backendName:"webgl",kernelFunc:tet};var ET="return (a < 0.) ? b * a : a;",AT=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function eet(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Lo(AT,n.shape,o.shape):new no(ET,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],"float32")}var fL={kernelName:Es,backendName:"webgl",kernelFunc:eet};var zo="if (isnan(x)) return x;",dL=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,hL=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function It({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=G().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new ro(i.shape,t):c=new en(i.shape,r),a.runWebGLProgram(c,[i],u)}}function le({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype==="complex64"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,y]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[v,k]=w,_={dataId:v.dataId,dtype:v.dtype,shape:u.shape},$={dataId:k.dataId,dtype:k.dtype,shape:l.shape},D=new no(r,u.shape,l.shape);return c.runWebGLProgram(D,[_,$],ar(v.dtype,k.dtype))}),b=Rn({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),b}let p=s||ar(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype==="string"?S.fromUint8ToStringArray(d):d,y=u.dtype==="string"?S.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,y,p),v=c.makeTensorInfo(w,p),k=c.texData.get(v.dataId);return k.values=b,v}let m=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,f;return m?f=new Lo(t,u.shape,l.shape,e):f=new no(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function ku(r,t=!1){if(r==="linear")return t?nL:ZP;if(r==="relu")return t?sL:QP;if(r==="elu")return t?oL:JP;if(r==="relu6")return t?iL:tL;if(r==="prelu")return t?AT:ET;if(r==="leakyrelu")return t?_T:TT;if(r==="sigmoid")return t?aL:eL;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Id=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=De(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",y="";a&&(u?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${a}
|
|
}`:l?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${a}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${a}
|
|
}`,y="result = activation(result);");let b=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let w="rc.x",v="rc.x";t[0]<e[0]?w=`int(min(float(rc.x), ${t[0]-1}.))`:e[0]<t[0]&&(v=`int(min(float(rc.x), ${e[0]-1}.))`),this.userCode=`
|
|
${g}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${w};
|
|
int batchB = ${v};
|
|
vec4 a = getMatrixA(batchA, ${m});
|
|
vec4 b = getMatrixB(batchB, ${f});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${d[0]} * ${h[0]});
|
|
result += (${d[1]} * ${h[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${y}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};var $T={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Eg=class{constructor(t,e,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}};var gL="return a * b;";function Ag(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=S.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),l=new Eg($T.REAL,n.shape,o.shape),c=new Eg($T.IMAG,n.shape,o.shape),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:n.shape},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:o.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:o.shape}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=Rn({inputs:{real:m,imag:f},backend:e});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}if(e.shouldExecuteOnCPU([n,o])){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),[l,c]=TP(n.shape,o.shape,a.values,u.values,s),p=e.makeTensorInfo(c,s),m=e.texData.get(p.dataId);return m.values=l,p}let i;return G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Lo(gL,n.shape,o.shape):i=new no(gL,n.shape,o.shape),e.runWebGLProgram(i,[n,o],s)}var xL={kernelName:ks,backendName:"webgl",kernelFunc:Ag};function yL(r,t,e){let n=[kl(r.shape),...Nl(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[kl(t),...Nl(t)],i=new Cd(s,n),a=!0,u=[n],l=e.runWebGLProgram(i,[o],r.dtype,u,a);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=e,a=x.sizeFromShape(o.shape),u=x.inferFromImplicitShape(s,a),l=x.sizeFromShape(u);x.assert(a===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!Cu(o.shape,u)&&!(c.texture!==null&&Cu(c.shape,u))?yL(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var bL={kernelName:_i,backendName:"webgl",kernelFunc:ut};var $g=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l="sumValue += dot(values, ones);";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${x.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${a};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}};var Lw=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a="0.0",u="";e==="prod"?a="1.0":e==="min"?(a="1.0 / 1e-20",u="min"):e==="max"&&(a="-1.0 / 1e-20",u="max");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="sum"?l="sumValue":e==="prod"?l="prodValue":e==="all"?l="allValue":e==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
|
|
if (${e==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${e==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${u}(values, minMaxValue);
|
|
if (${e==="min"} || ${e==="max"}) {
|
|
minMaxValue = ${u}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,f="vec4";e==="all"?(a="1.0",m=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,f="bvec4"):e==="any"&&(a="0.0",m=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,f="bvec4");let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${a};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${a});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function net(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=S.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Hn(r,t,e,n){let o=net(r.shape),s=r;for(let i=0;i<o.length;i++){let{inSize:a,windowSize:u,outSize:l}=o[i],c,p;e==="mean"?c=i===0?new $g({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},a):new $g({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l}):c=new Lw({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},e),p=s,s=n.runWebGLProgram(c,[s],t),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var zw=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[e[i]];this.outputShape=n,this.rank=n.length;let o=Ht(this.rank),s=oet(e);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function oet(r){let t=r.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let o=0;o<r.length;o++)n[r[o]]=e[o];return n.join()}var Bw=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(t.length);for(let c=0;c<n.length;c++)n[c]=t[e[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Ht(this.rank),s=kT("rc",this.rank),i=new Array(this.rank);for(let c=0;c<e.length;c++)i[e[c]]=s[c];let a=`vec2(${i.slice(-2).join()})`,u=`++${s[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${i.join()}), ${a})`;this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${u}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${s[this.rank-1]};
|
|
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${u}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Nu(r,t,e){let n=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Bw(r.shape,t):new zw(r.shape,t);return e.runWebGLProgram(n,[r],r.dtype)}function wL(r,t,e,n){let o=t,s=r.shape.length,i=x.parseAxisParam(o,r.shape),a=i,u=S.getAxesPermutation(a,s),l=u!=null,c=r;l&&(c=Nu(r,u,n),a=S.getInnerMostAxes(a.length,s)),S.assertAxesAreInnerMostDims("sum",a,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,a),f=p;e&&(f=S.expandShapeToKeepDim(p,i));let d=x.sizeFromShape(m),g=x.sizeFromShape(r.shape)/d,y=ut({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=Ku(r.dtype),w=Hn(y,b,"sum",n),v=ut({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(w),l&&n.disposeIntermediateTensorInfo(c),v}function sp(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;return wL(o,s,i,e)}var vL={kernelName:Bs,backendName:"webgl",kernelFunc:sp};function fe(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{perm:s}=n,i=e,a=o.shape.length,u=new Array(a);for(let c=0;c<u.length;c++)u[c]=o.shape[s[c]];let l;if(i.shouldExecuteOnCPU([o])){let p=i.texData.get(o.dataId).values,m=np(p,o.shape,o.dtype,s,u);l=i.makeTensorInfo(u,o.dtype);let f=i.texData.get(l.dataId);f.values=m}else l=Nu(o,s,i);return l}var CL={kernelName:Zn,backendName:"webgl",kernelFunc:fe};var DT=1e3;function ip({a:r,b:t,transposeA:e,transposeB:n,backend:o,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:a=0,activation:u=null}){let l=r.shape.length,c=t.shape.length,p=e?r.shape[l-2]:r.shape[l-1],m=n?t.shape[c-1]:t.shape[c-2],f=e?r.shape[l-1]:r.shape[l-2],d=n?t.shape[c-2]:t.shape[c-1],h=r.shape.slice(0,-2),g=t.shape.slice(0,-2),y=x.sizeFromShape(h),b=x.sizeFromShape(g),v=Pr.assertAndGetBroadcastShape(r.shape.slice(0,-2),t.shape.slice(0,-2)).concat([f,d]);x.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let k=e?[y,p,f]:[y,f,p],_=n?[b,d,m]:[b,m,d],$=ut({inputs:{x:r},backend:o,attrs:{shape:k}}),D=ut({inputs:{x:t},backend:o,attrs:{shape:_}}),F=[$,D],P=Math.max(y,b),B=e?$.shape[1]:$.shape[2],U=s!=null,q=i!=null,j=u==="leakyrelu",K=u!=null?ku(u,!0):null,Q=U||q||j||K!=null,rt;if((f===1||d===1)&&B>DT&&Q===!1){let nt=$,st=D;e&&(nt=fe({inputs:{x:$},backend:o,attrs:{perm:[0,2,1]}}),F.push(nt)),n&&(st=fe({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),F.push(st));let it=d!==1,ft=d===1,at=nt;it&&(at=ut({inputs:{x:nt},backend:o,attrs:{shape:[P,B,1]}}),F.push(at));let xt=d===1?2:1,dt=st;ft&&(dt=ut({inputs:{x:st},backend:o,attrs:{shape:[P,1,B]}}),F.push(dt));let bt=Ag({inputs:{a:at,b:dt},backend:o});rt=sp({inputs:{x:bt},backend:o,attrs:{axis:xt,keepDims:!0}}),F.push(bt)}else{let nt=ar(r.dtype,t.dtype),st=new Id(k,_,[P,f,d],e,n,U,K,q,j),it=[$,D];if(s!=null&&it.push(s),q&&it.push(i),j){let ft=o.makeTensorInfo([],"float32",x.createScalarValue(a,"float32"));it.push(ft),F.push(ft)}rt=o.runWebGLProgram(st,it,nt)}let X=ut({inputs:{x:rt},backend:o,attrs:{shape:v}});F.push(rt);for(let nt of F)o.disposeIntermediateTensorInfo(nt);return X}function set(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return ip({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var IL={kernelName:Oi,backendName:"webgl",kernelFunc:set};var SL="return abs(x);";function iet(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=e.texData.get(n.dataId),i=$w(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new ro(n.shape,SL):o=new en(n.shape,SL),e.runWebGLProgram(o,[n],n.dtype)}var kL={kernelName:wi,backendName:"webgl",kernelFunc:iet};var aet=hr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,uet=It({opSnippet:aet}),NL={kernelName:na,backendName:"webgl",kernelFunc:uet};var cet=hr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,pet=It({opSnippet:cet}),TL={kernelName:oa,backendName:"webgl",kernelFunc:pet};var _L="return a + b;",met=le({opSnippet:_L,packedOpSnippet:_L,supportsComplex:!0,cpuKernelImpl:lP}),EL={kernelName:Xn,backendName:"webgl",kernelFunc:met};var Vw=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};var Gw=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${o};
|
|
setOutput(result);
|
|
}
|
|
`}};function Ww(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return nr({inputs:{x:n[0]},backend:e});if(n.length>G().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(n.length/2),l=Ww({inputs:n.slice(0,u),backend:e}),c=Ww({inputs:n.slice(u),backend:e});return Ww({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>ar(u,l)),s=n.map(u=>u.shape),a=G().getBool("WEBGL_PACK")?new Gw(n[0].shape,s):new Vw(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var AL={kernelName:Jo,backendName:"webgl",kernelFunc:Ww};function fet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=fe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("all",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=x.sizeFromShape(f),h=ut({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Hn(h,h.dtype,"all",e),y;if(i){let b=S.expandShapeToKeepDim(m,u);y=ut({inputs:{x:g},backend:e,attrs:{shape:b}})}else y=ut({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),y}var $L={kernelName:sa,backendName:"webgl",kernelFunc:fet};function det(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=fe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("any",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=x.sizeFromShape(f),h=ut({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Hn(h,h.dtype,"any",e),y;if(i){let b=S.expandShapeToKeepDim(m,u);y=ut({inputs:{x:g},backend:e,attrs:{shape:b}})}else y=ut({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),y}var DL={kernelName:ia,backendName:"webgl",kernelFunc:det};var Uw=class{constructor(t,e,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,i];let a=e==="max"?">":"<",u=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${o};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
int inIdx = ${u};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${a} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}};var Hw=class{constructor(t,e,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,x.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push("bestIndicesA");let a=this.outputShape,u=a.length,l=Ht(u),c=rr("coords",u),p,m;if(i===1){m=u+1;let D=Ht(m);p=`
|
|
${D} sourceLocR = ${D}(${c.join()}, 0);
|
|
++${c[u-1]};
|
|
${D} sourceLocG = ${D}(${c.join()}, 0);
|
|
++${c[u-2]};
|
|
${D} sourceLocA = ${D}(${c.join()}, 0);
|
|
--${c[u-1]};
|
|
${D} sourceLocB = ${D}(${c.join()}, 0);
|
|
--${c[u-2]};`}else m=u,p=`
|
|
${l} sourceLocR = coords;
|
|
++${c[u-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[u-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[u-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[u-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(D=>"int "+D),g=rr("sourceLocR",m-1).concat("inIdx.r"),y=rr("sourceLocG",m-1).concat("inIdx.g"),b=rr("sourceLocB",m-1).concat("inIdx.b"),w=rr("sourceLocA",m-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",k=o?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${w.join()})));`,_=`vec4(
|
|
getAChannel(${g.join()}),
|
|
hasNextCol ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,$=o?"":`
|
|
float getBestIndicesAChannel(${h.join()}) {
|
|
return getChannel(getBestIndicesA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${h.join()}) {
|
|
return getChannel(getA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}
|
|
${$}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};
|
|
bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
|
|
sourceLocB${d}, sourceLocA${d}) * ${e};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${_};
|
|
|
|
for (int i = 0; i < ${e}; i++) {
|
|
inIdx = srcIdx;
|
|
${k}
|
|
vec4 candidate = ${_};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function FL(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=S.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new Uw(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=FL(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function RL(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=S.computeOptimalWindowSize(s),a=new Hw(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,"int32");if(l.shape.length===t.shape.length){let c=RL(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function qw(r,t,e,n){let o=[e];if(S.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!G().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,o),p=x.sizeFromShape(c),m=ut({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=FL(r,m,n);s.push(f);let d=ut({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return RL(r,t,n)}function het(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=fe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=qw(e,u,i[0],"max");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var OL={kernelName:Qo,backendName:"webgl",kernelFunc:het};function get(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=x.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=fe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=qw(e,u,i[0],"min");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var ML={kernelName:Rl,backendName:"webgl",kernelFunc:get};var xet=hr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,yet=It({opSnippet:xet}),PL={kernelName:aa,backendName:"webgl",kernelFunc:yet};var bet=hr+"return log(x + sqrt(x * x + 1.0));",wet=It({opSnippet:bet}),LL={kernelName:la,backendName:"webgl",kernelFunc:wet};var vet=hr+`
|
|
return atan(x);
|
|
`,Cet=It({opSnippet:vet}),zL={kernelName:ua,backendName:"webgl",kernelFunc:Cet};var Iet=dL+`
|
|
return atan(a, b);
|
|
`,ket=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+hL+`
|
|
return result;
|
|
`,Net=le({opSnippet:Iet,packedOpSnippet:ket}),BL={kernelName:pa,backendName:"webgl",kernelFunc:Net};var Tet=hr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,_et=It({opSnippet:Tet}),VL={kernelName:ca,backendName:"webgl",kernelFunc:_et};var gi=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e==="avg",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,y=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${u});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?g:y:`wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",v=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(v="avgValue / count");let k=Math.floor(i/4)*4,_=i%4,$=`
|
|
if (${h}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${u});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${$}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${_===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${_===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${_===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
`}},Tu=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,y=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e==="avg",v="0.0";if(w||(v="-1.0 / 1e-20"),n){let P=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${a}, ${u}, ${l});
|
|
const ivec3 pads = ivec3(${g}, ${y}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${m}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${P} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +
|
|
wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let k="max",_=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(_="avgValue / count");let $=Math.floor(i/4)*4,D=i%4,F=`
|
|
if (${w}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${k}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${a}, ${u}, ${l});
|
|
const ivec3 pads = ivec3(${g}, ${y}, ${b});
|
|
const float initializationValue = ${v};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${v});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${$}; wC += 4) {
|
|
int xC = xCCorner + wC * ${m};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
|
|
);
|
|
|
|
${F}
|
|
}
|
|
|
|
int xC = xCCorner + ${$};
|
|
if (${D===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
} else if (${D===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
} else if (${D===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
}
|
|
`}};function Eet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;di(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return nr({inputs:{x:o},backend:e});let p=new gi(c,"avg",!1);return e.runWebGLProgram(p,[o],"float32")}var GL={kernelName:ts,backendName:"webgl",kernelFunc:Eet};function Aet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new Tu(p,"avg",!1);return e.runWebGLProgram(m,[o],"float32")}var WL={kernelName:Ol,backendName:"webgl",kernelFunc:Aet};var Kw=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float avgMultiplier = float(${m});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${i}) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${a}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jw=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,y=1/(e*n*o);this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${g});
|
|
const float avgMultiplier = float(${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
float dyD = float(dyDCorner + wD) / ${s}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${i}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function $et(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new jw(m);return e.runWebGLProgram(f,[o],i.dtype)}var UL={kernelName:Dp,backendName:"webgl",kernelFunc:$et};function Det(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;di([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=new Kw(c);return e.runWebGLProgram(p,[o],i.dtype)}var HL={kernelName:$p,backendName:"webgl",kernelFunc:Det};function Fet(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return ip({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var qL={kernelName:es,backendName:"webgl",kernelFunc:Fet};var Xw=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="0.0";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="1.0";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${a};
|
|
float scale = ${u};
|
|
float inv = scale * inversesqrt(variance + float(${i}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}};var Yw=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="vec4(0.0)";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${a};
|
|
vec4 scale = ${u};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${i}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}};var Ret=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;x.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),x.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),x.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=G().getBool("WEBGL_PACK_NORMALIZATION")?new Yw(n.shape,o.shape,s.shape,c,p,u):new Xw(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},KL={kernelName:ds,backendName:"webgl",kernelFunc:Ret};var Zw=class{constructor(t){this.variableNames=["source"],this.outputShape=t,this.rank=t.length;let e=Ht(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Oet(this.rank),o,s=t.map((i,a)=>`sourceLoc.${FT[a]} = start[${a}] + coords.${FT[a]};`);o=`
|
|
${e} sourceLoc;
|
|
${e} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${o}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},FT=["x","y","z","w","u","v"];function Oet(r){if(r===1)return"sourceLoc";if(r<=6)return FT.slice(0,r).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var Jw=class{constructor(t){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let e=Ht(this.rank),n=rr("coords",this.rank),o=rr("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`
|
|
result.x = ${i};
|
|
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.y = ${i};
|
|
--${o[this.rank-1]};
|
|
}
|
|
`,u=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${t[this.rank-2]}) {
|
|
++${o[this.rank-2]};
|
|
result.z = ${i};
|
|
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
|
|
++${o[this.rank-1]};
|
|
result.w = ${i};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${e} coords = getOutputCoords();
|
|
${e} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${a}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}};function Met(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=Ve.computeFlatOffset(t,x.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function xi(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=Ve.parseSliceParams(o,s,i);if(Ve.assertParamsValid(o,a,u),x.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=e.texData.get(o.dataId),m=OP(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=Ve.isSliceContinous(o.shape,a,u);if(l||!c){let p=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Jw(u):new Zw(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),Met(o,a,u,e)}var jL={kernelName:Ai,backendName:"webgl",kernelFunc:xi};var Pet=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;x.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((b,w)=>b*w),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=[],d=ut({inputs:{x:o},backend:e,attrs:{shape:u}}),h=fe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=ut({inputs:{x:h},backend:e,attrs:{shape:c}}),y=xi({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),y},XL={kernelName:vi,backendName:"webgl",kernelFunc:Pet};function Let(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=Aw(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var YL={kernelName:Fp,backendName:"webgl",kernelFunc:Let};function zet(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var ZL={kernelName:Rp,backendName:"webgl",kernelFunc:zet};var Bet="return float(a != b);",RT=le({opSnippet:Bet,cpuKernelImpl:EP,dtype:"bool"}),JL={kernelName:Ea,backendName:"webgl",kernelFunc:RT};function Tl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return nr({inputs:{x:o.complexTensorInfos.real},backend:e})}var QL={kernelName:tm,backendName:"webgl",kernelFunc:Tl};var Vet="return float(int(x));";function t3(r,t){let e=new en(r.shape,Vet),n=t.runWebGLProgram(e,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function OT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return nr({inputs:{x:o},backend:e});let i=we(o.shape),a=OT({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=Rn({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=Tl({inputs:{input:o},backend:e}),a=OT({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!x.hasEncodingLoss(o.dtype,s)){let i=nr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return t3(o,e);if(s==="bool"){let i=e.makeTensorInfo([],"bool",x.getTypedArrayFromDType("bool",1)),u=RT({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var e3={kernelName:ao,backendName:"webgl",kernelFunc:OT};var r3="return ceil(x);",Get=It({opSnippet:r3,packedOpSnippet:r3,cpuKernelImpl:cP}),n3={kernelName:rs,backendName:"webgl",kernelFunc:Get};var Qw=class{constructor(t){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}};var tv=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function Wet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;G().getBool("WEBGL_PACK_CLIP")?a=new tv(o.shape):a=new Qw(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var o3={kernelName:lo,backendName:"webgl",kernelFunc:Wet};var ev=class{constructor(t){this.variableNames=["real","imag"],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function s3(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function Uet(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new ev(n.shape),i=[s3(n,o.complexTensorInfos.real),s3(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var i3={kernelName:Ml,backendName:"webgl",kernelFunc:Uet};var rv=class{constructor(t){this.outputShape=[],this.outputShape=S.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i<e.length;i++)e[i]=e[i-1]+t[i][1];let n=[`if (yC < ${e[0]}) setOutput(getT0(yR, yC));`];for(let i=1;i<e.length;i++){let a=e[i-1];n.push(`else if (yC < ${e[i]}) setOutput(getT${i}(yR, yC-${a}));`)}let o=e.length,s=e[e.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}};var ov=class{constructor(t,e){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(t,e);let n=this.outputShape,o=n.length,s=Ht(o),i=rr("coords",o),a=["x","y","z","w","u","v"].slice(0,o);this.variableNames=t.map((h,g)=>`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h<u.length;h++)u[h]=u[h-1]+t[h][e];let l=a[e],c=a.slice(-2),p=a.join(),m=`if (${l} < ${u[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${c.join()}));
|
|
}`;for(let h=1;h<u.length;h++){let g=u[h-1];m+=`
|
|
if (${l} < ${u[h]} && ${l} >= ${u[h-1]}) {
|
|
return getChannel(
|
|
getT${h}(${nv(a,l,g)}),
|
|
vec2(${nv(c,l,g)}));
|
|
}`}let f=u.length,d=u[u.length-1];m+=`
|
|
return getChannel(
|
|
getT${f}(${nv(a,l,d)}),
|
|
vec2(${nv(c,l,d)}));`,this.userCode=`
|
|
float getValue(${a.map(h=>"int "+h)}) {
|
|
${m}
|
|
}
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${i}), 0., 0., 0.);
|
|
|
|
${i[o-1]} = ${i[o-1]} + 1;
|
|
if (${i[o-1]} < ${n[o-1]}) {
|
|
result.g = getValue(${i});
|
|
}
|
|
|
|
${i[o-2]} = ${i[o-2]} + 1;
|
|
if (${i[o-2]} < ${n[o-2]}) {
|
|
result.a = getValue(${i});
|
|
}
|
|
|
|
${i[o-1]} = ${i[o-1]} - 1;
|
|
if (${i[o-2]} < ${n[o-2]} &&
|
|
${i[o-1]} < ${n[o-1]}) {
|
|
result.b = getValue(${i});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function nv(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function ap(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return nr({inputs:{x:o.complexTensorInfos.imag},backend:e})}var a3={kernelName:Kp,backendName:"webgl",kernelFunc:ap};function lp(r,t,e){let n=r[0].dtype;if(n==="complex64"){let c=r.map(h=>Tl({inputs:{input:h},backend:e})),p=r.map(h=>ap({inputs:{input:h},backend:e})),m=lp(c,t,e),f=lp(p,t,e),d=Rn({inputs:{real:m,imag:f},backend:e});return c.forEach(h=>e.disposeIntermediateTensorInfo(h)),p.forEach(h=>e.disposeIntermediateTensorInfo(h)),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}let o=e.shouldExecuteOnCPU(r);if(n==="string"&&(o=!0),o){let c=r.map(y=>{let b=x.sizeFromShape(y.shape.slice(t));return ut({inputs:{x:y},backend:e,attrs:{shape:[-1,b]}})}),p=c.map(y=>({vals:e.readSync(y.dataId),shape:y.shape})),m=S.computeOutShape(c.map(y=>y.shape),1),f=c[0].shape[0]===1,d=pP(p,m,n,f),h=S.computeOutShape(r.map(y=>y.shape),t),g=e.makeTensorInfo(h,n,d);return c.forEach(y=>e.disposeIntermediateTensorInfo(y)),g}if(r.length>G().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(r.length/2),p=lp(r.slice(0,c),t,e),m=lp(r.slice(c),t,e),f=lp([p,m],t,e);return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),f}if(G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let c=new ov(r.map(p=>p.shape),t);return e.runWebGLProgram(c,r,n)}let{tensors2D:s,outShape:i}=Het(r,t,e),a=new rv(s.map(c=>c.shape)),u=e.runWebGLProgram(a,s,n);s.forEach(c=>e.disposeIntermediateTensorInfo(c));let l=ut({inputs:{x:u},attrs:{shape:i},backend:e});return e.disposeIntermediateTensorInfo(u),l}function Het(r,t,e){let n=S.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>ut({inputs:{x:s},attrs:{shape:[-1,x.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function MT(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=x.parseAxisParam(o,t[0].shape)[0],i=S.computeOutShape(t.map(l=>l.shape),s);if(x.sizeFromShape(i)===0)return e.makeTensorInfo(i,t[0].dtype,[]);let a=t.filter(l=>x.sizeFromShape(l.shape)>0);if(a.length===1)return nr({inputs:{x:a[0]},backend:e});let u=a.map(l=>l.shape);return S.assertParamsConsistent(u,s),lp(a,s,e)}var l3={kernelName:Ci,backendName:"webgl",kernelFunc:MT};var Sd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat==="channelsLast",y=g?1:2,b=g?2:3,w=g?3:1,v="",k="";n&&(o?v=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?v=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:v=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,k="result = activation(result);");let _=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${v}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${l});
|
|
const ivec2 pads = ivec2(${i}, ${a});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${w}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${y}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${h===1}) {
|
|
|
|
if (${g}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${d}) *
|
|
getW(wR, wC, ${d}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${d}, xR, xC) *
|
|
getW(wR, wC, ${d}, d2);
|
|
}
|
|
|
|
} else if (${h===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${h===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2),
|
|
getW(wR, wC, ${d} + 2, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1),
|
|
getX(batch, xR, xC, ${d} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC),
|
|
getX(batch, ${d} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${_}
|
|
${k}
|
|
setOutput(result);
|
|
}
|
|
`}},sv=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${s}, ${i}, ${a});
|
|
const ivec3 pads = ivec3(${e}, ${n}, ${o});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${u};
|
|
|
|
if (xF < 0 || xF >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${h===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${d}) *
|
|
getW(wF, wR, wC, ${d}, d2);
|
|
} else if (${h===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${h===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1),
|
|
getX(batch, xF, xR, xC, ${d} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2),
|
|
getW(wF, wR, wC, ${d} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};var iv=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=t,this.enableShapeUniforms=De(this.outputShape.length);let{dataFormat:n}=e,o=qe(),s=n==="channelsLast",i=s?0:1,a=s?1:2,u=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${t[1]} && pos < ${t[0]}) {`,l="";for(let c=0;c<=1;c++)for(let p=0;p<=1;p++)l+=`
|
|
blockIndex = rc.y + ${p};
|
|
pos = rc.x + ${c};
|
|
|
|
${u}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${i}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${a}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${s}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+p}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+p}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${o.output} = result;
|
|
}
|
|
`}};function av({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat==="channelsLast",d=!1,h=!1,g,y=[];if(s!=null&&!f&&s.shape.length===3){let v=fe({inputs:{x:s},backend:n,attrs:{perm:[1,2,0]}});y.push(v),s=v}if(!((p===1||m===1)&&c>DT)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&x.arraysEqual(l.shape.slice(-3),u.slice(-3))){let v=u[0]*u[1]*(u[2]+1),k={dataId:r.dataId,shape:[1,v,e.inChannels],dtype:r.dtype},_=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,x.assert(Cu(l.shape,k.shape),()=>`packed reshape ${l.shape} to ${k.shape} isn't free`);let $=ut({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});y.push($);let D=ip({a:k,b:$,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),F=n.texData.get(D.dataId);x.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=_,F.shape=e.outShape,g=nr({inputs:{x:D},backend:n}),g.shape=e.outShape,y.push(D)}else{let v=f?r:fe({inputs:{x:r},backend:n,attrs:{perm:[0,2,3,1]}}),k=v.shape,_=k[0]*k[1]*k[2],$=ut({inputs:{x:v},backend:n,attrs:{shape:[1,_,e.inChannels]}}),D=ut({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),F=ip({a:$,b:D,transposeA:d,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),P=[e.batchSize,e.outHeight,e.outWidth,e.outChannels],B=ut({inputs:{x:F},backend:n,attrs:{shape:P}});g=f?B:fe({inputs:{x:B},backend:n,attrs:{perm:[0,3,1,2]}}),f||(y.push(v),y.push(B)),y.push($),y.push(D),y.push(F)}for(let v of y)n.disposeIntermediateTensorInfo(v);return g}function lv({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f==="channelsLast",h=u*l*c,g=m*p,y=[h,g],b=!0,w=!1,v=[];if(s!=null&&!d&&s.shape.length===3){let it=fe({inputs:{x:s},backend:n,attrs:{perm:[1,2,0]}});v.push(it),s=it}let k=ut({inputs:{x:r},backend:n,attrs:{shape:r.shape.slice(1)}}),_=ut({inputs:{x:t},backend:n,attrs:{shape:[1,h,x.sizeFromShape(t.shape)/h]}});v.push(k),v.push(_);let $=new iv(y,e),D=[k.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],F=n.runWebGLProgram($,[k],"float32",D),P=ut({inputs:{x:F},backend:n,attrs:{shape:[1,y[0],y[1]]}});v.push(F),v.push(P);let B=o!=null,U=s!=null,q=a==="leakyrelu",j=a?ku(a,!0):null,K=new Id(P.shape,_.shape,[1,g,e.outChannels],b,w,B,j,U,q),Q=[P,_];if(o&&Q.push(o),U&&Q.push(s),q){let it=n.makeTensorInfo([],"float32",x.createScalarValue(i,"float32"));Q.push(it),v.push(it)}let rt=n.runWebGLProgram(K,Q,"float32"),X=[1,m,p,e.outChannels],nt=ut({inputs:{x:rt},backend:n,attrs:{shape:X}}),st=d?nt:fe({inputs:{x:nt},backend:n,attrs:{perm:[0,3,1,2]}});d||v.push(nt),v.push(rt);for(let it of v)n.disposeIntermediateTensorInfo(it);return st}function qet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=av({x:o,filter:s,convInfo:m,backend:e});else if(G().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)f=lv({x:o,filter:s,convInfo:m,backend:e});else{let h=new Sd(m);f=e.runWebGLProgram(h,[o,s],"float32")}let d=ut({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var u3={kernelName:ns,backendName:"webgl",kernelFunc:qet};var uv=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${t.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${t.outHeight}; yR++) {
|
|
int xR = wR + yR * ${e} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${t.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${i}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cv=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat==="channelsLast",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${e}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${e} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
|
|
|
|
if (${i}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},pv=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${t.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${t.outDepth}; yF++) {
|
|
int xF = wF + yF * ${e} - ${s};
|
|
|
|
if (xF < 0 || xF >= ${t.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${t.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${i};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${t.outWidth}; yC++) {
|
|
int xC = wC + yC * ${o} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mv=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${e}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${s}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${e} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${i}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${o} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Ket(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new uv(m);return e.runWebGLProgram(f,[o,s],"float32")}var c3={kernelName:Mp,backendName:"webgl",kernelFunc:Ket};function jet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p),f=new cv(m);return e.runWebGLProgram(f,[o,s],"float32")}var p3={kernelName:os,backendName:"webgl",kernelFunc:jet};function Xet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new sv(l);return e.runWebGLProgram(c,[o,s],"float32")}var m3={kernelName:Pl,backendName:"webgl",kernelFunc:Xet};function Yet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=S.computeConv3DInfo(o.shape,u,i,1,a),c=new pv(l);return e.runWebGLProgram(c,[o,s],"float32")}var f3={kernelName:Pp,backendName:"webgl",kernelFunc:Yet};function Zet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=S.computeConv3DInfo(u,s.shape,a,1,i),c=new mv(l);return e.runWebGLProgram(c,[o,s],"float32")}var d3={kernelName:Lp,backendName:"webgl",kernelFunc:Zet};var Jet=zo+`
|
|
return cos(x);
|
|
`,Qet=It({opSnippet:Jet}),h3={kernelName:ss,backendName:"webgl",kernelFunc:Qet};var trt=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,ert=It({opSnippet:trt}),g3={kernelName:is,backendName:"webgl",kernelFunc:ert};var fv=class{constructor(t,e,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o==="bilinear"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,y,b]=p>1?[`${(a-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,v,k]=m>1?[`${(u-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
|
|
const float height_ratio = float(${g});
|
|
const float width_ratio = float(${w});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${i}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${y};
|
|
float width_scale = ${v};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${d} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
float in_x = ${k};
|
|
if( in_x < 0.0 || in_x > ${h} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${f} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}};var rrt=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new fv(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],"float32")},x3={kernelName:fa,backendName:"webgl",kernelFunc:rrt};var up;(function(r){r.Prod="*",r.Sum="+"})(up||(up={}));var Dg=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let s=this.outputShape.length,i=this.op===up.Prod?"1.0":"0.0",a=n?i:`getX(${y3(s,"coords",this.op)})`,u=this.outputShape[this.outputShape.length-1],l="",c="";n?(l=o?`end != ${u-1}`:"end != 0",c=o?"end + 1":"end - 1"):(l=o?`end + pow2 < ${u}`:"end >= pow2",c=o?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${Ht(s)} coords = getOutputCoords();
|
|
int end = ${b3(s,"coords",this.op)};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${l}) {
|
|
int idx = ${c};
|
|
${b3(s,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${y3(s,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function y3(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function b3(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function dv(r,t,e,n,o,s){let i=t.shape.length,a=S.getAxesPermutation([n],i),u=t;a!=null&&(u=fe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=nr({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new Dg(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new Dg(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=S.getUndoAxesPermutation(a),f=fe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function nrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return dv(up.Prod,o,e,s,i,a)}var w3={kernelName:ma,backendName:"webgl",kernelFunc:nrt};function ort(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return dv(up.Sum,o,e,s,i,a)}var v3={kernelName:as,backendName:"webgl",kernelFunc:ort};function srt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=Aw(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=uP(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var C3={kernelName:zp,backendName:"webgl",kernelFunc:srt};var hv=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${e};
|
|
int offset_h = imod(h, ${e});
|
|
int in_w = w / ${e};
|
|
int offset_w = imod(w, ${e});
|
|
int offset_d = (offset_h * ${e} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function irt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=new hv(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var I3={kernelName:da,backendName:"webgl",kernelFunc:irt};var kd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=De(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l="",c="";n&&(o?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let p=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${u};
|
|
int q = d2 - d1 * ${u};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${i}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${p}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}};var Nd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=De(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let y=0;y<p;y++)f+=`
|
|
vec4 xTexelC${y*2};
|
|
int xTexelC${y*2}Ready;
|
|
vec4 xTexelC${y*2+1};
|
|
int xTexelC${y*2+1}Ready;
|
|
vec4 xC${y};`;f+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let y=0;y<p;y++)f+=`
|
|
xTexelC${y*2} = vec4(0.0);
|
|
xTexelC${y*2}Ready = 0;
|
|
xTexelC${y*2+1} = vec4(0.0);
|
|
xTexelC${y*2+1}Ready = 0;
|
|
xC${y} = vec4(0.0);`;f+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let y=0;y<(m+1)/2;y++){let b=y*2;if(f+=`
|
|
xC = xCCorner + ${b*l};
|
|
`,u===1){if(b<p&&(a%2===1?(f+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,l===1&&b>0?f+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:f+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):f+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<p)){let w=a%2===0?x.nearestLargerEven(l):l;l%2===0&&a%2===1||l%2!==0&&a%2!==1?(f+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${w};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,l>1&&(f+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`),f+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):w===1?f+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:f+=`
|
|
xCOffset = xC + ${w};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<p&&(a%2===1?(f+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<p&&(f+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(f+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<p&&(f+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<p&&(f+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<p&&(f+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}f+=`
|
|
}
|
|
`,f+=`
|
|
}
|
|
`;let d="",h="";n&&(o?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?d=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:d=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,h="result = activation(result);");let g=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${d}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${f}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${g}
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}};function art(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n,c=u;c==null&&(c=[1,1]),x.assert(S.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;G().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new Nd(p):m=new kd(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],"float32",f)}var S3={kernelName:ls,backendName:"webgl",kernelFunc:art};var gv=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${i} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${t.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${t.outHeight}; yR++) {
|
|
int xR = wR + yR * ${e} - ${o};
|
|
|
|
if (xR < 0 || xR >= ${t.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${t.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${t.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xv=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${a});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${e}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${e} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${u}; dm++) {
|
|
int d2 = d1 * ${u} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function lrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new gv(p);return e.runWebGLProgram(m,[o,s],"float32")}var k3={kernelName:Bp,backendName:"webgl",kernelFunc:lrt};function urt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new xv(p);return e.runWebGLProgram(m,[o,s],"float32")}var N3={kernelName:Vp,backendName:"webgl",kernelFunc:urt};var yv=class{constructor(t){this.variableNames=["X"],this.outputShape=[t,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function crt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=x.sizeFromShape(n.shape),i=ut({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new yv(s),u=e.runWebGLProgram(a,[i],i.dtype),l=ut({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var T3={kernelName:Gp,backendName:"webgl",kernelFunc:crt};var bv=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`
|
|
const ivec2 strides = ivec2(${s}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${m});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${a}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${e}) {
|
|
for (int w = 0; w < ${u}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function prt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c,p=new bv(l);c=e.runWebGLProgram(p,[o,s],"float32");let m=ut({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var _3={kernelName:Ll,backendName:"webgl",kernelFunc:prt};function mrt(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:y,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(y)?w=s[g]:(w=fe({inputs:{x:s[g]},backend:e,attrs:{perm:y}}),d.push(w));let v=w.shape.slice();for(let k=0;k<b.length;++k)v.splice(b[k],0,1);x.arraysEqual(w.shape,v)||(w=ut({inputs:{x:w},backend:e,attrs:{shape:v}}),d.push(w)),m===null?m=w:(m=Ag({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=sp({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var E3={kernelName:Wp,backendName:"webgl",kernelFunc:mrt};var frt="return (x >= 0.0) ? x : (exp(x) - 1.0);",drt=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,hrt=It({opSnippet:frt,packedOpSnippet:drt}),A3={kernelName:cs,backendName:"webgl",kernelFunc:hrt};var grt="return (b >= 1.0) ? a : a * (b + 1.0);",xrt=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,yrt=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Lo(xrt,n.shape,o.shape):new no(grt,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},$3={kernelName:Up,backendName:"webgl",kernelFunc:yrt};var brt=`
|
|
return vec4(equal(a, b));
|
|
`,wrt="return float(a == b);",vrt=le({opSnippet:wrt,packedOpSnippet:brt,dtype:"bool",cpuKernelImpl:mP}),D3={kernelName:ga,backendName:"webgl",kernelFunc:vrt};var Crt=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${S.ERF_P};
|
|
float a1 = ${S.ERF_A1};
|
|
float a2 = ${S.ERF_A2};
|
|
float a3 = ${S.ERF_A3};
|
|
float a4 = ${S.ERF_A4};
|
|
float a5 = ${S.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Irt=It({opSnippet:Crt}),F3={kernelName:ha,backendName:"webgl",kernelFunc:Irt};var Srt=zo+`
|
|
return exp(x);
|
|
`,krt=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,PT=It({opSnippet:Srt,packedOpSnippet:krt,cpuKernelImpl:fP,dtype:"float32"}),R3={kernelName:ps,backendName:"webgl",kernelFunc:PT};function wv(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(x.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),ut({inputs:{x:s},backend:n,attrs:{shape:a}})}var O3={kernelName:Ii,backendName:"webgl",kernelFunc:wv};var M3="return exp(x) - 1.0;",Nrt=It({opSnippet:M3,packedOpSnippet:M3,cpuKernelImpl:dP}),P3={kernelName:xa,backendName:"webgl",kernelFunc:Nrt};var Fg=class{constructor(t,e,n){this.variableNames=["real","imag"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:"1.0",a;if(t==="real")a="return real * expR - imag * expI;";else if(t==="imag")a="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${t}.`);this.userCode=`
|
|
const float exponentMultiplier = ${s};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${a}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${o});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${i};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function vv(r,t,e){let n=e.texData.get(r.dataId),o=x.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=ut({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new Fg("real",u,t),c=new Fg("imag",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=Rn({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=ut({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function Trt(r){let{inputs:t,backend:e}=r,{input:n}=t;return vv(n,!1,e)}var L3={kernelName:Hp,backendName:"webgl",kernelFunc:Trt};var Cv=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function _l(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||x.inferDtype(o),s==="string"){let i=x.getArrayFromDType(s,x.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new Cv(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var z3={kernelName:zl,backendName:"webgl",kernelFunc:_l};var Iv=class{constructor(t){this.variableNames=["Image"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${e} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${e}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var B3={kernelName:ya,backendName:"webgl",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new Iv(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var V3="return floor(x);",_rt=It({opSnippet:V3,packedOpSnippet:V3,cpuKernelImpl:hP}),G3={kernelName:ms,backendName:"webgl",kernelFunc:_rt};var Ert=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,Art=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,$rt=le({opSnippet:Ert,packedOpSnippet:Art,dtype:"int32"}),W3={kernelName:fs,backendName:"webgl",kernelFunc:$rt};var Sv=class{constructor(t){this.variableNames=["A"];let e=qe(),[n,o]=t;this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
|
|
|
|
vec4 values = ${e.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}};var kv=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let e=qe(),[n,o]=t;this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${o}.0, ${n}.0);
|
|
vec4 values = ${e.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${e.output} = result;
|
|
}
|
|
`}};var U3={kernelName:Xd,backendName:"webgl",kernelFunc:Drt},Td;function Drt(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];(a||i)&&(Td==null&&(Td=document.createElement("canvas").getContext("2d")),Td.canvas.width=u,Td.canvas.height=l,Td.drawImage(o,0,0,u,l),o=Td.canvas);let m=e.makeTensorInfo(c,"int32");e.texData.get(m.dataId).usage=Kr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=G().getBool("WEBGL_PACK")?new kv(p):new Sv(p),d=e.runWebGLProgram(f,[m],"int32");return e.disposeData(m.dataId),d}function Frt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=av({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(G().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)y=lv({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let v=i!=null,k=a!=null,_=f==="leakyrelu",$=f?ku(f,!1):null,D=new Sd(g,v,$,k,_),F=[o,s],P=(B,U)=>{if(U==="NCHW"&&B.shape.length===1&&B.shape[0]!==1){let q=ut({inputs:{x:B},backend:e,attrs:{shape:[B.shape[0],1,1]}});return b.push(q),q}return B};if(v&&F.push(P(i,c)),k&&F.push(P(a,c)),_){let B=e.makeTensorInfo([],"float32",x.createScalarValue(d,"float32"));F.push(B),b.push(B)}y=e.runWebGLProgram(D,F,"float32")}let w=ut({inputs:{x:y},backend:e,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>e.disposeIntermediateTensorInfo(v)),w}var H3={kernelName:Mi,backendName:"webgl",kernelFunc:Frt};function Rrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),x.assert(S.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),y=G().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?ku(m,y):null,w=[o,s],v=i!=null,k=a!=null,_=m==="leakyrelu";if(v&&w.push(i),k&&w.push(a),_){let P=e.makeTensorInfo([],"float32",x.createScalarValue(f,"float32"));w.push(P),d.push(P)}let $;y?$=new Nd(g,v,b,k,_):$=new kd(g,v,b,k,_);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=e.runWebGLProgram($,w,"float32",D);return d.forEach(P=>e.disposeIntermediateTensorInfo(P)),F}var q3={kernelName:Pi,backendName:"webgl",kernelFunc:Rrt};var Nv=class{constructor(t,e,n){this.sliceDim=t,this.strides=e,this.variableNames=["x","indices"],this.outputShape=n;let o=Ht(e.length),s=Ht(n.length),i=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${this.strides});
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${i};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function Ort(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=x.sizeFromShape(n.shape),[u,l,c,p]=S.prepareAndValidate(n,o),m=ut({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=ut({inputs:{x:n},backend:e,attrs:{shape:[x.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype==="string"){let y=e.readSync(o.dataId),b=e.bufferSync(n),w=gP(y,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new Nv(i,p,[l,c]),h=e.runWebGLProgram(d,[f,m],f.dtype),g=ut({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var K3={kernelName:ba,backendName:"webgl",kernelFunc:Ort};var Tv=class{constructor(t,e){this.variableNames=["A","indices"],this.outputShape=e,this.rank=e.length;let n=Ht(this.rank),o=Mrt(t,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${o}));
|
|
}
|
|
`}};function Mrt(r,t){let e=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("index"):n.push(`${e[o]}`);return n.join()}function LT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n,u=x.parseAxisParam(i,o.shape)[0];if(G().get("DEBUG")){let b=e.readSync(s.dataId),w=o.shape[u];for(let v=0;v<b.length;++v){let k=b[v];x.assert(k<=w-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${w-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=x.sizeFromShape(s.shape),p=[],m=ut({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=ut({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=e.bufferSync(f),w=e.bufferSync(m),v=xP(w,b,d);return p.forEach(k=>e.disposeIntermediateTensorInfo(k)),e.makeTensorInfo(l.outputShape,v.dtype,v.values)}let h=new Tv(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let y=ut({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),y}var j3={kernelName:Si,backendName:"webgl",kernelFunc:LT};var Prt="return float(a > b);",Lrt=`
|
|
return vec4(greaterThan(a, b));
|
|
`,zrt=le({opSnippet:Prt,packedOpSnippet:Lrt,cpuKernelImpl:yP,dtype:"bool"}),X3={kernelName:wa,backendName:"webgl",kernelFunc:zrt};var Brt="return float(a >= b);",Vrt=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Grt=le({opSnippet:Brt,packedOpSnippet:Vrt,dtype:"bool",cpuKernelImpl:bP}),Y3={kernelName:hs,backendName:"webgl",kernelFunc:Grt};function Wrt(r){let{inputs:t,backend:e}=r,{input:n}=t;return vv(n,!0,e)}var Z3={kernelName:qp,backendName:"webgl",kernelFunc:Wrt};var Urt="return float(!isnan(x) && !isinf(x));",Hrt=It({opSnippet:Urt,dtype:"bool"}),J3={kernelName:va,backendName:"webgl",kernelFunc:Hrt};var qrt="return float(isinf(x));",Krt=It({opSnippet:qrt,dtype:"bool"}),Q3={kernelName:Ca,backendName:"webgl",kernelFunc:Krt};var jrt="return float(isnan(x));",Xrt=It({opSnippet:jrt,dtype:"bool"}),tz={kernelName:Ia,backendName:"webgl",kernelFunc:Xrt};var Yrt="return float(a < b);",Zrt=`
|
|
return vec4(lessThan(a, b));
|
|
`,Jrt=le({opSnippet:Yrt,packedOpSnippet:Zrt,cpuKernelImpl:wP,dtype:"bool"}),ez={kernelName:Sa,backendName:"webgl",kernelFunc:Jrt};var Qrt="return float(a <= b);",tnt=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,ent=le({opSnippet:Qrt,packedOpSnippet:tnt,cpuKernelImpl:vP,dtype:"bool"}),rz={kernelName:ka,backendName:"webgl",kernelFunc:ent};function rnt(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=CP(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var nz={kernelName:jp,backendName:"webgl",kernelFunc:rnt};var nnt=zo+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,ont=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,snt=It({opSnippet:nnt,packedOpSnippet:ont,cpuKernelImpl:IP}),oz={kernelName:xs,backendName:"webgl",kernelFunc:snt};var int=zo+`
|
|
return log(1.0 + x);
|
|
`,ant=It({opSnippet:int}),sz={kernelName:Na,backendName:"webgl",kernelFunc:ant};var lnt="return float(a >= 1.0 && b >= 1.0);",unt=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,cnt=le({opSnippet:lnt,packedOpSnippet:unt,dtype:"bool"}),iz={kernelName:Ta,backendName:"webgl",kernelFunc:cnt};var pnt="return float(!(x >= 1.0));",mnt=It({opSnippet:pnt}),az={kernelName:zu,backendName:"webgl",kernelFunc:mnt};var fnt="return float(a >= 1.0 || b >= 1.0);",dnt=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,hnt=le({opSnippet:fnt,packedOpSnippet:dnt,dtype:"bool"}),lz={kernelName:Bu,backendName:"webgl",kernelFunc:hnt};var _v=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${i}; j <= ${i}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${a}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${u};
|
|
setOutput(val);
|
|
}
|
|
`}};var Ev=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${i};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${i}; j <= ${i}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${u};
|
|
setOutput(result);
|
|
}
|
|
`}};var gnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=G().getBool("WEBGL_PACK_NORMALIZATION")?new Ev(o.shape,s,i,a,u):new _v(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},uz={kernelName:Bl,backendName:"webgl",kernelFunc:gnt};var Av=class{constructor(t,e,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${e})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${e} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${o}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${o})
|
|
* float(${s})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${s});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};var xnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new Av(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},cz={kernelName:Xp,backendName:"webgl",kernelFunc:xnt};function pz(r,t,e,n){let o=x.sizeFromShape(t),i=x.sizeFromShape(r.shape)/o,a=ut({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Hn(a,r.dtype,"max",n),l=ut({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function zT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,v=new Array(a);for(let $=0;$<v.length;$++)v[$]=o.shape[c[$]];let k=np(w,o.shape,o.dtype,c,v);f=e.makeTensorInfo(v,o.dtype);let _=e.texData.get(f.dataId);_.values=k}else f=Nu(o,c,e);l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("max",l,a);let[d,h]=S.computeOutAndReduceShapes(f.shape,l),g=d;i&&(g=S.expandShapeToKeepDim(d,u));let y;if(m){let w=e.texData.get(f.dataId).values,v=SP(w,x.sizeFromShape(h),g,o.dtype);y=e.makeTensorInfo(g,o.dtype);let k=e.texData.get(y.dataId);k.values=v}else y=pz(f,h,g,e);return p&&e.disposeIntermediateTensorInfo(f),y}var mz={kernelName:ys,backendName:"webgl",kernelFunc:zT};var ynt=Pw+`
|
|
return max(a, b);
|
|
`,bnt=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Su+`
|
|
return result;
|
|
`,wnt=le({opSnippet:ynt,packedOpSnippet:bnt,cpuKernelImpl:kP}),fz={kernelName:bs,backendName:"webgl",kernelFunc:wnt};function vnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;di(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;x.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&x.arraysEqual(c.inShape,c.outShape))return nr({inputs:{x:o},backend:e});let p=new gi(c,"max",!1);return e.runWebGLProgram(p,[o],o.dtype)}var dz={kernelName:ws,backendName:"webgl",kernelFunc:vnt};function Cnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new Tu(p,"max",!1);return e.runWebGLProgram(m,[o],o.dtype)}var hz={kernelName:Vl,backendName:"webgl",kernelFunc:Cnt};var $v=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${s};
|
|
wR += ${o}) {
|
|
float dyR = float(dyRCorner + wR) / ${e}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${i} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Dv=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${s}) {
|
|
float dyD = float(dyDCorner + wD) / ${e}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${i}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${a}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${d} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Int(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new Tu(m,"max",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new Dv(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var gz={kernelName:Zp,backendName:"webgl",kernelFunc:Int};function Snt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;di([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new gi(m,"max",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new $v(m),y=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),y}var xz={kernelName:Yp,backendName:"webgl",kernelFunc:Snt};function yz(r,t,e,n){let o=new gi(e,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new gi(e,"max",!0,!0,t);let i=n.runWebGLProgram(o,[r],"float32");return[s,i]}var bz={kernelName:Jp,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;x.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];x.assert(S.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=S.computePool2DInfo(n.shape,o,s,l,i),[p,m]=yz(n,a,c,u);return[p,m]}};function wz(r,t,e,n){let o=x.sizeFromShape(t),i=x.sizeFromShape(r.shape)/o,a=ut({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Hn(a,"float32","mean",n),l=ut({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var vz={kernelName:vs,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=x.parseAxisParam(s,n.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let v=i.texData.get(d.dataId).values,k=new Array(a);for(let D=0;D<k.length;D++)k[D]=n.shape[c[D]];let _=np(v,n.shape,n.dtype,c,k);d=i.makeTensorInfo(k,n.dtype);let $=i.texData.get(d.dataId);$.values=_}else d=Nu(n,c,i);f.push(d),l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("sum",l,a);let[h,g]=S.computeOutAndReduceShapes(d.shape,l),y=h;o&&(y=S.expandShapeToKeepDim(h,u));let b=wz(d,g,y,i);for(let w of f)i.disposeIntermediateTensorInfo(w);return b}};function knt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=x.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=fe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=x.sizeFromShape(f),h=ut({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Hn(h,h.dtype,"min",e),y;if(i){let b=S.expandShapeToKeepDim(m,u);y=ut({inputs:{x:g},backend:e,attrs:{shape:b}})}else y=ut({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),y}var Cz={kernelName:Cs,backendName:"webgl",kernelFunc:knt};var Nnt=Pw+`
|
|
return min(a, b);
|
|
`,Tnt=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Su+`
|
|
return result;
|
|
`,_nt=le({opSnippet:Nnt,packedOpSnippet:Tnt,cpuKernelImpl:NP}),Iz={kernelName:Is,backendName:"webgl",kernelFunc:_nt};var Fv=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=e.map((c,p)=>c[0]+t[p]+c[1]);let o=t.length,s=Ht(o),i=e.map(c=>c[0]).join(","),a=e.map((c,p)=>c[0]+t[p]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),l=n==="reflect"?0:1;if(o===1){this.userCode=`
|
|
int start = ${i};
|
|
int end = ${a};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${i});
|
|
${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
for (int i = 0; i < ${o}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${u}));
|
|
}
|
|
`}};var Rv=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=Ht(o),i=e.map(d=>d[0]).join(","),a=e.map((d,h)=>d[0]+t[h]).join(","),u=rr("rc",o),l=rr("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
|
|
${s} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${m};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${m};
|
|
}
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${u[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`}else{let d=`
|
|
${s} source = rc;
|
|
${s} lt = ${s}(lessThan(source, start));
|
|
${s} gte = ${s}(greaterThanEqual(source, end));
|
|
${s} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${m}) +
|
|
gte * ((end - 1) * 2 - source + ${m});
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${l.join()}), ${p});
|
|
${u[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${u[o-2]} += 1;
|
|
if(${u[o-2]} < ${this.outputShape[o-2]}) {
|
|
${d}
|
|
result[2] = getChannel(getX(${l.join()}), ${p});
|
|
${u[o-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[3] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${s} start = ${s}(${i});
|
|
const ${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};var Ent=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Rv(n.shape,o,s):new Fv(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},Sz={kernelName:Ss,backendName:"webgl",kernelFunc:Ent};var Ant=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,$nt=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Su+`
|
|
return result;
|
|
`,Dnt=le({opSnippet:Ant,packedOpSnippet:$nt}),kz={kernelName:_a,backendName:"webgl",kernelFunc:Dnt};var Ov=class{constructor(t,e,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[t,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${e-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${e-1}));
|
|
}
|
|
`}};var Fnt=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Rnt=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,BT=le({opSnippet:Fnt,packedOpSnippet:Rnt,checkOutOfBounds:!0}),Nz={kernelName:us,backendName:"webgl",kernelFunc:BT};var Tz="return a - b;",VT=le({opSnippet:Tz,packedOpSnippet:Tz,supportsComplex:!0,cpuKernelImpl:WP}),_z={kernelName:Ws,backendName:"webgl",kernelFunc:VT};function GT(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=x.parseAxisParam([s],o.shape),a=zT({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(a.shape,i),l=ut({inputs:{x:a},backend:e,attrs:{shape:u}}),c=VT({inputs:{a:o,b:l},backend:e}),p=PT({inputs:{x:c},backend:e}),m=sp({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=ut({inputs:{x:m},backend:e,attrs:{shape:u}}),d=BT({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var Ez={kernelName:Vs,backendName:"webgl",kernelFunc:GT};function Ont(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:GT({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new Ov(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],"int32",m);return a||e.disposeIntermediateTensorInfo(u),f}var Az={kernelName:Qp,backendName:"webgl",kernelFunc:Ont};var Mnt=hr+`
|
|
return -x;
|
|
`,Pnt=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Lnt(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=_P(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new ro(n.shape,Pnt):o=new en(n.shape,Mnt),e.runWebGLProgram(o,[n],n.dtype)}var $z={kernelName:ki,backendName:"webgl",kernelFunc:Lnt};var znt=Gr.nonMaxSuppressionV3Impl;function Bnt(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=znt(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Dz={kernelName:Aa,backendName:"webgl",kernelFunc:Bnt};var Vnt=Gr.nonMaxSuppressionV4Impl;function Gnt(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=Vnt(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var Fz={kernelName:$a,backendName:"webgl",kernelFunc:Gnt};var Wnt=Gr.nonMaxSuppressionV5Impl;function Unt(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:y}=Wnt(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Rz={kernelName:Da,backendName:"webgl",kernelFunc:Unt};var Mv=class{constructor(t,e,n,o){this.variableNames=["indices"],this.outputShape=[t,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${o}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}};var Hnt=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{depth:s,onValue:i,offValue:a}=n,u=x.sizeFromShape(o.shape),l=new Mv(u,s,i,a),c=ut({inputs:{x:o},backend:e,attrs:{shape:[u]}}),p=e.runWebGLProgram(l,[c],o.dtype);e.disposeIntermediateTensorInfo(c);let m=[...o.shape,s],f=ut({inputs:{x:p},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(p),f},Oz={kernelName:Ns,backendName:"webgl",kernelFunc:Hnt};function Rg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="complex64"){let o=Tl({inputs:{input:n},backend:e}),s=Rg({inputs:{x:o},backend:e}),i=ap({inputs:{input:n},backend:e}),a=Rg({inputs:{x:i},backend:e}),u=Rn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return _l({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:e})}var Mz={kernelName:Ri,backendName:"webgl",kernelFunc:Rg};function Pz(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=Tl({inputs:{input:n},backend:e}),s=Pz({inputs:{x:o},backend:e}),i=ap({inputs:{input:n},backend:e}),a=Rg({inputs:{x:i},backend:e}),u=Rn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return _l({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var Lz={kernelName:Ni,backendName:"webgl",kernelFunc:Pz};function qnt(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return wv({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=wv({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=MT({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var zz={kernelName:Ti,backendName:"webgl",kernelFunc:qnt};var Pv=class{constructor(t,e,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=Ht(o),i=e.map(l=>l[0]).join(","),a=e.map((l,c)=>l[0]+t[c]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
|
|
int start = ${i};
|
|
int end = ${a};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${i});
|
|
${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${u}));
|
|
}
|
|
}
|
|
`}};var Lv=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=Ht(o),i=e.map(h=>h[0]).join(","),a=e.map((h,g)=>h[0]+t[g]).join(","),u=rr("rc",o),l=rr("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;
|
|
if(${c}) {
|
|
`,o===1?"":`}
|
|
rc = outputLoc;
|
|
${u[o-2]} += 1;
|
|
if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${u[o-1]} += 1;
|
|
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
|
|
${m[h]}
|
|
if (${f}) {
|
|
result[${h}] = float(value);
|
|
} else {
|
|
${s} source = rc - start;
|
|
result[${h}] = getChannel(getX(${l.join()}), ${p});
|
|
}
|
|
`;d+=o===1?"} ":"}}",this.userCode=`
|
|
const ${s} start = ${s}(${i});
|
|
const ${s} end = ${s}(${a});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}};var WT=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(x.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return _l({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Lv(o.shape,s,i):new Pv(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},Bz={kernelName:Ts,backendName:"webgl",kernelFunc:WT};var Knt=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,jnt=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Su+`
|
|
return result;
|
|
`,Xnt=le({opSnippet:Knt,packedOpSnippet:jnt}),Vz={kernelName:_s,backendName:"webgl",kernelFunc:Xnt};function Ynt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=x.parseAxisParam(s,o.shape),c=l,p=S.getAxesPermutation(c,a),m=o;p!=null&&(m=fe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,a),u.push(m)),S.assertAxesAreInnerMostDims("prod",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:y}=AP(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,y,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=x.sizeFromShape(h),y=ut({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=Ku(o.dtype),w=Hn(y,b,"prod",e);f=ut({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(y),u.push(w)}if(i){u.push(f);let d=S.expandShapeToKeepDim(f.shape,l);f=ut({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var Gz={kernelName:As,backendName:"webgl",kernelFunc:Ynt};var UT=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=$P(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},Wz={kernelName:Gl,backendName:"webgl",kernelFunc:UT};var Znt="return 1.0 / x;",Jnt=It({opSnippet:Znt}),Uz={kernelName:Fa,backendName:"webgl",kernelFunc:Jnt};var Qnt=hr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,tot=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,eot=It({opSnippet:Qnt,packedOpSnippet:tot}),Hz={kernelName:$s,backendName:"webgl",kernelFunc:eot};var rot=hr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,not=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,oot=It({opSnippet:rot,packedOpSnippet:not}),qz={kernelName:Fs,backendName:"webgl",kernelFunc:oot};var zv=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var Bv=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
|
|
${u}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function sot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Bv(o.shape,u,l,s,i):new zv(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],"float32")}var Kz={kernelName:Ds,backendName:"webgl",kernelFunc:sot};var Vv=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function iot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new Vv(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var jz={kernelName:rm,backendName:"webgl",kernelFunc:iot};var Gv=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var Wv=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":f="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
|
|
${u}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function aot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Wv(o.shape,u,l,s,i):new Gv(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var Xz={kernelName:Wl,backendName:"webgl",kernelFunc:aot};var Uv=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${u[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${u[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${o}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function lot(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new Uv(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var Yz={kernelName:em,backendName:"webgl",kernelFunc:lot};var Hv=class{constructor(t,e){this.variableNames=["x"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${t[0]} - coord - 1));
|
|
}
|
|
`;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(","),i=Ht(n);this.userCode=`
|
|
void main() {
|
|
${i} coords = getOutputCoords();
|
|
setOutput(getX(${s}));
|
|
}
|
|
`}};var qv=class{constructor(t,e){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=rr("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=Ht(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${t[0]} - rc - 1),
|
|
${t[0]} - rc - 1);
|
|
if(${s}){
|
|
result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),
|
|
${t[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${u(o.slice())};
|
|
if(${s}){
|
|
result.g = ${l(o.slice())};
|
|
}
|
|
if(${i}) {
|
|
result.b = ${c(o.slice())};
|
|
if(${s}) {
|
|
result.a = ${p(o.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function u(d){return m(d)}function l(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(","),y=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${y}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function uot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=x.parseAxisParam(s,o.shape);if(i===0)return nr({inputs:{x:o},backend:e});let u=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qv(o.shape,a):new Hv(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var Zz={kernelName:Rs,backendName:"webgl",kernelFunc:uot};var Kv=class{constructor(t,e){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=t[1],o=t[2];this.outputShape=t;let s="";typeof e=="number"?s=`float outputValue = ${e.toFixed(2)};`:s=`
|
|
vec3 fill = vec3(${e.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${s}
|
|
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var Jz={kernelName:Wa,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new Kv(n.shape,s),[l,c]=S.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var cot=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,pot=It({opSnippet:cot}),Qz={kernelName:Os,backendName:"webgl",kernelFunc:pot};var mot="return inversesqrt(x);",fot=It({opSnippet:mot,cpuKernelImpl:DP}),tB={kernelName:Ms,backendName:"webgl",kernelFunc:fot};var _d=class{constructor(t,e,n,o,s,i,a=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=i;let u=Ht(s.length),l=Ht(i.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=e>1?"strides[j]":"strides";this.userCode=`
|
|
${u} strides = ${u}(${s});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${t}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${e}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${d};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${f};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function dot(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=ut({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=ut({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],"float32",new Float32Array([0])),g=new _d(u,a,f.shape.length,d.shape.length,c,m),y=e.runWebGLProgram(g,[d,f,h],d.dtype),b=ut({inputs:{x:y},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(h),b}var eB={kernelName:Ra,backendName:"webgl",kernelFunc:dot};var jv=class{constructor(t,e,n,o){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[t,n];let s="while (left < right) {",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=G().getNumber("WEBGL_VERSION")===2?s:i,u=o==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${a}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${u} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function hot(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new jv(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],"int32",u)}var rB={kernelName:nm,backendName:"webgl",kernelFunc:hot};var Xv=class{constructor(t,e,n){this.variableNames=["c","a","b"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],u=[],l=[];for(let c=0;c<e.length;c++)l.push(`${a[c]}`),c<t&&u.push(`${a[c]}`);o=u.join(),s=l.join()}let i=Ht(n);this.userCode=`
|
|
void main() {
|
|
${i} resRC = getOutputCoords();
|
|
float cVal = getC(${o});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${s}));
|
|
} else {
|
|
setOutput(getB(${s}));
|
|
}
|
|
}
|
|
`}};function got(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new Xv(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],ar(o.dtype,s.dtype))}var nB={kernelName:Ei,backendName:"webgl",kernelFunc:got};var xot=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${S.SELU_SCALEALPHA};
|
|
float scale = ${S.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,yot=It({opSnippet:xot}),oB={kernelName:Oa,backendName:"webgl",kernelFunc:yot};var bot=zo+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,wot=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,vot=It({opSnippet:bot,packedOpSnippet:wot,cpuKernelImpl:RP}),sB={kernelName:Ls,backendName:"webgl",kernelFunc:vot};var Cot=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Iot=It({opSnippet:Cot}),iB={kernelName:Pa,backendName:"webgl",kernelFunc:Iot};var Sot=zo+`
|
|
return sin(x);
|
|
`,kot=It({opSnippet:Sot}),aB={kernelName:Ps,backendName:"webgl",kernelFunc:kot};var Not=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Tot=It({opSnippet:Not}),lB={kernelName:Ma,backendName:"webgl",kernelFunc:Tot};var _ot=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Eot=It({opSnippet:_ot}),uB={kernelName:La,backendName:"webgl",kernelFunc:Eot};var Aot=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;x.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((y,b)=>y*b),u=[[0,0]];u.push(...i);for(let y=1+s.length;y<o.shape.length;++y)u.push([0,0]);let l=[],c=WT({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),p=S.getReshaped(c.shape,s,a,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,a,!1),d=ut({inputs:{x:c},backend:e,attrs:{shape:p}}),h=fe({inputs:{x:d},backend:e,attrs:{perm:m}}),g=ut({inputs:{x:h},backend:e,attrs:{shape:f}});return l.push(c),l.push(d),l.push(h),l.forEach(y=>e.disposeIntermediateTensorInfo(y)),g},cB={kernelName:$i,backendName:"webgl",kernelFunc:Aot};function $ot(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=MP(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var pB={kernelName:Ul,backendName:"webgl",kernelFunc:$ot};function Dot(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=PP(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var mB={kernelName:za,backendName:"webgl",kernelFunc:Dot};function Fot(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=Dw(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var fB={kernelName:Hl,backendName:"webgl",kernelFunc:Fot};function Rot(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=Dw(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var dB={kernelName:ql,backendName:"webgl",kernelFunc:Rot};function Oot(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1;if(s.dtype==="string"){let y=e.bufferSync(o),b=e.bufferSync(s),w=x.decodeString(e.readSync(i.dataId)[0]),v=FP(y,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,v.dtype,v.values)}let d=new _d(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=ut({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var hB={kernelName:om,backendName:"webgl",kernelFunc:Oot};function Mot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=x.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=xi({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var gB={kernelName:Di,backendName:"webgl",kernelFunc:Mot};var xB="return sqrt(x);",Pot=It({opSnippet:xB,packedOpSnippet:xB,cpuKernelImpl:LP}),yB={kernelName:zs,backendName:"webgl",kernelFunc:Pot};var Lot="return x * x;",zot=It({opSnippet:Lot}),bB={kernelName:Kl,backendName:"webgl",kernelFunc:zot};var wB="return (a - b) * (a - b);",Bot=le({opSnippet:wB,packedOpSnippet:wB}),vB={kernelName:Gs,backendName:"webgl",kernelFunc:Bot};function Vot({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=hr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new en(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var CB={kernelName:co,backendName:"webgl",kernelFunc:Vot};var Yv=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=Ht(n.length),i=Ht(n.length),a="";if(o===1)a="coords * strides + begin";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${s} begin = ${s}(${t});
|
|
${s} strides = ${s}(${e});
|
|
|
|
void main() {
|
|
${i} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}};function Got(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:y,begin:b,end:w,strides:v}=Ve.sliceInfo(o.shape,s,i,a,u,l,c,p,m),k;if(h)k=ut({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||y){x.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let $=Ve.computeOutShape(b,w,v),D=xi({inputs:{x:o},backend:e,attrs:{begin:b,size:$}});k=ut({inputs:{x:D},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(D)}else if(e.shouldExecuteOnCPU([o])){let D=e.readSync(o.dataId),F=Ct(o.shape,o.dtype,D),P=zP(f,F,v,b);k=e.makeTensorInfo(d,o.dtype,P.values)}else{let D=new Yv(b,v,f);k=e.runWebGLProgram(D,[o],o.dtype)}let _=ut({inputs:{x:k},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(k),_}var IB={kernelName:Ba,backendName:"webgl",kernelFunc:Got};function Wot(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=BP(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var SB={kernelName:sm,backendName:"webgl",kernelFunc:Wot};function Uot(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=VP(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var kB={kernelName:im,backendName:"webgl",kernelFunc:Uot};function Hot(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.readSync(s.dataId),a=GP(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var NB={kernelName:am,backendName:"webgl",kernelFunc:Hot};var qot="return tan(x);",Kot=It({opSnippet:qot}),TB={kernelName:Us,backendName:"webgl",kernelFunc:Kot};var jot=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Xot=It({opSnippet:jot}),_B={kernelName:Hs,backendName:"webgl",kernelFunc:Xot};var Zv=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[i]*e[i];this.outputShape=n,this.rank=n.length;let o=Ht(this.rank),s=Yot(t);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Yot(r){let t=r.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${e[o]}, ${r[o]})`);return n.join()}function HT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;if(o.dtype==="string"||o.shape.length>5){let u=e.readSync(o.dataId),l=o.dtype==="string"?u.map(m=>x.decodeString(m)):u,c=Ct(o.shape,o.dtype,l),p=UP(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Zv(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var EB={kernelName:Yn,backendName:"webgl",kernelFunc:HT};var Jv=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Qv=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=t,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function cp(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function AB(r){let t=1;for(;t<r;)t*=2;return t}function Zot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n,a=G().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=G().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=o.shape,c=l[l.length-1];if(e.shouldExecuteOnCPU([o])||c<a||s>u){let P=e.readSync(o.dataId),[B,U]=HP(P,l,o.dtype,s,i);return[e.makeTensorInfo(B.shape,B.dtype,B.values),e.makeTensorInfo(U.shape,U.dtype,U.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,"int32",[])];if(c===1)return[o,_l({attrs:{shape:l,dtype:"int32",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=x.sizeFromShape(l)/c,g=ut({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&cp(e,f);let y=AB(s),b=AB(c),w=null,v=()=>w===null?[g,g]:[g,w],k=(P,B,U)=>{let q=v(),j=new Jv(U),Q=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[P],[B]],rt=w;w=e.runWebGLProgram(j,q,"int32",Q),cp(e,rt)};for(let P=1;P<y;P*=2){let B=P*2;for(let U=P;U>=1;U/=2)k(B,U,[h,b])}for(let P=b;P>y;P/=2){let B=v(),U=new Qv([h,P/2]),j=[[c],[w===null?1:0],[y]],K=w;w=e.runWebGLProgram(U,B,"int32",j),cp(e,K);let Q=y/2,rt=Q*2;for(let X=Q;X>=1;X/=2)k(rt,X,w.shape)}let _=w;w=xi({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),cp(e,_);let $=LT({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});cp(e,g);let D=l.slice(0,-1);D.push(s),_=w,w=ut({inputs:{x:w},attrs:{shape:D},backend:e}),cp(e,_);let F=$;return $=ut({inputs:{x:$},attrs:{shape:D},backend:e}),cp(e,F),[$,w]}var $B={kernelName:Va,backendName:"webgl",kernelFunc:Zot};var t0=class{constructor(t,e,n,o,s,i){this.variableNames=["Image","Transforms"],this.outputShape=i;let a=n==="nearest"?1:2,u;switch(o){case"constant":u=1;break;case"reflect":u=2;break;case"wrap":u=3;break;case"nearest":u=4;break;default:u=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${u} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${u} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${u} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${s});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${s});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${e}));
|
|
float mapY = mapCoord(inY, float(${t}));
|
|
|
|
if (${a} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Jot(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],y=new t0(p,m,i,a,u,g);return e.runWebGLProgram(y,[o,s],"float32")}var DB={kernelName:Ga,backendName:"webgl",kernelFunc:Jot};function Qot(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;di(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=qP(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var FB={kernelName:lm,backendName:"webgl",kernelFunc:Qot};function tst(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;h<a;h++)h!==s&&(l[c++]=i.shape[h]);let p=[],m=new Array(a).fill(0),f=i.shape.slice();f[s]=1;let d=new Array(u);for(let h=0;h<d.length;h++){m[s]=h;let g=xi({inputs:{x:i},backend:e,attrs:{begin:m,size:f}}),y=ut({inputs:{x:g},backend:e,attrs:{shape:l}});d[h]=y,p.push(g)}return p.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var RB={kernelName:Fi,backendName:"webgl",kernelFunc:tst};var e0=class{constructor(t,e){this.variableNames=["x","segmentIds"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u="0.0",l="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
|
|
sumValue += dot(values, segFilter);
|
|
`,f="";s%n>0&&(f=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`);let d="";s%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${u};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${f}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${d}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${i})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${i})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function est(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=S.getAxesPermutation([l],a),p=o;c!=null&&(p=fe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,a)[0]);let m=S.segment_util.computeOutShape(p.shape,l,i),f=x.sizeFromShape([p.shape[l]]),d=ut({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=Ku(o.dtype),g=(v,k,_,$,D)=>{let F=v.shape[0],P=v.shape[1],B=S.segment_util.segOpComputeOptimalWindowSize(P,D),U={windowSize:B,inSize:P,batchSize:F,numSegments:D},q=new e0(U,k),j=e.compileAndRun(q,[v,_],$);if(u.push(j),j.shape[1]===D)return j;let K=UT({backend:e,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),Q=HT({inputs:{x:K},backend:e,attrs:{reps:[P/B]}});return u.push(K),u.push(Q),g(j,k,Q,$,D)},y=g(d,"unsortedSegmentSum",s,h,i),b=ut({inputs:{x:y},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let v=S.getUndoAxesPermutation(c);w=fe({inputs:{x:w},backend:e,attrs:{perm:v}})}return u.forEach(v=>e.disposeIntermediateTensorInfo(v)),w}var OB={kernelName:jl,backendName:"webgl",kernelFunc:est};var rst=[IL,kL,NL,TL,EL,AL,$L,DL,OL,ML,PL,LL,zL,BL,VL,GL,WL,UL,HL,qL,KL,XL,YL,ZL,e3,n3,o3,pL,i3,l3,u3,c3,p3,m3,f3,d3,h3,g3,x3,w3,v3,C3,I3,S3,k3,N3,T3,_3,E3,A3,$3,D3,F3,R3,O3,P3,L3,z3,B3,G3,W3,U3,H3,q3,K3,j3,X3,Y3,cL,Z3,a3,J3,Q3,tz,mL,ez,rz,nz,oz,sz,iz,az,lz,uz,cz,mz,fz,dz,hz,gz,xz,bz,vz,Cz,Iz,Sz,kz,Az,xL,$z,Dz,Fz,Rz,JL,Oz,Lz,zz,Bz,Vz,fL,Gz,Wz,QL,Nz,Uz,Hz,qz,bL,Kz,jz,Xz,Yz,Zz,Jz,Qz,tB,eB,rB,nB,oB,sB,iB,aB,lB,jL,Ez,uB,cB,pB,mB,fB,dB,hB,gB,yB,bB,vB,CB,IB,SB,kB,NB,_z,vL,TB,_B,EB,$B,DB,CL,FB,RB,OB,Mz];for(let r of rst)Vu(r);var Yt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Yt||(Yt={}));var _u;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid",r[r.elu=6]="elu"})(_u||(_u={}));var MB;function nst(r){MB=r.wasm.cwrap(Oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function ost(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let D=e.dataIdMap.get(i.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=_u[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Pr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),v=e.makeOutput([...w,y,b],o.dtype),k=e.dataIdMap.get(v.dataId).id,_=new Uint8Array(new Int32Array(o.shape).buffer),$=new Uint8Array(new Int32Array(s.shape).buffer);return MB(m,_,o.shape.length,f,$,s.shape.length,u,l,g,d,h,p||0,k),v}var PB={kernelName:Oi,backendName:"wasm",setupFunc:nst,kernelFunc:ost};function ue(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,["number","number","number"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return x.sizeFromShape(l.shape)===0||e(u,Yt[a.dtype],c),l}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:o}}var LB=ue(wi);function Se(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=S.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(x.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return(()=>n(p,g,l.shape.length,m,y,c.shape.length,Yt[l.dtype],b))(),h}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var sst=!0,zB=Se(Xn,sst);var BB;function ist(r){BB=r.wasm.cwrap(Jo,null,["array","number","number","number"])}function ast(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(x.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return BB(s,o.length,Yt[n.dtype],i),n}var VB={kernelName:Jo,backendName:"wasm",setupFunc:ist,kernelFunc:ast};function pp(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var GB={kernelName:uo,backendName:"wasm",kernelFunc:pp};var WB;function lst(r){WB=r.wasm.cwrap(Zn,null,["number","array","number","number","number","array","number"])}function oo(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=cst(t.x.shape,n.perm),i=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(i=!1);let a=ust(t.x.shape,n.perm),u={dataId:t.x.dataId,shape:o,dtype:t.x.dtype};if(i){let d=pp({inputs:t,backend:e});return d.shape=a,d}let l=e.makeOutput(a,u.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(l.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(u.shape).buffer);return WB(c,f,u.shape.length,Yt[u.dtype],p,m,s.length),l}function ust(r,t){let e=new Array(r.length);for(let n=0;n<e.length;n++)e[n]=r[t[n]];return e}function cst(r,t){let e=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&e.push(r[o]),r[t[o]]!==1&&n.push(t[o]);for(let o=0;o<n.length;++o){let s=-1;for(let i=0;i<n.length;++i)n[i]>=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var UB={kernelName:Zn,backendName:"wasm",kernelFunc:oo,setupFunc:lst};function kn(r,t,e){let n=r.shape,o=r.shape.length,s=x.parseAxisParam(t,n),i=s,a=S.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[a[f]];i=S.getInnerMostAxes(i.length,o),u=oo({inputs:{x:r},attrs:{perm:a},backend:e});let p=e.dataIdMap.get(r.dataId).id;e.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:s,axes:i,inputWasTransposed:l}}var HB;function pst(r){HB=r.wasm.cwrap(sa,null,["number, number, number"])}function mst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("all",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;HB(u,y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var qB={kernelName:sa,backendName:"wasm",setupFunc:pst,kernelFunc:mst};var KB;function fst(r){KB=r.wasm.cwrap(ia,null,["number, number, number"])}function dst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("any",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;KB(u,y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var jB={kernelName:ia,backendName:"wasm",setupFunc:fst,kernelFunc:dst};var XB;function hst(r){XB=r.wasm.cwrap(Qo,null,["number","number","number","number","number"])}function gst(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=i,u=s,{transposed:l,axes:c,inputWasTransposed:p}=kn(s,o,t);if(p){let y=t.dataIdMap.get(l.dataId).id;y!==i&&(u=l,a=y)}let m=u.shape.slice(0,-1),f=t.makeOutput(m,"int32"),d=t.dataIdMap.get(f.dataId).id,h=x.sizeFromShape(f.shape),g=u.shape[c[0]];return XB(a,Yt[u.dtype],h,g,d),p&&t.disposeData(l.dataId),f}var YB={kernelName:Qo,backendName:"wasm",kernelFunc:gst,setupFunc:hst};var ZB;function xst(r){ZB=r.wasm.cwrap(ts,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yst(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let v=n.makeOutput(c.outShape,"float32"),k=n.dataIdMap.get(v.dataId).id;return ZB(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,y,b,w,k),v}var JB={kernelName:ts,backendName:"wasm",setupFunc:xst,kernelFunc:yst};function pr(r){let{inputs:t,attrs:e}=r,{x:n}=t,{shape:o}=e,s=x.sizeFromShape(n.shape),i=x.inferFromImplicitShape(o,s);return x.assert(s===x.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var QB={kernelName:_i,backendName:"wasm",kernelFunc:pr};var tV;function bst(r){tV=r.wasm.cwrap(es,null,["number","array","number","number","array","number","number","number","number"])}function wst(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=x.sizeFromShape(d),y=x.sizeFromShape(h),w=Pr.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);x.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let v=i?[g,c,m]:[g,m,c],k=a?[y,f,p]:[y,p,f],_=pr({inputs:{x:o},backend:e,attrs:{shape:v}}),$=pr({inputs:{x:s},backend:e,attrs:{shape:k}}),D=e.dataIdMap.get(_.dataId).id,F=e.dataIdMap.get($.dataId).id,P=i?_.shape[2]:_.shape[1],B=a?$.shape[1]:$.shape[2],U=Math.max(g,y),q=e.makeOutput([U,P,B],_.dtype),j=e.dataIdMap.get(q.dataId).id,K=new Uint8Array(new Int32Array(_.shape).buffer),Q=new Uint8Array(new Int32Array($.shape).buffer);return tV(D,K,_.shape.length,F,Q,$.shape.length,i,a,j),e.disposeData(_.dataId),e.disposeData($.dataId),q.shape=w,q}var eV={kernelName:es,backendName:"wasm",setupFunc:bst,kernelFunc:wst};function Bo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=Ve.parseSliceParams(t,e,n),a=Ve.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=x.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=Ve.computeFlatOffset(s,c);return t.dtype==="string"?p.stringBytes=u.slice(d,d+x.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+x.sizeFromShape(i))),l}if(t.dtype==="string"){let d=Yc(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)vst(u,c[0],m,s,i);else if(f===3)Cst(u,c[0],c[1],m,s,i);else if(f===4)Ist(u,c[0],c[1],c[2],m,s,i);else{let d=Yc(u,s,i,t.shape,t.dtype);m.set(d)}return l}function vst(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;l<u;l++){let c=l*t+a;e.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function Cst(r,t,e,n,o,s){let i=0,a=o[0],u=o[1],l=o[2],c=a+s[0],p=u+s[1];for(let m=a;m<c;m++)for(let f=u;f<p;f++){let d=m*t+f*e+l;n.set(r.subarray(d,d+s[2]),i),i+=s[2]}}function Ist(r,t,e,n,o,s,i){let a=0,u=s[0],l=s[1],c=s[2],p=u+i[0],m=l+i[1],f=c+i[2],d=s[3];for(let h=u;h<p;h++)for(let g=l;g<m;g++)for(let y=c;y<f;y++){let b=h*t+g*e+y*n+d;o.set(r.subarray(b,b+i[3]),a),a+=i[3]}}var rV={kernelName:Ai,backendName:"wasm",kernelFunc:Bo};function Sst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n,a=s.reduce((y,b)=>y*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=pr({inputs:{x:o},backend:e,attrs:{shape:u}}),d=oo({inputs:{x:f},backend:e,attrs:{perm:l}}),h=pr({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Bo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(f.dataId),g}var nV={kernelName:vi,backendName:"wasm",kernelFunc:Sst};function El(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var oV={kernelName:ao,backendName:"wasm",kernelFunc:El};var sV=ue(rs);var iV;function kst(r){iV=r.wasm.cwrap(lo,null,["number","number","number","number"])}function Nst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return iV(a,s,i,l),u}var aV={kernelName:lo,backendName:"wasm",setupFunc:kst,kernelFunc:Nst};function qT(r){let{inputs:t,backend:e}=r,n=x.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=S.computeOutShape(t.map(f=>f.shape),n),s=t.filter(f=>x.sizeFromShape(f.shape)>0);if(s.length===1)return pp({inputs:{x:s[0]},backend:e});let i=e.makeOutput(o,t[0].dtype);if(x.sizeFromShape(o)===0)return i;let a=s.map(f=>f.shape);if(S.assertParamsConsistent(a,n),s[0].dtype==="string"){let f=s.map(w=>{let v=x.sizeFromShape(w.shape.slice(n));return pr({inputs:{x:w},backend:e,attrs:{shape:[-1,v]}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));o=S.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=Kc(d,o,t[0].dtype,h),y=S.computeOutShape(s.map(w=>w.shape),n);i.shape=y;let b=e.dataIdMap.get(i.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),i}let u=x.sizeFromShape(s[0].shape.slice(0,n)),l=0,c=s.map(f=>{let d=x.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=s.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(i);for(let f=0;f<u;f++){let d=f*l;for(let h=0;h<p.length;h++){let g=c[h],y=f*g,b=p[h].subarray(y,y+g);m.set(b,d),d+=g}}return i}var lV={kernelName:Ci,backendName:"wasm",kernelFunc:qT};var uV;function Tst(r){uV=r.wasm.cwrap(ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _st(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:m}=e,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(o.shape,s.shape,u,l,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,y=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,v=d.padInfo.left,k=d.dilationHeight,_=d.dilationWidth,$=d.strideHeight,D=d.strideWidth,F=d.inChannels,P=d.outChannels,B=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let U=n.makeOutput(d.outShape,"float32"),q=n.dataIdMap.get(U.dataId).id;return uV(i,o.shape[0],o.shape[1],o.shape[2],a,h,g,y,b,w,v,B,k,_,$,D,F,P,q),U}var cV={kernelName:ns,backendName:"wasm",setupFunc:Tst,kernelFunc:_st};var pV;function Est(r){pV=r.wasm.cwrap(os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ast(r){let{backend:t,inputs:e,attrs:n}=r,{dy:o,filter:s}=e,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,inputShape:c}=n,p=1,m=S.convertConv2DDataFormat(u),f=S.computeConv2DInfo(c,s.shape,i,p,a,l,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:y,inHeight:b,inWidth:w,outChannels:v,outHeight:k,outWidth:_,strideHeight:$,strideWidth:D}=f,F=h-1-f.padInfo.top,P=g-1-f.padInfo.left,B=f.dataFormat==="channelsLast",U=x.computeStrides(f.inShape),q=x.computeStrides(o.shape),[j,K,Q]=x.computeStrides(s.shape),rt=U[0],X=B?U[1]:U[2],nt=B?U[2]:1,st=B?1:U[1],it=q[0],ft=B?q[1]:q[2],at=B?q[2]:1,xt=B?1:q[1],dt=t.makeOutput(f.inShape,"float32"),bt=t.dataIdMap.get(dt.dataId).id,kt=t.dataIdMap.get(o.dataId).id,At=t.dataIdMap.get(s.dataId).id;return pV(kt,At,d,h,g,b,w,y,k,_,v,$,D,F,P,j,K,Q,rt,X,nt,st,it,ft,at,xt,bt),dt}var mV={kernelName:os,backendName:"wasm",setupFunc:Est,kernelFunc:Ast};var fV=ue(ss);var dV=ue(is);var KT;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(KT||(KT={}));var hV;function $st(r){hV=r.wasm.cwrap(fa,null,["number","number","number","number","array","number","number","number","number","number"])}function Dst(r){let{backend:t,inputs:e,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:i}=n,{image:a,boxes:u,boxInd:l}=e,c=u.shape[0],[p,m]=i,f=[c,p,m,a.shape[3]],d=t.dataIdMap.get(a.dataId),h;a.dtype!=="float32"&&(h=El({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),d=t.dataIdMap.get(h.dataId));let g=d.id,y=t.dataIdMap.get(u.dataId).id,b=t.dataIdMap.get(l.dataId).id,w=t.makeOutput(f,"float32"),v=t.dataIdMap.get(w.dataId).id,k=new Uint8Array(new Int32Array(a.shape).buffer);return hV(g,y,b,c,k,p,m,KT[o],s,v),h!=null&&t.disposeData(h.dataId),w}var gV={kernelName:fa,backendName:"wasm",setupFunc:$st,kernelFunc:Dst};var xV;function Fst(r){xV=r.wasm.cwrap(ma,null,["number","number","number","number","number","number"])}function Rst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;x.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=oo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumprod",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;xV(d,i?1:0,a?1:0,f,h,Yt[o.dtype]);let g=m;if(l!==null){let y=S.getUndoAxesPermutation(l);g=oo({inputs:{x:m},attrs:{perm:y},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var yV={kernelName:ma,backendName:"wasm",setupFunc:Fst,kernelFunc:Rst};var bV;function Ost(r){bV=r.wasm.cwrap(as,null,["number","number","number","number","number","number"])}function Mst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;x.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=oo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumsum",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;bV(d,i?1:0,a?1:0,f,h,Yt[o.dtype]);let g=m;if(l!==null){let y=S.getUndoAxesPermutation(l);g=oo({inputs:{x:m},attrs:{perm:y},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var wV={kernelName:as,backendName:"wasm",setupFunc:Ost,kernelFunc:Mst};var vV;function Pst(r){vV=r.wasm.cwrap(da,null,["number","number","number","array","number","array","array","number","number"])}function Lst(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,"float32"),y=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),v=new Uint8Array(new Int32Array(x.computeStrides(d)).buffer),k=t.dataIdMap.get(h.dataId).id;return vV(y,s,i==="NHWC"?1:0,b,o.shape.length-1,w,v,d.length,k),h}var CV={kernelName:da,backendName:"wasm",setupFunc:Pst,kernelFunc:Lst};var IV;function zst(r){IV=r.wasm.cwrap(ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=S.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,y=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,_=f.strideHeight,$=f.strideWidth,D=f.inChannels,F=f.outChannels,P=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let B=n.makeOutput(f.outShape,"float32"),U=n.dataIdMap.get(B.dataId).id;return IV(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,y,b,w,P,v,k,_,$,D,F,U),B}var SV={kernelName:ls,backendName:"wasm",setupFunc:zst,kernelFunc:Bst};var kV=ue(cs);var Vst=!1,NV=Se(ga,Vst,"bool");var TV=ue(ps,"float32");function r0(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(x.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),pr({inputs:{x:o},backend:n,attrs:{shape:a}})}var _V={kernelName:Ii,backendName:"wasm",kernelFunc:r0};function jT(r){let{attrs:{shape:t,value:e,dtype:n},backend:o}=r,s=o.makeOutput(t,n);return o.typedArrayFromHeap(s).fill(e),s}var EV={kernelName:zl,backendName:"wasm",kernelFunc:jT};var AV;function Gst(r){AV=r.wasm.cwrap(ya,null,["number","number","number","number","number","number"])}function Wst(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return AV(s,a,u,l,c,i),o}var $V={kernelName:ya,backendName:"wasm",kernelFunc:Wst,setupFunc:Gst};var DV=ue(ms);var Ust=!1,FV=Se(fs,Ust);var RV;function Hst(r){RV=r.wasm.cwrap(ds,null,["number","number","number","number","number","number","number"])}function qst(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(x.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return RV(c,p,m,f,d,o,g),h}var OV={kernelName:ds,backendName:"wasm",setupFunc:Hst,kernelFunc:qst};var MV;function Kst(r){MV=r.wasm.cwrap(Mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function jst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=_u[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,v=0;if(i!=null){let at=n.dataIdMap.get(i.dataId);if(at.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${at.shape.length}.`);if(at.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${at.shape}) does not match the number of output channels (${w})`);v=at.id}let k=h.filterHeight,_=h.filterWidth,$=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,B=h.dilationHeight,U=h.dilationWidth,q=h.strideHeight,j=h.strideWidth,K=h.inChannels,Q=h.padInfo.type==="SAME"?1:0,rt=h.batchSize,X=h.inHeight,nt=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let st=n.makeOutput(h.outShape,"float32"),it=n.dataIdMap.get(st.dataId).id,ft=a==null?0:n.dataIdMap.get(a.dataId).id;return MV(y,rt,X,nt,b,k,_,v,$,D,F,P,Q,B,U,q,j,K,w,g,ft,d||0,it),st}var PV={kernelName:Mi,backendName:"wasm",setupFunc:Kst,kernelFunc:jst};var LV;function Xst(r){LV=r.wasm.cwrap(Pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yst(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=_u[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,v=0;if(i!=null){let at=n.dataIdMap.get(i.dataId);if(at.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${at.shape.length}.`);if(at.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${at.shape}) does not match the number of output channels (${w})`);v=at.id}let k=h.filterHeight,_=h.filterWidth,$=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,B=h.dilationHeight,U=h.dilationWidth,q=h.strideHeight,j=h.strideWidth,K=h.inChannels,Q=h.padInfo.type==="SAME"?1:0,rt=h.batchSize,X=h.inHeight,nt=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let st=n.makeOutput(h.outShape,"float32"),it=n.dataIdMap.get(st.dataId).id,ft=a==null?0:n.dataIdMap.get(a.dataId).id;return LV(y,rt,X,nt,b,k,_,v,$,D,F,P,Q,B,U,q,j,K,w,g,ft,d||0,it),st}var zV={kernelName:Pi,backendName:"wasm",setupFunc:Xst,kernelFunc:Yst};var BV;function Zst(r){BV=r.wasm.cwrap(ba,null,["number","number","number","number","number","number","array","number"])}function Jst(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=Mx.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),y=t.dataIdMap.get(l.dataId).id;return BV(f,Yt[n.dtype],h,i,p,a,g,y),l}var VV={kernelName:ba,backendName:"wasm",setupFunc:Zst,kernelFunc:Jst};var GV;function Qst(r){GV=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function tit(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=x.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let F=0;F<l.length;++F){let P=l[F];x.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=pr({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=x.sizeFromShape(s.shape),d=pr({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(x.sizeFromShape(o.shape)===0)return g;let y=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,k=t.dataIdMap.get(d.dataId).id,_=t.dataIdMap.get(g.dataId).id,$=new Uint8Array(new Int32Array(x.computeStrides(m.shape)).buffer),D=new Uint8Array(new Int32Array(x.computeStrides(h)).buffer);return GV(w,Yt[o.dtype],$,y,k,p.batchSize,D,_),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var WV={kernelName:Si,backendName:"wasm",setupFunc:Qst,kernelFunc:tit};var eit=!1,UV=Se(wa,eit,"bool");var rit=!1,HV=Se(hs,rit,"bool");var qV;function nit(r){qV=r.wasm.cwrap(gs,null,["number","number","number","number"])}function oit(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(x.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;qV(o,Yt[t.dtype],e,i)}return s}var KV={kernelName:gs,backendName:"wasm",setupFunc:nit,kernelFunc:oit};var sit=!1,jV=Se(Sa,sit,"bool");var iit=!1,XV=Se(ka,iit,"bool");var YV=ue(xs);var ait=!1,ZV=Se(Ta,ait,"bool");var JV;function lit(r){JV=r.wasm.cwrap(ys,null,["number","number","number","number"])}function uit(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;JV(u,Yt[i.dtype],y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var QV={kernelName:ys,backendName:"wasm",setupFunc:lit,kernelFunc:uit};var cit=!1,tG=Se(bs,cit);var eG;function pit(r){eG=r.wasm.cwrap(ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mit(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;x.assert(o.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,v=c.strideWidth,k=c.inChannels,_=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=n.makeOutput(c.outShape,"float32"),D=n.dataIdMap.get($.dataId).id;return eG(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,y,b,w,v,k,_,D),$}var rG={kernelName:ws,backendName:"wasm",setupFunc:pit,kernelFunc:mit};var nG;function fit(r){nG=r.wasm.cwrap(vs,null,["number, number, number"])}function dit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t),d=p;if(f){let v=t.dataIdMap.get(c.dataId).id;v!==a&&(l=c,u=v,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("mean",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),y=x.sizeFromShape(g),b=l;l.dtype!=="float32"&&(b=El({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,"float32");if(x.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(w.dataId).id;nG(u,y,v)}if(f&&t.disposeData(c.dataId),s){let v=S.expandShapeToKeepDim(w.shape,m);w.shape=v}return l.dtype!=="float32"&&t.disposeData(b.dataId),w}var oG={kernelName:vs,backendName:"wasm",setupFunc:fit,kernelFunc:dit};var sG;function hit(r){sG=r.wasm.cwrap(Cs,null,["number","number","number","number"])}function git(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),y=x.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;sG(u,Yt[i.dtype],y,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var iG={kernelName:Cs,backendName:"wasm",setupFunc:hit,kernelFunc:git};var xit=!1,aG=Se(Is,xit);var XT;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(XT||(XT={}));var lG;function yit(r){lG=r.wasm.cwrap(Ss,null,["number","array","number","number","array","array","number","number"])}function bit(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return lG(i,l,t.shape.length,Yt[t.dtype],m,f,XT[o],u),a}var uG={kernelName:Ss,backendName:"wasm",kernelFunc:bit,setupFunc:yit};var wit=!0,cG=Se(ks,wit);var pG=ue(ki);function Ed(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var mG;function vit(r){mG=r.wasm.cwrap(Aa,"number",["number","number","number","number","number"])}function Cit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=mG(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Ed(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],"int32",m)}var fG={kernelName:Aa,backendName:"wasm",setupFunc:vit,kernelFunc:Cit};var dG;function Iit(r){dG=r.wasm.cwrap($a,"number",["number","number","number","number","number","bool"])}function Sit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=dG(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Ed(t,m);t.wasm._free(h);let y=t.makeOutput([d],"int32",f),b=t.makeOutput([],"int32",g);return[y,b]}var hG={kernelName:$a,backendName:"wasm",setupFunc:Iit,kernelFunc:Sit};var gG;function kit(r){gG=r.wasm.cwrap(Da,"number",["number","number","number","number","number","number"])}function Nit(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=gG(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Ed(t,m);t.wasm._free(g);let y=t.makeOutput([d],"int32",f),b=t.makeOutput([d],"float32",h);return[y,b]}var xG={kernelName:Da,backendName:"wasm",setupFunc:kit,kernelFunc:Nit};var Tit=!1,yG=Se(Ea,Tit,"bool");var bG;function _it(r){bG=r.wasm.cwrap(Ns,null,["number","number","number","number","number"])}function Eit(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{depth:s,onValue:i,offValue:a}=n,u=e.makeOutput([...o.shape,s],"int32"),l=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(o.dataId).id;return bG(p,s,i,a,l),u}var wG={kernelName:Ns,backendName:"wasm",setupFunc:_it,kernelFunc:Eit};function Ait(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var vG={kernelName:Ni,backendName:"wasm",kernelFunc:Ait};function $it(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return r0({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{x.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),x.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=r0({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=qT({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var CG={kernelName:Ti,backendName:"wasm",kernelFunc:$it};var IG;function Dit(r){IG=r.wasm.cwrap(Ts,null,["number","array","number","number","array","array","number","number"])}function Fit(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(x.sizeFromShape(t.shape)===0)return jT({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return IG(i,c,t.shape.length,Yt[t.dtype],f,d,o,l),a}var n0={kernelName:Ts,backendName:"wasm",kernelFunc:Fit,setupFunc:Dit};var Rit=!1,SG=Se(_s,Rit);var kG;function Oit(r){kG=r.wasm.cwrap(Es,null,["number","number","number"])}function Mit(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!=="float32"&&(l=El({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,"float32"),p=e.dataIdMap.get(c.dataId).id;return kG(a,i,p),u.dtype!=="float32"&&e.disposeData(l.dataId),c}var NG={kernelName:Es,backendName:"wasm",setupFunc:Oit,kernelFunc:Mit};var TG;function Pit(r){TG=r.wasm.cwrap(As,null,["number","number","number","number"])}function Lit(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("prod",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),y=x.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;TG(u,y,Yt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var _G={kernelName:As,backendName:"wasm",setupFunc:Pit,kernelFunc:Lit};var zit=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=Xc(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},EG={kernelName:Gl,backendName:"wasm",kernelFunc:zit};var Bit=!0,AG=Se(us,Bit);var $G=ue($s);var DG=ue(Fs);var FG;function Vit(r){FG=r.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","number","number"])}function Git(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=El({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),h=t.dataIdMap.get(g.dataId));let y=h.id,b=t.makeOutput(d,"float32");if(x.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return FG(y,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var RG={kernelName:Ds,backendName:"wasm",setupFunc:Vit,kernelFunc:Git};var OG;function Wit(r){OG=r.wasm.cwrap(Rs,null,["number","array","number","array","number","number"])}function Uit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=x.parseAxisParam(s,o.shape);if(o.shape.length===0)return pp({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);OG(u,c,i.length,p,o.shape.length,l);let m=pr({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var MG={kernelName:Rs,backendName:"wasm",kernelFunc:Uit,setupFunc:Wit};var PG;function Hit(r){PG=r.wasm.cwrap(Wa,null,["number","number","number","number","number","number","number","number","array","number","number"])}function qit(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(a,m,f),y=i===0,b=255,w=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(w).buffer);return PG(l,p,m,f,d,s,h,g,v,w.length,c),u}var LG={kernelName:Wa,backendName:"wasm",kernelFunc:qit,setupFunc:Hit};var zG=ue(Os);var BG=ue(Ms);var VG;function Kit(r){VG=r.wasm.cwrap(Ra,null,["number","number","number","number","number","number","array","number","number"])}function jit(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(x.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=ah.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return VG(d,g,Yt[s.dtype],u,l,c,y,m,b),a}var GG={kernelName:Ra,backendName:"wasm",setupFunc:Kit,kernelFunc:jit};var WG;function Xit(r){WG=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Yit(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:x.sizeFromShape(o.shape.slice(1));return WG(i,a,u,f,c),l}var UG={kernelName:Ei,backendName:"wasm",kernelFunc:Yit,setupFunc:Xit};var HG;function Zit(r){HG=r.wasm.cwrap(Ls,null,["number","number"])}function Jit(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return x.sizeFromShape(o.shape)===0||HG(n,s),o}var qG={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Zit,kernelFunc:Jit};var KG=ue(Ps);var jG;function Qit(r){jG=r.wasm.cwrap(Vs,null,["number","number","number","number"])}function tat(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=x.sizeFromShape(e.shape)/a;return x.sizeFromShape(s.shape)===0||jG(o,i,a,u),s}var XG={kernelName:Vs,backendName:"wasm",setupFunc:Qit,kernelFunc:tat};function eat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=x.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let _=1+s.length;_<o.shape.length;++_)u.push([0,0]);let l=n0.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=pr({inputs:{x:l},backend:e,attrs:{shape:c}}),b=oo({inputs:{x:h},backend:e,attrs:{perm:p}}),k=pr({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeData(l.dataId),e.disposeData(h.dataId),e.disposeData(b.dataId),k}var YG={kernelName:$i,backendName:"wasm",kernelFunc:eat};var ZG;function rat(r){ZG=r.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function nat(r){let{backend:t,inputs:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=e,a=n.shape[0],u=n.shape[1],l=t.readSync(s.dataId)[0],c=[a+l,u],p=t.dataIdMap.get(n.dataId).id,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(i.dataId).id,d=t.makeOutput(c,n.dtype),h=t.dataIdMap.get(d.dataId).id,g=t.makeOutput(c.slice(0,1),o.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([l],"bool"),w=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([a],n.dtype),k=t.dataIdMap.get(v.dataId).id,_=t.makeOutput([4],"int32"),$=t.dataIdMap.get(_.dataId).id,D=ZG(p,m,Yt[o.dtype],a,l,u,f,h,y,w,k,$),F=t.readSync(_.dataId),P;switch(F[0]){case 1:{P=S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{P=S.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:P=S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:P=""}if(t.disposeData(_.dataId),P)throw t.disposeData(d.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(P);let B=d,U=g;return D!==c[0]&&(B=Bo({inputs:{x:d},attrs:{begin:0,size:[D,u]},backend:t}),U=Bo({inputs:{x:g},attrs:{begin:0,size:D},backend:t}),t.disposeData(d.dataId),t.disposeData(g.dataId)),[B,U,b,v]}var JG={kernelName:Ul,backendName:"wasm",setupFunc:rat,kernelFunc:nat};var QG;function oat(r){QG=r.wasm.cwrap(za,null,["number","number","number","number","number","number","number"])}function sat(r){let{backend:t,inputs:e}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(s.dataId).id,l=n.shape[0],c=x.sizeFromShape(s.shape),p=t.makeOutput([l,c],n.dtype),m=t.dataIdMap.get(p.dataId).id,f=t.makeOutput([c],s.dtype),d=t.dataIdMap.get(f.dataId).id,h=t.makeOutput([3],"int32"),g=t.dataIdMap.get(h.dataId).id;QG(i,a,u,l,m,d,g);let y=t.readSync(h.dataId),b;switch(y[0]){case 0:{b=S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=S.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let w=Array.from(t.readSync(o.dataId)),v=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMultipleErrorMessage(w,v);break}case 4:{let w=Array.from(t.readSync(o.dataId)),v=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMismatchErrorMessage(w,v);break}default:b=""}if(t.disposeData(h.dataId),b)throw t.disposeData(p.dataId),t.disposeData(f.dataId),new Error(b);return[p,f]}var tW={kernelName:za,backendName:"wasm",setupFunc:oat,kernelFunc:sat};var eW;function o0(r){eW=r.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function s0(r,t){let{backend:e,inputs:n}=r,{data:o,indices:s,segmentIds:i}=n,a=s.shape[0],u=e.readSync(i.dataId,a-1,a)[0],c=a>0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,y=e.makeOutput([4],"int32"),b=e.dataIdMap.get(y.dataId).id;eW(m,Yt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(y.dataId),v;switch(w[0]){case 0:{v=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{v=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:v=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:v=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:v=""}if(e.disposeData(y.dataId),v)throw e.disposeData(h.dataId),new Error(v);return h}function iat(r){return s0(r,!0)}var rW={kernelName:Hl,backendName:"wasm",setupFunc:o0,kernelFunc:iat};function aat(r){return s0(r,!1)}var nW={kernelName:ql,backendName:"wasm",setupFunc:o0,kernelFunc:aat};function lat(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=x.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Bo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var oW={kernelName:Di,backendName:"wasm",kernelFunc:lat};var sW=ue(zs);var iW=ue(Kl);var uat=!0,aW=Se(Gs,uat);var lW;function cat(r){lW=r.wasm.cwrap(co,null,["number","number","number","number"])}function pat(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return lW(i,o,Yt[s.dtype],u),a}var uW={kernelName:co,backendName:"wasm",setupFunc:cat,kernelFunc:pat};var cW;function mat(r){cW=r.wasm.cwrap(Ba,null,["number","array","number","array","array","array","array","array","number","number"])}function fat(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:y,begin:b,end:w,strides:v}=Ve.sliceInfo(o.shape,s,i,a,u,l,c,p,m),k;if(h)k=pr({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||y){x.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let _=Ve.computeOutShape(b,w,v),$=Bo({inputs:{x:o},backend:t,attrs:{begin:b,size:_}});k=pr({inputs:{x:$},backend:t,attrs:{shape:d}}),t.disposeData($.dataId)}else{let _=t.makeOutput(f,"float32"),$=t.dataIdMap.get(o.dataId).id,D=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(w).buffer),B=new Uint8Array(new Int32Array(v).buffer),U=new Uint8Array(new Int32Array(f).buffer),q=new Uint8Array(new Int32Array(x.computeStrides(f)).buffer),j=t.dataIdMap.get(_.dataId).id;cW($,D,o.shape.length,F,P,B,U,q,f.length,j),k=pr({inputs:{x:_},backend:t,attrs:{shape:d}}),t.disposeData(_.dataId)}return k}var pW={kernelName:Ba,backendName:"wasm",setupFunc:mat,kernelFunc:fat};var dat=!0,mW=Se(Ws,dat);var fW;function hat(r){fW=r.wasm.cwrap(Bs,null,["number","number","number","number"])}function gat(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=kn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("sum",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),y=x.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(x.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;fW(u,y,Yt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var dW={kernelName:Bs,backendName:"wasm",setupFunc:hat,kernelFunc:gat};var hW=ue(Us);var gW=ue(Hs);var xW;function xat(r){xW=r.wasm.cwrap(Yn,null,["number","array","number","array","number","number"])}function yat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m<a.length;m++)a[m]=o.shape[m]*i[m];let u=new Uint8Array(new Int32Array(o.shape).buffer),l=new Uint8Array(new Int32Array(a).buffer),c=e.makeOutput(a,o.dtype),p=e.dataIdMap.get(c.dataId).id;return xW(s,u,o.shape.length,l,a.length,Yt[c.dtype],p),c}var yW={kernelName:Yn,backendName:"wasm",setupFunc:xat,kernelFunc:yat};var bW;function bat(r){bW=r.wasm.cwrap(Va,null,["number","array","number","number","number","bool","number","number"])}var wat=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),m=t.dataIdMap.get(p.dataId).id;return bW(i,a,n.shape.length,Yt[n.dtype],o,s,c,m),[l,p]},wW={kernelName:Va,backendName:"wasm",setupFunc:bat,kernelFunc:wat};var vW;function vat(r){vW=r.wasm.cwrap(Ga,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Cat(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],y=new Uint8Array(new Int32Array(x.computeStrides(o.shape)).buffer),b=t.makeOutput(g,o.dtype),w=t.dataIdMap.get(b.dataId).id,k=t.dataIdMap.get(o.dataId).id,$=t.dataIdMap.get(s.dataId).id,D=i==="nearest"?1:2,F;switch(a){case"constant":F=1;break;case"reflect":F=2;break;case"wrap":F=3;break;case"nearest":F=4;break;default:F=1;break}return vW(k,$,s.shape[0]>1,c,d,h,f,m,p,y,o.shape.length-1,D,F,u,w),b}var CW={kernelName:Ga,backendName:"wasm",setupFunc:vat,kernelFunc:Cat};function Iat(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f<a;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i),p=new Array(a).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Bo({inputs:{x:o},attrs:{begin:p,size:m},backend:e});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:u}))}var IW={kernelName:Fi,backendName:"wasm",kernelFunc:Iat};function Sat(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var SW={kernelName:Ri,backendName:"wasm",kernelFunc:Sat};var kat=[PB,LB,zB,VB,qB,jB,YB,JB,eV,nV,oV,sV,aV,lV,cV,mV,fV,dV,gV,yV,wV,CV,SV,kV,NV,TV,_V,EV,$V,DV,FV,OV,PV,zV,VV,WV,UV,HV,GB,KV,jV,XV,YV,ZV,QV,tG,rG,oG,iG,aG,uG,cG,pG,fG,hG,xG,yG,wG,vG,CG,n0,SG,NG,_G,EG,AG,$G,DG,QB,RG,MG,LG,zG,BG,GG,UG,qG,KG,rV,XG,YG,JG,tW,rW,nW,oW,sW,iW,aW,uW,pW,mW,dW,hW,gW,yW,wW,CW,UB,IW,SW];for(let r of kat)Vu(r);var YT=G();YT.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));YT.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(YT.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var e1=Mu(_W());var EW=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`;var DW=Mu(AW());var zg=class extends Xo{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(RW),r1=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new ea(this,xo())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=x.now();return t(),{kernelMs:x.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o==="string"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=x.sizeFromShape(n),u=a*x.bytesPerElement(o),l=this.wasm._malloc(u);this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s==="string")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||x.sizeFromShape(i);let u=x.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return Tat(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n){let o;if(n==null)o=this.write(null,t,e);else{let s=this.dataIdNextNumber++;o={id:s},this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:t,dtype:e,refCount:1});let i=x.sizeFromShape(t);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:o,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=x.sizeFromShape(t);switch(e){case"float32":return new Float32Array(o,s,i);case"int32":return new Int32Array(o,s,i);case"bool":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function Nat(r){return(t,e)=>(x.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function $W(r,t,e){if(l0!=null)return l0;let n="tfjs-backend-wasm.wasm";return r&&t?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),Pg!=null&&Pg[n]!=null?Pg[n]:e+n}async function FW(){let[r,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(".worker.js")){let l=EW.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return a.endsWith(".wasm")?$W(r,t,Mg!=null?Mg:u):u+a},n1&&(o.instantiateWasm=Nat($W(r,t,Mg!=null?Mg:"")));let s=!1;o.onAbort=()=>{if(s||Lg)return;Lg=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&r&&l0==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+e1.default.toString()],{type:"text/javascript"}),i=(0,e1.default)(o)):i=(0,DW.default)(o),i.then(a=>{s=!0,Lg=!1;let u=null;a.tfjs={init:a.cwrap("init",null,[]),initWithThreadsCount:a.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:a.cwrap("get_threads_count","number",[]),registerTensor:a.cwrap("register_tensor",null,["number","number","number"]),disposeData:a.cwrap("dispose_data",u,["number"]),dispose:a.cwrap("dispose",u,[])},e({wasm:a})})})}function Tat(r,t){switch(t){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var _at=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],l0=null,Mg=null,Pg={},Lg=!1,n1=!1;function Eat(r,t=!1){if(EI("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Lg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");l0=r,n1=t}function Aat(r,t=!1){if(Lg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Mg=r;else{Pg=r;let e=_at.filter(n=>Pg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}n1=t}var RW=-1,r1=-1;function $at(r){RW=r}function Dat(){if(r1===-1)throw new Error("WASM backend not initialized.");return r1}var Fat="3.18.0";var Rat=2;bm("wasm",async()=>{let{wasm:r}=await FW();return new zg(r)},Rat);var Oat="3.18.0",Mat="3.18.0",Pat="3.18.0",Lat="3.18.0",zat="3.18.0",Bat="3.18.0",Vat="3.18.0",Gat="3.18.0",Wat={tfjs:Oat,"tfjs-core":Mat,"tfjs-data":Pat,"tfjs-layers":Lat,"tfjs-converter":zat,"tfjs-backend-cpu":Bat,"tfjs-backend-webgl":Vat,"tfjs-backend-wasm":Gat};export{wi as Abs,na as Acos,oa as Acosh,ou as AdadeltaOptimizer,su as AdagradOptimizer,iu as AdamOptimizer,au as AdamaxOptimizer,Xn as Add,Jo as AddN,sa as All,ia as Any,Qo as ArgMax,Rl as ArgMin,aa as Asin,la as Asinh,ua as Atan,pa as Atan2,ca as Atanh,ts as AvgPool,Ol as AvgPool3D,Dp as AvgPool3DGrad,$p as AvgPoolGrad,zg as BackendWasm,es as BatchMatMul,vi as BatchToSpaceND,Fp as Bincount,Rp as BroadcastArgs,$1 as BroadcastTo,hb as Callback,_y as CallbackList,ao as Cast,rs as Ceil,lo as ClipByValue,Op as Complex,Ml as ComplexAbs,Ci as Concat,ns as Conv2D,Mp as Conv2DBackpropFilter,os as Conv2DBackpropInput,Pl as Conv3D,Pp as Conv3DBackpropFilterV2,Lp as Conv3DBackpropInputV2,ss as Cos,is as Cosh,fa as CropAndResize,ma as Cumprod,as as Cumsum,Ay as CustomCallback,ea as DataStorage,zp as DenseBincount,da as DepthToSpace,ls as DepthwiseConv2dNative,Bp as DepthwiseConv2dNativeBackpropFilter,Vp as DepthwiseConv2dNativeBackpropInput,Gp as Diag,Ll as Dilation2D,jd as Dilation2DBackpropFilter,Kd as Dilation2DBackpropInput,KC as ENV,gb as EarlyStopping,Wp as Einsum,cs as Elu,Up as EluGrad,Hd as Environment,ga as Equal,ha as Erf,ps as Exp,Ii as ExpandDims,xa as Expm1,Hp as FFT,zl as Fill,ya as FlipLeftRight,ms as Floor,fs as FloorDiv,Xd as FromPixels,ds as FusedBatchNorm,Mi as FusedConv2D,Pi as FusedDepthwiseConv2D,rp as GPGPUContext,ba as GatherNd,Si as GatherV2,pg as GraphModel,wa as Greater,hs as GreaterEqual,Ey as History,qp as IFFT,uo as Identity,Kp as Imag,Ce as InputSpec,va as IsFinite,Ca as IsInf,Ia as IsNan,Xo as KernelBackend,Bl as LRN,Xp as LRNGrad,Yh as LayerVariable,Vn as LayersModel,gs as LeakyRelu,Sa as Less,ka as LessEqual,jp as LinSpace,xs as Log,Na as Log1p,D1 as LogSoftmax,Ta as LogicalAnd,zu as LogicalNot,Bu as LogicalOr,Xat as LowerBound,Iu as MathBackendWebGL,ys as Max,ws as MaxPool,Vl as MaxPool3D,Zp as MaxPool3DGrad,Yp as MaxPoolGrad,Jp as MaxPoolWithArgmax,bs as Maximum,vs as Mean,Cs as Min,Is as Minimum,Ss as MirrorPad,_a as Mod,lu as MomentumOptimizer,Qp as Multinomial,ks as Multiply,ki as Neg,Aa as NonMaxSuppressionV3,$a as NonMaxSuppressionV4,Da as NonMaxSuppressionV5,Ea as NotEqual,i_ as OP_SCOPE_SUFFIX,Ns as OneHot,Ni as OnesLike,Vr as Optimizer,oi as OptimizerConstructors,Ti as Pack,Ts as PadV2,Yat as Pool,_s as Pow,Es as Prelu,As as Prod,uu as RMSPropOptimizer,Dn as RNN,Gl as Range,oI as Rank,tm as Real,us as RealDiv,Fa as Reciprocal,Je as Reduction,$s as Relu,Fs as Relu6,_i as Reshape,Ds as ResizeBilinear,rm as ResizeBilinearGrad,Wl as ResizeNearestNeighbor,em as ResizeNearestNeighborGrad,Rs as Reverse,Wa as RotateWithOffset,Os as Round,Ms as Rsqrt,qi as SGDOptimizer,Ra as ScatterNd,nm as SearchSorted,Ei as Select,Oa as Selu,Zi as Sequential,Ls as Sigmoid,Pa as Sign,Ps as Sin,Ma as Sinh,Ai as Slice,Vs as Softmax,La as Softplus,$i as SpaceToBatchND,Ul as SparseFillEmptyRows,za as SparseReshape,Hl as SparseSegmentMean,ql as SparseSegmentSum,om as SparseToDense,Di as SplitV,zs as Sqrt,Kl as Square,Gs as SquaredDifference,co as Step,Ba as StridedSlice,sm as StringNGrams,im as StringSplit,am as StringToHashBucketFast,Ws as Sub,Bs as Sum,Qr as SymbolicTensor,Us as Tan,Hs as Tanh,zt as Tensor,pe as TensorBuffer,Yn as Tile,Va as TopK,Ga as Transform,Zn as Transpose,lm as Unique,Fi as Unpack,jl as UnsortedSegmentSum,Zat as UpperBound,Ua as Variable,Ri as ZerosLike,Oi as _FusedMatMul,Te as abs,uh as acos,ch as acosh,J as add,MI as addN,Zu as all,tu as any,Xs as argMax,ph as argMin,mh as asin,fh as asinh,dh as atan,hh as atan2,gh as atanh,Xa as avgPool,xh as avgPool3d,M_ as backend,S as backend_util,eq as basicLSTMCell,yo as batchNorm,BI as batchNorm2d,VI as batchNorm3d,GI as batchNorm4d,Ya as batchToSpaceND,yh as bincount,i_t as booleanMaskAsync,WI as broadcastArgs,Za as broadcastTo,Pr as broadcast_util,Ox as browser,Ct as buffer,A7 as callbacks,Z as cast,bh as ceil,br as clipByValue,Nn as clone,cn as complex,se as concat,UI as concat1d,HI as concat2d,qI as concat3d,KI as concat4d,z$ as constraints,tc as conv1d,mn as conv2d,ec as conv2dTranspose,wh as conv3d,jI as conv3dTranspose,olt as copyRegisteredKernels,Ja as cos,rc as cosh,Qx as cosineWindow,eu as cumprod,nc as cumsum,fn as customGrad,OF as data,XI as denseBincount,EI as deprecationWarn,vh as depthToSpace,Zs as depthwiseConv2d,R7 as deregisterOp,Jl as device_util,$q as diag,Ch as dilation2d,jct as disableDeprecationWarnings,_t as dispose,Xct as disposeVariables,ct as div,Ih as divNoNan,YI as dot,NE as dropout,ZI as einsum,Js as elu,Kct as enableDebugMode,qct as enableProdMode,TE as enclosingPowerOfTwo,xo as engine,G as env,Sr as equal,Sh as erf,Nh as euclideanNorm,Ye as exp,fr as expandDims,Th as expm1,Cm as eye,al as fft,Qs as fill,ept as findBackend,rpt as findBackendFactory,ti as floor,Yu as floorDiv,uL as forceHalfFloat,Io as fused,wo as gather,SE as gatherND,Mx as gather_util,Qct as getBackend,YC as getGradient,Zd as getKernel,wx as getKernelsForBackend,Dat as getThreadsCount,ST as gpgpu_util,hK as grad,gK as grads,Ge as greater,_n as greaterEqual,Ui as ifft,ja as imag,hn as image,Y_t as inTopKAsync,B$ as initializers,KS as input,Mr as io,gc as irfft,rS as isFinite,nS as isInf,_h as isNaN,Pe as keep,Gr as kernel_impls,yD as layers,Qa as leakyRelu,oc as less,En as lessEqual,mA as linalg,oS as linspace,TZ as loadGraphModel,_Z as loadGraphModelSync,V8 as loadLayersModel,Eh as localResponseNormalization,wr as log,tl as log1p,sS as logSigmoid,sc as logSoftmax,Ah as logSumExp,Nr as logicalAnd,el as logicalNot,ic as logicalOr,iS as logicalXor,TOt as losses,aS as lowerBound,Bt as matMul,L_ as math,Dr as max,rl as maxPool,$h as maxPool3d,lS as maxPoolWithArgmax,dn as maximum,be as mean,ih as memory,RK as meshgrid,bD as metrics,ru as min,ei as minimum,Dh as mirrorPad,Fh as mod,z8 as model,wD as models,Im as moments,x_t as movingAverage,M as mul,BK as multiRNNCell,uS as multinomial,qt as neg,Hh as nextFrame,nu as norm,Co as notEqual,js as oneHot,lr as ones,dr as onesLike,N as op,HK as outerProduct,Zr as pad,jK as pad1d,YK as pad2d,JK as pad3d,tj as pad4d,cS as pool,Yr as pow,ol as prelu,CI as print,ac as prod,Yct as profile,lj as rand,gj as randomGamma,Xx as randomNormal,ri as randomUniform,sl as range,Jct as ready,Gi as real,Rh as reciprocal,bm as registerBackend,G8 as registerCallbackConstructor,R1 as registerGradient,Vu as registerKernel,F7 as registerOp,vD as regularizers,Tr as relu,cc as relu6,tpt as removeBackend,R as reshape,ir as reverse,Sj as reverse1d,Nj as reverse2d,_j as reverse3d,Aj as reverse4d,ll as rfft,pc as round,mc as rsqrt,pt as scalar,CE as scatterND,ah as scatter_util,Ux as searchSorted,fc as selu,Oh as separableConv2d,B8 as sequential,et as serialization,Y4 as setBackend,npt as setPlatform,$at as setThreadsCount,Eat as setWasmPath,Aat as setWasmPaths,LN as setWebGLContext,bS as setdiff1dAsync,Lr as sigmoid,Mh as sign,tOt as signal,dc as sin,hc as sinh,Ft as slice,Ph as slice1d,Yx as slice2d,Lh as slice3d,Sm as slice4d,Ve as slice_util,il as softmax,vo as softplus,nl as spaceToBatchND,Uh as sparse,Jx as sparseToDense,XRt as spectral,ur as split,ye as sqrt,Wt as square,xc as squaredDifference,zr as squeeze,Ze as stack,ni as step,zh as stridedSlice,uy as string,lt as sub,mt as sum,Ku as sumOutType,Bh as tan,Ys as tanh,Ar as tensor,Fe as tensor1d,Hi as tensor2d,AI as tensor3d,e6 as tensor4d,r6 as tensor5d,n6 as tensor6d,ho as tensor_util,eE as test_util,V as tidy,kr as tile,Zct as time,Vh as topk,Ic as train,Mt as transpose,yc as truncatedNormal,km as unique,nlt as unregisterGradient,rlt as unregisterKernel,Gh as unsortedSegmentSum,vr as unstack,ar as upcastType,wS as upperBound,x as util,xK as valueAndGrad,yK as valueAndGrads,vS as variable,Vx as variableGrads,Wat as version,tF as version_converter,rE as version_core,Xm as version_layers,Fat as version_wasm,lL as version_webgl,bNe as webgl,dd as webgl_util,Ee as where,Wh as whereAsync,we as zeros,St as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|