face-api/dist/face-api.esm.js

4950 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var PA=Object.defineProperty;var OA=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var ob=(e,t)=>{for(var n in t)PA(e,n,{get:t[n],enumerable:!0})};var ze={};ob(ze,{Abs:()=>Tl,Acos:()=>_l,Acosh:()=>Cl,AdadeltaOptimizer:()=>gf,AdagradOptimizer:()=>yf,AdamOptimizer:()=>bf,AdamaxOptimizer:()=>xf,Add:()=>hs,AddN:()=>vi,All:()=>El,Any:()=>Fl,ArgMax:()=>wi,ArgMin:()=>cc,Asin:()=>Al,Asinh:()=>$l,Atan:()=>Dl,Atan2:()=>Ml,Atanh:()=>Rl,AvgPool:()=>ki,AvgPool3D:()=>dc,AvgPool3DGrad:()=>lm,AvgPoolGrad:()=>om,BackendWasm:()=>WE,BatchMatMul:()=>Ii,BatchToSpaceND:()=>Pl,Bincount:()=>um,BroadcastArgs:()=>pm,BroadcastTo:()=>dI,Callback:()=>xN,CallbackList:()=>I2,Cast:()=>Si,Ceil:()=>Ni,ClipByValue:()=>ms,Complex:()=>cm,ComplexAbs:()=>hc,Concat:()=>Ol,Conv2D:()=>Ti,Conv2DBackpropFilter:()=>dm,Conv2DBackpropInput:()=>_i,Conv3D:()=>mc,Conv3DBackpropFilterV2:()=>hm,Conv3DBackpropInputV2:()=>mm,Cos:()=>Ci,Cosh:()=>Ei,CropAndResize:()=>zl,Cumprod:()=>Ll,Cumsum:()=>Fi,CustomCallback:()=>N2,DataStorage:()=>rm,DenseBincount:()=>fm,DepthToSpace:()=>Bl,DepthwiseConv2dNative:()=>Ai,DepthwiseConv2dNativeBackpropFilter:()=>gm,DepthwiseConv2dNativeBackpropInput:()=>ym,Diag:()=>bm,Dilation2D:()=>fc,Dilation2DBackpropFilter:()=>Fh,Dilation2DBackpropInput:()=>Eh,ENV:()=>Tx,EarlyStopping:()=>vN,Einsum:()=>xm,Elu:()=>Di,EluGrad:()=>vm,Environment:()=>pI,Equal:()=>Vl,Erf:()=>Wl,Exp:()=>Ri,ExpandDims:()=>Ul,Expm1:()=>Gl,FFT:()=>wm,Fill:()=>gc,FlipLeftRight:()=>Hl,Floor:()=>Mi,FloorDiv:()=>Pi,FromPixels:()=>Ah,FusedBatchNorm:()=>Oi,FusedConv2D:()=>ai,FusedDepthwiseConv2D:()=>ri,GPGPUContext:()=>Sh,GatherNd:()=>ql,GatherV2:()=>jl,GraphModel:()=>o0,Greater:()=>Kl,GreaterEqual:()=>Li,History:()=>S2,IFFT:()=>km,Identity:()=>zi,Imag:()=>Im,InputSpec:()=>Bt,IsFinite:()=>Xl,IsInf:()=>Yl,IsNan:()=>Ql,KernelBackend:()=>pc,LRN:()=>xc,LRNGrad:()=>Nm,LayerVariable:()=>g2,LayersModel:()=>_r,LeakyRelu:()=>Bi,Less:()=>Jl,LessEqual:()=>Zl,LinSpace:()=>Sm,Log:()=>Wi,Log1p:()=>eu,LogSoftmax:()=>hI,LogicalAnd:()=>tu,LogicalNot:()=>yc,LogicalOr:()=>bc,LowerBound:()=>$$,MathBackendWebGL:()=>Gf,Max:()=>Vi,MaxPool:()=>Gi,MaxPool3D:()=>vc,MaxPool3DGrad:()=>_m,MaxPoolGrad:()=>Tm,MaxPoolWithArgmax:()=>Cm,Maximum:()=>Ui,Mean:()=>Hi,Min:()=>ji,Minimum:()=>qi,MirrorPad:()=>Ki,Mod:()=>nu,MomentumOptimizer:()=>vf,Multinomial:()=>Em,Multiply:()=>Xi,Neg:()=>au,NonMaxSuppressionV3:()=>su,NonMaxSuppressionV4:()=>iu,NonMaxSuppressionV5:()=>ou,NotEqual:()=>ru,OP_SCOPE_SUFFIX:()=>II,OneHot:()=>Yi,OnesLike:()=>lu,Optimizer:()=>$r,OptimizerConstructors:()=>qr,Pack:()=>uu,PadV2:()=>Qi,Pool:()=>D$,Pow:()=>Ji,Prelu:()=>Zi,Prod:()=>eo,RMSPropOptimizer:()=>wf,RNN:()=>fr,Range:()=>wc,Rank:()=>Nb,Real:()=>Fm,RealDiv:()=>$i,Reciprocal:()=>pu,Reduction:()=>kn,Relu:()=>to,Relu6:()=>ao,Reshape:()=>cu,ResizeBilinear:()=>no,ResizeBilinearGrad:()=>$m,ResizeNearestNeighbor:()=>kc,ResizeNearestNeighborGrad:()=>Am,Reverse:()=>ro,RotateWithOffset:()=>_u,Round:()=>so,Rsqrt:()=>io,SGDOptimizer:()=>Hc,ScatterNd:()=>du,SearchSorted:()=>Dm,Select:()=>hu,Selu:()=>mu,Sequential:()=>bl,Sigmoid:()=>lo,Sign:()=>yu,Sin:()=>oo,Sinh:()=>gu,Slice:()=>fu,Softmax:()=>co,Softplus:()=>bu,SpaceToBatchND:()=>xu,SparseFillEmptyRows:()=>Ic,SparseReshape:()=>wu,SparseSegmentMean:()=>Sc,SparseSegmentSum:()=>Nc,SparseToDense:()=>Rm,SplitV:()=>vu,Sqrt:()=>uo,Square:()=>Tc,SquaredDifference:()=>ho,Step:()=>gs,StridedSlice:()=>ku,StringNGrams:()=>Mm,StringSplit:()=>Pm,StringToHashBucketFast:()=>Om,Sub:()=>mo,Sum:()=>po,SymbolicTensor:()=>Ua,Tan:()=>fo,Tanh:()=>go,Tensor:()=>Fe,TensorBuffer:()=>qt,Tile:()=>fs,TopK:()=>Iu,Transform:()=>Su,Transpose:()=>Nr,Unique:()=>Lm,Unpack:()=>Nu,UnsortedSegmentSum:()=>_c,UpperBound:()=>R$,Variable:()=>as,ZerosLike:()=>Tu,_FusedMatMul:()=>ni,abs:()=>zt,acos:()=>Vx,acosh:()=>Ux,add:()=>J,addN:()=>rS,all:()=>Gm,any:()=>Jp,argMax:()=>oi,argMin:()=>Gx,asin:()=>Hx,asinh:()=>jx,atan:()=>qx,atan2:()=>Kx,atanh:()=>Xx,avgPool:()=>fa,avgPool3d:()=>Qx,backend:()=>BI,backend_util:()=>C,basicLSTMCell:()=>FM,batchNorm:()=>Er,batchNorm2d:()=>lS,batchNorm3d:()=>uS,batchNorm4d:()=>pS,batchToSpaceND:()=>Mc,bincount:()=>Jx,booleanMaskAsync:()=>P3,broadcastArgs:()=>cS,broadcastTo:()=>ol,broadcast_util:()=>Cu,browser:()=>yo,buffer:()=>Ve,callbacks:()=>d6,cast:()=>oe,ceil:()=>Zx,clipByValue:()=>an,clone:()=>Tr,complex:()=>Cr,concat:()=>Ze,concat1d:()=>dS,concat2d:()=>hS,concat3d:()=>mS,concat4d:()=>fS,constraints:()=>x2,conv1d:()=>Hm,conv2d:()=>Rt,conv2dTranspose:()=>jm,conv3d:()=>tv,conv3dTranspose:()=>yS,copyRegisteredKernels:()=>L$,cos:()=>Pc,cosh:()=>qm,cosineWindow:()=>Ev,cumprod:()=>Zp,cumsum:()=>Km,customGrad:()=>ur,data:()=>GN,denseBincount:()=>bS,deprecationWarn:()=>Mx,depthToSpace:()=>nv,depthwiseConv2d:()=>xs,deregisterOp:()=>f6,device_util:()=>Ac,diag:()=>oP,dilation2d:()=>av,disableDeprecationWarnings:()=>dR,dispose:()=>Re,disposeVariables:()=>hR,div:()=>fe,divNoNan:()=>rv,dot:()=>xS,dropout:()=>VS,einsum:()=>vS,elu:()=>Eu,enableDebugMode:()=>cR,enableProdMode:()=>pR,enclosingPowerOfTwo:()=>US,engine:()=>ar,env:()=>X,equal:()=>Jn,erf:()=>sv,euclideanNorm:()=>lv,exp:()=>gn,expandDims:()=>mn,expm1:()=>uv,eye:()=>pv,fft:()=>Uc,fill:()=>_n,findBackend:()=>vR,findBackendFactory:()=>wR,floor:()=>Fu,floorDiv:()=>Um,forceHalfFloat:()=>lC,fused:()=>ss,gather:()=>pi,gatherND:()=>WS,gather_util:()=>Px,getBackend:()=>bR,getGradient:()=>Ib,getKernel:()=>$h,getKernelsForBackend:()=>Dh,getThreadsCount:()=>Cue,gpgpu_util:()=>B_,grad:()=>HP,grads:()=>jP,greater:()=>Un,greaterEqual:()=>vs,ifft:()=>fl,imag:()=>Dc,image:()=>Ln,inTopKAsync:()=>j3,initializers:()=>v2,input:()=>z2,io:()=>en,irfft:()=>uf,isFinite:()=>NS,isInf:()=>TS,isNaN:()=>cv,keep:()=>tn,kernel_impls:()=>mr,layers:()=>w2,leakyRelu:()=>Lc,less:()=>Xm,lessEqual:()=>ws,linalg:()=>ZS,linspace:()=>_S,loadGraphModel:()=>bH,loadGraphModelSync:()=>xH,loadLayersModel:()=>kU,localResponseNormalization:()=>dv,log:()=>Zn,log1p:()=>zc,logSigmoid:()=>ES,logSoftmax:()=>Qm,logSumExp:()=>hv,logicalAnd:()=>Ta,logicalNot:()=>Bc,logicalOr:()=>Jm,logicalXor:()=>FS,losses:()=>Cz,lowerBound:()=>AS,matMul:()=>De,math:()=>zI,max:()=>Sa,maxPool:()=>Pt,maxPool3d:()=>fv,maxPoolWithArgmax:()=>$S,maximum:()=>hr,mean:()=>Et,memory:()=>Ph,meshgrid:()=>pO,metrics:()=>gN,min:()=>ec,minimum:()=>Au,mirrorPad:()=>gv,mod:()=>yv,model:()=>vU,models:()=>yN,moments:()=>Zm,movingAverage:()=>L3,mul:()=>B,multiRNNCell:()=>gO,multinomial:()=>DS,neg:()=>wt,nextFrame:()=>$v,norm:()=>Oc,notEqual:()=>ci,oneHot:()=>dl,ones:()=>Yn,onesLike:()=>ea,op:()=>z,outerProduct:()=>wO,pad:()=>ga,pad1d:()=>SO,pad2d:()=>TO,pad3d:()=>CO,pad4d:()=>FO,pool:()=>RS,pow:()=>Fr,prelu:()=>Vc,print:()=>DI,prod:()=>ef,profile:()=>mR,rand:()=>LO,randomGamma:()=>VO,randomNormal:()=>MS,randomUniform:()=>$u,range:()=>ml,ready:()=>yR,real:()=>hl,reciprocal:()=>vv,registerBackend:()=>Wm,registerCallbackConstructor:()=>IU,registerGradient:()=>mI,registerKernel:()=>Cc,registerOp:()=>m6,regularizers:()=>bN,relu:()=>Xe,relu6:()=>tf,removeBackend:()=>xR,reshape:()=>W,reverse:()=>ta,reverse1d:()=>YO,reverse2d:()=>JO,reverse3d:()=>e3,reverse4d:()=>n3,rfft:()=>Gc,round:()=>nf,rsqrt:()=>af,scalar:()=>we,scatterND:()=>BS,scatter_util:()=>Ox,searchSorted:()=>mv,selu:()=>rf,separableConv2d:()=>xo,sequential:()=>wU,serialization:()=>se,setBackend:()=>gR,setPlatform:()=>kR,setThreadsCount:()=>_ue,setWasmPath:()=>Nue,setWasmPaths:()=>Tue,setWebGLContext:()=>p_,setdiff1dAsync:()=>PS,sigmoid:()=>ha,sign:()=>wv,signal:()=>_z,sin:()=>sf,sinh:()=>of,slice:()=>He,slice1d:()=>lf,slice2d:()=>kv,slice3d:()=>Du,slice4d:()=>tc,slice_util:()=>Kt,softmax:()=>Qa,softplus:()=>bo,spaceToBatchND:()=>Wc,sparse:()=>Mp,sparseToDense:()=>Cv,spectral:()=>Tz,split:()=>zn,sqrt:()=>un,square:()=>lt,squaredDifference:()=>pf,squeeze:()=>pr,stack:()=>Mt,step:()=>Ru,stridedSlice:()=>Iv,string:()=>yh,sub:()=>ce,sum:()=>be,sumOutType:()=>Bm,tan:()=>Sv,tanh:()=>li,tensor:()=>Qn,tensor1d:()=>qe,tensor2d:()=>Ha,tensor3d:()=>Vm,tensor4d:()=>Ja,tensor5d:()=>_3,tensor6d:()=>C3,tensor_util:()=>Ga,test_util:()=>tS,tidy:()=>O,tile:()=>On,time:()=>fR,topk:()=>Nv,train:()=>Gs,transpose:()=>Ae,truncatedNormal:()=>cf,unique:()=>Lh,unregisterGradient:()=>O$,unregisterKernel:()=>P$,unsortedSegmentSum:()=>Tv,unstack:()=>ht,upcastType:()=>ma,upperBound:()=>OS,util:()=>w,valueAndGrad:()=>qP,valueAndGrads:()=>KP,variable:()=>LS,variableGrads:()=>CS,version:()=>zue,version_converter:()=>wH,version_core:()=>JR,version_layers:()=>ew,version_wasm:()=>Eue,version_webgl:()=>P9,webgl:()=>O9,webgl_util:()=>u_,where:()=>fn,whereAsync:()=>_v,zeros:()=>St,zerosLike:()=>Ke});var LA=Object.create,wx=Object.defineProperty,zA=Object.getOwnPropertyDescriptor,BA=Object.getOwnPropertyNames,WA=Object.getPrototypeOf,VA=Object.prototype.hasOwnProperty,ft=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)wx(e,n,{get:t[n],enumerable:!0})},UA=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of BA(t))!VA.call(e,r)&&r!==n&&wx(e,r,{get:()=>t[r],enumerable:!(a=zA(t,r))||a.enumerable});return e},bi=(e,t,n)=>(n=e!=null?LA(WA(e)):{},UA(t||!e||!e.__esModule?wx(n,"default",{value:e,enumerable:!0}):n,e)),GA=ft((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,P,V){this.low=S|0,this.high=P|0,this.unsigned=!!V}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,P){var V,j,q;return P?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(V=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=V),V)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(V=u(S,S<0?-1:0,!1),q&&(s[S]=V),V))}a.fromInt=o;function l(S,P){if(isNaN(S))return P?v:x;if(P){if(S<0)return v;if(S>=g)return A}else{if(S<=-y)return M;if(S+1>=y)return E}return S<0?l(-S,P).neg():u(S%f|0,S/f|0,P)}a.fromNumber=l;function u(S,P,V){return new a(S,P,V)}a.fromBits=u;var p=Math.pow;function d(S,P,V){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof P=="number"?(V=P,P=!1):P=!!P,V=V||10,V<2||36<V)throw RangeError("radix");var j;if((j=S.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return d(S.substring(1),P,V).neg();for(var q=l(p(V,8)),K=x,Z=0;Z<S.length;Z+=8){var ee=Math.min(8,S.length-Z),re=parseInt(S.substring(Z,Z+ee),V);if(ee<8){var Y=l(p(V,ee));K=K.mul(Y).add(l(re))}else K=K.mul(q),K=K.add(l(re))}return K.unsigned=P,K}a.fromString=d;function c(S,P){return typeof S=="number"?l(S,P):typeof S=="string"?d(S,P):u(S.low,S.high,typeof P=="boolean"?P:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,b=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var k=o(1);a.ONE=k;var T=o(1,!0);a.UONE=T;var _=o(-1);a.NEG_ONE=_;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var A=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=A;var M=u(0,-2147483648,!1);a.MIN_VALUE=M;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(M)){var P=l(S),V=this.div(P),j=V.mul(P).sub(this);return V.toString(S)+j.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var q=l(p(S,6),this.unsigned),K=this,Z="";;){var ee=K.div(q),re=K.sub(ee.mul(q)).toInt()>>>0,Y=re.toString(S);if(K=ee,K.isZero())return Y+Z;for(;Y.length<6;)Y="0"+Y;Z=""+Y+Z}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(M)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,P=31;P>0&&(S&1<<P)==0;P--);return this.high!=0?P+33:P+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var P=this.isNegative(),V=S.isNegative();return P&&!V?-1:!P&&V?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(M)?M:this.not().add(k)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var P=this.high>>>16,V=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Z=S.high&65535,ee=S.low>>>16,re=S.low&65535,Y=0,ie=0,ae=0,le=0;return le+=q+re,ae+=le>>>16,le&=65535,ae+=j+ee,ie+=ae>>>16,ae&=65535,ie+=V+Z,Y+=ie>>>16,ie&=65535,Y+=P+K,Y&=65535,u(ae<<16|le,Y<<16|ie,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var P=n.mul(this.low,this.high,S.low,S.high);return u(P,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(M))return S.isOdd()?M:x;if(S.eq(M))return this.isOdd()?M:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var V=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Z=S.high>>>16,ee=S.high&65535,re=S.low>>>16,Y=S.low&65535,ie=0,ae=0,le=0,ue=0;return ue+=K*Y,le+=ue>>>16,ue&=65535,le+=q*Y,ae+=le>>>16,le&=65535,le+=K*re,ae+=le>>>16,le&=65535,ae+=j*Y,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*ee,ie+=ae>>>16,ae&=65535,ie+=V*Y+j*re+q*ee+K*Z,ie&=65535,u(le<<16|ue,ie<<16|ae,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var V,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(M)){if(S.eq(k)||S.eq(_))return M;if(S.eq(M))return k;var K=this.shr(1);return V=K.div(S).shl(1),V.eq(x)?S.isNegative()?k:_:(j=this.sub(S.mul(V)),q=V.add(j.div(S)),q)}else if(S.eq(M))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){V=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Z=Math.ceil(Math.log(V)/Math.LN2),ee=Z<=48?1:p(2,Z-48),re=l(V),Y=re.mul(S);Y.isNegative()||Y.gt(j);)V-=ee,re=l(V,this.unsigned),Y=re.mul(S);re.isZero()&&(re=k),q=q.add(re),j=j.sub(Y)}return q},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var P=this.high;if(S<32){var V=this.low;return u(V>>>S|P<<32-S,P>>>S,this.unsigned)}else return S===32?u(P,0,this.unsigned):u(P>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,P=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},a.fromBytes=function(S,P,V){return V?a.fromBytesLE(S,P):a.fromBytesBE(S,P)},a.fromBytesLE=function(S,P){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,P)},a.fromBytesBE=function(S,P){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],P)}}),HA=ft(()=>{}),jA=ft(()=>{}),qA=ft((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=d.toString();for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),KA=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),XA=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),YA=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),QA=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),JA=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Yk=ft(()=>{}),ZA=ft((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),p=a.pow(2,o),d=p*2,c=s-1,h;function m(k,T,_){var E=[];T=T==!0?{entropy:!0}:T||{};var A=b(y(T.entropy?[k,v(n)]:k==null?x():k,3),E),M=new f(E),$=function(){for(var S=M.g(i),P=u,V=0;S<p;)S=(S+V)*s,P*=s,V=M.g(1);for(;S>=d;)S/=2,P/=2,V>>>=1;return(S+V)/P};return $.int32=function(){return M.g(4)|0},$.quick=function(){return M.g(4)/4294967296},$.double=$,b(v(M.S),n),(T.pass||_||function(S,P,V,j){return j&&(j.S&&g(j,M),S.state=function(){return g(M,{})}),V?(a[l]=S,P):S})($,A,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(k){var T,_=k.length,E=this,A=0,M=E.i=E.j=0,$=E.S=[];for(_||(k=[_++]);A<s;)$[A]=A++;for(A=0;A<s;A++)$[A]=$[M=c&M+k[A%_]+(T=$[A])],$[M]=T;(E.g=function(S){for(var P,V=0,j=E.i,q=E.j,K=E.S;S--;)P=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+P])+(K[q]=P)];return E.i=j,E.j=q,V})(s)}function g(k,T){return T.i=k.i,T.j=k.j,T.S=k.S.slice(),T}function y(k,T){var _=[],E=typeof k,A;if(T&&E=="object")for(A in k)try{_.push(y(k[A],T-1))}catch(M){}return _.length?_:E=="string"?k:k+"\0"}function b(k,T){for(var _=k+"",E,A=0;A<_.length;)T[c&A]=c&(E^=T[c&A]*19)+_.charCodeAt(A++);return v(T)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(k)),v(k)}catch(E){var T=r.navigator,_=T&&T.plugins;return[+new Date,r,_,r.screen,v(n)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Yk()}catch(k){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Qk=ft((e,t)=>{var n=qA(),a=KA(),r=XA(),s=YA(),i=QA(),o=JA(),l=ZA();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),e$=ft((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),t$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),n$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),a$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),r$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),s$=ft((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),i$=ft((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(k,T,_){var E=[];T=T==!0?{entropy:!0}:T||{};var A=b(y(T.entropy?[k,v(a)]:k==null?x():k,3),E),M=new f(E),$=function(){for(var S=M.g(i),P=u,V=0;S<p;)S=(S+V)*s,P*=s,V=M.g(1);for(;S>=d;)S/=2,P/=2,V>>>=1;return(S+V)/P};return $.int32=function(){return M.g(4)|0},$.quick=function(){return M.g(4)/4294967296},$.double=$,b(v(M.S),a),(T.pass||_||function(S,P,V,j){return j&&(j.S&&g(j,M),S.state=function(){return g(M,{})}),V?(r[l]=S,P):S})($,A,"global"in T?T.global:this==r,T.state)}function f(k){var T,_=k.length,E=this,A=0,M=E.i=E.j=0,$=E.S=[];for(_||(k=[_++]);A<s;)$[A]=A++;for(A=0;A<s;A++)$[A]=$[M=c&M+k[A%_]+(T=$[A])],$[M]=T;(E.g=function(S){for(var P,V=0,j=E.i,q=E.j,K=E.S;S--;)P=K[j=c&j+1],V=V*s+K[c&(K[j]=K[q=c&q+P])+(K[q]=P)];return E.i=j,E.j=q,V})(s)}function g(k,T){return T.i=k.i,T.j=k.j,T.S=k.S.slice(),T}function y(k,T){var _=[],E=typeof k,A;if(T&&E=="object")for(A in k)try{_.push(y(k[A],T-1))}catch(M){}return _.length?_:E=="string"?k:k+"\0"}function b(k,T){for(var _=k+"",E,A=0;A<_.length;)T[c&A]=c&(E^=T[c&A]*19)+_.charCodeAt(A++);return v(T)}function x(){try{var k;return h&&(k=h.randomBytes)?k=k(s):(k=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(k)),v(k)}catch(E){var T=n.navigator,_=T&&T.plugins;return[+new Date,n,_,n.screen,v(a)]}}function v(k){return String.fromCharCode.apply(0,k)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Yk()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Jk=ft((e,t)=>{var n=e$(),a=t$(),r=n$(),s=a$(),i=r$(),o=s$(),l=i$();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Zk=ft(()=>{}),kx=ft(()=>{}),Th=ft(()=>{}),o$=ft(()=>{}),l$=ft(()=>{}),u$=ft(()=>{}),p$=ft((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=bn&&Ra(Te.buffer),Id}function i(){return Te.buffer!=bn&&Ra(Te.buffer),Sd}function o(){return Te.buffer!=bn&&Ra(Te.buffer),yp}function l(){return Te.buffer!=bn&&Ra(Te.buffer),Nd}function u(){return Te.buffer!=bn&&Ra(Te.buffer),Td}function p(){return Te.buffer!=bn&&Ra(Te.buffer),_d}function d(){return Te.buffer!=bn&&Ra(Te.buffer),Cd}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",k=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function A(N){return c.locateFile?c.locateFile(N,E):E+N}var M,$,S,P;function V(N){N instanceof _p||Y("exiting due to exception: "+N)}var j,q,K;if(T){k?E=Th().dirname(E)+"/":E=__dirname+"/",K=()=>{q||(j=kx(),q=Th())},M=function(D,U){return K(),D=q.normalize(D),j.readFileSync(D,U?void 0:"utf8")},S=D=>{var U=M(D,!0);return U.buffer||(U=new Uint8Array(U)),U},$=(D,U,Q)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,he){pe?Q(pe):U(he.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof _p))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,U)=>{if(Ps())throw process.exitCode=D,U;V(U),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=o$()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||k)&&(k?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(M=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},k&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),$=(N,D,U)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){D(Q.response);return}U()},Q.onerror=U,Q.send(null)}),P=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=l$().performance);var Z=console.log.bind(console),ee=console.warn.bind(console);T&&(K(),Z=N=>j.writeSync(1,N+`
`),ee=N=>j.writeSync(2,N+`
`));var re=c.print||Z,Y=c.printErr||ee;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(N){ae.shown||(ae.shown={}),ae.shown[N]||(ae.shown[N]=1,Y(N))}function le(N,D){if(typeof WebAssembly.Function=="function"){for(var U={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:D[0]=="v"?[]:[U[D[0]]]},pe=1;pe<D.length;++pe)Q.parameters.push(U[D[pe]]);return new WebAssembly.Function(Q,N)}var he=[1,0,1,96],ve=D.slice(0,1),_e=D.slice(1),Ct={i:127,j:126,f:125,d:124};he.push(_e.length);for(var pe=0;pe<_e.length;++pe)he.push(Ct[_e[pe]]);ve=="v"?he.push(0):he=he.concat([1,Ct[ve]]),he[1]=he.length-2;var La=new Uint8Array([0,97,115,109,1,0,0,0].concat(he,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),za=new WebAssembly.Module(La),nh=new WebAssembly.Instance(za,{e:{f:N}}),Cp=nh.exports.f;return Cp}var ue=[],ke;function ye(){if(ue.length)return ue.pop();try{oa.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return oa.length-1}function Ie(N,D){for(var U=N;U<N+D;U++){var Q=Uo(U);Q&&ke.set(Q,U)}}var Ee=0,$e=N=>{Ee=N},Be=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,et;c.wasmBinary&&(et=c.wasmBinary);var tt=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Bo("no native wasm support detected");var Te,gt,ct=!1,yn;function Qt(N,D){N||Bo(D)}function Dn(N){var D=c["_"+N];return D}function Gt(N,D,U,Q,pe){var he={string:function(la){var Yo=0;if(la!=null&&la!==0){var S1=(la.length<<2)+1;Yo=Xo(S1),Rs(la,Yo,S1)}return Yo},array:function(la){var Yo=Xo(la.length);return xr(la,Yo),Yo}};function ve(la){return D==="string"?ia(la):D==="boolean"?Boolean(la):la}var _e=Dn(N),Ct=[],La=0;if(Q)for(var za=0;za<Q.length;za++){var nh=he[U[za]];nh?(La===0&&(La=sb()),Ct[za]=nh(Q[za])):Ct[za]=Q[za]}var Cp=_e.apply(null,Ct);function MA(la){return La!==0&&Jd(La),ve(la)}return Cp=MA(Cp),Cp}function Jt(N,D,U,Q){U=U||[];var pe=U.every(function(ve){return ve==="number"}),he=D!=="string";return he&&pe&&!Q?Dn(N):function(){return Gt(N,D,U,arguments,Q)}}var Da=1;function Rn(N){var D=new TextDecoder(N);this.decode=U=>(U.buffer instanceof SharedArrayBuffer&&(U=new Uint8Array(U)),D.decode.call(D,U))}var Ht=typeof TextDecoder!="undefined"?new Rn("utf8"):void 0;function sa(N,D,U){for(var Q=D+U,pe=D;N[pe]&&!(pe>=Q);)++pe;if(pe-D>16&&N.subarray&&Ht)return Ht.decode(N.subarray(D,pe));for(var he="";D<pe;){var ve=N[D++];if(!(ve&128)){he+=String.fromCharCode(ve);continue}var _e=N[D++]&63;if((ve&224)==192){he+=String.fromCharCode((ve&31)<<6|_e);continue}var Ct=N[D++]&63;if((ve&240)==224?ve=(ve&15)<<12|_e<<6|Ct:ve=(ve&7)<<18|_e<<12|Ct<<6|N[D++]&63,ve<65536)he+=String.fromCharCode(ve);else{var La=ve-65536;he+=String.fromCharCode(55296|La>>10,56320|La&1023)}}return he}function ia(N,D){return N?sa(i(),N,D):""}function Vr(N,D,U,Q){if(!(Q>0))return 0;for(var pe=U,he=U+Q-1,ve=0;ve<N.length;++ve){var _e=N.charCodeAt(ve);if(_e>=55296&&_e<=57343){var Ct=N.charCodeAt(++ve);_e=65536+((_e&1023)<<10)|Ct&1023}if(_e<=127){if(U>=he)break;D[U++]=_e}else if(_e<=2047){if(U+1>=he)break;D[U++]=192|_e>>6,D[U++]=128|_e&63}else if(_e<=65535){if(U+2>=he)break;D[U++]=224|_e>>12,D[U++]=128|_e>>6&63,D[U++]=128|_e&63}else{if(U+3>=he)break;D[U++]=240|_e>>18,D[U++]=128|_e>>12&63,D[U++]=128|_e>>6&63,D[U++]=128|_e&63}}return D[U]=0,U-pe}function Rs(N,D,U){return Vr(N,i(),D,U)}function kd(N){for(var D=0,U=0;U<N.length;++U){var Q=N.charCodeAt(U);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++U)&1023),Q<=127?++D:Q<=2047?D+=2:Q<=65535?D+=3:D+=4}return D}var Ur=typeof TextDecoder!="undefined"?new Rn("utf-16le"):void 0;function xr(N,D){s().set(N,D)}function gp(N,D,U){for(var Q=0;Q<N.length;++Q)s()[D++>>0]=N.charCodeAt(Q);U||(s()[D>>0]=0)}function Lo(N,D){return N%D>0&&(N+=D-N%D),N}var bn,Id,Sd,yp,Nd,Td,r1,_d,Cd;_&&(bn=c.buffer);function Ra(N){bn=N,c.HEAP8=Id=new Int8Array(N),c.HEAP16=yp=new Int16Array(N),c.HEAP32=Td=new Int32Array(N),c.HEAPU8=Sd=new Uint8Array(N),c.HEAPU16=Nd=new Uint16Array(N),c.HEAPU32=r1=new Uint32Array(N),c.HEAPF32=_d=new Float32Array(N),c.HEAPF64=Cd=new Float64Array(N)}var Ed=c.INITIAL_MEMORY||16777216;if(_)Te=c.wasmMemory,bn=c.buffer;else if(c.wasmMemory)Te=c.wasmMemory;else if(Te=new WebAssembly.Memory({initial:Ed/65536,maximum:32768,shared:!0}),!(Te.buffer instanceof SharedArrayBuffer))throw Y("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Te&&(bn=Te.buffer),Ed=bn.byteLength,Ra(bn);var oa,zo=[],Gr=[],Fg=[],Fd=[],Ms=!1,Ag=!1,Ad=0;function Ps(){return tt||Ad>0}function xn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)s1(c.preRun.shift());Md(zo)}function bp(){Ms=!0,!_&&Md(Gr)}function $g(){_||(Ce.terminateAllThreads(),Ag=!0)}function Dg(){if(!_){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)xp(c.postRun.shift());Md(Fd)}}function s1(N){zo.unshift(N)}function i1(N){Gr.unshift(N)}function xp(N){Fd.unshift(N)}var Hr=0,$d=null,Ma=null;function vp(N){Hr++,c.monitorRunDependencies&&c.monitorRunDependencies(Hr)}function o1(N){if(Hr--,c.monitorRunDependencies&&c.monitorRunDependencies(Hr),Hr==0&&($d!==null&&(clearInterval($d),$d=null),Ma)){var D=Ma;Ma=null,D()}}c.preloadedImages={},c.preloadedAudios={};function Bo(N){_?postMessage({cmd:"onAbort",arg:N}):c.onAbort&&c.onAbort(N),N="Aborted("+N+")",Y(N),ct=!0,yn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw m(D),D}var Rg="data:application/octet-stream;base64,";function wp(N){return N.startsWith(Rg)}function Dd(N){return N.startsWith("file://")}var vn;vn="tfjs-backend-wasm-threaded-simd.wasm",wp(vn)||(vn=A(vn));function Rd(N){try{if(N==vn&&et)return new Uint8Array(et);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(D){Bo(D)}}function Wo(){if(!et&&(v||k)){if(typeof fetch=="function"&&!Dd(vn))return fetch(vn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+vn+"'";return N.arrayBuffer()}).catch(function(){return Rd(vn)});if($)return new Promise(function(N,D){$(vn,function(U){N(new Uint8Array(U))},D)})}return Promise.resolve().then(function(){return Rd(vn)})}function Mg(){var N={env:qd,wasi_snapshot_preview1:qd};function D(ve,_e){var Ct=ve.exports;if(c.asm=Ct,Vg(c.asm.emscripten_tls_init),oa=c.asm.__indirect_function_table,i1(c.asm.__wasm_call_ctors),gt=_e,!_){var La=Ce.unusedWorkers.length;Ce.unusedWorkers.forEach(function(za){Ce.loadWasmModuleToWorker(za,function(){--La||o1("wasm-instantiate")})})}}_||vp("wasm-instantiate");function U(ve){D(ve.instance,ve.module)}function Q(ve){return Wo().then(function(_e){return WebAssembly.instantiate(_e,N)}).then(function(_e){return _e}).then(ve,function(_e){Y("failed to asynchronously prepare wasm: "+_e),Bo(_e)})}function pe(){return!et&&typeof WebAssembly.instantiateStreaming=="function"&&!wp(vn)&&!Dd(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(ve){var _e=WebAssembly.instantiateStreaming(ve,N);return _e.then(U,function(Ct){return Y("wasm streaming compile failed: "+Ct),Y("falling back to ArrayBuffer instantiation"),Q(U)})}):Q(U)}if(c.instantiateWasm)try{var he=c.instantiateWasm(N,D);return he}catch(ve){return Y("Module.instantiateWasm callback failed with error: "+ve),!1}return pe().catch(m),{}}var l1,u1,Pg={};function Md(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var U=D.func;typeof U=="number"?D.arg===void 0?Uo(U)():Uo(U)(D.arg):U(D.arg===void 0?null:D.arg)}}function Vo(N){var D=sb(),U=N();return Jd(D),U}function UF(N){return N}function p1(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(U){var Q=U;return U===Q?U:Q+" ["+U+"]"})}function Og(N){u()[N>>2]=0;var D=Ce.pthreads[N];delete Ce.pthreads[N],D.worker.terminate(),rb(N),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function Lg(N){var D=Ce.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function Pd(N){var D=Ce.pthreads[N];if(D){u()[N>>2]=0;var U=D.worker;Ce.returnWorkerToPool(U)}}function Od(N){$A(N)}function zg(N){if(N instanceof _p||N=="unwind")return yn;x(1,N)}var Ce={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){_?Ce.initWorker():Ce.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)Ce.allocateUnusedWorker()},initWorker:function(){tt=!1},pthreads:{},setExitStatus:function(N){yn=N},terminateAllThreads:function(){for(var N in Ce.pthreads){var D=Ce.pthreads[N];D&&D.worker&&Ce.returnWorkerToPool(D.worker)}for(var U=0;U<Ce.unusedWorkers.length;++U){var Q=Ce.unusedWorkers[U];Q.terminate()}Ce.unusedWorkers=[]},returnWorkerToPool:function(N){Ce.runWithoutMainThreadQueuedCalls(function(){delete Ce.pthreads[N.pthread.threadInfoStruct],Ce.unusedWorkers.push(N),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(N),1),rb(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[I1>>2]=0;try{N()}finally{u()[I1>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Ce.tlsInitFunctions)Ce.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=U=>{var Q=U.data,pe=Q.cmd;if(N.pthread&&(Ce.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Qd()){var he=Ce.pthreads[Q.targetThread];he?he.worker.postMessage(Q,Q.transferList):Y('Internal error! Worker sent a message "'+pe+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),Ce.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?b1():pe==="spawnThread"?zd(Q):pe==="cleanupThread"?Pd(Q.thread):pe==="killThread"?Og(Q.thread):pe==="cancelThread"?Lg(Q.thread):pe==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):pe==="print"?re("Thread "+Q.threadId+": "+Q.text):pe==="printErr"?Y("Thread "+Q.threadId+": "+Q.text):pe==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):pe==="onAbort"?c.onAbort&&c.onAbort(Q.arg):Y("worker sent an unknown command "+pe),Ce.currentProxiedOperationCallerThread=void 0},N.onerror=U=>{var Q="worker sent an error!";throw Y(Q+" "+U.filename+":"+U.lineno+": "+U.message),U},T&&(N.on("message",function(U){N.onmessage({data:U})}),N.on("error",function(U){N.onerror(U)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Te,wasmModule:gt})},allocateUnusedWorker:function(){var N=A("tfjs-backend-wasm-threaded-simd.worker.js");Ce.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Ce.unusedWorkers.length==0&&(Ce.allocateUnusedWorker(),Ce.loadWasmModuleToWorker(Ce.unusedWorkers[0])),Ce.unusedWorkers.pop()}};function Bg(){var N=Qd(),D=u()[N+44>>2],U=u()[N+48>>2],Q=D-U;k1(D,Q),Jd(D)}c.establishStackSpace=Bg;function Ld(N){if(_)return zs(1,0,N);try{Od(N)}catch(D){zg(D)}}var Os=[];function Uo(N){var D=Os[N];return D||(N>=Os.length&&(Os.length=N+1),Os[N]=D=oa.get(N)),D}function Wg(N,D){return Uo(N)(D)}c.invokeEntryPoint=Wg;function c1(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function Vg(N,D,U){Ce.tlsInitFunctions.push(N)}function d1(N,D){oa.set(N,D),Os[N]=D}var Ls;T?Ls=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:_?Ls=()=>performance.now()-c.__performance_now_clock_drift:Ls=()=>performance.now();var Ug=!0;function Gg(N){return u()[y1()>>2]=N,N}function Hg(N,D){var U;if(N===0)U=Date.now();else if((N===1||N===4)&&Ug)U=Ls();else return Gg(28),-1;return u()[D>>2]=U/1e3|0,u()[D+4>>2]=U%1e3*1e3*1e3|0,0}function jg(N,D){return Hg(N,D)}function qg(N){x1(N,!k,1,!v),Ce.threadInit()}function Kg(N){_?postMessage({cmd:"cleanupThread",thread:N}):Pd(N)}function zd(N){var D=Ce.getNewWorker();if(!D)return 6;Ce.runningWorkers.push(D);var U=Ce.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=U;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{Q.time=performance.now(),D.postMessage(Q,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function Xg(N,D,U,Q){if(typeof SharedArrayBuffer=="undefined")return Y("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],he=0;if(_&&(pe.length===0||he))return v1(687865856,N,D,U,Q);if(he)return he;var ve={startRoutine:U,pthread_ptr:N,arg:Q,transferList:pe};return _?(ve.cmd="spawnThread",postMessage(ve,pe),0):zd(ve)}function Yg(){return 2097152}function Qg(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(_)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var U=Ce.pthreads[N],Q=U&&U.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function Jg(){Bo("")}function Zg(){T||k||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Bd(){return 2147483648}function ey(N,D,U){i().copyWithin(N,D,D+U)}function ty(){return T?u$().cpus().length:navigator.hardwareConcurrency}function zs(N,D){var U=arguments.length-2,Q=arguments;return Vo(function(){for(var pe=U,he=Xo(pe*8),ve=he>>3,_e=0;_e<U;_e++){var Ct=Q[2+_e];d()[ve+_e]=Ct}return w1(N,pe,he,D)})}var kp=[];function ny(N,D,U){kp.length=D;for(var Q=U>>3,pe=0;pe<D;pe++)kp[pe]=d()[Q+pe];var he=N<0,ve=he?Pg[-N-1]:wy[N];return ve.apply(null,kp)}function ay(N){try{return Te.grow(N-bn.byteLength+65535>>>16),Ra(Te.buffer),1}catch(D){}}function ry(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var U=Bd();if(N>U)return!1;for(var Q=1;Q<=4;Q*=2){var pe=D*(1+.2/Q);pe=Math.min(pe,N+100663296);var he=Math.min(U,Lo(Math.max(N,pe),65536)),ve=ay(he);if(ve)return!0}return!1}var Ue={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ue.eventHandlers.length-1;N>=0;--N)Ue._removeHandler(N);Ue.eventHandlers=[],Ue.deferredCalls=[]},registerRemoveEventListeners:function(){Ue.removeEventListenersRegistered||(Fg.push(Ue.removeAllEventListeners),Ue.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,U){function Q(ve,_e){if(ve.length!=_e.length)return!1;for(var Ct in ve)if(ve[Ct]!=_e[Ct])return!1;return!0}for(var pe in Ue.deferredCalls){var he=Ue.deferredCalls[pe];if(he.targetFunction==N&&Q(he.argsList,U))return}Ue.deferredCalls.push({targetFunction:N,precedence:D,argsList:U}),Ue.deferredCalls.sort(function(ve,_e){return ve.precedence<_e.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Ue.deferredCalls.length;++D)Ue.deferredCalls[D].targetFunction==N&&(Ue.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Ue.inEventHandler&&Ue.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ue.canPerformEventHandlerRequests())for(var N=0;N<Ue.deferredCalls.length;++N){var D=Ue.deferredCalls[N];Ue.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var U=0;U<Ue.eventHandlers.length;++U)Ue.eventHandlers[U].target==N&&(!D||D==Ue.eventHandlers[U].eventTypeString)&&Ue._removeHandler(U--)},_removeHandler:function(N){var D=Ue.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Ue.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(Q){++Ue.inEventHandler,Ue.currentEventHandler=N,Ue.runDeferredCalls(),N.handlerFunc(Q),Ue.runDeferredCalls(),--Ue.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Ue.eventHandlers.push(N),Ue.registerRemoveEventListeners();else for(var U=0;U<Ue.eventHandlers.length;++U)Ue.eventHandlers[U].target==N.target&&Ue.eventHandlers[U].eventTypeString==N.eventTypeString&&Ue._removeHandler(U--)},queueEventHandlerOnThread_iiii:function(N,D,U,Q,pe){Vo(function(){var he=Xo(12);u()[he>>2]=U,u()[he+4>>2]=Q,u()[he+8>>2]=pe,ab(N,637534208,D,Q,he)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Ce.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function sy(N){var D=kd(N)+1,U=nb(D);return Rs(N,U,D),U}function iy(N,D,U,Q){Vo(function(){var pe=Xo(12),he=0;D&&(he=sy(D)),u()[pe>>2]=he,u()[pe+4>>2]=U,u()[pe+8>>2]=Q,ab(N,657457152,0,he,pe)})}function oy(N,D,U,Q){D=D?ia(D):"",iy(N,D,U,Q)}function ly(N){return N>2?ia(N):N}var uy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function py(N){N=ly(N);var D=uy[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function Ip(N){return py(N)}function Wd(N,D,U){var Q=Ip(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(u()[Q.canvasSharedPtr>>2]=D,u()[Q.canvasSharedPtr+4>>2]=U),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var pe=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var he=Q.GLctxObject.GLctx.getParameter(2978);pe=he[0]===0&&he[1]===0&&he[2]===Q.width&&he[3]===Q.height}Q.width=D,Q.height=U,pe&&Q.GLctxObject.GLctx.viewport(0,0,D,U)}else if(Q.canvasSharedPtr){var ve=u()[Q.canvasSharedPtr+8>>2];return oy(ve,N,D,U),1}else return-4;return 0}function Vd(N,D,U){return _?zs(2,1,N,D,U):Wd(N,D,U)}function cy(N,D,U){var Q=Ip(N);return Q?Wd(N,D,U):Vd(N,D,U)}function dy(){throw"unwind"}function hy(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(U,Q){D.vertexAttribDivisorANGLE(U,Q)},N.drawArraysInstanced=function(U,Q,pe,he){D.drawArraysInstancedANGLE(U,Q,pe,he)},N.drawElementsInstanced=function(U,Q,pe,he,ve){D.drawElementsInstancedANGLE(U,Q,pe,he,ve)},1}function my(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(U){D.deleteVertexArrayOES(U)},N.bindVertexArray=function(U){D.bindVertexArrayOES(U)},N.isVertexArray=function(U){return D.isVertexArrayOES(U)},1}function fy(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(U,Q){D.drawBuffersWEBGL(U,Q)},1}function gy(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var _t={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){_t.lastError||(_t.lastError=N)},getNewId:function(N){for(var D=_t.counter++,U=N.length;U<D;U++)N[U]=null;return D},getSource:function(N,D,U,Q){for(var pe="",he=0;he<D;++he){var ve=Q?u()[Q+he*4>>2]:-1;pe+=ia(u()[U+he*4>>2],ve<0?void 0:ve)}return pe},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(pe,he){var ve=N.getContextSafariWebGL2Fixed(pe,he);return pe=="webgl"==ve instanceof WebGLRenderingContext?ve:null});var U=N.getContext("webgl",D);if(!U)return 0;var Q=_t.registerContext(U,D);return Q},registerContext:function(N,D){var U=nb(8);u()[U+4>>2]=Qd();var Q={handle:U,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),_t.contexts[U]=Q,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&_t.initExtensions(Q),U},makeContextCurrent:function(N){return _t.currentContext=_t.contexts[N],c.ctx=jd=_t.currentContext&&_t.currentContext.GLctx,!(N&&!jd)},getContext:function(N){return _t.contexts[N]},deleteContext:function(N){_t.currentContext===_t.contexts[N]&&(_t.currentContext=null),typeof Ue=="object"&&Ue.removeAllHandlersOnTarget(_t.contexts[N].GLctx.canvas),_t.contexts[N]&&_t.contexts[N].GLctx.canvas&&(_t.contexts[N].GLctx.canvas.GLctxObject=void 0),g1(_t.contexts[N].handle),_t.contexts[N]=null},initExtensions:function(N){if(N||(N=_t.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;hy(D),my(D),fy(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),gy(D);var U=D.getSupportedExtensions()||[];U.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&D.getExtension(Q)})}}},yy=["default","low-power","high-performance"];function by(N,D){var U=D>>2,Q=u()[U+6],pe={alpha:!!u()[U+0],depth:!!u()[U+1],stencil:!!u()[U+2],antialias:!!u()[U+3],premultipliedAlpha:!!u()[U+4],preserveDrawingBuffer:!!u()[U+5],powerPreference:yy[Q],failIfMajorPerformanceCaveat:!!u()[U+7],majorVersion:u()[U+8],minorVersion:u()[U+9],enableExtensionsByDefault:u()[U+10],explicitSwapControl:u()[U+11],proxyContextToMainThread:u()[U+12],renderViaOffscreenBackBuffer:u()[U+13]},he=Ip(N);if(!he||pe.explicitSwapControl)return 0;var ve=_t.createContext(he,pe);return ve}function xy(N,D){return by(N,D)}var Go={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var U=Go.buffers[N];D===0||D===10?((N===1?re:Y)(sa(U,0)),U.length=0):U.push(D)},varargs:void 0,get:function(){Go.varargs+=4;var N=u()[Go.varargs-4>>2];return N},getStr:function(N){var D=ia(N);return D},get64:function(N,D){return N}};function Ud(N){return _?zs(3,1,N):0}function Gd(N,D,U,Q,pe){if(_)return zs(4,1,N,D,U,Q,pe)}function Hd(N,D,U,Q){if(_)return zs(5,1,N,D,U,Q);for(var pe=0,he=0;he<U;he++){var ve=u()[D>>2],_e=u()[D+4>>2];D+=8;for(var Ct=0;Ct<_e;Ct++)Go.printChar(N,i()[ve+Ct]);pe+=_e}return u()[Q>>2]=pe,0}function vy(N){$e(N)}Ce.init();var jd,wy=[null,Ld,Vd,Ud,Gd,Hd],h1=!1,qd={__clock_gettime:jg,__emscripten_init_main_thread_js:qg,__emscripten_thread_cleanup:Kg,__pthread_create_js:Xg,_emscripten_default_pthread_stack_size:Yg,_emscripten_notify_thread_queue:Qg,abort:Jg,emscripten_check_blocking_allowed:Zg,emscripten_get_heap_max:Bd,emscripten_get_now:Ls,emscripten_memcpy_big:ey,emscripten_num_logical_cores:ty,emscripten_receive_on_main_thread_js:ny,emscripten_resize_heap:ry,emscripten_set_canvas_element_size:cy,emscripten_unwind_to_js_event_loop:dy,emscripten_webgl_create_context:xy,exit:Od,fd_close:Ud,fd_seek:Gd,fd_write:Hd,memory:Te||c.wasmMemory,setTempRet0:vy},m1=Mg(),ky=c.___wasm_call_ctors=function(){return(ky=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Iy=c._init=function(){return(Iy=c._init=c.asm.init).apply(null,arguments)},Sy=c._init_with_threads_count=function(){return(Sy=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},Ny=c._get_threads_count=function(){return(Ny=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},Ty=c._register_tensor=function(){return(Ty=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},_y=c._dispose_data=function(){return(_y=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},Cy=c._dispose=function(){return(Cy=c._dispose=c.asm.dispose).apply(null,arguments)},Ey=c._Abs=function(){return(Ey=c._Abs=c.asm.Abs).apply(null,arguments)},Fy=c._Add=function(){return(Fy=c._Add=c.asm.Add).apply(null,arguments)},Ay=c._AddN=function(){return(Ay=c._AddN=c.asm.AddN).apply(null,arguments)},$y=c._All=function(){return($y=c._All=c.asm.All).apply(null,arguments)},Dy=c._Any=function(){return(Dy=c._Any=c.asm.Any).apply(null,arguments)},Ry=c._ArgMax=function(){return(Ry=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},My=c._AvgPool=function(){return(My=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Py=c._BatchMatMul=function(){return(Py=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Oy=c._Ceil=function(){return(Oy=c._Ceil=c.asm.Ceil).apply(null,arguments)},Ly=c._ClipByValue=function(){return(Ly=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},zy=c._Conv2D=function(){return(zy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},By=c._Conv2DBackpropInput=function(){return(By=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Wy=c._Cos=function(){return(Wy=c._Cos=c.asm.Cos).apply(null,arguments)},Vy=c._Cosh=function(){return(Vy=c._Cosh=c.asm.Cosh).apply(null,arguments)},Uy=c._CropAndResize=function(){return(Uy=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Gy=c._Cumprod=function(){return(Gy=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Hy=c._Cumsum=function(){return(Hy=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},jy=c._DepthToSpace=function(){return(jy=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},qy=c._DepthwiseConv2dNative=function(){return(qy=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},Ky=c._Elu=function(){return(Ky=c._Elu=c.asm.Elu).apply(null,arguments)},Xy=c._Equal=function(){return(Xy=c._Equal=c.asm.Equal).apply(null,arguments)},Yy=c._Exp=function(){return(Yy=c._Exp=c.asm.Exp).apply(null,arguments)},Qy=c._FlipLeftRight=function(){return(Qy=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},Kd=c._Floor=function(){return(Kd=c._Floor=c.asm.Floor).apply(null,arguments)},Xd=c._FloorDiv=function(){return(Xd=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},Sp=c._FusedBatchNorm=function(){return(Sp=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},Jy=c._FusedConv2D=function(){return(Jy=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},Zy=c._FusedDepthwiseConv2D=function(){return(Zy=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},Ho=c._Gather=function(){return(Ho=c._Gather=c.asm.Gather).apply(null,arguments)},Np=c._GatherNd=function(){return(Np=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},Tp=c._Greater=function(){return(Tp=c._Greater=c.asm.Greater).apply(null,arguments)},f1=c._GreaterEqual=function(){return(f1=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},jo=c._LeakyRelu=function(){return(jo=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},qo=c._Less=function(){return(qo=c._Less=c.asm.Less).apply(null,arguments)},eb=c._LessEqual=function(){return(eb=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},G=c._Log=function(){return(G=c._Log=c.asm.Log).apply(null,arguments)},te=c._LogicalAnd=function(){return(te=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},de=c._Max=function(){return(de=c._Max=c.asm.Max).apply(null,arguments)},Se=c._MaxPool=function(){return(Se=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Je=c._Maximum=function(){return(Je=c._Maximum=c.asm.Maximum).apply(null,arguments)},nt=c._Mean=function(){return(nt=c._Mean=c.asm.Mean).apply(null,arguments)},Ge=c._Min=function(){return(Ge=c._Min=c.asm.Min).apply(null,arguments)},We=c._Minimum=function(){return(We=c._Minimum=c.asm.Minimum).apply(null,arguments)},Lt=c._MirrorPad=function(){return(Lt=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Pa=c._Multiply=function(){return(Pa=c._Multiply=c.asm.Multiply).apply(null,arguments)},Oa=c._Neg=function(){return(Oa=c._Neg=c.asm.Neg).apply(null,arguments)},Ko=c._NonMaxSuppressionV3=function(){return(Ko=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Bs=c._NonMaxSuppressionV4=function(){return(Bs=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},tb=c._NonMaxSuppressionV5=function(){return(tb=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},Mn=c._NotEqual=function(){return(Mn=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},jr=c._OneHot=function(){return(jr=c._OneHot=c.asm.OneHot).apply(null,arguments)},Yd=c._PadV2=function(){return(Yd=c._PadV2=c.asm.PadV2).apply(null,arguments)},GF=c._Pow=function(){return(GF=c._Pow=c.asm.Pow).apply(null,arguments)},HF=c._Prelu=function(){return(HF=c._Prelu=c.asm.Prelu).apply(null,arguments)},jF=c._Prod=function(){return(jF=c._Prod=c.asm.Prod).apply(null,arguments)},qF=c._RealDiv=function(){return(qF=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},KF=c._Relu=function(){return(KF=c._Relu=c.asm.Relu).apply(null,arguments)},XF=c._Relu6=function(){return(XF=c._Relu6=c.asm.Relu6).apply(null,arguments)},YF=c._ResizeBilinear=function(){return(YF=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},QF=c._Reverse=function(){return(QF=c._Reverse=c.asm.Reverse).apply(null,arguments)},JF=c._RotateWithOffset=function(){return(JF=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},ZF=c._Round=function(){return(ZF=c._Round=c.asm.Round).apply(null,arguments)},eA=c._Rsqrt=function(){return(eA=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},tA=c._ScatterNd=function(){return(tA=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},nA=c._SelectV2=function(){return(nA=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},aA=c._Sigmoid=function(){return(aA=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},rA=c._Sin=function(){return(rA=c._Sin=c.asm.Sin).apply(null,arguments)},sA=c._Softmax=function(){return(sA=c._Softmax=c.asm.Softmax).apply(null,arguments)},iA=c._SparseFillEmptyRows=function(){return(iA=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},oA=c._SparseReshape=function(){return(oA=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},lA=c._SparseSegmentReduction=function(){return(lA=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},uA=c._Sqrt=function(){return(uA=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},pA=c._Square=function(){return(pA=c._Square=c.asm.Square).apply(null,arguments)},cA=c._SquaredDifference=function(){return(cA=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},dA=c._Step=function(){return(dA=c._Step=c.asm.Step).apply(null,arguments)},hA=c._StridedSlice=function(){return(hA=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},mA=c._Sub=function(){return(mA=c._Sub=c.asm.Sub).apply(null,arguments)},fA=c._Sum=function(){return(fA=c._Sum=c.asm.Sum).apply(null,arguments)},gA=c._Tan=function(){return(gA=c._Tan=c.asm.Tan).apply(null,arguments)},yA=c._Tanh=function(){return(yA=c._Tanh=c.asm.Tanh).apply(null,arguments)},bA=c._Tile=function(){return(bA=c._Tile=c.asm.Tile).apply(null,arguments)},xA=c._TopK=function(){return(xA=c._TopK=c.asm.TopK).apply(null,arguments)},vA=c._Transform=function(){return(vA=c._Transform=c.asm.Transform).apply(null,arguments)},wA=c._Transpose=function(){return(wA=c._Transpose=c.asm.Transpose).apply(null,arguments)},kA=c.__FusedMatMul=function(){return(kA=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},nb=c._malloc=function(){return(nb=c._malloc=c.asm.malloc).apply(null,arguments)},g1=c._free=function(){return(g1=c._free=c.asm.free).apply(null,arguments)},IA=c._emscripten_tls_init=function(){return(IA=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},y1=c.___errno_location=function(){return(y1=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},Qd=c._pthread_self=function(){return(Qd=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},b1=c._emscripten_main_thread_process_queued_calls=function(){return(b1=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},SA=c.__emscripten_thread_crashed=function(){return(SA=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},x1=c.__emscripten_thread_init=function(){return(x1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},NA=c._emscripten_current_thread_process_queued_calls=function(){return(NA=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},TA=c._emscripten_main_browser_thread_id=function(){return(TA=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},_A=c._emscripten_sync_run_in_main_thread_2=function(){return(_A=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},v1=c._emscripten_sync_run_in_main_thread_4=function(){return(v1=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},w1=c._emscripten_run_in_main_runtime_thread_js=function(){return(w1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},ab=c._emscripten_dispatch_to_thread_=function(){return(ab=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},rb=c.__emscripten_thread_free_data=function(){return(rb=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},CA=c.__emscripten_thread_exit=function(){return(CA=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},EA=c._memalign=function(){return(EA=c._memalign=c.asm.memalign).apply(null,arguments)},k1=c._emscripten_stack_set_limits=function(){return(k1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},sb=c.stackSave=function(){return(sb=c.stackSave=c.asm.stackSave).apply(null,arguments)},Jd=c.stackRestore=function(){return(Jd=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},Xo=c.stackAlloc=function(){return(Xo=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},FA=c.dynCall_iijjiiii=function(){return(FA=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},AA=c.dynCall_jiji=function(){return(AA=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},I1=c.__emscripten_allow_main_runtime_queued_calls=21464;c.cwrap=Jt,c.keepRuntimeAlive=Ps,c.PThread=Ce,c.PThread=Ce,c.wasmMemory=Te,c.ExitStatus=_p;var Zd;function _p(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ma=function N(){Zd||ib(),Zd||(Ma=N)};function ib(N){if(N=N||y,Hr>0)return;if(_){h(c),bp(),postMessage({cmd:"loaded"});return}if(xn(),Hr>0)return;function D(){Zd||(Zd=!0,c.calledRun=!0,!ct&&(bp(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Dg()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=ib;function $A(N,D){if(yn=N,!D&&_)throw Ld(N),"unwind";Ps()||$g(),DA(N)}function DA(N){yn=N,Ps()||(Ce.terminateAllThreads(),c.onExit&&c.onExit(N),ct=!0),x(N,new _p(N))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();ib();var eh;f&&(eh={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var th;if(typeof WasmBackendModule!="undefined")th=WasmBackendModule;else if(typeof r!="undefined")th=r;else throw new Error("Could not find wasm module in post.js");if(eh){var RA=th._dispose;th._dispose=function(){RA(),eh.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),eh.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),c$=ft((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,te){i=G,o=te});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,te)=>{throw te},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(G){return s.locateFile?s.locateFile(G,g):g+G}var b,x,v,k;function T(G){G instanceof Np||$("exiting due to exception: "+G)}var _,E,A;f?(m?g=Th().dirname(g)+"/":g=__dirname+"/",A=()=>{E||(_=kx(),E=Th())},b=function(G,te){return A(),G=E.normalize(G),_.readFileSync(G,te?void 0:"utf8")},v=G=>{var te=b(G,!0);return te.buffer||(te=new Uint8Array(te)),te},x=(G,te,de)=>{A(),G=E.normalize(G),_.readFile(G,function(Se,Je){Se?de(Se):te(Je.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof Np))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,te)=>{if(yp())throw process.exitCode=G,te;T(te),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.send(null),te.responseText},m&&(v=G=>{var te=new XMLHttpRequest;return te.open("GET",G,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),x=(G,te,de)=>{var Se=new XMLHttpRequest;Se.open("GET",G,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){te(Se.response);return}de()},Se.onerror=de,Se.send(null)},k=G=>document.title=G);var M=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var S=4;function P(G){P.shown||(P.shown={}),P.shown[G]||(P.shown[G]=1,$(G))}function V(G,te){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:te[0]=="v"?[]:[de[te[0]]]},Je=1;Je<te.length;++Je)Se.parameters.push(de[te[Je]]);return new WebAssembly.Function(Se,G)}var nt=[1,0,1,96],Ge=te.slice(0,1),We=te.slice(1),Lt={i:127,j:126,f:125,d:124};nt.push(We.length);for(var Je=0;Je<We.length;++Je)nt.push(Lt[We[Je]]);Ge=="v"?nt.push(0):nt=nt.concat([1,Lt[Ge]]),nt[1]=nt.length-2;var Pa=new Uint8Array([0,97,115,109,1,0,0,0].concat(nt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Oa=new WebAssembly.Module(Pa),Ko=new WebAssembly.Instance(Oa,{e:{f:G}}),Bs=Ko.exports.f;return Bs}var j=[],q;function K(){if(j.length)return j.pop();try{Ur.grow(1)}catch(G){throw G instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":G}return Ur.length-1}function Z(G,te){for(var de=G;de<G+te;de++){var Se=vp(de);Se&&q.set(Se,de)}}var ee=0,re=G=>{ee=G},Y;s.wasmBinary&&(Y=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ms("no native wasm support detected");var ae,le=!1,ue;function ke(G,te){G||Ms(te)}function ye(G){var te=s["_"+G];return te}function Ie(G,te,de,Se,Je){var nt={string:function(Mn){var jr=0;if(Mn!=null&&Mn!==0){var Yd=(Mn.length<<2)+1;jr=Sp(Yd),tt(Mn,jr,Yd)}return jr},array:function(Mn){var jr=Sp(Mn.length);return ct(Mn,jr),jr}};function Ge(Mn){return te==="string"?st(Mn):te==="boolean"?Boolean(Mn):Mn}var We=ye(G),Lt=[],Pa=0;if(Se)for(var Oa=0;Oa<Se.length;Oa++){var Ko=nt[de[Oa]];Ko?(Pa===0&&(Pa=Kd()),Lt[Oa]=Ko(Se[Oa])):Lt[Oa]=Se[Oa]}var Bs=We.apply(null,Lt);function tb(Mn){return Pa!==0&&Xd(Pa),Ge(Mn)}return Bs=tb(Bs),Bs}function Ee(G,te,de,Se){de=de||[];var Je=de.every(function(Ge){return Ge==="number"}),nt=te!=="string";return nt&&Je&&!Se?ye(G):function(){return Ie(G,te,de,arguments,Se)}}var $e=1,Be=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function je(G,te,de){for(var Se=te+de,Je=te;G[Je]&&!(Je>=Se);)++Je;if(Je-te>16&&G.subarray&&Be)return Be.decode(G.subarray(te,Je));for(var nt="";te<Je;){var Ge=G[te++];if(!(Ge&128)){nt+=String.fromCharCode(Ge);continue}var We=G[te++]&63;if((Ge&224)==192){nt+=String.fromCharCode((Ge&31)<<6|We);continue}var Lt=G[te++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|We<<6|Lt:Ge=(Ge&7)<<18|We<<12|Lt<<6|G[te++]&63,Ge<65536)nt+=String.fromCharCode(Ge);else{var Pa=Ge-65536;nt+=String.fromCharCode(55296|Pa>>10,56320|Pa&1023)}}return nt}function st(G,te){return G?je(Jt,G,te):""}function et(G,te,de,Se){if(!(Se>0))return 0;for(var Je=de,nt=de+Se-1,Ge=0;Ge<G.length;++Ge){var We=G.charCodeAt(Ge);if(We>=55296&&We<=57343){var Lt=G.charCodeAt(++Ge);We=65536+((We&1023)<<10)|Lt&1023}if(We<=127){if(de>=nt)break;te[de++]=We}else if(We<=2047){if(de+1>=nt)break;te[de++]=192|We>>6,te[de++]=128|We&63}else if(We<=65535){if(de+2>=nt)break;te[de++]=224|We>>12,te[de++]=128|We>>6&63,te[de++]=128|We&63}else{if(de+3>=nt)break;te[de++]=240|We>>18,te[de++]=128|We>>12&63,te[de++]=128|We>>6&63,te[de++]=128|We&63}}return te[de]=0,de-Je}function tt(G,te,de){return et(G,Jt,te,de)}function Te(G){for(var te=0,de=0;de<G.length;++de){var Se=G.charCodeAt(de);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|G.charCodeAt(++de)&1023),Se<=127?++te:Se<=2047?te+=2:Se<=65535?te+=3:te+=4}return te}var gt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function ct(G,te){Gt.set(G,te)}function yn(G,te,de){for(var Se=0;Se<G.length;++Se)Gt[te++>>0]=G.charCodeAt(Se);de||(Gt[te>>0]=0)}function Qt(G,te){return G%te>0&&(G+=te-G%te),G}var Dn,Gt,Jt,Da,Rn,Ht,sa,ia,Vr;function Rs(G){Dn=G,s.HEAP8=Gt=new Int8Array(G),s.HEAP16=Da=new Int16Array(G),s.HEAP32=Ht=new Int32Array(G),s.HEAPU8=Jt=new Uint8Array(G),s.HEAPU16=Rn=new Uint16Array(G),s.HEAPU32=sa=new Uint32Array(G),s.HEAPF32=ia=new Float32Array(G),s.HEAPF64=Vr=new Float64Array(G)}var kd=s.INITIAL_MEMORY||16777216,Ur,xr=[],gp=[],Lo=[],bn=!1,Id=!1,Sd=0;function yp(){return ie||Sd>0}function Nd(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Cd(s.preRun.shift());xp(xr)}function Td(){bn=!0,xp(gp)}function r1(){Id=!0}function _d(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Ed(s.postRun.shift());xp(Lo)}function Cd(G){xr.unshift(G)}function Ra(G){gp.unshift(G)}function Ed(G){Lo.unshift(G)}var oa=0,zo=null,Gr=null;function Fg(G){oa++,s.monitorRunDependencies&&s.monitorRunDependencies(oa)}function Fd(G){if(oa--,s.monitorRunDependencies&&s.monitorRunDependencies(oa),oa==0&&(zo!==null&&(clearInterval(zo),zo=null),Gr)){var te=Gr;Gr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ms(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",$(G),le=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(G);throw o(te),te}var Ag="data:application/octet-stream;base64,";function Ad(G){return G.startsWith(Ag)}function Ps(G){return G.startsWith("file://")}var xn;xn="tfjs-backend-wasm.wasm",Ad(xn)||(xn=y(xn));function bp(G){try{if(G==xn&&Y)return new Uint8Array(Y);if(v)return v(G);throw"both async and sync fetching of the wasm failed"}catch(te){Ms(te)}}function $g(){if(!Y&&(h||m)){if(typeof fetch=="function"&&!Ps(xn))return fetch(xn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+xn+"'";return G.arrayBuffer()}).catch(function(){return bp(xn)});if(x)return new Promise(function(G,te){x(xn,function(de){G(new Uint8Array(de))},te)})}return Promise.resolve().then(function(){return bp(xn)})}function Dg(){var G={env:Vo,wasi_snapshot_preview1:Vo};function te(Ge,We){var Lt=Ge.exports;s.asm=Lt,ae=s.asm.memory,Rs(ae.buffer),Ur=s.asm.__indirect_function_table,Ra(s.asm.__wasm_call_ctors),Fd("wasm-instantiate")}Fg("wasm-instantiate");function de(Ge){te(Ge.instance)}function Se(Ge){return $g().then(function(We){return WebAssembly.instantiate(We,G)}).then(function(We){return We}).then(Ge,function(We){$("failed to asynchronously prepare wasm: "+We),Ms(We)})}function Je(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Ad(xn)&&!Ps(xn)&&typeof fetch=="function"?fetch(xn,{credentials:"same-origin"}).then(function(Ge){var We=WebAssembly.instantiateStreaming(Ge,G);return We.then(de,function(Lt){return $("wasm streaming compile failed: "+Lt),$("falling back to ArrayBuffer instantiation"),Se(de)})}):Se(de)}if(s.instantiateWasm)try{var nt=s.instantiateWasm(G,te);return nt}catch(Ge){return $("Module.instantiateWasm callback failed with error: "+Ge),!1}return Je().catch(o),{}}var s1,i1;function xp(G){for(;G.length>0;){var te=G.shift();if(typeof te=="function"){te(s);continue}var de=te.func;typeof de=="number"?te.arg===void 0?vp(de)():vp(de)(te.arg):de(te.arg===void 0?null:te.arg)}}function Hr(G){return G}function $d(G){var te=/\b_Z[\w\d_]+/g;return G.replace(te,function(de){var Se=de;return de===Se?de:Se+" ["+de+"]"})}var Ma=[];function vp(G){var te=Ma[G];return te||(G>=Ma.length&&(Ma.length=G+1),Ma[G]=te=Ur.get(G)),te}function o1(){var G=new Error;if(!G.stack){try{throw new Error}catch(te){G=te}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function Bo(G,te){Ur.set(G,te),Ma[G]=te}function Rg(){Ms("")}function wp(){return 2147483648}function Dd(G,te,de){Jt.copyWithin(G,te,te+de)}function vn(G){try{return ae.grow(G-Dn.byteLength+65535>>>16),Rs(ae.buffer),1}catch(te){}}function Rd(G){var te=Jt.length;G=G>>>0;var de=wp();if(G>de)return!1;for(var Se=1;Se<=4;Se*=2){var Je=te*(1+.2/Se);Je=Math.min(Je,G+100663296);var nt=Math.min(de,Qt(Math.max(G,Je),65536)),Ge=vn(nt);if(Ge)return!0}return!1}var Wo={mappings:{},buffers:[null,[],[]],printChar:function(G,te){var de=Wo.buffers[G];te===0||te===10?((G===1?M:$)(je(de,0)),de.length=0):de.push(te)},varargs:void 0,get:function(){Wo.varargs+=4;var G=Ht[Wo.varargs-4>>2];return G},getStr:function(G){var te=st(G);return te},get64:function(G,te){return G}};function Mg(G){return 0}function l1(G,te,de,Se,Je){}function u1(G,te,de,Se){for(var Je=0,nt=0;nt<de;nt++){var Ge=Ht[te>>2],We=Ht[te+4>>2];te+=8;for(var Lt=0;Lt<We;Lt++)Wo.printChar(G,Jt[Ge+Lt]);Je+=We}return Ht[Se>>2]=Je,0}function Pg(G){re(G)}var Md=!1,Vo={abort:Rg,emscripten_get_heap_max:wp,emscripten_memcpy_big:Dd,emscripten_resize_heap:Rd,fd_close:Mg,fd_seek:l1,fd_write:u1,setTempRet0:Pg},UF=Dg(),p1=s.___wasm_call_ctors=function(){return(p1=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Og=s._init=function(){return(Og=s._init=s.asm.init).apply(null,arguments)},Lg=s._init_with_threads_count=function(){return(Lg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Pd=s._get_threads_count=function(){return(Pd=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Od=s._register_tensor=function(){return(Od=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},zg=s._dispose_data=function(){return(zg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Ce=s._dispose=function(){return(Ce=s._dispose=s.asm.dispose).apply(null,arguments)},Bg=s._Abs=function(){return(Bg=s._Abs=s.asm.Abs).apply(null,arguments)},Ld=s._Add=function(){return(Ld=s._Add=s.asm.Add).apply(null,arguments)},Os=s._AddN=function(){return(Os=s._AddN=s.asm.AddN).apply(null,arguments)},Uo=s._All=function(){return(Uo=s._All=s.asm.All).apply(null,arguments)},Wg=s._Any=function(){return(Wg=s._Any=s.asm.Any).apply(null,arguments)},c1=s._ArgMax=function(){return(c1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Vg=s._AvgPool=function(){return(Vg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},d1=s._BatchMatMul=function(){return(d1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Ls=s._Ceil=function(){return(Ls=s._Ceil=s.asm.Ceil).apply(null,arguments)},Ug=s._ClipByValue=function(){return(Ug=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Gg=s._Conv2D=function(){return(Gg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Hg=s._Conv2DBackpropInput=function(){return(Hg=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},jg=s._Cos=function(){return(jg=s._Cos=s.asm.Cos).apply(null,arguments)},qg=s._Cosh=function(){return(qg=s._Cosh=s.asm.Cosh).apply(null,arguments)},Kg=s._CropAndResize=function(){return(Kg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},zd=s._Cumprod=function(){return(zd=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Xg=s._Cumsum=function(){return(Xg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Yg=s._DepthToSpace=function(){return(Yg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Qg=s._DepthwiseConv2dNative=function(){return(Qg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Jg=s._Elu=function(){return(Jg=s._Elu=s.asm.Elu).apply(null,arguments)},Zg=s._Equal=function(){return(Zg=s._Equal=s.asm.Equal).apply(null,arguments)},Bd=s._Exp=function(){return(Bd=s._Exp=s.asm.Exp).apply(null,arguments)},ey=s._FlipLeftRight=function(){return(ey=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},ty=s._Floor=function(){return(ty=s._Floor=s.asm.Floor).apply(null,arguments)},zs=s._FloorDiv=function(){return(zs=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},kp=s._FusedBatchNorm=function(){return(kp=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},ny=s._FusedConv2D=function(){return(ny=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},ay=s._FusedDepthwiseConv2D=function(){return(ay=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},ry=s._Gather=function(){return(ry=s._Gather=s.asm.Gather).apply(null,arguments)},Ue=s._GatherNd=function(){return(Ue=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},sy=s._Greater=function(){return(sy=s._Greater=s.asm.Greater).apply(null,arguments)},iy=s._GreaterEqual=function(){return(iy=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},oy=s._LeakyRelu=function(){return(oy=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},ly=s._Less=function(){return(ly=s._Less=s.asm.Less).apply(null,arguments)},uy=s._LessEqual=function(){return(uy=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},py=s._Log=function(){return(py=s._Log=s.asm.Log).apply(null,arguments)},Ip=s._LogicalAnd=function(){return(Ip=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Wd=s._Max=function(){return(Wd=s._Max=s.asm.Max).apply(null,arguments)},Vd=s._MaxPool=function(){return(Vd=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},cy=s._Maximum=function(){return(cy=s._Maximum=s.asm.Maximum).apply(null,arguments)},dy=s._Mean=function(){return(dy=s._Mean=s.asm.Mean).apply(null,arguments)},hy=s._Min=function(){return(hy=s._Min=s.asm.Min).apply(null,arguments)},my=s._Minimum=function(){return(my=s._Minimum=s.asm.Minimum).apply(null,arguments)},fy=s._MirrorPad=function(){return(fy=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},gy=s._Multiply=function(){return(gy=s._Multiply=s.asm.Multiply).apply(null,arguments)},_t=s._Neg=function(){return(_t=s._Neg=s.asm.Neg).apply(null,arguments)},yy=s._NonMaxSuppressionV3=function(){return(yy=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},by=s._NonMaxSuppressionV4=function(){return(by=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},xy=s._NonMaxSuppressionV5=function(){return(xy=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Go=s._NotEqual=function(){return(Go=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Ud=s._OneHot=function(){return(Ud=s._OneHot=s.asm.OneHot).apply(null,arguments)},Gd=s._PadV2=function(){return(Gd=s._PadV2=s.asm.PadV2).apply(null,arguments)},Hd=s._Pow=function(){return(Hd=s._Pow=s.asm.Pow).apply(null,arguments)},vy=s._Prelu=function(){return(vy=s._Prelu=s.asm.Prelu).apply(null,arguments)},jd=s._Prod=function(){return(jd=s._Prod=s.asm.Prod).apply(null,arguments)},wy=s._RealDiv=function(){return(wy=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},h1=s._Relu=function(){return(h1=s._Relu=s.asm.Relu).apply(null,arguments)},qd=s._Relu6=function(){return(qd=s._Relu6=s.asm.Relu6).apply(null,arguments)},m1=s._ResizeBilinear=function(){return(m1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},ky=s._Reverse=function(){return(ky=s._Reverse=s.asm.Reverse).apply(null,arguments)},Iy=s._RotateWithOffset=function(){return(Iy=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Sy=s._Round=function(){return(Sy=s._Round=s.asm.Round).apply(null,arguments)},Ny=s._Rsqrt=function(){return(Ny=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Ty=s._ScatterNd=function(){return(Ty=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},_y=s._SelectV2=function(){return(_y=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Cy=s._Sigmoid=function(){return(Cy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},Ey=s._Sin=function(){return(Ey=s._Sin=s.asm.Sin).apply(null,arguments)},Fy=s._Softmax=function(){return(Fy=s._Softmax=s.asm.Softmax).apply(null,arguments)},Ay=s._SparseFillEmptyRows=function(){return(Ay=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},$y=s._SparseReshape=function(){return($y=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Dy=s._SparseSegmentReduction=function(){return(Dy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Ry=s._Sqrt=function(){return(Ry=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},My=s._Square=function(){return(My=s._Square=s.asm.Square).apply(null,arguments)},Py=s._SquaredDifference=function(){return(Py=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Oy=s._Step=function(){return(Oy=s._Step=s.asm.Step).apply(null,arguments)},Ly=s._StridedSlice=function(){return(Ly=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},zy=s._Sub=function(){return(zy=s._Sub=s.asm.Sub).apply(null,arguments)},By=s._Sum=function(){return(By=s._Sum=s.asm.Sum).apply(null,arguments)},Wy=s._Tan=function(){return(Wy=s._Tan=s.asm.Tan).apply(null,arguments)},Vy=s._Tanh=function(){return(Vy=s._Tanh=s.asm.Tanh).apply(null,arguments)},Uy=s._Tile=function(){return(Uy=s._Tile=s.asm.Tile).apply(null,arguments)},Gy=s._TopK=function(){return(Gy=s._TopK=s.asm.TopK).apply(null,arguments)},Hy=s._Transform=function(){return(Hy=s._Transform=s.asm.Transform).apply(null,arguments)},jy=s._Transpose=function(){return(jy=s._Transpose=s.asm.Transpose).apply(null,arguments)},qy=s.__FusedMatMul=function(){return(qy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Ky=s._malloc=function(){return(Ky=s._malloc=s.asm.malloc).apply(null,arguments)},Xy=s._free=function(){return(Xy=s._free=s.asm.free).apply(null,arguments)},Yy=s.___errno_location=function(){return(Yy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Qy=s._emscripten_main_thread_process_queued_calls=function(){return(Qy=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Kd=s.stackSave=function(){return(Kd=s.stackSave=s.asm.stackSave).apply(null,arguments)},Xd=s.stackRestore=function(){return(Xd=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Sp=s.stackAlloc=function(){return(Sp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Jy=s.dynCall_iijjiiii=function(){return(Jy=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Zy=s.dynCall_jiji=function(){return(Zy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Ee;var Ho;function Np(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}Gr=function G(){Ho||Tp(),Ho||(Gr=G)};function Tp(G){if(G=G||p,oa>0||(Nd(),oa>0))return;function te(){Ho||(Ho=!0,s.calledRun=!0,!le&&(Td(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),_d()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Tp;function f1(G){ue=G,yp()||(s.onExit&&s.onExit(G),le=!0),c(G,new Np(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Tp();var jo;l&&(jo={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var qo;if(typeof r!="undefined")qo=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")qo=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(jo){var eb=qo._dispose;qo._dispose=function(){eb(),jo.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),jo.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),rm=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},pc=class{refCount(e){return ua("refCount")}incRef(e){return ua("incRef")}timerAvailable(){return!0}time(e){return ua("time")}read(e){return ua("read")}readSync(e){return ua("readSync")}readToGPU(e,t){return ua("readToGPU")}numDataIds(){return ua("numDataIds")}disposeData(e,t){return ua("disposeData")}write(e,t,n){return ua("write")}move(e,t,n,a,r){return ua("move")}memory(){return ua("memory")}floatPrecision(){return ua("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return ua("dispose")}};function ua(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function eI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,_h(e,t,n)}function d$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,_h(e,n,a),_h(t,n,a)}function qp(e,t,n){return Math.max(e,Math.min(t,n))}function h$(e){return e%2===0?e:e+1}function _h(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function m$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function f$(e,t){let n=Math.random();return t*n+(1-n)*e}function g$(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function R(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Nn(e,t,n=""){R(ds(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function xi(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a<e.length;++a)ti(e[a],t,n);else t.push(e);return t}function bt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function y$(e){return e.length===0}function ds(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function ul(e){return e%1===0}function b$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function x$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function v$(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return eI(t),t}function Up(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function w$(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function k$(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function _a(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>ul(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function tI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:_a(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function nI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function aI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function rI(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function sI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function I$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function kb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function iI(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Yr(e){return typeof e=="string"||e instanceof String}function oI(e){return typeof e=="boolean"}function lI(e){return typeof e=="number"}function sm(e){return Array.isArray(e)?sm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":lI(e)?"float32":Yr(e)?"string":oI(e)?"bool":"float32"}function ns(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Ch(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Nl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function uI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=uI(e+l*o,i,n,a)}return r}function rl(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return uI(0,e,t,n)}function Ix(e,t){let n=im(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function im(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function S$(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return rl(e,new Float32Array(n));if(t==="int32")return rl(e,new Int32Array(n));if(t==="bool")return rl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Sx(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function N$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function T$(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Nx(e){return e&&e.then&&typeof e.then=="function"}var N1="tfjsflags",pI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=_$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Nx(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);N1 in e&&e[N1].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=E$(n,a)})}};function _$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(C$(t,a[0],a[1]),a.join("="))),t}function C$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function E$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Tx}var Tx=null;function F$(e){Tx=e}var lb;function cI(){if(lb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");lb=e}return lb}function A$(){let e=cI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function _x(e,t){let n=A$();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Tl="Abs",_l="Acos",Cl="Acosh",hs="Add",vi="AddN",El="All",Fl="Any",wi="ArgMax",cc="ArgMin",Al="Asin",$l="Asinh",Dl="Atan",Rl="Atanh",Ml="Atan2",ki="AvgPool",om="AvgPoolGrad",dc="AvgPool3D",lm="AvgPool3DGrad",Ii="BatchMatMul",Pl="BatchToSpaceND",um="Bincount",dI="BroadcastTo",pm="BroadcastArgs",Si="Cast",Ni="Ceil",ms="ClipByValue",cm="Complex",hc="ComplexAbs",Ol="Concat",Ti="Conv2D",dm="Conv2DBackpropFilter",_i="Conv2DBackpropInput",mc="Conv3D",hm="Conv3DBackpropFilterV2",mm="Conv3DBackpropInputV2",Ci="Cos",Ei="Cosh",Ll="Cumprod",Fi="Cumsum",zl="CropAndResize",fm="DenseBincount",Bl="DepthToSpace",Ai="DepthwiseConv2dNative",gm="DepthwiseConv2dNativeBackpropFilter",ym="DepthwiseConv2dNativeBackpropInput",bm="Diag",fc="Dilation2D",Eh="Dilation2DBackpropInput",Fh="Dilation2DBackpropFilter",$i="RealDiv",xm="Einsum",Di="Elu",vm="EluGrad",Wl="Erf",Vl="Equal",Ri="Exp",Ul="ExpandDims",Gl="Expm1",wm="FFT",gc="Fill",Hl="FlipLeftRight",Mi="Floor",Pi="FloorDiv",Oi="FusedBatchNorm",jl="GatherV2",ql="GatherNd",Kl="Greater",Li="GreaterEqual",zi="Identity",km="IFFT",Im="Imag",Xl="IsFinite",Yl="IsInf",Ql="IsNan",Bi="LeakyRelu",Jl="Less",Zl="LessEqual",Sm="LinSpace",Wi="Log",eu="Log1p",tu="LogicalAnd",yc="LogicalNot",bc="LogicalOr",hI="LogSoftmax",$$="LowerBound",xc="LRN",Nm="LRNGrad",Vi="Max",Ui="Maximum",Gi="MaxPool",Tm="MaxPoolGrad",vc="MaxPool3D",_m="MaxPool3DGrad",Cm="MaxPoolWithArgmax",Hi="Mean",ji="Min",qi="Minimum",Ki="MirrorPad",nu="Mod",Em="Multinomial",Xi="Multiply",au="Neg",ru="NotEqual",su="NonMaxSuppressionV3",iu="NonMaxSuppressionV4",ou="NonMaxSuppressionV5",lu="OnesLike",Yi="OneHot",uu="Pack",Qi="PadV2",D$="Pool",Ji="Pow",Zi="Prelu",eo="Prod",wc="Range",Fm="Real",pu="Reciprocal",to="Relu",cu="Reshape",kc="ResizeNearestNeighbor",Am="ResizeNearestNeighborGrad",no="ResizeBilinear",$m="ResizeBilinearGrad",ao="Relu6",ro="Reverse",so="Round",io="Rsqrt",du="ScatterNd",Dm="SearchSorted",hu="Select",mu="Selu",fu="Slice",oo="Sin",gu="Sinh",yu="Sign",lo="Sigmoid",bu="Softplus",uo="Sqrt",po="Sum",xu="SpaceToBatchND",vu="SplitV",co="Softmax",Ic="SparseFillEmptyRows",wu="SparseReshape",Sc="SparseSegmentMean",Nc="SparseSegmentSum",Rm="SparseToDense",ho="SquaredDifference",Tc="Square",ku="StridedSlice",Mm="StringNGrams",Pm="StringSplit",Om="StringToHashBucketFast",mo="Sub",fo="Tan",go="Tanh",fs="Tile",Iu="TopK",Su="Transform",Nr="Transpose",Lm="Unique",Nu="Unpack",_c="UnsortedSegmentSum",R$="UpperBound",Tu="ZerosLike",gs="Step",Ah="FromPixels",_u="RotateWithOffset",ni="_FusedMatMul",ai="FusedConv2D",ri="FusedDepthwiseConv2D";function Xr(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function M$(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var pl=_x("kernelRegistry",()=>new Map),Kp=_x("gradRegistry",()=>new Map);function $h(e,t){let n=Cx(e,t);return pl.get(n)}function Ib(e){return Kp.get(e)}function Dh(e){let t=pl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Cc(e){let{kernelName:t,backendName:n}=e,a=Cx(t,n);pl.has(a)&&Xr(`The kernel '${t}' for backend '${n}' is already registered`),pl.set(a,e)}function mI(e){let{kernelName:t}=e;Kp.has(t)&&X().getBool("DEBUG")&&Xr(`Overriding the gradient for '${t}'`),Kp.set(t,e)}function P$(e,t){let n=Cx(e,t);if(!pl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);pl.delete(n)}function O$(e){if(!Kp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Kp.delete(e)}function L$(e,t){Dh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Cc(a)})}function Cx(e,t){return`${t}_${e}`}var w={};Me(w,{arraysEqual:()=>ds,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Sx,assertNonNull:()=>xi,assertShapesMatch:()=>Nn,bytesFromStringArray:()=>iI,bytesPerElement:()=>kb,checkConversionForErrors:()=>rI,clamp:()=>qp,computeStrides:()=>Nl,createScalarValue:()=>G$,createShuffledIndices:()=>v$,decodeString:()=>Rh,distSquared:()=>g$,encodeString:()=>Fc,fetch:()=>j$,fingerPrint64:()=>U$,flatten:()=>ti,getArrayFromDType:()=>aI,getTypedArrayFromDType:()=>nI,hasEncodingLoss:()=>I$,hexToLong:()=>Ec,indexToLoc:()=>T$,inferDtype:()=>sm,inferFromImplicitShape:()=>k$,isBoolean:()=>oI,isFunction:()=>ns,isInt:()=>ul,isNumber:()=>lI,isPromise:()=>Nx,isScalarShape:()=>y$,isString:()=>Yr,isTypedArray:()=>hn,isValidDtype:()=>sI,locToIndex:()=>N$,makeOnesTypedArray:()=>Ix,makeZerosNestedTypedArray:()=>S$,makeZerosTypedArray:()=>im,nearestDivisor:()=>Ch,nearestLargerEven:()=>h$,now:()=>Xp,parseAxisParam:()=>_a,randUniform:()=>f$,repeatedTry:()=>w$,rightPad:()=>Up,shuffle:()=>eI,shuffleCombo:()=>d$,sizeFromShape:()=>bt,sizeToSquarishShape:()=>x$,squeezeShape:()=>tI,sum:()=>m$,swap:()=>_h,tanh:()=>b$,toNestedArray:()=>rl,toTypedArray:()=>zm});var T1=bi(GA()),Hs=T1.default||T1;function Ec(e){return Hs.fromString(e,!0,16)}var fI=Ec("c3a5c85c97cb3127"),Us=Ec("b492b66fbe98f273"),wn=Ec("9ae16a3b2f90404f");function Sb(e){return e.xor(e.shru(47))}function gI(e,t,n){let a=e.slice(t,t+n);return Hs.fromBytes(Array.from(a),!0,!0)}function yt(e,t){return gI(e,t,8)}function _1(e,t){return gI(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Zr(e,t,n=Ec("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function z$(e,t,n,a,r,s){r=r.add(e),s=Zt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Zt(r,44)),[r.add(a),s.add(i)]}function ah(e,t,n,a){return z$(yt(e,t),yt(e,t+8),yt(e,t+16),yt(e,t+24),n,a)}function B$(e,t=e.length){if(t>=8){let n=wn.add(t*2),a=yt(e,0).add(wn),r=yt(e,t-8),s=Zt(r,37).mul(n).add(a),i=Zt(a,25).add(r).mul(n);return Zr(s,i,n)}if(t>=4){let n=wn.add(t*2),a=_1(e,0);return Zr(a.shl(3).add(t),_1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Sb(wn.mul(s).xor(fI.mul(i))).mul(wn)}return wn}function W$(e,t=e.length){let n=wn.add(t*2),a=yt(e,0).mul(Us),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(wn);return Zr(Zt(a.add(r),43).add(Zt(s,30)).add(i),a.add(Zt(r.add(wn),18)).add(s),n)}function V$(e,t=e.length){let n=wn.add(t*2),a=yt(e,0).mul(wn),r=yt(e,8),s=yt(e,t-8).mul(n),i=yt(e,t-16).mul(wn),o=Zt(a.add(r),43).add(Zt(s,30)).add(i),l=Zr(o,a.add(Zt(r.add(wn),18)).add(s),n),u=yt(e,16).mul(n),p=yt(e,24),d=o.add(yt(e,t-32)).mul(n),c=l.add(yt(e,t-24)).mul(n);return Zr(Zt(u.add(p),43).add(Zt(d,30)).add(c),u.add(Zt(p.add(a),18)).add(d),n)}function U$(e,t=e.length){let n=Hs.fromNumber(81,!0);if(t<=32)return t<=16?B$(e,t):W$(e,t);if(t<=64)return V$(e,t);let a=n,r=n.mul(Us).add(113),s=Sb(r.mul(wn).add(113)).mul(wn),i=[Hs.UZERO,Hs.UZERO],o=[Hs.UZERO,Hs.UZERO];a=a.mul(wn).add(yt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(Us),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(Us),a=a.xor(o[1]),r=r.add(i[0]).add(yt(e,l+40)),s=Zt(s.add(o[0]),33).mul(Us),i=ah(e,l,i[1].mul(Us),a.add(o[0])),o=ah(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Us.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Zt(a.add(r).add(i[0]).add(yt(e,l+8)),37).mul(d),r=Zt(r.add(i[1]).add(yt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(yt(e,l+40))),s=Zt(s.add(o[0]),33).mul(d),i=ah(e,l,i[1].mul(d),a.add(o[0])),o=ah(e,l+32,s.add(o[1]),r.add(yt(e,l+16))),[s,a]=[a,s],Zr(Zr(i[0],o[0],d).add(Sb(r).mul(fI)).add(s),Zr(i[1],o[1],d).add(a),d)}function G$(e,t){return t==="string"?Fc(e):zm([e],t)}function H$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function zm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),X().getBool("DEBUG")&&rI(e,t),H$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Xp(){return X().platform.now()}function j$(e,t){return X().platform.fetch(e,t)}function Fc(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function Rh(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var q$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new X$)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Xp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Xp()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{K$(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function K$(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var X$=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Up(`${a}ms`,9):a.error,o=Up(e,25),l=t.rank,u=t.size,p=Up(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function Y$(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function Q$(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!ds(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var C1=20,Ep=3,ub=7;function J$(e,t,n,a){let r=Nl(t),s=Z$(e,t,n,r),i=t.length,o=fh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function Z$(e,t,n,a){let r=bt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Rp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Dp(l[p+d],0,n).length)}return i}function Dp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(ub))} + ${parseFloat(e[1].toFixed(ub))}j`:Yr(e)?a=`'${e}'`:n==="bool"?a=yI(e):a=parseFloat(e.toFixed(ub)).toString(),Up(a,t)}function yI(e){return e===0?"false":"true"}function fh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Rp(e);return[Dp(f[0],0,n)]}return n==="bool"?[yI(e[0])]:[e[0].toString()]}if(l===1){if(o>C1){let g=Ep*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Ep)*i,o*i));return n==="complex64"&&(y=Rp(y),b=Rp(b)),["["+y.map((x,v)=>Dp(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>Dp(x,r[o-Ep+v],n)).join(", ")+"]"]}let f=n==="complex64"?Rp(e):Array.from(e);return["["+f.map((g,y)=>Dp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>C1){for(let f=0;f<Ep;f++){let g=f*d,y=g+d;c.push(...fh(e.slice(g,y),u,n,p,r,!1))}c.push("...");for(let f=o-Ep;f<o;f++){let g=f*d,y=g+d;c.push(...fh(e.slice(g,y),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,y=g+d;c.push(...fh(e.slice(g,y),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Rp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var qt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=bt(e),n!=null){let a=n.length;R(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||aI(t,this.size),this.strides=Nl(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ba().makeTensor(this.values,this.shape,this.dtype)}},Ba=null,el=null,eD=null;function tD(e){Ba=e}function nD(e){el=e}function aD(e){eD=e}var Fe=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=bt(e),this.strides=Nl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return el.buffer(this.shape,this.dtype,e)}bufferSync(){return el.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return rl(this.shape,e,this.dtype==="complex64")}arraySync(){return rl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Ba().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Rh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Ba().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Ba().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Rh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ba().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ba().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return el.print(this,e)}clone(){return this.throwIfDisposed(),el.clone(this)}toString(e=!1){let t=this.dataSync();return J$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),el.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ba().makeVariable(this,e,t,n)}};Object.defineProperty(Fe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ne(){return _x("Tensor",()=>Fe)}ne();var as=class extends Fe{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ds(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ba().disposeTensor(this),this.dataId=e.dataId,Ba().incRef(this,null)}dispose(){Ba().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(as,Symbol.hasInstance,{value:e=>e instanceof Fe&&e.assign!=null&&e.assign instanceof Function});var Ga={};Me(Ga,{assertTypesMatch:()=>bI,getTensorsInContainer:()=>Ex,isTensorInList:()=>sD,makeTypesMatch:()=>At});var Nb;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Nb||(Nb={}));var Tb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Tb||(Tb={}));var _b;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(_b||(_b={}));var Cb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Cb||(Cb={}));var Eb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Eb||(Eb={}));var rD={float32:Cb,int32:Tb,bool:_b,complex64:Eb};function ma(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return rD[e][t]}function Bm(e){return ma(e,"int32")}function At(e,t){if(e.dtype===t.dtype)return[e,t];let n=ma(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function bI(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function sD(e,t){return t.some(n=>n.id===e.id)}function Ex(e){let t=[];return xI(e,t,new Set),t}function xI(e,t,n){if(e==null)return;if(e instanceof Fe){t.push(e);return}if(!iD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),xI(s,t,n))}}function iD(e){return Array.isArray(e)||typeof e=="object"}function pb(e){return e.kernelName!=null}var E1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Yp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new E1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Xr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new q$(this.backendInstance),!0}setupRegisteredKernels(){Dh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Dh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof pc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Xr(`Initialization of backend ${e} failed`),Xr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Xr(`Initialization of backend ${e} failed`),Xr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Yp.nextTensorId++}nextVariableId(){return Yp.nextVariableId++}clone(e){let t=L.runKernel(zi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return L.runKernel(Si,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,$h(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=pb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(pb(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=$h(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>v.rank!=null?v:this.makeTensorFromTensorInfo(v));if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=pb(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Ib(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Yr(e[0])&&(r=e.map(o=>Fc(o)));let s=a.write(r,t,n),i=new Fe(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=iI(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Fe(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new as(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*kb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof as||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*kb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Ib(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=im(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Ex(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(r instanceof Fe,()=>"The result y returned by f() must be a tensor.");let s=Y$(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?oD(r.shape):n,Q$(i,s,l=>this.tidy(l),lD);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return R(ns(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(i=>i instanceof Fe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),R(n.value instanceof Fe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(ns(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];R(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(u.every(d=>d instanceof Fe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Xp(),n=await this.backend.time(e);return n.wallMs=Xp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new E1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Yp.nextTensorId=0;Yp.nextVariableId=0;function oD(e){let t=Ix(bt(e),"float32");return L.makeTensor(t,e,"float32")}function vI(){let e=cI();if(e._tfengine==null){let t=new pI(e);e._tfengine=new Yp(t)}return F$(e._tfengine.ENV),tD(()=>e._tfengine),e._tfengine}var L=vI();function lD(e,t){let n={a:e,b:t};return L.runKernel(hs,n)}var Ac={};Me(Ac,{isBrowser:()=>wI,isMobile:()=>cD,mockIsMobile:()=>pD});function uD(){return typeof navigator!="undefined"&&navigator!=null}var Fb;function pD(e){Fb=e}function cD(e){if(Fb!==void 0)return Fb;if(e||uD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function wI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Na=X();Na.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Na.registerFlag("IS_BROWSER",()=>wI());Na.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Na.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Na.registerFlag("PROD",()=>!1);Na.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Na.getBool("DEBUG"));Na.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Na.registerFlag("IS_TEST",()=>!1);Na.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Na.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Na.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function lr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&kI(e,a,[]),a}function kI(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)kI(e[r],a,n.concat(r))}function F1(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,a="numeric"){if(e instanceof Fe)return F1(a,e.dtype,t,n),e;let r=sm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),F1(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=lr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?zm(e,r):ti(e,[],!0);return L.makeTensor(i,s,r)}function Qp(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>F(r,`${t}[${s}]`,n,a))}var II="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+II;let r=(...s)=>{L.startScope(n);try{let i=a(...s);return Nx(i)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(i),i}catch(i){throw L.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function dD(e,t){let n=F(e,"real","complex"),a=F(t,"imag","complex");Nn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return L.runKernel(cm,r)}var Cr=z({complex_:dD});function ys(e,t,n,a){if(a==null&&(a=sm(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Sx(t);let r=bt(t),s=bt(n);R(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==bt(t.slice(i)):!0;R(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?zm(e,a):ti(e,[],!0),L.makeTensor(e,t,a)}function Qn(e,t,n){let a=lr(e,n);return ys(e,t,a,n)}var Ab={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Mh=4;async function hD(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+Mh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=Mh,m.set(y,f),f+=y.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:mD(s),specs:n}}function SI(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=bt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Ab[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=vD()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=bt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Mh))[0];r+=Mh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Ab[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let y=0;y<h.length;y++)h[y]=p[y*2],m[y]=p[y*2+1];let f=Qn(h,l,"float32"),g=Qn(m,l,"float32");n[i]=Cr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=Qn(p,l,o))}return n}function mD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Fx=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function A1(e){return Fx?Buffer.byteLength(e):new Blob([e]).size}function fD(e){if(Fx)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function gD(e){if(Fx){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Ax(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function $1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function NI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function $x(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[a,r]=await t(e.weightsManifest);n.weightSpecs=a,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function $c(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:A1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:A1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function yD(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function bD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function xD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function vD(){let e=yD(),t=bD(),n=xD();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Dt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Dt.instance==null&&(Dt.instance=new Dt),Dt.instance}static registerSaveRouter(e){Dt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Dt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Dt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Dt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Dt.getInstance().loadRouters:Dt.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},wD=e=>Dt.registerSaveRouter(e),kD=e=>Dt.registerLoadRouter(e),ID=e=>Dt.getSaveHandlers(e),SD=(e,t)=>Dt.getLoadHandlers(e,t),$b="tensorflowjs",Db=1,Xs="models_store",Qr="model_info_store";function TI(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Rb(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(Qr,{keyPath:"modelPath"})}var si=class{constructor(e){if(this.indexedDB=TI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open($b,Db);r.onupgradeneeded=()=>Rb(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=$c(t),o=s.transaction(Qr,"readwrite"),l=o.objectStore(Qr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Xs,"readwrite");let d=p.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(Qr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};si.URL_SCHEME="indexeddb://";var _I=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(si.URL_SCHEME)?ND(e.slice(si.URL_SCHEME.length)):null;Dt.registerSaveRouter(_I);Dt.registerLoadRouter(_I);function ND(e){return new si(e)}function TD(e){return e.startsWith(si.URL_SCHEME)?e.slice(si.URL_SCHEME.length):e}var _D=class{constructor(){this.indexedDB=TI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open($b,Db);n.onupgradeneeded=()=>Rb(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Qr,"readonly"),s=r.objectStore(Qr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=TD(e),new Promise((t,n)=>{let a=this.indexedDB.open($b,Db);a.onupgradeneeded=()=>Rb(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Qr,"readwrite"),i=s.objectStore(Qr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Xs,"readwrite");let d=l.objectStore(Xs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Ir="/",tl="tensorflowjs_models",CI="info",CD="model_topology",ED="weight_specs",FD="weight_data",AD="model_metadata";function EI(e){return{info:[tl,e,CI].join(Ir),topology:[tl,e,CD].join(Ir),weightSpecs:[tl,e,ED].join(Ir),weightData:[tl,e,FD].join(Ir),modelMetadata:[tl,e,AD].join(Ir)}}function FI(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function $D(e){let t=e.split(Ir);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ir)}function DD(e){return e.startsWith(ii.URL_SCHEME)?e.slice(ii.URL_SCHEME.length):e}var ii=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=EI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=$c(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,fD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw FI(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=gD(s),t}};ii.URL_SCHEME="localstorage://";var AI=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ii.URL_SCHEME)?RD(e.slice(ii.URL_SCHEME.length)):null;Dt.registerSaveRouter(AI);Dt.registerLoadRouter(AI);function RD(e){return new ii(e)}var MD=class{constructor(){R(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=tl+Ir,n=Ir+CI;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=$D(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=DD(e);let t=EI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return FI(t),n}},sl="://",pa=class{constructor(){this.managers={}}static getInstance(){return pa.instance==null&&(pa.instance=new pa),pa.instance}static registerManager(e,t){R(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(sl)&&(e=e.slice(0,e.indexOf(sl))),R(e.length>0,()=>"scheme must not be an empty string.");let n=pa.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function gh(e){if(e.indexOf(sl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${pa.getSchemes().join(",")}`);return{scheme:e.split(sl)[0],path:e.split(sl)[1]}}async function $I(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Dt.getLoadHandlers(e);R(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Dt.getSaveHandlers(t);R(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=gh(e).scheme,l=gh(e).path,u=o===gh(e).scheme,p=await r.load();n&&u&&await pa.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await pa.getManager(o).removeModel(l),d.modelArtifactsInfo}async function PD(){let e=pa.getSchemes(),t={};for(let n of e){let a=await pa.getManager(n).listModels();for(let r in a){let s=n+sl+r;t[s]=a[r]}}return t}async function OD(e){let t=gh(e);return pa.getManager(t.scheme).removeModel(t.path)}async function LD(e,t){return $I(e,t,!1)}async function zD(e,t){return $I(e,t,!0)}var BD=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new BD);try{pa.registerManager(ii.URL_SCHEME,new MD)}catch(e){}try{pa.registerManager(si.URL_SCHEME,new _D)}catch(e){}}var WD={importFetch:()=>HA()},cb,VD=class{constructor(){this.util=jA(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(cb==null&&(cb=WD.importFetch()),cb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&!X().get("IS_BROWSER")&&X().setPlatform("node",new VD);function Ve(e,t="float32",n){return t=t||"float32",Sx(e),new qt(e,t,n)}function UD(e,t){let n=F(e,"x","cast");if(!sI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return L.runKernel(Si,a,r)}var oe=z({cast_:UD});function GD(e){let t={x:F(e,"x","clone","string_or_numeric")};return L.runKernel(zi,t)}var Tr=z({clone_:GD});function DI(e,t=!1){console.log(e.toString(t))}vI();var HD={buffer:Ve,cast:oe,clone:Tr,print:DI};nD(HD);var en={};Me(en,{browserFiles:()=>JD,browserHTTPRequest:()=>aR,concatenateArrayBuffers:()=>Ax,copyModel:()=>LD,decodeWeights:()=>SI,encodeWeights:()=>hD,fromMemory:()=>sR,fromMemorySync:()=>LI,getLoadHandlers:()=>SD,getModelArtifactsForJSON:()=>$x,getModelArtifactsInfoForJSON:()=>$c,getSaveHandlers:()=>ID,http:()=>Rx,isHTTPScheme:()=>Mb,listModels:()=>PD,loadWeights:()=>ZD,moveModel:()=>zD,registerLoadRouter:()=>kD,registerSaveRouter:()=>wD,removeModel:()=>OD,weightsLoaderFactory:()=>MI,withSaveHandler:()=>iR,withSaveHandlerSync:()=>oR});var jD="model",qD=".json",KD=".weights.bin";function D1(e){return new Promise(t=>setTimeout(t)).then(e)}var cl=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(cl.URL_SCHEME)&&(e=e.slice(cl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=jD),this.modelJsonFileName=e+qD,this.weightDataFileName=e+KD}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=NI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await D1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await D1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:$c(e)}}}};cl.URL_SCHEME="downloads://";var XD=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=$x(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Ax(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>$1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=$1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},YD=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(cl.URL_SCHEME)?QD(e.slice(cl.URL_SCHEME.length)):null;Dt.registerSaveRouter(YD);function QD(e="model"){return new cl(e)}function JD(e){return new XD(e)}function R1(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){R(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),R(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),R(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function RI(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await R1(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await R1(i,t.onProgress,o,l)}async function ZD(e,t="",n,a){return MI(r=>RI(r,{requestInit:a}))(e,t,n)}function MI(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Ab[y]*bt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,k)=>{v===g.name&&(x(),i[k]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(p[c+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),k=SI(v,[x.manifestEntry]);for(let T in k)d[T]=k[T]}),c+=m}),d}}var eR="application/octet-stream",tR="application/json",Dx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=NI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:tR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:eR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:$c(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return $x(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=nR(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await RI(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Ax(l)]}};Dx.URL_SCHEME_REGEX=/^https?:\/\//;function nR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Mb(e){return e.match(Dx.URL_SCHEME_REGEX)!=null}var PI=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Mb(a)):n=Mb(e),n)return Rx(e,t)}return null};Dt.registerSaveRouter(PI);Dt.registerLoadRouter(PI);function Rx(e,t){return new Dx(e,t)}function aR(e,t){return Rx(e,t)}var db=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},OI=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},rR=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function sR(e,t,n,a){let r=arguments;return new rR(LI(...r))}function LI(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new db(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new db({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new db({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function iR(e){return new OI(e)}function oR(e){return new OI(e)}var zI={};Me(zI,{confusionMatrix:()=>CR});function lR(e,t,n=!1,a=!1){let r=F(e,"a","matMul"),s=F(t,"b","matMul");[r,s]=At(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return L.runKernel(Ii,i,o)}var De=z({matMul_:lR});function uR(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return L.runKernel(Yi,r,s)}var dl=z({oneHot_:uR});function pR(){X().set("PROD",!0)}function cR(){X().set("DEBUG",!0)}function dR(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Mx(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}aD(Mx);function hR(){L.disposeVariables()}function ar(){return L}function Ph(){return L.memory()}function mR(e){return L.profile(e)}function O(e,t){return L.tidy(e,t)}function Re(e){Ex(e).forEach(t=>t.dispose())}function tn(e){return L.keep(e)}function fR(e){return L.time(e)}function gR(e){return L.setBackend(e)}function yR(){return L.ready()}function bR(){return L.backendName}function xR(e){L.removeBackend(e)}function vR(e){return L.findBackend(e)}function wR(e){return L.findBackendFactory(e)}function Wm(e,t,n=1){return L.registerBackend(e,t,n)}function BI(){return L.backend}function kR(e,t){X().setPlatform(e,t)}function IR(e){let t={input:F(e,"input","imag")};return L.runKernel(Im,t)}var Dc=z({imag_:IR});function SR(e){let t={x:F(e,"x","neg")};return L.runKernel(au,t)}var wt=z({neg_:SR});function NR(e){let t={input:F(e,"input","real")};return L.runKernel(Fm,t)}var hl=z({real_:NR});function TR(e,t,n){let a=F(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),R(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{R(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?O(()=>{let i=hl(a),o=Dc(a);return i=L.runKernel(Nr,{x:i},s),o=L.runKernel(Nr,{x:o},s),n&&(o=wt(o)),Cr(i,o)}):L.runKernel(Nr,r,s)}var Ae=z({transpose_:TR});function _R(e,t,n){let a=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),R(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),R(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=dl(oe(a,"int32"),n),i=dl(oe(r,"int32"),n),o=Ae(s),l=De(o,i);return oe(l,"int32")}var CR=z({confusionMatrix_:_R}),Cu={};Me(Cu,{assertAndGetBroadcastShape:()=>ut,getBroadcastDims:()=>WI,getReductionAxes:()=>Vt});function WI(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Vt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ut(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}var yo={};Me(yo,{fromPixels:()=>MR,fromPixelsAsync:()=>DR,toPixels:()=>RR});function Vm(e,t,n){if(xi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=lr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ys(e,t,a,n)}var Ws;function VI(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if($h(Ah,L.backendName)!=null){let c={pixels:e},h={numChannels:t};return L.runKernel(Ah,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Ws==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ws=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ws=document.createElement("canvas").getContext("2d");Ws.canvas.width=l,Ws.canvas.height=u,Ws.drawImage(e,0,0,l,u),p=Ws.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return Vm(d,[u,l,t],"int32")}function ER(e){return e!=null&&e.data instanceof Uint8Array}function FR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function AR(e){return e!=null&&e.width!==0&&e.height!==0}function $R(e){return FR()&&!(e instanceof ImageBitmap)&&AR(e)&&!ER(e)}async function DR(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&$R(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return VI(n,t)}async function RR(e,t){let n=F(e,"img","toPixels");if(!(e instanceof Fe)){let u=n;n=oe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var MR=z({fromPixels_:VI}),Px={};Me(Px,{prepareAndValidate:()=>UI});function UI(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(bt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...Nl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Ox={};Me(Ox,{calculateShapes:()=>GI,validateInput:()=>zx,validateUpdateShape:()=>Lx});function Lx(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function zx(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Lx(n,t,e)}function GI(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=bt(t.shape)/o,u=[...Nl(n.slice(0,r)),1],p=bt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}var Kt={};Me(Kt,{assertParamsValid:()=>OR,computeFlatOffset:()=>VR,computeOutShape:()=>zR,getNormalizedAxes:()=>BR,isSliceContinous:()=>WR,maskToAxes:()=>LR,parseSliceParams:()=>ZI,sliceInfo:()=>UR,startForAxis:()=>QI,startIndicesWithElidedDims:()=>KI,stopForAxis:()=>JI,stopIndicesWithElidedDims:()=>XI,stridesForAxis:()=>YI,stridesWithElidedDims:()=>HI});var Pb=-2,PR=-1;function OR(e,t,n){let a=e.shape.length;R(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),R(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)R(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function LR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function zR(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function HI(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function jI(e,t,n){return n<=e?n:n-(t-1)}function qI(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function BR(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=KI(i,h,m,a,e),d=XI(o,h,m,r,e),c=HI(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=QI(i,a,s,e,h,l),d[h]=JI(o,r,s,e,h,l),c[h]=YI(s,h,l);return{begin:p,end:d,strides:c}}function KI(e,t,n,a,r){let s=[...r],i=qI(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=jI(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function XI(e,t,n,a,r){let s=[...r],i=qI(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=jI(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=qp(0,s[o],r[o])}return s}function YI(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function QI(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=qp(0,i,l-1),i}function JI(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=qp(0,i,l):i=qp(-1,i,l-1),i}function WR(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function VR(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function ZI(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{R(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(R(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function UR(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b<d.dims;b++)p&&(1<<b&o)!==0&&d.numAddAxisAfterEllipsis++,1<<b&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};GR(d,c);let h=!0,m=!0,f=!0,g=[],y=[];for(let b=0;b<e.length;++b){if(c.strides[b]===0)throw Error(`strides[${b}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<b),v=e[b];if(v===-1){g.push(x?1:-1);continue}let k=[c.beginMask&1<<b,c.endMask&1<<b],T=[c.strides[b]>0?0:-1,c.strides[b]>0?v:v-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let _=!!(c.beginMask&1<<b&&c.endMask&1<<b);if(c.beginValid&&c.endValid){if(x){let $=c.begin[b]<0?v+c.begin[b]:c.begin[b];if(c.begin[b]=$,c.end[b]=c.begin[b]+1,$<0||$>=v)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=M1(c.begin[b],0,c.strides[b],v,k,T),c.end[b]=M1(c.end[b],1,c.strides[b],v,k,T);let M=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===v;h=h&&M,m=m&&(b===0&&c.strides[b]===1||M)}else h=h&&c.strides[b]===1&&_,m=m&&(b===0&&c.strides[b]===1||_);let E,A=!1;if(c.beginValid&&c.endValid?(E=c.end[b]-c.begin[b],A=!0):x?(E=1,A=!0):_&&v>=0&&(c.strides[b]<0?E=-v:E=v,A=!0),A){let M;E===0||E<0!=c.strides[b]<0?M=0:M=Math.trunc(E/c.strides[b])+(E%c.strides[b]!==0?1:0),g.push(M)}else g.push(-1)}for(let b=0;b<c.finalShapeGatherIndices.length;++b){let x=c.finalShapeGatherIndices[b];x>=0?y.push(g[x]):x===Pb&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==Pb),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function GR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Pb),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(PR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function M1(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var se={};Me(se,{Serializable:()=>eS,SerializationMap:()=>js,registerClass:()=>bs});var eS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},js=class{constructor(){this.classNameMap={}}static getMap(){return js.instance==null&&(js.instance=new js),js.instance}static register(e){js.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function bs(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),js.register(e)}var tS={};Me(tS,{TEST_EPSILON_FLOAT16:()=>nS,encodeStrings:()=>aS,expectArrayBuffersEqual:()=>QR,expectArraysClose:()=>jR,expectArraysEqual:()=>KR,expectNumbersClose:()=>XR,expectPromiseToFail:()=>qR,expectValuesInRange:()=>YR,testEpsilon:()=>Bx});var HR=.001,nS=.1;function jR(e,t,n){return n==null&&(n=Bx()),Ob(e,t,(a,r)=>Wx(a,r,n))}function Bx(){return L.backend.floatPrecision()===32?HR:nS}function Ob(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=lr(e),o=lr(t);if(!ds(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:ti(e),s=hn(t)?t:ti(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function qR(e,t){e().then(()=>t.fail(),()=>t())}function KR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Yr(e)||Yr(e[0])||Yr(t)||Yr(t[0])?Ob(e,n,(a,r)=>a==r):Ob(e,t,(a,r)=>Wx(a,r,0))}function XR(e,t,n){if(n==null&&(n=Bx()),!Wx(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Wx(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function YR(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function QR(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function aS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?aS(n):e[t]=Fc(n)}return e}var JR="3.18.0";function ZR(e,t){let n=F(e,"a","add"),a=F(t,"b","add");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(hs,r)}var J=z({add_:ZR});function eM(e,t){let n=F(e,"a","floorDiv"),a=F(t,"b","floorDiv");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Pi,r)}var Um=z({floorDiv_:eM});function tM(e,t){let n=F(e,"a","div"),a=F(t,"b","div");if([n,a]=At(n,a),n.dtype==="int32"&&a.dtype==="int32")return Um(n,a);let r={a:n,b:a},s={};return L.runKernel($i,r,s)}var fe=z({div_:tM});function nM(e,t){let n=F(e,"a","mul"),a=F(t,"b","mul");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Xi,r)}var B=z({mul_:nM});function aM(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(hc,n)}else{let n={x:t};return L.runKernel(Tl,n)}}var zt=z({abs_:aM});function rM(e){let t={x:F(e,"x","acos")};return L.runKernel(_l,t)}var Vx=z({acos_:rM});function sM(e){let t={x:F(e,"x","acosh")};return L.runKernel(Cl,t)}var Ux=z({acosh_:sM});function iM(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>F(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ds(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return L.runKernel(vi,a)}var rS=z({addN_:iM});function oM(e,t=null,n=!1){let a={x:F(e,"x","all","bool")},r={axis:t,keepDims:n};return L.runKernel(El,a,r)}var Gm=z({all_:oM});function lM(e,t=null,n=!1){let a={x:F(e,"x","any","bool")},r={axis:t,keepDims:n};return L.runKernel(Fl,a,r)}var Jp=z({any_:lM});function uM(e,t=0){let n={x:F(e,"x","argMax")},a={axis:t};return L.runKernel(wi,n,a)}var oi=z({argMax_:uM});function pM(e,t=0){let n={x:F(e,"x","argMin")},a={axis:t};return L.runKernel(cc,n,a)}var Gx=z({argMin_:pM});function cM(e){let t={x:F(e,"x","asin")};return L.runKernel(Al,t)}var Hx=z({asin_:cM});function dM(e){let t={x:F(e,"x","asinh")};return L.runKernel($l,t)}var jx=z({asinh_:dM});function hM(e){let t={x:F(e,"x","atan")};return L.runKernel(Dl,t)}var qx=z({atan_:hM});function mM(e,t){let n=F(e,"a","atan2"),a=F(t,"b","atan2");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Ml,r)}var Kx=z({atan2_:mM});function fM(e){let t={x:F(e,"x","atanh")};return L.runKernel(Rl,t)}var Xx=z({atanh_:fM});function gM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=oS(r);return Rc(e,o,n,s,a,null,null,l)}function sS(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Oh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Rc(e,u,n,a,r,s,!1,i)}function yM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Lb(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return iS(e,p,n,a,r,!1,d,s)}function Rc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Oh(n),[y,b]=Oh(a),x=il(c,y),v=il(h,b),{padInfo:k,outHeight:T,outWidth:_}=vM(r,u,p,f,g,x,v,s,o),E=i?m*d:m,A;return o==="channelsFirst"?A=[l,E,T,_]:o==="channelsLast"&&(A=[l,T,_,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:_,outChannels:E,padInfo:k,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:A,filterShape:t}}function iS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Lb(n),[v,k,T]=Lb(a),_=il(h,v),E=il(m,k),A=il(f,T),{padInfo:M,outDepth:$,outHeight:S,outWidth:P}=wM(r,u,p,d,y,b,x,_,E,A,o),V=s?g*c:g,j;return i==="channelsFirst"?j=[l,V,$,S,P]:i==="channelsLast"&&(j=[l,$,S,P,V]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:$,outHeight:S,outWidth:P,outChannels:V,padInfo:M,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:_,effectiveFilterHeight:E,effectiveFilterWidth:A,dilationDepth:v,dilationHeight:k,dilationWidth:T,inShape:e,outShape:j,filterShape:t}}function bM(e,t,n,a,r){a==null&&(a=Yx(e,t,n));let s=e[0],i=e[1],o=Js((s-t+2*a)/n+1,r),l=Js((i-t+2*a)/n+1,r);return[o,l]}function xM(e,t,n,a,r,s){r==null&&(r=Yx(e,t,a));let i=e[0],o=e[1],l=e[2],u=Js((i-t+2*r)/a+1,s),p=Js((o-t+2*r)/a+1,s),d=Js((l-t+2*r)/a+1,s);return[u,p,d,n]}function Yx(e,t,n,a=1){let r=il(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Oh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Lb(e){return typeof e=="number"?[e,e,e]:e}function il(e,t){return t<=1?e:e+(e-1)*(t-1)}function vM(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=bM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=Js((t-s+c+h)/a+1,o),d=Js((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function wM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=xM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),k=g-v,T=Math.floor(y/2),_=y-T;d={top:v,bottom:k,left:T,right:_,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function Js(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function rs(e){let[t,n,a]=Oh(e);return t===1&&n===1&&a===1}function dr(e,t){return rs(e)||rs(t)}function oS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Tn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")R(ul(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{R(ul(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function kM(e,t){let n={x:F(e,"x","reshape","string_or_numeric")},a={shape:t};return L.runKernel(cu,n,a)}var W=z({reshape_:kM});function IM(e,t,n,a,r){let s=F(e,"x","avgPool","float32"),i=1;R(dr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Tn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(ki,u,p);return d=oe(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var fa=z({avgPool_:IM});function SM(e,t,n,a,r,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(dc,u,p);return d=oe(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Qx=z({avgPool3d_:SM});function NM(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=Qp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Tr(n[0]);let a=n,r={axis:t};return L.runKernel(Ol,a,r)}var Ze=z({concat_:NM});function TM(e){let t={x:F(e,"x","sigmoid","float32")};return L.runKernel(lo,t)}var ha=z({sigmoid_:TM});function _M(e,t,n){let a=F(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return L.runKernel(fu,r,s)}var He=z({slice_:_M});function CM(e){let t={x:F(e,"x","tanh","float32")};return L.runKernel(go,t)}var li=z({tanh_:CM});function EM(e,t,n,a,r,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(a,"data","basicLSTMCell"),p=F(r,"c","basicLSTMCell"),d=F(s,"h","basicLSTMCell"),c=Ze([u,d],1),h=De(c,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=He(m,[0,0],y),x=He(m,[0,g],y),v=He(m,[0,g*2],y),k=He(m,[0,g*3],y),T=J(B(ha(b),li(x)),B(p,ha(J(i,v)))),_=B(li(T),ha(k));return[T,_]}var FM=z({basicLSTMCell_:EM});function AM(e,t,n){let a=F(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);R(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return L.runKernel(Pl,s,i)}var Mc=z({batchToSpaceND_:AM});function $M(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function DM(e,t,n,a,r,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;a!=null&&(p=F(a,"offset","batchNorm")),R(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:$M(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=L.runKernel(Oi,d,c);return W(h,i.shape)}var Er=z({batchNorm_:DM});function RM(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;return a!=null&&(p=F(a,"offset","batchNorm")),R(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),R(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Er(i,o,l,p,u,s)}var lS=z({batchNorm2d_:RM});function MM(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;return a!=null&&(p=F(a,"offset","batchNorm")),R(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),R(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Er(i,o,l,p,u,s)}var uS=z({batchNorm3d_:MM});function PM(e,t,n,a,r,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let p;return a!=null&&(p=F(a,"offset","batchNorm")),R(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),R(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&R(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Er(i,o,l,p,u,s)}var pS=z({batchNorm4d_:PM});function OM(e,t,n){let a=F(e,"x","bincount"),r=F(t,"weights","bincount");R(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return L.runKernel(um,s,i)}var Jx=z({bincount_:OM});function LM(e,t){let n=F(e,"s0","broadcastArgs","int32"),a=F(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return L.runKernel(pm,r)}var cS=z({broadcastArgs_:LM});function zM(e,t){let n=F(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Tr(n);let i={x:n},o={reps:s};return L.runKernel(fs,i,o)}var ol=z({broadcastTo_:zM});function BM(e){let t={x:F(e,"x","ceil","float32")};return L.runKernel(Ni,t)}var Zx=z({ceil_:BM});function WM(e,t,n){let a=F(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return L.runKernel(ms,r,s)}var an=z({clipByValue_:WM});function VM(e){return Ze(e,0)}var dS=z({concat1d_:VM});function UM(e,t){return Ze(e,t)}var hS=z({concat2d_:UM});function GM(e,t){return Ze(e,t)}var mS=z({concat3d_:GM});function HM(e,t){return Ze(e,t)}var fS=z({concat4d_:HM});function jM(e,t,n,a,r="NHWC",s=[1,1],i){let o=F(e,"x","conv2d","float32"),l=F(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Tn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];R(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),R(dr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=L.runKernel(Ti,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=z({conv2d_:jM});function qM(e,t,n,a,r="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),R(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),R(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Tn("conv1d",a,i),R(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),R(dr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),R(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Hm=z({conv1d_:qM});function KM(e,t,n,a,r,s="NHWC",i){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),R(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),R(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];R(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Tn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=L.runKernel(_i,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ev=z({conv2DBackpropInput_:KM});function XM(e,t,n,a,r,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return ev(n,i,o,a,r,"NHWC",s)}var jm=z({conv2dTranspose_:XM});function YM(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),R(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),R(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),R(dr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),R(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=L.runKernel(mc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var tv=z({conv3d_:YM});function QM(e,t,n,a,r){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];R(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),R(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),R(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=L.runKernel(mm,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var gS=z({conv3DBackpropInput_:QM});function JM(e,t,n,a,r){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return gS(n,s,i,a,r)}var yS=z({conv3dTranspose_:JM});function ZM(e){let t={x:F(e,"x","cos","float32")};return L.runKernel(Ci,t)}var Pc=z({cos_:ZM});function eP(e){let t={x:F(e,"x","cosh","float32")};return L.runKernel(Ei,t)}var qm=z({cosh_:eP});function tP(e,t=0,n=!1,a=!1){let r={x:F(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Ll,r,s)}var Zp=z({cumprod_:tP});function nP(e,t=0,n=!1,a=!1){let r={x:F(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return L.runKernel(Fi,r,s)}var Km=z({cumsum_:nP});function aP(e,t,n,a=!1){let r=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");R(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),R(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return L.runKernel(fm,i,o)}var bS=z({denseBincount_:aP});function rP(e,t,n="NHWC"){let a=F(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),R(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return L.runKernel(Bl,o,l)}var nv=z({depthToSpace_:rP});function sP(e,t,n,a,r="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d","float32"),l=F(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),R(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),Tn("depthwiseConv2d",a,i);let d={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=L.runKernel(Ai,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var xs=z({depthwiseConv2d_:sP});function iP(e){let t={x:F(e,"x","diag")};return L.runKernel(bm,t)}var oP=z({diag_:iP});function lP(e,t,n,a,r=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");R(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),R(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),R(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=L.runKernel(fc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var av=z({dilation2d_:lP});function uP(e,t){let n=F(e,"a","equal","string_or_numeric"),a=F(t,"b","equal","string_or_numeric");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Vl,r)}var Jn=z({equal_:uP});function pP(e,t,n){let a=F(t,"a","where"),r=F(n,"b","where"),s=F(e,"condition","where","bool"),i=ut(ut(s.shape,a.shape),r.shape),o=ol(s,i),l=ol(a,i),u=ol(r,i),p={condition:o,t:l,e:u};return L.runKernel(hu,p)}var fn=z({where_:pP});function cP(e){let t={x:F(e,"x","zerosLike")};return L.runKernel(Tu,t)}var Ke=z({zerosLike_:cP});function dP(e,t){let n=F(e,"a","div"),a=F(t,"b","div");[n,a]=At(n,a);let r=fe(n,a),s=Ke(r),i=Jn(a,s);return fn(i,s,r)}var rv=z({divNoNan_:dP});function hP(e,t){let n=F(e,"t1","dot"),a=F(t,"t2","dot");R((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(R(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=De(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=De(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=De(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return De(n,i)}}var xS=z({dot_:hP});function mP(e,...t){let n=t.map((r,s)=>F(r,`tensors${s}`,"einsum")),a={equation:e};return L.runKernel(xm,n,a)}var vS=z({einsum_:mP});function fP(e){let t={x:F(e,"x","elu","float32")};return L.runKernel(Di,t)}var Eu=z({elu_:fP});function gP(e){let t=F(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=oe(t,"float32"));let n={x:t};return L.runKernel(Wl,n)}var sv=z({erf_:gP});function iv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function wS(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function kS(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function ui(e,t){let n=t.map(a=>1);return wS(e,n,t)}function yP(e,t,n){R(iv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function IS(e,t){if(iv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function ov(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function bP(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function xP(e,t=null,n=!1){let a={x:F(e,"x","max")},r={reductionIndices:t,keepDims:n};return L.runKernel(Vi,a,r)}var Sa=z({max_:xP});function vP(e,t=null,n=!1){let a={x:F(e,"x","min")},r={axis:t,keepDims:n};return L.runKernel(ji,a,r)}var ec=z({min_:vP});function wP(e,t){let n=F(e,"base","pow"),a=F(t,"exp","pow");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(Ji,r)}var Fr=z({pow_:wP});function we(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ys(e,[],[],t)}function kP(e){let t={x:F(e,"x","sqrt","float32")};return L.runKernel(uo,t)}var un=z({sqrt_:kP});function IP(e){let t=F(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var lt=z({square_:IP});function SP(e,t=null,n=!1){let a=F(e,"x","sum");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(po,r,s)}var be=z({sum_:SP});function NP(e,t="euclidean",n=null,a=!1){e=F(e,"x","norm");let r=SS(e,t,n),s=r.shape;if(a){let i=_a(n,e.shape);s=ui(r.shape,i)}return W(r,s)}function SS(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return SS(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return be(zt(e),n);if(t===1/0)return Sa(zt(e),n);if(t===-1/0)return ec(zt(e),n);if(t==="euclidean"||t===2)return un(be(Fr(zt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Sa(be(zt(e),n[0]),n[1]-1);if(t===1/0)return Sa(be(zt(e),n[1]),n[0]);if(t===-1/0)return ec(be(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return un(be(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Oc=z({norm_:NP});function TP(e,t=null,n=!1){return Oc(e,"euclidean",t,n)}var lv=z({euclideanNorm_:TP});function _P(e){let t={x:F(e,"x","exp")};return L.runKernel(Ri,t)}var gn=z({exp_:_P});function CP(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return L.runKernel(Ul,a,r)}var mn=z({expandDims_:CP});function EP(e){let t={x:F(e,"x","expm1")};return L.runKernel(Gl,t)}var uv=z({expm1_:EP});function FP(e,t){let n=F(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return L.runKernel(fs,a,r)}var On=z({tile_:FP});function AP(e,t,n,a="float32"){t==null&&(t=e);let r=Ve([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return On(mn(i,0),[n[0],1,1]);if(n.length===2)return On(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return On(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var pv=z({eye_:AP});function _n(e,t,n){let a={shape:e,value:t,dtype:n};return L.runKernel(gc,{},a)}function $P(e){let t={x:F(e,"x","floor","float32")};return L.runKernel(Mi,t)}var Fu=z({floor_:$P});function DP(e,t,n=0,a=0){let r=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return L.runKernel(jl,i,o)}var pi=z({gather_:DP});function RP(e,t){let n=F(e,"a","greater","string_or_numeric"),a=F(t,"b","greater","string_or_numeric");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Kl,r)}var Un=z({greater_:RP});function MP(e,t){let n=F(e,"a","greaterEqual","string_or_numeric"),a=F(t,"b","greaterEqual","string_or_numeric");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Li,r)}var vs=z({greaterEqual_:MP});function PP(e){let t={x:F(e,"x","isFinite")};return L.runKernel(Xl,t)}var NS=z({isFinite_:PP});function OP(e){let t={x:F(e,"x","isInf")};return L.runKernel(Yl,t)}var TS=z({isInf_:OP});function LP(e){let t={x:F(e,"x","isNaN")};return L.runKernel(Ql,t)}var cv=z({isNaN_:LP});function zP(e,t=.2){let n={x:F(e,"x","leakyRelu")},a={alpha:t};return L.runKernel(Bi,n,a)}var Lc=z({leakyRelu_:zP});function BP(e,t){let n=F(e,"a","less","string_or_numeric"),a=F(t,"b","less","string_or_numeric");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Jl,r)}var Xm=z({less_:BP});function WP(e,t){let n=F(e,"a","lessEqual","string_or_numeric"),a=F(t,"b","lessEqual","string_or_numeric");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Zl,r)}var ws=z({lessEqual_:WP});function _S(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return L.runKernel(Sm,{},a)}function VP(e,t=5,n=1,a=1,r=.5){let s=F(e,"x","localResponseNormalization");R(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),R(ul(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=L.runKernel(xc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var dv=z({localResponseNormalization_:VP});function UP(e){let t={x:F(e,"x","log","float32")};return L.runKernel(Wi,t)}var Zn=z({log_:UP});function GP(e){let t={x:F(e,"x","log1p")};return L.runKernel(eu,t)}var zc=z({log1p_:GP});function HP(e){return R(ns(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=F(t,"x","tf.grad","string_or_numeric"),r=n!=null?F(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(a),[a],r);return r!=null&&Nn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Ym(i),i[0]})}}function jP(e){return R(ns(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Qp(t,"args","tf.grads","string_or_numeric"),r=n!=null?F(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:s,grads:i}=L.gradients(()=>e(...a),a,r);return r!=null&&Nn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ym(i),i})}}function qP(e){return R(ns(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof Fe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof Fe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=L.gradients(()=>e(t),[t],n);return Ym(a),{grad:a[0],value:r}}}function KP(e){return R(ns(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(r=>r instanceof Fe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof Fe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=L.gradients(()=>e(...t),t,n);return n!=null&&Nn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ym(a.grads),a}}function CS(e,t){R(ns(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(u=>u instanceof as),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=L.gradients(e,t,null,s);R(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ur(e){return L.customGrad(e)}function Ym(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function XP(e){let t={x:F(e,"x","softplus")};return L.runKernel(bu,t)}var bo=z({softplus_:XP});function YP(e){let t=F(e,"x","logSigmoid");return ur(n=>({value:wt(bo(wt(n))),gradFunc:a=>B(a,ha(wt(n)))}))(t)}var ES=z({logSigmoid_:YP});function QP(e,t){let n=F(e,"a","sub"),a=F(t,"b","sub");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(mo,r)}var ce=z({sub_:QP});function JP(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ur((a,r)=>{let s=Sa(a,t,!0),i=ce(a,s),o=ce(oe(i,"float32"),Zn(be(gn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=gn(p);return ce(l,B(be(l,t,d),c))}}})(n)}var Qm=z({logSoftmax_:JP});function ZP(e,t=null,n=!1){let a=F(e,"x","logSumExp"),r=_a(t,a.shape),s=Sa(a,r,!0),i=ce(a,s),o=gn(i),l=be(o,r),u=Zn(l),p=J(W(s,u.shape),u);if(n){let d=ui(p.shape,r);return W(p,d)}return p}var hv=z({logSumExp_:ZP});function eO(e,t){let n=F(e,"a","logicalAnd","bool"),a=F(t,"b","logicalAnd","bool");ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(tu,r)}var Ta=z({logicalAnd_:eO});function tO(e){let t={x:F(e,"x","logicalNot","bool")};return L.runKernel(yc,t)}var Bc=z({logicalNot_:tO});function nO(e,t){let n=F(e,"a","logicalOr","bool"),a=F(t,"b","logicalOr","bool");ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(bc,r)}var Jm=z({logicalOr_:nO});function aO(e,t){let n=F(e,"a","logicalXor","bool"),a=F(t,"b","logicalXor","bool");return ut(n.shape,a.shape),Ta(Jm(e,t),Bc(Ta(e,t)))}var FS=z({logicalXor_:aO}),rh=2147483648;function rO(e,t,n="left"){let a=F(e,"sortedSequence","searchSorted"),r=F(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(bt(l.shape)>=rh)throw new Error(`values tensor size must less than ${rh}`);if(o.shape[1]>=rh)throw new Error(`trailing dim_size must less than ${rh} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return L.runKernel(Dm,u,p)}var mv=z({searchSorted_:rO});function AS(e,t){return mv(e,t,"left")}function sO(e,t,n,a,r){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),R(dr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Tn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=L.runKernel(Gi,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pt=z({maxPool_:sO});function iO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),R(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=L.runKernel(vc,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var fv=z({maxPool3d_:iO});function oO(e,t,n,a,r=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=L.runKernel(Cm,s,i);return{result:o[0],indexes:o[1]}}var $S=z({maxPoolWithArgmax_:oO});function lO(e,t){let n=F(e,"a","maximum"),a=F(t,"b","maximum");[n,a]=At(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(Ui,r)}var hr=z({maximum_:lO});function uO(e,t=null,n=!1){let a={x:F(e,"x","mean")},r={axis:t,keepDims:n};return L.runKernel(Hi,a,r)}var Et=z({mean_:uO});function St(e,t="float32"){if(t==="complex64"){let a=St(e,"float32"),r=St(e,"float32");return Cr(a,r)}let n=im(bt(e),t);return L.makeTensor(n,e,t)}function Yn(e,t="float32"){if(t==="complex64"){let a=Yn(e,"float32"),r=St(e,"float32");return Cr(a,r)}let n=Ix(bt(e),t);return L.makeTensor(n,e,t)}function pO(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=F(e,"x","meshgrid",e instanceof Fe?e.dtype:"float32");if(t===void 0)return[a];let r=F(t,"y","meshgrid",t instanceof Fe?t.dtype:"float32"),s=bt(a.shape),i=bt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[De(Yn([i,1],a.dtype),a),De(r,Yn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[De(a,Yn([1,i],a.dtype)),De(Yn([s,1],r.dtype),r)])}function cO(e,t){let n=F(e,"a","minimum"),a=F(t,"b","minimum");[n,a]=At(n,a),n.dtype==="bool"&&(n=oe(n,"int32"),a=oe(a,"int32")),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(qi,r)}var Au=z({minimum_:cO});function dO(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=F(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)R(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),R(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return L.runKernel(Ki,i,s)}var gv=z({mirrorPad_:dO});function hO(e,t){let n=F(e,"a","mod"),a=F(t,"b","mod");[n,a]=At(n,a);let r={a:n,b:a};return L.runKernel(nu,r)}var yv=z({mod_:hO});function mO(e,t=null,n=!1){e=F(e,"x","moments");let a=_a(t,e.shape),r=Et(e,a,n),s=r.shape;n||(s=ui(r.shape,a));let i=lt(ce(oe(e,"float32"),W(r,s))),o=Et(i,a,n);return{mean:r,variance:o}}var Zm=z({moments_:mO});function fO(e,t,n,a){let r=F(t,"data","multiRNNCell"),s=Qp(n,"c","multiRNNCell"),i=Qp(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var gO=z({multiRNNCell_:fO});function yO(e,t,n,a=!1){let r=F(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=L.runKernel(Em,o,l);return i===1?W(u,[u.size]):u}var DS=z({multinomial_:yO});function bO(e,t){let n=F(e,"a","notEqual","string_or_numeric"),a=F(t,"b","notEqual","string_or_numeric");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return L.runKernel(ru,r)}var ci=z({notEqual_:bO});function xO(e){let t={x:F(e,"x","onesLike")};return L.runKernel(lu,t)}var ea=z({onesLike_:xO});function vO(e,t){let n=F(e,"v1","outerProduct"),a=F(t,"v2","outerProduct");R(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return De(r,s)}var wO=z({outerProduct_:vO});function kO(e,t,n=0){let a=F(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return L.runKernel(Qi,s,r)}var ga=z({pad_:kO});function IO(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ga(e,[t],n)}var SO=z({pad1d_:IO});function NO(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ga(e,t,n)}var TO=z({pad2d_:NO});function _O(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ga(e,t,n)}var CO=z({pad3d_:_O});function EO(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ga(e,t,n)}var FO=z({pad4d_:EO});function AO(e,t,n){let a=F(e,"x","spaceToBatchND");R(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return L.runKernel(xu,r,s)}var Wc=z({spaceToBatchND_:AO});function $O(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=F(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(dr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=sS(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=RO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=DO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:Wc(l,d,m),b=(n==="avg"?()=>fa(y,t,s,g,i):()=>Pt(y,t,s,g,i))(),x=h?b:Mc(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function DO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function RO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var RS=z({pool_:$O});function MO(e,t){let n=F(e,"x","prelu"),a=F(t,"alpha","prelu"),r={x:n,alpha:a};return L.runKernel(Zi,r)}var Vc=z({prelu_:MO});function PO(e,t=null,n=!1){let a=F(e,"x","prod");a.dtype==="bool"&&(a=oe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return L.runKernel(eo,r,s)}var ef=z({prod_:PO});function OO(e,t,n){let a=bt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return L.makeTensor(r,e,n)}var LO=z({rand_:OO}),bv=bi(Qk()),xv=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=bv.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},zO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=bv.alea(r.toString()),this.randn=new xv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},BO=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=bv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function WO(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new zO(t,n,a,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var VO=z({randomGamma_:WO});function UO(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new xv(t,n,a,!1,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var MS=z({randomNormal_:UO});function GO(e,t=0,n=1,a="float32",r){let s=Ve(e,a),i=new BO(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var $u=z({randomUniform_:GO});function ml(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return L.runKernel(wc,{},r)}function HO(e){let t={x:F(e,"x","reciprocal")};return L.runKernel(pu,t)}var vv=z({reciprocal_:HO});function jO(e){let t={x:F(e,"x","relu")};return L.runKernel(to,t)}var Xe=z({relu_:jO});function qO(e){let t={x:F(e,"x","relu6")};return L.runKernel(ao,t)}var tf=z({relu6_:qO});function KO(e,t){let n={x:F(e,"x","reverse")},a={dims:t};return L.runKernel(ro,n,a)}var ta=z({reverse_:KO});function XO(e){let t=F(e,"x","reverse");return R(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ta(t,0)}var YO=z({reverse1d_:XO});function QO(e,t){let n=F(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ta(n,t)}var JO=z({reverse2d_:QO});function ZO(e,t){let n=F(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ta(n,t)}var e3=z({reverse3d_:ZO});function t3(e,t){let n=F(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ta(n,t)}var n3=z({reverse4d_:t3});function a3(e){let t={x:F(e,"x","round")};return L.runKernel(so,t)}var nf=z({round_:a3});function r3(e){let t={x:F(e,"x","rsqrt","float32")};return L.runKernel(io,t)}var af=z({rsqrt_:r3});function s3(e){let t={x:F(e,"x","selu")};return L.runKernel(mu,t)}var rf=z({selu_:s3});function i3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),R(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),R(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];R(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=xs(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var xo=z({separableConv2d_:i3});async function o3(e,t){let n=F(e,"x","setdiff1d"),a=F(t,"y","setdiff1d");R(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new qt([o],n.dtype),u=new qt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var PS=o3;function l3(e){let t={x:F(e,"x","sign")};return L.runKernel(yu,t)}var wv=z({sign_:l3});function u3(e){let t={x:F(e,"x","sin","float32")};return L.runKernel(oo,t)}var sf=z({sin_:u3});function p3(e){let t={x:F(e,"x","sinh")};return L.runKernel(gu,t)}var of=z({sinh_:p3});function c3(e,t,n){let a=F(e,"x","slice1d");return R(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),He(a,[t],[n])}var lf=z({slice1d_:c3});function d3(e,t,n){let a=F(e,"x","slice2d");return R(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var kv=z({slice2d_:d3});function h3(e,t,n){let a=F(e,"x","slice3d");return R(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var Du=z({slice3d_:h3});function m3(e,t,n){let a=F(e,"x","slice4d");return R(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),He(a,t,n)}var tc=z({slice4d_:m3});function f3(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return L.runKernel(co,a,r)}var Qa=z({softmax_:f3});function g3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(wm,t)}var Uc=z({fft_:g3});function y3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(km,t)}var fl=z({ifft_:y3});function b3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=fl(r)}else{let r=[n,2*(t-1)],s=W(hl(e),[n,t]),i=W(Dc(e),[n,t]),o=ta(He(s,[0,1],[n,t-2]),1),l=B(ta(He(i,[0,1],[n,t-2]),1),we(-1)),u=Ze([s,o],1),p=Ze([i,l],1),d=W(Cr(u,p),[r[0],r[1]]);a=fl(d)}if(a=hl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var uf=z({irfft_:b3});function x3(e,t,n=0){let a={x:F(e,"x","split")},r={numOrSizeSplits:t,axis:n};return L.runKernel(vu,a,r)}var zn=z({split_:x3});function v3(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=He(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Ze([e,St(m)],e.shape.length-1),n=t}else r=e;let s=Ke(r),i=W(Cr(r,s),[a,n]),o=Uc(i),l=Math.floor(n/2)+1,u=hl(o),p=Dc(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Cr(d[0],c[0]),h)}var Gc=z({rfft_:v3});function w3(e,t){let n=F(e,"a","squaredDifference"),a=F(t,"b","squaredDifference");[n,a]=At(n,a),ut(n.shape,a.shape);let r={a:n,b:a},s={};return L.runKernel(ho,r,s)}var pf=z({squaredDifference_:w3});function k3(e,t){let n=F(e,"x","squeeze");return W(n,tI(n.shape,t).newShape)}var pr=z({squeeze_:k3});function I3(e,t=0){let n=Qp(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return L.runKernel(uu,a,r)}var Mt=z({stack_:I3});function S3(e,t=0){let n={x:F(e,"x","step")},a={alpha:t};return L.runKernel(gs,n,a)}var Ru=z({step_:S3});function N3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:F(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return L.runKernel(ku,u,p)}var Iv=z({stridedSlice_:N3});function T3(e){let t={x:F(e,"x","tan","float32")};return L.runKernel(fo,t)}var Sv=z({tan_:T3});function qe(e,t){xi(e);let n=lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ys(e,null,n,t)}function Ha(e,t,n){if(xi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=lr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ys(e,t,a,n)}function Ja(e,t,n){if(xi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=lr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ys(e,t,a,n)}function _3(e,t,n){if(xi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=lr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ys(e,t,a,n)}function C3(e,t,n){if(xi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=lr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ys(e,t,a,n)}function E3(e,t=1,n=!0){let a=F(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=L.runKernel(Iu,s,i);return{values:o,indices:l}}var Nv=z({topk_:E3});function F3(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new xv(t,n,a,!0,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var cf=z({truncatedNormal_:F3});function A3(e,t=0){let n=F(e,"x","unique","string_or_numeric");R(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=L.runKernel(Lm,a,r);return{values:s,indices:i}}var Lh=z({unique_:A3});function $3(e,t,n){let a=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");R(ul(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return L.runKernel(_c,s,i)}var Tv=z({unsortedSegmentSum_:$3});function D3(e,t=0){let n=F(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return L.runKernel(Nu,a,r)}var ht=z({unstack_:D3});function OS(e,t){return mv(e,t,"right")}function LS(e,t=!0,n,a){return L.makeVariable(e,t,n,a)}function zS(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Ve(e,"int32"),r=Ve([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function R3(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),a=zS(t.shape,n);return e!==t&&t.dispose(),a}var _v=R3;async function M3(e,t,n){let a=F(e,"tensor","boolMask"),r=F(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;R(i>0,()=>"mask cannot be scalar"),Nn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await _v(d),h=pr(c,[1]),m=pi(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var P3=M3;function O3(e,t,n,a,r=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(n,"decay","movingAverage");bI(s,i),R(ds(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=we(1),u=ce(l,o),p=B(ce(i,s),u);if(r){R(a!=null,()=>"When using zeroDebias: true, step is required.");let d=F(a,"step","movingAverage");p=fe(p,ce(l,Fr(o,d)))}return J(s,p)}var L3=z({movingAverage_:O3});function z3(e,t,n){let a=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");zx(r,a,n);let s={indices:a,updates:r},i={shape:n};return L.runKernel(du,s,i)}var BS=z({scatterND_:z3});function B3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function W3(e,t,n,a=0){let r=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense","string_or_numeric"),i=F(a,"defaultValue","sparseToDense",s.dtype);B3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return L.runKernel(Rm,o,l)}var Cv=z({sparseToDense_:W3});function V3(e,t){let n=F(t,"indices","gatherND","int32"),a={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(ql,a)}var WS=z({gatherND_:V3});function U3(e,t){if(t==null)return e.shape.slice();if(ds(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function G3(e,t,n,a){let r=F(e,"x","dropout");if(R(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Fe?r.clone():r;let s=U3(r,n),i=1-t,o=fe(Fu(J($u(s,0,1,"float32",a),i)),i);return B(r,o)}var VS=z({dropout_:G3});function US(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Ev(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return qe(r,"float32")}async function H3(e,t,n=1){let a=F(e,"predictions","inTopK"),r=F(t,"targets","inTopK");R(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),R(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Nn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];R(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=nI("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Qn(p,r.shape,"bool")}var j3=H3,ss={};Me(ss,{conv2d:()=>X3,depthwiseConv2d:()=>Z3,matMul:()=>tL});function q3(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),R(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];R(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),R(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Tn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return L.runKernel(dm,d,c)}var Fv=z({conv2DBackpropFilter_:q3});function df(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Ru(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function hf(e,t){let n=t,a=Vt(e.shape,t.shape);return a.length>0&&(n=be(n,a)),W(n,e.shape)}function mf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Eu(e);if(t==="relu6")return tf(e);if(t==="prelu")return Vc(e,n);if(t==="leakyrelu")return Lc(e,a);if(t==="sigmoid")return ha(e);throw new Error(`Unknown fused activation ${t}.`)}var ff=(e,t)=>!(e>0)||t==="linear";function K3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",ff(L.state.gradientDepth,l)===!1){R(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=Rt(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),mf(T,l,u,p)}let d=F(e,"x","conv2d","float32"),c=F(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Tn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];R(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),R(dr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Rc(h.shape,c.shape,n,s,a,i),y;o!=null&&(y=F(o,"bias","fused conv2d"),[y]=At(y,d),r==="NHWC"?ut(g.outShape,y.shape):(R(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),R(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(u!=null){let T=u.shape;if(R(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)R(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{ut(T,g.outShape)}catch(_){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}b=F(u,"prelu weights","fused conv2d")}let x=(T,_)=>{R(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,A,M,$]=_,S=df(T,M,l);R(rs(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=ev(A.shape,S,E,n,a),V=Fv(A,S,E.shape,n,a),j=[P,V];if($!=null){let q=hf($,S);j.push(q)}return j},v={x:h,filter:c,bias:y,preluActivationWeights:b},k={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((T,_,E)=>{let A=L.runKernel(ai,v,k);return E([_,T,A]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:x}})(h,c):ur((T,_,E,A)=>{let M=L.runKernel(ai,v,k);return A([_,T,M,E]),m&&(M=W(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:x}})(h,c,y)}var X3=z({fusedConv2d_:K3});function Y3(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return L.runKernel(gm,u,p)}var GS=z({depthwiseConv2dNativeBackpropFilter_:Y3});function Q3(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=L.runKernel(ym,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var HS=z({depthwiseConv2dNativeBackpropInput_:Q3});function J3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(ff(L.state.gradientDepth,l)===!1){let k=xs(e,t,n,a,r,s,i);return o!=null&&(k=J(k,o)),mf(k,l,u,p)}let d=F(e,"x","depthwiseConv2d","float32"),c=F(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),R(dr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Tn("fused depthwiseConv2d",a,i);let f=Rc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=F(o,"bias","fused conv2d"),[g]=At(g,d),ut(f.outShape,g.shape));let y;u!=null&&(y=F(u,"prelu weights","fused depthwiseConv2d"));let b=(k,T)=>{R(rs(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[_,E,A,M]=T,$=df(k,A,l),S=HS(E.shape,$,_,n,a,s,i),P=GS(E,$,_.shape,n,a,s,i);if(M!=null){let V=hf(g,$);return[S,P,V]}return[S,P]},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((k,T,_)=>{let E=L.runKernel(ri,x,v);return _([T,k,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:b}})(h,c):ur((k,T,_,E)=>{let A=L.runKernel(ri,x,v);return E([T,k,A,_]),m&&(A=W(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,c,g)}var Z3=z({fusedDepthwiseConv2d_:J3});function eL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(ff(L.state.gradientDepth,s)===!1){let M=De(e,t,n,a);return r!=null&&(M=J(M,r)),mf(M,s,i,o)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=At(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=bt(m),y=bt(f);R(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=ut(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),v=a?W(u,[y,h,d]):W(u,[y,d,h]),k;r!=null&&(k=F(r,"bias","fused matMul"),[k]=At(k,l),ut(b,k.shape));let T;i!=null&&(T=F(i,"prelu weights","fused matMul"));let _=(M,$)=>{let[S,P,V,j]=$,q=df(W(M,V.shape),V,s),K,Z;if(!n&&!a?(K=De(q,P,!1,!0),Z=De(S,q,!0,!1)):!n&&a?(K=De(q,P,!1,!1),Z=De(q,S,!0,!1)):n&&!a?(K=De(P,q,!1,!0),Z=De(S,q,!1,!1)):(K=De(P,q,!0,!0),Z=De(q,S,!0,!0)),r!=null){let ee=hf(j,q);return[K,Z,ee]}else return[K,Z]},E={a:x,b:v,bias:k,preluActivationWeights:T},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ur((M,$,S)=>{let P=L.runKernel(ni,E,A);return S([M,$,P]),{value:W(P,b),gradFunc:_}})(x,v):ur((M,$,S,P)=>{let V=L.runKernel(ni,E,A);return P([M,$,V,S]),{value:W(V,b),gradFunc:_}})(x,v,k)}var tL=z({fusedMatMul_:eL});function nL(e){return Ev(e,.54,.46)}var aL=z({hammingWindow_:nL});function rL(e){return Ev(e,.5,.5)}var jS=z({hannWindow_:rL});function sL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(He(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Ze([He(e,s,t-o),_n([o],r)]);i.push(l),s+=n}return i.length===0?Ha([],[0,t]):W(Ze(i),[i.length,t])}var qS=z({frame_:sL});function iL(e,t,n,a,r=jS){a==null&&(a=US(t));let s=qS(e,t,n),i=B(s,r(t));return Gc(i,a)}var oL=z({stft_:iL});function lL(e,t,n,a,r="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),u=o.shape[0];R(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),R(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),R(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),R(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),R(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return L.runKernel(zl,p,d)}var uL=z({cropAndResize_:lL});function pL(e){let t=F(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Hl,n,{})}var cL=z({flipLeftRight_:pL});function dL(e){let t=F(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,On(t,r)}var hL=z({grayscaleToRGB_:dL});function mL(e,t,n=0,a=.5){let r=F(e,"image","rotateWithOffset","float32");R(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return L.runKernel(_u,s,i)}var fL=z({rotateWithOffset_:mL});function Mu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),R(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),R(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function gL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression","float32"),i=F(t,"scores","nonMaxSuppression","float32"),o=Mu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return L.runKernel(su,{boxes:s,scores:i},l)}var yL=z({nonMaxSuppression_:gL});function bL(e,t,n){let a=xL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function xL(e,t,n){return wL(e,t,n||vL)}function vL(e,t){return e>t?1:e<t?-1:0}function wL(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function KS(e,t,n,a,r){return Av(e,t,n,a,r,0)}function XS(e,t,n,a,r,s){return Av(e,t,n,a,r,0,!1,s,!0)}function YS(e,t,n,a,r,s){return Av(e,t,n,a,r,s,!0)}function Av(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(P1);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let k=d.length-1;k>=x;--k){let T=kL(e,b,d[k]);if(T>=a){v=!0;break}if(g.score=g.score*IL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,v||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&bL(u,g,P1))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function kL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function IL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function P1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function SL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=Mu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=KS(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),qe(d,"int32")}var NL=SL;function TL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=Mu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=L.runKernel(ou,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var _L=z({nonMaxSuppressionWithScore_:TL});async function CL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=Mu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=YS(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(c,"int32"),selectedScores:qe(h)}}var EL=CL;function FL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=Mu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=L.runKernel(iu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var AL=z({nonMaxSuppressionPadded_:FL});async function $L(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=Mu(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=XS(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:qe(m,"int32"),validOutputs:we(f,"int32")}}var DL=$L;function RL(e,t,n=!1,a=!1){let r=F(e,"images","resizeBilinear");R(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(no,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var QS=z({resizeBilinear_:RL});function ML(e,t,n=!1,a=!1){let r=F(e,"images","resizeNearestNeighbor");R(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=L.runKernel(kc,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var JS=z({resizeNearestNeighbor_:ML});function PL(e,t="binary",n=!1,a=.5){let r=F(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=B(qe([a]),255),p,d,c,h;if(R(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),R(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),R(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=B(p,s),g=B(d,i),y=B(c,o);h=J(J(f,g),y)}else h=e;if(t==="otsu"){let f=Jx(oe(nf(h),"int32"),Qn([]),256);u=OL(f,l)}let m=n?ws(h,u):Un(h,u);return oe(B(m,255),"int32")}function OL(e,t){let n=qe([-1]),a=qe([0]),r=qe([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=He(e,0,d+1),i=He(e,d+1),u=fe(be(s),t),p=fe(be(i),t);let c=be(B(s,ml(0,s.size)));o=fe(c,be(s));let h=_n(i.shape,s.size),m=J(ml(0,i.size),h),f=B(i,m);l=fe(be(f),be(i));let g=ce(o,l),y=ce(o,l),b=B(u,p);r=B(B(b,g),y);let x=Un(r,a);a=fn(x,r,a),n=fn(x,qe([d]),n)}return n}var LL=z({threshold_:PL});function zL(e,t,n="nearest",a="constant",r=0,s){let i=F(e,"image","transform","float32"),o=F(t,"transforms","transform","float32");R(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),R(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return L.runKernel(Su,l,u)}var BL=z({transform_:zL});function WL(e,t,n){R(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=F(e,"a","bandPart");R(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(ml(0,s,1,"int32"),[-1,1]),l=ml(0,i,1,"int32"),u=ce(o,l),p=Ta(ws(u,we(+t,"int32")),vs(u,we(-n,"int32"))),d=St([s,i],a.dtype);return W(Mt(ht(W(a,[-1,s,i])).map(c=>fn(p,c,d))),r)}var VL=z({bandPart_:WL});function UL(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)R(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>pr(r,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(be(B(n[i],s)),n[i]);s=ce(s,o)}return fe(s,Oc(s,"euclidean"))}));return t?Mt(n,0):n}var GL=z({gramSchmidt_:UL});function HL(e,t=!1){if(R(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return O1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ht(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=O1(l,t);r.push(u),s.push(p)});let i=W(Mt(r,0),e.shape),o=W(Mt(s,0),e.shape);return[i,o]}}function O1(e,t=!1){return L.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=pv(n),s=Tr(e),i=Ha([[1]],[1,1]),o=Tr(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=L.tidy(()=>{let h=He(s,[u,u],[n-u,1]),m=Oc(h),f=He(s,[u,u],[1,1]),g=fn(Un(f,0),Ha([[-1]]),Ha([[1]])),y=ce(f,B(g,m)),b=fe(h,y);b.shape[0]===1?o=Tr(i):o=Ze([i,He(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=wt(fe(De(g,y),m)),v=He(s,[u,0],[n-u,a]),k=B(x,o),T=Ae(o);if(u===0)s=ce(v,De(k,De(T,v)));else{let A=ce(v,De(k,De(T,v)));s=Ze([He(s,[0,0],[u,a]),A],0)}let _=Ae(k),E=He(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ce(E,De(De(E,o),_));else{let A=ce(E,De(De(E,o),_));r=Ze([He(r,[0,0],[n,u]),A],1)}return[o,s,r]}),Re([p,d,c])}return!t&&n>a&&(r=He(r,[0,0],[n,a]),s=He(s,[0,0],[a,a])),[r,s]})}var jL=z({qr_:HL}),kn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(kn||(kn={}));function qL(e,t,n=kn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===kn.NONE)return s;if(n===kn.SUM)return be(s);if(n===kn.MEAN){if(r==null)return Et(s);{let i=a.size/r.size,o=fe(be(s),be(r));return i>1?fe(o,we(i)):o}}if(n===kn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(be(s),we(a.size));{let i=B(r,Yn(a.shape)),o=oe(be(ci(i,we(0))),"float32");return fe(be(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Ar=z({computeWeightedLoss_:qL});function KL(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=F(n,"weights","absoluteDifference")),Nn(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ce(r,s));return Ar(o,i,a)}var XL=z({absoluteDifference_:KL});function YL(e,t,n,a,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;a!=null&&(o=F(a,"weights","cosineDistance")),Nn(s.shape,i.shape,"Error in cosineDistance: ");let l=we(1),u=ce(l,be(B(s,i),n,!0));return Ar(u,o,r)}var QL=z({cosineDistance_:YL});function JL(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;n!=null&&(i=F(n,"weights","hingeLoss")),Nn(r.shape,s.shape,"Error in hingeLoss: ");let o=we(1);r=ce(B(we(2),r),o);let l=Xe(ce(o,B(r,s)));return Ar(l,i,a)}var ZL=z({hingeLoss_:JL});function ez(e,t,n,a=1,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;n!=null&&(o=F(n,"weights","huberLoss")),Nn(s.shape,i.shape,"Error in huberLoss: ");let l=we(a),u=zt(ce(i,s)),p=Au(u,l),d=ce(u,p),c=J(B(we(.5),lt(p)),B(l,d));return Ar(c,o,r)}var tz=z({huberLoss_:ez});function nz(e,t,n,a=1e-7,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;n!=null&&(o=F(n,"weights","logLoss")),Nn(s.shape,i.shape,"Error in logLoss: ");let l=we(1),u=we(a),p=wt(B(s,Zn(J(i,u)))),d=B(ce(l,s),Zn(J(ce(l,i),u))),c=ce(p,d);return Ar(c,o,r)}var az=z({logLoss_:nz});function rz(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=F(n,"weights","meanSquaredError")),Nn(r.shape,s.shape,"Error in meanSquaredError: ");let o=pf(r,s);return Ar(o,i,a)}var sz=z({meanSquaredError_:rz});function iz(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),a=F(t,"logits","sigmoidCrossEntropyWithLogits");Nn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=B(a,n),i=zc(gn(wt(zt(a))));return J(ce(r,s),i)}function oz(e,t,n,a=0,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","sigmoidCrossEntropy")),Nn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=we(a),p=we(1),d=we(.5);s=J(B(s,ce(p,u)),B(d,u))}let l=iz(s,i);return Ar(l,o,r)}var lz=z({sigmoidCrossEntropy_:oz});function uz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ur((a,r,s)=>{let i=hv(r,[n],!0),o=ce(oe(r,"float32"),i);s([a,o]);let l=wt(B(o,a));return{value:be(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=ui(u.shape,[n]);return[B(W(u,h),ce(oe(d,"float32"),gn(c))),B(W(u,h),ce(gn(c),oe(d,"float32")))]}}})(e,t)}function pz(e,t,n,a=0,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","softmaxCrossEntropy")),Nn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=we(a),p=we(1),d=we(s.shape[1]);s=J(B(s,ce(p,u)),fe(u,d))}let l=uz(s,i);return Ar(l,o,r)}var cz=z({softmaxCrossEntropy_:pz});function dz(e,t,n,a){let r=F(e,"indices","sparseFillEmptyRows","int32"),s=F(t,"values","sparseFillEmptyRows"),i=F(n,"denseShape","sparseFillEmptyRows","int32"),o=F(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=L.runKernel(Ic,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var hz=z({sparseFillEmptyRows_:dz});function mz(e,t,n){let a=F(e,"inputIndices","sparseReshape","int32"),r=F(t,"inputShape","sparseReshape","int32"),s=F(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=L.runKernel(wu,i);return{outputIndices:o[0],outputShape:o[1]}}var fz=z({sparseReshape_:mz});function gz(e,t,n){let a=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean","int32"),s=F(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Sc,i)}var yz=z({sparseSegmentMean_:gz});function bz(e,t,n){let a=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum","int32"),s=F(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return L.runKernel(Nc,i)}var xz=z({sparseSegmentSum_:bz});function vz(e,t,n,a,r,s,i,o){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=L.runKernel(Mm,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var wz=z({stringNGrams_:vz});function kz(e,t,n=!0){let a=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=L.runKernel(Pm,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var Iz=z({stringSplit_:kz});function Sz(e,t){let n=F(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(Om,r,a)}var Nz=z({stringToHashBucketFast_:Sz}),Tz={fft:Uc,ifft:fl,rfft:Gc,irfft:uf},_z={hammingWindow:aL,hannWindow:jS,frame:qS,stft:oL},Ln={flipLeftRight:cL,grayscaleToRGB:hL,resizeNearestNeighbor:JS,resizeBilinear:QS,rotateWithOffset:fL,cropAndResize:uL,nonMaxSuppression:yL,nonMaxSuppressionAsync:NL,nonMaxSuppressionWithScore:_L,nonMaxSuppressionWithScoreAsync:EL,nonMaxSuppressionPadded:AL,nonMaxSuppressionPaddedAsync:DL,threshold:LL,transform:BL},ZS={bandPart:VL,gramSchmidt:GL,qr:jL},Cz={absoluteDifference:XL,computeWeightedLoss:Ar,cosineDistance:QL,hingeLoss:ZL,huberLoss:tz,logLoss:az,meanSquaredError:sz,sigmoidCrossEntropy:lz,softmaxCrossEntropy:cz},Mp={sparseFillEmptyRows:hz,sparseReshape:fz,sparseSegmentMean:yz,sparseSegmentSum:xz},yh={stringNGrams:wz,stringSplit:Iz,stringToHashBucketFast:Nz},$r=class extends eS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Re(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return CS(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty($r,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var gf=class extends $r{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;O(()=>{let l=J(B(i,this.rho),B(lt(s),1-this.rho)),u=B(fe(un(J(o,this.epsilon)),un(J(i,this.epsilon))),s),p=J(B(o,this.rho),B(lt(u),1-this.rho));i.assign(l),o.assign(p);let d=J(B(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};gf.className="Adadelta";bs(gf);var yf=class extends $r{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:O(()=>_n(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;O(()=>{let i=J(s,lt(r));s.assign(i);let o=J(B(fe(r,un(J(i,L.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};yf.className="Adagrad";bs(yf);var bf=class extends $r{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],O(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=ce(1,this.accBeta2);t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:O(()=>Ke(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:O(()=>Ke(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=J(B(u,this.beta1),B(l,1-this.beta1)),c=J(B(p,this.beta2),B(lt(l),1-this.beta2)),h=fe(d,n),m=fe(c,a);u.assign(d),p.assign(c);let f=J(B(fe(h,J(un(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),O(()=>{this.accBeta1.assign(Fr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Fr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};bf.className="Adam";bs(bf);var xf=class extends $r{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],O(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),a==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);O(()=>{let n=ce(1,this.accBeta1),a=fe(-this.learningRate,J(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=L.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ke(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ke(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=J(B(u,this.beta1),B(l,1-this.beta1)),c=B(p,this.beta2),h=zt(l),m=hr(c,h);u.assign(d),p.assign(m);let f=J(B(fe(a,n),fe(d,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};xf.className="Adamax";bs(xf);var Hc=class extends $r{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=L.registeredVariables[t];O(()=>{let s=J(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=tn(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Hc.className="SGD";bs(Hc);var vf=class extends Hc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&O(()=>{let i,o=J(B(this.m,r),s);this.useNesterov?i=J(B(this.c,J(s,B(o,this.m))),a):i=J(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};vf.className="Momentum";bs(vf);var wf=class extends $r{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=L.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:O(()=>Ke(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:O(()=>Ke(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;O(()=>{let l=J(B(i,this.decay),B(lt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=J(B(u,this.decay),B(s,1-this.decay)),d=fe(B(s,this.learningRate),un(ce(l,J(lt(p),this.epsilon)))),c=J(B(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=ce(a,c);a.assign(h)}else{let u=J(B(i,this.decay),B(lt(s),1-this.decay)),p=J(B(o,this.momentum),fe(B(s,this.learningRate),un(J(u,this.epsilon))));i.assign(u),o.assign(p);let d=ce(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};wf.className="RMSProp";bs(wf);var qr=class{static sgd(e){return new Hc(e)}static momentum(e,t,n=!1){return new vf(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new wf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new bf(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new gf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new xf(e,t,n,a,r)}static adagrad(e,t=.1){return new yf(e,t)}},Gs={sgd:qr.sgd,momentum:qr.momentum,adadelta:qr.adadelta,adagrad:qr.adagrad,rmsprop:qr.rmsprop,adamax:qr.adamax,adam:qr.adam},Ez=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function $v(){return new Promise(e=>Ez(()=>e()))}var C={};Me(C,{ERF_A1:()=>Bz,ERF_A2:()=>Wz,ERF_A3:()=>Vz,ERF_A4:()=>Uz,ERF_A5:()=>Gz,ERF_P:()=>zz,PARALLELIZE_THRESHOLD:()=>Dv,SELU_SCALE:()=>t2,SELU_SCALEALPHA:()=>e2,applyActivation:()=>mf,assertAndGetBroadcastShape:()=>ut,assertAxesAreInnerMostDims:()=>yP,assertParamsConsistent:()=>Fz,assignToTypedArray:()=>Yz,axesAreInnerMostDims:()=>iv,calculateShapes:()=>GI,checkEinsumDimSizes:()=>nB,checkPadOnDimRoundingMode:()=>Tn,combineLocations:()=>wS,complexWithEvenIndex:()=>qz,complexWithOddIndex:()=>Kz,computeConv2DInfo:()=>Rc,computeConv3DInfo:()=>iS,computeDefaultPad:()=>Yx,computeDilation2DInfo:()=>gM,computeOptimalWindowSize:()=>$z,computeOutAndReduceShapes:()=>kS,computeOutShape:()=>Az,computePool2DInfo:()=>sS,computePool3DInfo:()=>yM,convertConv2DDataFormat:()=>oS,decodeEinsumEquation:()=>eB,eitherStridesOrDilationsAreOne:()=>dr,expandShapeToKeepDim:()=>ui,exponent:()=>Jz,exponents:()=>Qz,fromStringArrayToUint8:()=>IB,fromUint8ToStringArray:()=>kB,getAxesPermutation:()=>IS,getBroadcastDims:()=>WI,getComplexWithIndex:()=>Xz,getEinsumComputePath:()=>aB,getEinsumPermutation:()=>tB,getFusedBiasGradient:()=>hf,getFusedDyActivation:()=>df,getImageCenter:()=>Dz,getInnerMostAxes:()=>bP,getPermuted:()=>Mz,getReductionAxes:()=>Vt,getReshaped:()=>Rz,getReshapedPermuted:()=>Pz,getSliceBeginCoords:()=>Oz,getSliceSize:()=>Lz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>oB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>lB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>uB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>dB,getSparseReshapeInputOutputMismatchErrorMessage:()=>mB,getSparseReshapeInputOutputMultipleErrorMessage:()=>hB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>pB,getSparseReshapeNegativeOutputDimErrorMessage:()=>cB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>bB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>fB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>gB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>yB,getUndoAxesPermutation:()=>ov,isIdentityPermutation:()=>rB,log:()=>M$,mergeRealAndImagArrays:()=>Hz,prepareAndValidate:()=>UI,prepareSplitSize:()=>iB,segment_util:()=>n2,shouldFuse:()=>ff,slice_util:()=>Kt,splitRealAndImagArrays:()=>jz,tupleValuesAreOne:()=>rs,upcastType:()=>ma,validateInput:()=>zx,validateUpdateShape:()=>Lx,warn:()=>Xr});function Fz(e,t){let n=e[0].length;e.forEach((r,s)=>{R(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)R(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function Az(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Dv=30;function $z(e){return e<=Dv?e:Ch(e,Math.floor(Math.sqrt(e)))}function Dz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function Rz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function Mz(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Pz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function Oz(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function Lz(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var e2=1.7580993408473768,t2=1.0507009873554805,zz=.3275911,Bz=.254829592,Wz=-.284496736,Vz=1.421413741,Uz=-1.453152027,Gz=1.061405429;function Hz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function jz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function qz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Kz(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function Xz(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function Yz(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function Qz(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function Jz(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var hb="->",Zz=/->/g,L1=",",z1="...";function eB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Zz,"").length)/hb.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${hb}").`);let[a,r]=e.split(hb);R(a.indexOf(z1)===-1,()=>`The ellipsis notation ("${z1}") is not supported yet.`);let s=a.split(L1),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==L1&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function tB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function nB(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:R(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function aB(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=sB(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function rB(e){return e.every((t,n)=>t===n)}function sB(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function iB(e,t,n=0){let a=[];if(typeof t=="number")R(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);R(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}R(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function oB(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function lB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function uB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function pB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function cB(e,t){return`size ${e} must be non-negative, not ${t}`}function dB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function hB(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function mB(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function fB(){return"segment ids must be >= 0"}function gB(){return"segment ids are not increasing"}function yB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function bB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var n2={};Me(n2,{collectGatherOpShapeInfo:()=>wB,computeOutShape:()=>vB,segOpComputeOptimalWindowSize:()=>xB});function xB(e,t){let n=!1,a;for(e<=Dv?(a=e,n=!0):a=Ch(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Ch(e,a+1);return a}function vB(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function wB(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function kB(e){try{return e.map(t=>Rh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function IB(e){return e.map(t=>Fc(t))}var mr={};Me(mr,{nonMaxSuppressionV3Impl:()=>KS,nonMaxSuppressionV4Impl:()=>XS,nonMaxSuppressionV5Impl:()=>YS,whereImpl:()=>zS});var a2={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Ru(oe(n,"float32"),-1))}}},SB={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(oe(n,"float32")),r=un(ce(we(1),a));return wt(fe(e,r))}}}},NB={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(ce(lt(oe(n,"float32")),1));return fe(e,a)}}}},TB={kernelName:hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=e,i=Vt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Vt(a.shape,r);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}},_B={kernelName:vi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},CB={kernelName:wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},EB={kernelName:cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ke(n)}}},FB={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,un(ce(we(1),lt(oe(n,"float32")))))}}},AB={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(J(we(1),lt(oe(n,"float32"))));return fe(e,a)}}}},$B={kernelName:Ml,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=J(lt(n),lt(a)),i=B(e,fe(a,s)),o=Vt(n.shape,r);return o.length>0&&(i=be(i,o)),W(i,n.shape)},b:()=>{let s=J(lt(n),lt(a)),i=wt(B(e,fe(n,s))),o=Vt(a.shape,r);return o.length>0&&(i=be(i,o)),W(i,a.shape)}}}},DB={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(lt(oe(n,"float32")),1))}}},RB={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ce(we(1),lt(oe(n,"float32"))))}}};function MB(e,t,n,a,r,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),R(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Tn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=L.runKernel(lm,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var PB=z({avgPool3dGrad_:MB}),OB={kernelName:dc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>PB(e,a,r,s,i,o)}}};function LB(e,t,n,a,r){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");R(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),R(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),R(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=L.runKernel(om,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var zB=z({avgPoolGrad_:LB}),BB={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>zB(e,a,r,s,i)}}},WB={kernelName:Ii,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>De(e,r,!1,!0),b:()=>De(a,e,!0,!1)}:!s&&i?{a:()=>De(e,r,!1,!1),b:()=>De(e,a,!0,!1)}:s&&!i?{a:()=>De(r,e,!1,!0),b:()=>De(a,e,!1,!1)}:{a:()=>De(r,e,!0,!0),b:()=>De(e,a,!0,!0)}}},VB={kernelName:Pl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Wc(e,a,r)}}},UB={kernelName:dI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>be(e,o,!0)}}},GB={kernelName:Si,gradFunc:e=>({x:()=>e.clone()})},HB={kernelName:Ni,gradFunc:e=>({x:()=>Ke(e)})},jB={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>fn(Ta(vs(a,r),ws(a,s)),e,Ke(e))}}},qB={kernelName:hc,inputsToSave:["x"],gradFunc:a2.gradFunc},KB={kernelName:Ol,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=_a(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},XB={kernelName:Ti,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return R(rs(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>ev(a.shape,e,r,i,o,l),filter:()=>Fv(a,e,r.shape,i,o,l)}}},YB={kernelName:_i,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>Fv(e,a,r.shape,s,i,o,l)}}};function QB(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),R(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),R(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return L.runKernel(hm,o,l)}var JB=z({conv3DBackpropFilter_:QB}),ZB={kernelName:mc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;R(rs(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>gS(i.shape,e,o,r,s),filter:()=>JB(i,e,o.shape,r,s)}}},eW={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(wt(sf(oe(n,"float32"))),e)}}},tW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(of(oe(n,"float32")),e)}}},nW={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=IS([r],a.rank),l=Km(e,r,s,!i);return o!=null&&(l=Ae(l,o)),l}}}},aW={kernelName:Ai,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;R(rs(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),R(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),R(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),R(dr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Tn("depthwiseConv2d",s,i),{x:()=>HS(l.shape,e,u,r,s,o,i),filter:()=>GS(l,e,u.shape,r,s,o,i)}}},rW={kernelName:fc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>L.runKernel(Eh,s,n),filter:()=>L.runKernel(Fh,i,n)}}},sW={kernelName:Di,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>L.runKernel(vm,a)}}},iW={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(gn(wt(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},oW={kernelName:Ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},lW={kernelName:Ul,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},uW={kernelName:Gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,gn(n))}}},pW={kernelName:Mi,gradFunc:e=>({x:()=>Ke(e)})},cW={kernelName:Pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Vt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Vt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=lt(a);return wt(fe(s,oe(o,"float32")))}}}},dW={kernelName:Oi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?we(1):o,u=Vt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=ce(r,s),c=B(e,l),h=af(J(i,we(a))),m=B(B(B(h,h),h),we(-.5));return{x:()=>s.rank===1?W(B(B(e,On(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,we(-1)),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},variance:()=>{let f=B(B(m,d),c);return s.rank===1&&(f=be(f,u)),W(f,s.shape)},scale:()=>{let f=B(d,h),g=B(e,f);return s.rank===1&&(g=be(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=be(f,u)),W(f,s.shape)}}}},hW={kernelName:jl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=_a(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=B1(0,p),m=B1(p+1,p+1+c),f=W1([u,[l],d]),g=W(e,f),y=W(r,[l]),b=W1([[p],h,m]),x=Ae(g,b),v=Tv(x,y,a.shape[i]),k=ov(b);return v=Ae(v,k),v},indices:()=>r}}};function B1(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function W1(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var mW={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ke(n),b:()=>Ke(a)}}},fW={kernelName:zi,gradFunc:e=>({x:()=>oe(e,"float32")})},gW={kernelName:Xl,gradFunc:e=>({x:()=>Ke(e)})},yW={kernelName:Yl,gradFunc:e=>({x:()=>Ke(e)})},bW={kernelName:Ql,gradFunc:e=>({x:()=>Ke(e)})},xW={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Un(a,0);return{x:()=>fn(s,e,B(e,r))}}},vW={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,J(n,1))}}},wW={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,oe(n,"float32"))}}},kW={kernelName:hI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=gn(a);return ce(e,B(be(e,r,!0),s))}}}};function IW(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return L.runKernel(Nm,o,l)}var SW=z({localResponseNormalizationBackprop_:IW}),NW={kernelName:xc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>SW(a,r,e,s,i,o,l)}}};function r2(e,t,n,a){return t.rank<n.rank&&(t=W(t,ui(t.shape,a))),e.rank<n.rank&&(e=W(e,ui(e.shape,a))),{x:()=>B(e,oe(Jn(n,t),e.dtype))}}var V1={kernelName:Vi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=_a(r,s.shape),l=r2(e,i,s,o);return{x:()=>l.x()}}},TW={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,oe(vs(n,a),"float32")),b:()=>B(e,oe(Xm(n,a),"float32"))}}};function _W(e,t,n,a,r,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),R(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Tn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=L.runKernel(_m,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var CW=z({maxPool3dGrad_:_W}),EW={kernelName:vc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>CW(e,a,r,s,i,o,l)}}};function FW(e,t,n,a,r,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");R(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),R(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),R(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Tn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return L.runKernel(Tm,p,d)}var AW=z({maxPoolGrad_:FW}),$W={kernelName:Gi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>AW(e,a,r,s,i,o)}}},DW={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=_a(r,a.shape),i=kS(a.shape,s)[1],o=bt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return fe(B(u,Yn(a.shape,"float32")),o)}}}},RW={kernelName:ji,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=_a(r,s.shape),l=r2(e,i,s,o);return{x:()=>l.x()}}},MW={kernelName:qi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,oe(ws(n,a),"float32")),b:()=>B(e,oe(Un(n,a),"float32"))}}},PW={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},OW={kernelName:nu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=Vt(n.shape,r);return s.length>0?W(be(e,s),n.shape):e},b:()=>{let s=B(e,wt(Fu(fe(n,a)))),i=Vt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},LW={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=B(e,oe(a,"float32")),i=Vt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Vt(a.shape,r);return i.length>0?W(be(s,i),a.shape):s}}}},zW={kernelName:au,gradFunc:e=>({x:()=>wt(e)})},BW={kernelName:Yi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>St(n.shape,"float32")}}},WW={kernelName:lu,gradFunc:e=>({x:()=>Ke(e)})},VW={kernelName:uu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ht(e,a).map(r=>()=>r)}},U1={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>He(e,s,a.shape)}}},UW={kernelName:Ji,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ut(s.shape,i.shape);return{a:()=>{let l=oe(i,"float32"),u=B(e,B(l,Fr(s,ce(l,we(1))))),p=Vt(s.shape,o);return p.length>0&&(u=be(u,p)),W(u,s.shape)},b:()=>{let l=Un(s,0),u=fn(l,Zn(s),Ke(s)),p=B(e,B(r,u)),d=Vt(i.shape,o);return d.length>0&&(p=be(p,d)),W(p,i.shape)}}}},GW={kernelName:Zi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Un(n,0);return{x:()=>fn(r,e,B(e,a)),alpha:()=>{let s=fn(r,Ke(e),B(e,n)),i=Vt(a.shape,e.shape);return i.length>0&&(s=be(s,i)),W(s,a.shape)}}}};function HW(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=Zp(e,n,!0,!1),i=Zp(e,n,!0,!0),o=B(s,i);return B(r,o)}function jW(e,t,n){let a=e.shape.length,r=a-n.length,s=C.getAxesPermutation(n,a),i=e;s!=null&&(i=Ae(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=HW(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=C.getUndoAxesPermutation(s);p=Ae(p,d)}return p}var qW={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>jW(a,e,s)}}},KW={kernelName:$i,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=fe(e,oe(a,"float32")),i=Vt(n.shape,r);return i.length>0?W(be(s,i),n.shape):s},b:()=>{let s=B(e,oe(n,"float32")),i=Vt(a.shape,r);i.length>0&&(s=W(be(s,i),a.shape));let o=lt(a);return wt(fe(s,oe(o,"float32")))}}}},XW={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,wt(lt(n)))}}},YW={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(ws(n,6),Ru(n));return{x:()=>B(e,oe(a,"float32"))}}},QW={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,oe(Ru(n),"float32"))}}},JW={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},ZW={kernelName:no,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel($m,r,n)}}},e4={kernelName:kc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>L.runKernel(Am,r,n)}}},t4={kernelName:ro,gradFunc:(e,t,n)=>{let{dims:a}=n,r=_a(a,e.shape);return{x:()=>ta(e,r)}}},n4={kernelName:so,gradFunc:e=>({x:()=>Ke(e)})},a4={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>wt(fe(e,B(Fr(n,1.5),2)))}}},r4={kernelName:hu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>oe(Ke(n),"float32"),t:()=>B(e,oe(n,e.dtype)),e:()=>B(e,oe(Bc(n),e.dtype))}}},s4={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Un(n,we(0)),r=we(e2),s=we(t2),i=B(e,s),o=B(B(e,r),gn(oe(n,"float32")));return fn(a,i,o)}}}},i4={kernelName:lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ce(we(1),n)))}}},o4={kernelName:yu,gradFunc:e=>({x:()=>Ke(e)})},l4={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Pc(oe(n,"float32")),e)}}},u4={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(qm(oe(n,"float32")),e)}}},p4={kernelName:fu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=ZI(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>ga(e,u)}}},c4={kernelName:co,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>ce(i,B(be(i,[r],s),a))}}},d4={kernelName:bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ha(n))}}},G1={kernelName:xu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Mc(e,a,r)}}},H1={kernelName:vu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Ze(e,a)}}},h4={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,B(un(oe(n,"float32")),2))}}},m4={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(oe(n,"float32"),2))}}},f4={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=we(2);return{a:()=>B(e,B(r,ce(n,a))),b:()=>B(e,B(r,ce(a,n)))}}},g4={kernelName:gs,gradFunc:e=>({x:()=>Ke(e)})},y4={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=e,i=Vt(n.shape,r);return i.length>0&&(s=be(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Vt(a.shape,r);return i.length>0&&(s=be(s,i)),W(wt(s),a.shape)}}}},b4={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;_a(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=B(i,Yn(a.shape,"float32"));return{x:()=>o}}},x4={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,lt(Pc(n)))}}},v4={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ce(we(1),lt(n)),e)}}},w4={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ke(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,He(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,He(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=J(s,He(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},k4={kernelName:Nr,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=ov(r);return{x:()=>Ae(e,s)}}},I4={kernelName:Nu,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Mt(e,r)}}},S4={kernelName:_c,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>N4(e,n)}}};function N4(e,t){let n=hr(t,Ke(t)),a=pi(e,n),r=vs(t,we(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=Ta(r,Yn(a.shape,"bool"));let i=Ke(a);return fn(r,a,i)}var T4={kernelName:Tu,gradFunc:e=>({x:()=>Ke(e)})},_4=[a2,SB,NB,TB,_B,CB,EB,FB,AB,$B,DB,RB,OB,BB,WB,VB,UB,GB,HB,jB,qB,KB,YB,XB,ZB,eW,tW,nW,aW,rW,KW,sW,iW,oW,lW,uW,cW,pW,dW,hW,mW,fW,gW,yW,bW,xW,vW,wW,kW,NW,V1,V1,TW,EW,$W,DW,RW,MW,PW,OW,LW,zW,BW,WW,VW,U1,U1,UW,GW,qW,XW,YW,QW,JW,ZW,e4,t4,n4,a4,r4,s4,i4,o4,l4,u4,p4,c4,d4,G1,G1,H1,H1,h4,f4,m4,g4,y4,b4,x4,v4,w4,k4,I4,S4,T4];for(let e of _4)mI(e);ne().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};ne().prototype.acos=function(){return this.throwIfDisposed(),Vx(this)};ne().prototype.acosh=function(){return this.throwIfDisposed(),Ux(this)};ne().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};ne().prototype.all=function(e,t){return this.throwIfDisposed(),Gm(this,e,t)};ne().prototype.any=function(e,t){return this.throwIfDisposed(),Jp(this,e,t)};ne().prototype.argMax=function(e){return this.throwIfDisposed(),oi(this,e)};ne().prototype.argMin=function(e){return this.throwIfDisposed(),Gx(this,e)};ne().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),W(this,[])};ne().prototype.asType=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};ne().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};ne().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};ne().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};ne().prototype.asin=function(){return this.throwIfDisposed(),Hx(this)};ne().prototype.asinh=function(){return this.throwIfDisposed(),jx(this)};ne().prototype.atan=function(){return this.throwIfDisposed(),qx(this)};ne().prototype.atan2=function(e){return this.throwIfDisposed(),Kx(this,e)};ne().prototype.atanh=function(){return this.throwIfDisposed(),Xx(this)};ne().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),fa(this,e,t,n,a)};ne().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Mc(this,e,t)};ne().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Er(this,e,t,n,a,r)};ne().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ol(this,e)};ne().prototype.cast=function(e){return this.throwIfDisposed(),oe(this,e)};ne().prototype.ceil=function(){return this.throwIfDisposed(),Zx(this)};ne().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),an(this,e,t)};ne().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Fe&&(e=[e]),Ze([this,...e],t)};ne().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Hm(this,e,t,n,a,r,s)};ne().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),jm(this,e,t,n,a,r)};ne().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};ne().prototype.cos=function(){return this.throwIfDisposed(),Pc(this)};ne().prototype.cosh=function(){return this.throwIfDisposed(),qm(this)};ne().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Zp(this,e,t,n)};ne().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Km(this,e,t,n)};ne().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),nv(this,e,t)};ne().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),xs(this,e,t,n,a,r,s)};ne().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),av(this,e,t,n,a,r)};ne().prototype.divNoNan=function(e){return this.throwIfDisposed(),rv(this,e)};ne().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ne().prototype.dot=function(e){return this.throwIfDisposed(),xS(this,e)};ne().prototype.elu=function(){return this.throwIfDisposed(),Eu(this)};ne().prototype.equal=function(e){return this.throwIfDisposed(),Jn(this,e)};ne().prototype.erf=function(){return this.throwIfDisposed(),sv(this)};ne().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),lv(this,e,t)};ne().prototype.exp=function(){return this.throwIfDisposed(),gn(this)};ne().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};ne().prototype.expm1=function(){return this.throwIfDisposed(),uv(this)};ne().prototype.fft=function(){return this.throwIfDisposed(),Uc(this)};ne().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};ne().prototype.floor=function(){return this.throwIfDisposed(),Fu(this)};ne().prototype.floorDiv=function(e){return this.throwIfDisposed(),Um(this,e)};ne().prototype.gather=function(e,t){return this.throwIfDisposed(),pi(this,e,t)};ne().prototype.greaterEqual=function(e){return this.throwIfDisposed(),vs(this,e)};ne().prototype.greater=function(e){return this.throwIfDisposed(),Un(this,e)};ne().prototype.ifft=function(){return this.throwIfDisposed(),fl(this)};ne().prototype.irfft=function(){return this.throwIfDisposed(),uf(this)};ne().prototype.isFinite=function(){return this.throwIfDisposed(),NS(this)};ne().prototype.isInf=function(){return this.throwIfDisposed(),TS(this)};ne().prototype.isNaN=function(){return this.throwIfDisposed(),cv(this)};ne().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Lc(this,e)};ne().prototype.lessEqual=function(e){return this.throwIfDisposed(),ws(this,e)};ne().prototype.less=function(e){return this.throwIfDisposed(),Xm(this,e)};ne().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),dv(this,e,t,n,a)};ne().prototype.logSigmoid=function(){return this.throwIfDisposed(),ES(this)};ne().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Qm(this,e)};ne().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),hv(this,e,t)};ne().prototype.log=function(){return this.throwIfDisposed(),Zn(this)};ne().prototype.log1p=function(){return this.throwIfDisposed(),zc(this)};ne().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Ta(this,e)};ne().prototype.logicalNot=function(){return this.throwIfDisposed(),Bc(this)};ne().prototype.logicalOr=function(e){return this.throwIfDisposed(),Jm(this,e)};ne().prototype.logicalXor=function(e){return this.throwIfDisposed(),FS(this,e)};ne().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),De(this,e,t,n)};ne().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Pt(this,e,t,n,a)};ne().prototype.max=function(e,t){return this.throwIfDisposed(),Sa(this,e,t)};ne().prototype.maximum=function(e){return this.throwIfDisposed(),hr(this,e)};ne().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};ne().prototype.min=function(e,t){return this.throwIfDisposed(),ec(this,e,t)};ne().prototype.minimum=function(e){return this.throwIfDisposed(),Au(this,e)};ne().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),gv(this,e,t)};ne().prototype.mod=function(e){return this.throwIfDisposed(),yv(this,e)};ne().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ne().prototype.neg=function(){return this.throwIfDisposed(),wt(this)};ne().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Oc(this,e,t,n)};ne().prototype.notEqual=function(e){return this.throwIfDisposed(),ci(this,e)};ne().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),dl(this,e,t,n)};ne().prototype.onesLike=function(){return this.throwIfDisposed(),ea(this)};ne().prototype.pad=function(e,t){return this.throwIfDisposed(),ga(this,e,t)};ne().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),RS(this,e,t,n,a,r,s)};ne().prototype.pow=function(e){return this.throwIfDisposed(),Fr(this,e)};ne().prototype.prelu=function(e){return this.throwIfDisposed(),Vc(this,e)};ne().prototype.prod=function(e,t){return this.throwIfDisposed(),ef(this,e,t)};ne().prototype.reciprocal=function(){return this.throwIfDisposed(),vv(this)};ne().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};ne().prototype.relu6=function(){return this.throwIfDisposed(),tf(this)};ne().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};ne().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};ne().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),QS(this,e,t,n)};ne().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),JS(this,e,t,n)};ne().prototype.reverse=function(e){return this.throwIfDisposed(),ta(this,e)};ne().prototype.rfft=function(){return this.throwIfDisposed(),Gc(this)};ne().prototype.round=function(){return this.throwIfDisposed(),nf(this)};ne().prototype.rsqrt=function(){return this.throwIfDisposed(),af(this)};ne().prototype.selu=function(){return this.throwIfDisposed(),rf(this)};ne().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),xo(this,e,t,n,a,r,s)};ne().prototype.sigmoid=function(){return this.throwIfDisposed(),ha(this)};ne().prototype.sign=function(){return this.throwIfDisposed(),wv(this)};ne().prototype.sin=function(){return this.throwIfDisposed(),sf(this)};ne().prototype.sinh=function(){return this.throwIfDisposed(),of(this)};ne().prototype.slice=function(e,t){return this.throwIfDisposed(),He(this,e,t)};ne().prototype.softmax=function(e){return this.throwIfDisposed(),Qa(this,e)};ne().prototype.softplus=function(){return this.throwIfDisposed(),bo(this)};ne().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Wc(this,e,t)};ne().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};ne().prototype.sqrt=function(){return this.throwIfDisposed(),un(this)};ne().prototype.square=function(){return this.throwIfDisposed(),lt(this)};ne().prototype.squaredDifference=function(e){return this.throwIfDisposed(),pf(this,e)};ne().prototype.squeeze=function(e){return this.throwIfDisposed(),pr(this,e)};ne().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Fe?[this,e]:[this,...e];return Mt(n,t)};ne().prototype.step=function(e){return this.throwIfDisposed(),Ru(this,e)};ne().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Iv(this,e,t,n,a,r,s,i,o)};ne().prototype.sub=function(e){return this.throwIfDisposed(),ce(this,e)};ne().prototype.sum=function(e,t){return this.throwIfDisposed(),be(this,e,t)};ne().prototype.tan=function(){return this.throwIfDisposed(),Sv(this)};ne().prototype.tanh=function(){return this.throwIfDisposed(),li(this)};ne().prototype.tile=function(e){return this.throwIfDisposed(),On(this,e)};ne().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};ne().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};ne().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};ne().prototype.topk=function(e,t){return this.throwIfDisposed(),Nv(this,e,t)};ne().prototype.transpose=function(e){return this.throwIfDisposed(),Ae(this,e)};ne().prototype.unique=function(e){return this.throwIfDisposed(),Lh(this,e)};ne().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Tv(this,e,t)};ne().prototype.unstack=function(e){return this.throwIfDisposed(),ht(this,e)};ne().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};ne().prototype.zerosLike=function(){return this.throwIfDisposed(),Ke(this)};var vr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,vr.prototype)}},Va=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Va.prototype)}},H=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,H.prototype)}},Pe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Pe.prototype)}},s2=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,s2.prototype)}},i2=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function di(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function rr(e,t){if(!e)throw new s2(t)}function j1(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Pn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function wr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function qs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var va={};function Rv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function zb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>zb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:zb(a))}}}function jc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in va)i=va[s];else if(i=t[s],i==null)throw new H(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new H(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in va?[o,l]=va.className:i in t&&([o,l]=t[i]),o==null)throw new H(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(va))u[h]=va[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},va);for(let h of Object.keys(n))va[h]=n[h];zb(s.config);let c=l(o,s.config,n,r);return va=Object.assign({},d),c}else{let u=Object.assign({},va);for(let d of Object.keys(n))va[d]=n[d];let p=new o(s.config);return va=Object.assign({},u),p}}}function C4(e,t){return e<t?-1:e>t?1:0}function sh(e,t){return-1*C4(e,t)}function es(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function E4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function vo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Mv(e,t,n=0,a=1/0){return rr(n>=0),rr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function nn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>nn(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${o2(e)}.`)}function o2(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>o2(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function F4(e,t,n){let a=n!=null?n():w.now(),r;return(...s)=>{let i=n!=null?n():w.now();return i-a<t||(a=i,r=e(...s)),r}}function l2(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var A4=0;function u2(){return A4++}var ih={};function kf(e=""){return e in ih||(ih[e]=0),ih[e]+=1,e+ih[e].toString()}var $4=["channelsFirst","channelsLast"],D4=["nearest","bilinear"],R4=["valid","same","causal"],M4=["max","avg"],P4=["sum","mul","concat","ave"],Qo=new Map;function Ot(e){vo($4,"DataFormat",e)}function O4(e){vo(D4,"InterpolationFormat",e)}function ya(e){vo(R4,"PaddingMode",e)}function p2(e){vo(M4,"PoolMode",e)}var Gp=[],q1="/";function Zs(e,t){Gp.push(e);try{let n=t();return Gp.pop(),n}catch(n){throw Gp.pop(),n}}function L4(){return Gp.length===0?"":Gp.join(q1)+q1}function c2(e){if(!h2(e))throw new Error("Not a valid tensor name: '"+e+"'");return L4()+e}function d2(e){if(!h2(e))throw new Error("Not a valid tensor name: '"+e+"'");Qo.has(e)||Qo.set(e,0);let t=Qo.get(e);if(Qo.set(e,Qo.get(e)+1),t>0){let n=`${e}_${t}`;return Qo.set(n,1),n}else return e}var z4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function h2(e){return!!e.match(z4)}function B4(e){return e===parseInt(e.toString(),10)}function ts(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function gl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function is(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Ka(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var mb;function jt(){return mb==null&&(mb=BI().epsilon()),mb}function Xa(){return"channelsLast"}function If(e,t){return oe(e,t)}function qc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function W4(e,t){return O(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=qc(e,1);return Bb(n,[1,t,1])})}function V4(e){let t=[ts(e.shape)];return W(e,t)}function U4(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ts(e.shape,1)];return W(e,t)}function ei(e,t,n){return O(()=>{switch(e.rank){case 1:return lf(e,t,n);case 2:return kv(e,[t,0],[n,e.shape[1]]);case 3:return Du(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return tc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return He(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return He(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fb(e,t,n){return O(()=>{switch(e.rank){case 1:return lf(e,t,n);case 2:return kv(e,[0,t],[e.shape[0],n]);case 3:return Du(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return tc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function oh(e,t,n,a){return O(()=>{switch(e.rank){case 1:return lf(e,t,n);case 2:switch(a){case 1:return ei(e,t,n);case 2:return fb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return ei(e,t,n);case 2:return Du(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return fb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return ei(e,t,n);case 2:return tc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return tc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return fb(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${a}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Pv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function K1(e,t){switch(e.rank){case 1:return dS([e,t]);case 2:return hS([e,t],0);case 3:return mS([e,t],0);case 4:return fS([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Bb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return On(e,t)}function Sf(e,t=0,n=1,a,r){return MS(e,t,n,a,r)}function or(e,t,n,a){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ss.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Wb(e.rank,a,Xa()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(Ae(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(ss.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Wb(e.rank,a,Xa()):null,activation:n}),d)}}function m2(e,t,n){return O(()=>(Array.isArray(t)?t=qe(t,"int32"):t=oe(t,"int32"),pi(e,t,n)))}function Kc(e){return B(e,e)}function Wb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Za(e,t,n){return O(()=>(n==null&&(n=Xa()),Ot(n),J(e,Wb(e.rank,t,n))))}function G4(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Eu(e)}function H4(e){return O(()=>fe(e,J(zt(e),1)))}function f2(e,t,n,a){return O(()=>VS(e,t,n,a))}function j4(e){return O(()=>{let t=J(.5,B(.2,e));return an(t,0,1)})}function Xc(e,t,n=!1){return n?e():t()}var q4=["fanIn","fanOut","fanAvg"],K4=["normal","uniform","truncatedNormal"];function X4(e){vo(q4,"FanMode",e)}function Y4(e){vo(K4,"Distribution",e)}var Ca=class extends se.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Ov=class extends Ca{apply(e,t){return St(e,t)}};Ov.className="Zeros";se.registerClass(Ov);var Nf=class extends Ca{apply(e,t){return Yn(e,t)}};Nf.className="Ones";se.registerClass(Nf);var Lv=class extends Ca{constructor(e){if(super(),typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return O(()=>B(we(this.value),Yn(e,t)))}getConfig(){return{value:this.value}}};Lv.className="Constant";se.registerClass(Lv);var zv=class extends Ca{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return $u(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};zv.className="RandomUniform";se.registerClass(zv);var Bv=class extends Ca{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return Sf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Bv.className="RandomNormal";se.registerClass(Bv);var Wv=class extends Ca{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return cf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Wv.className="TruncatedNormal";se.registerClass(Wv);var Vv=class extends Ca{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return O(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,pv(e[0]))})}getConfig(){return{gain:this.gain}}};Vv.className="Identity";se.registerClass(Vv);function Q4(e,t="channelsLast"){let n,a;if(Ot(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ts(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ts(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ts(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Wn=class extends Ca{constructor(e){if(super(),e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,X4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Y4(this.distribution),this.seed=e.seed}apply(e,t){let n=Q4(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return cf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return $u(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wn.className="VarianceScaling";se.registerClass(Wn);var Tf=class extends Wn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Tf.className="GlorotUniform";se.registerClass(Tf);var _f=class extends Wn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};_f.className="GlorotNormal";se.registerClass(_f);var Cf=class extends Wn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Cf.className="HeNormal";se.registerClass(Cf);var Ef=class extends Wn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Ef.className="HeUniform";se.registerClass(Ef);var Ff=class extends Wn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Ff.className="LeCunNormal";se.registerClass(Ff);var Af=class extends Wn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wn.className}};Af.className="LeCunNormal";se.registerClass(Af);var Uv=class extends Ca{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return O(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Sf(n,0,1,"float32"),r=ZS.gramSchmidt(a);return e[0]>e[1]&&(r=Ae(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Uv.className="Orthogonal";se.registerClass(Uv);var X1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Y1(e,t={}){return jc(e,se.SerializationMap.getMap().classNameMap,t,"initializer")}function Ft(e){return Rv(e)}function Nt(e){if(typeof e=="string"){let t=e in X1?X1[e]:e;if(t==="GlorotNormal")return new _f;if(t==="GlorotUniform")return new Tf;if(t==="HeNormal")return new Cf;if(t==="HeUniform")return new Ef;if(t==="LeCunNormal")return new Ff;if(t==="LeCunUniform")return new Af;{let n={};return n.className=t,n.config={},Y1(n)}}else return e instanceof Ca?e:Y1(e)}function Vb(e){return Array.isArray(e)&&Array.isArray(e[0])}function zh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function it(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Bh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var Q1="Variable",g2=class{constructor(e,t="float32",n=Q1,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=u2(),n=n==null?Q1:n,this.originalName=c2(n),this.name=d2(this.originalName),this.trainable_=a,this.constraint=r,this.val=LS(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),J4(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function J4(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Ub(e){return e.map(t=>t.read())}function Gv(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ua=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=u2(),s!=null&&(this.originalName=c2(s),this.name=d2(this.originalName)),this.rank=t.length}},Z4=0,$f=class{constructor(e,t){this.callArgs=t,this.id=Z4++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},eV=0,Ye=class extends se.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=eV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=wr(n)+"_"+kf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Va(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Pn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Pn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new vr(`Layer ${this.name} is not connected, no input to return.`);return Pn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new vr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Pn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),a=!0;for(let s of n)if(!(s instanceof Ua)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ua){r=!1;break}if(a===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Zs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of vt(e))s.push(i.shape);this.build(Pn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=vt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Pn(o),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=tV(e),i=this.computeOutputShape(s),o,l=nV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Ua(l,u,this,vt(e),t,this.name,p)):o=new Ua(l,i,this,vt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new vr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new vr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Va(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Bh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Ub(e?this.trainableWeights:this.weights)}setWeights(e){O(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Ub(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new H(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Gv(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():Nt("zeros"));let l=a.apply(t,n),u=new g2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=vt(e);t=vt(t),n=vt(n),a=vt(a),r=zh(r),s=zh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new $f({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function tV(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return Pn(t)}function nV(e){return"float32"}function y2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=y2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var Pu=class extends Ye{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:kf("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ua(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new $f({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Pu.className="InputLayer";se.registerClass(Pu);function b2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Pu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function aV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return oe(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ys=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ys)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=aV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ua){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ua){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Re(this.id2Mask)}},Wh=new i2,Vh=new i2;function rV(e){Wh!=null&&Wh.setMaxEntries(e),Vh!=null&&Vh.setMaxEntries(e)}function Pp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Wh.get(p),c;if(d==null){let m=sV(i,t);d=m.sorted,c=m.recipientCounts,Wh.put(p,d),Vh.put(p,c)}c={},r||Object.assign(c,Vh.get(p));let h=new Ys(t);for(let m=0;m<d.length;++m){if(a!=null){let A=Ph().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=d[m],g=f.sourceLayer;if(g instanceof Pu)continue;let y=[],b=[],x=[],v=!1;for(let A of f.inputs){let M=h.getValue(A),$=h.getMask(A);y.push(M),b.push($),$!=null&&(v=!0),r||(c[A.name]--,c[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!M.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(M))}v&&(n=n||{},n.mask=b[0]);let k=vt(g.apply(y,n)),T=null;g.supportsMasking&&(T=g.computeMask(y,b));let _=oV(f),E=Array.isArray(_)?_:[_];for(let A=0;A<E.length;++A){h.hasKey(E[A])||h.add(E[A],k[A],Array.isArray(T)?T[0]:T);let M=o.indexOf(E[A].name);M!==-1&&(l[M]=k[A])}r||Re(x)}return h.disposeMasks(),s?l:l[0]}function sV(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=J1(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=J1(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:iV(a)}}function iV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function J1(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function oV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var lV=X();lV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,rV);var x2={};Me(x2,{maxNorm:()=>uV,minMaxNorm:()=>dV,nonNeg:()=>cV,unitNorm:()=>pV});function Hv(e,t){return O(()=>un(be(B(e,e),t,!0)))}var Yc=class extends se.Serializable{getConfig(){return{}}},jv=class extends Yc{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=Hv(e,this.axis),n=an(t,0,this.maxValue);return B(e,fe(n,J(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};jv.className="MaxNorm";se.registerClass(jv);var qv=class extends Yc{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>fe(e,J(jt(),Hv(e,this.axis))))}getConfig(){return{axis:this.axis}}};qv.className="UnitNorm";se.registerClass(qv);var Kv=class extends Yc{apply(e){return Xe(e)}};Kv.className="NonNeg";se.registerClass(Kv);var Xv=class extends Yc{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return O(()=>{let t=Hv(e,this.axis),n=J(B(this.rate,an(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,fe(n,J(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Xv.className="MinMaxNorm";se.registerClass(Xv);var Z1={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Xt(e){return Rv(e)}function ek(e,t={}){return jc(e,se.SerializationMap.getMap().classNameMap,t,"constraint")}function Yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Z1?Z1[e]:e,config:{}};return ek(t)}else return e instanceof Yc?e:ek(e)}function uV(e){return new jv(e)}function pV(e){return new qv(e)}function cV(){return new Kv}function dV(e){return new Xv(e)}var v2={};Me(v2,{constant:()=>fV,glorotNormal:()=>kV,glorotUniform:()=>wV,heNormal:()=>IV,heUniform:()=>SV,identity:()=>xV,leCunNormal:()=>NV,leCunUniform:()=>TV,ones:()=>mV,orthogonal:()=>_V,randomNormal:()=>yV,randomUniform:()=>gV,truncatedNormal:()=>bV,varianceScaling:()=>vV,zeros:()=>hV});function hV(){return new Ov}function mV(){return new Nf}function fV(e){return new Lv(e)}function gV(e){return new zv(e)}function yV(e){return new Bv(e)}function bV(e){return new Wv(e)}function xV(e){return new Vv(e)}function vV(e){return new Wn(e)}function wV(e){return new Tf(e)}function kV(e){return new _f(e)}function IV(e){return new Cf(e)}function SV(e){return new Ef(e)}function NV(e){return new Ff(e)}function TV(e){return new Af(e)}function _V(e){return new Uv(e)}var w2={};Me(w2,{Layer:()=>Ye,RNN:()=>fr,RNNCell:()=>td,activation:()=>ZU,add:()=>lG,alphaDropout:()=>HG,average:()=>uG,averagePooling1d:()=>n0,averagePooling2d:()=>a0,averagePooling3d:()=>r0,avgPool1d:()=>bG,avgPool2d:()=>vG,avgPool3d:()=>kG,avgPooling1d:()=>xG,avgPooling2d:()=>wG,avgPooling3d:()=>IG,batchNormalization:()=>fG,bidirectional:()=>OG,concatenate:()=>pG,conv1d:()=>GU,conv2d:()=>HU,conv2dTranspose:()=>jU,conv3d:()=>qU,conv3dTranspose:()=>KU,convLstm2d:()=>DG,convLstm2dCell:()=>RG,cropping2D:()=>YU,dense:()=>eG,depthwiseConv2d:()=>JU,dot:()=>mG,dropout:()=>tG,elu:()=>LU,embedding:()=>oG,flatten:()=>aG,gaussianDropout:()=>GG,gaussianNoise:()=>UG,globalAveragePooling1d:()=>SG,globalAveragePooling2d:()=>NG,globalMaxPool1d:()=>zG,globalMaxPool2d:()=>BG,globalMaxPooling1d:()=>dN,globalMaxPooling2d:()=>hN,gru:()=>_G,gruCell:()=>CG,input:()=>z2,inputLayer:()=>OU,layerNormalization:()=>gG,leakyReLU:()=>BU,lstm:()=>EG,lstmCell:()=>FG,masking:()=>jG,maxPool1d:()=>WG,maxPool2d:()=>VG,maxPooling1d:()=>mN,maxPooling2d:()=>fN,maxPooling3d:()=>TG,maximum:()=>cG,minimum:()=>dG,multiply:()=>hG,permute:()=>iG,prelu:()=>WU,reLU:()=>zU,repeatVector:()=>rG,reshape:()=>sG,rnn:()=>MG,separableConv2d:()=>XU,simpleRNN:()=>AG,simpleRNNCell:()=>$G,softmax:()=>VU,spatialDropout1d:()=>nG,stackedRNNCells:()=>PG,thresholdedReLU:()=>UU,timeDistributed:()=>LG,upSampling2d:()=>QU,zeroPadding2d:()=>yG});async function Kr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Re(a)}}function k2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var tk;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(tk||(tk={}));var CV=125,yl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},I2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},EV=class extends yl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=O(()=>J(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:O(()=>{let a=B(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),tn(t[n])}))}},S2=class extends yl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},N2=class extends yl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||$v,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=CV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=F4(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Kr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Kr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Kr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Kr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Kr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Kr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Kr(e),await this.trainEnd(e))}};function T2(e,t){return e==null&&(e={}),e instanceof yl?[e]:Array.isArray(e)&&e[0]instanceof yl?e:vt(e).map(n=>new N2(n,t))}var ka=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ka.checkForDuplicate(t),ka.constructors[e]==null&&(ka.constructors[e]=[]),ka.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ka.constructors)ka.constructors[+t].forEach(n=>{if(n===e)throw new H("Duplicate callback constructor.")})}static clear(){ka.constructors={}}static createCallbacks(e){let t=[];for(let n in ka.constructors){let a=+n;e>=a&&t.push(...ka.constructors[a])}return t.map(n=>new n)}};ka.constructors={};function _2(e,t,n,a,r,s,i,o,l){let u=new S2,p=[new EV,...ka.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new I2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function ja(e,t={},n=!1){return jc(e,se.SerializationMap.getMap().classNameMap,t,"layer",n)}function Uh(e,t){return O(()=>{e.dtype!=="float32"&&(e=oe(e,"float32"));let n=be(Kc(e),t,!0),a=_n(n.shape,jt()),r=un(hr(n,a));return fe(e,r)})}function wo(e,t){return O(()=>Et(Kc(ce(t,e)),-1))}function Df(e,t){return O(()=>Et(zt(ce(t,e)),-1))}function Ou(e,t){return O(()=>{let n=ce(e,t),a=an(zt(e),jt(),Number.MAX_VALUE),r=zt(fe(n,a));return B(100,Et(r,-1))})}function FV(e,t){return O(()=>{let n=an(t,jt(),Number.MAX_VALUE),a=Zn(J(1,n)),r=an(e,jt(),Number.MAX_VALUE),s=Zn(J(1,r));return Et(Kc(ce(a,s)),-1)})}function AV(e,t){return O(()=>{let n=hr(0,ce(1,B(e,t)));return Et(Kc(n),-1)})}function $V(e,t){return O(()=>{let n=hr(0,ce(1,B(e,t)));return Et(n,-1)})}function DV(e,t){return O(()=>{let n=be(B(e,t),-1),a=Sa(B(ce(1,e),t),-1);return hr(0,J(1,ce(a,n)))})}function RV(e,t){return O(()=>{let n=Math.log(2),a=ce(t,e),r=ce(J(a,bo(B(-2,a))),n);return Et(r,-1)})}function nc(e,t,n=!1){return O(()=>{if(n)t=Qa(t);else{let a=be(t,t.shape.length-1,!0);t=fe(t,a)}return t=an(t,jt(),1-jt()),wt(be(B(oe(e,"float32"),Zn(t)),t.shape.length-1))})}function Gh(e,t,n=!1){return O(()=>{let a=oe(Fu(V4(e)),"int32");t=an(t,jt(),1-jt());let r=t.shape,s=W(dl(a,r[r.length-1]),r);return nc(s,t,n)})}function MV(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return O(()=>{let n=Xe(t),a=wt(zt(t));return J(ce(n,B(t,e)),zc(gn(a)))})}function Rf(e,t){return O(()=>{let n;return n=an(t,jt(),1-jt()),n=Zn(fe(n,ce(1,n))),Et(MV(e,n),-1)})}function PV(e,t){return O(()=>{let n=an(e,jt(),1),a=an(t,jt(),1);return be(B(e,Zn(fe(n,a))),-1)})}function OV(e,t){return O(()=>{let n=Zn(J(jt(),t));return Et(ce(t,B(e,n)),-1)})}function Yv(e,t){return O(()=>{let n=Uh(e,-1),a=Uh(t,-1),r=B(n,a);return wt(be(r,-1))})}var Hh={meanSquaredError:wo,meanAbsoluteError:Df,meanAbsolutePercentageError:Ou,meanSquaredLogarithmicError:FV,squaredHinge:AV,hinge:$V,categoricalHinge:DV,logcosh:RV,categoricalCrossentropy:nc,sparseCategoricalCrossentropy:Gh,binaryCrossentropy:Rf,kullbackLeiblerDivergence:PV,poisson:OV,cosineProximity:Yv};function gb(e){if(typeof e=="string"){if(e in Hh)return Hh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Qv(e,t){return O(()=>{let n=B(.5,ea(t)),a=If(Un(t,n),e.dtype);return Et(Jn(e,a),-1)})}function Jv(e,t){return O(()=>If(Jn(oi(e,-1),oi(t,-1)),"float32"))}function C2(e,t){return O(()=>oe(be(Ta(Jn(e,1),Jn(t,1))),"float32"))}function LV(e,t){return O(()=>oe(be(Ta(Jn(e,1),Jn(t,0))),"float32"))}function zV(e,t){return O(()=>oe(be(Ta(Jn(e,0),Jn(t,1))),"float32"))}function E2(e,t){return O(()=>{let n=C2(e,t),a=zV(e,t),r=J(n,a);return oe(fn(Un(r,0),fe(n,r),0),"float32")})}function BV(e,t){return O(()=>{let n=C2(e,t),a=LV(e,t),r=J(n,a);return oe(fn(Un(r,0),fe(n,r),0),"float32")})}function F2(e,t){return Rf(e,t)}function A2(e,t){return e.rank===t.rank&&(e=pr(e,[e.rank-1])),t=oi(t,-1),t.dtype!==e.dtype&&(t=oe(t,e.dtype)),oe(Jn(e,t),"float32")}var WV=wo,VV=wo,UV=Df,GV=Df,HV=Ou,jV=Ou,Zv=nc,qV=Yv,$2=Gh,jh={binaryAccuracy:Qv,categoricalAccuracy:Jv,precision:E2,categoricalCrossentropy:Zv,sparseCategoricalCrossentropy:$2,mse:WV,MSE:VV,mae:UV,MAE:GV,mape:HV,MAPE:jV,cosine:qV};function KV(e){if(typeof e=="string"&&e in jh)return jh[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function lh(e){if(rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Hh))if(Hh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(jh))if(jh[n]===e){t=n;break}return t!==void 0?t:e.name}}function XV(e){let t={Adagrad:()=>Gs.adagrad(.01),Adadelta:()=>Gs.adadelta(1,.95,jt()),Adam:()=>Gs.adam(.001,.9,.999,jt()),Adamax:()=>Gs.adamax(.002,.9,.999,jt(),0),RMSProp:()=>Gs.rmsprop(.001,.9,0,jt()),SGD:()=>Gs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}function nk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Gb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function Gb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Gb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Gb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function YV(e,t,n,a=console.log){let r=JV(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),qh(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?ZV(o[p],n,a):eU(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=QV(e),u=Bh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function QV(e){let t;return e.collectedTrainableWeights!=null?t=Bh(e.collectedTrainableWeights):t=Bh(e.trainableWeights),t}function JV(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function qh(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function ZV(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];qh(o,t,n)}function eU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];qh(p,t,a);for(let d=1;d<i.length;++d)qh(["","","","",i[d]],t,a)}function D2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function ac(e,t){if(e===null)return null;if(typeof e=="string")return qs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];D2(t,r,s)?n.push(s):n.push(ac(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=qs(a);n[s]=ac(r,s)}}return n}}function Hb(e,t){if(e==null)return null;if(typeof e=="string")return wr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];D2(t,r,s)?n.push(s):n.push(Hb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=wr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Hb(r,a)}return n}}var ew="3.18.0",nr=class extends Ye{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=kf(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],es(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);es(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;rr(x===0,"input layer has >1 nodes"),rr(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof Pu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,k,T)=>{(v==null||k==null||T==null)&&(v=y.sourceLayer,k=y.nodeIndex,T=y.tensorIndex);let _=v.inboundNodes[k];if(x.indexOf(_)!==-1)throw new Va(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(_)!==-1)return;this.containerNodes.add(nr.nodeKey(v,k)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(_)===-1&&x.push(_);let E=_.inboundLayers.length;for(let A=0;A<E;A++){let M=_.inputTensors[A],$=_.inboundLayers[A],S=_.nodeIndices[A],P=_.tensorIndices[A];o(M,b,x,$,S,P)}for(b.push(_);x.indexOf(_)>=0;)x.splice(x.indexOf(_),1);i.push(_)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let k=y.inboundLayers[v],T=y.nodeIndices[v],_=k.inboundNodes[T],E=t[_.id]==null?0:t[_.id];t[_.id]=Math.max(b+1,E),n[_.id]=_}}let d={};for(let y in t){let b=t[y];b in d||(d[b]=[]),d[b].push(n[y])}let c={};for(let y in a){let b=a[y];b in c||(c[b]=[]),c[b].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(sh);this.layers=[];for(let y of h){let b=c[y];b.sort((x,v)=>{let k=s[x.id],T=s[v.id];return k<T?-1:k>T?1:0});for(let x of b)x instanceof nr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(sh);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Va(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Va(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new $f({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new H(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new H(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new H(`${s.length} of ${a} weights are not set: ${s}`)}Gv(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ew}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Hb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return O(()=>{e=vt(e);let n=new Ys;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Pp(this.outputs,n,t)})}computeMask(e,t){return O(()=>{e=vt(e);let n;return t==null?n=di(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=zh(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(sh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];p.push(x)}let d=u.computeOutputShape(Pn(p)),c=zh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];rr(o in n),r.push(n[o])}return Pn(r)}runInternalGraph(e,t){t==null&&(t=di(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(sh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=vt(p.call(x,m)),b=vt(p.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=vt(p.call(f,m)),b=vt(p.computeMask(f,g));if(p.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],k=y[x],T=b[x];n[v.id]=[k,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){rr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof nr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=nr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return O(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=nr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=nr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],y=d.nodeIndices[f],b=d.tensorIndices[f],x=nr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],k=x[1],T=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let _=r[v];if(_.inboundNodes.length<=k){i(f,g);return}let E=_.inboundNodes[k];y.push(E.outputTensors[T])}y.length>0&&f.apply(Pn(y),b)}function l(f){let g=f.name,y=ja(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!E4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];rr(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];rr(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){O(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function tU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function R2(e,t){return tU(e,t,"classWeight")}async function M2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=O(()=>{if(e.shape.length===1)return Tr(e);if(e.shape.length===2){if(e.shape[1]>1)return oi(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Re(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),qe(i,"float32")}else return null}function nU(e,t){return B(e,t)}var aU=32;function P2(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=ak("input",e.inputNames,n),i=ak("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function ak(e,t,n){if(n instanceof Fe)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function rU(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function sU(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(rk(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=rU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=T2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=_2(p,d,n.epochs,null,null,iU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());!a||y<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:k}=P2(e,x.value),T={};T.batch=b,T.size=v[0].shape[0],await c.onBatchBegin(b,T);let _=[];if(n.classWeight!=null){let M=R2(n.classWeight,e.outputNames);for(let $=0;$<M.length;++$)_.push(await M2(k[$],null,M[$]))}let E=v.concat(k).concat(_),A=o(E);Re(E);for(let M=0;M<l.length;++M){let $=l[M],S=A[M];T[$]=S,tn(S)}await c.onBatchEnd(b,T),k2(T),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;rk(n.validationData)?v=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=vt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?aU:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=v[k]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function iU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function rk(e){return typeof e.iterator=="function"}function oU(e){return typeof e.next=="function"}async function lU(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Pe("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=oU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=O(()=>{if(u.value){let{xs:p,ys:d}=P2(e,u.value),c=p.concat(d),h=O(()=>r(c));if(Re(c),l===0)for(let f=0;f<h.length;++f)s.push(we(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=O(()=>J(s[f],B(m,g))),l>0&&Re(y)}Re(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=fe(s[u],o),Re(p)}return Pn(s)}function jb(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Op(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>ei(a,t,n-t)):ei(e,t,n-t)}function tw(e,t){return O(()=>e==null?null:Array.isArray(e)?e.map(n=>tw(n,t)):m2(e,t.dtype==="int32"?t:oe(t,"int32")))}function qb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function uU(e,t,n,a,r,s,i,o,l,u,p,d,c,h,m){r==null&&(r=32),s==null&&(s=1),p==null&&(p=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Ka(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=_2(o,i,s,c,g,h,r,f,d);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await b.onEpochBegin(v);let k={};if(h!=null)throw new Pe("stepsPerEpoch mode is not implemented yet.");{if(p==="batch")throw new Pe("batch shuffling is not implemneted yet");p&&w.shuffle(y);let T=qe(y),_=qb(g,r);for(let E=0;E<_.length;++E){let A={};if(await b.onBatchBegin(E,A),O(()=>{let M=_[E][0],$=_[E][1],S=ei(T,M,$-M);A.batch=E,A.size=$-M;let P=tw(n,S),V=t(P);for(let j=0;j<a.length;++j){let q=a[j],K=V[j];A[q]=K,tn(K)}if(E===_.length-1&&f){let j=e.testLoop(l,u,r);for(let q=0;q<a.length;++q){let K=a[q],Z=j[q];tn(Z),k["val_"+K]=Z}}}),await b.onBatchEnd(E,A),k2(A),e.stopTraining_)break}T.dispose()}if(await b.onEpochEnd(v,k),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function pU(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,p,d,c;try{let h=a.batchSize==null?32:a.batchSize;jb(h);let m=!1,f=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,m,h);r=f[0],s=f[1],c=f[2];let g=!1,y;if(a.validationData!=null&&a.validationData.length>0){if(g=!0,a.validationData.length===2)l=a.validationData[0],u=a.validationData[1];else throw a.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let E=!0,A=await e.standardizeUserData(l,u,null,null,E,h);p=A[0],d=A[1],y=p.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-a.validationSplit)),A=r[0].shape[0];p=Op(r,E,A),i=r,r=Op(r,0,E),d=Op(s,E,A),o=s,s=Op(s,0,E),y=p.concat(d)}else a.validationSteps!=null&&(g=!0);let b=r.concat(s).concat(c);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),v=e.getDedupedMetricsNames(),k,T;g?(e.makeTestFunction(),k=e.testFunction,T=v.slice().concat(v.map(E=>"val_"+E))):(k=null,y=[],T=v.slice());let _=T2(a.callbacks,a.yieldEvery);return await uU(e,x,b,v,h,a.epochs,a.verbose,_,k,y,a.shuffle,T,a.initialEpoch,null,null)}finally{e.isTraining=!1,Wa(r,t),Wa(s,n),Wa(i,t),Wa(o,n),Wa(p,l),Wa(d,u),c!=null&&Re(c)}}function O2(e){let t=[];e instanceof Fe&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(qc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Wa(e,t){if(e==null)return;let n=[];if(t instanceof Fe)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Fe)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function cU(e){return e instanceof Fe}function Kb(e){return Array.isArray(e)}function sk(e){return!cU(e)&&!Kb(e)}function ik(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Kb(e)&&e.length>0)i=!0;else if(sk(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(sk(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new H(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Kb(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=O2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new H(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function dU(e,t,n){let a=es(e.map(s=>s.shape[0]));a.sort();let r=es(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function hU(e,t,n){let a=[wo,Rf,nc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===nc&&s.shape[s.shape.length-1]===1)throw new H(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new H(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function ok(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new H(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new H(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function mU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var fU="layers-model",_r=class extends nr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");YV(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=XV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof $r))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new H(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(gb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>gb(s))}else{let s=gb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Zs("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=mU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Zs("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Rf?["accuracy","acc"].indexOf(c)!==-1?p=Qv:["crossentropy","ce"].indexOf(c)!==-1&&(p=F2):this.lossFunctions[s]===Gh?["accuracy","acc"].indexOf(c)!==-1?p=A2:["crossentropy","ce"].indexOf(c)!==-1&&(p=$2):["accuracy","acc"].indexOf(c)!==-1?p=Jv:["crossentropy","ce"].indexOf(c)!==-1&&(p=Zv);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=KV(c),u=l+lh(c);let h;Zs(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;jb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Pn(l)}finally{Wa(s[0],e),Wa(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),lU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Ys;if(e instanceof Fe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new H(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Pp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=di(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return O(()=>{let a=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");let r=qb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)O(()=>{let o=r[i][0],l=r[i][1],u=Op(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Ys(p);return Pp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return Pn(s.map(i=>Ze(i,0)))})}predict(e,t={}){let n=O2(e);ok(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return jb(a),this.predictLoop(n,a)}finally{Wa(n,e)}}predictOnBatch(e){ok(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Va("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Gh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=ik(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=ik(t,this.feedOutputNames,r,!1,"target"),dU(e,t,null),hU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=R2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await M2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return O(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Pe("Verbose mode is not implemented yet.");if(r!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{let o=qb(s,n),l=qe(Ka(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=ei(l,p,d-p),h=tw(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(we(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],B(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=fe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;j1(e,a)>1&&(r+=`_${j1(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Ys(u),d=Pp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],d[h]);r[h]!=null&&(m=nU(m,r[h]));let f=Et(m);t.push(f),h===0?c=m:c=J(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Et(f(a[g],d[g]))}tn(m),s.push(m)}return c=Et(c),this.calculateLosses().forEach(h=>{c=J(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>O(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Ys(s),o=Pp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Et(u(r[l],o[l]));l===0?n=p:n=J(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Et(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){return pU(this,e,t,n)}async fitDataset(e,t){return sU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Re(s),Wa(n[0],e),Wa(n[1],t),Pn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Ph().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Ph().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=wr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>wr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=wr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[wr(lh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>wr(lh(e)));{let e={};for(let t in this.metrics)e[t]=wr(lh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=ac(e.optimizer_config),n=ja(t),a;if(typeof e.loss=="string")a=qs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>qs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=qs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>qs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=qs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=en.getSaveHandlers(e);if(i.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new H(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await en.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:fU,generatedBy:`TensorFlow.js tfjs-layers v${ew}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await en.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=en.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(nk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){nk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};_r.className="Model";se.registerClass(_r);var L2=class extends _r{};L2.className="Functional";se.registerClass(L2);async function gU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=ac(n),r=ja(a,t);if(e.weightsManifest!=null){let s=await en.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Re(s)}return r}async function yU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=en.getLoadHandlers(e,t);if(n.length===0)n.push(en.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return bU(e,void 0,t)}async function bU(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=ja(ac(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=xU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),Re(u),Re(p.map(d=>d.tensor))}return o}function xU(e,t){let n=en.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var bl=class extends _r{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:kf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof bl||e instanceof _r,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=b2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=y2(this.outputs[0])}this.inboundNodes=[],new $f({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(it(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new _r({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Va("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof bl))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=ja(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};bl.className="Sequential";se.registerClass(bl);function vU(e){return new _r(e)}function wU(e){return new bl(e)}function kU(e,t){return t==null&&(t={}),yU(e,t)}function z2(e){return b2(e)}function IU(e,t){ka.registerCallbackConstructor(e,t)}var Gn=class extends se.Serializable{getConfig(){return{}}},B2=class extends Gn{apply(e,t=1){return G4(e,t)}};B2.className="elu";se.registerClass(B2);var W2=class extends Gn{apply(e){return rf(e)}};W2.className="selu";se.registerClass(W2);var V2=class extends Gn{apply(e){return Xe(e)}};V2.className="relu";se.registerClass(V2);var U2=class extends Gn{apply(e){return O(()=>Au(6,Xe(e)))}};U2.className="relu6";se.registerClass(U2);var G2=class extends Gn{apply(e){return e}};G2.className="linear";se.registerClass(G2);var H2=class extends Gn{apply(e){return ha(e)}};H2.className="sigmoid";se.registerClass(H2);var j2=class extends Gn{apply(e){return j4(e)}};j2.className="hardSigmoid";se.registerClass(j2);var q2=class extends Gn{apply(e){return bo(e)}};q2.className="softplus";se.registerClass(q2);var K2=class extends Gn{apply(e){return H4(e)}};K2.className="softsign";se.registerClass(K2);var X2=class extends Gn{apply(e){return li(e)}};X2.className="tanh";se.registerClass(X2);var nw=class extends Gn{apply(e,t=-1){return Qa(e,t)}};nw.className="softmax";se.registerClass(nw);var Y2=class extends Gn{apply(e,t=-1){return Qm(e,t)}};Y2.className="logSoftmax";se.registerClass(Y2);var Q2=class extends Gn{apply(e,t=1){return O(()=>B(ha(B(e,t)),e))}};Q2.className="swish";se.registerClass(Q2);var J2=class extends Gn{apply(e){return O(()=>B(e,li(bo(e))))}};J2.className="mish";se.registerClass(J2);function os(e){return e.getClassName()}function yb(e,t={}){return jc(e,se.SerializationMap.getMap().classNameMap,t,"activation")}function ls(e){if(e==null){let t={};return t.className="linear",t.config={},yb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},yb(t)}else return e instanceof Gn?e:yb(e)}function aw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var Z2=class extends se.Serializable{},Qc=class extends Z2{constructor(e){super(),aw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return O(()=>{let t=St([1]);return this.hasL1&&(t=J(t,be(B(this.l1,zt(e))))),this.hasL2&&(t=J(t,be(B(this.l2,Kc(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Qc.className="L1L2";se.registerClass(Qc);function SU(e){return aw(e),new Qc({l1:e!=null?e.l1:null,l2:0})}function NU(e){return aw(e),new Qc({l2:e!=null?e.l2:null,l1:0})}var lk={l1l2:"L1L2"};function dt(e){return Rv(e)}function uk(e,t={}){return jc(e,se.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in lk?lk[e]:e,config:{}};return uk(t)}else return e instanceof Z2?e:uk(e)}var rw=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Xe(e);return this.maxValue!=null&&(n=an(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};rw.className="ReLU";se.registerClass(rw);var sw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Lc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};sw.className="LeakyReLU";se.registerClass(sw);var iw=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Yt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=it(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Bt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),Vc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ft(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Xt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};iw.className="PReLU";se.registerClass(iw);var ow=class extends Ye{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Pe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Eu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ow.className="ELU";se.registerClass(ow);var lw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return B(n,oe(Un(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};lw.className="ThresholdedReLU";se.registerClass(lw);var uw=class extends Ye{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new nw().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};uw.className="Softmax";se.registerClass(uw);function ll(e,t,n){if(typeof e=="number")return di(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!B4(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function qa(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function sr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+is([n-t,0]);else if(a==="same")e=e*t;else throw new H(`Unsupport padding mode: ${a}.`);return e}function pw(e,t){return O(()=>(Ot(t),t==="channelsFirst"?Ae(e,[0,2,3,1]):e))}function eN(e,t){return O(()=>(Ot(t),t==="channelsFirst"?Ae(e,[0,2,3,4,1]):e))}function TU(e,t,n,a=1,r="valid",s,i=1){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ae(e,[0,2,1])),r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Hm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Za(o,n)),o})}function pk(e,t,n,a=[1,1],r="valid",s,i,o=null){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=pw(e,s);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ss.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ae(l,[0,3,1,2])),l})}function _U(e,t,n,a=[1,1,1],r="valid",s,i){return O(()=>{if(s==null&&(s=Xa()),Ot(s),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=eN(e,s);if(r==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=tv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Za(o,n)),s==="channelsFirst"&&(o=Ae(o,[0,4,1,2,3])),o})}var cw=class extends Ye{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",cw.verifyArgs(t),this.rank=e,nn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=ll(t.kernelSize,e,"kernelSize"),this.strides=ll(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ya(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ot(this.dataFormat),this.activation=ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Yt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=ll(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Mv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:os(this.activation),useBias:this.useBias,biasInitializer:Ft(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Jc=class extends cw{constructor(e,t){super(e,t),this.kernel=null,Jc.verifyArgs(t),this.filters=t.filters,nn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Yt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=it(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return O(()=>{e=Le(e);let n,a=this.bias==null?null:this.bias.read(),r=l2(this.activation.getClassName());if(r!=null&&this.rank===2)n=pk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=TU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=pk(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=_U(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=it(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=qa(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Ft(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Xt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Zc=class extends Jc{constructor(e){super(2,e),Zc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Mv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Zc.className="Conv2D";se.registerClass(Zc);var ed=class extends Jc{constructor(e){super(3,e),ed.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};ed.className="Conv3D";se.registerClass(ed);var dw=class extends Zc{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=Le(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=sr(o,d,u,this.padding),m=sr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ae(n,[0,2,3,1]));let g=jm(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ae(g,[0,3,1,2])),this.bias!=null&&(g=Za(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=sr(t[a],o,s,this.padding),t[r]=sr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};dw.className="Conv2DTranspose";se.registerClass(dw);var hw=class extends ed{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=it(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{let n=Le(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=sr(l,m,d,this.padding),b=sr(u,f,c,this.padding),x=sr(p,g,h,this.padding),v=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ae(n,[0,2,3,4,1]));let k=yS(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Ae(k,[0,4,1,2,3])),this.bias!==null&&(k=Za(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=it(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=sr(t[a],u,i,this.padding),t[r]=sr(t[r],p,o,this.padding),t[s]=sr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};hw.className="Conv3DTranspose";se.registerClass(hw);var tN=class extends Jc{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Yt(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Yt(t.pointwiseConstraint)}build(e){if(e=it(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Bt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return O(()=>{e=Le(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ae(e,[0,2,3,1])),n=xo(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ae(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ft(this.depthwiseInitializer),e.pointwiseInitializer=Ft(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseConstraint),e.pointwiseConstraint=Xt(this.pointwiseConstraint),e}};tN.className="SeparableConv";var mw=class extends tN{constructor(e){super(2,e)}};mw.className="SeparableConv2D";se.registerClass(mw);var Mf=class extends Jc{constructor(e){super(1,e),Mf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Mv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Mf.className="Conv1D";se.registerClass(Mf);var fw=class extends Ye{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return O(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=oh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return oh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=oh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return oh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};fw.className="Cropping2D";se.registerClass(fw);var gw=class extends Ye{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,O4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return O(()=>{let n=Le(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ae(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Ln.resizeNearestNeighbor(n,[r,s]):Ln.resizeBilinear(n,[r,s]);return Ae(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Ln.resizeNearestNeighbor(n,[r,s]):Ln.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};gw.className="UpSampling2D";se.registerClass(gw);function CU(e,t,n=[1,1],a="valid",r,s){return O(()=>{r==null&&(r=Xa()),Ot(r);let i=pw(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=xs(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ae(i,[0,3,1,2])),i})}var yw=class extends cw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Yt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=it(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{e=Le(e);let n=CU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=qa(t,this.kernelSize[0],this.padding,this.strides[0]),s=qa(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ft(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseRegularizer),e}};yw.className="DepthwiseConv2D";se.registerClass(yw);function nN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function aN(e,t,n,a=!1,r,s,i=!1,o=!1){return O(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Ka(2,l));if(t=Ae(t,u),s!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=oe(oe(r,"bool"),"float32"),r.rank===l-1&&(r=mn(r,-1)),r=Ae(r,u)),a&&(t=ta(t,0),r!=null&&(r=ta(r,0)));let p=[],d,c=n,h=t.shape[0],m=ht(t),f;r!=null&&(f=ht(r));for(let y=0;y<h;++y){let b=m[y],x=O(()=>e(b,c));if(r==null)d=x[0],c=x[1];else{let v=O(()=>{let k=f[y],T=ce(ea(k),k),_=J(B(x[0],k),B(c[0],T)),E=c.map((A,M)=>J(B(x[1][M],k),B(A,T)));return{output:_,newStates:E}});d=v.output,c=v.newStates}o&&p.push(d)}let g;return o&&(g=Mt(p,1)),[d,g,c]})}var fr=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ka(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Vb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return O(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Pe("Constants support is not implemented in RNN yet.");Vb(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Bt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Bt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>St([n,a])):this.states_=[St([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>St([n,a])):this.states_[0]=St([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new H(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>tn(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=nN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Bt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ua){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new H(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=aN((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return O(()=>{let t=St(e.shape);return t=be(t,[1,2]),t=qc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Bb(t,[1,n]):t):this.cell.stateSize>1?[Bb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===fr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=ja(a,n);return new e(Object.assign(t,{cell:r}))}};fr.className="RNN";se.registerClass(fr);var td=class extends Ye{},Pf=class extends td{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=gl([1,is([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=gl([1,is([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ea(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ea(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=or(B(e,s),this.kernel.read()):r=or(e,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),i!=null&&(n=B(n,i));let o=J(r,or(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Pf.className="SimpleRNNCell";se.registerClass(Pf);var bw=class extends fr{constructor(e){e.cell=new Pf(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};bw.className="SimpleRNN";se.registerClass(bw);var Of=class extends td{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,nn(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=gl([1,is([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=gl([1,is([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=it(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return O(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ea(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ea(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let u=or(e,this.kernel.read());this.useBias&&(u=Za(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=or(a,d),[m,f,g]=zn(u,3,u.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=or(B(o,a),c);l=this.activation.apply(J(g,x));let v=J(B(i,a),B(J(1,wt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Of.className="GRUCell";se.registerClass(Of);var xw=class extends fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Of(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};xw.className="GRU";se.registerClass(xw);var nd=class extends td{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=gl([1,is([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=gl([1,is([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=it(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Ca{apply(i,o){let l=r.apply([s]),u=new Nf().apply([s]),p=r.apply([s*2]);return K1(K1(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ea(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ea(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let d=or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),d=J(d,or(a,this.recurrentKernel.read())),this.useBias&&(d=Za(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=J(B(l,r),B(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=B(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),recurrentInitializer:Ft(this.recurrentInitializer),biasInitializer:Ft(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};nd.className="LSTMCell";se.registerClass(nd);var vw=class extends fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new nd(e),super(e)}call(e,t){return O(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};vw.className="LSTM";se.registerClass(vw);var Lf=class extends td{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return O(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Vb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Zs(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(ja(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Ub(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Gv(t)}};Lf.className="StackedRNNCells";se.registerClass(Lf);function us(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):f2(t(),n),o=()=>Xc(i,t,a);return!r||r<=1?tn(o().clone()):Array(r).fill(void 0).map(o).map(l=>tn(l.clone()))}var EU=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},rN=class extends fr{constructor(e){if(e.unroll)throw new Pe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Pe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Bt({ndim:5})]}call(e,t){return O(()=>{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return O(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=St(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){O(()=>{if(!this.stateful)throw new vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>St(r)):this.states_=[St(r)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>St(r)):this.states_[0]=St(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>tn(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=qa(l,a[0],r,s[0],i[0]),d=qa(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};rN.className="ConvRNN2D";var zf=class extends nd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t})),this.filters=t,nn(this.filters,"filters"),this.kernelSize=ll(n,2,"kernelSize"),this.kernelSize.forEach(o=>nn(o,"kernelSize")),this.strides=ll(a||1,2,"strides"),this.strides.forEach(o=>nn(o,"strides")),this.padding=r||"valid",ya(this.padding),this.dataFormat=s||"channelsLast",Ot(this.dataFormat),this.dilationRate=ll(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>nn(o,"dilationRate"))}build(e){var t;e=it(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ca{apply(p,d){let c=l.apply([u]),h=Yn([u]),m=l.apply([u*2]);return Pv([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return O(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>ea(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(ee,re,Y)=>!re||!re[Y]?ee:B(re[Y],ee),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>ea(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,k,T]=zn(this.kernel.read(),i,b),[_,E,A,M]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,_,this.padding),p=this.inputConv(p,v,E,this.padding),d=this.inputConv(d,k,A,this.padding),c=this.inputConv(c,T,M,this.padding);let[$,S,P,V]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,P),y=this.recurrentConv(y,V);let j=this.recurrentActivation.apply(J(u,m)),q=this.recurrentActivation.apply(J(p,f)),K=J(B(q,s),B(j,this.activation.apply(J(d,g)))),Z=B(this.recurrentActivation.apply(J(c,y)),this.activation.apply(K));return[Z,Z,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=EU(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Za(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};zf.className="ConvLSTM2DCell";se.registerClass(zf);var ww=class extends rN{constructor(e){let t=new zf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};ww.className="ConvLSTM2D";se.registerClass(ww);var Bf=class extends Ye{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Xc(()=>f2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Bf.className="Dropout";se.registerClass(Bf);var kw=class extends Bf{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};kw.className="SpatialDropout1D";se.registerClass(kw);var Iw=class extends Ye{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,nn(this.units,"units"),this.activation=ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Yt(e.kernelConstraint),this.biasConstraint=Yt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=it(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=it(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e),a=l2(this.activation.getClassName()),r;return a!=null?r=or(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=or(n,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:Ft(this.kernelInitializer),biasInitializer:Ft(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Iw.className="Dense";se.registerClass(Iw);var Sw=class extends Ye{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=it(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ts(e,1)]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=Ae(n,a)}return U4(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Sw.className="Flatten";se.registerClass(Sw);var Nw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.activation=ls(e.activation)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:os(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Nw.className="Activation";se.registerClass(Nw);var Tw=class extends Ye{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return O(()=>(e=Le(e),W4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Tw.className="RepeatVector";se.registerClass(Tw);var _w=class extends Ye{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let i=ts(e);if(s!==null){if(r===0||i%r!==0)throw new H(n);a[s]=i/r}else if(i!==r)throw new H(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};_w.className="Reshape";se.registerClass(_w);var Cw=class extends Ye{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ka(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=it(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ae(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Cw.className="Permute";se.registerClass(Cw);var Ew=class extends Ye{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),a=-1;return Jp(ci(n,this.maskValue),a)}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e),a=-1,r=!0,s=Jp(ci(n,this.maskValue),a,r);return B(n,oe(s,n.dtype))})}};Ew.className="Masking";se.registerClass(Ew);var Fw=class extends Ye{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,nn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,nn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Yt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return O(()=>this.maskZero?(e=Le(e),ci(e,Ke(e))):null)}computeOutputShape(e){if(e=it(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e);n.dtype!=="int32"&&(n=If(n,"int32"));let a=m2(this.embeddings.read(),W(n,[n.size]));return W(a,it(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ft(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Xt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Fw.className="Embedding";se.registerClass(Fw);var ko=class extends Ye{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[it(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=es(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&es(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return O(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=is(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=qc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(ts(u.slice(1))));c=Ae(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=Ka(1,l).concat([0]);n.push(Ae(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(Ae(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(Ka(0,i-1));s=Ae(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=es(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return O(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Ta(n,t[a]);return n})}},Aw=class extends ko{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};Aw.className="Add";se.registerClass(Aw);var $w=class extends ko{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};$w.className="Multiply";se.registerClass($w);var Dw=class extends ko{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return B(1/e.length,t)})}};Dw.className="Average";se.registerClass(Dw);var Rw=class extends ko{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=hr(t,e[n]);return t})}};Rw.className="Maximum";se.registerClass(Rw);var Mw=class extends ko{constructor(e){super(e)}mergeFunction(e){return O(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Au(t,e[n]);return t})}};Mw.className="Minimum";se.registerClass(Mw);var Pw=class extends ko{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return O(()=>Pv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return O(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(oe(ea(e[s]),"bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=Ze(a,this.axis);return Gm(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Pw.className="Concatenate";se.registerClass(Pw);function Fp(e,t){for(;e<0;)e+=t;return e}function FU(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return O(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=be(B(e,t),s[0]):o=be(B(Ae(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=De(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=pr(o,u)}return o.shape.length===1&&(o=mn(o,1)),o})}var Ow=class extends ko{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new H(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Fp(r,e[s].shape.length)):a=[Fp(this.axes,t.shape.length),Fp(this.axes,n.shape.length)],this.normalize&&(t=Uh(t,a[0]),n=Uh(n,a[1])),FU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Fp(this.axes,e.length),Fp(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="Dot";se.registerClass(Ow);var Lw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e);return Xc(()=>J(Sf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Lw.className="GaussianNoise";se.registerClass(Lw);var zw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?Xc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return B(n,Sf(n.shape,1,a))},()=>n,t.training||!1):n})}};zw.className="GaussianDropout";se.registerClass(zw);var Bw=class extends Ye{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return O(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Xc(()=>{let a=Le(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=vs($u(n),this.rate);o=If(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=J(B(a,o),B(J(o,-1),i));return J(B(p,l),u)},()=>Le(e),t.training||!1)}return e})}};Bw.className="AlphaDropout";se.registerClass(Bw);function rc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=lS(e,t,n,a,r,s);else if(e.rank===3)i=uS(e,t,n,a,r,s);else if(e.rank===4)i=pS(e,t,n,a,r,s);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function AU(e,t,n,a,r=.001){return O(()=>{let s=Zm(e,a),i=s.mean,o=s.variance;return[rc(e,i,o,n,t,r),i,o]})}function $U(e,t,n,a,r=.001){return O(()=>{let s=Zm(e,a),i=s.mean,o=s.variance,l=[];for(let h of Ka(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[rc(e,u,p,c,d,r),i,o]})}function DU(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),Ka(0,e.rank-1))?AU(e,t,n,a,r):$U(e,t,n,a,r)}var Ww=class extends Ye{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Yt(e.betaConstraint),this.gammaConstraint=Yt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=it(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return O(()=>{let n=t.training==null?!1:t.training,a=Le(e),r=a.shape,s=r.length,i=Ka(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=di(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!w.arraysEqual(u,Ka(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return rc(a,g,y,b,x,this.epsilon)}else return rc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=DU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{O(()=>{let x=1-b,v=g.read(),k=B(ce(v,y),x);g.write(ce(v,k))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ft(this.betaInitializer),gammaInitializer:Ft(this.gammaInitializer),movingMeanInitializer:Ft(this.movingMeanInitializer),movingVarianceInitializer:Ft(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Xt(this.betaConstraint),gammaConstraint:Xt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ww.className="BatchNormalization";se.registerClass(Ww);var Vw=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=it(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==es(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Le(e),a=n.shape,r=a.length;return O(()=>{let{mean:s,variance:i}=Zm(n,this.axis,!0),o=di(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=On(s,d),i=On(i,d),u!=null&&(u=On(u,c)),p!=null&&(p=On(p,c)),rc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ft(this.betaInitializer),gammaInitializer:Ft(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Vw.className="LayerNormalization";se.registerClass(Vw);function RU(e,t,n){return O(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Xa()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ga(e,a)})}var Uw=class extends Ye{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Xa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return O(()=>RU(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Uw.className="ZeroPadding2D";se.registerClass(Uw);function Wf(e,t,n,a,r,s){return O(()=>{Ot(r),p2(s),ya(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Xa()),s==null&&(s="max"),e=pw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Pt(e,t,n,o):i=fa(e,t,n,o),r==="channelsFirst"&&(i=Ae(i,[0,3,1,2])),i})}function sN(e,t,n,a,r,s){return O(()=>{Ot(r),p2(s),ya(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Xa()),s==null&&(s="max"),e=eN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=fv(e,t,n,o):i=Qx(e,t,n,o),r==="channelsFirst"&&(i=Ae(i,[0,4,1,2,3])),i})}var iN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(nn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ya(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=it(e);let t=qa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return O(()=>{this.invokeCallHook(e,t),e=qc(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return pr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Gw=class extends iN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ya(a),Wf(e,t,n,a,r,"max")}};Gw.className="MaxPooling1D";se.registerClass(Gw);var Hw=class extends iN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ya(a),Wf(e,t,n,a,r,"avg")}};Hw.className="AveragePooling1D";se.registerClass(Hw);var oN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ya(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=qa(t,this.poolSize[0],this.padding,this.strides[0]),n=qa(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},jw=class extends oN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ya(a),Wf(e,t,n,a,r,"max")}};jw.className="MaxPooling2D";se.registerClass(jw);var qw=class extends oN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ya(a),Wf(e,t,n,a,r,"avg")}};qw.className="AveragePooling2D";se.registerClass(qw);var lN=class extends Ye{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),ya(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=it(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=qa(t,this.poolSize[0],this.padding,this.strides[0]),n=qa(n,this.poolSize[1],this.padding,this.strides[1]),a=qa(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return O(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Kw=class extends lN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ya(a),sN(e,t,n,a,r,"max")}};Kw.className="MaxPooling3D";se.registerClass(Kw);var Xw=class extends lN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ot(r),ya(a),sN(e,t,n,a,r,"avg")}};Xw.className="AveragePooling3D";se.registerClass(Xw);var uN=class extends Ye{constructor(e){super(e),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}},Yw=class extends uN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=Le(e);return Et(n,1)})}};Yw.className="GlobalAveragePooling1D";se.registerClass(Yw);var Qw=class extends uN{constructor(e){super(e||{})}call(e,t){return O(()=>{let n=Le(e);return Sa(n,1)})}};Qw.className="GlobalMaxPooling1D";se.registerClass(Qw);var pN=class extends Ye{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ot(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Jw=class extends pN{call(e,t){return O(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};Jw.className="GlobalAveragePooling2D";se.registerClass(Jw);var Zw=class extends pN{call(e,t){return O(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Sa(n,[1,2]):Sa(n,[2,3])})}};Zw.className="GlobalMaxPooling2D";se.registerClass(Zw);var cN=class extends Ye{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=ja(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},e0=class extends cN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=it(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=it(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return O(()=>(e=Le(e),aN((n,a)=>[Le(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};e0.className="TimeDistributed";se.registerClass(e0);function MU(e){vo(P4,"BidirectionalMergeMode",e)}var PU="concat",t0=class extends cN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ja(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=ja(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?PU:e.mergeMode,MU(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Pn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=nN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Bt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ua;for(let l of s)if(l instanceof Ua!==o)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return O(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ta(r,1));let i;return this.mergeMode==="concat"?i=Pv([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=B(.5,J(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Zs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Zs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ja(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};t0.className="Bidirectional";se.registerClass(t0);function OU(e){return new Pu(e)}function LU(e){return new ow(e)}function zU(e){return new rw(e)}function BU(e){return new sw(e)}function WU(e){return new iw(e)}function VU(e){return new uw(e)}function UU(e){return new lw(e)}function GU(e){return new Mf(e)}function HU(e){return new Zc(e)}function jU(e){return new dw(e)}function qU(e){return new ed(e)}function KU(e){return new hw(e)}function XU(e){return new mw(e)}function YU(e){return new fw(e)}function QU(e){return new gw(e)}function JU(e){return new yw(e)}function ZU(e){return new Nw(e)}function eG(e){return new Iw(e)}function tG(e){return new Bf(e)}function nG(e){return new kw(e)}function aG(e){return new Sw(e)}function rG(e){return new Tw(e)}function sG(e){return new _w(e)}function iG(e){return new Cw(e)}function oG(e){return new Fw(e)}function lG(e){return new Aw(e)}function uG(e){return new Dw(e)}function pG(e){return new Pw(e)}function cG(e){return new Rw(e)}function dG(e){return new Mw(e)}function hG(e){return new $w(e)}function mG(e){return new Ow(e)}function fG(e){return new Ww(e)}function gG(e){return new Vw(e)}function yG(e){return new Uw(e)}function n0(e){return new Hw(e)}function bG(e){return n0(e)}function xG(e){return n0(e)}function a0(e){return new qw(e)}function vG(e){return a0(e)}function wG(e){return a0(e)}function r0(e){return new Xw(e)}function kG(e){return r0(e)}function IG(e){return r0(e)}function SG(e){return new Yw(e)}function NG(e){return new Jw(e)}function dN(e){return new Qw(e)}function hN(e){return new Zw(e)}function mN(e){return new Gw(e)}function fN(e){return new jw(e)}function TG(e){return new Kw(e)}function _G(e){return new xw(e)}function CG(e){return new Of(e)}function EG(e){return new vw(e)}function FG(e){return new nd(e)}function AG(e){return new bw(e)}function $G(e){return new Pf(e)}function DG(e){return new ww(e)}function RG(e){return new zf(e)}function MG(e){return new fr(e)}function PG(e){return new Lf(e)}function OG(e){return new t0(e)}function LG(e){return new e0(e)}var zG=dN,BG=hN,WG=mN,VG=fN;function UG(e){return new Lw(e)}function GG(e){return new zw(e)}function HG(e){return new Bw(e)}function jG(e){return new Ew(e)}var gN={};Me(gN,{MAPE:()=>a6,MSE:()=>i6,binaryAccuracy:()=>qG,binaryCrossentropy:()=>KG,categoricalAccuracy:()=>YG,categoricalCrossentropy:()=>QG,cosineProximity:()=>e6,mape:()=>r6,meanAbsoluteError:()=>t6,meanAbsolutePercentageError:()=>n6,meanSquaredError:()=>s6,mse:()=>o6,precision:()=>JG,recall:()=>ZG,sparseCategoricalAccuracy:()=>XG});function qG(e,t){return Qv(e,t)}function KG(e,t){return F2(e,t)}function XG(e,t){return A2(e,t)}function YG(e,t){return Jv(e,t)}function QG(e,t){return Zv(e,t)}function JG(e,t){return E2(e,t)}function ZG(e,t){return BV(e,t)}function e6(e,t){return Yv(e,t)}function t6(e,t){return Df(e,t)}function n6(e,t){return Ou(e,t)}function a6(e,t){return Ou(e,t)}function r6(e,t){return Ou(e,t)}function s6(e,t){return wo(e,t)}function i6(e,t){return wo(e,t)}function o6(e,t){return wo(e,t)}var yN={};Me(yN,{modelFromJSON:()=>gU});var bN={};Me(bN,{l1:()=>u6,l1l2:()=>l6,l2:()=>p6});function l6(e){return new Qc(e)}function u6(e){return SU(e)}function p6(e){return NU(e)}var xN=class extends yl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof _r))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function uh(e,t){return e<t}function ck(e,t){return e>t}var vN=class extends xN{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=uh:this.mode==="max"?this.monitorFunc=ck:this.monitor.indexOf("acc")!==-1?this.monitorFunc=ck:this.monitorFunc=uh,this.monitorFunc===uh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===uh?1/0:-1/0}async onEpochEnd(e,t){await Kr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function c6(e){return new vN(e)}var d6={earlyStopping:c6},h6=X();h6.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var wa;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(wa||(wa={}));var dk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(dk||(dk={}));var s0={};function m6(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};s0[e]=n}function wN(e){return s0[e]}function f6(e){delete s0[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return In(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>In(d,n,a,r));let u=In(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:w.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function In(e,t,n,a){let[r,s]=Kn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Kh(r,o)]);return i!==void 0?t[Kh(r,i)][s]:void 0}function g6(e,t,n){return t[Kh(e,n.currentContextId)]}function ir(e,t){let[n,a,r]=Kn(e);return[Kh(n,t&&t.currentContextId),a,r]}function Kh(e,t){return t?`${e}-${t}`:e}function Kn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function bh(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function kr(e){return e.kept?e:Tr(e)}var kN={};Me(kN,{json:()=>y6});var y6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],IN={};Me(IN,{json:()=>b6});var b6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],SN={};Me(SN,{json:()=>x6});var x6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],NN={};Me(NN,{json:()=>v6});var v6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],TN={};Me(TN,{json:()=>w6});var w6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],_N={};Me(_N,{json:()=>k6});var k6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],CN={};Me(CN,{json:()=>I6});var I6=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],EN={};Me(EN,{json:()=>S6});var S6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],FN={};Me(FN,{json:()=>N6});var N6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],AN={};Me(AN,{json:()=>T6});var T6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],$N={};Me($N,{json:()=>_6});var _6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],DN={};Me(DN,{json:()=>C6});var C6=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],RN={};Me(RN,{json:()=>E6});var E6=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],MN={};Me(MN,{json:()=>F6});var F6=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],PN={};Me(PN,{json:()=>A6});var A6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],ON={};Me(ON,{json:()=>$6});var $6=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],LN={};Me(LN,{json:()=>D6});var D6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],zN={};Me(zN,{json:()=>R6});var R6=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],BN={};Me(BN,{json:()=>M6});var M6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],hk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[kN,IN,SN,NN,TN,_N,CN,EN,FN,AN,$N,DN,RN,MN,PN,ON,LN,zN,BN],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=ir(g),v=i[b];if(v.outputs!=null){let k=v.outputs.indexOf(x);if(k!==-1){let T=`${b}:${k}`;f.inputNames[y]=T}}f.inputs.push(v),v.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=ir(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=ir(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=wN(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Xb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Xb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=nx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Qb(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Qb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=tx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=tx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Yb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Yb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=rx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=rx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=ex(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ex(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=ax(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ax(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Jb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Jb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Zb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=mk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=mk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=ir(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:i0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=ir(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=ir(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function P6(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function WN(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):P6(e);return t?n:n.toLowerCase()}function Xb(e,t,n,a=!1){let r=e[t];return r!=null?WN(r.s,a):n}function Yb(e,t,n){let a=e[t];return a?a.b:n}function Qb(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function i0(e){switch(typeof e=="string"&&(e=wa[e]),e){case wa.DT_FLOAT:case wa.DT_HALF:return"float32";case wa.DT_INT32:case wa.DT_INT64:case wa.DT_INT8:case wa.DT_UINT8:return"int32";case wa.DT_BOOL:return"bool";case wa.DT_DOUBLE:return"float32";case wa.DT_STRING:return"string";default:return null}}function mk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Jb(e,t,n){let a=e[t];return a&&a.type?i0(a.type):n}function Zb(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>i0(r)):n}function VN(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ex(e,t,n){let a=e[t];return a&&a.shape?VN(a.shape):n}function tx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function nx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>WN(s,a)):n}function ax(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>VN(r)):n}function rx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var O6=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return In(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return In(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Qb(this.node.rawAttrs,e,t);if(n.s!=null)return Xb(this.node.rawAttrs,e,t);if(n.b!=null)return Yb(this.node.rawAttrs,e,t);if(n.shape!=null)return ex(this.node.rawAttrs,e,t);if(n.type!=null)return Jb(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return tx(this.node.rawAttrs,e,t);if(n.list.s!=null)return nx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return ax(this.node.rawAttrs,e,t);if(n.list.b!=null)return rx(this.node.rawAttrs,e,t);if(n.list.type!=null)return Zb(this.node.rawAttrs,e,t)}return t}},L6=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[rS(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[yv(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[fe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[rv(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Um(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ce(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Au(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[hr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Fr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[pf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},z6=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[Vx(I("x",e,t,n))];case"Acosh":return[Ux(I("x",e,t,n))];case"Asin":return[Hx(I("x",e,t,n))];case"Asinh":return[jx(I("x",e,t,n))];case"Atan":return[qx(I("x",e,t,n))];case"Atan2":return[Kx(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Xx(I("x",e,t,n))];case"Ceil":return[Zx(I("x",e,t,n))];case"Complex":return[Cr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Pc(I("x",e,t,n))];case"Cosh":return[qm(I("x",e,t,n))];case"Elu":return[Eu(I("x",e,t,n))];case"Erf":return[sv(I("x",e,t,n))];case"Exp":return[gn(I("x",e,t,n))];case"Expm1":return[uv(I("x",e,t,n))];case"Floor":return[Fu(I("x",e,t,n))];case"Log":return[Zn(I("x",e,t,n))];case"Log1p":return[zc(I("x",e,t,n))];case"Imag":return[Dc(I("x",e,t,n))];case"Neg":return[wt(I("x",e,t,n))];case"Reciprocal":return[vv(I("x",e,t,n))];case"Real":return[hl(I("x",e,t,n))];case"Relu":return[Xe(I("x",e,t,n))];case"Round":return[nf(I("x",e,t,n))];case"Selu":return[rf(I("x",e,t,n))];case"Sigmoid":return[ha(I("x",e,t,n))];case"Sin":return[sf(I("x",e,t,n))];case"Sign":return[wv(I("x",e,t,n))];case"Sinh":return[of(I("x",e,t,n))];case"Softplus":return[bo(I("x",e,t,n))];case"Sqrt":return[un(I("x",e,t,n))];case"Square":return[lt(I("x",e,t,n))];case"Tanh":return[li(I("x",e,t,n))];case"Tan":return[Sv(I("x",e,t,n))];case"ClipByValue":return[an(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[tf(I("x",e,t,n))];case"Rsqrt":return[af(In(e.inputNames[0],t,n))];case"Prod":return[ef(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Lc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Vc(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[cv(In(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ia(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function fk(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ap(e,t,n){let a=sx(e,n),r=!fk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=sx(s.shape,a)}),!fk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function sx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var B6=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),tn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ia(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,tn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Qn([],[0].concat(this.elementShape));let n=this.readMany(e);return Ia(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Mt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Qn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Ia(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ze(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ht(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];O(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],p=[1,e[o],r];s[o]=W(He(t,u,p),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},xl=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ia(t,r.shape,"TensorList shape mismatch: "),tn(r)}),this.idTensor=we(0),this.maxNumElements=a,tn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new xl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ia(e,this.elementShape,"TensorList shape mismatch: ");let a=Ap(this.elementShape,this.tensors,e);return O(()=>{let r=this.tensors.map(s=>W(s,a));return Mt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ap(this.elementShape,this.tensors,e),a=this.tensors.pop();return Ia(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ia(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");tn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new xl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ia(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Ap(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ia(this.elementShape,t.shape,"TensorList shape mismatch: "),tn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ia(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Ap(this.elementShape,this.tensors,n);return e.length===0?Qn([],[0].concat(a)):O(()=>{let r=e.map(s=>W(this.tensors[s],a));return Mt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ia(this.elementShape,t,"TensorList shape mismatch: ");let n=Ap(this.elementShape,this.tensors,t);return this.size()===0?Qn([],[0].concat(n)):O(()=>{let a=this.tensors.map(r=>W(r,n));return Ze(a,0)})}};function W6(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ia(r,t,"TensorList shape mismatch: ");let s=ht(e);return new xl(s,t,a)}function V6(e,t,n){return new xl([],e,t,n)}function U6(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new xl([],n,e.dtype,a),i=ht(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function G6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=sx(s,n),o=a===0?0:e.size/a,l=O(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=d===0?0:r[d-1],h=[0,c,0],m=[1,t[d],o];p[d]=W(He(e,h,m),i)}return e.dispose(),p}),u=new xl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var H6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[kr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=kr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>In(r,t,n)!==void 0);if(a){let r=In(a,t,n);return[kr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[kr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[kr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[kr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),p=new B6(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,we(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=U6(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=V6(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=W6(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=G6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id);return[we(r.size(),"int32")]}case"TensorListResize":{let a=I("tensorListId",e,t,n),r=I("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function gk(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=I("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=I("strides",e,t,n),d=bh(e,t,n),c=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[m,f]=I("args",e,t,n);i&&(f=m,m=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var j6=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Hm(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=bh(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Rt(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=gk(e,t,n);return[ss.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:p}=gk(e,t,n);return[ss.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=bh(e,t,n);return[jm(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=bh(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[xs(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[tv(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[fa(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Pt(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=$S(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Qx(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[fv(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[av(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},q6=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[_n(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[_S(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[DS(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[dl(a,r,s,i)]}case"Ones":return[Yn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[ea(I("x",e,t,n))];case"RandomUniform":return[$u(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[ml(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[cf(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[St(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ke(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function bb(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var K6=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=bb(e,t,n),u=await Ln.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=bb(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Ln.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=bb(e,t,n);return[await Ln.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=oe(I("condition",e,t,n),"bool"),r=[await _v(a)];return a.dispose(),r}case"ListDiff":return PS(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},X6=(e,t,n)=>{switch(e.op){case"LowerBound":{let a=I("sortedSequence",e,t,n),r=I("values",e,t,n);return[AS(a,r)]}case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=Nv(a,r,s);return[i.values,i.indices]}case"UpperBound":{let a=I("sortedSequence",e,t,n),r=I("values",e,t,n);return[OS(a,r)]}case"Unique":{let a=I("x",e,t,n),r=Lh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Lh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Y6=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[In(e.name,t,n)||a];case"Placeholder":return[In(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[kr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>kr(u));case"Snapshot":let r=I("x",e,t,n);return[kr(r)];case"Shape":return[qe(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>qe(u.shape));case"Size":return[we(I("x",e,t,n).size,"int32")];case"Rank":return[we(I("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Q6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,tn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),O(()=>{let a=ht(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];tn(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return O(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Mt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},J6=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Q6(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Z6=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ln.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ln.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ln.cropAndResize(a,r,s,i,o,l)]}case"ImageProjectiveTransformV3":{let a=I("images",e,t,n),r=I("transforms",e,t,n),s=I("outputShape",e,t,n),i=I("fillValue",e,t,n),o=I("interpolation",e,t,n),l=I("fillMode",e,t,n);return[Ln.transform(a,r,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},eH=(e,t,n)=>{switch(e.op){case"Equal":return[Jn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ci(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Un(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[vs(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Xm(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[ws(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Ta(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Bc(I("a",e,t,n))];case"LogicalOr":return[Jm(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[fn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tH=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[De(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[vS(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ae(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,p]=I("args",e,t,n);return[ss.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:p,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nH=(e,t,n)=>{switch(e.op){case"EuclideanNorm":return[lv(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[Er(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Er(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[dv(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Qa(I("x",e,t,n))];case"LogSoftmax":return[Qm(I("x",e,t,n))];case"SparseToDense":return[Cv(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},aH=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Sa(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Et(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ec(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[be(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Gm(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Jp(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[oi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Gx(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ef(I("x",e,t,n),i,o)]}case"Cumprod":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Zp(I("x",e,t,n),i,o,l)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Km(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[Jx(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[bS(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rH=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Ze(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[pi(a,oe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[pi(s,oe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[ta(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[ta(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[He(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[Iv(d,a,r,s,i,o,l,u,p)]}case"Pack":return O(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=pr(r[0]).shape,o=r.map(l=>{let u=w.arraysEqual(l.shape,s);if(!u&&!w.arraysEqual(pr(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:W(l,s)});return[Mt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return ht(r,a)}case"Tile":{let a=I("reps",e,t,n);return[On(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[BS(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[WS(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Cv(a,s,r,s.dtype===i.dtype?i:oe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sH=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=Mp.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=Mp.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[Mp.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Mp.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iH=(e,t,n)=>{switch(e.op){case"FFT":return[Uc(I("x",e,t,n))];case"IFFT":return[fl(I("x",e,t,n))];case"RFFT":return[Gc(I("x",e,t,n))];case"IRFFT":return[uf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},oH=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=yh.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=yh.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[yh.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lH=(e,t,n)=>{switch(e.op){case"Cast":return[oe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[mn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[pr(I("x",e,t,n),a)]}case"Reshape":return[W(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[gv(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ga(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Wc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Mc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[nv(I("x",e,t,n),a,r)]}case"BroadcastTo":return[ol(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[cS(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function yk(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return O(()=>L6(s,i,o));case"basic_math":return O(()=>z6(s,i,o));case"control":return H6(s,i,o);case"convolution":return O(()=>j6(s,i,o));case"creation":return O(()=>q6(s,i,o));case"dynamic":return K6(s,i,o);case"evaluation":return O(()=>X6(s,i,o));case"image":return O(()=>Z6(s,i,o));case"graph":return O(()=>Y6(s,i,o));case"logical":return O(()=>eH(s,i,o));case"matrices":return O(()=>tH(s,i,o));case"normalization":return O(()=>nH(s,i,o));case"reduction":return O(()=>aH(s,i,o));case"slice_join":return O(()=>rH(s,i,o));case"sparse":return O(()=>sH(s,i,o));case"spectral":return O(()=>iH(s,i,o));case"string":return O(()=>oH(s,i,o));case"transformation":return O(()=>lH(s,i,o));case"hash_table":return J6(s,i,o,a);case"custom":let l=wN(s.op);if(l&&l.customExecutor)return l.customExecutor(new O6(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var bk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function xk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Kn(c)[0]),p=[];a!=null&&(p=a.map(c=>Kn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((UN(c)||hH(c)||mH(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function uH(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Kn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var pH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],cH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],dH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function UN(e){return pH.indexOf(e.op)>=0}function hH(e){return cH.indexOf(e.op)>=0}function mH(e){return dH.indexOf(e.op)>=0}var ix=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ix(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=xk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return uH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Kn(p)[0]]),r=t.map(p=>Kn(p)[0]),s=r.map(p=>this.graph.nodes[p]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return O(()=>{let p=new bk(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Kn(m),y=[];y[g]=e[m],d[f]=y});let c=this.getFrozenTensorIds(d),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!d[f.name]){let g=yk(f,d,p,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,p,c,r,h)}}return this.parent==null&&p.dispose(c),t.map(m=>In(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=g6(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];if(p===1){if(!this.keepTensorForDebug)u.dispose();else{let[d,c]=ir(t.name,a);this.intermediateTensors[d]?this.intermediateTensors[d][c]=u:(this.intermediateTensors[d]=[],this.intermediateTensors[d][c]=u)}delete i[u.id]}else p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new bk(this.weightMap,a,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,n);let i=t.map(u=>In(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Kn(b)[0]]),i=n.map(b=>Kn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=xk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Kn(b),k=[];k[v]=e[b],h[x]=k});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!UN(b)&&!In(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&I("isConstant",p.node,a,n)&&([d]=ir(p.node.name,n)),a[p.node.name]==null){let c=yk(p.node,a,n,this._resourceManager);d||([d]=ir(p.node.name,n));let h=n.currentContext;w.isPromise(c)?u.push(c.then(m=>(a[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=ir(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!In(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!In(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Kn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Kn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Kn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},fH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},gH="?tfjs-format=file",yH="model.json",o0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new fH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=en.browserHTTPRequest(e,this.loadOptions);else{let t=en.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(en.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return w.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=en.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ix(hk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=hk.Instance.transformGraph(e.modelInitializer);this.initializer=new ix(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=en.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Fe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function bH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=vH(e));let n=new o0(e,t);return await n.load(),n}function xH(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new o0(e);return t.load(),t}function vH(e){return e.endsWith("/")||(e=e+"/"),`${e}${yH}${gH}`}var wH="3.18.0",GN={};Me(GN,{CSVDataset:()=>ZN,Dataset:()=>Lu,FileDataSource:()=>iT,TextLineDataset:()=>JN,URLDataSource:()=>oT,array:()=>GH,csv:()=>tj,func:()=>nj,generator:()=>aj,microphone:()=>sj,version_data:()=>ij,webcam:()=>rj,zip:()=>HH});var kH=bi(Jk()),IH=bi(Jk());function SH(e,t){return Xh(e,t)}function Xh(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(vl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Xh(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function NH(e,t=jN){return HN(e,t)}function HN(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(vl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=HN(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function jN(e){return e===null?null:vl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function qN(e,t){let n=new Map;Xh(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return Xh(e,t,n)}function vl(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=Zk();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Fe)&&!(e instanceof Promise)&&!t)}function TH(e){return e==null||_H(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Fe||w.isTypedArray(e)}function _H(e){return e===null||typeof e!="object"&&typeof e!="function"}function CH(e){return SH(e,EH)}function EH(e){return e instanceof Fe?{value:e.clone(),recurse:!1}:vl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var KN=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},l0=class extends KN{constructor(){super(l0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};l0.INITIAL_CAPACITY=32;function XN(e){return new $H(e)}function u0(e){return new DH(e)}function FH(e,t){return new YN(e,t)}function AH(e,t=Jr.FAIL){return new VH(e,t)}var rn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new BH(this,e)}filter(e){return new LH(this,e)}map(e){return new zH(this,e)}mapAsync(e){return new vk(this,e)}serialMapAsync(e){return new vk(this,e).serial()}flatmap(e){return new WH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new OH(this,e,t)}columnMajorBatch(e,t=!0,n=jN){return this.rowMajorBatch(e,t).map(a=>NH(a,n))}concatenate(e,t){return new YN(XN([this,e]),t)}take(e){return e<0||e==null?this:new PH(this,e)}skip(e){return e<0||e==null?this:new MH(this,e)}prefetch(e){return new QN(this,e)}shuffle(e,t){return new UH(this,e,t)}serial(){return new RH(this)}},$H=class extends rn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:CH(e),done:!1}}},DH=class extends rn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},RH=class extends rn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},MH=class extends rn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Re(e.value)}return this.upstream.next()}},PH=class extends rn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},OH=class extends rn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},LH=class extends rn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},zH=class extends rn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ga.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ga.getTensorsInContainer(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},BH=class extends rn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},vk=class extends rn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ga.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ga.getTensorsInContainer(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},p0=class extends rn{constructor(){super(),this.outputQueue=new l0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},WH=class extends p0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ga.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ga.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ga.isTensorInList(r,a)||r.dispose();return!0}},YN=class extends rn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Jr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Jr||(Jr={}));var VH=class extends rn{constructor(e,t=Jr.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof rn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await qN(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Jr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Jr.SHORTEST:return{value:null,done:!0};case Jr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},QN=class extends rn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new KN(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},UH=class extends QN{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=IH.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Lu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),qn(async()=>(await n.iterator()).columnMajorBatch(e,t,jH),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,qn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,qn(async()=>(await t.iterator()).filter(a=>O(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return qn(async()=>(await t.iterator()).map(n=>O(()=>e(n))),this.size)}mapAsync(e){let t=this;return qn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return qn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,qn(async()=>{let a=u0(async()=>({value:await t.iterator(),done:!1}));return FH(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,qn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=kH.alea(t||w.now().toString());return qn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,qn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Lu.MAX_BUFFER_SIZE=1e4;function qn(e,t=null){return new class extends Lu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function GH(e){return qn(async()=>XN(e),e.length)}function HH(e){if(!vl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return qn(async()=>{let n=await qN(e,a=>{if(a instanceof Lu)return{value:a.iterator(),recurse:!1};if(vl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return AH(n,Jr.SHORTEST)},t)}function jH(e){if(e===null)return null;let t=e[0];return TH(t)?{value:qH(e),recurse:!1}:{value:null,recurse:!0}}function qH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Fe?Mt(e):Qn(e)}var JN=class extends Lu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},ph='"',$p=Symbol("out"),wk=Symbol("field"),ch=Symbol("quote"),xb=Symbol("quoteafterquote"),kk=Symbol("quoteinquote"),ZN=class extends Lu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new JN(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=$p;for(let i=0;i<r;i++)switch(s){case $p:switch(e.charAt(i)){case ph:a=i+1,s=ch;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=$p;break;default:s=wk,a=i;break}break;case wk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=$p,a=i+1;break;default:}break;case ch:switch(e.charAt(i)){case ph:s=xb;break;default:}break;case xb:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=$p,a=i+1;break;case ph:s=ch;break;default:s=kk;break}break;case kk:switch(e.charAt(i)){case ph:s=ch;break;default:}break;default:}if(s===xb?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},eT=class extends rn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!X().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new eT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Qn(n,t)}},tT=class extends rn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ha([s,r,o,i],[1,4])}else this.cropBox=Ha([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!X().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new tT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=yo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return O(()=>{let t=mn(oe(e,"float32"),0),n;n=Ln.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},nT=class{},aT=class extends rn{split(e){return new KH(this,e)}},KH=class extends aT{constructor(e,t){super(),this.upstream=e,this.impl=new XH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},XH=class extends p0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},YH=class extends rn{decodeUTF8(){return new QH(this)}},QH=class extends aT{constructor(e){super(),this.upstream=e,this.impl=new JH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},JH=class extends p0{constructor(e){if(super(),this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Zk();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},rT=class extends YH{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function ZH(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=ej(e));let s=await(n||w.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new rT(i,t)}else throw new Error(s.statusText)}var ej=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function sT(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var iT=class extends nT{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(sT(this.input)&&X().get("IS_NODE")){let e=kx();this.input=e.readFileSync(this.input.slice(7))}return new rT(this.input,this.options)}},oT=class extends nT{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return sT(this.url)?new iT(this.url,this.fileOptions).iterator():ZH(this.url,this.fileOptions)}};function tj(e,t={}){return new ZN(new oT(e),t)}function nj(e){let t=u0(e);return qn(async()=>t)}function aj(e){return qn(async()=>{let t=await e();return u0(()=>t.next())})}async function rj(e,t){return tT.create(e,t)}async function sj(e){return eT.create(e)}var ij="3.18.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var oj=mr.whereImpl,c0=class extends pc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new rm(this,ar())}nextDataId(){return c0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&C.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>w.decodeString(a));return Ve(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,t)}makeOutput(e,t,n){return ar().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return oj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};c0.nextDataId=0;var lT={};Me(lT,{addImpl:()=>pT,bincountImpl:()=>h0,bincountReduceImpl:()=>cT,ceilImpl:()=>dT,concatImpl:()=>m0,equalImpl:()=>hT,expImpl:()=>fT,expm1Impl:()=>yT,floorImpl:()=>bT,gatherNdImpl:()=>xT,gatherV2Impl:()=>vT,greaterEqualImpl:()=>kT,greaterImpl:()=>wT,lessEqualImpl:()=>ST,lessImpl:()=>IT,linSpaceImpl:()=>NT,logImpl:()=>TT,maxImpl:()=>_T,maximumImpl:()=>CT,minimumImpl:()=>ET,multiplyImpl:()=>f0,negImpl:()=>FT,notEqualImpl:()=>AT,prodImpl:()=>$T,rangeImpl:()=>y0,rsqrtImpl:()=>DT,scatterImpl:()=>al,sigmoidImpl:()=>Xj,simpleAbsImpl:()=>uT,sliceImpl:()=>Qh,sparseFillEmptyRowsImpl:()=>MT,sparseReshapeImpl:()=>PT,sparseSegmentReductionImpl:()=>b0,sqrtImpl:()=>Jj,squaredDifferenceImpl:()=>OT,stridedSliceImpl:()=>LT,stringNGramsImpl:()=>zT,stringSplitImpl:()=>BT,stringToHashBucketFastImpl:()=>WT,subImpl:()=>VT,tileImpl:()=>UT,topKImpl:()=>HT,transposeImpl:()=>g0,uniqueImpl:()=>jT});function uT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var lj=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=uT(r),n.makeOutput(a,t.shape,t.dtype)},uj={kernelName:Tl,backendName:"cpu",kernelFunc:lj};function Ut(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),u=w.sizeFromShape(i),p=w.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=C.getBroadcastDims(t,i),g=C.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<p.length;++y)p[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<p.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-d);f.forEach(_=>x[_]=0);let v=w.locToIndex(x,d,h),k=b.slice(-c);g.forEach(_=>k[_]=0);let T=w.locToIndex(k,c,m);p[y]=e(a[v],r[T])}return[p,i]}}function Xn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var pj={kernelName:cm,backendName:"cpu",kernelFunc:Xn};function Yh(e,t,n="float32"){if(n==="complex64"){let r=Yh(e,t,"float32"),s=Yh(e,t,"float32");return Xn({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function cr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var cj={kernelName:zi,backendName:"cpu",kernelFunc:cr};function hi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var dj={kernelName:Fm,backendName:"cpu",kernelFunc:hi};function ps(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return cr({inputs:{x:r},backend:n});let i=Yh(n,r.shape,r.dtype),o=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Xn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=hi({inputs:{input:r},backend:n}),o=ps({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=cr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,u]=Ut((p,d)=>p!==d?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var hj={kernelName:Si,backendName:"cpu",kernelFunc:ps};function sn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?C.fromUint8ToStringArray(u):u,c=i.dtype==="string"?C.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ps({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ps({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[k,T,_]=n(i.shape,o.shape,h,m,x,v),E=l.makeTensorInfo(_,"float32",k),A=l.makeTensorInfo(_,"float32",T),M=Xn({inputs:{real:E,imag:A},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(A),M}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function d0(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),u=o.length,p=w.computeStrides(o),d=w.getTypedArrayFromDType("float32",l),c=w.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),g=C.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let k=0;k<d.length;k++){let T=k%f.length,_=k%g.length,E=e(f[T*2],f[T*2+1],g[_*2],g[_*2+1]);d[k]=E.real,c[k]=E.imag}else for(let k=0;k<d.length;k++){let T=w.indexToLoc(k,u,p),_=T.slice(-y);h.forEach(S=>_[S]=0);let E=w.locToIndex(_,y,b),A=T.slice(-x);m.forEach(S=>A[S]=0);let M=w.locToIndex(A,x,v),$=e(f[E*2],f[E*2+1],g[M*2],g[M*2+1]);d[k]=$.real,c[k]=$.imag}return[d,c,o]}}var pT=Ut((e,t)=>e+t),mj=d0((e,t,n,a)=>({real:e+n,imag:t+a})),wl=sn(hs,pT,mj),fj={kernelName:hs,backendName:"cpu",kernelFunc:wl};function h0(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function cT(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Ve([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function ks(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function ot(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=w.sizeFromShape(i.shape),p=n||i.dtype,d=w.getArrayFromDType(p,u);for(let c=0;c<u;++c)d[c]=t(l[c],r);return o.makeTensorInfo(i.shape,p,d)}}function zu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var dT=ks(e=>Math.ceil(e)),gj=zu(Ni,dT),yj={kernelName:Ni,backendName:"cpu",kernelFunc:gj};function m0(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var hT=Ut((e,t)=>e===t?1:0),mT=sn(Vl,hT,null,"bool"),bj={kernelName:Vl,backendName:"cpu",kernelFunc:mT},fT=ks(e=>Math.exp(e)),gT=zu(Ri,fT,"float32"),xj={kernelName:Ri,backendName:"cpu",kernelFunc:gT},yT=ks(e=>Math.expm1(e)),vj=zu(Gl,yT),wj={kernelName:Gl,backendName:"cpu",kernelFunc:vj},bT=ks(e=>Math.floor(e)),kj=zu(Mi,bT),Ij={kernelName:Mi,backendName:"cpu",kernelFunc:kj};function xT(e,t,n,a,r,s,i,o,l){let u=Ve([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function vT(e,t,n){let a=Ve(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var wT=Ut((e,t)=>e>t?1:0),Sj=sn(Kl,wT,null,"bool"),Nj={kernelName:Kl,backendName:"cpu",kernelFunc:Sj},kT=Ut((e,t)=>e>=t?1:0),Tj=sn(Li,kT,null,"bool"),_j={kernelName:Li,backendName:"cpu",kernelFunc:Tj},IT=Ut((e,t)=>e<t?1:0),Cj=sn(Jl,IT,null,"bool"),Ej={kernelName:Jl,backendName:"cpu",kernelFunc:Cj},ST=Ut((e,t)=>e<=t?1:0),Fj=sn(Zl,ST,null,"bool"),Aj={kernelName:Zl,backendName:"cpu",kernelFunc:Fj};function NT(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var TT=ks(e=>Math.log(e)),$j=zu(Wi,TT),Dj={kernelName:Wi,backendName:"cpu",kernelFunc:$j};function _T(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var CT=Ut((e,t)=>Math.max(e,t)),Rj=sn(Ui,CT),Mj={kernelName:Ui,backendName:"cpu",kernelFunc:Rj},ET=Ut((e,t)=>Math.min(e,t)),Pj=sn(qi,ET),Oj={kernelName:qi,backendName:"cpu",kernelFunc:Pj},f0=Ut((e,t)=>e*t),Lj=d0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Vf=sn(Xi,f0,Lj),zj={kernelName:Xi,backendName:"cpu",kernelFunc:Vf};function FT(e,t,n){let a=w.createScalarValue(-1,n);return f0([],t,a,e,n)}function Bj(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=FT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Wj={kernelName:au,backendName:"cpu",kernelFunc:Bj},AT=Ut((e,t)=>e!==t?1:0),Vj=sn(ru,AT,null,"bool"),Uj={kernelName:ru,backendName:"cpu",kernelFunc:Vj};function g0(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let p=0;p<i;++p){let d=w.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=w.locToIndex(c,s,l);u[h]=e[p]}return u}function Vn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=g0(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var Gj={kernelName:Nr,backendName:"cpu",kernelFunc:Vn};function $T(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=ma(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function Hj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=C.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=C.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=$T(d.shape,d.dtype,h,p),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),c.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var jj={kernelName:eo,backendName:"cpu",kernelFunc:Hj};function y0(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var DT=ks(e=>1/Math.sqrt(e)),qj=zu(io,DT),Kj={kernelName:io,backendName:"cpu",kernelFunc:qj};function al(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Ve(n,t.dtype);let h=Ve(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=d[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}var Xj=ks(e=>1/(1+Math.exp(-e))),RT=ot(lo,e=>1/(1+Math.exp(-e))),Yj={kernelName:lo,backendName:"cpu",kernelFunc:RT};function Qh(e,t,n,a,r){let s=Kt.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let d=Kt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=Ve(a,r,l),p=Ve(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(p.values):p.values}function mi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=Kt.parseSliceParams(r,s,i);Kt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=Qh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var Qj={kernelName:fu,backendName:"cpu",kernelFunc:mi};function MT(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(n,0),y=w.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*d];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b<o;++b)p[b]=b;return[g,[o,d],y,u,p]}else{let g=m[l-1],y=w.getArrayFromDType(n,g*d),b=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let k=e[v*d],T=x[k],_=(k===0?0:m[k-1])+T;x[k]++;for(let E=0;E<d;++E)y[_*d+E]=e[v*d+E];b[_]=a[v],p[v]=_}for(let v=0;v<l;++v)if(x[v]===0){let k=v===0?0:m[v-1];y[k*d+0]=v;for(let T=1;T<d;++T)y[k*d+T]=0;b[k]=i}return[y,[g,d],b,u,p]}}function PT(e,t,n,a,r){let s=w.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(w.sizeFromShape(l)!==s)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=w.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<d;++y)g+=e[f*d+y]*c[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/h[y]),g%=h[y]}return[m,[i,o],l]}function b0(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=w.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f<o){if(b=r[f],y===b){++f;continue}if(y>=b)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let k=0;k<u;k++)h[y*u+k]+=e[v*u+k]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=b,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var Jj=ks(e=>Math.sqrt(e)),Zj=ot(uo,e=>Math.sqrt(e)),e5={kernelName:uo,backendName:"cpu",kernelFunc:Zj},OT=Ut((e,t)=>{let n=e-t;return n*n}),t5=sn(ho,OT),n5={kernelName:ho,backendName:"cpu",kernelFunc:t5};function LT(e,t,n,a){let r=Ve(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var a5=class{constructor(e,t,n,a,r,s){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<p;++g)c+=e[d+g].length;c+=u*this.rightPad.length,c+=(l+u+p-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(y=>h[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<p-1;++g)f(e[d+g]),f(this.separator);if(p>0){f(e[d+p-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=w.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function zT(e,t,n,a,r,s,i,o){return new a5(n,a,r,s,i,o).compute(e,t)}function r5(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function BT(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;r5(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=w.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function WT(e,t){let n=w.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=w.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var VT=Ut((e,t)=>e-t),s5=d0((e,t,n,a)=>({real:e-n,imag:t-a})),x0=sn(mo,VT,s5),i5={kernelName:mo,backendName:"cpu",kernelFunc:x0};function UT(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Ve(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Lp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function GT(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));GT(e,t,c,h)}let r=e[t],s=n,i=a;for(w.swap(e,n,t),Lp(e[a],r)>0&&w.swap(e,n,a);s<i;){for(w.swap(e,s,i),s++,i--;Lp(e[s],r)<0;)s=s+1;for(;Lp(e[i],r)>0;)i=i-1}Lp(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function HT(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),u=w.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((b,x)=>m[x]={value:b,index:x}),a<m.length&&(GT(m,a),m=m.slice(0,a)),r&&m.sort(Lp);let f=d*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let p=t.slice();return p[p.length-1]=a,[Ve(p,n,l),Ve(p,"int32",u)]}function jT(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new qt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let d=s.slice();d[1]=Object.keys(i).length;let c=new qt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}Wm("cpu",()=>new c0,1);var qT=ot(Di,e=>e>=0?e:Math.exp(e)-1),o5={kernelName:Di,backendName:"cpu",kernelFunc:qT};function KT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var l5={kernelName:Bi,backendName:"cpu",kernelFunc:KT},u5=Ut((e,t)=>e<0?t*e:e);function XT(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=u5(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var p5={kernelName:Zi,backendName:"cpu",kernelFunc:XT},YT=ot(to,e=>Math.max(0,e)),c5={kernelName:to,backendName:"cpu",kernelFunc:YT},QT=ot(ao,e=>Math.min(Math.max(0,e),6)),d5={kernelName:ao,backendName:"cpu",kernelFunc:QT};function Jh(e,t,n,a,r){if(n==="linear")return cr({inputs:{x:t},backend:e});if(n==="relu")return YT({inputs:{x:t},backend:e});if(n==="elu")return qT({inputs:{x:t},backend:e});if(n==="relu6")return QT({inputs:{x:t},backend:e});if(n==="prelu")return XT({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return KT({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return RT({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var h5={kernelName:cu,backendName:"cpu",kernelFunc:xt};function JT(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=Cu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],k=xt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=xt({inputs:{x:s},backend:n,attrs:{shape:v}}),_=i?k.shape[1]:k.shape[2],E=i?k.shape[2]:k.shape[1],A=o?T.shape[1]:T.shape[2],M=Math.max(g,y),$=n.data.get(k.dataId).values,S=n.data.get(T.dataId).values,P=w.computeStrides(k.shape),V=w.computeStrides(T.shape),[j,q,K]=i?[P[0],1,P[1]]:[P[0],P[1],1],[Z,ee,re]=o?[1,V[1],V[0]]:[V[1],1,V[0]],Y=E*A,ie=Ve([M,E,A],k.dtype),ae=ie.values,le=n.blockSize;for(let ue=0;ue<M;ue++)for(let ke=0;ke<E;ke+=le)for(let ye=0;ye<A;ye+=le)for(let Ie=0;Ie<_;Ie+=le){let Ee=Math.min(ke+le,E),$e=Math.min(ye+le,A),Be=Math.min(Ie+le,_);for(let je=ke;je<Ee;je++)for(let st=ye;st<$e;st++){let et=0;for(let tt=Ie;tt<Be;tt++){let Te=Math.min(ue,g-1)*j,gt=Math.min(ue,y-1)*re,ct=$[Te+je*q+tt*K],yn=S[tt*Z+st*ee+gt];et+=ct*yn}ae[ue*Y+(je*A+st)]+=et}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(b,ie.dtype,ie.values)}var m5={kernelName:Ii,backendName:"cpu",kernelFunc:JT};function f5(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=JT({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=wl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=Jh(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var g5={kernelName:ni,backendName:"cpu",kernelFunc:f5},y5=ot(_l,e=>Math.acos(e)),b5={kernelName:_l,backendName:"cpu",kernelFunc:y5},x5=ot(Cl,e=>Math.acosh(e)),v5={kernelName:Cl,backendName:"cpu",kernelFunc:x5};function w5(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Ve(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var k5={kernelName:vi,backendName:"cpu",kernelFunc:w5};function I5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];x=x&&k}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=C.expandShapeToKeepDim(d,o),b=xt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var S5={kernelName:El,backendName:"cpu",kernelFunc:I5};function N5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];x=x||k}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=C.expandShapeToKeepDim(d,o),b=xt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var T5={kernelName:Fl,backendName:"cpu",kernelFunc:N5};function _5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=C.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(p),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let k=f[y+v];k>b&&(b=k,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var C5={kernelName:wi,backendName:"cpu",kernelFunc:_5};function E5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=C.computeOutAndReduceShapes(l.shape,i),c=w.sizeFromShape(p),h=w.makeZerosTypedArray(c,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let k=f[y+v];k<b&&(b=k,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var F5={kernelName:cc,backendName:"cpu",kernelFunc:E5},A5=ot(Al,e=>Math.asin(e)),$5={kernelName:Al,backendName:"cpu",kernelFunc:A5},D5=ot($l,e=>Math.asinh(e)),R5={kernelName:$l,backendName:"cpu",kernelFunc:D5},M5=ot(Dl,e=>Math.atan(e)),P5={kernelName:Dl,backendName:"cpu",kernelFunc:M5},O5=Ut((e,t)=>Math.atan2(e,t)),L5=sn(Ml,O5),z5={kernelName:Ml,backendName:"cpu",kernelFunc:L5},B5=ot(Rl,e=>Math.atanh(e)),W5={kernelName:Rl,backendName:"cpu",kernelFunc:B5};function v0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Ve(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let k=v*y,T=v*a[0];for(let _=0;_<r.inChannels;++_)for(let E=0;E<r.outHeight;++E){let A=E*i-c,M=Math.max(0,A),$=Math.min(r.inHeight,p+A),S=k+E*b;for(let P=0;P<r.outWidth;++P){let V=P*o-h,j=Math.max(0,V),q=Math.min(r.inWidth,d+V),K=m,Z=0,ee=0;for(let Y=M;Y<$;Y+=l){let ie=T+Y*a[1];for(let ae=j;ae<q;ae+=u){let le=ie+ae*a[2],ue=e[le+_];s==="max"&&ue>K?K=ue:s==="avg"&&(Z+=ue,ee++)}if(isNaN(K))break}let re=S+P*x+_;g[re]=s==="avg"?Z/ee:K}}}return f}function ZT(e,t,n,a,r=!1,s=!1){let i=Ve(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Ve(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=u;let k=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let _=T*l-m,E=_;for(;E<0;)E+=p;let A=Math.min(a.inWidth,c+_),M=Number.NEGATIVE_INFINITY,$=-1;for(let S=v;S<k;S+=u){let P=S-x;for(let V=E;V<A;V+=p){let j=V-_,q=f.get(g,S,V,y);q>M&&(M=q,r?$=s?((g*a.inHeight+S)*a.inWidth+V)*a.inChannels+y:(S*a.inWidth+V)*a.inChannels+y:$=P*c+j)}}i.set($,g,b,T,y)}}return i}function e_(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Ve(r.outShape,n),v=x.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],_=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let A=0;A<r.batchSize;++A){let M=A*k,$=A*a[0];for(let S=0;S<r.inChannels;++S)for(let P=0;P<r.outDepth;++P){let V=P*i-f,j=V;for(;j<0;)j+=u;let q=Math.min(r.inDepth,c+V),K=M+P*T;for(let Z=0;Z<r.outHeight;++Z){let ee=Z*o-g,re=ee;for(;re<0;)re+=p;let Y=Math.min(r.inHeight,h+ee),ie=K+Z*_;for(let ae=0;ae<r.outWidth;++ae){let le=ae*l-y,ue=le;for(;ue<0;)ue+=d;let ke=Math.min(r.inWidth,m+le),ye=ie+ae*E,Ie=b,Ee=0,$e=0;for(let je=j;je<q;je+=u){let st=$+je*a[1];for(let et=re;et<Y;et+=p){let tt=st+et*a[2];for(let Te=ue;Te<ke;Te+=d){let gt=tt+Te*a[3],ct=e[gt+S];if(s==="max"&&ct>Ie?Ie=ct:s==="avg"&&(Ee+=ct,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Be=ye+S;v[Be]=s==="avg"?Ee/$e:Ie}}}}return x}function V5(e,t){let n=Ve(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-c,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+b);for(let k=0;k<t.outHeight;++k){let T=k*r-h,_=T;for(;_<0;)_+=o;let E=Math.min(t.inHeight,p+T);for(let A=0;A<t.outWidth;++A){let M=A*s-m,$=M;for(;$<0;)$+=l;let S=Math.min(t.inWidth,d+M),P=Number.NEGATIVE_INFINITY,V=-1;for(let j=x;j<v;j+=i){let q=j-b;for(let K=_;K<E;K+=o){let Z=K-T;for(let ee=$;ee<S;ee+=l){let re=ee-M,Y=e.get(f,j,K,ee,g);Y>=P&&(P=Y,V=q*p*d+Z*p+re)}}}n.set(V,f,y,k,A,g)}}}return n}function U5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))d=cr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=v0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var G5={kernelName:ki,backendName:"cpu",kernelFunc:U5};function H5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"avgPool3d");let p=C.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=e_(d,r.shape,r.dtype,w.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var j5={kernelName:dc,backendName:"cpu",kernelFunc:H5};function q5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"avgPool3DGrad");let p=C.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,v=p.effectiveFilterDepth,k=p.effectiveFilterHeight,T=p.effectiveFilterWidth,_=v-1-p.padInfo.front,E=T-1-p.padInfo.left,A=k-1-p.padInfo.top,M=Ve(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let P=0;P<p.batchSize;++P)for(let V=0;V<p.inChannels;++V)for(let j=0;j<p.inDepth;++j)for(let q=0;q<p.inHeight;++q)for(let K=0;K<p.inWidth;++K){let Z=j-_,ee=q-A,re=K-E,Y=0;for(let ie=0;ie<v;ie+=y){let ae=(Z+ie)/d;if(!(ae<0||ae>=p.outDepth||Math.floor(ae)!==ae))for(let le=0;le<k;le+=b){let ue=(ee+le)/c;if(!(ue<0||ue>=p.outHeight||Math.floor(ue)!==ue))for(let ke=0;ke<T;ke+=x){let ye=(re+ke)/h;ye<0||ye>=p.outWidth||Math.floor(ye)!==ye||(Y+=S.get(P,ae,ue,ye,V))}}}M.set(Y*$,P,j,q,K,V)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var K5={kernelName:lm,backendName:"cpu",kernelFunc:q5};function X5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=C.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,v=y-1-p.padInfo.top,k=Ve(i.shape,"float32"),T=1/(h*m),_=n.data.get(r.dataId).values,E=Ve(r.shape,"float32",_);for(let A=0;A<p.batchSize;++A)for(let M=0;M<p.inChannels;++M)for(let $=0;$<p.inHeight;++$)for(let S=0;S<p.inWidth;++S){let P=$-v,V=S-x,j=0;for(let q=0;q<y;q+=f){let K=(P+q)/d;if(!(K<0||K>=p.outHeight||Math.floor(K)!==K))for(let Z=0;Z<b;Z+=g){let ee=(V+Z)/c;ee<0||ee>=p.outWidth||Math.floor(ee)!==ee||(j+=E.get(A,K,ee,M))}}k.set(j*T,A,$,S,M)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var Y5={kernelName:om,backendName:"cpu",kernelFunc:X5};function Q5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,v=0,k=0,T=0,_=0;for(let E=0;E<p.length;++E)f[E]=m[v++]+(p[E]-d[k++])*h[T++]/Math.sqrt(c[_++]+u),v>=g&&(v=0),k>=x&&(k=0),T>=y&&(T=0),_>=b&&(_=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var J5={kernelName:Oi,backendName:"cpu",kernelFunc:Q5};function Z5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=mi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var eq={kernelName:Pl,backendName:"cpu",kernelFunc:Z5};function tq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=h0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var nq={kernelName:um,backendName:"cpu",kernelFunc:tq};function aq(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var rq={kernelName:pm,backendName:"cpu",kernelFunc:aq},sq=ot(ms,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),iq={kernelName:ms,backendName:"cpu",kernelFunc:sq},oq=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},lq={kernelName:hc,backendName:"cpu",kernelFunc:oq};function kl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var uq={kernelName:Im,backendName:"cpu",kernelFunc:kl};function Il(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return cr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>hi({inputs:{input:v},backend:n})),g=o.map(v=>kl({inputs:{input:v},backend:n})),y=Il({inputs:f,backend:n,attrs:{axis:s}}),b=Il({inputs:g,backend:n,attrs:{axis:s}}),x=Xn({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return xt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=m0(p,i,t[0].dtype,d),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var pq={kernelName:Ol,backendName:"cpu",kernelFunc:Il};function t_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;xe([r,s],"conv2d");let d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new qt(c.outShape,r.dtype),k=w.computeStrides(r.shape),T=w.computeStrides(s.shape),_=k[0],E=x?k[1]:k[2],A=x?k[2]:1,M=x?1:k[1],$=v.strides[0],S=x?v.strides[1]:v.strides[2],P=x?v.strides[2]:1,V=x?1:v.strides[1],j=n.data.get(r.dataId).values,q=n.data.get(s.dataId).values,K=v.values;for(let Z=0;Z<c.batchSize;++Z){let ee=Z*_,re=Z*$;for(let Y=0;Y<c.outHeight;++Y){let ie=re+Y*S,ae=Y*c.strideHeight-b;for(let le=0;le<h;++le){let ue=ae+le*f;if(ue<0||ue>=c.inHeight)continue;let ke=le*T[0],ye=ee+ue*E;for(let Ie=0;Ie<c.outWidth;++Ie){let Ee=ie+Ie*P,$e=Ie*c.strideWidth-y;for(let Be=0;Be<m;++Be){let je=$e+Be*g;if(je<0||je>=c.inWidth)continue;let st=ke+Be*T[1],et=ye+je*A,tt=st;for(let Te=0;Te<c.inChannels;++Te){let gt=j[et+Te*M];for(let ct=0;ct<c.outChannels;++ct)K[Ee+ct*V]+=gt*q[tt+ct];tt+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,K)}var cq={kernelName:Ti,backendName:"cpu",kernelFunc:t_};function dq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"conv2dBackpropFilter");let d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",b=new qt(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,k=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,_=new qt(r.shape,r.dtype,k),E=new qt(s.shape,s.dtype,T);for(let A=0;A<f;++A){let M=Math.max(0,Math.ceil((v-A)/h)),$=Math.min(c.outHeight,(c.inHeight+v-A)/h);for(let S=0;S<g;++S){let P=Math.max(0,Math.ceil((x-S)/m)),V=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let j=0;j<c.inChannels;++j)for(let q=0;q<c.outChannels;++q){let K=0;for(let Z=0;Z<c.batchSize;++Z)for(let ee=M;ee<$;++ee){let re=A+ee*h-v;for(let Y=P;Y<V;++Y){let ie=S+Y*m-x;y?K+=_.get(Z,re,ie,j)*E.get(Z,ee,Y,q):K+=_.get(Z,j,re,ie)*E.get(Z,q,ee,Y)}}b.set(K,A,S,j,q)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var hq={kernelName:dm,backendName:"cpu",kernelFunc:dq};function mq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;xe([r,s],"conv2dBackpropInput");let d=w.computeStrides(s.shape),c=w.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new qt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,k]=d,{batchSize:T,filterHeight:_,filterWidth:E,inChannels:A,inHeight:M,inWidth:$,outChannels:S,outHeight:P,outWidth:V,strideHeight:j,strideWidth:q}=m;h=m.dataFormat;let K=_-1-m.padInfo.top,Z=E-1-m.padInfo.left,ee=h==="channelsLast",re=f.strides[0],Y=ee?f.strides[1]:f.strides[2],ie=ee?f.strides[2]:1,ae=ee?1:f.strides[1],le=c[0],ue=ee?c[1]:c[2],ke=ee?c[2]:1,ye=ee?1:c[1];for(let Ie=0;Ie<T;++Ie)for(let Ee=0;Ee<A;++Ee)for(let $e=0;$e<M;++$e){let Be=$e-K,je=Math.max(0,Math.ceil(Be/j)),st=Math.min(P,(_+Be)/j);for(let et=0;et<$;++et){let tt=et-Z,Te=Math.max(0,Math.ceil(tt/q)),gt=Math.min(V,(E+tt)/q),ct=0;for(let Qt=je;Qt<st;++Qt){let Dn=Qt*j-Be;for(let Gt=Te;Gt<gt;++Gt){let Jt=Gt*q-tt,Da=le*Ie+ue*Qt+ke*Gt,Rn=x*(_-1-Dn)+v*(E-1-Jt)+k*Ee;for(let Ht=0;Ht<S;++Ht){let sa=y[Da+ye*Ht],ia=b[Rn+Ht];ct+=sa*ia}}}let yn=re*Ie+Y*$e+ie*et+ae*Ee;g[yn]=ct}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var fq={kernelName:_i,backendName:"cpu",kernelFunc:mq};function gq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,b=g.left,x=g.top,v=new qt(u.outShape,r.dtype),k=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,_=v.values,E=w.computeStrides(r.shape),A=w.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let $=M*E[0],S=M*v.strides[0];for(let P=0;P<u.outDepth;++P){let V=S+P*v.strides[1],j=P*u.strideDepth-y;for(let q=0;q<p;++q){let K=j+q*h;if(K<0||K>=u.inDepth)continue;let Z=q*A[0],ee=$+K*E[1];for(let re=0;re<u.outHeight;++re){let Y=V+re*v.strides[2],ie=re*u.strideHeight-x;for(let ae=0;ae<d;++ae){let le=ie+ae*m;if(le<0||le>=u.inHeight)continue;let ue=Z+ae*A[1],ke=ee+le*E[2];for(let ye=0;ye<u.outWidth;++ye){let Ie=Y+ye*u.outChannels,Ee=ye*u.strideWidth-b;for(let $e=0;$e<c;++$e){let Be=Ee+$e*f;if(Be<0||Be>=u.inWidth)continue;let je=ue+$e*A[2],st=ke+Be*u.inChannels,et=je;for(let tt=0;tt<u.inChannels;++tt){let Te=k[st+tt];for(let gt=0;gt<u.outChannels;++gt)_[Ie+gt]+=Te*T[et+gt];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var yq={kernelName:mc,backendName:"cpu",kernelFunc:gq};function bq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=C.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,y=d.filterWidth,b=new qt(d.filterShape,"float32"),x=b.values,[v,k,T,_]=b.strides,E=n.data.get(s.dataId).values,[A,M,$,S]=p,P=n.data.get(r.dataId).values,[V,j,q,K]=u,Z=d.padInfo.front,ee=d.padInfo.left,re=d.padInfo.top;for(let Y=0;Y<f;++Y){let ie=Math.max(0,Math.ceil((Z-Y)/c)),ae=Math.min(d.outDepth,(d.inDepth+Z-Y)/c),le=Y*v;for(let ue=0;ue<g;++ue){let ke=Math.max(0,Math.ceil((re-ue)/h)),ye=Math.min(d.outHeight,(d.inHeight+re-ue)/h),Ie=ue*k+le;for(let Ee=0;Ee<y;++Ee){let $e=Math.max(0,Math.ceil((ee-Ee)/m)),Be=Math.min(d.outWidth,(d.inWidth+ee-Ee)/m),je=Ee*T+Ie;for(let st=0;st<d.inChannels;++st){let et=st*_+je;for(let tt=0;tt<d.outChannels;++tt){let Te=0;for(let gt=0;gt<d.batchSize;++gt){let ct=gt*V,yn=gt*A;for(let Qt=ie;Qt<ae;++Qt){let Dn=(Y+Qt*c-Z)*j+ct,Gt=Qt*M+yn;for(let Jt=ke;Jt<ye;++Jt){let Da=(ue+Jt*h-re)*q+Dn,Rn=Jt*$+Gt;for(let Ht=$e;Ht<Be;++Ht){let sa=(Ee+Ht*m-ee)*K+Da,ia=Ht*S+Rn;Te+=P[sa+st]*E[ia+tt]}}}}x[et+tt]=Te}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var xq={kernelName:hm,backendName:"cpu",kernelFunc:bq};function vq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=C.computeConv3DInfo(l,s.shape,o,1,i),c=new qt(d.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,b=n.data.get(r.dataId).values,[x,v,k,T]=u,_=n.data.get(s.dataId).values,[E,A,M,$]=p,{batchSize:S,filterDepth:P,filterHeight:V,filterWidth:j,inChannels:q,inDepth:K,inHeight:Z,inWidth:ee,outChannels:re,outDepth:Y,outHeight:ie,outWidth:ae,strideDepth:le,strideHeight:ue,strideWidth:ke}=d,ye=P-1-d.padInfo.front,Ie=V-1-d.padInfo.top,Ee=j-1-d.padInfo.left;for(let $e=0;$e<S;++$e)for(let Be=0;Be<q;++Be)for(let je=0;je<K;++je){let st=je-ye,et=Math.max(0,Math.ceil(st/le)),tt=Math.min(Y,(P+st)/le);for(let Te=0;Te<Z;++Te){let gt=Te-Ie,ct=Math.max(0,Math.ceil(gt/ue)),yn=Math.min(ie,(V+gt)/ue);for(let Qt=0;Qt<ee;++Qt){let Dn=Qt-Ee,Gt=Math.max(0,Math.ceil(Dn/ke)),Jt=Math.min(ae,(j+Dn)/ke),Da=0;for(let Rn=et;Rn<tt;++Rn){let Ht=Rn*le-st;for(let sa=ct;sa<yn;++sa){let ia=sa*ue-gt;for(let Vr=Gt;Vr<Jt;++Vr){let Rs=Vr*ke-Dn,kd=x*$e+v*Rn+k*sa+T*Vr,Ur=E*(P-1-Ht)+A*(V-1-ia)+M*(j-1-Rs)+$*Be;for(let xr=0;xr<re;++xr){let gp=b[kd+xr],Lo=_[Ur+xr];Da+=gp*Lo}}}}h[m*$e+f*je+g*Te+y*Qt+Be]=Da}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var wq={kernelName:mm,backendName:"cpu",kernelFunc:vq},kq=ot(Ci,e=>Math.cos(e)),Iq={kernelName:Ci,backendName:"cpu",kernelFunc:kq},Sq=ot(Ei,e=>Math.cosh(e)),Nq={kernelName:Ei,backendName:"cpu",kernelFunc:Sq};function Tq(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=Ve([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,k=w.computeStrides(r.shape),T=w.computeStrides(y.shape);for(let _=0;_<m;_++){let E=_*4,A=b[E],M=b[E+1],$=b[E+2],S=b[E+3],P=x[_];if(P>=p)continue;let V=f>1?($-A)*(d-1)/(f-1):0,j=g>1?(S-M)*(c-1)/(g-1):0;for(let q=0;q<f;q++){let K=f>1?A*(d-1)+q*V:.5*(A+$)*(d-1);if(K<0||K>d-1){for(let Z=0;Z<g;Z++)for(let ee=0;ee<h;ee++){let re=ee+Z*T[2]+q*T[1]+_*T[0];y.values[re]=u}continue}if(l==="bilinear"){let Z=Math.floor(K),ee=Math.ceil(K),re=K-Z;for(let Y=0;Y<g;Y++){let ie=g>1?M*(c-1)+Y*j:.5*(M+S)*(c-1);if(ie<0||ie>c-1){for(let ke=0;ke<h;ke++){let ye=ke+Y*T[2]+q*T[1]+_*T[0];y.values[ye]=u}continue}let ae=Math.floor(ie),le=Math.ceil(ie),ue=ie-ae;for(let ke=0;ke<h;ke++){let ye=ke+ae*k[2]+Z*k[1]+P*k[0],Ie=v[ye];ye=ke+le*k[2]+Z*k[1]+P*k[0];let Ee=v[ye];ye=ke+ae*k[2]+ee*k[1]+P*k[0];let $e=v[ye];ye=ke+le*k[2]+ee*k[1]+P*k[0];let Be=v[ye],je=Ie+(Ee-Ie)*ue,st=$e+(Be-$e)*ue;ye=ke+Y*T[2]+q*T[1]+_*T[0],y.values[ye]=je+(st-je)*re}}}else for(let Z=0;Z<g;++Z){let ee=g>1?M*(c-1)+Z*j:.5*(M+S)*(c-1);if(ee<0||ee>c-1){for(let ie=0;ie<h;ie++){let ae=ie+Z*T[2]+q*T[1]+_*T[0];y.values[ae]=u}continue}let re=Math.round(ee),Y=Math.round(K);for(let ie=0;ie<h;ie++){let ae=ie+re*k[2]+Y*k[1]+P*k[0],le=ie+Z*T[2]+q*T[1]+_*T[0];y.values[le]=v[ae]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var _q={kernelName:zl,backendName:"cpu",kernelFunc:Tq};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumprod");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=C.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ma(u.dtype,"int32"),c=w.makeOnesTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?1:h[x];else{let v=f(y,b-1);c[x]=i?h[v]*c[v]:h[x]*c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=C.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var Eq={kernelName:Ll,backendName:"cpu",kernelFunc:Cq};function Fq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Vn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=C.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ma(u.dtype,"int32"),c=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)c[x]=i?0:h[x];else{let v=f(y,b-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let y=C.getUndoAxesPermutation(l),b=Vn({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),b}return g}var Aq={kernelName:Fi,backendName:"cpu",kernelFunc:Fq};function $q(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=h0(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=cT(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Dq={kernelName:fm,backendName:"cpu",kernelFunc:$q};function Rq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<d;++b){let x=Math.floor(b/s),v=b%s;for(let k=0;k<c;++k){let T=Math.floor(k/s),_=k%s,E=(v*s+_)*h;for(let A=0;A<h;++A){let M=A+E+p*(T+u*(x+l*y));f[g++]=m[M]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var Mq={kernelName:Bl,backendName:"cpu",kernelFunc:Rq};function n_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;xe([r,s],"depthwiseConv2DNative");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,k=h.outChannels/h.inChannels,T=new qt(h.outShape,r.dtype),_=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,A=T.values;for(let M=0;M<h.batchSize;++M){let $=M*p[0],S=M*T.strides[0];for(let P=0;P<h.outHeight;++P){let V=S+P*T.strides[1],j=P*h.strideHeight-v;for(let q=0;q<m;++q){let K=j+q*g;if(K<0||K>=h.inHeight)continue;let Z=q*d[0],ee=$+K*p[1];for(let re=0;re<h.outWidth;++re){let Y=V+re*T.strides[2],ie=re*h.strideWidth-x;for(let ae=0;ae<f;++ae){let le=ie+ae*y;if(le<0||le>=h.inWidth)continue;let ue=Z+ae*d[1],ke=ee+le*h.inChannels,ye=Y,Ie=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let $e=_[ke+Ee];for(let Be=0;Be<k;++Be)A[ye+Be]+=$e*E[Ie+Be];ye+=k,Ie+=k}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var Pq={kernelName:Ai,backendName:"cpu",kernelFunc:n_};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let d=C.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new qt(d.filterShape,"float32"),y=d.padInfo.left,b=d.padInfo.top,x=d.outChannels/d.inChannels,v=n.data.get(r.dataId).values,k=new qt(r.shape,r.dtype,v),T=n.data.get(s.dataId).values,_=new qt(s.shape,s.dtype,T);for(let E=0;E<m;++E){let A=Math.max(0,Math.ceil((b-E)/c)),M=Math.min(d.outHeight,(d.inHeight+b-E)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((y-$)/h)),P=Math.min(d.outWidth,(d.inWidth+y-$)/h);for(let V=0;V<d.outChannels;++V){let j=Math.trunc(V/x),q=V%x,K=0;for(let Z=0;Z<d.batchSize;++Z)for(let ee=A;ee<M;++ee){let re=E+ee*c-b;for(let Y=S;Y<P;++Y){let ie=$+Y*h-y;K+=k.get(Z,re,ie,j)*_.get(Z,ee,Y,V)}}g.set(K,E,$,j,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Lq={kernelName:gm,backendName:"cpu",kernelFunc:Oq};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),c=w.computeStrides(s.shape),h=C.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new qt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,k,T]=d,_=n.data.get(s.dataId).values,[E,A,M]=c,{batchSize:$,filterHeight:S,filterWidth:P,inChannels:V,inHeight:j,inWidth:q,outChannels:K,outHeight:Z,outWidth:ee,strideHeight:re,strideWidth:Y}=h,ie=S-1-h.padInfo.top,ae=P-1-h.padInfo.left,le=K/V;for(let ue=0;ue<$;++ue)for(let ke=0;ke<V;++ke)for(let ye=0;ye<j;++ye){let Ie=ye-ie,Ee=Math.max(0,Math.ceil(Ie/re)),$e=Math.min(Z,(S+Ie)/re);for(let Be=0;Be<q;++Be){let je=Be-ae,st=Math.max(0,Math.ceil(je/Y)),et=Math.min(ee,(P+je)/Y),tt=0;for(let Te=Ee;Te<$e;++Te){let gt=Te*re-Ie;for(let ct=st;ct<et;++ct){let yn=ct*Y-je,Qt=v*ue+k*Te+T*ct,Dn=E*(S-1-gt)+A*(P-1-yn)+M*ke;for(let Gt=0;Gt<le;++Gt){let Jt=ke*le+Gt,Da=x[Qt+Jt],Rn=_[Dn+Gt];tt+=Da*Rn}}}f[g*ue+y*ye+b*Be+ke]=tt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Bq={kernelName:ym,backendName:"cpu",kernelFunc:zq};function Wq(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Ve([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Vq={kernelName:bm,backendName:"cpu",kernelFunc:Wq},Uq={kernelName:fc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:k,filterHeight:T,filterWidth:_,dilationHeight:E,dilationWidth:A,outShape:M}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=w.sizeFromShape(M),S=M.length,P=w.getArrayFromDType(a.dtype,$);for(let V=0;V<h;++V)for(let j=0;j<y;++j){let q=j*v-x.top;for(let K=0;K<b;++K){let Z=K*k-x.left;for(let ee=0;ee<g;++ee){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<T;++ie){let ae=q+ie*E;if(ae>=0&&ae<m)for(let le=0;le<_;++le){let ue=Z+le*A;if(ue>=0&&ue<f){let ke=w.locToIndex([V,ae,ue,ee],p,w.computeStrides(a.shape)),ye=w.locToIndex([ie,le,ee],c,w.computeStrides(r.shape)),Ie=u[ke]+d[ye];Ie>re&&(re=Ie)}}}let Y=w.locToIndex([V,j,K,ee],S,w.computeStrides(M));P[Y]=re}}}return{dataId:l.write(w.toTypedArray(P,a.dtype),M,a.dtype),shape:M,dtype:a.dtype}}},Gq={kernelName:Fh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=w.toNestedArray(a.shape,u.data.get(a.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:k,filterWidth:T,dilationHeight:_,dilationWidth:E,outShape:A}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${Fh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let M=w.toNestedArray(A,u.data.get(s.dataId).values),$=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let P=0;P<g;++P){let V=P*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Z=Number.MIN_SAFE_INTEGER,ee=0,re=0;for(let Y=0;Y<k;++Y){let ie=V+Y*_;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*E;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Y][ae][K];ue>Z&&(Z=ue,ee=Y,re=ae)}}}$[ee][re][K]+=M[S][P][j][K]}}}return{dataId:u.write(w.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Hq={kernelName:Eh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=w.toNestedArray(a.shape,u.data.get(a.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:k,filterWidth:T,dilationHeight:_,dilationWidth:E,outShape:A}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${Eh}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let M=w.toNestedArray(A,u.data.get(s.dataId).values),$=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let P=0;P<g;++P){let V=P*x-b.top;for(let j=0;j<y;++j){let q=j*v-b.left;for(let K=0;K<f;++K){let Z=Number.MIN_SAFE_INTEGER,ee=V<0?0:V,re=q<0?0:q;for(let Y=0;Y<k;++Y){let ie=V+Y*_;if(ie>=0&&ie<h)for(let ae=0;ae<T;++ae){let le=q+ae*E;if(le>=0&&le<m){let ue=p[S][ie][le][K]+d[Y][ae][K];ue>Z&&(Z=ue,ee=ie,re=le)}}}$[S][ee][re][K]+=M[S][P][j][K]}}}return{dataId:u.write(w.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function ad(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=ps({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=cr({inputs:{x:r},backend:n});let l=o.shape.length,u=w.parseAxisParam(s,o.shape),p=C.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Vn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=C.getInnerMostAxes(d.length,l)),C.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,d),f=C.upcastType(c.dtype,"int32"),g=Yh(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<b.length;++v){let k=v*y,T=0;for(let _=0;_<y;++_)T+=x[k+_];b[v]=T}if(i){let v=C.expandShapeToKeepDim(g.shape,u),k=g;g=xt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var jq={kernelName:po,backendName:"cpu",kernelFunc:ad};function qq(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=C.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=C.getEinsumPermutation(h,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Vn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let k=0;k<b.length;++k)v.splice(b[k],0,1);w.arraysEqual(x.shape,v)||(x=xt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=Vf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=ad({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Kq={kernelName:xm,backendName:"cpu",kernelFunc:qq};function Xq(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var Yq={kernelName:vm,backendName:"cpu",kernelFunc:Xq},Qq=C.ERF_P,Jq=C.ERF_A1,Zq=C.ERF_A2,e8=C.ERF_A3,t8=C.ERF_A4,n8=C.ERF_A5,a8=ot(Wl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+Qq*n);return t*(1-((((n8*a+t8)*a+e8)*a+Zq)*a+Jq)*a*Math.exp(-n*n))}),r8={kernelName:Wl,backendName:"cpu",kernelFunc:a8};function Zh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:o}})}var s8={kernelName:Ul,backendName:"cpu",kernelFunc:Zh},i8=Ut((e,t)=>e/t),w0=sn($i,i8),ox={kernelName:$i,backendName:"cpu",kernelFunc:w0};function a_(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",p),c=w.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let y=mi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=mi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Xn({inputs:{real:y,imag:b},backend:n}),{real:v,imag:k}=o8(x,t,n),T=C.mergeRealAndImagArrays(v,k);for(let _=0;_<s;_++){let E=C.getComplexWithIndex(T,_);d[g*s+_]=E.real,c[g*s+_]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Xn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function o8(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(l8(a)){let o=lx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),c=cr({inputs:{x:d},backend:n}),h=ox.kernelFunc({inputs:{a:u,b:d},backend:n}),m=ox.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=u8(o,a,t);return C.splitRealAndImagArrays(l)}}function l8(e){return(e&e-1)===0}function lx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Xn({inputs:{real:d,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Xn({inputs:{real:b,imag:x},backend:r}),k=lx(l,u,i,a,r),T=k.real,_=k.imag,E=[T.length],A=r.makeTensorInfo(E,"float32",T),M=r.makeTensorInfo(E,"float32",_),$=Xn({inputs:{real:A,imag:M},backend:r}),S=lx(f,g,i,a,r),P=S.real,V=S.imag,j=[P.length],q=r.makeTensorInfo(j,"float32",P),K=r.makeTensorInfo(j,"float32",V),Z=Xn({inputs:{real:q,imag:K},backend:r}),ee=C.exponents(n,a),re=[ee.real.length],Y=r.makeTensorInfo(re,"float32",ee.real),ie=r.makeTensorInfo(re,"float32",ee.imag),ae=Xn({inputs:{real:Y,imag:ie},backend:r}),le=Vf({inputs:{a:ae,b:Z},backend:r}),ue=wl({inputs:{a:$,b:le},backend:r}),ke=x0({inputs:{a:$,b:le},backend:r}),ye=hi({inputs:{input:ue},backend:r}),Ie=hi({inputs:{input:ke},backend:r}),Ee=kl({inputs:{input:ue},backend:r}),$e=kl({inputs:{input:ke},backend:r}),Be=Il({inputs:[ye,Ie],backend:r,attrs:{axis:0}}),je=Il({inputs:[Ee,$e],backend:r,attrs:{axis:0}}),st=r.data.get(Be.dataId).values,et=r.data.get(je.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(M),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(je),{real:st,imag:et}}function u8(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function p8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=a_(o,!1,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var c8={kernelName:wm,backendName:"cpu",kernelFunc:p8};function k0(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return h8(o,r,i),t.makeTensorInfo(a,i,o)}var d8={kernelName:gc,backendName:"cpu",kernelFunc:k0};function h8(e,t,n){e.fill(t)}var m8={kernelName:Hl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let b=Math.round(l-f-1),x=c+m+g+y,v=p[x];if(b>=0&&b<l){let k=b*u,T=c+m+k+y;v=p[T]}s[x]=v}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},f8=Ut((e,t)=>Math.floor(e/t)),g8=sn(Pi,f8,null,"int32"),y8={kernelName:Pi,backendName:"cpu",kernelFunc:g8};function b8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=t_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=xt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=wl({inputs:{a:f,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else f=wl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let y=xt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=Jh(n,f,h,y,m),n.disposeIntermediateTensorInfo(y)}else f=Jh(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var x8={kernelName:ai,backendName:"cpu",kernelFunc:b8};function v8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=n_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=wl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Jh(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var w8={kernelName:ri,backendName:"cpu",kernelFunc:v8};function k8(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=C.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=xT(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var I8={kernelName:ql,backendName:"cpu",kernelFunc:k8};function S8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=w.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let v=0;v<u.length;++v){let k=u[v];w.assert(k<=p-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=w.sizeFromShape(s.shape),h=C.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=xt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=xt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=vT(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var N8={kernelName:jl,backendName:"cpu",kernelFunc:S8};function T8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=a_(o,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var _8={kernelName:km,backendName:"cpu",kernelFunc:T8},C8=ot(Xl,e=>Number.isFinite(e)?1:0,"bool"),E8={kernelName:Xl,backendName:"cpu",kernelFunc:C8},F8=ot(Yl,e=>Math.abs(e)===1/0?1:0,"bool"),A8={kernelName:Yl,backendName:"cpu",kernelFunc:F8},$8=ot(Ql,e=>Number.isNaN(e)?1:0,"bool"),D8={kernelName:Ql,backendName:"cpu",kernelFunc:$8};function R8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=NT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var M8={kernelName:Sm,backendName:"cpu",kernelFunc:R8},P8=ot(eu,e=>Math.log1p(e)),O8={kernelName:eu,backendName:"cpu",kernelFunc:P8},L8=Ut((e,t)=>e&&t),z8=sn(tu,L8,null,"bool"),B8={kernelName:tu,backendName:"cpu",kernelFunc:z8},W8=ot(yc,e=>e?0:1,"bool"),V8={kernelName:yc,backendName:"cpu",kernelFunc:W8},U8=Ut((e,t)=>e||t),G8=sn(bc,U8,null,"bool"),H8={kernelName:bc,backendName:"cpu",kernelFunc:G8};function j8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let v=d[y];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),y=d[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var q8={kernelName:xc,backendName:"cpu",kernelFunc:j8};function K8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;xe(i,"LRNGrad");let d=w.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),y=d;for(let b=0;b<y;b++){let x=b%c,v=b-x+Math.max(0,x-o),k=b-x+Math.min(c,x+o+1),T=0;for(let _=v;_<k;_++)T+=Math.pow(m[_],2);T=u*T+l;for(let _=v;_<k;_++){let E=-2*u*p*m[_]*f[b]/T;b===_&&(E+=Math.pow(T,-p)),E*=h[b],g[_]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var X8={kernelName:Nm,backendName:"cpu",kernelFunc:K8};function r_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=w.parseAxisParam(s,l),d=p,c=C.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let k=0;k<v.length;k++)v[k]=l[c[k]];h=g0(h,l,r.dtype,c,v),d=C.getInnerMostAxes(d.length,u),l=v}xe(r,"max"),C.assertAxesAreInnerMostDims("max",d,u);let[m,f]=C.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(f),y=_T(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,p)),{dataId:b,shape:x,dtype:r.dtype}}var Y8={kernelName:Vi,backendName:"cpu",kernelFunc:r_};function Q8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))d=cr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=v0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var J8={kernelName:Gi,backendName:"cpu",kernelFunc:Q8};function Z8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;xe(r,"maxPool3d");let p=C.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=e_(d,r.shape,r.dtype,w.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var eK={kernelName:vc,backendName:"cpu",kernelFunc:Z8};function tK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;xe([r,s],"maxPool3DGrad");let p=C.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=V5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,v=p.effectiveFilterHeight,k=p.effectiveFilterWidth,T=x-1-p.padInfo.front,_=k-1-p.padInfo.left,E=v-1-p.padInfo.top,A=Ve(s.shape,"float32"),M=n.bufferSync(r);for(let $=0;$<p.batchSize;++$)for(let S=0;S<p.inChannels;++S)for(let P=0;P<p.inDepth;++P)for(let V=0;V<p.inHeight;++V)for(let j=0;j<p.inWidth;++j){let q=P-T,K=V-E,Z=j-_,ee=0;for(let re=0;re<x;re+=g){let Y=(q+re)/h;if(!(Y<0||Y>=p.outDepth||Math.floor(Y)!==Y))for(let ie=0;ie<v;ie+=y){let ae=(K+ie)/m;if(!(ae<0||ae>=p.outHeight||Math.floor(ae)!==ae))for(let le=0;le<k;le+=b){let ue=(Z+le)/f;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let ke=x*v*k-1-c.get($,Y,ae,ue,S),ye=re*v*k+ie*k+le,Ie=ke===ye?1:0;Ie!==0&&(ee+=M.get($,Y,ae,ue,S)*Ie)}}}A.set(ee,$,P,V,j,S)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var nK={kernelName:_m,backendName:"cpu",kernelFunc:tK};function aK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=C.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Ve(c.outShape,o.dtype,ZT(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=v-1-c.padInfo.left,T=x-1-c.padInfo.top,_=Ve(o.shape,"float32"),E=n.data.get(r.dataId).values,A=Ve(r.shape,"float32",E);for(let M=0;M<c.batchSize;++M)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let P=0;P<c.inWidth;++P){let V=S-T,j=P-k,q=0;for(let K=0;K<x;K+=y){let Z=(V+K)/f;if(!(Z<0||Z>=c.outHeight||Math.floor(Z)!==Z))for(let ee=0;ee<v;ee+=b){let re=(j+ee)/g;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let Y=x*v-1-m.get(M,Z,re,$),ie=K*v+ee,ae=Y===ie?1:0;ae!==0&&(q+=A.get(M,Z,re,$)*ae)}}_.set(q,M,S,P,$)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var rK={kernelName:Tm,backendName:"cpu",kernelFunc:aK};function sK(e,t,n,a,r){let s=w.computeStrides(t),i=v0(e,t,n,s,r,"max"),o=ZT(e,t,n,r,!0,a);return[i.values,o.values]}var iK={kernelName:Cm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=C.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=sK(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function oK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],u=w.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=w0({inputs:{a:c,b:d},backend:n});p.push(h);let m=ad({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var lK={kernelName:Hi,backendName:"cpu",kernelFunc:oK};function uK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,u=C.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=C.computeOutAndReduceShapes(p.shape,l),h=w.sizeFromShape(c),m=w.makeZerosTypedArray(w.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let k=f[b+v];(Number.isNaN(k)||k<x)&&(x=k)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let y=C.expandShapeToKeepDim(d,o),b=xt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var pK={kernelName:ji,backendName:"cpu",kernelFunc:uK};function cK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let k=0;k<f;k++)x[k]<l[k]?x[k]=l[k]*2-x[k]-p:x[k]>=u[k]&&(x[k]=(u[k]-1)*2-x[k]+p);x=x.map((k,T)=>k-l[T]);let v=w.locToIndex(x,c,h);y[b]=d[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var dK={kernelName:Ki,backendName:"cpu",kernelFunc:cK},hK=Ut((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),mK=sn(nu,hK),fK={kernelName:nu,backendName:"cpu",kernelFunc:mK},gK=bi(Qk());function s_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),u=r_({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=C.expandShapeToKeepDim(u.shape,l),d=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=x0({inputs:{a:r,b:d},backend:n}),h=gT({inputs:{x:c},backend:n}),m=ad({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=w0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var yK={kernelName:co,backendName:"cpu",kernelFunc:s_};function bK(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:s_({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=w.makeZerosTypedArray(w.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let y=gK.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let k=0;k<g.length;k++)if(v<g[k]){h[b+x]=k;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var xK={kernelName:Em,backendName:"cpu",kernelFunc:bK},vK=mr.nonMaxSuppressionV3Impl;function wK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=vK(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var kK={kernelName:su,backendName:"cpu",kernelFunc:wK},IK=mr.nonMaxSuppressionV4Impl;function SK(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;xe(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=IK(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var NK={kernelName:iu,backendName:"cpu",kernelFunc:SK},TK=mr.nonMaxSuppressionV5Impl;function _K(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;xe(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=TK(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var CK={kernelName:ou,backendName:"cpu",kernelFunc:_K};function EK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let p=n.data.get(r.dataId).values;for(let d=0;d<l;++d)p[d]>=0&&p[d]<s&&(u[d*s+p[d]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var FK={kernelName:Yi,backendName:"cpu",kernelFunc:EK};function em(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=hi({inputs:{input:a},backend:n}),s=em({inputs:{x:r},backend:n}),i=kl({inputs:{input:a},backend:n}),o=em({inputs:{x:i},backend:n}),l=Xn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return k0({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var AK={kernelName:Tu,backendName:"cpu",kernelFunc:em};function i_(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=hi({inputs:{input:a},backend:n}),s=i_({inputs:{x:r},backend:n}),i=kl({inputs:{input:a},backend:n}),o=em({inputs:{x:i},backend:n}),l=Xn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return k0({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var $K={kernelName:lu,backendName:"cpu",kernelFunc:i_};function o_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Zh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Zh({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Il({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var DK={kernelName:uu,backendName:"cpu",kernelFunc:o_};function RK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),d=r.shape.length,c=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<p;y++){let b=w.indexToLoc(y,d,c).map((v,k)=>v+l[k]),x=w.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var l_={kernelName:Qi,backendName:"cpu",kernelFunc:RK},MK=Ut((e,t)=>Math.pow(e,t)),PK=sn(Ji,MK),OK={kernelName:Ji,backendName:"cpu",kernelFunc:PK};function LK(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=y0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var zK={kernelName:wc,backendName:"cpu",kernelFunc:LK},BK=ot(pu,e=>1/e),WK={kernelName:pu,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,v=y[0]/b[0],k=y[1]/b[1];for(let T=0;T<d;T++)for(let _=0;_<u;_++){let E;i?E=v*(_+.5)-.5:E=v*_;let A=Math.max(0,Math.floor(E)),M=E-A,$=Math.min(c-1,Math.ceil(E)),S=T*l[0]+A*l[1],P=T*l[0]+$*l[1];for(let V=0;V<p;V++){let j;i?j=k*(V+.5)-.5:j=k*V;let q=Math.max(0,Math.floor(j)),K=j-q,Z=Math.min(h-1,Math.ceil(j)),ee=S+q*l[2],re=P+q*l[2],Y=S+Z*l[2],ie=P+Z*l[2];for(let ae=0;ae<m;ae++){let le=f[ee+ae],ue=f[re+ae],ke=f[Y+ae],ye=f[ie+ae],Ie=le+(ke-le)*K,Ee=ue+(ye-ue)*K,$e=Ie+(Ee-Ie)*M;g[x++]=$e}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var UK={kernelName:no,backendName:"cpu",kernelFunc:VK};function GK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let k=0;k<l;k++){let T=k*o[0];for(let _=0;_<c;_++){let E=_*y,A=Math.floor(E),M=Math.min(Math.ceil(E),u-1),$=T+A*o[1],S=T+M*o[1],P=E-A,V=1-P;for(let j=0;j<h;j++){let q=j*b,K=Math.floor(q),Z=Math.min(Math.ceil(q),p-1),ee=q-K,re=1-ee,Y=$+K*o[2],ie=$+Z*o[2],ae=S+K*o[2],le=S+Z*o[2],ue=V*re,ke=V*ee,ye=P*re,Ie=P*ee;for(let Ee=0;Ee<d;Ee++){let $e=x[v++];m[Y+Ee]+=$e*ue,m[ie+Ee]+=$e*ke,m[ae+Ee]+=$e*ye,m[le+Ee]+=$e*Ie}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var HK={kernelName:$m,backendName:"cpu",kernelFunc:GK};function jK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],v=y[1]/b[1],k=0;for(let T=0;T<d;T++){let _=T*l[0];for(let E=0;E<u;E++){let A=i?x*(E+.5):x*E,M=Math.min(c-1,s?Math.round(A):Math.floor(A));i&&(M=Math.max(0,M));let $=_+M*l[1];for(let S=0;S<p;S++){let P=i?v*(S+.5):v*S,V=Math.min(h-1,s?Math.round(P):Math.floor(P));i&&(V=Math.max(0,V));let j=$+V*l[2];for(let q=0;q<m;q++){let K=f[j+q];g[k++]=K}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var qK={kernelName:kc,backendName:"cpu",kernelFunc:jK};function KK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,y=[i&&h>1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],k=1/x,T=1/v,_=Math.ceil(k)*2+2,E=Math.ceil(T)*2+2;for(let A=0;A<u;A++){let M=A*o[0];for(let $=0;$<p;$++){let S=M+$*o[1],P=Math.floor($*k),V=Math.floor(P-_/2);for(let j=0;j<d;j++){let q=S+j*o[2],K=Math.floor(j*T),Z=Math.floor(K-E/2);for(let ee=0;ee<c;ee++){let re=0;for(let Y=0;Y<_;Y++){let ie=Y+V;if(ie<0||ie>=h)continue;let ae=M+ie*l[1],le=ie*x,ue=Math.min(p-1,i?Math.round(le):Math.floor(le));if($===ue)for(let ke=0;ke<E;ke++){let ye=ke+Z;if(ye<0||ye>=m)continue;let Ie=ae+ye*l[2],Ee=ye*v,$e=Math.min(d-1,i?Math.round(Ee):Math.floor(Ee));j===$e&&(re+=g[Ie+ee])}}f[q+ee]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var XK={kernelName:Am,backendName:"cpu",kernelFunc:KK};function YK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return cr({inputs:{x:r},backend:n});let l=new qt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var QK={kernelName:ro,backendName:"cpu",kernelFunc:YK},JK={kernelName:_u,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=C.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*d*p*c;for(let k=0;k<p;k++){let T=k*(d*c);for(let _=0;_<d;_++){let E=_*c;for(let A=0;A<c;A++){let M=[u,k,_,A],$=M[2],S=M[1],P=($-h)*y-(S-m)*g,V=($-h)*g+(S-m)*y;P=Math.round(P+h),V=Math.round(V+m);let j=s;if(typeof s!="number"&&(A===3?j=f:j=s[A]),P>=0&&P<d&&V>=0&&V<p){let K=V*(d*c),Z=P*c,ee=v+K+Z+A;j=b[ee]}let q=v+T+E+A;l[q]=j}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},ZK=ot(so,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),eX={kernelName:so,backendName:"cpu",kernelFunc:ZK};function tX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=al(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var nX={kernelName:du,backendName:"cpu",kernelFunc:tX};function aX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function rX(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function sX(e,t,n,a,r,s){let i=w.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?aX(l,t[p+u]):rX(l,t[p+u])}return i}function iX(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=sX(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var oX={kernelName:Dm,backendName:"cpu",kernelFunc:iX};function lX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ma(r.dtype,s.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var uX={kernelName:hu,backendName:"cpu",kernelFunc:lX},pX=C.SELU_SCALEALPHA,cX=C.SELU_SCALE,dX=ot(mu,e=>e>=0?cX*e:pX*(Math.exp(e)-1)),hX={kernelName:mu,backendName:"cpu",kernelFunc:dX},mX=ot(yu,e=>e<0?-1:e>0?1:0),fX={kernelName:yu,backendName:"cpu",kernelFunc:mX},gX=ot(oo,e=>Math.sin(e)),yX={kernelName:oo,backendName:"cpu",kernelFunc:gX},bX=ot(gu,e=>Math.sinh(e)),xX={kernelName:gu,backendName:"cpu",kernelFunc:bX},vX=11920928955078125e-23,Ik=Math.log(vX)+2,wX=ot(bu,e=>{let t=e>-Ik,n=e<Ik,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),kX={kernelName:bu,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=l_.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(p.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var SX={kernelName:xu,backendName:"cpu",kernelFunc:IX};function NX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=MT(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var TX={kernelName:Ic,backendName:"cpu",kernelFunc:NX};function _X(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=PT(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var CX={kernelName:wu,backendName:"cpu",kernelFunc:_X};function EX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=b0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var FX={kernelName:Sc,backendName:"cpu",kernelFunc:EX};function AX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=b0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var $X={kernelName:Nc,backendName:"cpu",kernelFunc:AX};function DX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),y=Boolean(n.data.get(i.dataId).values[0]);f=al(m,g,o,c,p,u,l,d,y,h);break}case"float32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=al(m,g,o,c,p,u,l,d,y,h);break}case"int32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=al(m,g,o,c,p,u,l,d,y,h);break}case"string":{let g=n.bufferSync(s),y=w.decodeString(n.data.get(i.dataId).values[0]);f=al(m,g,o,c,p,u,l,d,y,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var RX={kernelName:Rm,backendName:"cpu",kernelFunc:DX};function MX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=mi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var PX={kernelName:vu,backendName:"cpu",kernelFunc:MX},OX={kernelName:Tc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},LX=ot(gs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),zX={kernelName:gs,backendName:"cpu",kernelFunc:LX};function BX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;xe(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),k;if(f)k=xt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(b,x,v),_=mi({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});k=xt({inputs:{x:_},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(_)}else{let T=n.bufferSync(r),_=LT(h,T,v,b);k=n.makeTensorInfo(m,_.dtype,_.values)}return k}var WX={kernelName:ku,backendName:"cpu",kernelFunc:BX};function VX(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=zT(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var UX={kernelName:Mm,backendName:"cpu",kernelFunc:VX};function GX(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=BT(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var HX={kernelName:Pm,backendName:"cpu",kernelFunc:GX};function jX(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=WT(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var qX={kernelName:Om,backendName:"cpu",kernelFunc:jX},KX=ot(fo,e=>Math.tan(e)),XX={kernelName:fo,backendName:"cpu",kernelFunc:KX},YX=ot(go,e=>Math.tanh(e)),QX={kernelName:go,backendName:"cpu",kernelFunc:YX};function JX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=UT(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var ZX={kernelName:fs,backendName:"cpu",kernelFunc:JX};function e7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=HT(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var t7={kernelName:Iu,backendName:"cpu",kernelFunc:e7};function n7(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=w.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],k=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));k.fill(l);let T=a.data.get(r.dataId).values,_=a.data.get(s.dataId).values;for(let E=0;E<p;++E){let A=s.shape[0]===1?_:_.subarray(E*8,E*8+8);for(let M=0;M<m;++M)for(let $=0;$<f;++$)for(let S=0;S<h;++S){let P,V=A[6]*$+A[7]*M+1;if(V===0)continue;let j=(A[0]*$+A[1]*M+A[2])/V,q=(A[3]*$+A[4]*M+A[5])/V,K=Sk(j,c,o),Z=Sk(q,d,o);switch(i){case"nearest":P=l7(T,d,c,b,x,v,E,Z,K,S,l);break;case"bilinear":P=u7(T,d,c,b,x,v,E,Z,K,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ee=E*b+M*x+$*v+S;k[ee]=P}return a.makeTensorInfo(g,r.dtype,k)}return{dataId:a.write(k,g,r.dtype),shape:r.shape,dtype:r.dtype}}var a7={kernelName:Su,backendName:"cpu",kernelFunc:n7};function Sk(e,t,n){switch(n){case"reflect":return r7(e,t);case"wrap":return s7(e,t);case"nearest":return o7(e,t);case"constant":default:return i7(e,t)}}function r7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function s7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function i7(e,t){return e}function o7(e,t){return w.clamp(0,e,t-1)}function zp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function l7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return zp(e,t,n,a,r,s,i,d,c,u,p)}function u7(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*zp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*zp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*zp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*zp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function p7(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=jT(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var c7={kernelName:Lm,backendName:"cpu",kernelFunc:p7};function d7(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=mi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=xt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var h7={kernelName:Nu,backendName:"cpu",kernelFunc:d7};function m7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=Zh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=mT({inputs:{a:g,b:c},backend:n}),b=ps({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=Vf({inputs:{a:b,b:r},backend:n}),v=ad({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),p.push(g),p.push(y),p.push(b),p.push(x),p.push(v)}let h=o_({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var f7={kernelName:_c,backendName:"cpu",kernelFunc:m7},g7=[g5,uj,b5,v5,fj,k5,S5,T5,C5,F5,$5,R5,P5,z5,W5,G5,j5,K5,Y5,m5,J5,eq,nq,rq,hj,yj,iq,pj,lq,pq,cq,hq,fq,yq,xq,wq,Iq,Nq,_q,Eq,Aq,Dq,Mq,Pq,Lq,Bq,Vq,Uq,Gq,Hq,Kq,o5,Yq,bj,r8,xj,s8,wj,c8,d8,m8,Ij,y8,x8,w8,I8,N8,Nj,_j,cj,_8,uq,E8,A8,D8,l5,Ej,Aj,M8,Dj,O8,B8,V8,H8,q8,X8,Y8,Mj,J8,eK,nK,rK,iK,lK,pK,Oj,dK,fK,xK,zj,Wj,kK,NK,CK,Uj,FK,$K,DK,l_,OK,p5,jj,zK,dj,ox,WK,c5,d5,h5,UK,HK,qK,XK,QK,JK,eX,Kj,nX,oX,uX,hX,Yj,fX,yX,xX,Qj,yK,kX,SX,TX,CX,FX,$X,RX,PX,e5,OX,n5,zX,WX,UX,HX,qX,i5,jq,XX,QX,ZX,t7,a7,Gj,c7,h7,f7,AK];for(let e of g7)Cc(e);var u_={};Me(u_,{assertNotComplex:()=>Wu,bindCanvasToFramebuffer:()=>_7,bindColorTextureToFramebuffer:()=>vh,bindTextureToProgramUniformSampler:()=>N_,bindTextureUnit:()=>k_,bindVertexBufferToProgramAttribute:()=>ux,callAndCheck:()=>ge,canBeRepresented:()=>c_,createFragmentShader:()=>m_,createFramebuffer:()=>w_,createProgram:()=>f_,createStaticIndexBuffer:()=>b_,createStaticVertexBuffer:()=>y_,createTexture:()=>x_,createVertexShader:()=>h_,getBatchDim:()=>fi,getExtensionOrThrow:()=>Bp,getFramebufferErrorMessage:()=>T_,getMaxTexturesInShader:()=>F_,getNumChannels:()=>N7,getProgramUniformLocation:()=>S_,getProgramUniformLocationOrThrow:()=>I_,getRowsCols:()=>gi,getShapeAs3D:()=>wh,getTextureShapeFromLogicalShape:()=>C_,getWebGLDisjointQueryTimerVersion:()=>A_,getWebGLErrorMessage:()=>d_,getWebGLMaxTextureSize:()=>E_,hasExtension:()=>da,isCapableOfRenderingToFloatTexture:()=>$_,isDownloadFloatTextureEnabled:()=>D_,isReshapeFree:()=>ic,isWebGLFenceEnabled:()=>R_,isWebGLVersionEnabled:()=>cx,linkProgram:()=>g_,logShaderSourceAndInfoLog:()=>S0,resetMaxTextureSize:()=>C7,resetMaxTexturesInShader:()=>E7,unbindColorTextureFromFramebuffer:()=>px,unbindTextureUnit:()=>T7,validateFramebuffer:()=>Wp,validateProgram:()=>xh,validateTextureSize:()=>v_});var Ks={},vb={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function p_(e,t){Ks[e]=t}function Ya(e,t){if(!(e in Ks)||t!=null){let a=b7(e,t);if(a!==null)Ks[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Ks[e];return n==null||n.isContextLost()?(delete Ks[e],Ya(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Ks[e])}function y7(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function b7(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?y7(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Ks[e]},!1),e===1?n.getContext("webgl",vb)||n.getContext("experimental-webgl",vb):n.getContext("webgl2",vb)}var sc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(sc||(sc={}));var ca;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ca||(ca={}));var ln;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(ln||(ln={}));function rd(e,t){return[t,e]}function x7(e,t){return e*t}function dh(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Bu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function v7(e,t){let[n,a]=Bu(e,t);return n*a*4}function I0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return X().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ge(e,t){let n=t();return X().getBool("DEBUG")&&w7(e),n}function w7(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+d_(e,t))}var k7=596e-10,I7=65504;function c_(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||k7<Math.abs(e)&&Math.abs(e)<I7)}function d_(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Bp(e,t){return Dr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function h_(e,t){let n=Dr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function m_(e,t){let n=Dr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),X().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw S0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var S7=/ERROR: [0-9]+:([0-9]+):/g;function S0(e,t){let n=S7.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>w.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function f_(e){return Dr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function g_(e,t){if(ge(e,()=>e.linkProgram(t)),!X().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function xh(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function y_(e,t){let n=Dr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function b_(e,t){let n=Dr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function N7(){return X().getNumber("WEBGL_VERSION")===2?1:4}function x_(e){return Dr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function v_(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function w_(e){return Dr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ux(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ge(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function k_(e,t,n){__(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function T7(e,t){__(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function I_(e,t,n){return Dr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function S_(e,t,n){return e.getUniformLocation(t,n)}function N_(e,t,n,a){ge(e,()=>k_(e,t,a)),ge(e,()=>e.uniform1i(n,a))}function _7(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function vh(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function px(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Wp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+T_(e,t))}function T_(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Dr(e,t,n){let a=ge(e,()=>t());if(a==null)throw new Error(n);return a}function __(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function fi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function gi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function wh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[fi(e),...gi(e)]),t}function C_(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=fi(e),s=2,i=2;return e.length&&([s,i]=gi(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function hh(e){return e%2===0}function ic(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||hh(n)&&hh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&hh(e[0])&&hh(t[0])}var kh,Ih;function E_(e){if(kh==null){let t=Ya(e);kh=t.getParameter(t.MAX_TEXTURE_SIZE)}return kh}function C7(){kh=null}function E7(){Ih=null}function F_(e){if(Ih==null){let t=Ya(e);Ih=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Ih)}function A_(e){if(e===0)return 0;let t,n=Ya(e);return da(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:da(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function da(e,t){return e.getExtension(t)!=null}function cx(e){try{if(Ya(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function $_(e){if(e===0)return!1;let t=Ya(e);if(e===1){if(!da(t,"OES_texture_float"))return!1}else if(!da(t,"EXT_color_buffer_float"))return!1;return dx(t)}function D_(e){if(e===0)return!1;let t=Ya(e);if(e===1){if(!da(t,"OES_texture_float")||!da(t,"WEBGL_color_buffer_float"))return!1}else{if(da(t,"EXT_color_buffer_float"))return dx(t);let n="EXT_color_buffer_half_float";if(da(t,n)){let a=t.getExtension(n);return F7(t,a)}return!1}return dx(t)}function dx(e){let t=I0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function F7(e,t){let n=I0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function R_(e){return e!==2?!1:Ya(e).fenceSync!=null}function Wu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=X();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>cx(2)?2:cx(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>E_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>F_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:A_(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Ac.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>$_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>D_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>R_(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Ac.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Cn(){let e,t,n,a,r,s,i,o,l,u;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Io(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Uf(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function A7(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function $7(e,t,n="index"){let a=e.map((s,i)=>i),r=A7(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function N0(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function T0(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var M_=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:P_}=C;function D7(e,t,n){let a=[];if(e.forEach(c=>{let h=w.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=_0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>R7(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=Cn(),l=O7(o),u,p,d=B7(o);return t.isPacked?(u=M7(t.logicalShape,i,n.enableShapeUniforms),p=z7(o)):(u=P7(t.logicalShape,i,n.enableShapeUniforms),p=L7(o)),n.packedInputs&&(d+=G7),[d,l,p,r,u,s,n.userCode].join(`
`)}function Vu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return nY(e,t);case 1:return rY(e,t);case 2:return iY(e,t);case 3:return lY(e,t);case 4:return pY(e,t);case 5:return cY(e);case 6:return dY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function O_(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return tY(e);case 1:return aY(e,t);case 2:return sY(e,t);case 3:return oY(e,t);default:return uY(e,t)}}function R7(e,t,n=!1,a){let r="";n?r+=O_(e,a):r+=Vu(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=hY(e,t):r+=mY(e,t)),r}function M7(e,t,n){switch(e.length){case 0:return L_();case 1:return H7(e,t,n);case 2:return Z7(e,t,n);case 3:return q7(e,t,n);default:return X7(e,t,n)}}function P7(e,t,n){switch(e.length){case 0:return L_();case 1:return j7(e,t,n);case 2:return eY(e,t,n);case 3:return K7(e,t,n);case 4:return Y7(e,t,n);case 5:return Q7(e,t);case 6:return J7(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function O7(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function L7(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function z7(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function B7(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${W7}
${V7}
${U7}
`}var W7=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,V7=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,U7=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,G7=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function L_(){return`
int getOutputCoords() {
return 0;
}
`}function H7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function j7(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function q7(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function K7(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Uf(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=Io(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function X7(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function Y7(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Uf(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=Io(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function Q7(e,t){let n=Io(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function J7(e,t){let n=Io(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function Z7(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function eY(e,t,n){return w.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function So(e){return`offset${e}`}function tY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=Cn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function nY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=So(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function aY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=Cn();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function rY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${Uu(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=So(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function sY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Cn();if(s!=null&&w.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function iY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&w.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),l=i;if(l.length<n.length){let c=Gu(e,l),h=["row","col"];return`
${Vu(c,t)}
float ${r}(int row, int col) {
return ${r}(${Hu(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${Uu(e)}
}
`;let u=s[0],p=s[1],d=So(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function oY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=Gu(e,c),f=["b","row","col"];return`
${O_(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${Hu(f,h)});
}
`}let o=Cn();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function lY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=w.squeezeShape(n),u=o;if(u.length<n.length){let f=Gu(e,u),g=["row","col","depth"];return`
${Vu(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${Hu(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Uu(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=So(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function uY(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Cn();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function pY(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let b=Gu(e,l),x=["row","col","depth","depth2"];return`
${Vu(b,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${Hu(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${Uu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let y=So(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${y});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${y});
return sampleTexture(${a}, uv);
}
`}function cY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let f=Gu(e,l),g=["row","col","depth","depth2","depth3"];return`
${Vu(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${Hu(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${Uu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=So(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function dY(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=Gu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${Vu(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${Hu(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Uu(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=So(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function Uu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function hY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=P_(e.shapeInfo.logicalShape,t.logicalShape),l=mt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function mY(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=mt(l),p=P_(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function mt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function _0(e,t,n){let{newShape:a,keptDims:r}=w.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!w.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function Gu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Hu(e,t){return t.map(n=>e[n]).join(", ")}function fY(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=D7(r,i,t),l=m_(e.gl,o),u=e.createProgram(l);return X().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},z_(e,t,u))}function z_(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),X().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h];a[m]=e.getUniformLocation(n,m,c),a[`offset${m}`]=e.getUniformLocation(n,`offset${m}`,c),t.enableShapeUniforms&&(r[`${m}Shape`]=e.getUniformLocation(n,`${m}Shape`,c),s[`${m}TexShape`]=e.getUniformLocation(n,`${m}TexShape`,c))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",c),u=e.getUniformLocation(n,"outShapeStrides",c),l=e.getUniformLocation(n,"outTexShape",c)),t.customUniforms&&t.customUniforms.forEach((h,m)=>{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function Nk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function gY(e,t,n,a,r){t.program.enableShapeUniforms||(Nk(t.inShapeInfos,n),Nk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=_0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function yY(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=_0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let k=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${k[0]>1}_${k[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let k=w.computeStrides(p);m=`${k[0]===l[1]}_${k[k.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&w.arraysEqual(i.shape,l),y=w.sizeFromShape(i.shape)===1,b=C.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&w.arraysEqual(l,n.texData.texShape),v=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${v}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${X().getNumber("WEBGL_VERSION")}`,s}function Hn(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var bY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=sc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Uf(["r","c","d"],e):Io(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},xY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=sc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Uf(["r","c","d"],e):Io(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},vY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ca.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=`
${M_}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},wY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ca.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=`
${M_}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},kY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Cn();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let a="result";t&&(a="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?T0():N0(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${a}, 0., 0., 0.);
}
`}},IY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Cn();this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?T0():N0(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},B_={};Me(B_,{bindVertexProgramAttributeStreams:()=>X_,createBufferFromOutputTexture:()=>J_,createFloat16MatrixTexture:()=>H_,createFloat16PackedMatrixTexture:()=>K_,createFloat32MatrixTexture:()=>G_,createIndexBuffer:()=>U_,createPackedMatrixTexture:()=>q_,createUnsignedBytesMatrixTexture:()=>j_,createVertexBuffer:()=>V_,createVertexShader:()=>W_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>eC,downloadFloat32MatrixFromBuffer:()=>Z_,downloadMatrixFromPackedOutputTexture:()=>nC,downloadPackedMatrixFromBuffer:()=>tC,getInternalFormatForFloat16MatrixTexture:()=>E0,getInternalFormatForFloat16PackedMatrixTexture:()=>$0,getInternalFormatForFloat32MatrixTexture:()=>C0,getInternalFormatForPackedMatrixTexture:()=>A0,getInternalFormatForUnsignedBytesMatrixTexture:()=>F0,uploadDenseMatrixToTexture:()=>Y_,uploadPixelDataToTexture:()=>Q_});function W_(e){let t=Cn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return h_(e,n)}function V_(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return y_(e,t)}function U_(e){let t=new Uint16Array([0,1,2,2,1,3]);return b_(e,t)}function sd(e,t,n,a,r,s){v_(t,n);let i=x_(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ge(e,()=>e.texStorage2D(o,1,a,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function C0(e){return e.internalFormatFloat}function G_(e,t,n,a){let[r,s]=rd(t,n);return sd(e,r,s,C0(a),a.textureFormatFloat,e.FLOAT)}function E0(e){return e.internalFormatHalfFloat}function H_(e,t,n,a){let[r,s]=rd(t,n);return sd(e,r,s,E0(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function F0(e){return e.downloadTextureFormat}function j_(e,t,n,a){let[r,s]=rd(t,n);return sd(e,r,s,F0(a),e.RGBA,e.UNSIGNED_BYTE)}function A0(e){return e.internalFormatPackedFloat}function q_(e,t,n,a){let[r,s]=Bu(t,n);return sd(e,r,s,A0(a),e.RGBA,e.FLOAT)}function $0(e){return e.internalFormatPackedHalfFloat}function K_(e,t,n,a){let[r,s]=Bu(t,n);return sd(e,r,s,$0(a),e.RGBA,a.textureTypeHalfFloat)}function X_(e,t,n){return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ux(e,t,"clipSpacePos",n,3,20,0)&&ux(e,t,"uv",n,2,20,12)}function Y_(e,t,n,a,r,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q_(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function J_(e,t,n,a){let r=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function Z_(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function eC(e,t,n,a){let[r,s]=rd(t,n),i=4,o=new Uint8Array(x7(t*n,i));return ge(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function tC(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(v7(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function nC(e,t,n){let a=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Sh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,p_(t,e)):this.gl=Ya(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),X().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Bp(this.gl,r),da(this.gl,s))this.textureHalfFloatExtension=Bp(this.gl,s);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),da(this.gl,a))this.colorBufferHalfFloatExtension=Bp(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",da(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(da(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=V_(this.gl),this.indexBuffer=U_(this.gl),this.framebuffer=w_(this.gl),this.textureConfig=I0(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),G_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),H_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),j_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Q_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),Y_(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),K_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),q_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(px(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>eC(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return tC(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Z_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=J_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>nC(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=W_(t));let n=f_(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),g_(t,n),this.debug&&xh(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=X_(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&xh(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?I_(this.gl,e,t):S_(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),N_(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Bu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&xh(this.gl,this.program),Wp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Bp(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=SY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),vh(this.gl,e,this.framebuffer),this.debug&&Wp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(vh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Wp(this.gl)):px(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;vh(a,e,this.framebuffer),this.debug&&Wp(a),this.outputTexture=e,ge(a,()=>a.viewport(0,0,t,n)),ge(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function SY(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:NY,bincountImpl:aC,bincountReduceImpl:TY,ceilImpl:_Y,concatImpl:CY,equalImpl:EY,expImpl:FY,expm1Impl:AY,floorImpl:$Y,gatherNdImpl:DY,gatherV2Impl:RY,greaterImpl:MY,greaterEqualImpl:PY,lessImpl:OY,lessEqualImpl:LY,linSpaceImpl:zY,logImpl:BY,maxImpl:WY,maximumImpl:VY,minimumImpl:UY,multiplyImpl:GY,negImpl:HY,notEqualImpl:jY,prodImpl:qY,rangeImpl:KY,rsqrtImpl:XY,scatterImpl:YY,sigmoidImpl:QY,simpleAbsImpl:rC,sliceImpl:JY,sparseFillEmptyRowsImpl:ZY,sparseReshapeImpl:e9,sparseSegmentReductionImpl:sC,sqrtImpl:t9,stridedSliceImpl:n9,stringNGramsImpl:a9,stringSplitImpl:r9,stringToHashBucketFastImpl:s9,subImpl:i9,tileImpl:o9,topKImpl:l9,transposeImpl:D0,uniqueImpl:u9}=lT;function iC(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Sn(e,t){return t===1?[e]:iC(e,t)}function p9(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var c9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Hn(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Sn("rc",this.rank),n=mt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},oC=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${d9(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?T0():N0(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function d9(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?$7(["r","c","d"],"inputShape"):Io(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var h9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=_k(t,n),r=Ck(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Tk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===ln.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===ln.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===ln.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=_k(n,a),s=Ck(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Tk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function m9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Tk(e,t,n,a,r){let s=f9(t,a),i;if(r){let[l,u]=Bu(e[0],e[1]);i=l*u}else{let[l,u]=rd(e[0],e[1]);i=l*u}let o=m9(n,s);return i*o}function f9(e,t){switch(e){case ln.PACKED_2X2_FLOAT32:return A0(t);case ln.PACKED_2X2_FLOAT16:return $0(t);case ln.UNPACKED_FLOAT32:return C0(t);case ln.UNPACKED_FLOAT16:return E0(t);case ln.PACKED_4X1_UNSIGNED_BYTE:return F0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function g9(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?ln.PACKED_2X2_FLOAT32:ln.UNPACKED_FLOAT32:e?ln.PACKED_2X2_FLOAT16:ln.UNPACKED_FLOAT16}function _k(e,t){if(e===ca.UPLOAD)return ln.PACKED_2X2_FLOAT32;if(e===ca.RENDER||e==null)return g9(t);if(e===ca.DOWNLOAD||e===ca.PIXELS)return ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Ck(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Sr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ea="if (isnan(x)) return x;",y9="return x;",Ek="return abs(x);",b9="return (x >= 0.0) ? x : (exp(x) - 1.0);",x9=Ea+`
return (x < 0.0) ? 0.0 : x;
`,v9=Ea+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Jo="return x;",w9="return 1.0 / (1.0 + exp(-1.0 * x));",k9="return x;",I9=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,S9=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,N9=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,T9="return 1.0 / (1.0 + exp(-1.0 * x));",Qs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},_9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let t=e.length,n=Sn("rc",t),a=mt(t),r=p9(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},C9=mr.whereImpl,E9=1e-7,F9=1e-4,wb={};function A9(e){return e in wb||(wb[e]={}),wb[e]}var $9=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),D9=600;function R9(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*D9/1024/1024}var Gf=class extends pc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Sh)t=e;else{let n=Ya(X().getNumber("WEBGL_VERSION"),e);t=new Sh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ya(X().getNumber("WEBGL_VERSION"));t=new Sh(n),this.binaryCache=A9(X().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new h9(this.gpgpu),this.numMBBeforeWarning=R9(),this.texData=new rm(this,ar())}nextDataId(){return Gf.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ca.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ca.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new Qs(i,Jo):d=new Sr(i,Jo);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=C.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Qs(a,Jo):h=new Sr(a,Jo);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...dh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=C.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ar().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new Qs(r,Jo):c=new Sr(r,Jo);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=ar().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>w.decodeString(a));return Ve(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!c_(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...dh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=X().getBool("WEBGL_PACK")&&a===!0,i=s?wh(t):t,o=s?new wY(i):new vY(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=$9){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return C9(e.shape,t)}packedUnaryOp(e,t,n){let a=new Qs(e.shape,t),r=this.compileAndRun(a,[e],n);return ar().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=rC(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Ek,e.dtype);let t=new Sr(e.shape,Ek),n=this.compileAndRun(t,[e]);return ar().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return ar().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new _9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new c9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[fi(e.shape),...gi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[fi(t),...gi(t)],s=new oC(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=w.sizeFromShape(r),c=t[0]*t[1]*4;w.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=wh(r),o;a?o=new xY(i):o=new bY(i);let l=!0,u=[t!=null?t:dh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===sc.DENSE){let g=s!=null?s:dh(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!ic(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=yY(e,u,p),c=this.getAndSaveBinary(d,()=>fY(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),X().get("ENGINE_COMPILE_ONLY")||gY(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=X().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=w.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=O(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?E9:F9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let p=t.texShape;if(p==null&&(p=C_(n,o),t.texShape=p),r!=null){let d=wh(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Bu(p[0],p[1])),o?c=new IY(d,f):c=new kY(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=ca.PIXELS:b.usage=ca.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],v=!0,k=this.runWebGLProgram(c,[y],a,x,v),T=this.texData.get(k.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,X().get("ENGINE_COMPILE_ONLY")?this.disposeData(k.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(k.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=M9(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await $v(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(S0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=z_(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};Gf.nextDataId=0;function M9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var P9="3.18.0";function lC(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}Ac.isBrowser()&&Wm("webgl",()=>new Gf,2);var O9={forceHalfFloat:lC},uC=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Sl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Hn(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Hf=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,id=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Hn(r);let s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${mt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Sn("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function na(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var L9={kernelName:zi,backendName:"webgl",kernelFunc:na};function Is(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=na({inputs:{x:a},backend:n}),l=na({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var z9={kernelName:cm,backendName:"webgl",kernelFunc:Is},pC="return (a < 0.) ? b * a : a;",cC=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function B9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new id(cC,r.shape,i.shape):new Sl(pC,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var W9={kernelName:Bi,backendName:"webgl",kernelFunc:B9},dC="return (a < 0.) ? b * a : a;",hC=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function V9(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new id(hC,a.shape,r.shape):new Sl(dC,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var U9={kernelName:Zi,backendName:"webgl",kernelFunc:V9},ju="if (isnan(x)) return x;",G9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,H9=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new Qs(i.shape,t):p=new Sr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function pn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,k]=x,T={dataId:v.dataId,dtype:v.dtype,shape:l.shape},_={dataId:k.dataId,dtype:k.dtype,shape:u.shape},E=new Sl(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,_],ma(v.dtype,k.dtype))}),b=Is({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||ma(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(m):m,y=l.dtype==="string"?C.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),v=p.makeTensorInfo(x,d),k=p.texData.get(v.dataId);return k.values=b,v}let c=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new id(t,l.shape,u.shape,n):h=new Sl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function jf(e,t=!1){if(e==="linear")return t?k9:y9;if(e==="relu")return t?S9:x9;if(e==="elu")return t?I9:b9;if(e==="relu6")return t?N9:v9;if(e==="prelu")return t?hC:dC;if(e==="leakyrelu")return t?cC:pC;if(e==="sigmoid")return t?T9:w9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var mC=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Hn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${b};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},Fk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Ak=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},$k="return a * b;";function R0(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Ak(Fk.REAL,a.shape,r.shape),p=new Ak(Fk.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Is({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=GY(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new id($k,a.shape,r.shape):i=new Sl($k,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var j9={kernelName:Xi,backendName:"webgl",kernelFunc:R0};function q9(e,t,n){let a=[fi(e.shape),...gi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[fi(t),...gi(t)],i=new oC(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function me(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),u=w.sizeFromShape(l);w.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!ic(r.shape,l)&&!(p.texture!==null&&ic(p.shape,l))?q9(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var K9={kernelName:cu,backendName:"webgl",kernelFunc:me},Dk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${w.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},X9=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function Y9(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function No(e,t,n,a){let r=Y9(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new Dk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Dk({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new X9({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var Q9=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=mt(this.rank),r=J9(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function J9(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var Z9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=mt(this.rank),r=iC("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function qf(e,t,n){let a=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Z9(e.shape,t):new Q9(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function eQ(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=qf(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=C.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=C.expandShapeToKeepDim(d,i));let m=w.sizeFromShape(c),f=w.sizeFromShape(e.shape)/m,g=me({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),y=Bm(e.dtype),b=No(g,y,"sum",a),x=me({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),u&&a.disposeIntermediateTensorInfo(p),x}function Kf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return eQ(r,s,i,n)}var tQ={kernelName:po,backendName:"webgl",kernelFunc:Kf};function Wt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=D0(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=qf(r,s,i);return u}var nQ={kernelName:Nr,backendName:"webgl",kernelFunc:Wt},fC=1e3;function tm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=Cu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);w.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let v=n?[y,d,h]:[y,h,d],k=a?[b,m,c]:[b,c,m],T=me({inputs:{x:e},backend:r,attrs:{shape:v}}),_=me({inputs:{x:t},backend:r,attrs:{shape:k}}),E=[T,_],A=Math.max(y,b),M=n?T.shape[1]:T.shape[2],$=s!=null,S=i!=null,P=l==="leakyrelu",V=l!=null?jf(l,!0):null,j=$||S||P||V!=null,q;if((h===1||m===1)&&M>fC&&j===!1){let Z=T,ee=_;n&&(Z=Wt({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z)),a&&(ee=Wt({inputs:{x:_},backend:r,attrs:{perm:[0,2,1]}}),E.push(ee));let re=m!==1,Y=m===1,ie=Z;re&&(ie=me({inputs:{x:Z},backend:r,attrs:{shape:[A,M,1]}}),E.push(ie));let ae=m===1?2:1,le=ee;Y&&(le=me({inputs:{x:ee},backend:r,attrs:{shape:[A,1,M]}}),E.push(le));let ue=R0({inputs:{a:ie,b:le},backend:r});q=Kf({inputs:{x:ue},backend:r,attrs:{axis:ae,keepDims:!0}}),E.push(ue)}else{let Z=ma(e.dtype,t.dtype),ee=new mC(v,k,[A,h,m],n,a,$,V,S,P),re=[T,_];if(s!=null&&re.push(s),S&&re.push(i),P){let Y=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));re.push(Y),E.push(Y)}q=r.runWebGLProgram(ee,re,Z)}let K=me({inputs:{x:q},backend:r,attrs:{shape:x}});E.push(q);for(let Z of E)r.disposeIntermediateTensorInfo(Z);return K}function aQ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return tm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var rQ={kernelName:ni,backendName:"webgl",kernelFunc:aQ},Rk="return abs(x);";function sQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=rC(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Qs(a.shape,Rk):r=new Sr(a.shape,Rk),n.runWebGLProgram(r,[a],a.dtype)}var iQ={kernelName:Tl,backendName:"webgl",kernelFunc:sQ},oQ=Ea+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,lQ=Qe({opSnippet:oQ}),uQ={kernelName:_l,backendName:"webgl",kernelFunc:lQ},pQ=Ea+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,cQ=Qe({opSnippet:pQ}),dQ={kernelName:Cl,backendName:"webgl",kernelFunc:cQ},Mk="return a + b;",hQ=pn({opSnippet:Mk,packedOpSnippet:Mk,supportsComplex:!0,cpuKernelImpl:NY}),mQ={kernelName:hs,backendName:"webgl",kernelFunc:hQ},fQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},gQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Nh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return na({inputs:{x:a[0]},backend:n});if(a.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Nh({inputs:a.slice(0,o),backend:n}),u=Nh({inputs:a.slice(o),backend:n});return Nh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ma(o,l)),s=a.map(o=>o.shape),i=X().getBool("WEBGL_PACK")?new gQ(a[0].shape,s):new fQ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var yQ={kernelName:vi,backendName:"webgl",kernelFunc:Nh};function bQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Wt({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=No(f,f.dtype,"all",n),y;if(i){let b=C.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var xQ={kernelName:El,backendName:"webgl",kernelFunc:bQ};function vQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Wt({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=No(f,f.dtype,"any",n),y;if(i){let b=C.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var wQ={kernelName:Fl,backendName:"webgl",kernelFunc:vQ},kQ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},IQ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=mt(o),u=Sn("coords",o),p,d;if(s===1){d=o+1;let _=mt(d);p=`
${_} sourceLocR = ${_}(${u.join()}, 0);
++${u[o-1]};
${_} sourceLocG = ${_}(${u.join()}, 0);
++${u[o-2]};
${_} sourceLocA = ${_}(${u.join()}, 0);
--${u[o-1]};
${_} sourceLocB = ${_}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(_=>"int "+_),f=Sn("sourceLocR",d-1).concat("inIdx.r"),g=Sn("sourceLocG",d-1).concat("inIdx.g"),y=Sn("sourceLocB",d-1).concat("inIdx.b"),b=Sn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,k=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${k};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${v}
vec4 candidate = ${k};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function gC(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new kQ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=gC(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function yC(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new IQ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=yC(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function bC(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=C.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(p),c=me({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=gC(e,c,a);s.push(h);let m=me({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return yC(e,t,a)}function SQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Wt({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=bC(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var NQ={kernelName:wi,backendName:"webgl",kernelFunc:SQ};function TQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Wt({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=bC(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var _Q={kernelName:cc,backendName:"webgl",kernelFunc:TQ},CQ=Ea+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,EQ=Qe({opSnippet:CQ}),FQ={kernelName:Al,backendName:"webgl",kernelFunc:EQ},AQ=Ea+"return log(x + sqrt(x * x + 1.0));",$Q=Qe({opSnippet:AQ}),DQ={kernelName:$l,backendName:"webgl",kernelFunc:$Q},RQ=Ea+`
return atan(x);
`,MQ=Qe({opSnippet:RQ}),PQ={kernelName:Dl,backendName:"webgl",kernelFunc:MQ},OQ=G9+`
return atan(a, b);
`,LQ=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+H9+`
return result;
`,zQ=pn({opSnippet:OQ,packedOpSnippet:LQ}),BQ={kernelName:Ml,backendName:"webgl",kernelFunc:zQ},WQ=Ea+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,VQ=Qe({opSnippet:WQ}),UQ={kernelName:Rl,backendName:"webgl",kernelFunc:VQ},oc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${_} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,k=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${v};
if (${k===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${k===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${k===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},M0=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${A} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let v="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let T=Math.floor(s/4)*4,_=s%4,E=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${v}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${_===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${_===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${_===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
setOutput(${k});
}
}
`}};function GQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Wu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))return na({inputs:{x:r},backend:n});let d=new oc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var HQ={kernelName:ki,backendName:"webgl",kernelFunc:GQ};function jQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=C.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new M0(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var qQ={kernelName:dc,backendName:"webgl",kernelFunc:jQ},KQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},XQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function YQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,d,u,p),h=new XQ(c);return n.runWebGLProgram(h,[r],i.dtype)}var QQ={kernelName:lm,backendName:"webgl",kernelFunc:YQ};function JQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Wu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=C.computePool2DInfo(i.shape,o,l,1,u),d=new KQ(p);return n.runWebGLProgram(d,[r],i.dtype)}var ZQ={kernelName:om,backendName:"webgl",kernelFunc:JQ};function eJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return tm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var tJ={kernelName:Ii,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},aJ=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},rJ=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=X().getBool("WEBGL_PACK_NORMALIZATION")?new aJ(a.shape,r.shape,s.shape,p,d,l):new nJ(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},sJ={kernelName:Oi,backendName:"webgl",kernelFunc:rJ},iJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=mt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=oJ(this.rank),a,r=e.map((s,i)=>`sourceLoc.${hx[i]} = start[${i}] + coords.${hx[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},hx=["x","y","z","w","u","v"];function oJ(e){if(e===1)return"sourceLoc";if(e<=6)return hx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var lJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=mt(this.rank),n=Sn("coords",this.rank),a=Sn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function uJ(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=Kt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function qu(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=Kt.parseSliceParams(r,s,i);if(Kt.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=JY(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=Kt.isSliceContinous(r.shape,o,l);if(u||!p){let d=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lJ(l):new iJ(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),uJ(r,o,l,n)}var pJ={kernelName:fu,backendName:"webgl",kernelFunc:qu},cJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=[],m=me({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Wt({inputs:{x:m},backend:n,attrs:{perm:u}}),g=me({inputs:{x:f},backend:n,attrs:{shape:p}}),y=qu({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},dJ={kernelName:Pl,backendName:"webgl",kernelFunc:cJ};function hJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=aC(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var mJ={kernelName:um,backendName:"webgl",kernelFunc:hJ};function fJ(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var gJ={kernelName:pm,backendName:"webgl",kernelFunc:fJ},yJ="return float(a != b);",xC=pn({opSnippet:yJ,cpuKernelImpl:jY,dtype:"bool"}),bJ={kernelName:ru,backendName:"webgl",kernelFunc:xC};function od(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return na({inputs:{x:r.complexTensorInfos.real},backend:n})}var xJ={kernelName:Fm,backendName:"webgl",kernelFunc:od},vJ="return float(int(x));";function wJ(e,t){let n=new Sr(e.shape,vJ),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function mx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return na({inputs:{x:r},backend:n});let i=St(r.shape),o=mx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Is({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=od({inputs:{input:r},backend:n}),o=mx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=na({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return wJ(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=xC({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var kJ={kernelName:Si,backendName:"webgl",kernelFunc:mx},Pk="return ceil(x);",IJ=Qe({opSnippet:Pk,packedOpSnippet:Pk,cpuKernelImpl:_Y}),SJ={kernelName:Ni,backendName:"webgl",kernelFunc:IJ},NJ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},TJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function _J(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;X().getBool("WEBGL_PACK_CLIP")?o=new TJ(r.shape):o=new NJ(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var CJ={kernelName:ms,backendName:"webgl",kernelFunc:_J},EJ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function Ok(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function FJ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new EJ(a.shape),i=[Ok(a,r.complexTensorInfos.real),Ok(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var AJ={kernelName:hc,backendName:"webgl",kernelFunc:FJ},$J=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},DJ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=mt(a),s=Sn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${mh(i,l,f)}),
vec2(${mh(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${mh(i,l,h)}),
vec2(${mh(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function mh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Xf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return na({inputs:{x:r.complexTensorInfos.imag},backend:n})}var RJ={kernelName:Im,backendName:"webgl",kernelFunc:Xf};function nl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let p=e.map(f=>od({inputs:{input:f},backend:n})),d=e.map(f=>Xf({inputs:{input:f},backend:n})),c=nl(p,t,n),h=nl(d,t,n),m=Is({inputs:{real:c,imag:h},backend:n});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),d.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let p=e.map(y=>{let b=w.sizeFromShape(y.shape.slice(t));return me({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),d=p.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=C.computeOutShape(p.map(y=>y.shape),1),h=p[0].shape[0]===1,m=CY(d,c,a,h),f=C.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(f,a,m);return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let p=Math.floor(e.length/2),d=nl(e.slice(0,p),t,n),c=nl(e.slice(p),t,n),h=nl([d,c],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),h}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new DJ(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,a)}let{tensors2D:s,outShape:i}=MJ(e,t,n),o=new $J(s.map(p=>p.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(p=>n.disposeIntermediateTensorInfo(p));let u=me({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function MJ(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>me({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function vC(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>w.sizeFromShape(u.shape)>0);if(o.length===1)return na({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),nl(o,s,n)}var PJ={kernelName:Ol,backendName:"webgl",kernelFunc:vC},wC=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,v="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${k}
${v}
setOutput(result);
}
`}},OJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},LJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Hn(this.outputShape.length);let{dataFormat:n}=t,a=Cn(),r=n==="channelsLast",s=r?0:1,i=r?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.y + ${p};
pos = rc.x + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function kC({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null&&!h&&s.shape.length===3){let b=Wt({inputs:{x:s},backend:a,attrs:{perm:[1,2,0]}});y.push(b),s=b}if(!((d===1||c===1)&&p>fC)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},v=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(ic(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let k=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let T=tm({a:x,b:k,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),_=a.texData.get(T.dataId);w.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=v,_.shape=n.outShape,g=na({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=h?e:Wt({inputs:{x:e},backend:a,attrs:{perm:[0,2,3,1]}}),x=b.shape,v=x[0]*x[1]*x[2],k=me({inputs:{x:b},backend:a,attrs:{shape:[1,v,n.inChannels]}}),T=me({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),_=tm({a:k,b:T,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=[n.batchSize,n.outHeight,n.outWidth,n.outChannels],A=me({inputs:{x:_},backend:a,attrs:{shape:E}});g=h?A:Wt({inputs:{x:A},backend:a,attrs:{perm:[0,3,1,2]}}),h||(y.push(b),y.push(A)),y.push(k),y.push(T),y.push(_)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function IC({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[f,g],b=!0,x=!1,v=[];if(s!=null&&!m&&s.shape.length===3){let Y=Wt({inputs:{x:s},backend:a,attrs:{perm:[1,2,0]}});v.push(Y),s=Y}let k=me({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=me({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(k),v.push(T);let _=new LJ(y,n),E=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],A=a.runWebGLProgram(_,[k],"float32",E),M=me({inputs:{x:A},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(A),v.push(M);let $=r!=null,S=s!=null,P=o==="leakyrelu",V=o?jf(o,!0):null,j=new mC(M.shape,T.shape,[1,g,n.outChannels],b,x,$,V,S,P),q=[M,T];if(r&&q.push(r),S&&q.push(s),P){let Y=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));q.push(Y),v.push(Y)}let K=a.runWebGLProgram(j,q,"float32"),Z=[1,c,d,n.outChannels],ee=me({inputs:{x:K},backend:a,attrs:{shape:Z}}),re=m?ee:Wt({inputs:{x:ee},backend:a,attrs:{perm:[0,3,1,2]}});m||v.push(ee),v.push(K);for(let Y of v)a.disposeIntermediateTensorInfo(Y);return re}function zJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=kC({x:r,filter:s,convInfo:c,backend:n});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=IC({x:r,filter:s,convInfo:c,backend:n});else{let f=new wC(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=me({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var BJ={kernelName:Ti,backendName:"webgl",kernelFunc:zJ},WJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},VJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},UJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},GJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new WJ(c);return n.runWebGLProgram(h,[r,s],"float32")}var jJ={kernelName:dm,backendName:"webgl",kernelFunc:HJ};function qJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=C.convertConv2DDataFormat(u),c=C.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new VJ(c);return n.runWebGLProgram(h,[r,s],"float32")}var KJ={kernelName:_i,backendName:"webgl",kernelFunc:qJ};function XJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new OJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var YJ={kernelName:mc,backendName:"webgl",kernelFunc:XJ};function QJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=C.computeConv3DInfo(r.shape,l,i,1,o),p=new UJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var JJ={kernelName:hm,backendName:"webgl",kernelFunc:QJ};function ZJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=C.computeConv3DInfo(l,s.shape,o,1,i),p=new GJ(u);return n.runWebGLProgram(p,[r,s],"float32")}var eZ={kernelName:mm,backendName:"webgl",kernelFunc:ZJ},tZ=ju+`
return cos(x);
`,nZ=Qe({opSnippet:tZ}),aZ={kernelName:Ci,backendName:"webgl",kernelFunc:nZ},rZ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,sZ=Qe({opSnippet:rZ}),iZ={kernelName:Ei,backendName:"webgl",kernelFunc:sZ},oZ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${v};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},lZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new oZ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},uZ={kernelName:zl,backendName:"webgl",kernelFunc:lZ},lc;(function(e){e.Prod="*",e.Sum="+"})(lc||(lc={}));var Lk=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===lc.Prod?"1.0":"0.0",i=n?s:`getX(${zk(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${mt(r)} coords = getOutputCoords();
int end = ${Bk(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${Bk(r,"coords",this.op)} = idx;
val ${this.op}= getX(${zk(r,"coords",this.op)});
}
setOutput(val);
}
`}};function zk(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Bk(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function SC(e,t,n,a,r,s){let i=t.shape.length,o=C.getAxesPermutation([a],i),l=t;o!=null&&(l=Wt({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=na({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new Lk(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new Lk(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=C.getUndoAxesPermutation(o),h=Wt({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function pZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return SC(lc.Prod,r,n,s,i,o)}var cZ={kernelName:Ll,backendName:"webgl",kernelFunc:pZ};function dZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return SC(lc.Sum,r,n,s,i,o)}var hZ={kernelName:Fi,backendName:"webgl",kernelFunc:dZ};function mZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=aC(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=TY(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var fZ={kernelName:fm,backendName:"webgl",kernelFunc:mZ},gZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function yZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new gZ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var bZ={kernelName:Bl,backendName:"webgl",kernelFunc:yZ},NC=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Hn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},TC=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Hn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=`
xC = xCCorner + ${y*l};
`,o===1){if(y<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?c+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<p)){let b=i%2===0?w.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1&&(c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),c+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):b===1?c+=`
xC${y+1} = xTexelC${y};
`:c+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<p&&(c+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<p&&(c+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<p&&(c+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function xZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=C.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new TC(d):c=new NC(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var vZ={kernelName:Ai,backendName:"webgl",kernelFunc:xZ},wZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},kZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function IZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=C.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new wZ(d);return n.runWebGLProgram(c,[r,s],"float32")}var SZ={kernelName:gm,backendName:"webgl",kernelFunc:IZ};function NZ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=C.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new kZ(d);return n.runWebGLProgram(c,[r,s],"float32")}var TZ={kernelName:ym,backendName:"webgl",kernelFunc:NZ},_Z=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function CZ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=me({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new _Z(s),l=n.runWebGLProgram(o,[i],i.dtype),u=me({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var EZ={kernelName:bm,backendName:"webgl",kernelFunc:CZ},FZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function AZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new FZ(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=me({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var $Z={kernelName:fc,backendName:"webgl",kernelFunc:AZ};function DZ(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=C.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:y,expandDims:b}=C.getEinsumPermutation(h,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Wt({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let k=0;k<b.length;++k)v.splice(b[k],0,1);w.arraysEqual(x.shape,v)||(x=me({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=R0({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Kf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var RZ={kernelName:xm,backendName:"webgl",kernelFunc:DZ},MZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",PZ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,OZ=Qe({opSnippet:MZ,packedOpSnippet:PZ}),LZ={kernelName:Di,backendName:"webgl",kernelFunc:OZ},zZ="return (b >= 1.0) ? a : a * (b + 1.0);",BZ=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,WZ=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new id(BZ,a.shape,r.shape):new Sl(zZ,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},VZ={kernelName:vm,backendName:"webgl",kernelFunc:WZ},UZ=`
return vec4(equal(a, b));
`,GZ="return float(a == b);",HZ=pn({opSnippet:GZ,packedOpSnippet:UZ,dtype:"bool",cpuKernelImpl:EY}),jZ={kernelName:Vl,backendName:"webgl",kernelFunc:HZ},qZ=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,KZ=Qe({opSnippet:qZ}),XZ={kernelName:Wl,backendName:"webgl",kernelFunc:KZ},YZ=ju+`
return exp(x);
`,QZ=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_C=Qe({opSnippet:YZ,packedOpSnippet:QZ,cpuKernelImpl:FY,dtype:"float32"}),JZ={kernelName:Ri,backendName:"webgl",kernelFunc:_C};function fx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),me({inputs:{x:s},backend:a,attrs:{shape:o}})}var ZZ={kernelName:Ul,backendName:"webgl",kernelFunc:fx},Wk="return exp(x) - 1.0;",eee=Qe({opSnippet:Wk,packedOpSnippet:Wk,cpuKernelImpl:AY}),tee={kernelName:Gl,backendName:"webgl",kernelFunc:eee},Vk=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function CC(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=me({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new Vk("real",l,t),p=new Vk("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Is({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=me({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function nee(e){let{inputs:t,backend:n}=e,{input:a}=t;return CC(a,!1,n)}var aee={kernelName:wm,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function ld(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new ree(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var see={kernelName:gc,backendName:"webgl",kernelFunc:ld},iee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},oee={kernelName:Hl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new iee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},Uk="return floor(x);",lee=Qe({opSnippet:Uk,packedOpSnippet:Uk,cpuKernelImpl:$Y}),uee={kernelName:Mi,backendName:"webgl",kernelFunc:lee},pee=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,cee=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,dee=pn({opSnippet:pee,packedOpSnippet:cee,dtype:"int32"}),hee={kernelName:Pi,backendName:"webgl",kernelFunc:dee},mee=class{constructor(e){this.variableNames=["A"];let t=Cn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},fee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Cn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},gee={kernelName:Ah,backendName:"webgl",kernelFunc:yee},Zo;function yee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];(o||i)&&(Zo==null&&(Zo=document.createElement("canvas").getContext("2d")),Zo.canvas.width=l,Zo.canvas.height=u,Zo.drawImage(r,0,0,l,u),r=Zo.canvas);let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=ca.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=X().getBool("WEBGL_PACK")?new fee(d):new mee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function bee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(p),g=C.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=kC({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(X().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=IC({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,k=o!=null,T=h==="leakyrelu",_=h?jf(h,!1):null,E=new wC(g,v,_,k,T),A=[r,s],M=($,S)=>{if(S==="NCHW"&&$.shape.length===1&&$.shape[0]!==1){let P=me({inputs:{x:$},backend:n,attrs:{shape:[$.shape[0],1,1]}});return b.push(P),P}return $};if(v&&A.push(M(i,p)),k&&A.push(M(o,p)),T){let $=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));A.push($),b.push($)}y=n.runWebGLProgram(E,A,"float32")}let x=me({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var xee={kernelName:ai,backendName:"webgl",kernelFunc:bee};function vee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=C.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?jf(c,y):null,x=[r,s],v=i!=null,k=o!=null,T=c==="leakyrelu";if(v&&x.push(i),k&&x.push(o),T){let M=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(M),m.push(M)}let _;y?_=new TC(g,v,b,k,T):_=new NC(g,v,b,k,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],A=n.runWebGLProgram(_,x,"float32",E);return m.forEach(M=>n.disposeIntermediateTensorInfo(M)),A}var wee={kernelName:ri,backendName:"webgl",kernelFunc:vee},kee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=mt(t.length),r=mt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function Iee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=w.sizeFromShape(a.shape),[l,u,p,d]=C.prepareAndValidate(a,r),c=me({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=me({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=DY(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new kee(i,d,[u,p]),f=n.runWebGLProgram(m,[h,c],h.dtype),g=me({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var See={kernelName:ql,backendName:"webgl",kernelFunc:Iee},Nee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=mt(this.rank),a=Tee(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function Tee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function EC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0];if(X().get("DEBUG")){let b=n.readSync(s.dataId),x=r.shape[l];for(let v=0;v<b.length;++v){let k=b[v];w.assert(k<=x-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${x-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=w.sizeFromShape(s.shape),d=[],c=me({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=me({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),v=RY(x,b,m);return d.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new Nee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=me({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var _ee={kernelName:jl,backendName:"webgl",kernelFunc:EC},Cee="return float(a > b);",Eee=`
return vec4(greaterThan(a, b));
`,Fee=pn({opSnippet:Cee,packedOpSnippet:Eee,cpuKernelImpl:MY,dtype:"bool"}),Aee={kernelName:Kl,backendName:"webgl",kernelFunc:Fee},$ee="return float(a >= b);",Dee=`
return vec4(greaterThanEqual(a, b));
`,Ree=pn({opSnippet:$ee,packedOpSnippet:Dee,dtype:"bool",cpuKernelImpl:PY}),Mee={kernelName:Li,backendName:"webgl",kernelFunc:Ree};function Pee(e){let{inputs:t,backend:n}=e,{input:a}=t;return CC(a,!0,n)}var Oee={kernelName:km,backendName:"webgl",kernelFunc:Pee},Lee="return float(!isnan(x) && !isinf(x));",zee=Qe({opSnippet:Lee,dtype:"bool"}),Bee={kernelName:Xl,backendName:"webgl",kernelFunc:zee},Wee="return float(isinf(x));",Vee=Qe({opSnippet:Wee,dtype:"bool"}),Uee={kernelName:Yl,backendName:"webgl",kernelFunc:Vee},Gee="return float(isnan(x));",Hee=Qe({opSnippet:Gee,dtype:"bool"}),jee={kernelName:Ql,backendName:"webgl",kernelFunc:Hee},qee="return float(a < b);",Kee=`
return vec4(lessThan(a, b));
`,Xee=pn({opSnippet:qee,packedOpSnippet:Kee,cpuKernelImpl:OY,dtype:"bool"}),Yee={kernelName:Jl,backendName:"webgl",kernelFunc:Xee},Qee="return float(a <= b);",Jee=`
return vec4(lessThanEqual(a, b));
`,Zee=pn({opSnippet:Qee,packedOpSnippet:Jee,cpuKernelImpl:LY,dtype:"bool"}),ete={kernelName:Zl,backendName:"webgl",kernelFunc:Zee};function tte(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=zY(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var nte={kernelName:Sm,backendName:"webgl",kernelFunc:tte},ate=ju+`
return x < 0.0 ? 0./0. : log(x);
`,rte=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,ste=Qe({opSnippet:ate,packedOpSnippet:rte,cpuKernelImpl:BY}),ite={kernelName:Wi,backendName:"webgl",kernelFunc:ste},ote=ju+`
return log(1.0 + x);
`,lte=Qe({opSnippet:ote}),ute={kernelName:eu,backendName:"webgl",kernelFunc:lte},pte="return float(a >= 1.0 && b >= 1.0);",cte=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,dte=pn({opSnippet:pte,packedOpSnippet:cte,dtype:"bool"}),hte={kernelName:tu,backendName:"webgl",kernelFunc:dte},mte="return float(!(x >= 1.0));",fte=Qe({opSnippet:mte}),gte={kernelName:yc,backendName:"webgl",kernelFunc:fte},yte="return float(a >= 1.0 || b >= 1.0);",bte=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,xte=pn({opSnippet:yte,packedOpSnippet:bte,dtype:"bool"}),vte={kernelName:bc,backendName:"webgl",kernelFunc:xte},wte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},kte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Ite=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=X().getBool("WEBGL_PACK_NORMALIZATION")?new kte(r.shape,s,i,o,l):new wte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Ste={kernelName:xc,backendName:"webgl",kernelFunc:Ite},Nte=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Tte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Nte(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},_te={kernelName:Nm,backendName:"webgl",kernelFunc:Tte};function Cte(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=No(i,e.dtype,"max",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function FC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let v=D0(b,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=qf(r,p,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=C.expandShapeToKeepDim(m,l));let y;if(c){let b=n.texData.get(h.dataId).values,x=WY(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=Cte(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),y}var Ete={kernelName:Vi,backendName:"webgl",kernelFunc:FC},Fte=uC+`
return max(a, b);
`,Ate=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Hf+`
return result;
`,$te=pn({opSnippet:Fte,packedOpSnippet:Ate,cpuKernelImpl:VY}),Dte={kernelName:Ui,backendName:"webgl",kernelFunc:$te};function Rte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Wu(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;w.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&w.arraysEqual(p.inShape,p.outShape))return na({inputs:{x:r},backend:n});let d=new oc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Mte={kernelName:Gi,backendName:"webgl",kernelFunc:Rte};function Pte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=C.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new M0(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Ote={kernelName:vc,backendName:"webgl",kernelFunc:Pte},Lte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},zte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Bte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,d,u,p),h=new M0(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new zte(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Wte={kernelName:_m,backendName:"webgl",kernelFunc:Bte};function Vte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Wu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=C.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new oc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Lte(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var Ute={kernelName:Tm,backendName:"webgl",kernelFunc:Vte};function Gte(e,t,n,a){let r=new oc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new oc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Hte={kernelName:Cm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];w.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=C.computePool2DInfo(a.shape,r,s,u,i),[d,c]=Gte(a,o,p,l);return[d,c]}};function jte(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=me({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=No(i,"float32","mean",a),l=me({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var qte={kernelName:Hi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),u=l,p=C.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let _=0;_<v.length;_++)v[_]=a.shape[p[_]];let k=D0(x,a.shape,a.dtype,p,v);m=i.makeTensorInfo(v,a.dtype);let T=i.texData.get(m.dataId);T.values=k}else m=qf(a,p,i);h.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=C.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=C.expandShapeToKeepDim(f,l));let b=jte(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function Kte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),u=l,p=C.getAxesPermutation(u,o),d=r;p!=null&&(d=Wt({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[c,h]=C.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=me({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=No(f,f.dtype,"min",n),y;if(i){let b=C.expandShapeToKeepDim(c,l);y=me({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=me({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var Xte={kernelName:ji,backendName:"webgl",kernelFunc:Kte},Yte=uC+`
return min(a, b);
`,Qte=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Hf+`
return result;
`,Jte=pn({opSnippet:Yte,packedOpSnippet:Qte,cpuKernelImpl:UY}),Zte={kernelName:qi,backendName:"webgl",kernelFunc:Jte},ene=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=mt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},tne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=mt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Sn("rc",a),l=Sn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},nne=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tne(a.shape,r,s):new ene(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},ane={kernelName:Ki,backendName:"webgl",kernelFunc:nne},rne=`if (b == 0.0) return NAN;
return mod(a, b);`,sne=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Hf+`
return result;
`,ine=pn({opSnippet:rne,packedOpSnippet:sne}),one={kernelName:nu,backendName:"webgl",kernelFunc:ine},lne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},une=`
if (a == b) {
return 1.0;
};
return a / b;`,pne=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,AC=pn({opSnippet:une,packedOpSnippet:pne,checkOutOfBounds:!0}),cne={kernelName:$i,backendName:"webgl",kernelFunc:AC},Gk="return a - b;",$C=pn({opSnippet:Gk,packedOpSnippet:Gk,supportsComplex:!0,cpuKernelImpl:i9}),dne={kernelName:mo,backendName:"webgl",kernelFunc:$C};function DC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=FC({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=me({inputs:{x:o},backend:n,attrs:{shape:l}}),p=$C({inputs:{a:r,b:u},backend:n}),d=_C({inputs:{x:p},backend:n}),c=Kf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=me({inputs:{x:c},backend:n,attrs:{shape:l}}),m=AC({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var hne={kernelName:co,backendName:"webgl",kernelFunc:DC};function mne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:DC({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new lne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var fne={kernelName:Em,backendName:"webgl",kernelFunc:mne},gne=Ea+`
return -x;
`,yne=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function bne(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=HY(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Qs(a.shape,yne):r=new Sr(a.shape,gne),n.runWebGLProgram(r,[a],a.dtype)}var xne={kernelName:au,backendName:"webgl",kernelFunc:bne},vne=mr.nonMaxSuppressionV3Impl;function wne(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=vne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var kne={kernelName:su,backendName:"webgl",kernelFunc:wne},Ine=mr.nonMaxSuppressionV4Impl;function Sne(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Ine(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Nne={kernelName:iu,backendName:"webgl",kernelFunc:Sne},Tne=mr.nonMaxSuppressionV5Impl;function _ne(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Tne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Cne={kernelName:ou,backendName:"webgl",kernelFunc:_ne},Ene=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},Fne=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),u=new Ene(l,s,i,o),p=me({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[p],r.dtype);n.disposeIntermediateTensorInfo(p);let c=[...r.shape,s],h=me({inputs:{x:d},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),h},Ane={kernelName:Yi,backendName:"webgl",kernelFunc:Fne};function nm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=od({inputs:{input:a},backend:n}),s=nm({inputs:{x:r},backend:n}),i=Xf({inputs:{input:a},backend:n}),o=nm({inputs:{x:i},backend:n}),l=Is({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return ld({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var $ne={kernelName:Tu,backendName:"webgl",kernelFunc:nm};function RC(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=od({inputs:{input:a},backend:n}),s=RC({inputs:{x:r},backend:n}),i=Xf({inputs:{input:a},backend:n}),o=nm({inputs:{x:i},backend:n}),l=Is({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return ld({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Dne={kernelName:lu,backendName:"webgl",kernelFunc:RC};function Rne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return fx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=fx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=vC({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var Mne={kernelName:uu,backendName:"webgl",kernelFunc:Rne},Pne=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=mt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},One=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=mt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Sn("rc",a),l=Sn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},MC=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(w.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return ld({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new One(r.shape,s,i):new Pne(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},Lne={kernelName:Qi,backendName:"webgl",kernelFunc:MC},zne=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Bne=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Hf+`
return result;
`,Wne=pn({opSnippet:zne,packedOpSnippet:Bne}),Vne={kernelName:Ji,backendName:"webgl",kernelFunc:Wne};function Une(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=w.parseAxisParam(s,r.shape),p=u,d=C.getAxesPermutation(p,o),c=r;d!=null&&(c=Wt({inputs:{x:r},backend:n,attrs:{perm:d}}),p=C.getInnerMostAxes(p.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=qY(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,p),g=w.sizeFromShape(f),y=me({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=Bm(r.dtype),x=No(y,b,"prod",n);h=me({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,u);h=me({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Gne={kernelName:eo,backendName:"webgl",kernelFunc:Une},PC=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=KY(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Hne={kernelName:wc,backendName:"webgl",kernelFunc:PC},jne="return 1.0 / x;",qne=Qe({opSnippet:jne}),Kne={kernelName:pu,backendName:"webgl",kernelFunc:qne},Xne=Ea+`
return (x < 0.0) ? 0.0 : x;
`,Yne=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Qne=Qe({opSnippet:Xne,packedOpSnippet:Yne}),Jne={kernelName:to,backendName:"webgl",kernelFunc:Qne},Zne=Ea+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,eae=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,tae=Qe({opSnippet:Zne,packedOpSnippet:eae}),nae={kernelName:ao,backendName:"webgl",kernelFunc:tae},aae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},rae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function sae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new rae(r.shape,l,u,s,i):new aae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var iae={kernelName:no,backendName:"webgl",kernelFunc:sae},oae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function lae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new oae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var uae={kernelName:$m,backendName:"webgl",kernelFunc:lae},pae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},cae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function dae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new cae(r.shape,l,u,s,i):new pae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var hae={kernelName:kc,backendName:"webgl",kernelFunc:dae},mae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function fae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new mae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var gae={kernelName:Am,backendName:"webgl",kernelFunc:fae},yae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=mt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},bae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Sn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=mt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function xae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return na({inputs:{x:r},backend:n});let l=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new bae(r.shape,o):new yae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var vae={kernelName:ro,backendName:"webgl",kernelFunc:xae},wae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},kae={kernelName:_u,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new wae(a.shape,s),[u,p]=C.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Iae=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Sae=Qe({opSnippet:Iae}),Nae={kernelName:so,backendName:"webgl",kernelFunc:Sae},Tae="return inversesqrt(x);",_ae=Qe({opSnippet:Tae,cpuKernelImpl:XY}),Cae={kernelName:io,backendName:"webgl",kernelFunc:_ae},OC=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=mt(r.length),l=mt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${c};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Eae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=C.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=me({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=me({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new OC(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=me({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var Fae={kernelName:du,backendName:"webgl",kernelFunc:Eae},Aae=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=X().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function $ae(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new Aae(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var Dae={kernelName:Dm,backendName:"webgl",kernelFunc:$ae},Rae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=mt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function Mae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Rae(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ma(r.dtype,s.dtype))}var Pae={kernelName:hu,backendName:"webgl",kernelFunc:Mae},Oae=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Lae=Qe({opSnippet:Oae}),zae={kernelName:mu,backendName:"webgl",kernelFunc:Lae},Bae=ju+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,Wae=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Vae=Qe({opSnippet:Bae,packedOpSnippet:Wae,cpuKernelImpl:QY}),Uae={kernelName:lo,backendName:"webgl",kernelFunc:Vae},Gae=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Hae=Qe({opSnippet:Gae}),jae={kernelName:yu,backendName:"webgl",kernelFunc:Hae},qae=ju+`
return sin(x);
`,Kae=Qe({opSnippet:qae}),Xae={kernelName:oo,backendName:"webgl",kernelFunc:Kae},Yae=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Qae=Qe({opSnippet:Yae}),Jae={kernelName:gu,backendName:"webgl",kernelFunc:Qae},Zae=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,ere=Qe({opSnippet:Zae}),tre={kernelName:bu,backendName:"webgl",kernelFunc:ere},nre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],p=MC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(p.shape,s,o,!1),c=C.getPermuted(d.length,s.length,!1),h=C.getReshapedPermuted(p.shape,s,o,!1),m=me({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Wt({inputs:{x:m},backend:n,attrs:{perm:c}}),g=me({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},are={kernelName:xu,backendName:"webgl",kernelFunc:nre};function rre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=ZY(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var sre={kernelName:Ic,backendName:"webgl",kernelFunc:rre};function ire(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=e9(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var ore={kernelName:wu,backendName:"webgl",kernelFunc:ire};function lre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=sC(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var ure={kernelName:Sc,backendName:"webgl",kernelFunc:lre};function pre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=sC(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var cre={kernelName:Nc,backendName:"webgl",kernelFunc:pre};function dre(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=C.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let y=n.bufferSync(r),b=n.bufferSync(s),x=w.decodeString(n.readSync(i.dataId)[0]),v=YY(y,b,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,v.dtype,v.values)}let m=new OC(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=me({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var hre={kernelName:Rm,backendName:"webgl",kernelFunc:dre};function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=qu({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var fre={kernelName:vu,backendName:"webgl",kernelFunc:mre},Hk="return sqrt(x);",gre=Qe({opSnippet:Hk,packedOpSnippet:Hk,cpuKernelImpl:t9}),yre={kernelName:uo,backendName:"webgl",kernelFunc:gre},bre="return x * x;",xre=Qe({opSnippet:bre}),vre={kernelName:Tc,backendName:"webgl",kernelFunc:xre},jk="return (a - b) * (a - b);",wre=pn({opSnippet:jk,packedOpSnippet:jk}),kre={kernelName:ho,backendName:"webgl",kernelFunc:wre};function Ire({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ea+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Sr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var Sre={kernelName:gs,backendName:"webgl",kernelFunc:Ire},Nre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=mt(n.length),s=mt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function Tre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),k;if(f)k=me({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let _=Kt.computeOutShape(b,x,v),E=qu({inputs:{x:r},backend:n,attrs:{begin:b,size:_}});k=me({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let _=n.readSync(r.dataId),E=Ve(r.shape,r.dtype,_),A=n9(h,E,v,b);k=n.makeTensorInfo(m,r.dtype,A.values)}else{let _=new Nre(b,v,h);k=n.runWebGLProgram(_,[r],r.dtype)}let T=me({inputs:{x:k},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(k),T}var _re={kernelName:ku,backendName:"webgl",kernelFunc:Tre};function Cre(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=a9(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Ere={kernelName:Mm,backendName:"webgl",kernelFunc:Cre};function Fre(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=r9(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Are={kernelName:Pm,backendName:"webgl",kernelFunc:Fre};function $re(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=s9(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var Dre={kernelName:Om,backendName:"webgl",kernelFunc:$re},Rre="return tan(x);",Mre=Qe({opSnippet:Rre}),Pre={kernelName:fo,backendName:"webgl",kernelFunc:Mre},Ore=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Lre=Qe({opSnippet:Ore}),zre={kernelName:go,backendName:"webgl",kernelFunc:Lre},Bre=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=mt(this.rank),r=Wre(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function Wre(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function LC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>w.decodeString(d)):o,u=Ve(r.shape,r.dtype,l),p=o9(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Bre(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Vre={kernelName:fs,backendName:"webgl",kernelFunc:LC},Ure=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Gre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Vs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function qk(e){let t=1;for(;t<e;)t*=2;return t}function Hre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let A=n.readSync(r.dataId),[M,$]=l9(A,u,r.dtype,s,i);return[n.makeTensorInfo(M.shape,M.dtype,M.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,ld({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=w.sizeFromShape(u)/p,f=me({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Vs(n,h);let g=qk(s),y=qk(p),b=null,x=()=>b===null?[f,f]:[f,b],v=(A,M,$)=>{let S=x(),P=new Ure($),V=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[A],[M]],j=b;b=n.runWebGLProgram(P,S,"int32",V),Vs(n,j)};for(let A=1;A<g;A*=2){let M=A*2;for(let $=A;$>=1;$/=2)v(M,$,[m,y])}for(let A=y;A>g;A/=2){let M=x(),$=new Gre([m,A/2]),S=[[p],[b===null?1:0],[g]],P=b;b=n.runWebGLProgram($,M,"int32",S),Vs(n,P);let V=g/2,j=V*2;for(let q=V;q>=1;q/=2)v(j,q,b.shape)}let k=b;b=qu({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Vs(n,k);let T=EC({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Vs(n,f);let _=u.slice(0,-1);_.push(s),k=b,b=me({inputs:{x:b},attrs:{shape:_},backend:n}),Vs(n,k);let E=T;return T=me({inputs:{x:T},attrs:{shape:_},backend:n}),Vs(n,E),[T,b]}var jre={kernelName:Iu,backendName:"webgl",kernelFunc:Hre},qre=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Kre(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new qre(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var Xre={kernelName:Su,backendName:"webgl",kernelFunc:Kre};function Yre(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Wu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=u9(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Qre={kernelName:Lm,backendName:"webgl",kernelFunc:Yre};function Jre(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=qu({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=me({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Zre={kernelName:Nu,backendName:"webgl",kernelFunc:Jre},ese=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function tse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=C.getAxesPermutation([u],o),d=r;p!=null&&(d=Wt({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(d.shape,u,i),h=w.sizeFromShape([d.shape[u]]),m=me({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Bm(r.dtype),g=(v,k,T,_,E)=>{let A=v.shape[0],M=v.shape[1],$=C.segment_util.segOpComputeOptimalWindowSize(M,E),S={windowSize:$,inSize:M,batchSize:A,numSegments:E},P=new ese(S,k),V=n.compileAndRun(P,[v,T],_);if(l.push(V),V.shape[1]===E)return V;let j=PC({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),q=LC({inputs:{x:j},backend:n,attrs:{reps:[M/$]}});return l.push(j),l.push(q),g(V,k,q,_,E)},y=g(m,"unsortedSegmentSum",s,f,i),b=me({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let v=C.getUndoAxesPermutation(p);x=Wt({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var nse={kernelName:_c,backendName:"webgl",kernelFunc:tse},ase=[rQ,iQ,uQ,dQ,mQ,yQ,xQ,wQ,NQ,_Q,FQ,DQ,PQ,BQ,UQ,HQ,qQ,QQ,ZQ,tJ,sJ,dJ,mJ,gJ,kJ,SJ,CJ,z9,AJ,PJ,BJ,jJ,KJ,YJ,JJ,eZ,aZ,iZ,uZ,cZ,hZ,fZ,bZ,vZ,SZ,TZ,EZ,$Z,RZ,LZ,VZ,jZ,XZ,JZ,ZZ,tee,aee,see,oee,uee,hee,gee,xee,wee,See,_ee,Aee,Mee,L9,Oee,RJ,Bee,Uee,jee,W9,Yee,ete,nte,ite,ute,hte,gte,vte,Ste,_te,Ete,Dte,Mte,Ote,Wte,Ute,Hte,qte,Xte,Zte,ane,one,fne,j9,xne,kne,Nne,Cne,bJ,Ane,Dne,Mne,Lne,Vne,U9,Gne,Hne,xJ,cne,Kne,Jne,nae,K9,iae,uae,hae,gae,vae,kae,Nae,Cae,Fae,Dae,Pae,zae,Uae,jae,Xae,Jae,pJ,hne,tre,are,sre,ore,ure,cre,hre,fre,yre,vre,kre,Sre,_re,Ere,Are,Dre,dne,tQ,Pre,zre,Vre,jre,Xre,nQ,Qre,Zre,nse,$ne];for(let e of ase)Cc(e);var $t;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})($t||($t={}));var uc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(uc||(uc={}));var zC;function rse(e){zC=e.wasm.cwrap(ni,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function sse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=uc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=Cu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),v=n.makeOutput([...x,y,b],r.dtype),k=n.dataIdMap.get(v.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),_=new Uint8Array(new Int32Array(s.shape).buffer);return zC(c,T,r.shape.length,h,_,s.shape.length,l,u,g,m,f,d||0,k),v}var ise={kernelName:ni,backendName:"wasm",setupFunc:rse,kernelFunc:sse};function cn(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return w.sizeFromShape(u.shape)===0||n(l,$t[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var ose=cn(Tl);function En(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,$t[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var lse=!0,use=En(hs,lse),BC;function pse(e){BC=e.wasm.cwrap(vi,null,["array","number","number","number"])}function cse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return BC(s,r.length,$t[a.dtype],i),a}var dse={kernelName:vi,backendName:"wasm",setupFunc:pse,kernelFunc:cse};function Yf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var hse={kernelName:zi,backendName:"wasm",kernelFunc:Yf},WC;function mse(e){WC=e.wasm.cwrap(Nr,null,["number","array","number","number","number","array","number"])}function cs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=gse(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=fse(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Yf({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return WC(p,h,l.shape.length,$t[l.dtype],d,c,s.length),u}function fse(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function gse(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var yse={kernelName:Nr,backendName:"wasm",kernelFunc:cs,setupFunc:mse};function Ss(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=cs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var VC;function bse(e){VC=e.wasm.cwrap(El,null,["number, number, number"])}function xse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;VC(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var vse={kernelName:El,backendName:"wasm",setupFunc:bse,kernelFunc:xse},UC;function wse(e){UC=e.wasm.cwrap(Fl,null,["number, number, number"])}function kse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;UC(o,g,b)}if(c&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Ise={kernelName:Fl,backendName:"wasm",setupFunc:wse,kernelFunc:kse},GC;function Sse(e){GC=e.wasm.cwrap(wi,null,["number","number","number","number","number"])}function Nse(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:p,inputWasTransposed:d}=Ss(s,r,t);if(d){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[p[0]];return GC(o,$t[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Tse={kernelName:wi,backendName:"wasm",kernelFunc:Nse,setupFunc:Sse},HC;function _se(e){HC=e.wasm.cwrap(ki,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cse(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=C.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.strideHeight,b=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let v=a.makeOutput(p.outShape,"float32"),k=a.dataIdMap.get(v.dataId).id;return HC(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,k),v}var Ese={kernelName:ki,backendName:"wasm",setupFunc:_se,kernelFunc:Cse};function Bn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Fse={kernelName:cu,backendName:"wasm",kernelFunc:Bn},jC;function Ase(e){jC=e.wasm.cwrap(Ii,null,["number","array","number","number","array","number","number","number","number"])}function $se(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=Cu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],v=o?[y,h,d]:[y,d,h],k=Bn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Bn({inputs:{x:s},backend:n,attrs:{shape:v}}),_=n.dataIdMap.get(k.dataId).id,E=n.dataIdMap.get(T.dataId).id,A=i?k.shape[2]:k.shape[1],M=o?T.shape[1]:T.shape[2],$=Math.max(g,y),S=n.makeOutput([$,A,M],k.dtype),P=n.dataIdMap.get(S.dataId).id,V=new Uint8Array(new Int32Array(k.shape).buffer),j=new Uint8Array(new Int32Array(T.shape).buffer);return jC(_,V,k.shape.length,E,j,T.shape.length,i,o,P),n.disposeData(k.dataId),n.disposeData(T.dataId),S.shape=b,S}var Dse={kernelName:Ii,backendName:"wasm",setupFunc:Ase,kernelFunc:$se};function yi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Qh(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Rse(l,p[0],c,s,i);else if(h===3)Mse(l,p[0],p[1],c,s,i);else if(h===4)Pse(l,p[0],p[1],p[2],c,s,i);else{let m=Qh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Rse(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Mse(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Pse(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let y=p;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Ose={kernelName:fu,backendName:"wasm",kernelFunc:yi};function Lse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((y,b)=>y*b),l=C.getReshaped(r.shape,s,o),u=C.getPermuted(l.length,s.length),p=C.getReshapedPermuted(r.shape,s,o),d=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(p,i,s.length),h=Bn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=cs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Bn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=yi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var zse={kernelName:Pl,backendName:"wasm",kernelFunc:Lse};function ud(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Bse={kernelName:Si,backendName:"wasm",kernelFunc:ud},Wse=cn(Ni),qC;function Vse(e){qC=e.wasm.cwrap(ms,null,["number","number","number","number"])}function Use(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return qC(o,s,i,u),l}var Gse={kernelName:ms,backendName:"wasm",setupFunc:Vse,kernelFunc:Use};function KC(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return Yf({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Bn({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=m0(m,r,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=C.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),u=0,p=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],y=h*g,b=d[f].subarray(y,y+g);c.set(b,m),m+=g}}return i}var Hse={kernelName:Ol,backendName:"wasm",kernelFunc:KC},XC;function jse(e){XC=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qse(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,k=m.dilationHeight,T=m.dilationWidth,_=m.strideHeight,E=m.strideWidth,A=m.inChannels,M=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),P=a.dataIdMap.get(S.dataId).id;return XC(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,$,k,T,_,E,A,M,P),S}var Kse={kernelName:Ti,backendName:"wasm",setupFunc:jse,kernelFunc:qse},YC;function Xse(e){YC=e.wasm.cwrap(_i,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yse(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:k,outWidth:T,strideHeight:_,strideWidth:E}=h,A=f-1-h.padInfo.top,M=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=w.computeStrides(h.inShape),P=w.computeStrides(r.shape),[V,j,q]=w.computeStrides(s.shape),K=S[0],Z=$?S[1]:S[2],ee=$?S[2]:1,re=$?1:S[1],Y=P[0],ie=$?P[1]:P[2],ae=$?P[2]:1,le=$?1:P[1],ue=t.makeOutput(h.inShape,"float32"),ke=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return YC(ye,Ie,m,f,g,b,x,y,k,T,v,_,E,A,M,V,j,q,K,Z,ee,re,Y,ie,ae,le,ke),ue}var Qse={kernelName:_i,backendName:"wasm",setupFunc:Xse,kernelFunc:Yse},Jse=cn(Ci),Zse=cn(Ei),gx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(gx||(gx={}));var QC;function eie(e){QC=e.wasm.cwrap(zl,null,["number","number","number","number","array","number","number","number","number","number"])}function tie(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=ud({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return QC(g,y,b,p,k,d,c,gx[r],s,v),f!=null&&t.disposeData(f.dataId),x}var nie={kernelName:zl,backendName:"wasm",setupFunc:eie,kernelFunc:tie},JC;function aie(e){JC=e.wasm.cwrap(Ll,null,["number","number","number","number","number","number"])}function rie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),p=r;u!==null&&(p=cs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;JC(m,i?1:0,o?1:0,h,f,$t[r.dtype]);let g=c;if(u!==null){let y=C.getUndoAxesPermutation(u);g=cs({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var sie={kernelName:Ll,backendName:"wasm",setupFunc:aie,kernelFunc:rie},ZC;function iie(e){ZC=e.wasm.cwrap(Fi,null,["number","number","number","number","number","number"])}function oie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),p=r;u!==null&&(p=cs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;ZC(m,i?1:0,o?1:0,h,f,$t[r.dtype]);let g=c;if(u!==null){let y=C.getUndoAxesPermutation(u);g=cs({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var lie={kernelName:Fi,backendName:"wasm",setupFunc:iie,kernelFunc:oie},eE;function uie(e){eE=e.wasm.cwrap(Bl,null,["number","number","number","array","number","array","array","number","number"])}function pie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return eE(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var cie={kernelName:Bl,backendName:"wasm",setupFunc:uie,kernelFunc:pie},tE;function die(e){tE=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,k=h.dilationWidth,T=h.strideHeight,_=h.strideWidth,E=h.inChannels,A=h.outChannels,M=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return tE(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,M,v,k,T,_,E,A,S),$}var mie={kernelName:Ai,backendName:"wasm",setupFunc:die,kernelFunc:hie},fie=cn(Di),gie=!1,yie=En(Vl,gie,"bool"),bie=cn(Ri,"float32");function yx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Bn({inputs:{x:r},backend:a,attrs:{shape:o}})}var xie={kernelName:Ul,backendName:"wasm",kernelFunc:yx};function nE(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var vie={kernelName:gc,backendName:"wasm",kernelFunc:nE},aE;function wie(e){aE=e.wasm.cwrap(Hl,null,["number","number","number","number","number","number"])}function kie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return aE(s,o,l,u,p,i),r}var Iie={kernelName:Hl,backendName:"wasm",kernelFunc:kie,setupFunc:wie},Sie=cn(Mi),Nie=!1,Tie=En(Pi,Nie),rE;function _ie(e){rE=e.wasm.cwrap(Oi,null,["number","number","number","number","number","number","number"])}function Cie(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return rE(p,d,c,h,m,r,g),f}var Eie={kernelName:Oi,backendName:"wasm",setupFunc:_ie,kernelFunc:Cie},sE;function Fie(e){sE=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Aie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=uc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let k=f.filterHeight,T=f.filterWidth,_=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,M=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,P=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Z=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Y=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return sE(y,K,Z,ee,b,k,T,v,_,E,A,M,q,$,S,P,V,j,x,g,ie,m||0,Y),re}var $ie={kernelName:ai,backendName:"wasm",setupFunc:Fie,kernelFunc:Aie},iE;function Die(e){iE=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Rie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=uc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${x})`);v=ae.id}let k=f.filterHeight,T=f.filterWidth,_=f.padInfo.top,E=f.padInfo.right,A=f.padInfo.bottom,M=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,P=f.strideHeight,V=f.strideWidth,j=f.inChannels,q=f.padInfo.type==="SAME"?1:0,K=f.batchSize,Z=f.inHeight,ee=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),Y=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return iE(y,K,Z,ee,b,k,T,v,_,E,A,M,q,$,S,P,V,j,x,g,ie,m||0,Y),re}var Mie={kernelName:ri,backendName:"wasm",setupFunc:Die,kernelFunc:Rie},oE;function Pie(e){oE=e.wasm.cwrap(ql,null,["number","number","number","number","number","number","array","number"])}function Oie(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Px.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return oE(c,$t[a.dtype],h,i,d,o,m,f),u}var Lie={kernelName:ql,backendName:"wasm",setupFunc:Pie,kernelFunc:Oie},lE;function zie(e){lE=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Bie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let _=0;_<u.length;++_){let E=u[_];w.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Bn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(s.shape),m=Bn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,v=t.dataIdMap.get(g.dataId).id,k=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer);return lE(b,$t[r.dtype],k,y,x,d.batchSize,T,v),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var Wie={kernelName:jl,backendName:"wasm",setupFunc:zie,kernelFunc:Bie},Vie=!1,Uie=En(Kl,Vie,"bool"),Gie=!1,Hie=En(Li,Gie,"bool"),uE;function jie(e){uE=e.wasm.cwrap(Bi,null,["number","number","number","number"])}function qie(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;uE(r,$t[t.dtype],n,i)}return s}var Kie={kernelName:Bi,backendName:"wasm",setupFunc:jie,kernelFunc:qie},Xie=!1,Yie=En(Jl,Xie,"bool"),Qie=!1,Jie=En(Zl,Qie,"bool"),Zie=cn(Wi),eoe=!1,toe=En(tu,eoe,"bool"),pE;function noe(e){pE=e.wasm.cwrap(Vi,null,["number","number","number","number"])}function aoe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ss(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",p,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,p),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;pE(o,$t[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=C.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var roe={kernelName:Vi,backendName:"wasm",setupFunc:noe,kernelFunc:aoe},soe=!1,ioe=En(Ui,soe),cE;function ooe(e){cE=e.wasm.cwrap(Gi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function loe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=C.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,v=p.strideWidth,k=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let _=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(_.dataId).id;return cE(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,v,k,T,E),_}var uoe={kernelName:Gi,backendName:"wasm",setupFunc:ooe,kernelFunc:loe},dE;function poe(e){dE=e.wasm.cwrap(Hi,null,["number, number, number"])}function coe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let v=t.dataIdMap.get(p.dataId).id;v!==o&&(u=p,l=v,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=ud({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;dE(l,y,v)}if(h&&t.disposeData(p.dataId),s){let v=C.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var doe={kernelName:Hi,backendName:"wasm",setupFunc:poe,kernelFunc:coe},hE;function hoe(e){hE=e.wasm.cwrap(ji,null,["number","number","number","number"])}function moe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",d,m);let[f,g]=C.computeOutAndReduceShapes(u.shape,d),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;hE(l,$t[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var foe={kernelName:ji,backendName:"wasm",setupFunc:hoe,kernelFunc:moe},goe=!1,yoe=En(qi,goe),bx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(bx||(bx={}));var mE;function boe(e){mE=e.wasm.cwrap(Ki,null,["number","array","number","number","array","array","number","number"])}function xoe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return mE(i,u,t.shape.length,$t[t.dtype],c,h,bx[r],l),o}var voe={kernelName:Ki,backendName:"wasm",kernelFunc:xoe,setupFunc:boe},woe=!0,koe=En(Xi,woe),Ioe=cn(au);function P0(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var fE;function Soe(e){fE=e.wasm.cwrap(su,"number",["number","number","number","number","number"])}function Noe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=fE(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=P0(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Toe={kernelName:su,backendName:"wasm",setupFunc:Soe,kernelFunc:Noe},gE;function _oe(e){gE=e.wasm.cwrap(iu,"number",["number","number","number","number","number","bool"])}function Coe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=gE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=P0(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Eoe={kernelName:iu,backendName:"wasm",setupFunc:_oe,kernelFunc:Coe},yE;function Foe(e){yE=e.wasm.cwrap(ou,"number",["number","number","number","number","number","number"])}function Aoe(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=yE(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=P0(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var $oe={kernelName:ou,backendName:"wasm",setupFunc:Foe,kernelFunc:Aoe},Doe=!1,Roe=En(ru,Doe,"bool"),bE;function Moe(e){bE=e.wasm.cwrap(Yi,null,["number","number","number","number","number"])}function Poe(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return bE(p,s,i,o,u),l}var Ooe={kernelName:Yi,backendName:"wasm",setupFunc:Moe,kernelFunc:Poe};function Loe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var zoe={kernelName:lu,backendName:"wasm",kernelFunc:Loe};function Boe(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return yx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{w.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=yx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=KC({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Woe={kernelName:uu,backendName:"wasm",kernelFunc:Boe},xE;function Voe(e){xE=e.wasm.cwrap(Qi,null,["number","array","number","number","array","array","number","number"])}function Uoe(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(w.sizeFromShape(t.shape)===0)return nE({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return xE(i,u,t.shape.length,$t[t.dtype],c,h,r,l),o}var vE={kernelName:Qi,backendName:"wasm",kernelFunc:Uoe,setupFunc:Voe},Goe=!1,Hoe=En(Ji,Goe),wE;function joe(e){wE=e.wasm.cwrap(Zi,null,["number","number","number"])}function qoe(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=ud({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return wE(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var Koe={kernelName:Zi,backendName:"wasm",setupFunc:joe,kernelFunc:qoe},kE;function Xoe(e){kE=e.wasm.cwrap(eo,null,["number","number","number","number"])}function Yoe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;kE(l,y,$t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Qoe={kernelName:eo,backendName:"wasm",setupFunc:Xoe,kernelFunc:Yoe},Joe=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=y0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Zoe={kernelName:wc,backendName:"wasm",kernelFunc:Joe},ele=!0,tle=En($i,ele),nle=cn(to),ale=cn(ao),IE;function rle(e){IE=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number"])}function sle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=ud({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return IE(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var ile={kernelName:no,backendName:"wasm",setupFunc:rle,kernelFunc:sle},SE;function ole(e){SE=e.wasm.cwrap(ro,null,["number","array","number","array","number","number"])}function lle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return Yf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);SE(l,p,i.length,d,r.shape.length,u);let c=Bn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var ule={kernelName:ro,backendName:"wasm",kernelFunc:lle,setupFunc:ole},NE;function ple(e){NE=e.wasm.cwrap(_u,null,["number","number","number","number","number","number","number","number","array","number","number"])}function cle(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=C.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return NE(u,d,c,h,m,s,f,g,v,x.length,p),l}var dle={kernelName:_u,backendName:"wasm",kernelFunc:cle,setupFunc:ple},hle=cn(so),mle=cn(io),TE;function fle(e){TE=e.wasm.cwrap(du,null,["number","number","number","number","number","number","array","number","number"])}function gle(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=Ox.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return TE(h,m,$t[s.dtype],l,u,p,f,c,g),o}var yle={kernelName:du,backendName:"wasm",setupFunc:fle,kernelFunc:gle},_E;function ble(e){_E=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function xle(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:w.sizeFromShape(r.shape.slice(1));return _E(i,o,l,h,p),u}var vle={kernelName:hu,backendName:"wasm",kernelFunc:xle,setupFunc:ble},CE;function wle(e){CE=e.wasm.cwrap(lo,null,["number","number"])}function kle(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||CE(a,s),r}var Ile={kernelName:"Sigmoid",backendName:"wasm",setupFunc:wle,kernelFunc:kle},Sle=cn(oo),EE;function Nle(e){EE=e.wasm.cwrap(co,null,["number","number","number","number"])}function Tle(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||EE(r,i,o,l),s}var _le={kernelName:co,backendName:"wasm",setupFunc:Nle,kernelFunc:Tle};function Cle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=vE.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),d=C.getPermuted(p.length,s.length,!1),c=C.getReshapedPermuted(u.shape,s,o,!1),h=Bn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=cs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Bn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Ele={kernelName:xu,backendName:"wasm",kernelFunc:Cle},FE;function Fle(e){FE=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Ale(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([u],"bool"),x=t.dataIdMap.get(b.dataId).id,v=t.makeOutput([o],a.dtype),k=t.dataIdMap.get(v.dataId).id,T=t.makeOutput([4],"int32"),_=t.dataIdMap.get(T.dataId).id,E=FE(d,c,$t[r.dtype],o,u,l,h,f,y,x,k,_),A=t.readSync(T.dataId),M;switch(A[0]){case 1:{M=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(A[1]);break}case 2:{M=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(A[1],A[2]);break}case 3:M=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(A[1],A[2],A[3]);break;default:M=""}if(t.disposeData(T.dataId),M)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(v.dataId),new Error(M);let $=m,S=g;return E!==p[0]&&($=yi({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=yi({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,b,v]}var $le={kernelName:Ic,backendName:"wasm",setupFunc:Fle,kernelFunc:Ale},AE;function Dle(e){AE=e.wasm.cwrap(wu,null,["number","number","number","number","number","number","number"])}function Rle(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=w.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;AE(i,o,l,u,c,m,g);let y=t.readSync(f.dataId),b;switch(y[0]){case 0:{b=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{b=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:b=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=C.getSparseReshapeInputOutputMultipleErrorMessage(x,v);break}case 4:{let x=Array.from(t.readSync(r.dataId)),v=Array.from(t.readSync(h.dataId));b=C.getSparseReshapeInputOutputMismatchErrorMessage(x,v);break}default:b=""}if(t.disposeData(f.dataId),b)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(b);return[d,h]}var Mle={kernelName:wu,backendName:"wasm",setupFunc:Dle,kernelFunc:Rle},$E;function DE(e){$E=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function RE(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;$E(d,$t[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Ple(e){return RE(e,!0)}var Ole={kernelName:Sc,backendName:"wasm",setupFunc:DE,kernelFunc:Ple};function Lle(e){return RE(e,!1)}var zle={kernelName:Nc,backendName:"wasm",setupFunc:DE,kernelFunc:Lle};function Ble(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=yi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Wle={kernelName:vu,backendName:"wasm",kernelFunc:Ble},Vle=cn(uo),Ule=cn(Tc),Gle=!0,Hle=En(ho,Gle),ME;function jle(e){ME=e.wasm.cwrap(gs,null,["number","number","number","number"])}function qle(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return ME(i,r,$t[s.dtype],l),o}var Kle={kernelName:gs,backendName:"wasm",setupFunc:jle,kernelFunc:qle},PE;function Xle(e){PE=e.wasm.cwrap(ku,null,["number","array","number","array","array","array","array","array","number","number"])}function Yle(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:v}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),k;if(f)k=Bn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(b,x,v),_=yi({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});k=Bn({inputs:{x:_},backend:t,attrs:{shape:m}}),t.disposeData(_.dataId)}else{let T=t.makeOutput(h,"float32"),_=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(b).buffer),M=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(v).buffer),S=new Uint8Array(new Int32Array(h).buffer),P=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),V=t.dataIdMap.get(T.dataId).id;PE(_,E,r.shape.length,A,M,$,S,P,h.length,V),k=Bn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return k}var Qle={kernelName:ku,backendName:"wasm",setupFunc:Xle,kernelFunc:Yle},Jle=!0,Zle=En(mo,Jle),OE;function eue(e){OE=e.wasm.cwrap(po,null,["number","number","number","number"])}function tue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ss(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;OE(l,y,$t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=C.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var nue={kernelName:po,backendName:"wasm",setupFunc:eue,kernelFunc:tue},aue=cn(fo),rue=cn(go),LE;function sue(e){LE=e.wasm.cwrap(fs,null,["number","array","number","array","number","number"])}function iue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return LE(s,l,r.shape.length,u,o.length,$t[p.dtype],d),p}var oue={kernelName:fs,backendName:"wasm",setupFunc:sue,kernelFunc:iue},zE;function lue(e){zE=e.wasm.cwrap(Iu,null,["number","array","number","number","number","bool","number","number"])}var uue=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return zE(i,o,a.shape.length,$t[a.dtype],r,s,p,c),[u,d]},pue={kernelName:Iu,backendName:"wasm",setupFunc:lue,kernelFunc:uue},BE;function cue(e){BE=e.wasm.cwrap(Su,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function due(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(b.dataId).id,v=t.dataIdMap.get(r.dataId).id,k=t.dataIdMap.get(s.dataId).id,T=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return BE(v,k,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,T,_,l,x),b}var hue={kernelName:Su,backendName:"wasm",setupFunc:cue,kernelFunc:due};function mue(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=yi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var fue={kernelName:Nu,backendName:"wasm",kernelFunc:mue};function gue(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var yue={kernelName:Tu,backendName:"wasm",kernelFunc:gue},bue=[ise,ose,use,dse,vse,Ise,Tse,Ese,Dse,zse,Bse,Wse,Gse,Hse,Kse,Qse,Jse,Zse,nie,sie,lie,cie,mie,fie,yie,bie,xie,vie,Iie,Sie,Tie,Eie,$ie,Mie,Lie,Wie,Uie,Hie,hse,Kie,Yie,Jie,Zie,toe,roe,ioe,uoe,doe,foe,yoe,voe,koe,Ioe,Toe,Eoe,$oe,Roe,Ooe,zoe,Woe,vE,Hoe,Koe,Qoe,Zoe,tle,nle,ale,Fse,ile,ule,dle,hle,mle,yle,vle,Ile,Sle,Ose,_le,Ele,$le,Mle,Ole,zle,Wle,Vle,Ule,Hle,Kle,Qle,Zle,nue,aue,rue,oue,pue,hue,yse,fue,yue];for(let e of bue)Cc(e);var xx=X();xx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));xx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(xx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Kk=bi(p$()),xue=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,vue=bi(c$()),WE=class extends pc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(VE),vx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new rm(this,ar())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(s);let o=w.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Iue(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function wue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function Xk(e,t,n){if(am!=null)return am;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Hp!=null&&Hp[a]!=null?Hp[a]:n+a}async function kue(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=xue.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?Xk(e,t,Vp!=null?Vp:l):l+o},O0&&(r.instantiateWasm=wue(Xk(e,t,Vp!=null?Vp:"")));let s=!1;r.onAbort=()=>{s||jp||(jp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&am==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Kk.default.toString()],{type:"text/javascript"}),i=(0,Kk.default)(r)):i=(0,vue.default)(r),i.then(o=>{s=!0,jp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Iue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Sue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],am=null,Vp=null,Hp={},jp=!1,O0=!1;function Nue(e,t=!1){if(Mx("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),jp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");am=e,O0=t}function Tue(e,t=!1){if(jp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Vp=e;else{Hp=e;let n=Sue.filter(a=>Hp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}O0=t}var VE=-1,vx=-1;function _ue(e){VE=e}function Cue(){if(vx===-1)throw new Error("WASM backend not initialized.");return vx}var Eue="3.18.0",Fue=2;Wm("wasm",async()=>{let{wasm:e}=await kue();return new WE(e)},Fue);var Aue="3.18.0",$ue="3.18.0",Due="3.18.0",Rue="3.18.0",Mue="3.18.0",Pue="3.18.0",Oue="3.18.0",Lue="3.18.0",zue={tfjs:Aue,"tfjs-core":$ue,"tfjs-data":Due,"tfjs-layers":Rue,"tfjs-converter":Mue,"tfjs-backend-cpu":Pue,"tfjs-backend-webgl":Oue,"tfjs-backend-wasm":Lue};var uF={};ob(uF,{AnchorPosition:()=>j0,DrawBox:()=>hd,DrawBoxOptions:()=>tg,DrawFaceLandmarks:()=>hg,DrawFaceLandmarksOptions:()=>dg,DrawTextField:()=>Lr,DrawTextFieldOptions:()=>ep,drawContour:()=>Rr,drawDetections:()=>jue,drawFaceExpressions:()=>que,drawFaceLandmarks:()=>Xue});function Rr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var UE={};ob(UE,{computeReshapedDimensions:()=>B0,getCenterPoint:()=>Co,isDimensions:()=>Jf,isEven:()=>Qf,isFloat:()=>z0,isTensor:()=>To,isTensor1D:()=>Bue,isTensor2D:()=>L0,isTensor3D:()=>Mr,isTensor4D:()=>ba,isValidNumber:()=>er,isValidProbablitiy:()=>Ku,range:()=>gr,round:()=>_o});var Fn=class{constructor(t,n){if(!er(t)||!er(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new Fn(1/this.width,1/this.height)}};function To(e,t){return e instanceof Fe&&e.shape.length===t}function Bue(e){return To(e,1)}function L0(e){return To(e,2)}function Mr(e){return To(e,3)}function ba(e){return To(e,4)}function z0(e){return e%1!==0}function Qf(e){return e%2===0}function _o(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Jf(e){return e&&e.width&&e.height}function B0({width:e,height:t},n){let a=n/Math.max(t,e);return new Fn(Math.round(e*a),Math.round(t*a))}function Co(e){return e.reduce((t,n)=>t.add(n),new Oe(0,0)).div(new Oe(e.length,e.length))}function gr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function er(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Ku(e){return er(e)&&e>=0&&e<=1}var Oe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Oe(this.x+t.x,this.y+t.y)}sub(t){return new Oe(this.x-t.x,this.y-t.y)}mul(t){return new Oe(this.x*t.x,this.y*t.y)}div(t){return new Oe(this.x/t.x,this.y/t.y)}abs(){return new Oe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Oe(Math.floor(this.x),Math.floor(this.y))}};var pt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(er)}static assertIsValidBox(t,n,a=!1){if(!pt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(er),s=[a.x,a.y,a.width,a.height].every(er);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];pt.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Oe(this.left,this.top)}get topRight(){return new Oe(this.right,this.top)}get bottomLeft(){return new Oe(this.left,this.bottom)}get bottomRight(){return new Oe(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new pt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new pt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new pt({x:t,y:n,width:a,height:r})}rescale(t){let n=Jf(t)?t.width:t,a=Jf(t)?t.height:t;return new pt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new pt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new pt({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new pt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new pt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Xu=class extends pt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Ns=class{constructor(t,n,a,r,s){this._imageDims=new Fn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new pt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new pt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ns(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var kt=class extends Ns{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new kt(a,r,s)}};function GE(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function HE(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Xu(a,r,s,i)}function jE(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(GE(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function yr(e,t){return O(()=>{let[n,a,r]=t,s=_n([...e.shape.slice(0,3),1],n,"float32"),i=_n([...e.shape.slice(0,3),1],a,"float32"),o=_n([...e.shape.slice(0,3),1],r,"float32"),l=Ze([s,i,o],3);return ce(e,l)})}function qE(e,t=!1){return O(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,_n(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>oe(c,"float32"));return Ze(d,i)})}function Mge(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Zf(e){return 1/(1+Math.exp(-e))}function Oge(e){return Math.log(e/(1-e))}var Yu=class extends pt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Wue=.5,Vue=.43,Uue=.45,xa=class{constructor(t,n,a=new Oe(0,0)){let{width:r,height:s}=n;this._imgDims=new Fn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Oe(r,s)).add(a))}get shift(){return new Oe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Oe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Oe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof kt?t.box.floor():new pt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Uue),l=Co(t),u=Math.floor(Math.max(0,l.x-Wue*o)),p=Math.floor(Math.max(0,l.y-Vue*o));return new Yu(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=HE(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var KE=class extends xa{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Co([t[3],t[4]])]}};var Qu=class extends xa{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Co)}};var pd=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${_o(this.distance)})`:""}`}};var cd=class extends pt{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(pt.assertIsValidBox(n,a),!er(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var Pr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Pr(t.label,n)}};var XE=class extends cd{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(cd.assertIsValidLabeledBox(n,a),!Ku(n.score)||!Ku(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function Or(e){return e.detection instanceof kt}function Ju(e,t){return{...e,...{detection:t}}}function W0(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function dd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function eg(e){let t="";if(!e&&dd())try{e=OA("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function V0(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=eg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function U0(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var on;function Gue(){if(!on)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return on}function G0(e){on=e}function H0(){return U0()?G0(W0()):dd()?G0(V0()):null}function Hue(e){if(on||H0(),!on)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=on.Canvas,Image:n=on.Image}=e;on.Canvas=t,on.Image=n,on.createCanvasElement=e.createCanvasElement||(()=>new t),on.createImageElement=e.createImageElement||(()=>new n),on.ImageData=e.ImageData||on.ImageData,on.Video=e.Video||on.Video,on.fetch=e.fetch||on.fetch,on.readFile=e.readFile||on.readFile}var at={getEnv:Gue,setEnv:G0,initialize:H0,createBrowserEnv:W0,createFileSystem:eg,createNodejsEnv:V0,monkeyPatch:Hue,isBrowser:U0,isNodejs:dd};H0();function Zu(e){return!at.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function aa(e){let{Canvas:t,CanvasRenderingContext2D:n}=at.getEnv();if(e instanceof n)return e;let a=Zu(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var j0=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(j0||{}),ep=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Lr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Lr?t.text:t,this.anchor=n,this.options=new ep(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=Zu(t),a=aa(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var tg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new ep({...i,...s})}},hd=class{constructor(t,n={}){this.box=new pt(t),this.options=new tg(n)}draw(t){let n=aa(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Lr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function jue(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof kt?a.score:Or(a)?a.detection.score:void 0,s=a instanceof kt?a.box:Or(a)?a.detection.box:new pt(a),i=r?`${_o(r)}`:void 0;new hd(s,{label:i}).draw(e)})}function ng(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function YE(e){return new Promise((t,n)=>{(e instanceof at.getEnv().Canvas||ng(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function QE(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=at.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function tp(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t?new Fn(e.naturalWidth,e.naturalHeight):e instanceof n?new Fn(e.videoWidth,e.videoHeight):new Fn(e.width,e.height)}function np({width:e,height:t}){let{createCanvasElement:n}=at.getEnv(),a=n();return a.width=e,a.height=t,a}function ag(e,t){let{ImageData:n}=at.getEnv();if(!(e instanceof n)&&!ng(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||tp(e),s=np({width:a,height:r});return e instanceof n?aa(s).putImageData(e,0,0):aa(s).drawImage(e,0,0,a,r),s}async function JE(e,t){let n=t||at.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ba(e)?1:0),i=O(()=>e.as3D(a,r,s).toInt());return await yo.toPixels(i,n),i.dispose(),n}function q0(e){let{Image:t,Canvas:n,Video:a}=at.getEnv();return e instanceof t||e instanceof n||e instanceof a}function ZE(e,t,n=!1){let{Image:a,Canvas:r}=at.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return np({width:1,height:1});let s=tp(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=np({width:t,height:t}),p=e instanceof r?e:ag(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&aa(u).drawImage(p,c,h,o,l),u}var zr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Mr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ba(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof at.getEnv().Canvas?a:ag(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return gr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return B0({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,O(()=>{let a=gr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Fe){let o=ba(i)?i:mn(i);return o=qE(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ln.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof at.getEnv().Canvas)return yo.fromPixels(ZE(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Mt(a.map(s=>oe(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function It(e){if(e instanceof zr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Zu);return a.forEach((r,s)=>{if(!q0(r)&&!Mr(r)&&!ba(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ba(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>q0(r)&&YE(r))),new zr(a,Array.isArray(e))}async function md(e,t){let{Canvas:n}=at.getEnv(),a=e;if(!(e instanceof n)){let i=await It(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await JE(o)}let r=aa(a);return t.map(i=>i instanceof kt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=np({width:l,height:u});return l>0&&u>0&&aa(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function fd(e,t){if(!Mr(e)&&!ba(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ba(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return O(()=>{let[n,a,r]=e.shape.slice(ba(e)?1:0);return t.map(o=>o instanceof kt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Du(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ts(e,t){let{fetch:n}=at.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function kxe(e){let t=await Ts(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return QE(n)}async function eF(e){return(await Ts(e)).json()}async function _xe(e){return new Float32Array(await(await Ts(e)).arrayBuffer())}function tF(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=at.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function Dxe(e){let t=await Ts(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return tF(n)}function rg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function nF(e,t){let{manifestUri:n,modelBaseUri:a}=rg(e,t),r=await eF(n);return en.loadWeights(r,a)}function Bxe(e,t,n=!1){let{width:a,height:r}=n?tp(t):t;return e.width=a,e.height=r,{width:a,height:r}}var dn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof as)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof as))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Qn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await nF(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=at.getEnv(),{manifestUri:a,modelBaseUri:r}=rg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=en.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Fe))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function jn(e,t,n){return O(()=>{let a=xo(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function sg(e,t,n=!1){return O(()=>{let a=Xe(n?J(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):jn(e,t.conv0,[2,2])),r=jn(a,t.conv1,[1,1]),s=Xe(J(a,r)),i=jn(s,t.conv2,[1,1]);return Xe(J(a,J(r,i)))})}function gd(e,t,n=!1,a=!0){return O(()=>{let r=Xe(n?J(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):jn(e,t.conv0,a?[2,2]:[1,1])),s=jn(r,t.conv1,[1,1]),i=Xe(J(r,s)),o=jn(i,t.conv2,[1,1]),l=Xe(J(r,J(s,o))),u=jn(l,t.conv3,[1,1]);return Xe(J(r,J(s,J(o,u))))})}function Eo(e,t,n="same",a=!1){return O(()=>{let r=J(Rt(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function ap(e,t){return(n,a,r,s)=>{let i=Ja(e(n*a*r*r),[r,r,n,a]),o=qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function ig(e,t){return(n,a,r)=>{let s=Ha(e(n*a),[n,a]),i=qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var yd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function rp(e,t){return(n,a,r)=>{let s=Ja(e(9*n),[3,3,n,1]),i=Ja(e(n*a),[1,1,n,a]),o=qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new yd(s,i,o)}}function sp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new yd(n,a,r)}}function ra(e,t){return(n,a,r)=>{let s=e[n];if(!To(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function $n(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function og(e,t){let n=ap(e,t),a=rp(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function aF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock4Params:r}=og(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function lg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function ug(e,t){let n=ra(e,t),a=lg(n),r=sp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function rF(e){let t=[],{extractDenseBlock4Params:n}=ug(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var ip=class extends dn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=gd(s,n.dense0,!0);return i=gd(i,n.dense1),i=gd(i,n.dense2),i=gd(i,n.dense3),i=fa(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await It(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return rF(t)}extractParams(t){return aF(t)}};function bd(e,t){return O(()=>J(De(e,t.weights),t.bias))}function sF(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=$n(e),o=ig(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function iF(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function pg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var op=class extends dn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof zr?this.faceFeatureExtractor.forwardInput(n):n;return bd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return sF(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=pg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),iF(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var oF=["neutral","happy","sad","angry","fearful","disgusted","surprised"],_s=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);oF.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return oF.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var cg=class extends op{constructor(t=new ip){super("FaceExpressionNet",t)}forwardInput(t){return O(()=>Qa(this.runNet(t)))}async forward(t){return this.forwardInput(await It(t))}async predictExpressions(t){let n=await It(t),a=await this.forwardInput(n),r=await Promise.all(ht(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new _s(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function lF(e){return e.expressions instanceof _s}function K0(e,t){return{...e,...{expressions:t}}}function que(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof _s?s:lF(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Or(s)?s.detection.box.bottomLeft:a||new Oe(0,0);new Lr(l.map(d=>`${d.expression} (${_o(d.probability)})`),u).draw(e)})}function lp(e){return Or(e)&&e.landmarks instanceof xa&&e.unshiftedLandmarks instanceof xa&&e.alignedRect instanceof kt}function Kue(e){let t=(o,l,u,p)=>Math.atan2(p-l,u-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,1/0),i=r.reduce((o,l)=>o>l._y?o:l._y,-1/0);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function xd(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new kt(e.detection.score,r.rescale(s.reverse()),s),o=Kue(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var dg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},hg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new dg(n)}draw(t){let n=aa(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Qu&&(n.strokeStyle=i,n.lineWidth=s,Rr(n,this.faceLandmarks.getJawOutline()),Rr(n,this.faceLandmarks.getLeftEyeBrow()),Rr(n,this.faceLandmarks.getRightEyeBrow()),Rr(n,this.faceLandmarks.getNose()),Rr(n,this.faceLandmarks.getLeftEye(),!0),Rr(n,this.faceLandmarks.getRightEye(),!0),Rr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Xue(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xa?a:lp(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new hg(r).draw(e)})}var pF="1.6.10";function Jue(e,t){let n=ap(e,t),a=rp(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function cF(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=$n(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Jue(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};gr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Zue(e,t){let n=ra(e,t),a=lg(n),r=sp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function dF(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Zue(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};gr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function hF(e,t,n){return J(Rt(e,t.filters,n,"same"),t.bias)}function X0(e,t,n=!0){let a=n?Xe(e):e;return a=jn(a,t.separable_conv0,[1,1]),a=jn(Xe(a),t.separable_conv1,[1,1]),a=Pt(a,[3,3],[2,2],"same"),a=J(a,hF(e,t.expansion_conv,[2,2])),a}function epe(e,t){let n=jn(Xe(e),t.separable_conv0,[1,1]);return n=jn(Xe(n),t.separable_conv1,[1,1]),n=jn(Xe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var mg=class extends dn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return O(()=>{let r=oe(n.toBatchTensor(112,!0),"float32"),i=yr(r,[122.782,117.001,104.298]).div(255),o=Xe(hF(i,a.entry_flow.conv_in,[2,2]));return o=X0(o,a.entry_flow.reduction_block_0,!1),o=X0(o,a.entry_flow.reduction_block_1),gr(this._numMainBlocks,0,1).forEach(l=>{o=epe(o,a.middle_flow[`main_block_${l}`])}),o=X0(o,a.exit_flow.reduction_block),o=Xe(jn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await It(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return dF(n,this._numMainBlocks)}extractParams(n){return cF(n,this._numMainBlocks)}};function mF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),r=ig(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function fF(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var Y0=(n=>(n.FEMALE="female",n.MALE="male",n))(Y0||{});var fg=class extends dn{constructor(n=new mg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return O(()=>{let r=n instanceof zr?this.faceFeatureExtractor.forwardInput(n):n,s=fa(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=bd(s,a.fc.age).as1D(),o=bd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return O(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Qa(r)}})}async forward(n){return this.forwardInput(await It(n))}async predictAgeAndGender(n){let a=await It(n),r=await this.forwardInput(a),s=ht(r.age),i=ht(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return mF(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=pg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),fF(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var up=class extends op{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return O(()=>{let i=(d,c)=>Mt([_n([68],d,"float32"),_n([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(_n([s,136],n,"float32")).sub(Mt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Mt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return O(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await It(t))}async detectLandmarks(t){let n=await It(t),a=O(()=>ht(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Qf(d)),u=o.filter((p,d)=>!Qf(d));return new Qu(Array(68).fill(0).map((p,d)=>new Oe(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var pp=class extends up{constructor(t=new ip){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function gF(e){let t=[],{extractDenseBlock3Params:n}=ug(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function yF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock3Params:r}=og(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var gg=class extends dn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(112,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=sg(s,n.dense0,!0);return i=sg(i,n.dense1),i=sg(i,n.dense2),i=fa(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await It(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return gF(t)}extractParams(t){return yF(t)}};var yg=class extends up{constructor(t=new gg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var bF=class extends pp{};function xF(e,t){return J(B(e,t.weights),t.biases)}function Q0(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=J(o,i),o=xF(o,t.scale),a?Xe(o):o}function vF(e,t){return Q0(e,t,[1,1],!0)}function J0(e,t){return Q0(e,t,[1,1],!1)}function bg(e,t){return Q0(e,t,[2,2],!0,"valid")}function tpe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(z0(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return O(()=>Ae(Ja(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=qe(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=qe(e(o)),p=qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function wF(e){let{extractWeights:t,getRemainingWeights:n}=$n(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=tpe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),k=O(()=>Ae(Ha(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:k},paramMappings:a}}function npe(e,t){let n=ra(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function kF(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=npe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!L0(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return An(e,t),{params:v,paramMappings:t}}function tr(e,t){let n=vF(e,t.conv1);return n=J0(n,t.conv2),n=J(n,e),n=Xe(n),n}function vd(e,t){let n=bg(e,t.conv1);n=J0(n,t.conv2);let a=fa(e,2,2,"valid"),r=St(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=St(o);n=Ze([n,l],1);let u=[...n.shape];u[2]=1;let p=St(u);n=Ze([n,p],2)}return a=s?Ze([a,r],3):a,n=J(a,n),n=Xe(n),n}var cp=class extends dn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(150,!0),"float32"),s=yr(a,[122.782,117.001,104.298]).div(255),i=bg(s,n.conv32_down);i=Pt(i,3,2,"valid"),i=tr(i,n.conv32_1),i=tr(i,n.conv32_2),i=tr(i,n.conv32_3),i=vd(i,n.conv64_down),i=tr(i,n.conv64_1),i=tr(i,n.conv64_2),i=tr(i,n.conv64_3),i=vd(i,n.conv128_down),i=tr(i,n.conv128_1),i=tr(i,n.conv128_2),i=vd(i,n.conv256_down),i=tr(i,n.conv256_1),i=tr(i,n.conv256_2),i=vd(i,n.conv256_down_out);let o=i.mean([1,2]);return De(o,n.fc)})}async forward(t){return this.forwardInput(await It(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await It(t),a=O(()=>ht(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return kF(t)}extractParams(t){return wF(t)}};function dke(e){let t=new cp;return t.extractWeights(e),t}function Z0(e,t){return{...e,...{descriptor:t}}}function gke(e){return typeof e.age=="number"}function e1(e,t){return{...e,...{age:t}}}function vke(e){return(e.gender==="male"||e.gender==="female")&&Ku(e.genderProbability)}function t1(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function ape(e,t){function n(l,u){let p=Ja(e(9*l),[3,3,l,1]),d=qe(e(l)),c=qe(e(l)),h=qe(e(l)),m=qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Ja(e(l*u*p*p),[p,p,l,u]),m=qe(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),k=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:k}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),k=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),_=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),M=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:k},box_predictor_3:{box_encoding_predictor:T,class_predictor:_},box_predictor_4:{box_encoding_predictor:E,class_predictor:A},box_predictor_5:{box_encoding_predictor:M,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function IF(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=ape(n,t),i=r(),o=s(),u={extra_dim:Vm(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function rpe(e,t){let n=ra(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function SF(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=rpe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Mr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function Fa(e,t,n){return O(()=>{let a=Rt(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),an(a,0,6)})}var spe=.0010000000474974513;function ipe(e,t,n){return O(()=>{let a=xs(e,t.filters,n,"same");return a=Er(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,spe),an(a,0,6)})}function ope(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function NF(e,t){return O(()=>{let n,a=Fa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=ope(o);a=ipe(a,s.depthwise_conv,l),a=Fa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function lpe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function TF(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=lpe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function upe(e){let t=ht(Ae(e,[1,0])),n=[ce(t[2],t[0]),ce(t[3],t[1])],a=[J(t[0],fe(n[0],2)),J(t[1],fe(n[1],2))];return{sizes:n,centers:a}}function ppe(e,t){let{sizes:n,centers:a}=upe(e),r=ht(Ae(t,[1,0])),s=fe(B(gn(fe(r[2],5)),n[0]),2),i=J(B(fe(r[0],10),n[0]),a[0]),o=fe(B(gn(fe(r[3],5)),n[1]),2),l=J(B(fe(r[1],10),n[1]),a[1]);return Ae(Mt([ce(i,s),ce(l,o),J(i,s),J(l,o)]),[1,0])}function _F(e,t,n){return O(()=>{let a=e.shape[0],r=ppe(W(On(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ha(He(t,[0,0,1],[-1,-1,-1])),i=He(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ht(r),l=ht(i);return{boxes:o,scores:l}})}function Fo(e,t){return O(()=>{let n=e.shape[0],a=W(Eo(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(Eo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function CF(e,t,n){return O(()=>{let a=Fa(e,n.conv_0,[1,1]),r=Fa(a,n.conv_1,[2,2]),s=Fa(r,n.conv_2,[1,1]),i=Fa(s,n.conv_3,[2,2]),o=Fa(i,n.conv_4,[1,1]),l=Fa(o,n.conv_5,[2,2]),u=Fa(l,n.conv_6,[1,1]),p=Fa(u,n.conv_7,[2,2]),d=Fo(t,n.box_predictor_0),c=Fo(e,n.box_predictor_1),h=Fo(r,n.box_predictor_2),m=Fo(i,n.box_predictor_3),f=Fo(l,n.box_predictor_4),g=Fo(p,n.box_predictor_5),y=Ze([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Ze([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var Aa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ao=class extends dn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return O(()=>{let a=oe(t.toBatchTensor(512,!1),"float32"),r=ce(fe(a,127.5),1),s=NF(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=CF(s.out,s.conv11,n.prediction_layer);return _F(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await It(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Aa(n),s=await It(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=TF(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=c.map(x=>{let[v,k]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(E=>E*g),[T,_]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(E=>E*f);return new kt(p[x],new Yu(T,v,_-T,k-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return SF(t)}extractParams(t){return IF(t)}};function cpe(e){let t=new Ao;return t.extractWeights(e),t}function dIe(e){return cpe(e)}var EF=class extends Ao{};var FF=.4,AF=[new Oe(.738768,.874946),new Oe(2.42204,2.65704),new Oe(4.30971,7.04493),new Oe(10.246,4.59428),new Oe(12.6868,11.8741)],$F=[new Oe(1.603231,2.094468),new Oe(6.041143,7.080126),new Oe(2.882459,3.518061),new Oe(4.266906,5.178857),new Oe(9.041765,10.66308)],DF=[117.001,114.697,97.404],RF="tiny_yolov2_model",MF="tiny_yolov2_separable_conv_model";var xg=e=>typeof e=="number";function PF(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!xg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>xg(t.x)&&xg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(xg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function dp(e){return O(()=>{let t=B(e,we(.10000000149011612));return J(Xe(ce(e,t)),t)})}function Br(e,t){return O(()=>{let n=ga(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=ce(n,t.bn.sub),n=B(n,t.bn.truediv),n=J(n,t.conv.bias),dp(n)})}function Wr(e,t){return O(()=>{let n=ga(e,[[0,0],[1,1],[1,1],[0,0]]);return n=xo(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),dp(n)})}function dpe(e,t){let n=ap(e,t);function a(i,o){let l=qe(e(i)),u=qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=rp(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function OF(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=$n(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=dpe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),k=u(c,h,"conv1"),T=u(h,m,"conv2"),_=u(m,f,"conv3"),E=u(f,g,"conv4"),A=u(g,y,"conv5"),M=b?u(y,b,"conv6"):void 0,$=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:v,conv1:k,conv2:T,conv3:_,conv4:E,conv5:A,conv6:M,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,v=l(d,c,"conv0"),k=l(c,h,"conv1"),T=l(h,m,"conv2"),_=l(m,f,"conv3"),E=l(f,g,"conv4"),A=l(g,y,"conv5"),M=l(y,b,"conv6"),$=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:v,conv1:k,conv2:T,conv3:_,conv4:E,conv5:A,conv6:M,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function hpe(e,t){let n=ra(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=sp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function LF(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=hpe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var br=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var n1=class extends dn{constructor(n){super("TinyYolov2");PF(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Br(n,a.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Br(r,a.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Br(r,a.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Br(r,a.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Br(r,a.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Br(r,a.conv5),r=Pt(r,[2,2],[1,1],"same"),r=Br(r,a.conv6),r=Br(r,a.conv7),Eo(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?dp(Eo(n,a.conv0,"valid",!1)):Wr(n,a.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Wr(r,a.conv5),r=Pt(r,[2,2],[1,1],"same"),r=a.conv6?Wr(r,a.conv6):r,r=a.conv7?Wr(r,a.conv7):r,Eo(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return O(()=>{let s=oe(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?yr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await It(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new br(a),i=await It(n),o=await this.forwardInput(i,r),l=O(()=>ht(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(y=>y.box),c=p.map(y=>y.score),h=p.map(y=>y.classScore),m=p.map(y=>this.config.classes[y.label]);return jE(d.map(y=>y.rescale(r)),c,this.config.iouThreshold,!0).map(y=>new Ns(c[y],h[y],m[y],d[y],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return LF(n,this.config)}extractParams(n){let a=this.config.filterSizes||n1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return OF(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=O(()=>{let b=n.reshape([p,p,d,this.boxEncodingSize]),x=b.slice([0,0,0,0],[p,p,d,4]),v=b.slice([0,0,0,4],[p,p,d,1]),k=this.withClassScores?Qa(b.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):we(0);return[x,v,k]}),f=[],g=await h.array(),y=await c.array();for(let b=0;b<p;b++)for(let x=0;x<p;x++)for(let v=0;v<d;v++){let k=Zf(g[b][x][v][0]);if(!r||k>r){let T=(x+Zf(y[b][x][v][0]))/p*l,_=(b+Zf(y[b][x][v][1]))/p*u,E=Math.exp(y[b][x][v][2])*this.config.anchors[v].x/p*l,A=Math.exp(y[b][x][v][3])*this.config.anchors[v].y/p*u,M=T-E/2,$=_-A/2,S={row:b,col:x,anchor:v},{classScore:P,label:V}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Xu(M,$,M+E,$+A),score:k,classScore:k*P,label:V,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},$o=n1;$o.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var hp=class extends $o{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:FF,classes:["face"],...t?{anchors:$F,meanRgb:DF}:{anchors:AF,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new kt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?MF:RF}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function aSe(e,t=!0){let n=new hp(t);return n.extractWeights(e),n}var vg=class extends br{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var $a=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Do(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>lp(l)?r(l):l.detection),i=a||(t instanceof Fe?await fd(t,s):await md(t,s)),o=await n(i);return i.forEach(l=>l instanceof Fe&&l.dispose()),o}async function mp(e,t,n,a,r){return Do([e],t,async s=>n(s[0]),a,r)}var zF=.4,BF=[new Oe(1.603231,2.094468),new Oe(6.041143,7.080126),new Oe(2.882459,3.518061),new Oe(4.266906,5.178857),new Oe(9.041765,10.66308)],WF=[117.001,114.697,97.404];var fp=class extends $o{constructor(){let t={withSeparableConvs:!0,iouThreshold:zF,classes:["face"],anchors:BF,meanRgb:WF,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new kt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new Ao,tinyFaceDetector:new fp,tinyYolov2:new hp,faceLandmark68Net:new pp,faceLandmark68TinyNet:new yg,faceRecognitionNet:new cp,faceExpressionNet:new cg,ageGenderNet:new fg},mpe=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),DSe=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),RSe=(e,t)=>rt.tinyYolov2.locateFaces(e,t),fpe=e=>rt.faceLandmark68Net.detectLandmarks(e),MSe=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),PSe=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),OSe=e=>rt.faceExpressionNet.predictExpressions(e),LSe=e=>rt.ageGenderNet.predictAgeAndGender(e),gpe=e=>rt.ssdMobilenetv1.load(e),zSe=e=>rt.tinyFaceDetector.load(e),BSe=e=>rt.tinyYolov2.load(e),WSe=e=>rt.faceLandmark68Net.load(e),VSe=e=>rt.faceLandmark68TinyNet.load(e),USe=e=>rt.faceRecognitionNet.load(e),GSe=e=>rt.faceExpressionNet.load(e),HSe=e=>rt.ageGenderNet.load(e),jSe=gpe,qSe=mpe,KSe=fpe;var wg=class extends $a{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Ro=class extends wg{async run(){let t=await this.parentTask,n=await Do(t,this.input,async a=>Promise.all(a.map(r=>rt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>K0(a,n[r]))}withAgeAndGender(){return new Po(this,this.input)}},Mo=class extends wg{async run(){let t=await this.parentTask;if(!t)return;let n=await mp(t,this.input,a=>rt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return K0(t,n)}withAgeAndGender(){return new Oo(this,this.input)}},Cs=class extends Ro{withAgeAndGender(){return new Fs(this,this.input)}withFaceDescriptors(){return new $s(this,this.input)}},Es=class extends Mo{withAgeAndGender(){return new As(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var kg=class extends $a{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Po=class extends kg{async run(){let t=await this.parentTask,n=await Do(t,this.input,async a=>Promise.all(a.map(r=>rt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return e1(t1(a,i,o),s)})}withFaceExpressions(){return new Ro(this,this.input)}},Oo=class extends kg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await mp(t,this.input,s=>rt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return e1(t1(t,a,r),n)}withFaceExpressions(){return new Mo(this,this.input)}},Fs=class extends Po{withFaceExpressions(){return new Cs(this,this.input)}withFaceDescriptors(){return new $s(this,this.input)}},As=class extends Oo{withFaceExpressions(){return new Es(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var Ig=class extends $a{constructor(n,a){super();this.parentTask=n;this.input=a}},$s=class extends Ig{async run(){let t=await this.parentTask;return(await Do(t,this.input,a=>Promise.all(a.map(r=>rt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Z0(t[r],a))}withFaceExpressions(){return new Cs(this,this.input)}withAgeAndGender(){return new Fs(this,this.input)}},Ds=class extends Ig{async run(){let t=await this.parentTask;if(!t)return;let n=await mp(t,this.input,a=>rt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Z0(t,n)}withFaceExpressions(){return new Es(this,this.input)}withAgeAndGender(){return new As(this,this.input)}};var Sg=class extends $a{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},Ng=class extends Sg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Fe?await fd(this.input,n):await md(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Fe&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>xd(i,r[o]))}withFaceExpressions(){return new Cs(this,this.input)}withAgeAndGender(){return new Fs(this,this.input)}withFaceDescriptors(){return new $s(this,this.input)}},Tg=class extends Sg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Fe?await fd(this.input,[n]):await md(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Fe&&s.dispose()),xd(t,r)}withFaceExpressions(){return new Es(this,this.input)}withAgeAndGender(){return new As(this,this.input)}withFaceDescriptor(){return new Ds(this,this.input)}};var _g=class extends $a{constructor(n,a=new Aa){super();this.input=n;this.options=a}},wd=class extends _g{async run(){let{input:t,options:n}=this,a;if(n instanceof vg)a=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Aa)a=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof br)a=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Ju({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Ng(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ro(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Po(this.runAndExtendWithFaceDetections(),this.input)}},Cg=class extends _g{async run(){let t=await new wd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Ju({},n):void 0)})}withFaceLandmarks(t=!1){return new Tg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Mo(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Oo(this.runAndExtendWithFaceDetection(),this.input)}};function H2e(e,t=new Aa){return new Cg(e,t)}function a1(e,t=new Aa){return new wd(e,t)}async function ype(e,t){return a1(e,new Aa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Q2e(e,t={}){return a1(e,new br(t)).withFaceLandmarks().withFaceDescriptors()}var J2e=ype;function VF(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var Eg=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Pr)return i;if(i instanceof Float32Array)return new Pr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Pr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>VF(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new pd(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new pd("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Pr.fromJSON(a));return new Eg(n,t.distanceThreshold)}};function gNe(e){let t=new fp;return t.extractWeights(e),t}function bpe(e,t){let{width:n,height:a}=new Fn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>bpe(r,{width:n,height:a}));if(lp(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return xd(Ju(e,r),s)}return Or(e)?Ju(e,e.detection.forSize(n,a)):e instanceof xa||e instanceof kt?e.forSize(n,a):e}var _Ne=pF;export{fg as AgeGenderNet,Xu as BoundingBox,pt as Box,$a as ComposableTask,$s as ComputeAllFaceDescriptorsTask,Ig as ComputeFaceDescriptorsTaskBase,Ds as ComputeSingleFaceDescriptorTask,Ng as DetectAllFaceLandmarksTask,wd as DetectAllFacesTask,Sg as DetectFaceLandmarksTaskBase,_g as DetectFacesTaskBase,Tg as DetectSingleFaceLandmarksTask,Cg as DetectSingleFaceTask,Fn as Dimensions,oF as FACE_EXPRESSION_LABELS,kt as FaceDetection,EF as FaceDetectionNet,cg as FaceExpressionNet,_s as FaceExpressions,pp as FaceLandmark68Net,yg as FaceLandmark68TinyNet,bF as FaceLandmarkNet,xa as FaceLandmarks,KE as FaceLandmarks5,Qu as FaceLandmarks68,pd as FaceMatch,Eg as FaceMatcher,cp as FaceRecognitionNet,Y0 as Gender,cd as LabeledBox,Pr as LabeledFaceDescriptors,zr as NetInput,dn as NeuralNetwork,Ns as ObjectDetection,Oe as Point,XE as PredictedBox,Yu as Rect,Ao as SsdMobilenetv1,Aa as SsdMobilenetv1Options,fp as TinyFaceDetector,vg as TinyFaceDetectorOptions,hp as TinyYolov2,br as TinyYolov2Options,J2e as allFaces,ype as allFacesSsdMobilenetv1,Q2e as allFacesTinyYolov2,YE as awaitMediaLoaded,QE as bufferToImage,PSe as computeFaceDescriptor,np as createCanvas,ag as createCanvasFromMedia,dIe as createFaceDetectionNet,dke as createFaceRecognitionNet,cpe as createSsdMobilenetv1,gNe as createTinyFaceDetector,aSe as createTinyYolov2,a1 as detectAllFaces,fpe as detectFaceLandmarks,MSe as detectFaceLandmarksTiny,KSe as detectLandmarks,H2e as detectSingleFace,uF as draw,at as env,VF as euclideanDistance,e1 as extendWithAge,Z0 as extendWithFaceDescriptor,Ju as extendWithFaceDetection,K0 as extendWithFaceExpressions,xd as extendWithFaceLandmarks,t1 as extendWithGender,fd as extractFaceTensors,md as extractFaces,kxe as fetchImage,eF as fetchJson,_xe as fetchNetWeights,Ts as fetchOrThrow,Dxe as fetchVideo,aa as getContext2dOrThrow,tp as getMediaDimensions,JE as imageTensorToCanvas,ZE as imageToSquare,Oge as inverseSigmoid,GE as iou,q0 as isMediaElement,ng as isMediaLoaded,gke as isWithAge,Or as isWithFaceDetection,lF as isWithFaceExpressions,lp as isWithFaceLandmarks,vke as isWithGender,HSe as loadAgeGenderModel,jSe as loadFaceDetectionModel,GSe as loadFaceExpressionModel,WSe as loadFaceLandmarkModel,VSe as loadFaceLandmarkTinyModel,USe as loadFaceRecognitionModel,gpe as loadSsdMobilenetv1Model,zSe as loadTinyFaceDetectorModel,BSe as loadTinyYolov2Model,nF as loadWeightMap,qSe as locateFaces,Bxe as matchDimensions,HE as minBbox,rt as nets,jE as nonMaxSuppression,yr as normalize,qE as padToSquare,LSe as predictAgeAndGender,OSe as recognizeFaceExpressions,bpe as resizeResults,Zu as resolveInput,Mge as shuffleArray,Zf as sigmoid,mpe as ssdMobilenetv1,ze as tf,DSe as tinyFaceDetector,RSe as tinyYolov2,It as toNetInput,UE as utils,PF as validateConfig,_Ne as version};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the 'License');
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an 'AS IS' BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.esm.js.map