4879 lines
1.2 MiB
4879 lines
1.2 MiB
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var faceapi=(()=>{var Hb=Object.defineProperty;var cD=Object.getOwnPropertyDescriptor;var uD=Object.getOwnPropertyNames;var lD=Object.prototype.hasOwnProperty;var dD=e=>Hb(e,"__esModule",{value:!0});var pD=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Gp=(e,t)=>{for(var n in t)Hb(e,n,{get:t[n],enumerable:!0})},hD=(e,t,n,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of uD(t))!lD.call(e,s)&&(n||s!=="default")&&Hb(e,s,{get:()=>t[s],enumerable:!(r=cD(t,s))||r.enumerable});return e};var fD=(e=>(t,n)=>e&&e.get(t)||(n=hD(dD({}),t,1),e&&e.set(t,n),n))(typeof WeakMap!="undefined"?new WeakMap:0);var Yue={};Gp(Yue,{AgeGenderNet:()=>eg,BoundingBox:()=>Vu,Box:()=>lt,ComposableTask:()=>Or,ComputeAllFaceDescriptorsTask:()=>Aa,ComputeFaceDescriptorsTaskBase:()=>cg,ComputeSingleFaceDescriptorTask:()=>Da,DetectAllFaceLandmarksTask:()=>lg,DetectAllFacesTask:()=>mp,DetectFaceLandmarksTaskBase:()=>ug,DetectFacesTaskBase:()=>pg,DetectSingleFaceLandmarksTask:()=>dg,DetectSingleFaceTask:()=>hg,Dimensions:()=>_n,FACE_EXPRESSION_LABELS:()=>M0,FaceDetection:()=>wt,FaceDetectionNet:()=>eA,FaceExpressionNet:()=>Zm,FaceExpressions:()=>Ea,FaceLandmark68Net:()=>Zu,FaceLandmark68TinyNet:()=>tg,FaceLandmarkNet:()=>VE,FaceLandmarks:()=>xr,FaceLandmarks5:()=>NE,FaceLandmarks68:()=>Gu,FaceMatch:()=>rp,FaceMatcher:()=>mg,FaceRecognitionNet:()=>Ju,Gender:()=>Qm,LabeledBox:()=>sp,LabeledFaceDescriptors:()=>Os,NetInput:()=>Ms,NeuralNetwork:()=>dn,ObjectDetection:()=>Na,Point:()=>Oe,PredictedBox:()=>_E,Rect:()=>Uu,SsdMobilenetv1:()=>Di,SsdMobilenetv1Options:()=>Pr,TinyFaceDetector:()=>rl,TinyFaceDetectorOptions:()=>ig,TinyYolov2:()=>tl,TinyYolov2Options:()=>bs,allFaces:()=>que,allFacesSsdMobilenetv1:()=>mA,allFacesTinyYolov2:()=>jue,awaitMediaLoaded:()=>D0,bufferToImage:()=>$0,computeFaceDescriptor:()=>$ue,createCanvas:()=>Ni,createCanvasFromMedia:()=>cp,createFaceDetectionNet:()=>Tue,createFaceRecognitionNet:()=>fue,createSsdMobilenetv1:()=>QE,createTinyFaceDetector:()=>Kue,createTinyYolov2:()=>_ue,detectAllFaces:()=>fg,detectFaceLandmarks:()=>hA,detectFaceLandmarksTiny:()=>Due,detectLandmarks:()=>Gue,detectSingleFace:()=>Hue,draw:()=>W0,env:()=>nt,euclideanDistance:()=>Z0,extendWithAge:()=>sg,extendWithFaceDescriptor:()=>rg,extendWithFaceDetection:()=>Si,extendWithFaceExpressions:()=>Jm,extendWithFaceLandmarks:()=>Yu,extendWithGender:()=>ag,extractFaceTensors:()=>ju,extractFaces:()=>Hu,fetchImage:()=>eue,fetchJson:()=>P0,fetchNetWeights:()=>tue,fetchOrThrow:()=>Ls,fetchVideo:()=>nue,getContext2dOrThrow:()=>Gn,getMediaDimensions:()=>Ci,imageTensorToCanvas:()=>F0,imageToSquare:()=>R0,inverseSigmoid:()=>qce,iou:()=>x0,isMediaElement:()=>Vm,isMediaLoaded:()=>ip,isWithAge:()=>mue,isWithFaceDetection:()=>gs,isWithFaceExpressions:()=>L0,isWithFaceLandmarks:()=>Ei,isWithGender:()=>gue,loadAgeGenderModel:()=>Wue,loadFaceDetectionModel:()=>Vue,loadFaceExpressionModel:()=>zue,loadFaceLandmarkModel:()=>Mue,loadFaceLandmarkTinyModel:()=>Lue,loadFaceRecognitionModel:()=>Bue,loadSsdMobilenetv1Model:()=>fA,loadTinyFaceDetectorModel:()=>Pue,loadTinyYolov2Model:()=>Oue,loadWeightMap:()=>O0,locateFaces:()=>Uue,matchDimensions:()=>rue,minBbox:()=>w0,nets:()=>rt,nonMaxSuppression:()=>k0,normalize:()=>Qr,padToSquare:()=>I0,predictAgeAndGender:()=>Rue,recognizeFaceExpressions:()=>Fue,resizeResults:()=>gA,resolveInput:()=>Ti,shuffleArray:()=>jce,sigmoid:()=>np,ssdMobilenetv1:()=>pA,tf:()=>Pe,tinyFaceDetector:()=>Eue,tinyYolov2:()=>Aue,toNetInput:()=>yt,utils:()=>v0,validateConfig:()=>q0,version:()=>Xue});var Pe={};Gp(Pe,{Abs:()=>Yi,Acos:()=>Zi,Acosh:()=>Ji,AdadeltaOptimizer:()=>kf,AdagradOptimizer:()=>If,AdamOptimizer:()=>Sf,AdamaxOptimizer:()=>Tf,Add:()=>Js,AddN:()=>Ba,All:()=>Qi,Any:()=>ec,ArgMax:()=>za,ArgMin:()=>Tl,Asin:()=>tc,Asinh:()=>nc,Atan:()=>rc,Atan2:()=>ac,Atanh:()=>sc,AvgPool:()=>Wa,AvgPool3D:()=>Cl,AvgPool3DGrad:()=>Qp,AvgPoolGrad:()=>Jp,BackendWasm:()=>SE,BatchMatMul:()=>Va,BatchToSpaceND:()=>oc,Bincount:()=>eh,BroadcastArgs:()=>th,BroadcastTo:()=>E1,Callback:()=>vT,CallbackList:()=>dS,Cast:()=>Ua,Ceil:()=>Ga,ClipByValue:()=>Qs,Complex:()=>nh,ComplexAbs:()=>Nl,Concat:()=>ic,Conv2D:()=>Ha,Conv2DBackpropFilter:()=>rh,Conv2DBackpropInput:()=>ja,Conv3D:()=>_l,Conv3DBackpropFilterV2:()=>sh,Conv3DBackpropInputV2:()=>ah,Cos:()=>qa,Cosh:()=>Ka,CropAndResize:()=>cc,Cumsum:()=>Xa,CustomCallback:()=>hS,DataStorage:()=>qp,DenseBincount:()=>oh,DepthToSpace:()=>uc,DepthwiseConv2dNative:()=>Ya,DepthwiseConv2dNativeBackpropFilter:()=>ih,DepthwiseConv2dNativeBackpropInput:()=>ch,Diag:()=>uh,Dilation2D:()=>El,Dilation2DBackpropFilter:()=>dh,Dilation2DBackpropInput:()=>lh,ENV:()=>Yb,EarlyStopping:()=>wT,Einsum:()=>ph,Elu:()=>Ja,EluGrad:()=>hh,Environment:()=>N1,Equal:()=>dc,Erf:()=>lc,Exp:()=>Qa,ExpandDims:()=>pc,Expm1:()=>hc,FFT:()=>fh,Fill:()=>Al,FlipLeftRight:()=>fc,Floor:()=>eo,FloorDiv:()=>to,FromPixels:()=>Dh,FusedBatchNorm:()=>no,FusedConv2D:()=>Mo,FusedDepthwiseConv2D:()=>Lo,GPGPUContext:()=>Sm,GatherNd:()=>gc,GatherV2:()=>mc,GraphModel:()=>QT,Greater:()=>bc,GreaterEqual:()=>ro,History:()=>pS,IFFT:()=>mh,Identity:()=>so,Imag:()=>gh,InputSpec:()=>Wt,IsFinite:()=>yc,IsInf:()=>vc,IsNan:()=>xc,KernelBackend:()=>kl,LRN:()=>Fl,LRNGrad:()=>yh,LayerVariable:()=>oS,LayersModel:()=>As,LeakyRelu:()=>ao,Less:()=>wc,LessEqual:()=>kc,LinSpace:()=>bh,Log:()=>oo,Log1p:()=>Ic,LogSoftmax:()=>A1,LogicalAnd:()=>Sc,LogicalNot:()=>Dl,LogicalOr:()=>$l,MathBackendWebGL:()=>Cm,Max:()=>io,MaxPool:()=>uo,MaxPool3D:()=>Rl,MaxPool3DGrad:()=>xh,MaxPoolGrad:()=>vh,MaxPoolWithArgmax:()=>wh,Maximum:()=>co,Mean:()=>lo,Min:()=>po,Minimum:()=>ho,MirrorPad:()=>fo,Mod:()=>Tc,MomentumOptimizer:()=>Cf,Multinomial:()=>kh,Multiply:()=>mo,Neg:()=>Cc,NonMaxSuppressionV3:()=>_c,NonMaxSuppressionV4:()=>Ec,NonMaxSuppressionV5:()=>Ac,NotEqual:()=>Nc,OP_SCOPE_SUFFIX:()=>H1,OneHot:()=>go,OnesLike:()=>Dc,Optimizer:()=>Ns,OptimizerConstructors:()=>fa,Pack:()=>$c,PadV2:()=>bo,Pool:()=>d$,Pow:()=>yo,Prelu:()=>vo,Prod:()=>Fc,RMSPropOptimizer:()=>Nf,RNN:()=>ps,Range:()=>Pl,Rank:()=>ry,Real:()=>Ih,RealDiv:()=>Za,Reciprocal:()=>Rc,Reduction:()=>kn,Relu:()=>xo,Relu6:()=>ko,Reshape:()=>Pc,ResizeBilinear:()=>wo,ResizeBilinearGrad:()=>Th,ResizeNearestNeighbor:()=>Ol,ResizeNearestNeighborGrad:()=>Sh,Reverse:()=>Io,RotateWithOffset:()=>Zc,Round:()=>So,Rsqrt:()=>To,SGDOptimizer:()=>md,ScatterNd:()=>Oc,Select:()=>Mc,Selu:()=>Lc,Sequential:()=>wu,Sigmoid:()=>No,Sign:()=>Wc,Sin:()=>Co,Sinh:()=>zc,Slice:()=>Bc,Softmax:()=>Ao,Softplus:()=>Vc,SpaceToBatchND:()=>Uc,SparseFillEmptyRows:()=>Ml,SparseReshape:()=>Hc,SparseSegmentMean:()=>Ll,SparseSegmentSum:()=>Bl,SparseToDense:()=>Ch,SplitV:()=>Gc,Sqrt:()=>_o,Square:()=>zl,SquaredDifference:()=>Do,Step:()=>ta,StridedSlice:()=>jc,StringNGrams:()=>Nh,StringSplit:()=>_h,StringToHashBucketFast:()=>Eh,Sub:()=>$o,Sum:()=>Eo,SymbolicTensor:()=>qr,Tan:()=>Fo,Tanh:()=>Ro,Tensor:()=>Ee,TensorBuffer:()=>Gt,Tile:()=>ea,TopK:()=>qc,Transform:()=>Kc,Transpose:()=>Po,Unique:()=>Ah,Unpack:()=>Xc,UnsortedSegmentSum:()=>Wl,Variable:()=>sa,ZerosLike:()=>Yc,_FusedMatMul:()=>Oo,abs:()=>zt,acos:()=>$y,acosh:()=>Fy,add:()=>Y,addN:()=>Ek,all:()=>Hh,any:()=>ed,argMax:()=>qo,argMin:()=>Ry,asin:()=>Py,asinh:()=>Oy,atan:()=>My,atan2:()=>Ly,atanh:()=>By,avgPool:()=>pr,avgPool3d:()=>Vy,backend:()=>_k,backend_util:()=>_,basicLSTMCell:()=>rP,batchNorm:()=>Ss,batchNorm2d:()=>Fk,batchNorm3d:()=>Rk,batchNorm4d:()=>Pk,batchToSpaceND:()=>nd,bincount:()=>Uy,booleanMaskAsync:()=>cM,broadcastArgs:()=>Ok,broadcastTo:()=>ou,broadcast_util:()=>su,browser:()=>Go,buffer:()=>ze,callbacks:()=>RG,cast:()=>ce,ceil:()=>Gy,clipByValue:()=>Qt,clone:()=>Is,complex:()=>aa,concat:()=>tt,concat1d:()=>Mk,concat2d:()=>Lk,concat3d:()=>Bk,concat4d:()=>zk,constraints:()=>BI,conv1d:()=>qh,conv2d:()=>Pt,conv2dTranspose:()=>Kh,conv3d:()=>jy,conv3dTranspose:()=>Vk,copyRegisteredKernels:()=>m$,cos:()=>rd,cosh:()=>Xh,cosineWindow:()=>yv,cumsum:()=>Yh,customGrad:()=>ss,data:()=>eC,denseBincount:()=>Uk,deprecationWarn:()=>Dy,depthToSpace:()=>qy,depthwiseConv2d:()=>la,deregisterOp:()=>MG,device_util:()=>Zl,diag:()=>FP,dilation2d:()=>Ky,disableDeprecationWarnings:()=>mR,dispose:()=>$e,disposeVariables:()=>gR,div:()=>me,divNoNan:()=>Xy,dot:()=>Gk,dropout:()=>dI,einsum:()=>Hk,elu:()=>iu,enableDebugMode:()=>fR,enableProdMode:()=>hR,enclosingPowerOfTwo:()=>pI,engine:()=>ns,env:()=>J,equal:()=>Yn,erf:()=>Yy,exp:()=>mn,expandDims:()=>gn,expm1:()=>Zy,eye:()=>Jy,fft:()=>pd,fill:()=>wn,findBackend:()=>IR,findBackendFactory:()=>SR,floor:()=>cu,floorDiv:()=>Gh,forceHalfFloat:()=>_N,fused:()=>ha,gather:()=>Yo,gatherND:()=>lI,gather_util:()=>Iy,getBackend:()=>wR,getGradient:()=>Qb,getKernel:()=>$h,getKernelsForBackend:()=>Fh,getThreadsCount:()=>Fce,gpgpu_util:()=>nN,grad:()=>cO,grads:()=>uO,greater:()=>Mn,greaterEqual:()=>da,ifft:()=>hu,imag:()=>Zh,image:()=>tr,inTopKAsync:()=>vM,initializers:()=>jI,input:()=>OS,io:()=>Zt,irfft:()=>pf,isFinite:()=>jk,isInf:()=>qk,isNaN:()=>Qy,keep:()=>Jt,kernel_impls:()=>is,layers:()=>rS,leakyRelu:()=>sd,less:()=>Jh,lessEqual:()=>pa,linalg:()=>SI,linspace:()=>Kk,loadGraphModel:()=>zH,loadLayersModel:()=>GV,localResponseNormalization:()=>ev,log:()=>Zn,log1p:()=>ad,logSigmoid:()=>Yk,logSoftmax:()=>ef,logSumExp:()=>rv,logicalAnd:()=>Nr,logicalNot:()=>od,logicalOr:()=>tf,logicalXor:()=>eI,losses:()=>tB,matMul:()=>De,math:()=>uk,max:()=>Cr,maxPool:()=>Ot,maxPool3d:()=>sv,maxPoolWithArgmax:()=>tI,maximum:()=>as,mean:()=>At,memory:()=>Vh,meshgrid:()=>DO,metrics:()=>gT,min:()=>id,minimum:()=>uu,mirrorPad:()=>av,mod:()=>ov,model:()=>VV,models:()=>bT,moments:()=>nf,movingAverage:()=>dM,mul:()=>V,multiRNNCell:()=>BO,multinomial:()=>nI,neg:()=>St,nextFrame:()=>TI,norm:()=>gf,notEqual:()=>Qo,oneHot:()=>ru,ones:()=>Jn,onesLike:()=>Qn,op:()=>W,outerProduct:()=>GO,pad:()=>fr,pad1d:()=>qO,pad2d:()=>XO,pad3d:()=>ZO,pad4d:()=>QO,pool:()=>rI,pow:()=>Ts,prelu:()=>ud,print:()=>rk,prod:()=>rf,profile:()=>bR,rand:()=>c3,randomGamma:()=>p3,randomNormal:()=>sI,randomUniform:()=>lu,range:()=>du,ready:()=>xR,real:()=>ld,reciprocal:()=>uv,registerBackend:()=>Uh,registerCallbackConstructor:()=>HV,registerGradient:()=>D1,registerKernel:()=>Ul,registerOp:()=>OG,regularizers:()=>yT,relu:()=>Ke,relu6:()=>sf,removeBackend:()=>kR,reshape:()=>U,reverse:()=>er,reverse1d:()=>w3,reverse2d:()=>I3,reverse3d:()=>T3,reverse4d:()=>N3,rfft:()=>hd,round:()=>af,rsqrt:()=>of,scalar:()=>Ie,scatterND:()=>uI,scatter_util:()=>Sy,selu:()=>cf,separableConv2d:()=>ei,sequential:()=>UV,serialization:()=>ie,setBackend:()=>vR,setPlatform:()=>TR,setThreadsCount:()=>$ce,setWasmPath:()=>Ace,setWasmPaths:()=>Dce,setWebGLContext:()=>C2,setdiff1dAsync:()=>aI,sigmoid:()=>hr,sign:()=>lv,signal:()=>eB,sin:()=>uf,sinh:()=>lf,slice:()=>We,slice1d:()=>df,slice2d:()=>dv,slice3d:()=>pu,slice4d:()=>dd,slice_util:()=>Ht,softmax:()=>zr,softplus:()=>Zo,spaceToBatchND:()=>cd,sparse:()=>fd,sparseToDense:()=>bv,spectral:()=>QL,split:()=>Ln,sqrt:()=>on,square:()=>ut,squaredDifference:()=>hf,squeeze:()=>os,stack:()=>Mt,step:()=>fu,stridedSlice:()=>pv,string:()=>wf,sub:()=>fe,sum:()=>xe,sumOutType:()=>Lh,tan:()=>hv,tanh:()=>Xo,tensor:()=>Xn,tensor1d:()=>je,tensor2d:()=>Wr,tensor3d:()=>Wh,tensor4d:()=>Vr,tensor5d:()=>Q3,tensor6d:()=>eM,tensor_util:()=>Lr,test_util:()=>Tk,tidy:()=>M,tile:()=>On,time:()=>yR,topk:()=>fv,train:()=>ti,transpose:()=>Re,truncatedNormal:()=>ff,unique:()=>mf,unregisterGradient:()=>f$,unregisterKernel:()=>h$,unsortedSegmentSum:()=>mv,unstack:()=>ft,upcastType:()=>Tr,util:()=>k,valueAndGrad:()=>lO,valueAndGrads:()=>dO,variable:()=>oI,variableGrads:()=>Xk,version:()=>Gce,version_converter:()=>WH,version_core:()=>pR,version_layers:()=>Qv,version_wasm:()=>Rce,version_webgl:()=>X9,webgl:()=>Y9,webgl_util:()=>T2,where:()=>fn,whereAsync:()=>gv,zeros:()=>Tt,zerosLike:()=>He});var mD=Object.create,Hp=Object.defineProperty,gD=Object.getOwnPropertyDescriptor,d1=Object.getOwnPropertyNames,bD=Object.getPrototypeOf,yD=Object.prototype.hasOwnProperty,vD=e=>Hp(e,"__esModule",{value:!0}),pt=(e,t)=>function(){return t||(0,e[d1(e)[0]])((t={exports:{}}).exports,t),t.exports},Ae=(e,t)=>{for(var n in t)Hp(e,n,{get:t[n],enumerable:!0})},xD=(e,t,n,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of d1(t))!yD.call(e,s)&&(n||s!=="default")&&Hp(e,s,{get:()=>t[s],enumerable:!(r=gD(t,s))||r.enumerable});return e},Oa=(e,t)=>xD(vD(Hp(e!=null?mD(bD(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),wD=pt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=r;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function r(R,C,L){this.low=R|0,this.high=C|0,this.unsigned=!!L}r.prototype.__isLong__,Object.defineProperty(r.prototype,"__isLong__",{value:!0});function s(R){return(R&&R.__isLong__)===!0}r.isLong=s;var a={},o={};function i(R,C){var L,G,j;return C?(R>>>=0,(j=0<=R&&R<256)&&(G=o[R],G)?G:(L=l(R,(R|0)<0?-1:0,!0),j&&(o[R]=L),L)):(R|=0,(j=-128<=R&&R<128)&&(G=a[R],G)?G:(L=l(R,R<0?-1:0,!1),j&&(a[R]=L),L))}r.fromInt=i;function c(R,C){if(isNaN(R))return C?x:v;if(C){if(R<0)return x;if(R>=g)return D}else{if(R<=-b)return P;if(R+1>=b)return $}return R<0?c(-R,C).neg():l(R%m|0,R/m|0,C)}r.fromNumber=c;function l(R,C,L){return new r(R,C,L)}r.fromBits=l;var u=Math.pow;function d(R,C,L){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return v;if(typeof C=="number"?(L=C,C=!1):C=!!C,L=L||10,L<2||36<L)throw RangeError("radix");var G;if((G=R.indexOf("-"))>0)throw Error("interior hyphen");if(G===0)return d(R.substring(1),C,L).neg();for(var j=c(u(L,8)),K=v,q=0;q<R.length;q+=8){var Z=Math.min(8,R.length-q),te=parseInt(R.substring(q,q+Z),L);if(Z<8){var se=c(u(L,Z));K=K.mul(se).add(c(te))}else K=K.mul(j),K=K.add(c(te))}return K.unsigned=C,K}r.fromString=d;function p(R,C){return typeof R=="number"?c(R,C):typeof R=="string"?d(R,C):l(R.low,R.high,typeof C=="boolean"?C:R.unsigned)}r.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,b=g/2,y=i(f),v=i(0);r.ZERO=v;var x=i(0,!0);r.UZERO=x;var w=i(1);r.ONE=w;var T=i(1,!0);r.UONE=T;var N=i(-1);r.NEG_ONE=N;var $=l(4294967295|0,2147483647|0,!1);r.MAX_VALUE=$;var D=l(4294967295|0,4294967295|0,!0);r.MAX_UNSIGNED_VALUE=D;var P=l(0,2147483648|0,!1);r.MIN_VALUE=P;var F=r.prototype;F.toInt=function(){return this.unsigned?this.low>>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},F.toString=function(C){if(C=C||10,C<2||36<C)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var L=c(C),G=this.div(L),j=G.mul(L).sub(this);return G.toString(C)+j.toInt().toString(C)}else return"-"+this.neg().toString(C);for(var K=c(u(C,6),this.unsigned),q=this,Z="";;){var te=q.div(K),se=q.sub(te.mul(K)).toInt()>>>0,oe=se.toString(C);if(q=te,q.isZero())return oe+Z;for(;oe.length<6;)oe="0"+oe;Z=""+oe+Z}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var C=this.high!=0?this.high:this.low,L=31;L>0&&(C&1<<L)==0;L--);return this.high!=0?L+33:L+1},F.isZero=function(){return this.high===0&&this.low===0},F.eqz=F.isZero,F.isNegative=function(){return!this.unsigned&&this.high<0},F.isPositive=function(){return this.unsigned||this.high>=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(C){return s(C)||(C=p(C)),this.unsigned!==C.unsigned&&this.high>>>31===1&&C.high>>>31===1?!1:this.high===C.high&&this.low===C.low},F.eq=F.equals,F.notEquals=function(C){return!this.eq(C)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(C){return this.comp(C)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(C){return this.comp(C)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(C){return this.comp(C)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(C){return this.comp(C)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(C){if(s(C)||(C=p(C)),this.eq(C))return 0;var L=this.isNegative(),G=C.isNegative();return L&&!G?-1:!L&&G?1:this.unsigned?C.high>>>0>this.high>>>0||C.high===this.high&&C.low>>>0>this.low>>>0?-1:1:this.sub(C).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(w)},F.neg=F.negate,F.add=function(C){s(C)||(C=p(C));var L=this.high>>>16,G=this.high&65535,j=this.low>>>16,K=this.low&65535,q=C.high>>>16,Z=C.high&65535,te=C.low>>>16,se=C.low&65535,oe=0,re=0,ue=0,ne=0;return ne+=K+se,ue+=ne>>>16,ne&=65535,ue+=j+te,re+=ue>>>16,ue&=65535,re+=G+Z,oe+=re>>>16,re&=65535,oe+=L+q,oe&=65535,l(ue<<16|ne,oe<<16|re,this.unsigned)},F.subtract=function(C){return s(C)||(C=p(C)),this.add(C.neg())},F.sub=F.subtract,F.multiply=function(C){if(this.isZero())return v;if(s(C)||(C=p(C)),n){var L=n.mul(this.low,this.high,C.low,C.high);return l(L,n.get_high(),this.unsigned)}if(C.isZero())return v;if(this.eq(P))return C.isOdd()?P:v;if(C.eq(P))return this.isOdd()?P:v;if(this.isNegative())return C.isNegative()?this.neg().mul(C.neg()):this.neg().mul(C).neg();if(C.isNegative())return this.mul(C.neg()).neg();if(this.lt(y)&&C.lt(y))return c(this.toNumber()*C.toNumber(),this.unsigned);var G=this.high>>>16,j=this.high&65535,K=this.low>>>16,q=this.low&65535,Z=C.high>>>16,te=C.high&65535,se=C.low>>>16,oe=C.low&65535,re=0,ue=0,ne=0,he=0;return he+=q*oe,ne+=he>>>16,he&=65535,ne+=K*oe,ue+=ne>>>16,ne&=65535,ne+=q*se,ue+=ne>>>16,ne&=65535,ue+=j*oe,re+=ue>>>16,ue&=65535,ue+=K*se,re+=ue>>>16,ue&=65535,ue+=q*te,re+=ue>>>16,ue&=65535,re+=G*oe+j*se+K*te+q*Z,re&=65535,l(ne<<16|he,re<<16|ue,this.unsigned)},F.mul=F.multiply,F.divide=function(C){if(s(C)||(C=p(C)),C.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&C.low===-1&&C.high===-1)return this;var L=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,C.low,C.high);return l(L,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:v;var G,j,K;if(this.unsigned){if(C.unsigned||(C=C.toUnsigned()),C.gt(this))return x;if(C.gt(this.shru(1)))return T;K=x}else{if(this.eq(P)){if(C.eq(w)||C.eq(N))return P;if(C.eq(P))return w;var q=this.shr(1);return G=q.div(C).shl(1),G.eq(v)?C.isNegative()?w:N:(j=this.sub(C.mul(G)),K=G.add(j.div(C)),K)}else if(C.eq(P))return this.unsigned?x:v;if(this.isNegative())return C.isNegative()?this.neg().div(C.neg()):this.neg().div(C).neg();if(C.isNegative())return this.div(C.neg()).neg();K=v}for(j=this;j.gte(C);){G=Math.max(1,Math.floor(j.toNumber()/C.toNumber()));for(var Z=Math.ceil(Math.log(G)/Math.LN2),te=Z<=48?1:u(2,Z-48),se=c(G),oe=se.mul(C);oe.isNegative()||oe.gt(j);)G-=te,se=c(G,this.unsigned),oe=se.mul(C);se.isZero()&&(se=w),K=K.add(se),j=j.sub(oe)}return K},F.div=F.divide,F.modulo=function(C){if(s(C)||(C=p(C)),n){var L=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,C.low,C.high);return l(L,n.get_high(),this.unsigned)}return this.sub(this.div(C).mul(C))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return l(~this.low,~this.high,this.unsigned)},F.and=function(C){return s(C)||(C=p(C)),l(this.low&C.low,this.high&C.high,this.unsigned)},F.or=function(C){return s(C)||(C=p(C)),l(this.low|C.low,this.high|C.high,this.unsigned)},F.xor=function(C){return s(C)||(C=p(C)),l(this.low^C.low,this.high^C.high,this.unsigned)},F.shiftLeft=function(C){return s(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?l(this.low<<C,this.high<<C|this.low>>>32-C,this.unsigned):l(0,this.low<<C-32,this.unsigned)},F.shl=F.shiftLeft,F.shiftRight=function(C){return s(C)&&(C=C.toInt()),(C&=63)===0?this:C<32?l(this.low>>>C|this.high<<32-C,this.high>>C,this.unsigned):l(this.high>>C-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(C){if(s(C)&&(C=C.toInt()),C&=63,C===0)return this;var L=this.high;if(C<32){var G=this.low;return l(G>>>C|L<<32-C,L>>>C,this.unsigned)}else return C===32?l(L,0,this.unsigned):l(L>>>C-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?l(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:l(this.low,this.high,!0)},F.toBytes=function(C){return C?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var C=this.high,L=this.low;return[L&255,L>>>8&255,L>>>16&255,L>>>24,C&255,C>>>8&255,C>>>16&255,C>>>24]},F.toBytesBE=function(){var C=this.high,L=this.low;return[C>>>24,C>>>16&255,C>>>8&255,C&255,L>>>24,L>>>16&255,L>>>8&255,L&255]},r.fromBytes=function(C,L,G){return G?r.fromBytesLE(C,L):r.fromBytesBE(C,L)},r.fromBytesLE=function(C,L){return new r(C[0]|C[1]<<8|C[2]<<16|C[3]<<24,C[4]|C[5]<<8|C[6]<<16|C[7]<<24,L)},r.fromBytesBE=function(C,L){return new r(C[4]<<24|C[5]<<16|C[6]<<8|C[7],C[0]<<24|C[1]<<16|C[2]<<8|C[3],L)}}}),kD=pt({"(disabled):node_modules/.pnpm/node-fetch@2.6.6/node_modules/node-fetch/browser.js"(){}}),ID=pt({"(disabled):util"(){}}),SD=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(l){var u=this,d=c();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(l),u.s0<0&&(u.s0+=1),u.s1-=d(l),u.s1<0&&(u.s1+=1),u.s2-=d(l),u.s2<0&&(u.s2+=1),d=null}function o(l,u){return u.c=l.c,u.s0=l.s0,u.s1=l.s1,u.s2=l.s2,u}function i(l,u){var d=new a(l),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function c(){var l=4022871197,u=function(d){d=d.toString();for(var p=0;p<d.length;p++){l+=d.charCodeAt(p);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),TD=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var p=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^p^p>>>8},c===(c|0)?l.x=c:u+=c;for(var d=0;d<u.length+64;d++)l.x^=u.charCodeAt(d)|0,l.next()}function o(c,l){return l.x=c.x,l.y=c.y,l.z=c.z,l.w=c.w,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),CD=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(p^p<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,c===(c|0)?l.x=c:u+=c;for(var d=0;d<u.length+64;d++)l.x^=u.charCodeAt(d)|0,d==u.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function o(c,l){return l.x=c.x,l.y=c.y,l.z=c.z,l.w=c.w,l.v=c.v,l.d=c.d,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ND=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.x,p=l.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,l.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(l,c)}function o(c,l){return l.x=c.x.slice(),l.i=c.i,l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),_D=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.w,p=l.X,h=l.i,f,m;return l.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,l.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,b,y=[],v=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,v=Math.max(v,p.length)),m=0,g=-32;g<v;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=b,d.X=y,d.i=m}u(l,c)}function o(c,l){return l.i=c.i,l.w=c.w,l.X=c.X.slice(),l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ED=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.b,h=l.c,f=l.d,m=l.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,l.b=p=p<<20^p>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-p|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,c===Math.floor(c)?(l.a=c/4294967296|0,l.b=c|0):u+=c;for(var d=0;d<u.length+20;d++)l.b^=u.charCodeAt(d)|0,l.next()}function o(c,l){return l.a=c.a,l.b=c.b,l.c=c.c,l.d=c.d,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),p1=pt({"(disabled):crypto"(){}}),AD=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r){var s=this,a=256,o=6,i=52,c="random",l=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,T,N){var $=[];T=T==!0?{entropy:!0}:T||{};var D=y(b(T.entropy?[w,x(n)]:w==null?v():w,3),$),P=new m($),F=function(){for(var R=P.g(o),C=l,L=0;R<u;)R=(R+L)*a,C*=a,L=P.g(1);for(;R>=d;)R/=2,C/=2,L>>>=1;return(R+L)/C};return F.int32=function(){return P.g(4)|0},F.quick=function(){return P.g(4)/4294967296},F.double=F,y(x(P.S),n),(T.pass||N||function(R,C,L,G){return G&&(G.S&&g(G,P),R.state=function(){return g(P,{})}),L?(r[c]=R,C):R})(F,D,"global"in T?T.global:this==r,T.state)}r["seed"+c]=f;function m(w){var T,N=w.length,$=this,D=0,P=$.i=$.j=0,F=$.S=[];for(N||(w=[N++]);D<a;)F[D]=D++;for(D=0;D<a;D++)F[D]=F[P=p&P+w[D%N]+(T=F[D])],F[P]=T;($.g=function(R){for(var C,L=0,G=$.i,j=$.j,K=$.S;R--;)C=K[G=p&G+1],L=L*a+K[p&(K[G]=K[j=p&j+C])+(K[j]=C)];return $.i=G,$.j=j,L})(a)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function b(w,T){var N=[],$=typeof w,D;if(T&&$=="object")for(D in w)try{N.push(b(w[D],T-1))}catch(P){}return N.length?N:$=="string"?w:w+"\0"}function y(w,T){for(var N=w+"",$,D=0;D<N.length;)T[p&D]=p&($^=T[p&D]*19)+N.charCodeAt(D++);return x(T)}function v(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(s.crypto||s.msCrypto).getRandomValues(w)),x(w)}catch($){var T=s.navigator,N=T&&T.plugins;return[+new Date,s,N,s.screen,x(n)]}}function x(w){return String.fromCharCode.apply(0,w)}if(y(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=p1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),h1=pt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=SD(),r=TD(),s=CD(),a=ND(),o=_D(),i=ED(),c=AD();c.alea=n,c.xor128=r,c.xorwow=s,c.xorshift7=a,c.xor4096=o,c.tychei=i,t.exports=c}}),DD=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(l){var u=this,d=c();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(l),u.s0<0&&(u.s0+=1),u.s1-=d(l),u.s1<0&&(u.s1+=1),u.s2-=d(l),u.s2<0&&(u.s2+=1),d=null}function o(l,u){return u.c=l.c,u.s0=l.s0,u.s1=l.s1,u.s2=l.s2,u}function i(l,u){var d=new a(l),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function c(){var l=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){l+=d.charCodeAt(p);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$D=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var p=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^p^p>>>8},c===(c|0)?l.x=c:u+=c;for(var d=0;d<u.length+64;d++)l.x^=u.charCodeAt(d)|0,l.next()}function o(c,l){return l.x=c.x,l.y=c.y,l.z=c.z,l.w=c.w,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),FD=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(p^p<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,c===(c|0)?l.x=c:u+=c;for(var d=0;d<u.length+64;d++)l.x^=u.charCodeAt(d)|0,d==u.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function o(c,l){return l.x=c.x,l.y=c.y,l.z=c.z,l.w=c.w,l.v=c.v,l.d=c.d,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),RD=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.x,p=l.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,l.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(l,c)}function o(c,l){return l.x=c.x.slice(),l.i=c.i,l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),PD=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.w,p=l.X,h=l.i,f,m;return l.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,l.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,b,y=[],v=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,v=Math.max(v,p.length)),m=0,g=-32;g<v;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=b,d.X=y,d.i=m}u(l,c)}function o(c,l){return l.i=c.i,l.w=c.w,l.X=c.X.slice(),l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),OD=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.b,h=l.c,f=l.d,m=l.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,l.b=p=p<<20^p>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-p|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,c===Math.floor(c)?(l.a=c/4294967296|0,l.b=c|0):u+=c;for(var d=0;d<u.length+20;d++)l.b^=u.charCodeAt(d)|0,l.next()}function o(c,l){return l.a=c.a,l.b=c.b,l.c=c.c,l.d=c.d,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),MD=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r,s){var a=256,o=6,i=52,c="random",l=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(w,T,N){var $=[];T=T==!0?{entropy:!0}:T||{};var D=y(b(T.entropy?[w,x(r)]:w==null?v():w,3),$),P=new m($),F=function(){for(var R=P.g(o),C=l,L=0;R<u;)R=(R+L)*a,C*=a,L=P.g(1);for(;R>=d;)R/=2,C/=2,L>>>=1;return(R+L)/C};return F.int32=function(){return P.g(4)|0},F.quick=function(){return P.g(4)/4294967296},F.double=F,y(x(P.S),r),(T.pass||N||function(R,C,L,G){return G&&(G.S&&g(G,P),R.state=function(){return g(P,{})}),L?(s[c]=R,C):R})(F,D,"global"in T?T.global:this==s,T.state)}function m(w){var T,N=w.length,$=this,D=0,P=$.i=$.j=0,F=$.S=[];for(N||(w=[N++]);D<a;)F[D]=D++;for(D=0;D<a;D++)F[D]=F[P=p&P+w[D%N]+(T=F[D])],F[P]=T;($.g=function(R){for(var C,L=0,G=$.i,j=$.j,K=$.S;R--;)C=K[G=p&G+1],L=L*a+K[p&(K[G]=K[j=p&j+C])+(K[j]=C)];return $.i=G,$.j=j,L})(a)}function g(w,T){return T.i=w.i,T.j=w.j,T.S=w.S.slice(),T}function b(w,T){var N=[],$=typeof w,D;if(T&&$=="object")for(D in w)try{N.push(b(w[D],T-1))}catch(P){}return N.length?N:$=="string"?w:w+"\0"}function y(w,T){for(var N=w+"",$,D=0;D<N.length;)T[p&D]=p&($^=T[p&D]*19)+N.charCodeAt(D++);return x(T)}function v(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),x(w)}catch($){var T=n.navigator,N=T&&T.plugins;return[+new Date,n,N,n.screen,x(r)]}}function x(w){return String.fromCharCode.apply(0,w)}if(y(s.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{h=p1()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):s["seed"+c]=f})(typeof self!="undefined"?self:e,[],Math)}}),f1=pt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=DD(),r=$D(),s=FD(),a=RD(),o=PD(),i=OD(),c=MD();c.alea=n,c.xor128=r,c.xorwow=s,c.xorshift7=a,c.xor4096=o,c.tychei=i,t.exports=c}}),m1=pt({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),jp=pt({"(disabled):fs"(){}}),wl=pt({"(disabled):path"(){}}),LD=pt({"(disabled):worker_threads"(){}}),BD=pt({"(disabled):perf_hooks"(){}}),zD=pt({"(disabled):os"(){}}),WD=pt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.13.0_@tensorflow+tfjs-core@3.13.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};function a(){return ne.buffer!=Qe&&Fn(ne.buffer),jn}function o(){return ne.buffer!=Qe&&Fn(ne.buffer),sn}function i(){return ne.buffer!=Qe&&Fn(ne.buffer),qn}function c(){return ne.buffer!=Qe&&Fn(ne.buffer),ir}function l(){return ne.buffer!=Qe&&Fn(ne.buffer),cr}var u=typeof s!="undefined"?s:{},d,p;u.ready=new Promise(function(S,E){d=S,p=E});var h;typeof process!="undefined"&&process.listeners&&(h={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f={},m;for(m in u)u.hasOwnProperty(m)&&(f[m]=u[m]);var g=[],b="./this.program",y=function(S,E){throw E},v=!1,x=!1,w=!1,T=!1;v=typeof window=="object",x=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=!v&&!w&&!x;var N=u.ENVIRONMENT_IS_PTHREAD||!1;N&&(Qe=u.buffer);var $="";function D(S){return u.locateFile?u.locateFile(S,$):$+S}var P,F,R,C,L,G;if(w){x?$=wl().dirname($)+"/":$=__dirname+"/",P=function(E,B){return L||(L=jp()),G||(G=wl()),E=G.normalize(E),L.readFileSync(E,B?null:"utf8")},R=function(E){var B=P(E,!0);return B.buffer||(B=new Uint8Array(B)),Se(B.buffer),B},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),g=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof xl))throw S}),process.on("unhandledRejection",vs),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var j;try{j=LD()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=j.Worker}else T?(typeof read!="undefined"&&(P=function(E){return read(E)}),R=function(E){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(E)):(B=read(E,"binary"),Se(typeof B=="object"),B)},typeof scriptArgs!="undefined"?g=scriptArgs:typeof arguments!="undefined"&&(g=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(v||x)&&(x?$=self.location.href:typeof document!="undefined"&&document.currentScript&&($=document.currentScript.src),typeof r!="undefined"&&r&&($=r),$.indexOf("blob:")!==0?$=$.substr(0,$.lastIndexOf("/")+1):$="",w?(P=function(E,B){return L||(L=jp()),G||(G=wl()),E=G.normalize(E),L.readFileSync(E,B?null:"utf8")},R=function(E){var B=P(E,!0);return B.buffer||(B=new Uint8Array(B)),Se(B.buffer),B}):(P=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.send(null),E.responseText},x&&(R=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),F=function(S,E,B){var X=new XMLHttpRequest;X.open("GET",S,!0),X.responseType="arraybuffer",X.onload=function(){if(X.status==200||X.status==0&&X.response){E(X.response);return}B()},X.onerror=B,X.send(null)}),C=function(S){document.title=S});w&&typeof performance=="undefined"&&(global.performance=BD().performance);var K=u.print||console.log.bind(console),q=u.printErr||console.warn.bind(console);for(m in f)f.hasOwnProperty(m)&&(u[m]=f[m]);f=null,u.arguments&&(g=u.arguments),u.thisProgram&&(b=u.thisProgram),u.quit&&(y=u.quit);function Z(S){Z.shown||(Z.shown={}),Z.shown[S]||(Z.shown[S]=1,q(S))}var te=Atomics.load,se=Atomics.store,oe=Atomics.compareExchange,re;u.wasmBinary&&(re=u.wasmBinary);var ue=u.noExitRuntime||!0;typeof WebAssembly!="object"&&vs("no native wasm support detected");var ne,he,ye=!1,Ce;function Se(S,E){S||vs("Assertion failed: "+E)}function _e(S){var E=u["_"+S];return Se(E,"Cannot call unknown function "+S+", make sure it is exported"),E}function Le(S,E,B,X,pe){var le={string:function(bn){var ji=0;if(bn!=null&&bn!==0){var l1=(bn.length<<2)+1;ji=Ui(l1),Je(bn,ji,l1)}return ji},array:function(bn){var ji=Ui(bn.length);return kt(bn,ji),ji}};function de(bn){return E==="string"?Ue(bn):E==="boolean"?Boolean(bn):bn}var we=_e(S),at=[],Xt=0;if(X)for(var Ut=0;Ut<X.length;Ut++){var Ks=le[B[Ut]];Ks?(Xt===0&&(Xt=vl()),at[Ut]=Ks(X[Ut])):at[Ut]=X[Ut]}var Hi=we.apply(null,at);return Hi=de(Hi),Xt!==0&&Vi(Xt),Hi}function Ze(S,E,B,X){B=B||[];var pe=B.every(function(de){return de==="number"}),le=E!=="string";return le&&pe&&!X?_e(S):function(){return Le(S,E,B,arguments,X)}}function Ve(S,E,B){for(var X=E+B,pe="";!(E>=X);){var le=S[E++];if(!le)return pe;if(!(le&128)){pe+=String.fromCharCode(le);continue}var de=S[E++]&63;if((le&224)==192){pe+=String.fromCharCode((le&31)<<6|de);continue}var we=S[E++]&63;if((le&240)==224?le=(le&15)<<12|de<<6|we:le=(le&7)<<18|de<<12|we<<6|S[E++]&63,le<65536)pe+=String.fromCharCode(le);else{var at=le-65536;pe+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return pe}function Ue(S,E){return S?Ve(o(),S,E):""}function ct(S,E,B,X){if(!(X>0))return 0;for(var pe=B,le=B+X-1,de=0;de<S.length;++de){var we=S.charCodeAt(de);if(we>=55296&&we<=57343){var at=S.charCodeAt(++de);we=65536+((we&1023)<<10)|at&1023}if(we<=127){if(B>=le)break;E[B++]=we}else if(we<=2047){if(B+1>=le)break;E[B++]=192|we>>6,E[B++]=128|we&63}else if(we<=65535){if(B+2>=le)break;E[B++]=224|we>>12,E[B++]=128|we>>6&63,E[B++]=128|we&63}else{if(B+3>=le)break;E[B++]=240|we>>18,E[B++]=128|we>>12&63,E[B++]=128|we>>6&63,E[B++]=128|we&63}}return E[B]=0,B-pe}function Je(S,E,B){return ct(S,o(),E,B)}function dt(S){for(var E=0,B=0;B<S.length;++B){var X=S.charCodeAt(B);X>=55296&&X<=57343&&(X=65536+((X&1023)<<10)|S.charCodeAt(++B)&1023),X<=127?++E:X<=2047?E+=2:X<=65535?E+=3:E+=4}return E}function kt(S,E){a().set(S,E)}function Dn(S,E){return S%E>0&&(S+=E-S%E),S}var Qe,jn,sn,wr,$n,qn,ir,kr,cr;function Fn(S){Qe=S,u.HEAP8=jn=new Int8Array(S),u.HEAP16=wr=new Int16Array(S),u.HEAP32=qn=new Int32Array(S),u.HEAPU8=sn=new Uint8Array(S),u.HEAPU16=$n=new Uint16Array(S),u.HEAPU32=ir=new Uint32Array(S),u.HEAPF32=kr=new Float32Array(S),u.HEAPF64=cr=new Float64Array(S)}var Ws=u.INITIAL_MEMORY||16777216;if(N)ne=u.wasmMemory,Qe=u.buffer;else if(u.wasmMemory)ne=u.wasmMemory;else if(ne=new WebAssembly.Memory({initial:Ws/65536,maximum:2147483648/65536,shared:!0}),!(ne.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ne&&(Qe=ne.buffer),Ws=Qe.byteLength,Fn(Qe);var pn,Vs=[],ur=[],cl=[],ul=[],ys=[],gp=!1,gg=!1;N||ur.push({func:function(){Rp()}});function bp(){if(!N){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)bg(u.preRun.shift());Mi(Vs)}}function yp(){gp=!0,!N&&Mi(ur)}function vp(){N||Mi(cl)}function Rn(){N||(gg=!0)}function xp(){if(!N){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)yg(u.postRun.shift());Mi(ys)}}function bg(S){Vs.unshift(S)}function yg(S){ys.unshift(S)}var Ir=0,ll=null,$a=null;function vg(S){Se(!N,"addRunDependency cannot be used in a pthread worker"),Ir++,u.monitorRunDependencies&&u.monitorRunDependencies(Ir)}function xg(S){if(Ir--,u.monitorRunDependencies&&u.monitorRunDependencies(Ir),Ir==0&&(ll!==null&&(clearInterval(ll),ll=null),$a)){var E=$a;$a=null,E()}}u.preloadedImages={},u.preloadedAudios={};function vs(S){u.onAbort&&u.onAbort(S),N&&console.error("Pthread aborting at "+new Error().stack),S+="",q(S),ye=!0,Ce=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var E=new WebAssembly.RuntimeError(S);throw p(E),E}function Fa(S,E){return String.prototype.startsWith?S.startsWith(E):S.indexOf(E)===0}var wg="data:application/octet-stream;base64,";function wp(S){return Fa(S,wg)}var kg="file://";function kp(S){return Fa(S,kg)}var Pn="tfjs-backend-wasm-threaded-simd.wasm";wp(Pn)||(Pn=D(Pn));function Ip(S){try{if(S==Pn&&re)return new Uint8Array(re);if(R)return R(S);throw"both async and sync fetching of the wasm failed"}catch(E){vs(E)}}function Ig(){if(!re&&(v||x)){if(typeof fetch=="function"&&!kp(Pn))return fetch(Pn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+Pn+"'";return S.arrayBuffer()}).catch(function(){return Ip(Pn)});if(F)return new Promise(function(S,E){F(Pn,function(B){S(new Uint8Array(B))},E)})}return Promise.resolve().then(function(){return Ip(Pn)})}function Sg(){var S={a:gb};function E(de,we){var at=de.exports;if(u.asm=at,pn=u.asm.I,he=we,!N){var Xt=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(Ut){Te.loadWasmModuleToWorker(Ut,function(){--Xt||xg("wasm-instantiate")})})}}N||vg("wasm-instantiate");function B(de){E(de.instance,de.module)}function X(de){return Ig().then(function(we){return WebAssembly.instantiate(we,S)}).then(de,function(we){q("failed to asynchronously prepare wasm: "+we),vs(we)})}function pe(){return!re&&typeof WebAssembly.instantiateStreaming=="function"&&!wp(Pn)&&!kp(Pn)&&typeof fetch=="function"?fetch(Pn,{credentials:"same-origin"}).then(function(de){var we=WebAssembly.instantiateStreaming(de,S);return we.then(B,function(at){return q("wasm streaming compile failed: "+at),q("falling back to ArrayBuffer instantiation"),X(B)})}):X(B)}if(u.instantiateWasm)try{var le=u.instantiateWasm(S,E);return le}catch(de){return q("Module.instantiateWasm callback failed with error: "+de),!1}return pe().catch(p),{}}var Tg={10664:function(){throw"Canceled!"},10682:function(S,E){setTimeout(function(){s1(S,E)},0)}};function Sp(){Te.initRuntime()}function Mi(S){for(;S.length>0;){var E=S.shift();if(typeof E=="function"){E(u);continue}var B=E.func;typeof B=="number"?E.arg===void 0?pn.get(B)():pn.get(B)(E.arg):B(E.arg===void 0?null:E.arg)}}var Us={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function dl(S,E){if(S<=0||S>a().length||S&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=1/0);var B=Atomics.load(i(),Gi>>2),X=0;if(B==S){var pe=Atomics.compareExchange(i(),Gi>>2,B,0);if(pe==B&&(--E,X=1,E<=0))return 1}var le=Atomics.notify(i(),S>>2,E);if(le>=0)return le+X;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=dl;function Cg(S){if(N)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var E=Te.pthreads[S];E.worker.terminate(),Te.freeThreadData(E),Te.runningWorkers.splice(Te.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function Ng(S){if(N)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var E=Te.pthreads[S];E.worker.postMessage({cmd:"cancel"})}function Tp(S){if(N)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var E=Te.pthreads[S];if(E){i()[S+12>>2]=0;var B=E.worker;Te.returnWorkerToPool(B)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=8,E=0;E<S;++E)Te.allocateUnusedWorker()},initRuntime:function(){for(var S=Pa(228),E=0;E<228/4;++E)c()[S/4+E]=0;i()[S+12>>2]=S;var B=S+152;i()[B>>2]=B;for(var X=Pa(512),E=0;E<128;++E)c()[X/4+E]=0;Atomics.store(c(),S+100>>2,X),Atomics.store(c(),S+40>>2,S),Ub(S,!x,1),n1(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();N&&qs()&&t1()},runExitHandlersAndDeinitThread:function(S,E){Atomics.store(c(),S+56>>2,1),Atomics.store(c(),S+60>>2,0),Te.runExitHandlers(),Atomics.store(c(),S+4>>2,E),Atomics.store(c(),S+0>>2,1),dl(S+0,2147483647),Ub(0,0,0)},threadExit:function(S){var E=qs();E&&(Te.runExitHandlersAndDeinitThread(E,S),N&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlersAndDeinitThread(qs(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in Te.pthreads){var E=Te.pthreads[S];E&&E.worker&&Te.returnWorkerToPool(E.worker)}Te.pthreads={};for(var B=0;B<Te.unusedWorkers.length;++B){var X=Te.unusedWorkers[B];X.terminate()}Te.unusedWorkers=[];for(var B=0;B<Te.runningWorkers.length;++B){var X=Te.runningWorkers[B],E=X.pthread;Te.freeThreadData(E),X.terminate()}Te.runningWorkers=[]},freeThreadData:function(S){if(!!S){if(S.threadInfoStruct){var E=i()[S.threadInfoStruct+100>>2];i()[S.threadInfoStruct+100>>2]=0,yl(E),yl(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&yl(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[S.pthread.threadInfoStruct],Te.unusedWorkers.push(S),Te.runningWorkers.splice(Te.runningWorkers.indexOf(S),1),Te.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[u1>>2]=0;try{S()}finally{i()[u1>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,E){S.onmessage=function(B){var X=B.data,pe=X.cmd;if(S.pthread&&(Te.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),X.targetThread&&X.targetThread!=qs()){var le=Te.pthreads[X.targetThread];le?le.worker.postMessage(B.data,X.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+X.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")zp();else if(pe==="spawnThread")$p(B.data);else if(pe==="cleanupThread")Tp(X.thread);else if(pe==="killThread")Cg(X.thread);else if(pe==="cancelThread")Ng(X.thread);else if(pe==="loaded")S.loaded=!0,E&&E(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(pe==="print")K("Thread "+X.threadId+": "+X.text);else if(pe==="printErr")q("Thread "+X.threadId+": "+X.text);else if(pe==="alert")alert("Thread "+X.threadId+": "+X.text);else if(pe==="exit"){var de=S.pthread&&Atomics.load(c(),S.pthread.threadInfoStruct+64>>2);de&&Te.returnWorkerToPool(S)}else if(pe==="exitProcess")try{oD(X.returnCode)}catch(we){if(we instanceof xl)return;throw we}else pe==="cancelDone"?Te.returnWorkerToPool(S):pe==="objectTransfer"?Te.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?S.postMessage(B.data):q("worker sent an unknown command "+pe);Te.currentProxiedOperationCallerThread=void 0},S.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},w&&(S.on("message",function(B){S.onmessage({data:B})}),S.on("error",function(B){S.onerror(B)}),S.on("exit",function(B){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:ne,wasmModule:he})},allocateUnusedWorker:function(){var S=D("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(S){for(var E=performance.now()+S;performance.now()<E;);}};function _g(S,E){i1(S,E),Vi(S)}u.establishStackSpace=_g;function Eg(){return ue}u.getNoExitRuntime=Eg;function Ag(S,E){return pn.get(S)(E)}u.invokeEntryPoint=Ag;function Dg(S,E,B,X){vs("Assertion failed: "+Ue(S)+", at: "+[E?Ue(E):"unknown filename",B,X?Ue(X):"unknown function"])}function $g(S,E){var B=_main(S,E)}var Ra;w?Ra=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:N?Ra=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ra=dateNow:Ra=function(){return performance.now()};function Fg(S){return i()[Q0()>>2]=S,S}function Rg(S,E){if(N)return Gs(1,1,S,E)}function Pg(S,E){if(S==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(N)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var B=Te.pthreads[S],X=B&&B.worker;if(!X)return;X.postMessage({cmd:"processThreadQueue"})}return 1}function Og(){vs()}function Mg(S,E,B){var X=Wg(E,B);return Tg[S].apply(null,X)}function Lg(S,E){}function Cp(S,E,B){if(S<=0||S>a().length||S&!0)return-28;if(v){if(Atomics.load(i(),S>>2)!=E)return-6;for(var pe=performance.now(),le=pe+B,de=Atomics.exchange(i(),Gi>>2,S);;){if(pe=performance.now(),pe>le)return de=Atomics.exchange(i(),Gi>>2,0),-73;if(de=Atomics.exchange(i(),Gi>>2,0),de==0)break;if(zp(),Atomics.load(i(),S>>2)!=E)return-6;de=Atomics.exchange(i(),Gi>>2,S)}return 0}else{var X=Atomics.wait(i(),S>>2,E,B);if(X==="timed-out")return-73;if(X==="not-equal")return-6;if(X==="ok")return 0;throw"Atomics.wait returned an unexpected value "+X}}function Bg(S,E,B){o().copyWithin(S,E,E+B)}function zg(){return w?zD().cpus().length:navigator.hardwareConcurrency}function Gs(S,E){for(var B=arguments.length-2,X=vl(),pe=B,le=Ui(pe*8),de=le>>3,we=0;we<B;we++){var at=arguments[2+we];l()[de+we]=at}var Xt=o1(S,pe,le,E);return Vi(X),Xt}var pl=[],hl=[];function Wg(S,E){hl.length=0;var B;for(E>>=2;B=o()[S++];){var X=B<105;X&&E&1&&E++,hl.push(X?l()[E++>>1]:i()[E]),++E}return hl}function Vg(S,E,B){pl.length=E;for(var X=B>>3,pe=0;pe<E;pe++)pl[pe]=l()[X+pe];var le=S<0,de=le?Tg[-S-1]:mb[S];return de.apply(null,pl)}function Ug(){return o().length}function Gg(S){try{return ne.grow(S-Qe.byteLength+65535>>>16),Fn(ne.buffer),1}catch(E){}}function Hg(S){var E=Ug();if(S<=E)return!1;var B=2147483648;if(S>B)return!1;for(var X=1;X<=4;X*=2){var pe=E*(1+.2/X);pe=Math.min(pe,S+100663296);var le=Math.min(B,Dn(Math.max(S,pe),65536)),de=Gg(le);if(de)return!0}return!1}var Be={inEventHandler:0,removeAllEventListeners:function(){for(var S=Be.eventHandlers.length-1;S>=0;--S)Be._removeHandler(S);Be.eventHandlers=[],Be.deferredCalls=[]},registerRemoveEventListeners:function(){Be.removeEventListenersRegistered||(ul.push(Be.removeAllEventListeners),Be.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,E,B){function X(de,we){if(de.length!=we.length)return!1;for(var at in de)if(de[at]!=we[at])return!1;return!0}for(var pe in Be.deferredCalls){var le=Be.deferredCalls[pe];if(le.targetFunction==S&&X(le.argsList,B))return}Be.deferredCalls.push({targetFunction:S,precedence:E,argsList:B}),Be.deferredCalls.sort(function(de,we){return de.precedence<we.precedence})},removeDeferredCalls:function(S){for(var E=0;E<Be.deferredCalls.length;++E)Be.deferredCalls[E].targetFunction==S&&(Be.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Be.inEventHandler&&Be.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Be.canPerformEventHandlerRequests())for(var S=0;S<Be.deferredCalls.length;++S){var E=Be.deferredCalls[S];Be.deferredCalls.splice(S,1),--S,E.targetFunction.apply(null,E.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,E){for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==S&&(!E||E==Be.eventHandlers[B].eventTypeString)&&Be._removeHandler(B--)},_removeHandler:function(S){var E=Be.eventHandlers[S];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Be.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var E=function(pe){++Be.inEventHandler,Be.currentEventHandler=S,Be.runDeferredCalls(),S.handlerFunc(pe),Be.runDeferredCalls(),--Be.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=E,S.target.addEventListener(S.eventTypeString,E,S.useCapture),Be.eventHandlers.push(S),Be.registerRemoveEventListeners();else for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==S.target&&Be.eventHandlers[B].eventTypeString==S.eventTypeString&&Be._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(S,E,B,X,pe){var le=vl(),de=Ui(12);i()[de>>2]=B,i()[de+4>>2]=X,i()[de+8>>2]=pe,Vb(0,S,637534208,E,X,de),Vi(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function jg(S){var E=dt(S)+1,B=Pa(E);return Je(S,B,E),B}function qg(S,E,B,X){var pe=vl(),le=Ui(12),de=0;E&&(de=jg(E)),i()[le>>2]=de,i()[le+4>>2]=B,i()[le+8>>2]=X,Vb(0,S,657457152,0,de,le),Vi(pe)}function Kg(S,E,B,X){E=E?Ue(E):"",qg(S,E,B,X)}function Xg(S){return S>2?Ue(S):S}var Yg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Zg(S){S=Xg(S);var E=Yg[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return E}function fl(S){return Zg(S)}function Np(S,E,B){var X=fl(S);if(!X)return-4;if(X.canvasSharedPtr&&(i()[X.canvasSharedPtr>>2]=E,i()[X.canvasSharedPtr+4>>2]=B),X.offscreenCanvas||!X.controlTransferredOffscreen){X.offscreenCanvas&&(X=X.offscreenCanvas);var pe=!1;if(X.GLctxObject&&X.GLctxObject.GLctx){var le=X.GLctxObject.GLctx.getParameter(2978);pe=le[0]===0&&le[1]===0&&le[2]===X.width&&le[3]===X.height}X.width=E,X.height=B,pe&&X.GLctxObject.GLctx.viewport(0,0,E,B)}else if(X.canvasSharedPtr){var de=i()[X.canvasSharedPtr+8>>2];return Kg(de,S,E,B),1}else return-4;return 0}function _p(S,E,B){return N?Gs(2,1,S,E,B):Np(S,E,B)}function Jg(S,E,B){var X=fl(S);return X?Np(S,E,B):_p(S,E,B)}function Qg(S){}function eb(S,E){}function tb(S){var E=S.getExtension("ANGLE_instanced_arrays");if(E)return S.vertexAttribDivisor=function(B,X){E.vertexAttribDivisorANGLE(B,X)},S.drawArraysInstanced=function(B,X,pe,le){E.drawArraysInstancedANGLE(B,X,pe,le)},S.drawElementsInstanced=function(B,X,pe,le,de){E.drawElementsInstancedANGLE(B,X,pe,le,de)},1}function nb(S){var E=S.getExtension("OES_vertex_array_object");if(E)return S.createVertexArray=function(){return E.createVertexArrayOES()},S.deleteVertexArray=function(B){E.deleteVertexArrayOES(B)},S.bindVertexArray=function(B){E.bindVertexArrayOES(B)},S.isVertexArray=function(B){return E.isVertexArrayOES(B)},1}function rb(S){var E=S.getExtension("WEBGL_draw_buffers");if(E)return S.drawBuffers=function(B,X){E.drawBuffersWEBGL(B,X)},1}function sb(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var st={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(E){st.lastError||(st.lastError=E)},getNewId:function(S){for(var E=st.counter++,B=S.length;B<E;B++)S[B]=null;return E},getSource:function(S,E,B,X){for(var pe="",le=0;le<E;++le){var de=X?i()[X+le*4>>2]:-1;pe+=Ue(i()[B+le*4>>2],de<0?void 0:de)}return pe},createContext:function(S,E){var B=S.getContext("webgl",E);if(!B)return 0;var X=st.registerContext(B,E);return X},registerContext:function(S,E){var B=Pa(8);i()[B+4>>2]=qs();var X={handle:B,attributes:E,version:E.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=X),st.contexts[B]=X,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&st.initExtensions(X),B},makeContextCurrent:function(S){return st.currentContext=st.contexts[S],u.ctx=Hs=st.currentContext&&st.currentContext.GLctx,!(S&&!Hs)},getContext:function(S){return st.contexts[S]},deleteContext:function(S){st.currentContext===st.contexts[S]&&(st.currentContext=null),typeof Be=="object"&&Be.removeAllHandlersOnTarget(st.contexts[S].GLctx.canvas),st.contexts[S]&&st.contexts[S].GLctx.canvas&&(st.contexts[S].GLctx.canvas.GLctxObject=void 0),yl(st.contexts[S].handle),st.contexts[S]=null},initExtensions:function(S){if(S||(S=st.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var E=S.GLctx;tb(E),nb(E),rb(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query"),sb(E);var B=E.getSupportedExtensions()||[];B.forEach(function(X){X.indexOf("lose_context")<0&&X.indexOf("debug")<0&&E.getExtension(X)})}},populateUniformTable:function(S){for(var E=st.programs[S],B=st.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},X=B.uniforms,pe=Hs.getProgramParameter(E,35718),le=0;le<pe;++le){var de=Hs.getActiveUniform(E,le),we=de.name;B.maxUniformLength=Math.max(B.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var at=Hs.getUniformLocation(E,we);if(at){var Xt=st.getNewId(st.uniforms);X[we]=[de.size,Xt],st.uniforms[Xt]=at;for(var Ut=1;Ut<de.size;++Ut){var Ks=we+"["+Ut+"]";at=Hs.getUniformLocation(E,Ks),Xt=st.getNewId(st.uniforms),st.uniforms[Xt]=at}}}}},ab=["default","low-power","high-performance"];function ob(S,E){var B=E>>2,X=i()[B+(24>>2)],pe={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:ab[X],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},le=fl(S);if(!le||pe.explicitSwapControl)return 0;var de=st.createContext(le,pe);return de}function ib(S,E){return ob(S,E)}var Li={mappings:{},buffers:[null,[],[]],printChar:function(S,E){var B=Li.buffers[S];E===0||E===10?((S===1?K:q)(Ve(B,0)),B.length=0):B.push(E)},varargs:void 0,get:function(){Li.varargs+=4;var S=i()[Li.varargs-4>>2];return S},getStr:function(S){var E=Ue(S);return E},get64:function(S,E){return S}};function Ep(S){return N?Gs(3,1,S):0}function Ap(S,E,B,X,pe){if(N)return Gs(4,1,S,E,B,X,pe)}function Dp(S,E,B,X){if(N)return Gs(5,1,S,E,B,X);for(var pe=0,le=0;le<B;le++){for(var de=i()[E+le*8>>2],we=i()[E+(le*8+4)>>2],at=0;at<we;at++)Li.printChar(S,o()[de+at]);pe+=we}return i()[X>>2]=pe,0}function cb(S){var E=Te.threadExitHandlers.pop();S&&E()}function ub(S,E){Te.threadExitHandlers.push(function(){pn.get(S)(E)})}function $p(S){if(N)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var E=Te.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push(E);for(var B=Pa(128*4),X=0;X<128;++X)i()[B+X*4>>2]=0;var pe=S.stackBase+S.stackSize,le=Te.pthreads[S.pthread_ptr]={worker:E,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},de=le.threadInfoStruct>>2;Atomics.store(c(),de+(64>>2),S.detached),Atomics.store(c(),de+(100>>2),B),Atomics.store(c(),de+(40>>2),le.threadInfoStruct),Atomics.store(c(),de+(80>>2),S.stackSize),Atomics.store(c(),de+(76>>2),pe),Atomics.store(c(),de+(104>>2),S.stackSize),Atomics.store(c(),de+(104+8>>2),pe),Atomics.store(c(),de+(104+12>>2),S.detached);var we=e1(),at=we+40;Atomics.store(c(),de+(172>>2),at),E.pthread=le;var Xt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};E.runPthread=function(){Xt.time=performance.now(),E.postMessage(Xt,S.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function lb(S,E,B,X){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return q("pthread_create called with a null thread pointer!"),28;var pe=[],le=0;if(N&&(pe.length===0||le))return a1(687865856,S,E,B,X);if(le)return le;var de=0,we=0,at=0;E&&E!=-1?(de=i()[E>>2],de+=81920,we=i()[E+8>>2],at=i()[E+12>>2]!==0):de=2097152;var Xt=we==0;Xt?we=c1(16,de):(we-=de,Se(we>0));for(var Ut=Pa(228),Ks=0;Ks<228>>2;++Ks)c()[(Ut>>2)+Ks]=0;i()[S>>2]=Ut,i()[Ut+12>>2]=Ut;var Hi=Ut+152;i()[Hi>>2]=Hi;var bn={stackBase:we,stackSize:de,allocatedOwnStack:Xt,detached:at,startRoutine:B,pthread_ptr:Ut,arg:X,transferList:pe};return N?(bn.cmd="spawnThread",postMessage(bn,pe)):$p(bn),0}function db(){if(!!N){var S=qs();if(!!S){var E=Atomics.load(c(),S+56>>2);if(!E){var B=Atomics.load(c(),S+0>>2);if(B==2)throw"Canceled!"}}}}function pb(){w||x||Z("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function hb(S,E,B){if(!S)return q("pthread_join attempted on a null thread pointer!"),Us.ESRCH;if(N&&qs()==S)return q("PThread "+S+" is attempting to join to itself!"),Us.EDEADLK;if(!N&&r1()==S)return q("Main thread "+S+" is attempting to join to itself!"),Us.EDEADLK;var X=i()[S+12>>2];if(X!==S)return q("pthread_join attempted on thread "+S+", which does not point to a valid thread, or does not exist anymore!"),Us.ESRCH;var pe=Atomics.load(c(),S+64>>2);if(pe)return q("Attempted to join thread "+S+", which was already detached!"),Us.EINVAL;for(B&&pb();;){var le=Atomics.load(c(),S+0>>2);if(le==1){var de=Atomics.load(c(),S+4>>2);return E&&(i()[E>>2]=de),Atomics.store(c(),S+64>>2,1),N?postMessage({cmd:"cleanupThread",thread:S}):Tp(S),0}if(!B)return Us.EBUSY;db(),N||zp(),Cp(S+0,le,N?100:1)}}function fb(S,E){return hb(S,E,!0)}function Fp(S){if(N)return Gs(6,1,S);switch(S){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Fg(28),-1}N||Te.initMainThreadBlock();var Hs,mb=[null,Rg,_p,Ep,Ap,Dp,Fp],gb={e:Dg,r:$g,x:Pg,b:Og,y:Mg,j:Lg,d:Cp,c:dl,f:Ra,p:Bg,A:zg,u:Vg,q:Hg,v:Jg,i:Qg,s:eb,w:ib,l:Ep,n:Ap,g:Dp,o:Sp,a:ne||u.wasmMemory,z:cb,k:ub,h:lb,m:fb,t:Fp},J0=Sg(),Rp=u.___wasm_call_ctors=function(){return(Rp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},bb=u._init=function(){return(bb=u._init=u.asm.C).apply(null,arguments)},yb=u._init_with_threads_count=function(){return(yb=u._init_with_threads_count=u.asm.D).apply(null,arguments)},vb=u._get_threads_count=function(){return(vb=u._get_threads_count=u.asm.E).apply(null,arguments)},xb=u._register_tensor=function(){return(xb=u._register_tensor=u.asm.F).apply(null,arguments)},wb=u._dispose_data=function(){return(wb=u._dispose_data=u.asm.G).apply(null,arguments)},kb=u._dispose=function(){return(kb=u._dispose=u.asm.H).apply(null,arguments)},Ib=u._Abs=function(){return(Ib=u._Abs=u.asm.J).apply(null,arguments)},Sb=u._Add=function(){return(Sb=u._Add=u.asm.K).apply(null,arguments)},Tb=u._AddN=function(){return(Tb=u._AddN=u.asm.L).apply(null,arguments)},Cb=u._All=function(){return(Cb=u._All=u.asm.M).apply(null,arguments)},Nb=u._Any=function(){return(Nb=u._Any=u.asm.N).apply(null,arguments)},_b=u._ArgMax=function(){return(_b=u._ArgMax=u.asm.O).apply(null,arguments)},Eb=u._AvgPool=function(){return(Eb=u._AvgPool=u.asm.P).apply(null,arguments)},Ab=u._BatchMatMul=function(){return(Ab=u._BatchMatMul=u.asm.Q).apply(null,arguments)},Db=u._Ceil=function(){return(Db=u._Ceil=u.asm.R).apply(null,arguments)},$b=u._ClipByValue=function(){return($b=u._ClipByValue=u.asm.S).apply(null,arguments)},Fb=u._Conv2D=function(){return(Fb=u._Conv2D=u.asm.T).apply(null,arguments)},Rb=u._Conv2DBackpropInput=function(){return(Rb=u._Conv2DBackpropInput=u.asm.U).apply(null,arguments)},Pb=u._Cos=function(){return(Pb=u._Cos=u.asm.V).apply(null,arguments)},Ob=u._Cosh=function(){return(Ob=u._Cosh=u.asm.W).apply(null,arguments)},Mb=u._CropAndResize=function(){return(Mb=u._CropAndResize=u.asm.X).apply(null,arguments)},Lb=u._Cumsum=function(){return(Lb=u._Cumsum=u.asm.Y).apply(null,arguments)},Bb=u._DepthToSpace=function(){return(Bb=u._DepthToSpace=u.asm.Z).apply(null,arguments)},Pp=u._DepthwiseConv2dNative=function(){return(Pp=u._DepthwiseConv2dNative=u.asm._).apply(null,arguments)},Op=u._Elu=function(){return(Op=u._Elu=u.asm.$).apply(null,arguments)},Mp=u._Equal=function(){return(Mp=u._Equal=u.asm.aa).apply(null,arguments)},ml=u._Exp=function(){return(ml=u._Exp=u.asm.ba).apply(null,arguments)},Bi=u._FlipLeftRight=function(){return(Bi=u._FlipLeftRight=u.asm.ca).apply(null,arguments)},zb=u._Floor=function(){return(zb=u._Floor=u.asm.da).apply(null,arguments)},gl=u._FloorDiv=function(){return(gl=u._FloorDiv=u.asm.ea).apply(null,arguments)},zi=u._FusedBatchNorm=function(){return(zi=u._FusedBatchNorm=u.asm.fa).apply(null,arguments)},Wi=u._FusedConv2D=function(){return(Wi=u._FusedConv2D=u.asm.ga).apply(null,arguments)},Wb=u._FusedDepthwiseConv2D=function(){return(Wb=u._FusedDepthwiseConv2D=u.asm.ha).apply(null,arguments)},Q=u._Gather=function(){return(Q=u._Gather=u.asm.ia).apply(null,arguments)},ae=u._GatherNd=function(){return(ae=u._GatherNd=u.asm.ja).apply(null,arguments)},ve=u._Greater=function(){return(ve=u._Greater=u.asm.ka).apply(null,arguments)},et=u._GreaterEqual=function(){return(et=u._GreaterEqual=u.asm.la).apply(null,arguments)},$t=u._LeakyRelu=function(){return($t=u._LeakyRelu=u.asm.ma).apply(null,arguments)},It=u._Less=function(){return(It=u._Less=u.asm.na).apply(null,arguments)},Ge=u._LessEqual=function(){return(Ge=u._LessEqual=u.asm.oa).apply(null,arguments)},qe=u._Log=function(){return(qe=u._Log=u.asm.pa).apply(null,arguments)},an=u._LogicalAnd=function(){return(an=u._LogicalAnd=u.asm.qa).apply(null,arguments)},xs=u._Max=function(){return(xs=u._Max=u.asm.ra).apply(null,arguments)},ws=u._MaxPool=function(){return(ws=u._MaxPool=u.asm.sa).apply(null,arguments)},Lp=u._Maximum=function(){return(Lp=u._Maximum=u.asm.ta).apply(null,arguments)},bl=u._Mean=function(){return(bl=u._Mean=u.asm.ua).apply(null,arguments)},Kn=u._Min=function(){return(Kn=u._Min=u.asm.va).apply(null,arguments)},js=u._Minimum=function(){return(js=u._Minimum=u.asm.wa).apply(null,arguments)},Bp=u._MirrorPad=function(){return(Bp=u._MirrorPad=u.asm.xa).apply(null,arguments)},bA=u._Multiply=function(){return(bA=u._Multiply=u.asm.ya).apply(null,arguments)},yA=u._Neg=function(){return(yA=u._Neg=u.asm.za).apply(null,arguments)},vA=u._NonMaxSuppressionV3=function(){return(vA=u._NonMaxSuppressionV3=u.asm.Aa).apply(null,arguments)},xA=u._NonMaxSuppressionV4=function(){return(xA=u._NonMaxSuppressionV4=u.asm.Ba).apply(null,arguments)},wA=u._NonMaxSuppressionV5=function(){return(wA=u._NonMaxSuppressionV5=u.asm.Ca).apply(null,arguments)},kA=u._NotEqual=function(){return(kA=u._NotEqual=u.asm.Da).apply(null,arguments)},IA=u._OneHot=function(){return(IA=u._OneHot=u.asm.Ea).apply(null,arguments)},SA=u._PadV2=function(){return(SA=u._PadV2=u.asm.Fa).apply(null,arguments)},TA=u._Pow=function(){return(TA=u._Pow=u.asm.Ga).apply(null,arguments)},CA=u._Prelu=function(){return(CA=u._Prelu=u.asm.Ha).apply(null,arguments)},NA=u._Prod=function(){return(NA=u._Prod=u.asm.Ia).apply(null,arguments)},_A=u._RealDiv=function(){return(_A=u._RealDiv=u.asm.Ja).apply(null,arguments)},EA=u._Relu=function(){return(EA=u._Relu=u.asm.Ka).apply(null,arguments)},AA=u._Relu6=function(){return(AA=u._Relu6=u.asm.La).apply(null,arguments)},DA=u._ResizeBilinear=function(){return(DA=u._ResizeBilinear=u.asm.Ma).apply(null,arguments)},$A=u._Reverse=function(){return($A=u._Reverse=u.asm.Na).apply(null,arguments)},FA=u._RotateWithOffset=function(){return(FA=u._RotateWithOffset=u.asm.Oa).apply(null,arguments)},RA=u._Round=function(){return(RA=u._Round=u.asm.Pa).apply(null,arguments)},PA=u._Rsqrt=function(){return(PA=u._Rsqrt=u.asm.Qa).apply(null,arguments)},OA=u._ScatterNd=function(){return(OA=u._ScatterNd=u.asm.Ra).apply(null,arguments)},MA=u._SelectV2=function(){return(MA=u._SelectV2=u.asm.Sa).apply(null,arguments)},LA=u._Sigmoid=function(){return(LA=u._Sigmoid=u.asm.Ta).apply(null,arguments)},BA=u._Sin=function(){return(BA=u._Sin=u.asm.Ua).apply(null,arguments)},zA=u._Softmax=function(){return(zA=u._Softmax=u.asm.Va).apply(null,arguments)},WA=u._SparseFillEmptyRows=function(){return(WA=u._SparseFillEmptyRows=u.asm.Wa).apply(null,arguments)},VA=u._SparseReshape=function(){return(VA=u._SparseReshape=u.asm.Xa).apply(null,arguments)},UA=u._SparseSegmentReduction=function(){return(UA=u._SparseSegmentReduction=u.asm.Ya).apply(null,arguments)},GA=u._Sqrt=function(){return(GA=u._Sqrt=u.asm.Za).apply(null,arguments)},HA=u._Square=function(){return(HA=u._Square=u.asm._a).apply(null,arguments)},jA=u._SquaredDifference=function(){return(jA=u._SquaredDifference=u.asm.$a).apply(null,arguments)},qA=u._Step=function(){return(qA=u._Step=u.asm.ab).apply(null,arguments)},KA=u._StridedSlice=function(){return(KA=u._StridedSlice=u.asm.bb).apply(null,arguments)},XA=u._Sub=function(){return(XA=u._Sub=u.asm.cb).apply(null,arguments)},YA=u._Sum=function(){return(YA=u._Sum=u.asm.db).apply(null,arguments)},ZA=u._Tan=function(){return(ZA=u._Tan=u.asm.eb).apply(null,arguments)},JA=u._Tanh=function(){return(JA=u._Tanh=u.asm.fb).apply(null,arguments)},QA=u._Tile=function(){return(QA=u._Tile=u.asm.gb).apply(null,arguments)},eD=u._TopK=function(){return(eD=u._TopK=u.asm.hb).apply(null,arguments)},tD=u._Transform=function(){return(tD=u._Transform=u.asm.ib).apply(null,arguments)},nD=u._Transpose=function(){return(nD=u._Transpose=u.asm.jb).apply(null,arguments)},rD=u.__FusedMatMul=function(){return(rD=u.__FusedMatMul=u.asm.kb).apply(null,arguments)},Pa=u._malloc=function(){return(Pa=u._malloc=u.asm.lb).apply(null,arguments)},yl=u._free=function(){return(yl=u._free=u.asm.mb).apply(null,arguments)},Q0=u.___errno_location=function(){return(Q0=u.___errno_location=u.asm.nb).apply(null,arguments)},e1=u._emscripten_get_global_libc=function(){return(e1=u._emscripten_get_global_libc=u.asm.ob).apply(null,arguments)},qs=u._pthread_self=function(){return(qs=u._pthread_self=u.asm.pb).apply(null,arguments)},t1=u.___pthread_tsd_run_dtors=function(){return(t1=u.___pthread_tsd_run_dtors=u.asm.qb).apply(null,arguments)},zp=u._emscripten_main_thread_process_queued_calls=function(){return(zp=u._emscripten_main_thread_process_queued_calls=u.asm.rb).apply(null,arguments)},sD=u._emscripten_current_thread_process_queued_calls=function(){return(sD=u._emscripten_current_thread_process_queued_calls=u.asm.sb).apply(null,arguments)},n1=u._emscripten_register_main_browser_thread_id=function(){return(n1=u._emscripten_register_main_browser_thread_id=u.asm.tb).apply(null,arguments)},r1=u._emscripten_main_browser_thread_id=function(){return(r1=u._emscripten_main_browser_thread_id=u.asm.ub).apply(null,arguments)},s1=u.__emscripten_do_dispatch_to_thread=function(){return(s1=u.__emscripten_do_dispatch_to_thread=u.asm.vb).apply(null,arguments)},a1=u._emscripten_sync_run_in_main_thread_4=function(){return(a1=u._emscripten_sync_run_in_main_thread_4=u.asm.wb).apply(null,arguments)},o1=u._emscripten_run_in_main_runtime_thread_js=function(){return(o1=u._emscripten_run_in_main_runtime_thread_js=u.asm.xb).apply(null,arguments)},Vb=u.__emscripten_call_on_thread=function(){return(Vb=u.__emscripten_call_on_thread=u.asm.yb).apply(null,arguments)},aD=u._emscripten_tls_init=function(){return(aD=u._emscripten_tls_init=u.asm.zb).apply(null,arguments)},Ub=u.__emscripten_thread_init=function(){return(Ub=u.__emscripten_thread_init=u.asm.Ab).apply(null,arguments)},vl=u.stackSave=function(){return(vl=u.stackSave=u.asm.Bb).apply(null,arguments)},Vi=u.stackRestore=function(){return(Vi=u.stackRestore=u.asm.Cb).apply(null,arguments)},Ui=u.stackAlloc=function(){return(Ui=u.stackAlloc=u.asm.Db).apply(null,arguments)},i1=u._emscripten_stack_set_limits=function(){return(i1=u._emscripten_stack_set_limits=u.asm.Eb).apply(null,arguments)},c1=u._memalign=function(){return(c1=u._memalign=u.asm.Fb).apply(null,arguments)},u1=u.__emscripten_allow_main_runtime_queued_calls=10656,Gi=u.__emscripten_main_thread_futex=12292;u.cwrap=Ze,u.PThread=Te,u.PThread=Te,u.wasmMemory=ne,u.ExitStatus=xl;var Wp;function xl(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}$a=function S(){Wp||Gb(),Wp||($a=S)};function Gb(S){if(S=S||g,Ir>0)return;if(N){d(u),yp(),postMessage({cmd:"loaded"});return}if(bp(),Ir>0)return;function E(){Wp||(Wp=!0,u.calledRun=!0,!ye&&(yp(),vp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),xp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),E()},1)):E()}u.run=Gb;function oD(S,E){if(!(E&&ue&&S===0)){if(!E&&N)throw postMessage({cmd:"exitProcess",returnCode:S}),new xl(S);ue||(Te.terminateAllThreads(),Ce=S,Rn(),u.onExit&&u.onExit(S),ye=!0),y(S,new xl(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();N&&(ue=!1,Te.initWorker()),Gb();var Vp;h&&(Vp={uncaughtException:process.listeners("uncaughtException").filter(function(S){return!h.uncaughtException.indexOf(S)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(S){return!h.unhandledRejection.indexOf(S)>-1})});var Up;if(typeof WasmBackendModule!="undefined")Up=WasmBackendModule;else if(typeof s!="undefined")Up=s;else throw new Error("Could not find wasm module in post.js");if(Vp){var iD=Up._dispose;Up._dispose=function(){iD(),Vp.uncaughtException.forEach(function(S){process.removeListener("uncaughtException",S)}),Vp.unhandledRejection.forEach(function(S){process.removeListener("unhandledRejection",S)})}}return s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),VD=pt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.13.0_@tensorflow+tfjs-core@3.13.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};var a=typeof s!="undefined"?s:{},o,i;a.ready=new Promise(function(Q,ae){o=Q,i=ae});var c;typeof process!="undefined"&&process.listeners&&(c={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var d=[],p="./this.program",h=function(Q,ae){throw ae},f=!1,m=!1,g=!1,b=!1;f=typeof window=="object",m=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!f&&!g&&!m;var y="";function v(Q){return a.locateFile?a.locateFile(Q,y):y+Q}var x,w,T,N,$,D;g?(m?y=wl().dirname(y)+"/":y=__dirname+"/",x=function(ae,ve){return $||($=jp()),D||(D=wl()),ae=D.normalize(ae),$.readFileSync(ae,ve?null:"utf8")},T=function(ae){var ve=x(ae,!0);return ve.buffer||(ve=new Uint8Array(ve)),K(ve.buffer),ve},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(Q){if(!(Q instanceof zb))throw Q}),process.on("unhandledRejection",ys),h=function(Q){process.exit(Q)},a.inspect=function(){return"[Emscripten Module object]"}):b?(typeof read!="undefined"&&(x=function(ae){return read(ae)}),T=function(ae){var ve;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ae)):(ve=read(ae,"binary"),K(typeof ve=="object"),ve)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(h=function(Q){quit(Q)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(f||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(Q){var ae=new XMLHttpRequest;return ae.open("GET",Q,!1),ae.send(null),ae.responseText},m&&(T=function(Q){var ae=new XMLHttpRequest;return ae.open("GET",Q,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),w=function(Q,ae,ve){var et=new XMLHttpRequest;et.open("GET",Q,!0),et.responseType="arraybuffer",et.onload=function(){if(et.status==200||et.status==0&&et.response){ae(et.response);return}ve()},et.onerror=ve,et.send(null)},N=function(Q){document.title=Q});var P=a.print||console.log.bind(console),F=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(d=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(h=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var C=a.noExitRuntime||!0;typeof WebAssembly!="object"&&ys("no native wasm support detected");var L,G=!1,j;function K(Q,ae){Q||ys("Assertion failed: "+ae)}function q(Q){var ae=a["_"+Q];return K(ae,"Cannot call unknown function "+Q+", make sure it is exported"),ae}function Z(Q,ae,ve,et,$t){var It={string:function(Kn){var js=0;if(Kn!=null&&Kn!==0){var Bp=(Kn.length<<2)+1;js=ml(Bp),ne(Kn,js,Bp)}return js},array:function(Kn){var js=ml(Kn.length);return he(Kn,js),js}};function Ge(Kn){return ae==="string"?re(Kn):ae==="boolean"?Boolean(Kn):Kn}var qe=q(Q),an=[],xs=0;if(et)for(var ws=0;ws<et.length;ws++){var Lp=It[ve[ws]];Lp?(xs===0&&(xs=Op()),an[ws]=Lp(et[ws])):an[ws]=et[ws]}var bl=qe.apply(null,an);return bl=Ge(bl),xs!==0&&Mp(xs),bl}function te(Q,ae,ve,et){ve=ve||[];var $t=ve.every(function(Ge){return Ge==="number"}),It=ae!=="string";return It&&$t&&!et?q(Q):function(){return Z(Q,ae,ve,arguments,et)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function oe(Q,ae,ve){for(var et=ae+ve,$t=ae;Q[$t]&&!($t>=et);)++$t;if($t-ae>16&&Q.subarray&&se)return se.decode(Q.subarray(ae,$t));for(var It="";ae<$t;){var Ge=Q[ae++];if(!(Ge&128)){It+=String.fromCharCode(Ge);continue}var qe=Q[ae++]&63;if((Ge&224)==192){It+=String.fromCharCode((Ge&31)<<6|qe);continue}var an=Q[ae++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|qe<<6|an:Ge=(Ge&7)<<18|qe<<12|an<<6|Q[ae++]&63,Ge<65536)It+=String.fromCharCode(Ge);else{var xs=Ge-65536;It+=String.fromCharCode(55296|xs>>10,56320|xs&1023)}}return It}function re(Q,ae){return Q?oe(_e,Q,ae):""}function ue(Q,ae,ve,et){if(!(et>0))return 0;for(var $t=ve,It=ve+et-1,Ge=0;Ge<Q.length;++Ge){var qe=Q.charCodeAt(Ge);if(qe>=55296&&qe<=57343){var an=Q.charCodeAt(++Ge);qe=65536+((qe&1023)<<10)|an&1023}if(qe<=127){if(ve>=It)break;ae[ve++]=qe}else if(qe<=2047){if(ve+1>=It)break;ae[ve++]=192|qe>>6,ae[ve++]=128|qe&63}else if(qe<=65535){if(ve+2>=It)break;ae[ve++]=224|qe>>12,ae[ve++]=128|qe>>6&63,ae[ve++]=128|qe&63}else{if(ve+3>=It)break;ae[ve++]=240|qe>>18,ae[ve++]=128|qe>>12&63,ae[ve++]=128|qe>>6&63,ae[ve++]=128|qe&63}}return ae[ve]=0,ve-$t}function ne(Q,ae,ve){return ue(Q,_e,ae,ve)}function he(Q,ae){Se.set(Q,ae)}function ye(Q,ae){return Q%ae>0&&(Q+=ae-Q%ae),Q}var Ce,Se,_e,Le,Ze,Ve,Ue,ct,Je;function dt(Q){Ce=Q,a.HEAP8=Se=new Int8Array(Q),a.HEAP16=Le=new Int16Array(Q),a.HEAP32=Ve=new Int32Array(Q),a.HEAPU8=_e=new Uint8Array(Q),a.HEAPU16=Ze=new Uint16Array(Q),a.HEAPU32=Ue=new Uint32Array(Q),a.HEAPF32=ct=new Float32Array(Q),a.HEAPF64=Je=new Float64Array(Q)}var kt=a.INITIAL_MEMORY||16777216,Dn,Qe=[],jn=[],sn=[],wr=[],$n=!1;jn.push({func:function(){Sp()}});function qn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Fn(a.preRun.shift());Ir(Qe)}function ir(){$n=!0,Ir(jn)}function kr(){Ir(sn)}function cr(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)Ws(a.postRun.shift());Ir(wr)}function Fn(Q){Qe.unshift(Q)}function Ws(Q){wr.unshift(Q)}var pn=0,Vs=null,ur=null;function cl(Q){pn++,a.monitorRunDependencies&&a.monitorRunDependencies(pn)}function ul(Q){if(pn--,a.monitorRunDependencies&&a.monitorRunDependencies(pn),pn==0&&(Vs!==null&&(clearInterval(Vs),Vs=null),ur)){var ae=ur;ur=null,ae()}}a.preloadedImages={},a.preloadedAudios={};function ys(Q){a.onAbort&&a.onAbort(Q),Q+="",F(Q),G=!0,j=1,Q="abort("+Q+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(Q);throw i(ae),ae}function gp(Q,ae){return String.prototype.startsWith?Q.startsWith(ae):Q.indexOf(ae)===0}var gg="data:application/octet-stream;base64,";function bp(Q){return gp(Q,gg)}var yp="file://";function vp(Q){return gp(Q,yp)}var Rn="tfjs-backend-wasm.wasm";bp(Rn)||(Rn=v(Rn));function xp(Q){try{if(Q==Rn&&R)return new Uint8Array(R);if(T)return T(Q);throw"both async and sync fetching of the wasm failed"}catch(ae){ys(ae)}}function bg(){if(!R&&(f||m)){if(typeof fetch=="function"&&!vp(Rn))return fetch(Rn,{credentials:"same-origin"}).then(function(Q){if(!Q.ok)throw"failed to load wasm binary file at '"+Rn+"'";return Q.arrayBuffer()}).catch(function(){return xp(Rn)});if(w)return new Promise(function(Q,ae){w(Rn,function(ve){Q(new Uint8Array(ve))},ae)})}return Promise.resolve().then(function(){return xp(Rn)})}function yg(){var Q={a:Sg};function ae(Ge,qe){var an=Ge.exports;a.asm=an,L=a.asm.j,dt(L.buffer),Dn=a.asm.r,ul("wasm-instantiate")}cl("wasm-instantiate");function ve(Ge){ae(Ge.instance)}function et(Ge){return bg().then(function(qe){return WebAssembly.instantiate(qe,Q)}).then(Ge,function(qe){F("failed to asynchronously prepare wasm: "+qe),ys(qe)})}function $t(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!bp(Rn)&&!vp(Rn)&&typeof fetch=="function"?fetch(Rn,{credentials:"same-origin"}).then(function(Ge){var qe=WebAssembly.instantiateStreaming(Ge,Q);return qe.then(ve,function(an){return F("wasm streaming compile failed: "+an),F("falling back to ArrayBuffer instantiation"),et(ve)})}):et(ve)}if(a.instantiateWasm)try{var It=a.instantiateWasm(Q,ae);return It}catch(Ge){return F("Module.instantiateWasm callback failed with error: "+Ge),!1}return $t().catch(i),{}}function Ir(Q){for(;Q.length>0;){var ae=Q.shift();if(typeof ae=="function"){ae(a);continue}var ve=ae.func;typeof ve=="number"?ae.arg===void 0?Dn.get(ve)():Dn.get(ve)(ae.arg):ve(ae.arg===void 0?null:ae.arg)}}function ll(){ys()}function $a(Q,ae,ve){_e.copyWithin(Q,ae,ae+ve)}function vg(){return _e.length}function xg(Q){try{return L.grow(Q-Ce.byteLength+65535>>>16),dt(L.buffer),1}catch(ae){}}function vs(Q){var ae=vg(),ve=2147483648;if(Q>ve)return!1;for(var et=1;et<=4;et*=2){var $t=ae*(1+.2/et);$t=Math.min($t,Q+100663296);var It=Math.min(ve,ye(Math.max(Q,$t),65536)),Ge=xg(It);if(Ge)return!0}return!1}var Fa={mappings:{},buffers:[null,[],[]],printChar:function(Q,ae){var ve=Fa.buffers[Q];ae===0||ae===10?((Q===1?P:F)(oe(ve,0)),ve.length=0):ve.push(ae)},varargs:void 0,get:function(){Fa.varargs+=4;var Q=Ve[Fa.varargs-4>>2];return Q},getStr:function(Q){var ae=re(Q);return ae},get64:function(Q,ae){return Q}};function wg(Q){return 0}function wp(Q,ae,ve,et,$t){}function kg(Q,ae,ve,et){for(var $t=0,It=0;It<ve;It++){for(var Ge=Ve[ae+It*8>>2],qe=Ve[ae+(It*8+4)>>2],an=0;an<qe;an++)Fa.printChar(Q,_e[Ge+an]);$t+=qe}return Ve[et>>2]=$t,0}function kp(){return 6}function Pn(){return 28}function Ip(Q){return Ve[Pp()>>2]=Q,Q}function Ig(Q){switch(Q){case 30:return 16384;case 85:var ae=2147483648;return ae/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ip(28),-1}var Sg={a:ll,d:$a,e:vs,f:wg,c:wp,b:kg,h:kp,g:Pn,i:Ig},Tg=yg(),Sp=a.___wasm_call_ctors=function(){return(Sp=a.___wasm_call_ctors=a.asm.k).apply(null,arguments)},Mi=a._init=function(){return(Mi=a._init=a.asm.l).apply(null,arguments)},Us=a._init_with_threads_count=function(){return(Us=a._init_with_threads_count=a.asm.m).apply(null,arguments)},dl=a._get_threads_count=function(){return(dl=a._get_threads_count=a.asm.n).apply(null,arguments)},Cg=a._register_tensor=function(){return(Cg=a._register_tensor=a.asm.o).apply(null,arguments)},Ng=a._dispose_data=function(){return(Ng=a._dispose_data=a.asm.p).apply(null,arguments)},Tp=a._dispose=function(){return(Tp=a._dispose=a.asm.q).apply(null,arguments)},Te=a._Abs=function(){return(Te=a._Abs=a.asm.s).apply(null,arguments)},_g=a._Add=function(){return(_g=a._Add=a.asm.t).apply(null,arguments)},Eg=a._AddN=function(){return(Eg=a._AddN=a.asm.u).apply(null,arguments)},Ag=a._All=function(){return(Ag=a._All=a.asm.v).apply(null,arguments)},Dg=a._Any=function(){return(Dg=a._Any=a.asm.w).apply(null,arguments)},$g=a._ArgMax=function(){return($g=a._ArgMax=a.asm.x).apply(null,arguments)},Ra=a._AvgPool=function(){return(Ra=a._AvgPool=a.asm.y).apply(null,arguments)},Fg=a._BatchMatMul=function(){return(Fg=a._BatchMatMul=a.asm.z).apply(null,arguments)},Rg=a._Ceil=function(){return(Rg=a._Ceil=a.asm.A).apply(null,arguments)},Pg=a._ClipByValue=function(){return(Pg=a._ClipByValue=a.asm.B).apply(null,arguments)},Og=a._Conv2D=function(){return(Og=a._Conv2D=a.asm.C).apply(null,arguments)},Mg=a._Conv2DBackpropInput=function(){return(Mg=a._Conv2DBackpropInput=a.asm.D).apply(null,arguments)},Lg=a._Cos=function(){return(Lg=a._Cos=a.asm.E).apply(null,arguments)},Cp=a._Cosh=function(){return(Cp=a._Cosh=a.asm.F).apply(null,arguments)},Bg=a._CropAndResize=function(){return(Bg=a._CropAndResize=a.asm.G).apply(null,arguments)},zg=a._Cumsum=function(){return(zg=a._Cumsum=a.asm.H).apply(null,arguments)},Gs=a._DepthToSpace=function(){return(Gs=a._DepthToSpace=a.asm.I).apply(null,arguments)},pl=a._DepthwiseConv2dNative=function(){return(pl=a._DepthwiseConv2dNative=a.asm.J).apply(null,arguments)},hl=a._Elu=function(){return(hl=a._Elu=a.asm.K).apply(null,arguments)},Wg=a._Equal=function(){return(Wg=a._Equal=a.asm.L).apply(null,arguments)},Vg=a._Exp=function(){return(Vg=a._Exp=a.asm.M).apply(null,arguments)},Ug=a._FlipLeftRight=function(){return(Ug=a._FlipLeftRight=a.asm.N).apply(null,arguments)},Gg=a._Floor=function(){return(Gg=a._Floor=a.asm.O).apply(null,arguments)},Hg=a._FloorDiv=function(){return(Hg=a._FloorDiv=a.asm.P).apply(null,arguments)},Be=a._FusedBatchNorm=function(){return(Be=a._FusedBatchNorm=a.asm.Q).apply(null,arguments)},jg=a._FusedConv2D=function(){return(jg=a._FusedConv2D=a.asm.R).apply(null,arguments)},qg=a._FusedDepthwiseConv2D=function(){return(qg=a._FusedDepthwiseConv2D=a.asm.S).apply(null,arguments)},Kg=a._Gather=function(){return(Kg=a._Gather=a.asm.T).apply(null,arguments)},Xg=a._GatherNd=function(){return(Xg=a._GatherNd=a.asm.U).apply(null,arguments)},Yg=a._Greater=function(){return(Yg=a._Greater=a.asm.V).apply(null,arguments)},Zg=a._GreaterEqual=function(){return(Zg=a._GreaterEqual=a.asm.W).apply(null,arguments)},fl=a._LeakyRelu=function(){return(fl=a._LeakyRelu=a.asm.X).apply(null,arguments)},Np=a._Less=function(){return(Np=a._Less=a.asm.Y).apply(null,arguments)},_p=a._LessEqual=function(){return(_p=a._LessEqual=a.asm.Z).apply(null,arguments)},Jg=a._Log=function(){return(Jg=a._Log=a.asm._).apply(null,arguments)},Qg=a._LogicalAnd=function(){return(Qg=a._LogicalAnd=a.asm.$).apply(null,arguments)},eb=a._Max=function(){return(eb=a._Max=a.asm.aa).apply(null,arguments)},tb=a._MaxPool=function(){return(tb=a._MaxPool=a.asm.ba).apply(null,arguments)},nb=a._Maximum=function(){return(nb=a._Maximum=a.asm.ca).apply(null,arguments)},rb=a._Mean=function(){return(rb=a._Mean=a.asm.da).apply(null,arguments)},sb=a._Min=function(){return(sb=a._Min=a.asm.ea).apply(null,arguments)},st=a._Minimum=function(){return(st=a._Minimum=a.asm.fa).apply(null,arguments)},ab=a._MirrorPad=function(){return(ab=a._MirrorPad=a.asm.ga).apply(null,arguments)},ob=a._Multiply=function(){return(ob=a._Multiply=a.asm.ha).apply(null,arguments)},ib=a._Neg=function(){return(ib=a._Neg=a.asm.ia).apply(null,arguments)},Li=a._NonMaxSuppressionV3=function(){return(Li=a._NonMaxSuppressionV3=a.asm.ja).apply(null,arguments)},Ep=a._NonMaxSuppressionV4=function(){return(Ep=a._NonMaxSuppressionV4=a.asm.ka).apply(null,arguments)},Ap=a._NonMaxSuppressionV5=function(){return(Ap=a._NonMaxSuppressionV5=a.asm.la).apply(null,arguments)},Dp=a._NotEqual=function(){return(Dp=a._NotEqual=a.asm.ma).apply(null,arguments)},cb=a._OneHot=function(){return(cb=a._OneHot=a.asm.na).apply(null,arguments)},ub=a._PadV2=function(){return(ub=a._PadV2=a.asm.oa).apply(null,arguments)},$p=a._Pow=function(){return($p=a._Pow=a.asm.pa).apply(null,arguments)},lb=a._Prelu=function(){return(lb=a._Prelu=a.asm.qa).apply(null,arguments)},db=a._Prod=function(){return(db=a._Prod=a.asm.ra).apply(null,arguments)},pb=a._RealDiv=function(){return(pb=a._RealDiv=a.asm.sa).apply(null,arguments)},hb=a._Relu=function(){return(hb=a._Relu=a.asm.ta).apply(null,arguments)},fb=a._Relu6=function(){return(fb=a._Relu6=a.asm.ua).apply(null,arguments)},Fp=a._ResizeBilinear=function(){return(Fp=a._ResizeBilinear=a.asm.va).apply(null,arguments)},Hs=a._Reverse=function(){return(Hs=a._Reverse=a.asm.wa).apply(null,arguments)},mb=a._RotateWithOffset=function(){return(mb=a._RotateWithOffset=a.asm.xa).apply(null,arguments)},gb=a._Round=function(){return(gb=a._Round=a.asm.ya).apply(null,arguments)},J0=a._Rsqrt=function(){return(J0=a._Rsqrt=a.asm.za).apply(null,arguments)},Rp=a._ScatterNd=function(){return(Rp=a._ScatterNd=a.asm.Aa).apply(null,arguments)},bb=a._SelectV2=function(){return(bb=a._SelectV2=a.asm.Ba).apply(null,arguments)},yb=a._Sigmoid=function(){return(yb=a._Sigmoid=a.asm.Ca).apply(null,arguments)},vb=a._Sin=function(){return(vb=a._Sin=a.asm.Da).apply(null,arguments)},xb=a._Softmax=function(){return(xb=a._Softmax=a.asm.Ea).apply(null,arguments)},wb=a._SparseFillEmptyRows=function(){return(wb=a._SparseFillEmptyRows=a.asm.Fa).apply(null,arguments)},kb=a._SparseReshape=function(){return(kb=a._SparseReshape=a.asm.Ga).apply(null,arguments)},Ib=a._SparseSegmentReduction=function(){return(Ib=a._SparseSegmentReduction=a.asm.Ha).apply(null,arguments)},Sb=a._Sqrt=function(){return(Sb=a._Sqrt=a.asm.Ia).apply(null,arguments)},Tb=a._Square=function(){return(Tb=a._Square=a.asm.Ja).apply(null,arguments)},Cb=a._SquaredDifference=function(){return(Cb=a._SquaredDifference=a.asm.Ka).apply(null,arguments)},Nb=a._Step=function(){return(Nb=a._Step=a.asm.La).apply(null,arguments)},_b=a._StridedSlice=function(){return(_b=a._StridedSlice=a.asm.Ma).apply(null,arguments)},Eb=a._Sub=function(){return(Eb=a._Sub=a.asm.Na).apply(null,arguments)},Ab=a._Sum=function(){return(Ab=a._Sum=a.asm.Oa).apply(null,arguments)},Db=a._Tan=function(){return(Db=a._Tan=a.asm.Pa).apply(null,arguments)},$b=a._Tanh=function(){return($b=a._Tanh=a.asm.Qa).apply(null,arguments)},Fb=a._Tile=function(){return(Fb=a._Tile=a.asm.Ra).apply(null,arguments)},Rb=a._TopK=function(){return(Rb=a._TopK=a.asm.Sa).apply(null,arguments)},Pb=a._Transform=function(){return(Pb=a._Transform=a.asm.Ta).apply(null,arguments)},Ob=a._Transpose=function(){return(Ob=a._Transpose=a.asm.Ua).apply(null,arguments)},Mb=a.__FusedMatMul=function(){return(Mb=a.__FusedMatMul=a.asm.Va).apply(null,arguments)},Lb=a._malloc=function(){return(Lb=a._malloc=a.asm.Wa).apply(null,arguments)},Bb=a._free=function(){return(Bb=a._free=a.asm.Xa).apply(null,arguments)},Pp=a.___errno_location=function(){return(Pp=a.___errno_location=a.asm.Ya).apply(null,arguments)},Op=a.stackSave=function(){return(Op=a.stackSave=a.asm.Za).apply(null,arguments)},Mp=a.stackRestore=function(){return(Mp=a.stackRestore=a.asm._a).apply(null,arguments)},ml=a.stackAlloc=function(){return(ml=a.stackAlloc=a.asm.$a).apply(null,arguments)};a.cwrap=te;var Bi;function zb(Q){this.name="ExitStatus",this.message="Program terminated with exit("+Q+")",this.status=Q}ur=function Q(){Bi||gl(),Bi||(ur=Q)};function gl(Q){if(Q=Q||d,pn>0||(qn(),pn>0))return;function ae(){Bi||(Bi=!0,a.calledRun=!0,!G&&(ir(),kr(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),cr()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ae()},1)):ae()}if(a.run=gl,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();gl();var zi;c&&(zi={uncaughtException:process.listeners("uncaughtException").filter(function(Q){return!c.uncaughtException.indexOf(Q)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(Q){return!c.unhandledRejection.indexOf(Q)>-1})});var Wi;if(typeof s!="undefined")Wi=s;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Wi=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(zi){var Wb=Wi._dispose;Wi._dispose=function(){Wb(),zi.uncaughtException.forEach(function(Q){process.removeListener("uncaughtException",Q)}),zi.unhandledRejection.forEach(function(Q){process.removeListener("unhandledRejection",Q)})}}return s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),UD=1e-7,GD=1e-4,qp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},kl=class{refCount(e){return lr("refCount")}incRef(e){return lr("incRef")}timerAvailable(){return!0}time(e){return lr("time")}read(e){return lr("read")}readSync(e){return lr("readSync")}readToGPU(e,t){return lr("readToGPU")}numDataIds(){return lr("numDataIds")}disposeData(e,t){return lr("disposeData")}write(e,t,n){return lr("write")}move(e,t,n,r,s){return lr("move")}memory(){return lr("memory")}floatPrecision(){return lr("floatPrecision")}epsilon(){return this.floatPrecision()===32?UD:GD}dispose(){return lr("dispose")}};function lr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function g1(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Kp(e,t,n)}function HD(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r=0;for(;n>0;)r=Math.random()*n|0,n--,Kp(e,n,r),Kp(t,n,r)}function Il(e,t,n){return Math.max(e,Math.min(t,n))}function jD(e){return e%2===0?e:e+1}function Kp(e,t,n){let r=e[t];e[t]=e[n],e[n]=r}function qD(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function KD(e,t){let n=Math.random();return t*n+(1-n)*e}function XD(e,t){let n=0;for(let r=0;r<e.length;r++){let s=Number(e[r])-Number(t[r]);n+=s*s}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function yn(e,t,n=""){O(Xs(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ma(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function La(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let r=0;r<e.length;++r)La(e[r],t,n);else t.push(e);return t}function vt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function YD(e){return e.length===0}function Xs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function qi(e){return e%1===0}function ZD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function JD(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function QD(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return g1(t),t}function Sl(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function e$(e,t=r=>0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function t$(e,t){let n=1,r=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function Sr(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),O(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(r=>qi(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function b1(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:Sr(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function y1(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function v1(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function x1(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function w1(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function n$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function hn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function jb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function k1(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ys(e){return typeof e=="string"||e instanceof String}function I1(e){return typeof e=="boolean"}function S1(e){return typeof e=="number"}function Xp(e){return Array.isArray(e)?Xp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":S1(e)?"float32":Ys(e)?"string":I1(e)?"bool":"float32"}function Zs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Yp(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Ki(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function T1(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;o<a;o++)s[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((c,l)=>c*l)*(r?2:1);for(let c=0;c<a;c++)s[c]=T1(e+c*i,o,n,r)}return s}function Xi(e,t,n=!1){if(e.length===0)return t[0];let r=e.reduce((s,a)=>s*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return T1(0,e,t,n)}function qb(e,t){let n=Zp(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Zp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function r$(e,t){let n=e.reduce((r,s)=>r*s,1);if(t==null||t==="float32")return Xi(e,new Float32Array(n));if(t==="int32")return Xi(e,new Int32Array(n));if(t==="bool")return Xi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Kb(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function s$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s<e.length-1;++s)r+=n[s]*e[s];return r}function a$(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let s=0;s<r.length-1;++s)r[s]=Math.floor(e/n[s]),e-=r[s]*n[s];return r[r.length-1]=e,r}function Xb(e){return e&&e.then&&typeof e.then=="function"}var C1="tfjsflags",N1=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=o$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(J().getBool("IS_TEST")||J().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];J().getBool("IS_TEST")||J().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Xb(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);C1 in e&&e[C1].split(",").forEach(n=>{let[r,s]=n.split(":");this.urlFlags[r]=c$(r,s)})}};function o$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(i$(t,r[0],r[1]),r.join("="))),t}function i$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function c$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return Yb}var Yb=null;function u$(e){Yb=e}var Zb;function _1(){if(Zb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Zb=e}return Zb}function l$(){let e=_1();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Jb(e,t){let n=l$();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Yi="Abs",Zi="Acos",Ji="Acosh",Js="Add",Ba="AddN",Qi="All",ec="Any",za="ArgMax",Tl="ArgMin",tc="Asin",nc="Asinh",rc="Atan",sc="Atanh",ac="Atan2",Wa="AvgPool",Jp="AvgPoolGrad",Cl="AvgPool3D",Qp="AvgPool3DGrad",Va="BatchMatMul",oc="BatchToSpaceND",eh="Bincount",E1="BroadcastTo",th="BroadcastArgs",Ua="Cast",Ga="Ceil",Qs="ClipByValue",nh="Complex",Nl="ComplexAbs",ic="Concat",Ha="Conv2D",rh="Conv2DBackpropFilter",ja="Conv2DBackpropInput",_l="Conv3D",sh="Conv3DBackpropFilterV2",ah="Conv3DBackpropInputV2",qa="Cos",Ka="Cosh",Xa="Cumsum",cc="CropAndResize",oh="DenseBincount",uc="DepthToSpace",Ya="DepthwiseConv2dNative",ih="DepthwiseConv2dNativeBackpropFilter",ch="DepthwiseConv2dNativeBackpropInput",uh="Diag",El="Dilation2D",lh="Dilation2DBackpropInput",dh="Dilation2DBackpropFilter",Za="RealDiv",ph="Einsum",Ja="Elu",hh="EluGrad",lc="Erf",dc="Equal",Qa="Exp",pc="ExpandDims",hc="Expm1",fh="FFT",Al="Fill",fc="FlipLeftRight",eo="Floor",to="FloorDiv",no="FusedBatchNorm",mc="GatherV2",gc="GatherNd",bc="Greater",ro="GreaterEqual",so="Identity",mh="IFFT",gh="Imag",yc="IsFinite",vc="IsInf",xc="IsNan",ao="LeakyRelu",wc="Less",kc="LessEqual",bh="LinSpace",oo="Log",Ic="Log1p",Sc="LogicalAnd",Dl="LogicalNot",$l="LogicalOr",A1="LogSoftmax",Fl="LRN",yh="LRNGrad",io="Max",co="Maximum",uo="MaxPool",vh="MaxPoolGrad",Rl="MaxPool3D",xh="MaxPool3DGrad",wh="MaxPoolWithArgmax",lo="Mean",po="Min",ho="Minimum",fo="MirrorPad",Tc="Mod",kh="Multinomial",mo="Multiply",Cc="Neg",Nc="NotEqual",_c="NonMaxSuppressionV3",Ec="NonMaxSuppressionV4",Ac="NonMaxSuppressionV5",Dc="OnesLike",go="OneHot",$c="Pack",bo="PadV2",d$="Pool",yo="Pow",vo="Prelu",Fc="Prod",Pl="Range",Ih="Real",Rc="Reciprocal",xo="Relu",Pc="Reshape",Ol="ResizeNearestNeighbor",Sh="ResizeNearestNeighborGrad",wo="ResizeBilinear",Th="ResizeBilinearGrad",ko="Relu6",Io="Reverse",So="Round",To="Rsqrt",Oc="ScatterNd",Mc="Select",Lc="Selu",Bc="Slice",Co="Sin",zc="Sinh",Wc="Sign",No="Sigmoid",Vc="Softplus",_o="Sqrt",Eo="Sum",Uc="SpaceToBatchND",Gc="SplitV",Ao="Softmax",Ml="SparseFillEmptyRows",Hc="SparseReshape",Ll="SparseSegmentMean",Bl="SparseSegmentSum",Ch="SparseToDense",Do="SquaredDifference",zl="Square",jc="StridedSlice",Nh="StringNGrams",_h="StringSplit",Eh="StringToHashBucketFast",$o="Sub",Fo="Tan",Ro="Tanh",ea="Tile",qc="TopK",Kc="Transform",Po="Transpose",Ah="Unique",Xc="Unpack",Wl="UnsortedSegmentSum",Yc="ZerosLike",ta="Step",Dh="FromPixels",Zc="RotateWithOffset",Oo="_FusedMatMul",Mo="FusedConv2D",Lo="FusedDepthwiseConv2D";function na(...e){J().getBool("IS_TEST")||J().getBool("PROD")||console.warn(...e)}function p$(...e){J().getBool("IS_TEST")||J().getBool("PROD")||console.log(...e)}var Jc=Jb("kernelRegistry",()=>new Map),Vl=Jb("gradRegistry",()=>new Map);function $h(e,t){let n=ey(e,t);return Jc.get(n)}function Qb(e){return Vl.get(e)}function Fh(e){let t=Jc.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function Ul(e){let{kernelName:t,backendName:n}=e,r=ey(t,n);Jc.has(r)&&na(`The kernel '${t}' for backend '${n}' is already registered`),Jc.set(r,e)}function D1(e){let{kernelName:t}=e;Vl.has(t)&&J().getBool("DEBUG")&&na(`Overriding the gradient for '${t}'`),Vl.set(t,e)}function h$(e,t){let n=ey(e,t);if(!Jc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Jc.delete(n)}function f$(e){if(!Vl.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Vl.delete(e)}function m$(e,t){Fh(e).forEach(r=>{let s=Object.assign({},r,{backendName:t});Ul(s)})}function ey(e,t){return`${t}_${e}`}var k={};Ae(k,{arraysEqual:()=>Xs,assert:()=>O,assertNonNegativeIntegerDimensions:()=>Kb,assertNonNull:()=>Ma,assertShapesMatch:()=>yn,bytesFromStringArray:()=>k1,bytesPerElement:()=>jb,checkConversionForErrors:()=>x1,clamp:()=>Il,computeStrides:()=>Ki,createScalarValue:()=>w$,createShuffledIndices:()=>QD,decodeString:()=>Oh,distSquared:()=>XD,encodeString:()=>jl,fetch:()=>I$,fingerPrint64:()=>x$,flatten:()=>La,getArrayFromDType:()=>v1,getTypedArrayFromDType:()=>y1,hasEncodingLoss:()=>n$,hexToLong:()=>Gl,indexToLoc:()=>a$,inferDtype:()=>Xp,inferFromImplicitShape:()=>t$,isBoolean:()=>I1,isFunction:()=>Zs,isInt:()=>qi,isNumber:()=>S1,isPromise:()=>Xb,isScalarShape:()=>YD,isString:()=>Ys,isTypedArray:()=>hn,isValidDtype:()=>w1,locToIndex:()=>s$,makeOnesTypedArray:()=>qb,makeZerosNestedTypedArray:()=>r$,makeZerosTypedArray:()=>Zp,nearestDivisor:()=>Yp,nearestLargerEven:()=>jD,now:()=>Hl,parseAxisParam:()=>Sr,randUniform:()=>KD,repeatedTry:()=>e$,rightPad:()=>Sl,shuffle:()=>g1,shuffleCombo:()=>HD,sizeFromShape:()=>vt,sizeToSquarishShape:()=>JD,squeezeShape:()=>b1,sum:()=>qD,swap:()=>Kp,tanh:()=>ZD,toNestedArray:()=>Xi,toTypedArray:()=>Ph});var $1=Oa(wD()),Bo=$1.default||$1;function Gl(e){return Bo.fromString(e,!0,16)}var F1=Gl("c3a5c85c97cb3127"),zo=Gl("b492b66fbe98f273"),vn=Gl("9ae16a3b2f90404f");function ty(e){return e.xor(e.shru(47))}function R1(e,t,n){let r=e.slice(t,t+n);return Bo.fromBytes(Array.from(r),!0,!0)}function bt(e,t){return R1(e,t,8)}function P1(e,t){return R1(e,t,4)}function Yt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ra(e,t,n=Gl("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function g$(e,t,n,r,s,a){s=s.add(e),a=Yt(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(Yt(s,44)),[s.add(r),a.add(o)]}function Rh(e,t,n,r){return g$(bt(e,t),bt(e,t+8),bt(e,t+16),bt(e,t+24),n,r)}function b$(e,t=e.length){if(t>=8){let n=vn.add(t*2),r=bt(e,0).add(vn),s=bt(e,t-8),a=Yt(s,37).mul(n).add(r),o=Yt(r,25).add(s).mul(n);return ra(a,o,n)}if(t>=4){let n=vn.add(t*2),r=P1(e,0);return ra(r.shl(3).add(t),P1(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return ty(vn.mul(a).xor(F1.mul(o))).mul(vn)}return vn}function y$(e,t=e.length){let n=vn.add(t*2),r=bt(e,0).mul(zo),s=bt(e,8),a=bt(e,t-8).mul(n),o=bt(e,t-16).mul(vn);return ra(Yt(r.add(s),43).add(Yt(a,30)).add(o),r.add(Yt(s.add(vn),18)).add(a),n)}function v$(e,t=e.length){let n=vn.add(t*2),r=bt(e,0).mul(vn),s=bt(e,8),a=bt(e,t-8).mul(n),o=bt(e,t-16).mul(vn),i=Yt(r.add(s),43).add(Yt(a,30)).add(o),c=ra(i,r.add(Yt(s.add(vn),18)).add(a),n),l=bt(e,16).mul(n),u=bt(e,24),d=i.add(bt(e,t-32)).mul(n),p=c.add(bt(e,t-24)).mul(n);return ra(Yt(l.add(u),43).add(Yt(d,30)).add(p),l.add(Yt(u.add(r),18)).add(d),n)}function x$(e,t=e.length){let n=Bo.fromNumber(81,!0);if(t<=32)return t<=16?b$(e,t):y$(e,t);if(t<=64)return v$(e,t);let r=n,s=n.mul(zo).add(113),a=ty(s.mul(vn).add(113)).mul(vn),o=[Bo.UZERO,Bo.UZERO],i=[Bo.UZERO,Bo.UZERO];r=r.mul(vn).add(bt(e,0));let c=0,l=(t-1>>6)*64,u=l+(t-1&63)-63;do r=Yt(r.add(s).add(o[0]).add(bt(e,c+8)),37).mul(zo),s=Yt(s.add(o[1]).add(bt(e,c+48)),42).mul(zo),r=r.xor(i[1]),s=s.add(o[0]).add(bt(e,c+40)),a=Yt(a.add(i[0]),33).mul(zo),o=Rh(e,c,o[1].mul(zo),r.add(i[0])),i=Rh(e,c+32,a.add(i[1]),s.add(bt(e,c+16))),[a,r]=[r,a],c+=64;while(c!==l);let d=zo.add(a.and(255).shl(1));return c=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=Yt(r.add(s).add(o[0]).add(bt(e,c+8)),37).mul(d),s=Yt(s.add(o[1]).add(bt(e,c+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(bt(e,c+40))),a=Yt(a.add(i[0]),33).mul(d),o=Rh(e,c,o[1].mul(d),r.add(i[0])),i=Rh(e,c+32,a.add(i[1]),s.add(bt(e,c+16))),[a,r]=[r,a],ra(ra(o[0],i[0],d).add(ty(s).mul(F1)).add(a),ra(o[1],i[1],d).add(r),d)}function w$(e,t){return t==="string"?jl(e):Ph([e],t)}function k$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ph(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=La(e)),J().getBool("DEBUG")&&x1(e,t),k$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Hl(){return J().platform.now()}function I$(e,t){return J().platform.fetch(e,t)}function jl(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function Oh(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var S$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new C$)}profileKernel(e,t,n){let r,s=()=>{r=n()},a,o=Hl();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let c of r)c.dataSync();a=Promise.resolve({kernelMs:Hl()-o})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let c=0;c<r.length;c++){let l=r[c];l.data().then(u=>{T$(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(c=>c.kernelMs),extraInfo:a.then(c=>c.getExtraProfileInfo!=null?c.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function T$(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let s=e[r];if(isNaN(s)||!isFinite(s))return console.warn(`Found ${s} in the result of '${n}'`),!0}return!1}var C$=class{logKernelProfile(e,t,n,r,s,a){let o=typeof r=="number"?Sl(`${r}ms`,9):r.error,i=Sl(e,25),c=t.rank,l=t.size,u=Sl(t.shape.toString(),14),d="";for(let p in s){let h=s[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${c}D ${u} %c${l} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function N$(e,t,n){let r={},s={};for(let c=0;c<t.length;c++)r[t[c].id]=!0;for(let c=0;c<e.length;c++){let l=e[c],u=l.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(r[p.id]){l.outputs.forEach(m=>r[m.id]=!0),h=!0,s[l.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let c=e.length-1;c>=0;c--){let l=e[c],u=l.inputs;for(let d=0;d<l.outputs.length;d++)if(a[l.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[l.id]=!0;break}}let i=[];for(let c=0;c<e.length;c++){let l=e[c];if(s[l.id]&&o[l.id]){let u={};for(let p in l.inputs){let h=l.inputs[p];r[h.id]&&(u[p]=h)}let d=Object.assign({},l);d.inputs=u,d.outputs=l.outputs,i.push(d)}}return i}function _$(e,t,n,r){for(let s=t.length-1;s>=0;s--){let a=t[s],o=[];if(a.outputs.forEach(c=>{let l=e[c.id];l!=null?o.push(l):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let c in a.inputs){if(!(c in i))throw new Error(`Cannot backprop through input ${c}. Available gradients found: ${Object.keys(i)}.`);let l=n(()=>i[c]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${c} must have 'float32' dtype, but has '${l.dtype}'`);let u=a.inputs[c];if(!Xs(l.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${c}' has shape '${l.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=l;else{let d=e[u.id];e[u.id]=r(d,l),d.dispose()}}}}var O1=20,ql=3,ny=7;function E$(e,t,n,r){let s=Ki(t),a=A$(e,t,n,s),o=t.length,i=Mh(e,t,n,s,a),c=["Tensor"];return r&&(c.push(` dtype: ${n}`),c.push(` rank: ${o}`),c.push(` shape: [${t}]`),c.push(" values:")),c.push(i.map(l=>" "+l).join(`
|
|
`)),c.join(`
|
|
`)}function A$(e,t,n,r){let s=vt(t),a=r[r.length-1],o=new Array(a).fill(0),i=t.length,c=n==="complex64"?Xl(e):e;if(i>1)for(let l=0;l<s/a;l++){let u=l*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Kl(c[u+d],0,n).length)}return o}function Kl(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(ny))} + ${parseFloat(e[1].toFixed(ny))}j`:Ys(e)?r=`'${e}'`:n==="bool"?r=M1(e):r=parseFloat(e.toFixed(ny)).toString(),Sl(r,t)}function M1(e){return e===0?"false":"true"}function Mh(e,t,n,r,s,a=!0){let o=n==="complex64"?2:1,i=t[0],c=t.length;if(c===0){if(n==="complex64"){let m=Xl(e);return[Kl(m[0],0,n)]}return n==="bool"?[M1(e[0])]:[e[0].toString()]}if(c===1){if(i>O1){let g=ql*o,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-ql)*o,i*o));return n==="complex64"&&(b=Xl(b),y=Xl(y)),["["+b.map((v,x)=>Kl(v,s[x],n)).join(", ")+", ..., "+y.map((v,x)=>Kl(v,s[i-ql+x],n)).join(", ")+"]"]}let m=n==="complex64"?Xl(e):Array.from(e);return["["+m.map((g,b)=>Kl(g,s[b],n)).join(", ")+"]"]}let l=t.slice(1),u=r.slice(1),d=r[0]*o,p=[];if(i>O1){for(let m=0;m<ql;m++){let g=m*d,b=g+d;p.push(...Mh(e.slice(g,b),l,n,u,s,!1))}p.push("...");for(let m=i-ql;m<i;m++){let g=m*d,b=g+d;p.push(...Mh(e.slice(g,b),l,n,u,s,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,b=g+d;p.push(...Mh(e.slice(g,b),l,n,u,s,m===i-1))}let h=c===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<c;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function Xl(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Gt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=vt(e),n!=null){let r=n.length;O(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||v1(t,this.size),this.strides=Ki(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Mr().makeTensor(this.values,this.shape,this.dtype)}},Mr=null,Qc=null,D$=null;function $$(e){Mr=e}function F$(e){Qc=e}function R$(e){D$=e}var Ee=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=vt(e),this.strides=Ki(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Qc.buffer(this.shape,this.dtype,e)}bufferSync(){return Qc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Xi(this.shape,e,this.dtype==="complex64")}arraySync(){return Xi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Mr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Oh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Mr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Mr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Oh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Mr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Mr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Qc.print(this,e)}clone(){return this.throwIfDisposed(),Qc.clone(this)}toString(e=!1){let t=this.dataSync();return E$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Qc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Mr().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ee(){return Jb("Tensor",()=>Ee)}ee();var sa=class extends Ee{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Xs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Mr().disposeTensor(this),this.dataId=e.dataId,Mr().incRef(this,null)}dispose(){Mr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(sa,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var Lr={};Ae(Lr,{assertTypesMatch:()=>L1,getTensorsInContainer:()=>cy,isTensorInList:()=>O$,makeTypesMatch:()=>Et});var ry;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(ry||(ry={}));var sy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(sy||(sy={}));var ay;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(ay||(ay={}));var oy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(oy||(oy={}));var iy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(iy||(iy={}));var P$={float32:oy,int32:sy,bool:ay,complex64:iy};function Tr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return P$[e][t]}function Lh(e){return Tr(e,"int32")}function Et(e,t){if(e.dtype===t.dtype)return[e,t];let n=Tr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function L1(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function O$(e,t){return t.some(n=>n.id===e.id)}function cy(e){let t=[];return B1(e,t,new Set),t}function B1(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!M$(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),B1(a,t,n))}}function M$(e){return Array.isArray(e)||typeof e=="object"}function uy(e){return e.kernelName!=null}var z1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Yl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new z1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(na(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new S$(this.backendInstance),!0}setupRegisteredKernels(){Fh(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Fh(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof kl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,na(`Initialization of backend ${e} failed`),na(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return na(`Initialization of backend ${e} failed`),na(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:s}=this.initializeBackend(n);if(s||r)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,s=this.readSync(t),a=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,s,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Yl.nextTensorId++}nextVariableId(){return Yl.nextVariableId++}clone(e){let t=z.runKernel(so,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},c={dtype:o};return z.runKernel(Ua,i,c)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!($h(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,c=uy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(uy(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=$h(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let b=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let v=y.map(x=>{if(x.rank!=null)return x;let{dataId:w,shape:T,dtype:N}=x;return this.makeTensorFromDataId(w,T,N)});if(r){let x=this.getTensorsForGradient(h,f,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,m,g),g}}let{inputs:l,attrs:u}=e,d=uy(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(c,l,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),r&&this.addTapeNode(c,l,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:c,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=Qb(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(c=>t[c])):o=s.map(c=>t[c]);let i=n.filter((c,l)=>a[l]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&Ys(e[0])&&(s=e.map(i=>jl(i)));let a=r.write(s,t,n),o=new Ee(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),c=k1(s);this.state.numBytes+=c-i.bytes,i.bytes=c}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new sa(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*jb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof sa||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*jb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=Qb(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=c=>(c=c.map((l,u)=>{if(l==null){let d=n[u],p=Zp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return l}),r(c.length>1?c:c[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=cy(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(s instanceof Ee,()=>"The result y returned by f() must be a tensor.");let a=N$(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?L$(s.shape):n,_$(o,a,c=>this.tidy(c),B$);let i=t.map(c=>o[c.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(c=>{for(let l of c.saved)l.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return O(Zs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),O(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(Zs(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let c=n.gradFunc(o,i),l=Array.isArray(c)?c:[c];O(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(l.every(d=>d instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return l.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Hl(),n=await this.backend.time(e);return n.wallMs=Hl()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new z1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Yl.nextTensorId=0;Yl.nextVariableId=0;function L$(e){let t=qb(vt(e),"float32");return z.makeTensor(t,e,"float32")}function W1(){let e=_1();if(e._tfengine==null){let t=new N1(e);e._tfengine=new Yl(t)}return u$(e._tfengine.ENV),$$(()=>e._tfengine),e._tfengine}var z=W1();function B$(e,t){let n={a:e,b:t};return z.runKernel(Js,n)}var Zl={};Ae(Zl,{isBrowser:()=>V1,isMobile:()=>V$,mockIsMobile:()=>W$});function z$(){return typeof navigator!="undefined"&&navigator!=null}var ly;function W$(e){ly=e}function V$(e){if(ly!==void 0)return ly;if(e||z$()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function V1(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Br=J();Br.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Br.registerFlag("IS_BROWSER",()=>V1());Br.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Br.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Br.registerFlag("PROD",()=>!1);Br.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Br.getBool("DEBUG"));Br.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Br.registerFlag("IS_TEST",()=>!1);Br.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Br.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function ts(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&U1(e,r,[]),r}function U1(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s<e.length;++s)U1(e[s],r,n.concat(s))}function G1(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function A(e,t,n,r="numeric"){if(e instanceof Ee)return G1(r,e.dtype,t,n),e;let s=Xp(e);if(s!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(s=r),G1(r,s,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let c=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${c}'`)}let a=ts(e,s);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?Ph(e,s):La(e,[],!0);return z.makeTensor(i,a,s)}function Jl(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>A(a,`${t}[${o}]`,n,r))}var H1="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+H1;let s=(...a)=>{z.startScope(n);try{let o=r(...a);return Xb(o)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(o),o}catch(o){throw z.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function U$(e,t){let n=A(e,"real","complex"),r=A(t,"imag","complex");yn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return z.runKernel(nh,s)}var aa=W({complex_:U$});function oa(e,t,n,r){if(r==null&&(r=Xp(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Kb(t);let s=vt(t),a=vt(n);O(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],c=o===n.length-1?i!==vt(t.slice(o)):!0;O(n[o]===t[o]||!c,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Ph(e,r):La(e,[],!0),z.makeTensor(e,t,r)}function Xn(e,t,n){let r=ts(e,n);return oa(e,t,r,n)}var dy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Bh=4;async function G$(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<s.length;++o){let i=s[o],c=Array.isArray(e)?e[o].tensor:e[i];if(c.dtype!=="float32"&&c.dtype!=="int32"&&c.dtype!=="bool"&&c.dtype!=="string"&&c.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${c.dtype}`);let l={name:i,shape:c.shape,dtype:c.dtype};if(c.dtype==="string"){let u=new Promise(async d=>{let p=await c.bytes(),h=p.reduce((g,b)=>g+b.length,0)+Bh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let b=p[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);f.set(y,m),m+=Bh,f.set(b,m),m+=b.length}d(f)});r.push(u)}else r.push(c.data());t!=null&&(l.group=t),n.push(l)}let a=await Promise.all(r);return{data:H$(a),specs:n}}function j1(e,t){let n={},r,s=0;for(let a of t){let o=a.name,i=a.dtype,c=a.shape,l=vt(c),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=dy[d.dtype],h=e.slice(s,s+l*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")r===void 0&&(r=Z$()),u=r(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);s+=l*p}else if(i==="string"){let d=vt(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(s,s+Bh))[0];s+=Bh;let f=new Uint8Array(e.slice(s,s+h));u.push(f),s+=h}}else{let d=dy[i],p=e.slice(s,s+l*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let b=0;b<h.length;b++)h[b]=u[b*2],f[b]=u[b*2+1];let m=Xn(h,c,"float32"),g=Xn(f,c,"float32");n[o]=aa(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);s+=l*d}i!=="complex64"&&(n[o]=Xn(u,c,i))}return n}function H$(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var py=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function q1(e){return py?Buffer.byteLength(e):new Blob([e]).size}function j$(e){if(py)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r<s;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function q$(e){if(py){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function hy(e){if(e.length===1)return e[0];let t=0;e.forEach(s=>{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function K1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function X1(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function fy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[r,s]=await t(e.weightsManifest);n.weightSpecs=r,n.weightData=s}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Ql(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:q1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:q1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function K$(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)===0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function X$(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Y$(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Z$(){let e=K$(),t=X$(),n=Y$();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o<r.length;o++){let i=r[o],c=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=c}return new Float32Array(s)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},J$=e=>Ft.registerSaveRouter(e),Q$=e=>Ft.registerLoadRouter(e),eF=e=>Ft.getSaveHandlers(e),tF=(e,t)=>Ft.getLoadHandlers(e,t),my="tensorflowjs",gy=1,Wo="models_store",ia="model_info_store";function Y1(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function by(e){let t=e.result;t.createObjectStore(Wo,{keyPath:"modelPath"}),t.createObjectStore(ia,{keyPath:"modelPath"})}var Vo=class{constructor(e){if(this.indexedDB=Y1(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(my,gy);s.onupgradeneeded=()=>by(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(Wo,"readonly"),c=o.objectStore(Wo).get(this.modelPath);c.onsuccess=()=>{if(c.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(c.result.modelArtifacts)},c.onerror=l=>(a.close(),r(c.error)),o.oncomplete=()=>a.close()}else{let o=Ql(t),i=a.transaction(ia,"readwrite"),c=i.objectStore(ia),l=c.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;l.onsuccess=()=>{u=a.transaction(Wo,"readwrite");let p=u.objectStore(Wo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{c=i.objectStore(ia);let f=c.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(p.error)),f.onerror=m=>(a.close(),r(p.error))}},l.onerror=d=>(a.close(),r(l.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Vo.URL_SCHEME="indexeddb://";var Z1=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Vo.URL_SCHEME)?nF(e.slice(Vo.URL_SCHEME.length)):null;Ft.registerSaveRouter(Z1);Ft.registerLoadRouter(Z1);function nF(e){return new Vo(e)}function rF(e){return e.startsWith(Vo.URL_SCHEME)?e.slice(Vo.URL_SCHEME.length):e}var sF=class{constructor(){this.indexedDB=Y1()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(my,gy);n.onupgradeneeded=()=>by(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(ia,"readonly"),o=s.objectStore(ia).getAll();o.onsuccess=()=>{let i={};for(let c of o.result)i[c.modelPath]=c.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=rF(e),new Promise((t,n)=>{let r=this.indexedDB.open(my,gy);r.onupgradeneeded=()=>by(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(ia,"readwrite"),o=a.objectStore(ia),i=o.get(e),c;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=o.delete(e),u=()=>{c=s.transaction(Wo,"readwrite");let p=c.objectStore(Wo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};l.onsuccess=u,l.onerror=d=>(u(),s.close(),n(i.error))}},i.onerror=l=>(s.close(),n(i.error)),a.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},ks="/",eu="tensorflowjs_models",J1="info",aF="model_topology",oF="weight_specs",iF="weight_data",cF="model_metadata";function Q1(e){return{info:[eu,e,J1].join(ks),topology:[eu,e,aF].join(ks),weightSpecs:[eu,e,oF].join(ks),weightData:[eu,e,iF].join(ks),modelMetadata:[eu,e,cF].join(ks)}}function ek(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function uF(e){let t=e.split(ks);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ks)}function lF(e){return e.startsWith(Uo.URL_SCHEME)?e.slice(Uo.URL_SCHEME.length):e}var Uo=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Q1(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Ql(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,j$(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw ek(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=q$(a),t}};Uo.URL_SCHEME="localstorage://";var tk=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Uo.URL_SCHEME)?dF(e.slice(Uo.URL_SCHEME.length)):null;Ft.registerSaveRouter(tk);Ft.registerLoadRouter(tk);function dF(e){return new Uo(e)}var pF=class{constructor(){O(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=eu+ks,n=ks+J1;for(let r=0;r<this.LS.length;++r){let s=this.LS.key(r);if(s.startsWith(t)&&s.endsWith(n)){let a=uF(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=lF(e);let t=Q1(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return ek(t),n}},tu="://",dr=class{constructor(){this.managers={}}static getInstance(){return dr.instance==null&&(dr.instance=new dr),dr.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(tu)&&(e=e.slice(0,e.indexOf(tu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=dr.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function zh(e){if(e.indexOf(tu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${dr.getSchemes().join(",")}`);return{scheme:e.split(tu)[0],path:e.split(tu)[1]}}async function nk(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Ft.getLoadHandlers(e);O(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=Ft.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=zh(e).scheme,c=zh(e).path,l=i===zh(e).scheme,u=await s.load();n&&l&&await dr.getManager(i).removeModel(c);let d=await o.save(u);return n&&!l&&await dr.getManager(i).removeModel(c),d.modelArtifactsInfo}async function hF(){let e=dr.getSchemes(),t={};for(let n of e){let r=await dr.getManager(n).listModels();for(let s in r){let a=n+tu+s;t[a]=r[s]}}return t}async function fF(e){let t=zh(e);return dr.getManager(t.scheme).removeModel(t.path)}async function mF(e,t){return nk(e,t,!1)}async function gF(e,t){return nk(e,t,!0)}var bF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new bF);try{dr.registerManager(Uo.URL_SCHEME,new pF)}catch(e){}try{dr.registerManager(Vo.URL_SCHEME,new sF)}catch(e){}}var yF={importFetch:()=>kD()},yy,vF=class{constructor(){this.util=ID(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(yy==null&&(yy=yF.importFetch()),yy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new vF);function ze(e,t="float32",n){return t=t||"float32",Kb(e),new Gt(e,t,n)}function xF(e,t){let n=A(e,"x","cast");if(!w1(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return z.runKernel(Ua,r,s)}var ce=W({cast_:xF});function wF(e){let n={x:A(e,"x","clone","string_or_numeric")};return z.runKernel(so,n)}var Is=W({clone_:wF});function rk(e,t=!1){console.log(e.toString(t))}W1();var kF={buffer:ze,cast:ce,clone:Is,print:rk};F$(kF);var Zt={};Ae(Zt,{browserFiles:()=>EF,browserHTTPRequest:()=>RF,concatenateArrayBuffers:()=>hy,copyModel:()=>mF,decodeWeights:()=>j1,encodeWeights:()=>G$,fromMemory:()=>OF,getLoadHandlers:()=>tF,getModelArtifactsForJSON:()=>fy,getModelArtifactsInfoForJSON:()=>Ql,getSaveHandlers:()=>eF,http:()=>wy,isHTTPScheme:()=>xy,listModels:()=>hF,loadWeights:()=>AF,moveModel:()=>gF,registerLoadRouter:()=>Q$,registerSaveRouter:()=>J$,removeModel:()=>fF,weightsLoaderFactory:()=>ik,withSaveHandler:()=>MF});var IF="model",SF=".json",TF=".weights.bin";function sk(e){return new Promise(t=>setTimeout(t)).then(e)}var nu=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(nu.URL_SCHEME)&&(e=e.slice(nu.URL_SCHEME.length)),(e==null||e.length===0)&&(e=IF),this.modelJsonFileName=e+SF,this.weightDataFileName=e+TF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r=X1(e,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=s,await sk(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await sk(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ql(e)}}}};nu.URL_SCHEME="downloads://";var CF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=r=>{let s=JSON.parse(r.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=fy(s,c=>this.loadWeights(c));e(i)},n.onerror=r=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let r=this.checkManifestAndWeightFiles(e),s=n.map(a=>this.loadWeightsFile(a,r[a]));return Promise.all(s).then(a=>[t,hy(a)])}loadWeightsFile(e,t){return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=a.target.result;n(o)},s.onerror=a=>r(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(s=>K1(s.name)),r={};for(let s of e)s.paths.forEach(a=>{let o=K1(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return r}},NF=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nu.URL_SCHEME)?_F(e.slice(nu.URL_SCHEME.length)):null;Ft.registerSaveRouter(NF);function _F(e="model"){return new nu(e)}function EF(e){return new CF(e)}function ak(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=c=>(c.then(l=>{let u=n+ ++s/e.length*(r-n);return t(u),l}),c);function o(c){O(c!=null&&Array.isArray(c)&&c.length>0,()=>"promises must be a none empty array")}function i(c,l){O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${c}`),O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),O(l>=c,()=>`startFraction must be no more than endFraction, but got startFraction ${c} and endFraction ${l}`)}return Promise.all(e.map(a))}async function ok(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await ak(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),c=.5,l=1;return t.onProgress==null?await Promise.all(i):await ak(i,t.onProgress,c,l)}async function AF(e,t="",n,r){return ik(o=>ok(o,{requestInit:r}))(e,t,n)}function ik(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=dy[b]*vt(g.shape),v=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};r!=null?r.forEach((x,w)=>{x===g.name&&(v(),o[w]=!0)}):v(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let c=s.reduce((h,f,m)=>(f&&h.push(m),h),[]),l=[];c.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;l.push(m)})});let u=await e(l),d={},p=0;return c.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x<f;x++)m+=u[p+x].byteLength;let g=new ArrayBuffer(m),b=new Uint8Array(g),y=0;for(let x=0;x<f;x++){let w=new Uint8Array(u[p+x]);b.set(w,y),y+=w.byteLength}a[h].forEach(x=>{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),T=j1(w,[x.manifestEntry]);for(let N in T)d[N]=T[N]}),p+=f}),d}}var DF="application/octet-stream",$F="application/json",vy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r=X1(e,n);t.body.append("model.json",new Blob([JSON.stringify(r)],{type:$F}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:DF}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Ql(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,r=t.weightsManifest;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return fy(t,s=>this.loadWeights(s))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=FF(t),s=this.weightPathPrefix||n,a=[];for(let l of e)a.push(...l.weights);let o=[],i=[];for(let l of e)for(let u of l.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(s+u+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let c=await ok(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,hy(c)]}};vy.URL_SCHEME_REGEX=/^https?:\/\//;function FF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function xy(e){return e.match(vy.URL_SCHEME_REGEX)!=null}var ck=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>xy(r)):n=xy(e),n)return wy(e,t)}return null};Ft.registerSaveRouter(ck);Ft.registerLoadRouter(ck);function wy(e,t){return new vy(e,t)}function RF(e,t){return wy(e,t)}var ky=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},PF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function OF(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new ky(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ky({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ky({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function MF(e){return new PF(e)}var uk={};Ae(uk,{confusionMatrix:()=>VF});function LF(e,t,n=!1,r=!1){let s=A(e,"a","matMul"),a=A(t,"b","matMul");[s,a]=Et(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return z.runKernel(Va,o,i)}var De=W({matMul_:LF});function BF(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:A(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return z.runKernel(go,a,o)}var ru=W({oneHot_:BF});function zF(e,t){let n=A(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return z.runKernel(Po,r,s)}var Re=W({transpose_:zF});function WF(e,t,n){let r=A(e,"labels","confusionMatrix"),s=A(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),O(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),O(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=ru(ce(r,"int32"),n),o=ru(ce(s,"int32"),n),i=Re(a),c=De(i,o);return ce(c,"int32")}var VF=W({confusionMatrix_:WF}),su={};Ae(su,{assertAndGetBroadcastShape:()=>ht,getBroadcastDims:()=>lk,getReductionAxes:()=>Bt});function lk(e,t){let n=e.length,r=[];for(let s=0;s<n;s++){let a=n-1-s,o=e[a]||1;(t[t.length-1-s]||1)>1&&o===1&&r.unshift(a)}return r}function Bt(e,t){let n=[];for(let r=0;r<t.length;r++){let s=e[e.length-r-1],a=t.length-r-1,o=t[a];(s==null||s===1&&o>1)&&n.unshift(a)}return n}function ht(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s<r;s++){let a=e[e.length-s-1];a==null&&(a=1);let o=t[t.length-s-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Go={};Ae(Go,{fromPixels:()=>XF,fromPixelsAsync:()=>qF,toPixels:()=>KF});function Wh(e,t,n){if(Ma(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=ts(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return oa(e,t,r,n)}var Ho;function dk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if($h(Dh,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(Dh,f,m)}let[l,u]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(r||n)d=e.data;else if(a||s||i){if(Ho==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ho=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ho=document.createElement("canvas").getContext("2d");Ho.canvas.width=l,Ho.canvas.height=u,Ho.drawImage(e,0,0,l,u),d=Ho.getImageData(0,0,l,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=l*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Wh(p,[u,l,t],"int32")}function UF(e){return e!=null&&e.data instanceof Uint8Array}function GF(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function HF(e){return e!=null&&e.width!==0&&e.height!==0}function jF(e){return GF()&&!(e instanceof ImageBitmap)&&HF(e)&&!UF(e)}async function qF(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&jF(e)){let r;try{r=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(s){r=null}r!=null&&r.width===e.width&&r.height===e.height?n=r:n=e}else n=e;return dk(n,t)}async function KF(e,t){let n=A(e,"img","toPixels");if(!(e instanceof Ee)){let l=n;n=ce(l,"int32"),l.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,s]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,c=new Uint8ClampedArray(s*r*4);for(let l=0;l<r*s;++l){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[l*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=l*4;c[d+0]=Math.round(u[0]),c[d+1]=Math.round(u[1]),c[d+2]=Math.round(u[2]),c[d+3]=Math.round(u[3])}if(t!=null){t.width=s,t.height=r;let l=t.getContext("2d"),u=new ImageData(c,s,r);l.putImageData(u,0,0)}return n!==e&&n.dispose(),c}var XF=W({fromPixels_:dk}),Iy={};Ae(Iy,{prepareAndValidate:()=>pk});function pk(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(vt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;d<s.length-1;++d)o*=s[d];let i=e.shape,c=s.slice();c.pop();let l=1;for(let d=a;d<n;++d)l*=i[d],c.push(i[d]);let u=[...Ki(e.shape).map(d=>d/l),1].slice(0,a);return[c,o,l,u]}var Sy={};Ae(Sy,{calculateShapes:()=>hk,validateInput:()=>Cy,validateUpdateShape:()=>Ty});function Ty(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank<s)throw new Error(a+` update.rank < ${s}. `);if(e.length<r+(n.rank-s))throw new Error(a+` Output shape length < ${r+(n.rank-s)}`);if(n.rank!==s+e.length-r)throw new Error(a+` update.rank != ${s+e.length-r}`);for(let o=0;o<s;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-s;++o)if(n.shape[o+s]!==e[o+r])throw new Error(a+` updates.shape[${o+s}] (${n.shape[o+s]}) != shape[${o+s}] (${e[o+s]})`)}function Cy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Ty(n,t,e)}function hk(e,t,n){let r=t.shape.length,s=r>1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;d<a;++d)o*=n[d];let i=s<1?1:s,c=vt(t.shape)/i,l=[...Ki(n.slice(0,s)),1],u=vt(n);return{sliceRank:s,numUpdates:c,sliceSize:o,strides:l,outputSize:u}}var Ht={};Ae(Ht,{assertParamsValid:()=>ZF,computeFlatOffset:()=>nR,computeOutShape:()=>QF,getNormalizedAxes:()=>eR,isSliceContinous:()=>tR,maskToAxes:()=>JF,parseSliceParams:()=>kk,sliceInfo:()=>rR,startForAxis:()=>xk,startIndicesWithElidedDims:()=>bk,stopForAxis:()=>wk,stopIndicesWithElidedDims:()=>yk,stridesForAxis:()=>vk,stridesWithElidedDims:()=>fk});var Ny=-2,YF=-1;function ZF(e,t,n){let r=e.shape.length;O(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),O(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s<r;++s)O(t[s]+n[s]<=e.shape[s],()=>`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function JF(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function QF(e,t,n){let r=[];for(let s=0;s<e.length;s++)r[s]=Math.ceil((t[s]-e[s])/n[s]);return r}function fk(e,t,n,r){let s=[...e];for(let a=s.length;a<r.length;a++)s.push(1);for(let a=0;a<n;a++)a===0?s[t]=1:(s.splice(t,0,1),s.pop());return s}function mk(e,t,n){return n<=e?n:n-(t-1)}function gk(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function eR(e,t,n,r,s,a,o,i,c){let l=e.length,u=new Array(l),d=new Array(l),p=new Array(l);if(t.length&&n>0){let h=t[0],f=n+1;u=bk(o,h,f,r,e),d=yk(i,h,f,s,e),p=fk(a,h,f,e)}else for(let h=0;h<l;h++)u[h]=xk(o,r,a,e,h,c),d[h]=wk(i,s,a,e,h,c),p[h]=vk(a,h,c);return{begin:u,end:d,strides:p}}function bk(e,t,n,r,s){let a=[...s],o=gk(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let c=mk(t,n,i),l=r[c];e&1<<c&&(l=0),a[i]=l}return a}function yk(e,t,n,r,s){let a=[...s],o=gk(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let c=mk(t,n,i),l=r[c];e&1<<c&&(l=Number.MAX_SAFE_INTEGER),a[i]=l}for(let i=0;i<a.length;i++){let c=s[i];a[i]<0&&(a[i]+=c),a[i]=Il(0,a[i],s[i])}return a}function vk(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function xk(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<<s||a&1<<s||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let c=r[s];return o<0&&(o+=c),o=Il(0,o,c-1),o}function wk(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<<s||a&1<<s||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let c=r[s];return o<0&&(o+=c),i>0?o=Il(0,o,c):o=Il(-1,o,c-1),o}function tR(e,t,n){let r=n.length;for(let s=0;s<n.length;s++)if(n[s]>1){r=s;break}for(let s=r+1;s<n.length;s++)if(t[s]>0||n[s]!==e[s])return!1;return!0}function nR(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function kk(e,t,n){let r,s=e.shape.length;typeof t=="number"?r=[t,...new Array(s-1).fill(0)]:t.length<s?r=t.concat(new Array(s-t.length).fill(0)):r=t.slice(),r.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.length<s?a=n.concat(new Array(s-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function rR(e,t,n,r,s,a,o,i,c){let l;if(r==null?(l=new Array(t.length),l.fill(1)):l=r,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:l.slice(),beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:c};for(let v=0;v<d.dims;v++)u&&(1<<v&i)!==0&&d.numAddAxisAfterEllipsis++,1<<v&o&&(u=!0);u||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};sR(d,p);let h=!0,f=!0,m=!0,g=[],b=[];for(let v=0;v<e.length;++v){if(p.strides[v]===0)throw Error(`strides[${v}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<v),w=e[v];if(w===-1){g.push(x?1:-1);continue}let T=[p.beginMask&1<<v,p.endMask&1<<v],N=[p.strides[v]>0?0:-1,p.strides[v]>0?w:w-1];if(x&&p.strides[v]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[v]===1;let $=!!(p.beginMask&1<<v&&p.endMask&1<<v);if(p.beginValid&&p.endValid){if(x){let R=p.begin[v]<0?w+p.begin[v]:p.begin[v];if(p.begin[v]=R,p.end[v]=p.begin[v]+1,R<0||R>=w)throw Error(`slice index ${p.begin[v]} of dimension ${v} out of bounds.`)}else p.begin[v]=Ik(p.begin[v],0,p.strides[v],w,T,N),p.end[v]=Ik(p.end[v],1,p.strides[v],w,T,N);let F=p.strides[v]===1&&p.begin[v]===0&&p.end[v]===w;h=h&&F,f=f&&(v===0&&p.strides[v]===1||F)}else h=h&&p.strides[v]===1&&$,f=f&&(v===0&&p.strides[v]===1||$);let D,P=!1;if(p.beginValid&&p.endValid?(D=p.end[v]-p.begin[v],P=!0):x?(D=1,P=!0):$&&w>=0&&(p.strides[v]<0?D=-w:D=w,P=!0),P){let F;D===0||D<0!=p.strides[v]<0?F=0:F=Math.trunc(D/p.strides[v])+(D%p.strides[v]!==0?1:0),g.push(F)}else g.push(-1)}for(let v=0;v<p.finalShapeGatherIndices.length;++v){let x=p.finalShapeGatherIndices[v];x>=0?b.push(g[x]):x===Ny&&b.push(1)}return{finalShapeSparse:b.filter((v,x)=>p.finalShapeGatherIndices[x]!==Ny),finalShape:b,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function sR(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let r=0;r<e.dims;r++)if(1<<r&e.ellipsisMask){let s=Math.min(t.dims-(e.dims-r)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<s;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=r}else if(1<<r&e.newAxisMask)t.finalShapeGatherIndices.push(Ny),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[r]),e.end!=null&&(t.end[n]=e.end[r]),t.strides[n]=e.strides[r],e.beginMask&1<<r&&(t.beginMask|=1<<n),e.endMask&1<<r&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<r?(t.finalShapeGatherIndices.push(YF),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(r)),t.inputShapeGatherIndicesSparse[n]=r,n++}}function Ik(e,t,n,r,s,a){if(s[t])return n>0?a[t]:a[t+1&1];{let o=e<0?r+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var ie={};Ae(ie,{Serializable:()=>Sk,SerializationMap:()=>jo,registerClass:()=>ca});var Sk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},jo=class{constructor(){this.classNameMap={}}static getMap(){return jo.instance==null&&(jo.instance=new jo),jo.instance}static register(e){jo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ca(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),jo.register(e)}var Tk={};Ae(Tk,{TEST_EPSILON_FLOAT16:()=>Ck,encodeStrings:()=>Nk,expectArrayBuffersEqual:()=>dR,expectArraysClose:()=>oR,expectArraysEqual:()=>cR,expectNumbersClose:()=>uR,expectPromiseToFail:()=>iR,expectValuesInRange:()=>lR,testEpsilon:()=>_y});var aR=.001,Ck=.1;function oR(e,t,n){return n==null&&(n=_y()),Ey(e,t,(r,s)=>Ay(r,s,n))}function _y(){return z.backend.floatPrecision()===32?aR:Ck}function Ey(e,t,n){let r=!0;if((hn(e)||hn(t))&&(r=!1),hn(e)&&hn(t)&&(r=!0),r){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=ts(e),i=ts(t);if(!Xs(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let s=hn(e)?e:La(e),a=hn(t)?t:La(t);if(s.length!==a.length)throw new Error(`Arrays have different lengths actual: ${s.length} vs expected: ${a.length}.
|
|
Actual: ${s}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=s[o],c=a[o];if(!n(i,c))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${c}.
|
|
Actual: ${s}.
|
|
Expected: ${a}.`)}}function iR(e,t){e().then(()=>t.fail(),()=>t())}function cR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ys(e)||Ys(e[0])||Ys(t)||Ys(t[0])?Ey(e,n,(r,s)=>r==s):Ey(e,t,(r,s)=>Ay(r,s,0))}function uR(e,t,n){if(n==null&&(n=_y()),!Ay(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Ay(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function lR(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function dR(e,t){let n=new Float32Array(e),r=new Float32Array(t);if(n.length!==r.length)throw new Error(`Expected ArrayBuffer to be of length ${r.length}, but it was ${n.length}`);for(let s=0;s<r.length;s++)if(n[s]!==r[s])throw new Error(`Expected ArrayBuffer value at ${s} to be ${r[s]} but got ${n[s]} instead`)}function Nk(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Nk(n):e[t]=jl(n)}return e}var pR="3.13.0";function hR(){J().set("PROD",!0)}function fR(){J().set("DEBUG",!0)}function mR(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Dy(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}R$(Dy);function gR(){z.disposeVariables()}function ns(){return z}function Vh(){return z.memory()}function bR(e){return z.profile(e)}function M(e,t){return z.tidy(e,t)}function $e(e){cy(e).forEach(n=>n.dispose())}function Jt(e){return z.keep(e)}function yR(e){return z.time(e)}function vR(e){return z.setBackend(e)}function xR(){return z.ready()}function wR(){return z.backendName}function kR(e){z.removeBackend(e)}function IR(e){return z.findBackend(e)}function SR(e){return z.findBackendFactory(e)}function Uh(e,t,n=1){return z.registerBackend(e,t,n)}function _k(){return z.backend}function TR(e,t){J().setPlatform(e,t)}function CR(e,t){let n=A(e,"a","add"),r=A(t,"b","add");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel(Js,s)}var Y=W({add_:CR});function NR(e,t){let n=A(e,"a","floorDiv"),r=A(t,"b","floorDiv");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel(to,s)}var Gh=W({floorDiv_:NR});function _R(e,t){let n=A(e,"a","div"),r=A(t,"b","div");if([n,r]=Et(n,r),n.dtype==="int32"&&r.dtype==="int32")return Gh(n,r);let s={a:n,b:r},a={};return z.runKernel(Za,s,a)}var me=W({div_:_R});function ER(e,t){let n=A(e,"a","mul"),r=A(t,"b","mul");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel(mo,s)}var V=W({mul_:ER});function AR(e){let t=A(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(Nl,n)}else{let n={x:t};return z.runKernel(Yi,n)}}var zt=W({abs_:AR});function DR(e){let n={x:A(e,"x","acos")};return z.runKernel(Zi,n)}var $y=W({acos_:DR});function $R(e){let n={x:A(e,"x","acosh")};return z.runKernel(Ji,n)}var Fy=W({acosh_:$R});function FR(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>A(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!Xs(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return z.runKernel(Ba,r)}var Ek=W({addN_:FR});function RR(e,t=null,n=!1){let s={x:A(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(Qi,s,a)}var Hh=W({all_:RR});function PR(e,t=null,n=!1){let s={x:A(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(ec,s,a)}var ed=W({any_:PR});function OR(e,t=0){let r={x:A(e,"x","argMax")},s={axis:t};return z.runKernel(za,r,s)}var qo=W({argMax_:OR});function MR(e,t=0){let r={x:A(e,"x","argMin")},s={axis:t};return z.runKernel(Tl,r,s)}var Ry=W({argMin_:MR});function LR(e){let n={x:A(e,"x","asin")};return z.runKernel(tc,n)}var Py=W({asin_:LR});function BR(e){let n={x:A(e,"x","asinh")};return z.runKernel(nc,n)}var Oy=W({asinh_:BR});function zR(e){let n={x:A(e,"x","atan")};return z.runKernel(rc,n)}var My=W({atan_:zR});function WR(e,t){let n=A(e,"a","atan2"),r=A(t,"b","atan2");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel(ac,s)}var Ly=W({atan2_:WR});function VR(e){let n={x:A(e,"x","atanh")};return z.runKernel(sc,n)}var By=W({atanh_:VR});function UR(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],c=$k(s);return td(e,i,n,a,r,null,null,c)}function Ak(e,t,n,r,s,a,o="channelsLast"){let[i,c]=jh(t),l;if(o==="channelsLast")l=[i,c,e[3],e[3]];else if(o==="channelsFirst")l=[i,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return td(e,l,n,r,s,a,!1,o)}function GR(e,t,n,r,s,a,o="NDHWC"){let[i,c,l]=Wy(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,c,l,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,c,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Dk(e,u,n,r,s,!1,d,a)}function td(e,t,n,r,s,a,o=!1,i="channelsLast"){let[c,l,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[c,l,u,d]=e;else if(i==="channelsFirst")[c,d,l,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=jh(n),[b,y]=jh(r),v=au(p,b),x=au(h,y),{padInfo:w,outHeight:T,outWidth:N}=qR(s,l,u,m,g,v,x,a,i),$=o?f*d:f,D;return i==="channelsFirst"?D=[c,$,T,N]:i==="channelsLast"&&(D=[c,T,N,$]),{batchSize:c,dataFormat:i,inHeight:l,inWidth:u,inChannels:d,outHeight:T,outWidth:N,outChannels:$,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:y,inShape:e,outShape:D,filterShape:t}}function Dk(e,t,n,r,s,a=!1,o="channelsLast",i){let[c,l,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[c,l,u,d,p]=e;else if(o==="channelsFirst")[c,p,l,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[b,y,v]=Wy(n),[x,w,T]=Wy(r),N=au(h,x),$=au(f,w),D=au(m,T),{padInfo:P,outDepth:F,outHeight:R,outWidth:C}=KR(s,l,u,d,b,y,v,N,$,D,i),L=a?g*p:g,G;return o==="channelsFirst"?G=[c,L,F,R,C]:o==="channelsLast"&&(G=[c,F,R,C,L]),{batchSize:c,dataFormat:o,inDepth:l,inHeight:u,inWidth:d,inChannels:p,outDepth:F,outHeight:R,outWidth:C,outChannels:L,padInfo:P,strideDepth:b,strideHeight:y,strideWidth:v,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:$,effectiveFilterWidth:D,dilationDepth:x,dilationHeight:w,dilationWidth:T,inShape:e,outShape:G,filterShape:t}}function HR(e,t,n,r,s){r==null&&(r=zy(e,t,n));let a=e[0],o=e[1],i=Ko((a-t+2*r)/n+1,s),c=Ko((o-t+2*r)/n+1,s);return[i,c]}function jR(e,t,n,r,s,a){s==null&&(s=zy(e,t,r));let o=e[0],i=e[1],c=e[2],l=Ko((o-t+2*s)/r+1,a),u=Ko((i-t+2*s)/r+1,a),d=Ko((c-t+2*s)/r+1,a);return[l,u,d,n]}function zy(e,t,n,r=1){let s=au(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function jh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Wy(e){return typeof e=="number"?[e,e,e]:e}function au(e,t){return t<=1?e:e+(e-1)*(t-1)}function qR(e,t,n,r,s,a,o,i,c){let l,u,d;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=HR([t,n],a,r,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/r),d=Math.ceil(n/s);let p=Math.max(0,(u-1)*r+a-t),h=Math.max(0,(d-1)*s+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),b=h-g;l={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let p=c==="channelsLast"?e[1][0]:e[2][0],h=c==="channelsLast"?e[1][1]:e[2][1],f=c==="channelsLast"?e[2][0]:e[3][0],m=c==="channelsLast"?e[2][1]:e[3][1];l={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ko((t-a+p+h)/r+1,i),d=Ko((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:u,outWidth:d}}function KR(e,t,n,r,s,a,o,i,c,l,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=jR([t,n,r,1],i,1,s,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/s),h=Math.ceil(n/a),f=Math.ceil(r/o);let m=(p-1)*s+i-t,g=(h-1)*a+c-n,b=(f-1)*o+l-r,y=Math.floor(m/2),v=m-y,x=Math.floor(g/2),w=g-x,T=Math.floor(b/2),N=b-T;d={top:x,bottom:w,left:T,right:N,front:y,back:v,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/s),h=Math.ceil((n-c+1)/a),f=Math.ceil((r-l+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Ko(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ua(e){let[t,n,r]=jh(e);return t===1&&n===1&&r===1}function rs(e,t){return ua(e)||ua(t)}function $k(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function xn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(qi(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(r=>{r.forEach(s=>{O(qi(s),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${s}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function XR(e,t){let r={x:A(e,"x","reshape","string_or_numeric")},s={shape:t};return z.runKernel(Pc,r,s)}var U=W({reshape_:XR});function YR(e,t,n,r,s){let a=A(e,"x","avgPool","float32"),o=1;O(rs(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,c=!1;a.rank===3&&(c=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),xn("avgPool",r,s);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=z.runKernel(Wa,l,u);return d=ce(d,a.dtype),c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var pr=W({avgPool_:YR});function ZR(e,t,n,r,s,a="NDHWC"){let o=A(e,"x","avgPool3d","float32"),i=o,c=!1;o.rank===4&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),xn("avgPool3d",r,s);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=z.runKernel(Cl,l,u);return d=ce(d,i.dtype),c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Vy=W({avgPool3d_:ZR});function JR(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Jl(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Is(n[0]);let r=n,s={axis:t};return z.runKernel(ic,r,s)}var tt=W({concat_:JR});function QR(e){let n={x:A(e,"x","sigmoid","float32")};return z.runKernel(No,n)}var hr=W({sigmoid_:QR});function eP(e,t,n){let r=A(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return z.runKernel(Bc,s,a)}var We=W({slice_:eP});function tP(e){let n={x:A(e,"x","tanh","float32")};return z.runKernel(Ro,n)}var Xo=W({tanh_:tP});function nP(e,t,n,r,s,a){let o=A(e,"forgetBias","basicLSTMCell"),i=A(t,"lstmKernel","basicLSTMCell"),c=A(n,"lstmBias","basicLSTMCell"),l=A(r,"data","basicLSTMCell"),u=A(s,"c","basicLSTMCell"),d=A(a,"h","basicLSTMCell"),p=tt([l,d],1),h=De(p,i),f=Y(h,c),m=f.shape[0],g=f.shape[1]/4,b=[m,g],y=We(f,[0,0],b),v=We(f,[0,g],b),x=We(f,[0,g*2],b),w=We(f,[0,g*3],b),T=Y(V(hr(y),Xo(v)),V(u,hr(Y(o,x)))),N=V(Xo(T),hr(w));return[T,N]}var rP=W({basicLSTMCell_:nP});function sP(e,t,n){let r=A(e,"x","batchToSpaceND"),s=t.reduce((i,c)=>i*c);O(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(r.shape[0]%s===0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return z.runKernel(oc,a,o)}var nd=W({batchToSpaceND_:sP});function aP(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function oP(e,t,n,r,s,a){a==null&&(a=.001);let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;r!=null&&(u=A(r,"offset","batchNorm")),O(i.rank===c.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(l==null||i.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:aP(o),scale:l,offset:u,mean:i,variance:c},h={varianceEpsilon:a},f=z.runKernel(no,p,h);return U(f,o.shape)}var Ss=W({batchNorm_:oP});function iP(e,t,n,r,s,a){let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;return r!=null&&(u=A(r,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${c.rank}.`),l!=null&&O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Ss(o,i,c,u,l,a)}var Fk=W({batchNorm2d_:iP});function cP(e,t,n,r,s,a){let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;return r!=null&&(u=A(r,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${c.rank}.`),l!=null&&O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Ss(o,i,c,u,l,a)}var Rk=W({batchNorm3d_:cP});function uP(e,t,n,r,s,a){let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;return r!=null&&(u=A(r,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${c.rank}.`),l!=null&&O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Ss(o,i,c,u,l,a)}var Pk=W({batchNorm4d_:uP});function lP(e,t,n){let r=A(e,"x","bincount"),s=A(t,"weights","bincount");O(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return z.runKernel(eh,a,o)}var Uy=W({bincount_:lP});function dP(e,t){let n=A(e,"s0","broadcastArgs","int32"),r=A(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(r.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${r.rank}`);let s={s0:n,s1:r};return z.runKernel(th,s)}var Ok=W({broadcastArgs_:dP});function pP(e,t){let n=A(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let s=n.shape,a=Array.from(t);for(let l=t.length-1;l>=0;l--)if(s[l]===t[l])a[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Is(n);let i={x:n},c={reps:a};return z.runKernel(ea,i,c)}var ou=W({broadcastTo_:pP});function hP(e){let n={x:A(e,"x","ceil","float32")};return z.runKernel(Ga,n)}var Gy=W({ceil_:hP});function fP(e,t,n){let r=A(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Qs,s,a)}var Qt=W({clipByValue_:fP});function mP(e){return tt(e,0)}var Mk=W({concat1d_:mP});function gP(e,t){return tt(e,t)}var Lk=W({concat2d_:gP});function bP(e,t){return tt(e,t)}var Bk=W({concat3d_:bP});function yP(e,t){return tt(e,t)}var zk=W({concat4d_:yP});function vP(e,t,n,r,s="NHWC",a=[1,1],o){let i=A(e,"x","conv2d","float32"),c=A(t,"filter","conv2d","float32"),l=i,u=!1;i.rank===3&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${c.rank}.`),xn("conv2d",r,o);let d=s==="NHWC"?l.shape[3]:l.shape[1];O(d===c.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${c.shape[2]}.`),O(rs(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:l,filter:c},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=z.runKernel(Ha,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Pt=W({conv2d_:vP});function xP(e,t,n,r,s="NWC",a=1,o){let i=A(e,"x","conv1d"),c=A(t,"filter","conv1d"),l=i,u=!1;i.rank===2&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1]])),O(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),O(c.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${c.rank}.`),xn("conv1d",r,o),O(l.shape[2]===c.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${c.shape[1]}.`),O(rs(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=U(c,[1,c.shape[0],c.shape[1],c.shape[2]]),p=U(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Pt(p,d,[1,n],r,"NHWC",[1,a],o);return u?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var qh=W({conv1d_:xP});function wP(e,t,n,r,s,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,c=t,l=!1;t.rank===3&&(l=!0,c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(c.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${c.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?c.shape[3]:c.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),xn("conv2dDerInput",s,o);let p={dy:c,filter:n},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=z.runKernel(ja,p,h);return l?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Hy=W({conv2DBackpropInput_:wP});function kP(e,t,n,r,s,a){let o=A(e,"x","conv2dTranspose"),i=A(t,"filter","conv2dTranspose");return Hy(n,o,i,r,s,"NHWC",a)}var Kh=W({conv2dTranspose_:kP});function IP(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=A(e,"x","conv3d"),i=A(t,"filter","conv3d"),c=o,l=!1;o.rank===4&&(l=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(c.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${c.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(c.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${c.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(rs(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let u={x:c,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},p=z.runKernel(_l,u,d);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var jy=W({conv3d_:IP});function SP(e,t,n,r,s){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let c=a[4],l=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(c===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[3]}.`),O(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},p=z.runKernel(ah,u,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Wk=W({conv3DBackpropInput_:SP});function TP(e,t,n,r,s){let a=A(e,"x","conv3dTranspose"),o=A(t,"filter","conv3dTranspose");return Wk(n,a,o,r,s)}var Vk=W({conv3dTranspose_:TP});function CP(e){let n={x:A(e,"x","cos","float32")};return z.runKernel(qa,n)}var rd=W({cos_:CP});function NP(e){let n={x:A(e,"x","cosh","float32")};return z.runKernel(Ka,n)}var Xh=W({cosh_:NP});function _P(e,t=0,n=!1,r=!1){let a={x:A(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return z.runKernel(Xa,a,o)}var Yh=W({cumsum_:_P});function EP(e,t,n,r=!1){let s=A(e,"x","denseBincount"),a=A(t,"weights","denseBincount");O(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),O(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return z.runKernel(oh,o,i)}var Uk=W({denseBincount_:EP});function AP(e,t,n="NHWC"){let r=A(e,"x","depthToSpace","float32"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),O(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},c={blockSize:t,dataFormat:n};return z.runKernel(uc,i,c)}var qy=W({depthToSpace_:AP});function DP(e,t,n,r,s="NHWC",a=[1,1],o){let i=A(e,"x","depthwiseConv2d","float32"),c=A(t,"filter","depthwiseConv2d","float32"),l=i,u=!1;i.rank===3&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),xn("depthwiseConv2d",r,o);let d={x:l,filter:c},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},h=z.runKernel(Ya,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var la=W({depthwiseConv2d_:DP});function $P(e){let n={x:A(e,"x","diag")};return z.runKernel(uh,n)}var FP=W({diag_:$P});function RP(e,t,n,r,s=[1,1],a="NHWC"){let o=A(e,"x","dilation2d"),i=A(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let c=o,l=!1;o.rank===3&&(c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=!0);let u={x:c,filter:i},d={strides:n,pad:r,dilations:s},p=z.runKernel(El,u,d);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ky=W({dilation2d_:RP});function PP(e,t){let n=A(e,"a","equal","string_or_numeric"),r=A(t,"b","equal","string_or_numeric");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(dc,s)}var Yn=W({equal_:PP});function OP(e,t,n){let r=A(t,"a","where"),s=A(n,"b","where"),a=A(e,"condition","where","bool"),o=ht(ht(a.shape,r.shape),s.shape),i=ou(a,o),c=ou(r,o),l=ou(s,o),u={condition:i,t:c,e:l};return z.runKernel(Mc,u)}var fn=W({where_:OP});function MP(e){let n={x:A(e,"x","zerosLike")};return z.runKernel(Yc,n)}var He=W({zerosLike_:MP});function LP(e,t){let n=A(e,"a","div"),r=A(t,"b","div");[n,r]=Et(n,r);let s=me(n,r),a=He(s),o=Yn(r,a);return fn(o,a,s)}var Xy=W({divNoNan_:LP});function BP(e,t){let n=A(e,"t1","dot"),r=A(t,"t2","dot");O((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(O(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=U(n,[1,-1]),i=U(r,[-1,1]),c=De(o,i);return U(c,[])}else if(n.rank===1&&r.rank===2){let o=U(n,[1,-1]),i=U(r,[r.shape[0],r.shape[1]]),c=De(o,i);return U(c,[c.size])}else if(n.rank===2&&r.rank===1){let o=U(r,[-1,1]),i=De(n,o);return U(i,[i.size])}else{let o=U(r,[r.shape[0],r.shape[1]]);return De(n,o)}}var Gk=W({dot_:BP});function zP(e,...t){let n=t.map((s,a)=>A(s,`tensors${a}`,"einsum")),r={equation:e};return z.runKernel(ph,n,r)}var Hk=W({einsum_:zP});function WP(e){let n={x:A(e,"x","elu","float32")};return z.runKernel(Ja,n)}var iu=W({elu_:WP});function VP(e){let t=A(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return z.runKernel(lc,n)}var Yy=W({erf_:VP});function UP(e){let n={x:A(e,"x","exp")};return z.runKernel(Qa,n)}var mn=W({exp_:UP});function GP(e,t=0){let n=A(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return z.runKernel(pc,r,s)}var gn=W({expandDims_:GP});function HP(e){let n={x:A(e,"x","expm1")};return z.runKernel(hc,n)}var Zy=W({expm1_:HP});function jP(e,t){let n=A(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return z.runKernel(ea,r,s)}var On=W({tile_:jP});function qP(e,t,n,r="float32"){t==null&&(t=e);let s=ze([e,t],r),a=e<=t?e:t;for(let i=0;i<a;++i)s.set(1,i,i);let o=U(s.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return On(gn(o,0),[n[0],1,1]);if(n.length===2)return On(gn(gn(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return On(gn(gn(gn(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Jy=W({eye_:qP});function wn(e,t,n){let r={shape:e,value:t,dtype:n};return z.runKernel(Al,{},r)}function KP(e){let n={x:A(e,"x","floor","float32")};return z.runKernel(eo,n)}var cu=W({floor_:KP});function XP(e,t,n=0,r=0){let s=A(e,"x","gather"),a=A(t,"indices","gather","int32"),o={x:s,indices:a},i={axis:n,batchDims:r};return z.runKernel(mc,o,i)}var Yo=W({gather_:XP});function YP(e,t){let n=A(e,"a","greater","string_or_numeric"),r=A(t,"b","greater","string_or_numeric");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(bc,s)}var Mn=W({greater_:YP});function ZP(e,t){let n=A(e,"a","greaterEqual","string_or_numeric"),r=A(t,"b","greaterEqual","string_or_numeric");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ro,s)}var da=W({greaterEqual_:ZP});function JP(e){let n={input:A(e,"input","imag")};return z.runKernel(gh,n)}var Zh=W({imag_:JP});function QP(e){let n={x:A(e,"x","isFinite")};return z.runKernel(yc,n)}var jk=W({isFinite_:QP});function eO(e){let n={x:A(e,"x","isInf")};return z.runKernel(vc,n)}var qk=W({isInf_:eO});function tO(e){let n={x:A(e,"x","isNaN")};return z.runKernel(xc,n)}var Qy=W({isNaN_:tO});function nO(e,t=.2){let r={x:A(e,"x","leakyRelu")},s={alpha:t};return z.runKernel(ao,r,s)}var sd=W({leakyRelu_:nO});function rO(e,t){let n=A(e,"a","less","string_or_numeric"),r=A(t,"b","less","string_or_numeric");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(wc,s)}var Jh=W({less_:rO});function sO(e,t){let n=A(e,"a","lessEqual","string_or_numeric"),r=A(t,"b","lessEqual","string_or_numeric");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(kc,s)}var pa=W({lessEqual_:sO});function Kk(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return z.runKernel(bh,{},r)}function aO(e,t=5,n=1,r=1,s=.5){let a=A(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(qi(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let c={x:o},l={depthRadius:t,bias:n,alpha:r,beta:s},u=z.runKernel(Fl,c,l);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var ev=W({localResponseNormalization_:aO});function oO(e){let n={x:A(e,"x","log","float32")};return z.runKernel(oo,n)}var Zn=W({log_:oO});function iO(e){let n={x:A(e,"x","log1p")};return z.runKernel(Ic,n)}var ad=W({log1p_:iO});function cO(e){return O(Zs(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=A(t,"x","tf.grad","string_or_numeric"),s=n!=null?A(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(r),[r],s);return s!=null&&yn(a.shape,s.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Qh(o),o[0]})}}function uO(e){return O(Zs(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Jl(t,"args","tf.grads","string_or_numeric"),s=n!=null?A(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(...r),r,s);return s!=null&&yn(a.shape,s.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Qh(o),o})}}function lO(e){return O(Zs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:s}=z.gradients(()=>e(t),[t],n);return Qh(r),{grad:r[0],value:s}}}function dO(e){return O(Zs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(s=>s instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=z.gradients(()=>e(...t),t,n);return n!=null&&yn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Qh(r.grads),r}}function Xk(e,t){O(Zs(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(l=>l instanceof sa),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in z.registeredVariables)t.push(z.registeredVariables[l])}let r=n?t.filter(l=>!l.trainable):null,s=t.length;t=t.filter(l=>l.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=z.gradients(e,t,null,a);O(i.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let c={};return t.forEach((l,u)=>{i[u]!=null&&(c[l.name]=i[u])}),r!=null&&r.forEach(l=>c[l.name]=null),{value:o,grads:c}}function ss(e){return z.customGrad(e)}function Qh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function pO(e){let n={x:A(e,"x","neg")};return z.runKernel(Cc,n)}var St=W({neg_:pO});function hO(e){let n={x:A(e,"x","softplus")};return z.runKernel(Vc,n)}var Zo=W({softplus_:hO});function fO(e){let t=A(e,"x","logSigmoid");return ss(r=>({value:St(Zo(St(r))),gradFunc:o=>V(o,hr(St(r)))}))(t)}var Yk=W({logSigmoid_:fO});function mO(e,t=null,n=!1){let s={x:A(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(io,s,a)}var Cr=W({max_:mO});function gO(e,t){let n=A(e,"a","sub"),r=A(t,"b","sub");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel($o,s)}var fe=W({sub_:gO});function bO(e,t=null,n=!1){let r=A(e,"x","sum");r.dtype==="bool"&&(r=ce(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return z.runKernel(Eo,s,a)}var xe=W({sum_:bO});function yO(e,t=-1){let n=A(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ss((s,a)=>{let o=!0,i=Cr(s,t,!0),c=fe(s,i),l=fe(ce(c,"float32"),Zn(xe(mn(c),t,o)));return a([l]),{value:l,gradFunc:(d,p)=>{let[h]=p,f=!0,m=mn(h);return fe(d,V(xe(d,t,f),m))}}})(n)}var ef=W({logSoftmax_:yO});function tv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Zk(e,t,n){let r=e.length+t.length,s=[],a=0,o=0;for(let i=0;i<r;i++)n.indexOf(i)===-1?s.push(e[a++]):s.push(t[o++]);return s}function Jk(e,t){let n=[],r=e.length;for(let a=0;a<r;a++)t.indexOf(a)===-1&&n.push(e[a]);let s=t.map(a=>e[a]);return[n,s]}function Jo(e,t){let n=t.map(r=>1);return Zk(e,n,t)}function vO(e,t,n){O(tv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Qk(e,t){if(tv(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function nv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function xO(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function wO(e,t=null,n=!1){let r=A(e,"x","logSumExp"),s=Sr(t,r.shape),a=Cr(r,s,!0),o=fe(r,a),i=mn(o),c=xe(i,s),l=Zn(c),u=Y(U(a,l.shape),l);if(n){let d=Jo(u.shape,s);return U(u,d)}return u}var rv=W({logSumExp_:wO});function kO(e,t){let n=A(e,"a","logicalAnd","bool"),r=A(t,"b","logicalAnd","bool");ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(Sc,s)}var Nr=W({logicalAnd_:kO});function IO(e){let n={x:A(e,"x","logicalNot","bool")};return z.runKernel(Dl,n)}var od=W({logicalNot_:IO});function SO(e,t){let n=A(e,"a","logicalOr","bool"),r=A(t,"b","logicalOr","bool");ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel($l,s)}var tf=W({logicalOr_:SO});function TO(e,t){let n=A(e,"a","logicalXor","bool"),r=A(t,"b","logicalXor","bool");return ht(n.shape,r.shape),Nr(tf(e,t),od(Nr(e,t)))}var eI=W({logicalXor_:TO});function CO(e,t,n,r,s){let a=A(e,"x","maxPool"),o=1,i=a,c=!1;a.rank===3&&(c=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(rs(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),xn("maxPool",r,s);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=z.runKernel(uo,l,u);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ot=W({maxPool_:CO});function NO(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=A(e,"x","maxPool3d"),i=o,c=!1;o.rank===4&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),xn("maxPool3d",r,s);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=z.runKernel(Rl,l,u);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var sv=W({maxPool3d_:NO});function _O(e,t,n,r,s=!1){let o={x:A(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},c=z.runKernel(wh,o,i);return{result:c[0],indexes:c[1]}}var tI=W({maxPoolWithArgmax_:_O});function EO(e,t){let n=A(e,"a","maximum"),r=A(t,"b","maximum");[n,r]=Et(n,r),n.dtype==="bool"&&(n=ce(n,"int32"),r=ce(r,"int32")),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(co,s)}var as=W({maximum_:EO});function AO(e,t=null,n=!1){let s={x:A(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(lo,s,a)}var At=W({mean_:AO});function Tt(e,t="float32"){if(t==="complex64"){let r=Tt(e,"float32"),s=Tt(e,"float32");return aa(r,s)}let n=Zp(vt(e),t);return z.makeTensor(n,e,t)}function Jn(e,t="float32"){if(t==="complex64"){let r=Jn(e,"float32"),s=Tt(e,"float32");return aa(r,s)}let n=qb(vt(e),t);return z.makeTensor(n,e,t)}function DO(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=A(e,"x","meshgrid",e instanceof Ee?e.dtype:"float32");if(t===void 0)return[r];let s=A(t,"y","meshgrid",t instanceof Ee?t.dtype:"float32"),a=vt(r.shape),o=vt(s.shape);return n==="xy"?(r=U(r,[1,-1]),s=U(s,[-1,1]),[De(Jn([o,1],r.dtype),r),De(s,Jn([1,a],s.dtype))]):(r=U(r,[-1,1]),s=U(s,[1,-1]),[De(r,Jn([1,o],r.dtype)),De(Jn([a,1],s.dtype),s)])}function $O(e,t=null,n=!1){let s={x:A(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(po,s,a)}var id=W({min_:$O});function FO(e,t){let n=A(e,"a","minimum"),r=A(t,"b","minimum");[n,r]=Et(n,r),n.dtype==="bool"&&(n=ce(n,"int32"),r=ce(r,"int32")),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ho,s)}var uu=W({minimum_:FO});function RO(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=A(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i<r.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return z.runKernel(fo,o,a)}var av=W({mirrorPad_:RO});function PO(e,t){let n=A(e,"a","mod"),r=A(t,"b","mod");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel(Tc,s)}var ov=W({mod_:PO});function OO(e){let t=A(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ut=W({square_:OO});function MO(e,t=null,n=!1){e=A(e,"x","moments");let r=Sr(t,e.shape),s=At(e,r,n),a=s.shape;n||(a=Jo(s.shape,r));let o=ut(fe(ce(e,"float32"),U(s,a))),i=At(o,r,n);return{mean:s,variance:i}}var nf=W({moments_:MO});function LO(e,t,n,r){let s=A(t,"data","multiRNNCell"),a=Jl(n,"c","multiRNNCell"),o=Jl(r,"h","multiRNNCell"),i=s,c=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);c.push(p[0]),c.push(p[1]),i=p[1]}let l=[],u=[];for(let d=0;d<c.length;d+=2)l.push(c[d]),u.push(c[d+1]);return[l,u]}var BO=W({multiRNNCell_:LO});function zO(e,t,n,r=!1){let s=A(e,"logits","multinomial"),a=s.size,o=s.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let c={logits:o===1?U(s,[1,-1]):s},l={numSamples:t,seed:n,normalized:r},u=z.runKernel(kh,c,l);return o===1?U(u,[u.size]):u}var nI=W({multinomial_:zO});function WO(e,t){let n=A(e,"a","notEqual","string_or_numeric"),r=A(t,"b","notEqual","string_or_numeric");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(Nc,s)}var Qo=W({notEqual_:WO});function VO(e){let n={x:A(e,"x","onesLike")};return z.runKernel(Dc,n)}var Qn=W({onesLike_:VO});function UO(e,t){let n=A(e,"v1","outerProduct"),r=A(t,"v2","outerProduct");O(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=U(n,[-1,1]),a=U(r,[1,-1]);return De(s,a)}var GO=W({outerProduct_:UO});function HO(e,t,n=0){let r=A(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return z.runKernel(bo,a,s)}var fr=W({pad_:HO});function jO(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),fr(e,[t],n)}var qO=W({pad1d_:jO});function KO(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fr(e,t,n)}var XO=W({pad2d_:KO});function YO(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fr(e,t,n)}var ZO=W({pad3d_:YO});function JO(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fr(e,t,n)}var QO=W({pad4d_:JO});function e3(e,t,n){let r=A(e,"x","spaceToBatchND");O(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(r.shape.reduce((o,i,c)=>c>0&&c<=t.length?o&&(i+n[c-1][0]+n[c-1][1])%t[c-1]===0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return z.runKernel(Uc,s,a)}var cd=W({spaceToBatchND_:e3});function t3(e,t,n,r,s,a,o){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let i=A(e,"x","maxPool"),c=i,l=!1;i.rank===3&&(l=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(rs(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let u=Ak(c.shape,t,a,s,r),d=[u.dilationHeight,u.dilationWidth],p;r==="same"?p=r3([u.filterHeight,u.filterWidth],d):p=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[f,m]=n3([u.inHeight,u.inWidth],d,p),g=h?r:"valid",b=h?c:cd(c,d,f),v=(n==="avg"?()=>pr(b,t,a,g,o):()=>Ot(b,t,a,g,o))(),x=h?v:nd(v,d,m);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function n3(e,t,n){let r=n.map(u=>u[0]),s=n.map(u=>u[1]),a=e.concat(r,s),o=t.map((u,d)=>(u-a[d]%u)%u),i=s.map((u,d)=>u+o[d]),c=t.map((u,d)=>[r[d],i[d]]),l=t.map((u,d)=>[0,o[d]]);return[c,l]}function r3(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var rI=W({pool_:t3});function s3(e,t){let n=A(e,"base","pow"),r=A(t,"exp","pow");[n,r]=Et(n,r);let s={a:n,b:r};return z.runKernel(yo,s)}var Ts=W({pow_:s3});function a3(e,t){let n=A(e,"x","prelu"),r=A(t,"alpha","prelu"),s={x:n,alpha:r};return z.runKernel(vo,s)}var ud=W({prelu_:a3});function o3(e,t=null,n=!1){let r=A(e,"x","prod");r.dtype==="bool"&&(r=ce(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return z.runKernel(Fc,s,a)}var rf=W({prod_:o3});function i3(e,t,n){let r=vt(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<r;a++)s[a]=t();return z.makeTensor(s,e,n)}var c3=W({rand_:i3}),iv=Oa(h1()),cv=class{constructor(e,t,n,r,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=iv.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,s,a;do r=2*this.random()-1,s=2*this.random()-1,a=r*r+s*s;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},u3=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=iv.alea(s.toString()),this.randn=new cv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},l3=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=iv.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function d3(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new u3(t,n,r,s),o=ze(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var p3=W({randomGamma_:d3});function h3(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let a=new cv(t,n,r,!1,s),o=ze(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var sI=W({randomNormal_:h3});function f3(e,t=0,n=1,r="float32",s){let a=ze(e,r),o=new l3(t,n,null,s);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var lu=W({randomUniform_:f3});function du(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let s={start:e,stop:t,step:n,dtype:r};return z.runKernel(Pl,{},s)}function m3(e){let n={input:A(e,"input","real")};return z.runKernel(Ih,n)}var ld=W({real_:m3});function g3(e){let n={x:A(e,"x","reciprocal")};return z.runKernel(Rc,n)}var uv=W({reciprocal_:g3});function b3(e){let n={x:A(e,"x","relu")};return z.runKernel(xo,n)}var Ke=W({relu_:b3});function y3(e){let n={x:A(e,"x","relu6")};return z.runKernel(ko,n)}var sf=W({relu6_:y3});function v3(e,t){let r={x:A(e,"x","reverse")},s={dims:t};return z.runKernel(Io,r,s)}var er=W({reverse_:v3});function x3(e){let t=A(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),er(t,0)}var w3=W({reverse1d_:x3});function k3(e,t){let n=A(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),er(n,t)}var I3=W({reverse2d_:k3});function S3(e,t){let n=A(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),er(n,t)}var T3=W({reverse3d_:S3});function C3(e,t){let n=A(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),er(n,t)}var N3=W({reverse4d_:C3});function _3(e){let n={x:A(e,"x","round")};return z.runKernel(So,n)}var af=W({round_:_3});function E3(e){let n={x:A(e,"x","rsqrt","float32")};return z.runKernel(To,n)}var of=W({rsqrt_:E3});function Ie(e,t){if((hn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&hn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return oa(e,[],[],t)}function A3(e){let n={x:A(e,"x","selu")};return z.runKernel(Lc,n)}var cf=W({selu_:A3});function D3(e,t,n,r,s,a=[1,1],o="NHWC"){let i=A(e,"x","separableConv2d"),c=A(t,"depthwiseFilter","separableConv2d"),l=A(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),O(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let p=c.shape[2],h=c.shape[3];O(l.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${l.shape[2]}.`);let f=la(u,c,r,s,o,a),g=Pt(f,l,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var ei=W({separableConv2d_:D3});async function $3(e,t){let n=A(e,"x","setdiff1d"),r=A(t,"y","setdiff1d");O(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let u=0;u<s.length;u++)o.has(s[u])||i++;let c=new Gt([i],n.dtype),l=new Gt([i],"int32");for(let u=0,d=0;u<s.length;u++)o.has(s[u])||(c.values[d]=s[u],l.values[d]=u,d++);return[c.toTensor(),l.toTensor()]}var aI=$3;function F3(e){let n={x:A(e,"x","sign")};return z.runKernel(Wc,n)}var lv=W({sign_:F3});function R3(e){let n={x:A(e,"x","sin","float32")};return z.runKernel(Co,n)}var uf=W({sin_:R3});function P3(e){let n={x:A(e,"x","sinh")};return z.runKernel(zc,n)}var lf=W({sinh_:P3});function O3(e,t,n){let r=A(e,"x","slice1d");return O(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),We(r,[t],[n])}var df=W({slice1d_:O3});function M3(e,t,n){let r=A(e,"x","slice2d");return O(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var dv=W({slice2d_:M3});function L3(e,t,n){let r=A(e,"x","slice3d");return O(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var pu=W({slice3d_:L3});function B3(e,t,n){let r=A(e,"x","slice4d");return O(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var dd=W({slice4d_:B3});function z3(e,t=-1){let n=A(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return z.runKernel(Ao,r,s)}var zr=W({softmax_:z3});function W3(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(fh,t)}var pd=W({fft_:W3});function V3(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(mh,t)}var hu=W({ifft_:V3});function U3(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=U(e,[n,t]);r=hu(s)}else{let s=[n,2*(t-1)],a=U(ld(e),[n,t]),o=U(Zh(e),[n,t]),i=er(We(a,[0,1],[n,t-2]),1),c=V(er(We(o,[0,1],[n,t-2]),1),Ie(-1)),l=tt([a,i],1),u=tt([o,c],1),d=U(aa(l,u),[s[0],s[1]]);r=hu(d)}if(r=ld(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=U(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var pf=W({irfft_:U3});function G3(e,t,n=0){let s={x:A(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(Gc,s,a)}var Ln=W({split_:G3});function H3(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=We(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=tt([e,Tt(f)],e.shape.length-1),n=t}else s=e;let a=He(s),o=U(aa(s,a),[r,n]),i=pd(o),c=Math.floor(n/2)+1,l=ld(i),u=Zh(i),d=Ln(l,[c,n-c],l.shape.length-1),p=Ln(u,[c,n-c],u.shape.length-1),h=s.shape.slice();return h[s.shape.length-1]=c,U(aa(d[0],p[0]),h)}var hd=W({rfft_:H3});function j3(e){let n={x:A(e,"x","sqrt","float32")};return z.runKernel(_o,n)}var on=W({sqrt_:j3});function q3(e,t){let n=A(e,"a","squaredDifference"),r=A(t,"b","squaredDifference");[n,r]=Et(n,r),ht(n.shape,r.shape);let s={a:n,b:r},a={};return z.runKernel(Do,s,a)}var hf=W({squaredDifference_:q3});function K3(e,t){let n=A(e,"x","squeeze");return U(n,b1(n.shape,t).newShape)}var os=W({squeeze_:K3});function X3(e,t=0){let n=Jl(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return z.runKernel($c,r,s)}var Mt=W({stack_:X3});function Y3(e,t=0){let r={x:A(e,"x","step")},s={alpha:t};return z.runKernel(ta,r,s)}var fu=W({step_:Y3});function Z3(e,t,n,r,s=0,a=0,o=0,i=0,c=0){let u={x:A(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:c};return z.runKernel(jc,u,d)}var pv=W({stridedSlice_:Z3});function J3(e){let n={x:A(e,"x","tan","float32")};return z.runKernel(Fo,n)}var hv=W({tan_:J3});function je(e,t){Ma(e);let n=ts(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return oa(e,null,n,t)}function Wr(e,t,n){if(Ma(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=ts(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return oa(e,t,r,n)}function Vr(e,t,n){if(Ma(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=ts(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return oa(e,t,r,n)}function Q3(e,t,n){if(Ma(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=ts(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return oa(e,t,r,n)}function eM(e,t,n){if(Ma(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=ts(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,oa(e,t,r,n)}function tM(e,t=1,n=!0){let r=A(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,c]=z.runKernel(qc,a,o);return{values:i,indices:c}}var fv=W({topk_:tM});function nM(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new cv(t,n,r,!0,s),o=ze(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var ff=W({truncatedNormal_:nM});function rM(e,t=0){let n=A(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=z.runKernel(Ah,r,s);return{values:a,indices:o}}var mf=W({unique_:rM});function sM(e,t,n){let r=A(e,"x","unsortedSegmentSum"),s=A(t,"segmentIds","unsortedSegmentSum","int32");O(qi(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return z.runKernel(Wl,a,o)}var mv=W({unsortedSegmentSum_:sM});function aM(e,t=0){let n=A(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return z.runKernel(Xc,r,s)}var ft=W({unstack_:aM});function oI(e,t=!0,n,r){return z.makeVariable(e,t,n,r)}function iI(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let r=ze(e,"int32"),s=ze([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=r.indexToLoc(n[a]),i=a*e.length;s.values.set(o,i)}return s.toTensor()}async function oM(e){let t=A(e,"condition","whereAsync","bool"),n=await t.data(),r=iI(t.shape,n);return e!==t&&t.dispose(),r}var gv=oM;async function iM(e,t,n){let r=A(e,"tensor","boolMask"),s=A(t,"mask","boolMask","bool"),a=n==null?0:n,o=s.rank,i=r.shape;O(o>0,()=>"mask cannot be scalar"),yn(i.slice(a,a+o),s.shape,"mask's shape must match the first K dimensions of tensor's shape,");let c=1;for(let m=a;m<a+o;m++)c*=i[m];let l=i.slice(0,a).concat([c],i.slice(a+o)),u=U(r,l),d=U(s,[-1]),p=await gv(d),h=os(p,[1]),f=Yo(u,h,a);return e!==r&&r.dispose(),t!==s&&s.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var cM=iM;function uM(e,t="euclidean",n=null,r=!1){e=A(e,"x","norm");let s=cI(e,t,n),a=s.shape;if(r){let o=Sr(n,e.shape);a=Jo(s.shape,o)}return U(s,a)}function cI(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return cI(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return xe(zt(e),n);if(t===1/0)return Cr(zt(e),n);if(t===-1/0)return id(zt(e),n);if(t==="euclidean"||t===2)return on(xe(Ts(zt(e),Ie(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Cr(xe(zt(e),n[0]),n[1]-1);if(t===1/0)return Cr(xe(zt(e),n[1]),n[0]);if(t===-1/0)return id(xe(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return on(xe(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var gf=W({norm_:uM});function lM(e,t,n,r,s=!0){let a=A(e,"v","movingAverage"),o=A(t,"x","movingAverage"),i=A(n,"decay","movingAverage");L1(a,o),O(Xs(a.shape,o.shape),()=>"Shape mismatch in v and x");let c=Ie(1),l=fe(c,i),u=V(fe(o,a),l);if(s){O(r!=null,()=>"When using zeroDebias: true, step is required.");let d=A(r,"step","movingAverage");u=me(u,fe(c,Ts(i,d)))}return Y(a,u)}var dM=W({movingAverage_:lM});function pM(e,t,n){let r=A(e,"indices","scatterND","int32"),s=A(t,"updates","scatterND");Cy(s,r,n);let a={indices:r,updates:s},o={shape:n};return z.runKernel(Oc,a,o)}var uI=W({scatterND_:pM});function hM(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function fM(e,t,n,r=0){let s=A(e,"sparseIndices","sparseToDense","int32"),a=A(t,"sparseValues","sparseToDense"),o=A(r,"defaultValue","sparseToDense",a.dtype);hM(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},c={outputShape:n};return z.runKernel(Ch,i,c)}var bv=W({sparseToDense_:fM});function mM(e,t){let n=A(t,"indices","gatherND","int32"),s={params:A(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(gc,s)}var lI=W({gatherND_:mM});function gM(e,t){if(t==null)return e.shape.slice();if(Xs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function bM(e,t,n,r){let s=A(e,"x","dropout");if(O(s.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?s.clone():s;let a=gM(s,n),o=1-t,i=me(cu(Y(lu(a,0,1,"float32",r),o)),o);return V(s,i)}var dI=W({dropout_:bM});function pI(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function yv(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+r-1);s[a]=t-n*Math.cos(o)}return je(s,"float32")}async function yM(e,t,n=1){let r=A(e,"predictions","inTopK"),s=A(t,"targets","inTopK");O(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),O(r.rank-1===s.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${s.rank}`),yn(r.shape.slice(0,r.shape.length-1),s.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=r.shape[r.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await r.data(),i=await s.data(),[c,l]=[o.length/a,a],u=y1("bool",c);for(let d=0;d<c;d++){let p=d*l,h=o.subarray(p,p+l),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==r&&r.dispose(),t!==s&&s.dispose(),Xn(u,s.shape,"bool")}var vM=yM,ha={};Ae(ha,{conv2d:()=>kM,depthwiseConv2d:()=>CM,matMul:()=>_M});function xM(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let c=t;c.rank===3&&(c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(c.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${c.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?c.shape[3]:c.shape[1];O(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),xn("conv2dDerFilter",s,o);let d={x:i,dy:c},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return z.runKernel(rh,d,p)}var vv=W({conv2DBackpropFilter_:xM});function bf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,fu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function yf(e,t){let n=t,r=Bt(e.shape,t.shape);return r.length>0&&(n=xe(n,r)),U(n,e.shape)}function vf(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Ke(e);if(t==="elu")return iu(e);if(t==="relu6")return sf(e);if(t==="prelu")return ud(e,n);if(t==="leakyrelu")return sd(e,r);if(t==="sigmoid")return hr(e);throw new Error(`Unknown fused activation ${t}.`)}var xf=(e,t)=>!(e>0)||t==="linear";function wM({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:c="linear",preluActivationWeights:l,leakyreluAlpha:u}){if(c=c||"linear",xf(z.state.gradientDepth,c)===!1){let w=Pt(e,t,n,r,s,a,o);return i!=null&&(w=Y(w,i)),vf(w,c,l,u)}let d=A(e,"x","conv2d","float32"),p=A(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),xn("fused conv2d",r,o),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(rs(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=td(h.shape,p.shape,n,a,r,o),g;i!=null&&(g=A(i,"bias","fused conv2d"),[g]=Et(g,d),ht(m.outShape,g.shape));let b;l!=null&&(b=A(l,"prelu weights","fused conv2d"));let y=(w,T)=>{let[N,$,D,P]=T,F=bf(w,D,c);O(ua(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Hy($.shape,F,N,n,r),C=vv($,F,N.shape,n,r),L=[R,C];if(P!=null){let G=yf(P,F);L.push(G)}return L},v={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:c,leakyreluAlpha:u};return i==null?ss((T,N,$)=>{let D=z.runKernel(Mo,v,x);return $([N,T,D]),f&&(D=U(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):ss((T,N,$,D)=>{let P=z.runKernel(Mo,v,x);return D([N,T,P,$]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p,g)}var kM=W({fusedConv2d_:wM});function IM(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let c=t;c.rank===3&&(c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:i,dy:c},u={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return z.runKernel(ih,l,u)}var hI=W({depthwiseConv2dNativeBackpropFilter_:IM});function SM(e,t,n,r,s,a=[1,1],o){let i=t,c=!1;t.rank===3&&(c=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:i,filter:n},u={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=z.runKernel(ch,l,u);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var fI=W({depthwiseConv2dNativeBackpropInput_:SM});function TM({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:c="linear",preluActivationWeights:l,leakyreluAlpha:u}){if(xf(z.state.gradientDepth,c)===!1){let w=la(e,t,n,r,s,a,o);return i!=null&&(w=Y(w,i)),vf(w,c,l,u)}let d=A(e,"x","depthwiseConv2d","float32"),p=A(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(rs(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),xn("fused depthwiseConv2d",r,o);let m=td(h.shape,p.shape,n,a,r,o,!0),g;i!=null&&(g=A(i,"bias","fused conv2d"),[g]=Et(g,d),ht(m.outShape,g.shape));let b;l!=null&&(b=A(l,"prelu weights","fused depthwiseConv2d"));let y=(w,T)=>{O(ua(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[N,$,D,P]=T,F=bf(w,D,c),R=fI($.shape,F,N,n,r,a,o),C=hI($,F,N.shape,n,r,a,o);if(P!=null){let L=yf(g,F);return[R,C,L]}return[R,C]},v={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:c,leakyreluAlpha:u};return i==null?ss((T,N,$)=>{let D=z.runKernel(Lo,v,x);return $([N,T,D]),f&&(D=U(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):ss((T,N,$,D)=>{let P=z.runKernel(Lo,v,x);return D([N,T,P,$]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p,g)}var CM=W({fusedDepthwiseConv2d_:TM});function NM({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(xf(z.state.gradientDepth,a)===!1){let F=De(e,t,n,r);return s!=null&&(F=Y(F,s)),vf(F,a,o,i)}let c=A(e,"a","fused matMul"),l=A(t,"b","fused matMul");[c,l]=Et(c,l);let u=n?c.shape[c.rank-2]:c.shape[c.rank-1],d=r?l.shape[l.rank-1]:l.shape[l.rank-2],p=n?c.shape[c.rank-1]:c.shape[c.rank-2],h=r?l.shape[l.rank-2]:l.shape[l.rank-1],f=c.shape.slice(0,-2),m=l.shape.slice(0,-2),g=vt(f),b=vt(m);O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${c.shape} and ${l.shape} and transposeA=${n} and transposeB=${r} must match.`);let v=ht(c.shape.slice(0,-2),l.shape.slice(0,-2)).concat([p,h]),x=n?U(c,[g,u,p]):U(c,[g,p,u]),w=r?U(l,[b,h,d]):U(l,[b,d,h]),T;s!=null&&(T=A(s,"bias","fused matMul"),[T]=Et(T,c),ht(v,T.shape));let N;o!=null&&(N=A(o,"prelu weights","fused matMul"));let $=(F,R)=>{let[C,L,G,j]=R,K=bf(U(F,G.shape),G,a),q,Z;if(!n&&!r?(q=De(K,L,!1,!0),Z=De(C,K,!0,!1)):!n&&r?(q=De(K,L,!1,!1),Z=De(K,C,!0,!1)):n&&!r?(q=De(L,K,!1,!0),Z=De(C,K,!1,!1)):(q=De(L,K,!0,!0),Z=De(K,C,!0,!0)),s!=null){let te=yf(j,K);return[q,Z,te]}else return[q,Z]},D={a:x,b:w,bias:T,preluActivationWeights:N},P={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?ss((R,C,L)=>{let G=z.runKernel(Oo,D,P);return L([R,C,G]),{value:U(G,v),gradFunc:$}})(x,w):ss((R,C,L,G)=>{let j=z.runKernel(Oo,D,P);return G([R,C,j,L]),{value:U(j,v),gradFunc:$}})(x,w,T)}var _M=W({fusedMatMul_:NM});function EM(e){return yv(e,.54,.46)}var AM=W({hammingWindow_:EM});function DM(e){return yv(e,.5,.5)}var mI=W({hannWindow_:DM});function $M(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(We(e,a,t)),a+=n;if(r)for(;a<e.size;){let i=a+t-e.size,c=tt([We(e,a,t-i),wn([i],s)]);o.push(c),a+=n}return o.length===0?Wr([],[0,t]):U(tt(o),[o.length,t])}var gI=W({frame_:$M});function FM(e,t,n,r,s=mI){r==null&&(r=pI(t));let a=gI(e,t,n),o=V(a,s(t));return hd(o,r)}var RM=W({stft_:FM});function PM(e,t,n,r,s="bilinear",a=0){let o=A(e,"image","cropAndResize"),i=A(t,"boxes","cropAndResize","float32"),c=A(n,"boxInd","cropAndResize","int32"),l=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${i.shape}.`),O(c.rank===1&&c.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${i.shape}.`),O(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),O(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),O(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let u={image:o,boxes:i,boxInd:c},d={method:s,extrapolationValue:a,cropSize:r};return z.runKernel(cc,u,d)}var OM=W({cropAndResize_:PM});function MM(e){let t=A(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(fc,n,{})}var LM=W({flipLeftRight_:MM});function BM(e){let t=A(e,"image","grayscaleToRGB"),n=t.rank-1,r=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(r===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${r}.`);let s=new Array(t.rank);return s.fill(1,0,n),s[n]=3,On(t,s)}var zM=W({grayscaleToRGB_:BM});function WM(e,t,n=0,r=.5){let s=A(e,"image","rotateWithOffset","float32");O(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return z.runKernel(Zc,a,o)}var VM=W({rotateWithOffset_:WM});function mu(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function UM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=A(e,"boxes","nonMaxSuppression","float32"),o=A(t,"scores","nonMaxSuppression","float32"),i=mu(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return z.runKernel(_c,{boxes:a,scores:o},c)}var GM=W({nonMaxSuppression_:UM});function HM(e,t,n){let r=jM(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function jM(e,t,n){return KM(e,t,n||qM)}function qM(e,t){return e>t?1:e<t?-1:0}function KM(e,t,n){let r=0,s=e.length,a=0,o=!1;for(;r<s;){a=r+(s-r>>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function bI(e,t,n,r,s){return xv(e,t,n,r,s,0)}function yI(e,t,n,r,s,a){return xv(e,t,n,r,s,0,!1,a,!0)}function vI(e,t,n,r,s,a){return xv(e,t,n,r,s,a,!0)}function xv(e,t,n,r,s,a,o=!1,i=!1,c=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>s&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(xI);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&l.length>0;){let g=l.pop(),{score:b,boxIndex:y,suppressBeginIndex:v}=g;if(b<s)break;let x=!1;for(let w=d.length-1;w>=v;--w){let T=XM(e,y,d[w]);if(T>=r){x=!0;break}if(g.score=g.score*YM(r,u,T),g.score<=s)break}g.suppressBeginIndex=d.length,x||(g.score===b?(d.push(y),p.push(g.score)):g.score>s&&HM(l,g,xI))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),c&&(m.validOutputs=h),m}function XM(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),l=Math.min(s[0],s[2]),u=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),p=Math.max(s[1],s[3]),h=(i-a)*(c-o),f=(d-l)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,l),g=Math.max(o,u),b=Math.min(i,d),y=Math.min(c,p),v=Math.max(b-m,0)*Math.max(y-g,0);return v/(h+f-v)}function YM(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function xI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function ZM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=A(e,"boxes","nonMaxSuppressionAsync"),o=A(t,"scores","nonMaxSuppressionAsync"),i=mu(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let c=await Promise.all([a.data(),o.data()]),l=c[0],u=c[1],{selectedIndices:d}=bI(l,u,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),je(d,"int32")}var JM=ZM;function QM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=A(e,"boxes","nonMaxSuppression"),i=A(t,"scores","nonMaxSuppression"),c=mu(o,i,n,r,s,a);n=c.maxOutputSize,r=c.iouThreshold,s=c.scoreThreshold,a=c.softNmsSigma;let l={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=z.runKernel(Ac,l,u);return{selectedIndices:d[0],selectedScores:d[1]}}var eL=W({nonMaxSuppressionWithScore_:QM});async function tL(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=A(e,"boxes","nonMaxSuppressionAsync"),i=A(t,"scores","nonMaxSuppressionAsync"),c=mu(o,i,n,r,s,a);n=c.maxOutputSize,r=c.iouThreshold,s=c.scoreThreshold,a=c.softNmsSigma;let l=await Promise.all([o.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p,selectedScores:h}=vI(u,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:je(p,"int32"),selectedScores:je(h)}}var nL=tL;function rL(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=A(e,"boxes","nonMaxSuppression"),i=A(t,"scores","nonMaxSuppression"),c=mu(o,i,n,r,s,null),l=c.maxOutputSize,u=c.iouThreshold,d=c.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:l,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=z.runKernel(Ec,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var sL=W({nonMaxSuppressionPadded_:rL});async function aL(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=A(e,"boxes","nonMaxSuppressionAsync"),i=A(t,"scores","nonMaxSuppressionAsync"),c=mu(o,i,n,r,s,null),l=c.maxOutputSize,u=c.iouThreshold,d=c.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=yI(p,h,l,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:je(f,"int32"),validOutputs:Ie(m,"int32")}}var oL=aL;function iL(e,t,n=!1,r=!1){let s=A(e,"images","resizeBilinear");O(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},c={alignCorners:n,halfPixelCenters:r,size:t},l=z.runKernel(wo,i,c);return o?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var wI=W({resizeBilinear_:iL});function cL(e,t,n=!1,r=!1){let s=A(e,"images","resizeNearestNeighbor");O(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},c={alignCorners:n,halfPixelCenters:r,size:t},l=z.runKernel(Ol,i,c);return o?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var kI=W({resizeNearestNeighbor_:cL});function uL(e,t="binary",n=!1,r=.5){let s=A(e,"image","threshold"),a=.2989,o=.587,i=.114,c=s.shape[0]*s.shape[1],l=V(je([r]),255),u,d,p,h;if(O(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),O(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),O(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[u,d,p]=Ln(s,[1,1,1],-1);let g=V(u,a),b=V(d,o),y=V(p,i);h=Y(Y(g,b),y)}else h=e;if(t==="otsu"){let g=Uy(ce(af(h),"int32"),Xn([]),256);l=lL(g,c)}let f=n?pa(h,l):Mn(h,l);return ce(V(f,255),"int32")}function lL(e,t){let n=je([-1]),r=je([0]),s=je([0]),a,o,i,c,l,u;for(let d=0;d<e.size-1;d++){a=We(e,0,d+1),o=We(e,d+1),l=me(xe(a),t),u=me(xe(o),t);let p=xe(V(a,du(0,a.size)));i=me(p,xe(a));let h=wn(o.shape,a.size),f=Y(du(0,o.size),h),m=V(o,f);c=me(xe(m),xe(o));let g=fe(i,c),b=fe(i,c),y=V(l,u);s=V(V(y,g),b);let v=Mn(s,r);r=fn(v,s,r),n=fn(v,je([d]),n)}return n}var dL=W({threshold_:uL});function pL(e,t,n="nearest",r="constant",s=0,a){let o=A(e,"image","transform","float32"),i=A(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let c={image:o,transforms:i},l={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return z.runKernel(Kc,c,l)}var hL=W({transform_:pL});function fL(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=A(e,"a","bandPart");O(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(du(0,a,1,"int32"),[-1,1]),c=du(0,o,1,"int32"),l=fe(i,c),u=Nr(pa(l,Ie(+t,"int32")),da(l,Ie(-n,"int32"))),d=Tt([a,o],r.dtype);return U(Mt(ft(U(r,[-1,a,o])).map(p=>fn(u,p,d))),s)}var mL=W({bandPart_:fL});function gL(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===s,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=Ln(e,e.shape[0],0).map(s=>os(s,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s<e.length;++s)n.push(z.tidy(()=>{let a=r[s];if(s>0)for(let o=0;o<s;++o){let i=V(xe(V(n[o],a)),n[o]);a=fe(a,i)}return me(a,gf(a,"euclidean"))}));return t?Mt(n,0):n}var bL=W({gramSchmidt_:gL});function yL(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return II(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((c,l)=>c*l),r=ft(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(c=>{let[l,u]=II(c,t);s.push(l),a.push(u)});let o=U(Mt(s,0),e.shape),i=U(Mt(a,0),e.shape);return[o,i]}}function II(e,t=!1){return z.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=Jy(n),a=Is(e),o=Wr([[1]],[1,1]),i=Is(o),c=n>=r?r:n;for(let l=0;l<c;++l){let u=a,d=i,p=s;[i,a,s]=z.tidy(()=>{let h=We(a,[l,l],[n-l,1]),f=gf(h),m=We(a,[l,l],[1,1]),g=fn(Mn(m,0),Wr([[-1]]),Wr([[1]])),b=fe(m,V(g,f)),y=me(h,b);y.shape[0]===1?i=Is(o):i=tt([o,We(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let v=St(me(De(g,b),f)),x=We(a,[l,0],[n-l,r]),w=V(v,i),T=Re(i);if(l===0)a=fe(x,De(w,De(T,x)));else{let D=fe(x,De(w,De(T,x)));a=tt([We(a,[0,0],[l,r]),D],0)}let N=Re(w),$=We(s,[0,l],[n,s.shape[1]-l]);if(l===0)s=fe($,De(De($,i),N));else{let D=fe($,De(De($,i),N));s=tt([We(s,[0,0],[n,l]),D],1)}return[i,a,s]}),$e([u,d,p])}return!t&&n>r&&(s=We(s,[0,0],[n,r]),a=We(a,[0,0],[r,r])),[s,a]})}var vL=W({qr_:yL}),kn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(kn||(kn={}));function xL(e,t,n=kn.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=A(t,"weights","computeWeightedLoss"));let a=s==null?r:V(r,s);if(n===kn.NONE)return a;if(n===kn.SUM)return xe(a);if(n===kn.MEAN){if(s==null)return At(a);{let o=r.size/s.size,i=me(xe(a),xe(s));return o>1?me(i,Ie(o)):i}}if(n===kn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return me(xe(a),Ie(r.size));{let o=V(s,Jn(r.shape)),i=ce(xe(Qo(o,Ie(0))),"float32");return me(xe(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Cs=W({computeWeightedLoss_:xL});function wL(e,t,n,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","absoluteDifference"),a=A(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=A(n,"weights","absoluteDifference")),yn(s.shape,a.shape,"Error in absoluteDifference: ");let i=zt(fe(s,a));return Cs(i,o,r)}var kL=W({absoluteDifference_:wL});function IL(e,t,n,r,s=kn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"labels","cosineDistance"),o=A(t,"predictions","cosineDistance"),i=null;r!=null&&(i=A(r,"weights","cosineDistance")),yn(a.shape,o.shape,"Error in cosineDistance: ");let c=Ie(1),l=fe(c,xe(V(a,o),n,!0));return Cs(l,i,s)}var SL=W({cosineDistance_:IL});function TL(e,t,n,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","hingeLoss"),a=A(t,"predictions","hingeLoss"),o=null;n!=null&&(o=A(n,"weights","hingeLoss")),yn(s.shape,a.shape,"Error in hingeLoss: ");let i=Ie(1);s=fe(V(Ie(2),s),i);let c=Ke(fe(i,V(s,a)));return Cs(c,o,r)}var CL=W({hingeLoss_:TL});function NL(e,t,n,r=1,s=kn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"labels","huberLoss"),o=A(t,"predictions","huberLoss"),i=null;n!=null&&(i=A(n,"weights","huberLoss")),yn(a.shape,o.shape,"Error in huberLoss: ");let c=Ie(r),l=zt(fe(o,a)),u=uu(l,c),d=fe(l,u),p=Y(V(Ie(.5),ut(u)),V(c,d));return Cs(p,i,s)}var _L=W({huberLoss_:NL});function EL(e,t,n,r=1e-7,s=kn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"labels","logLoss"),o=A(t,"predictions","logLoss"),i=null;n!=null&&(i=A(n,"weights","logLoss")),yn(a.shape,o.shape,"Error in logLoss: ");let c=Ie(1),l=Ie(r),u=St(V(a,Zn(Y(o,l)))),d=V(fe(c,a),Zn(Y(fe(c,o),l))),p=fe(u,d);return Cs(p,i,s)}var AL=W({logLoss_:EL});function DL(e,t,n,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","meanSquaredError"),a=A(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=A(n,"weights","meanSquaredError")),yn(s.shape,a.shape,"Error in meanSquaredError: ");let i=hf(s,a);return Cs(i,o,r)}var $L=W({meanSquaredError_:DL});function FL(e,t){let n=A(e,"labels","sigmoidCrossEntropyWithLogits"),r=A(t,"logits","sigmoidCrossEntropyWithLogits");yn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=Ke(r),a=V(r,n),o=ad(mn(St(zt(r))));return Y(fe(s,a),o)}function RL(e,t,n,r=0,s=kn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"multiClassLabels","sigmoidCrossEntropy"),o=A(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=A(n,"weights","sigmoidCrossEntropy")),yn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let l=Ie(r),u=Ie(1),d=Ie(.5);a=Y(V(a,fe(u,l)),V(d,l))}let c=FL(a,o);return Cs(c,i,s)}var PL=W({sigmoidCrossEntropy_:RL});function OL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ss((s,a,o)=>{let c=rv(a,[n],!0),l=fe(ce(a,"float32"),c);o([s,l]);let u=St(V(l,s));return{value:xe(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=Jo(h.shape,[n]);return[V(U(h,b),fe(ce(m,"float32"),mn(g))),V(U(h,b),fe(mn(g),ce(m,"float32")))]}}})(e,t)}function ML(e,t,n,r=0,s=kn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"onehotLabels","softmaxCrossEntropy"),o=A(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=A(n,"weights","softmaxCrossEntropy")),yn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let l=Ie(r),u=Ie(1),d=Ie(a.shape[1]);a=Y(V(a,fe(u,l)),me(l,d))}let c=OL(a,o);return Cs(c,i,s)}var LL=W({softmaxCrossEntropy_:ML});function BL(e,t,n,r){let s=A(e,"indices","sparseFillEmptyRows","int32"),a=A(t,"values","sparseFillEmptyRows"),o=A(n,"denseShape","sparseFillEmptyRows","int32"),i=A(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let c={indices:s,values:a,denseShape:o,defaultValue:i},l=z.runKernel(Ml,c);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var zL=W({sparseFillEmptyRows_:BL});function WL(e,t,n){let r=A(e,"inputIndices","sparseReshape","int32"),s=A(t,"inputShape","sparseReshape","int32"),a=A(n,"newShape","sparseReshape","int32");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=z.runKernel(Hc,o);return{outputIndices:i[0],outputShape:i[1]}}var VL=W({sparseReshape_:WL});function UL(e,t,n){let r=A(e,"data","sparseSegmentMean"),s=A(t,"indices","sparseSegmentMean","int32"),a=A(n,"segmentIds","sparseSegmentMean","int32");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:r,indices:s,segmentIds:a};return z.runKernel(Ll,o)}var GL=W({sparseSegmentMean_:UL});function HL(e,t,n){let r=A(e,"data","sparseSegmentSum"),s=A(t,"indices","sparseSegmentSum","int32"),a=A(n,"segmentIds","sparseSegmentSum","int32");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:r,indices:s,segmentIds:a};return z.runKernel(Bl,o)}var jL=W({sparseSegmentSum_:HL});function qL(e,t,n,r,s,a,o,i){let c=A(e,"data","stringNGrams","string");if(c.dtype!=="string")throw new Error("Data must be of datatype string");if(c.shape.length!==1)throw new Error(`Data must be a vector, saw: ${c.shape}`);let l=A(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:c,dataSplits:l},p=z.runKernel(Nh,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var KL=W({stringNGrams_:qL});function XL(e,t,n=!0){let r=A(e,"input","stringSplit","string"),s=A(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=z.runKernel(_h,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var YL=W({stringSplit_:XL});function ZL(e,t){let n=A(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return z.runKernel(Eh,s,r)}var JL=W({stringToHashBucketFast_:ZL}),QL={fft:pd,ifft:hu,rfft:hd,irfft:pf},eB={hammingWindow:AM,hannWindow:mI,frame:gI,stft:RM},tr={flipLeftRight:LM,grayscaleToRGB:zM,resizeNearestNeighbor:kI,resizeBilinear:wI,rotateWithOffset:VM,cropAndResize:OM,nonMaxSuppression:GM,nonMaxSuppressionAsync:JM,nonMaxSuppressionWithScore:eL,nonMaxSuppressionWithScoreAsync:nL,nonMaxSuppressionPadded:sL,nonMaxSuppressionPaddedAsync:oL,threshold:dL,transform:hL},SI={bandPart:mL,gramSchmidt:bL,qr:vL},tB={absoluteDifference:kL,computeWeightedLoss:Cs,cosineDistance:SL,hingeLoss:CL,huberLoss:_L,logLoss:AL,meanSquaredError:$L,sigmoidCrossEntropy:PL,softmaxCrossEntropy:LL},fd={sparseFillEmptyRows:zL,sparseReshape:VL,sparseSegmentMean:GL,sparseSegmentSum:jL},wf={stringNGrams:KL,stringSplit:YL,stringToHashBucketFast:JL},Ns=class extends Sk{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return $e(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Xk(e,t)}dispose(){this.iterations_!=null&&$e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ie(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ns,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var kf=class extends Ns{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:M(()=>He(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:M(()=>He(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,c=this.accumulatedUpdates[r].variable;M(()=>{let l=Y(V(i,this.rho),V(ut(o),1-this.rho)),u=V(me(on(Y(c,this.epsilon)),on(Y(i,this.epsilon))),o),d=Y(V(c,this.rho),V(ut(u),1-this.rho));i.assign(l),c.assign(d);let p=Y(V(u,-this.learningRate),s);s.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&($e(this.accumulatedGrads.map(e=>e.variable)),$e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};kf.className="Adadelta";ca(kf);var If=class extends Ns{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:M(()=>wn(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;M(()=>{let i=Y(o,ut(a));o.assign(i);let c=Y(V(me(a,on(Y(i,z.backend.epsilon()))),-this.learningRate),s);s.assign(c)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&$e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};If.className="Adagrad";ca(If);var Sf=class extends Ns{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],M(()=>{this.accBeta1=Ie(t).variable(),this.accBeta2=Ie(n).variable()}),r==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=fe(1,this.accBeta1),r=fe(1,this.accBeta2);t.forEach((s,a)=>{let o=z.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:M(()=>He(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:M(()=>He(o).variable(i))});let c=Array.isArray(e)?e[a].tensor:e[s];if(c==null)return;let l=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=Y(V(l,this.beta1),V(c,1-this.beta1)),p=Y(V(u,this.beta2),V(ut(c),1-this.beta2)),h=me(d,n),f=me(p,r);l.assign(d),u.assign(p);let m=Y(V(me(h,Y(on(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&$e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&$e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),M(()=>{this.accBeta1.assign(Ts(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ts(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Sf.className="Adam";ca(Sf);var Tf=class extends Ns{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],M(()=>{this.iteration=Ie(0).variable(),this.accBeta1=Ie(t).variable()}),r==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=fe(1,this.accBeta1),r=me(-this.learningRate,Y(V(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=z.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:He(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:He(o).variable(i)});let c=Array.isArray(e)?e[a].tensor:e[s];if(c==null)return;let l=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=Y(V(l,this.beta1),V(c,1-this.beta1)),p=V(u,this.beta2),h=zt(c),f=as(p,h);l.assign(d),u.assign(f);let m=Y(V(me(r,n),me(d,Y(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&$e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&$e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Tf.className="Adamax";ca(Tf);var md=class extends Ns{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=z.registeredVariables[n];M(()=>{let o=Y(V(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Jt(Ie(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};md.className="SGD";ca(md);var Cf=class extends md{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ie(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:M(()=>He(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&M(()=>{let i,c=Y(V(this.m,a),o);this.useNesterov?i=Y(V(this.c,Y(o,V(c,this.m))),s):i=Y(V(this.c,c),s),a.assign(c),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&$e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Cf.className="Momentum";ca(Cf);var Nf=class extends Ns{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:M(()=>He(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:M(()=>He(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:M(()=>He(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,c=this.accumulatedMoments[r].variable;M(()=>{let l=Y(V(i,this.decay),V(ut(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=Y(V(u,this.decay),V(o,1-this.decay)),p=me(V(o,this.learningRate),on(fe(l,Y(ut(d),this.epsilon)))),h=Y(V(c,this.momentum),p);i.assign(l),u.assign(d),c.assign(h);let f=fe(s,h);s.assign(f)}else{let u=Y(V(i,this.decay),V(ut(o),1-this.decay)),d=Y(V(c,this.momentum),me(V(o,this.learningRate),on(Y(u,this.epsilon))));i.assign(u),c.assign(d);let p=fe(s,d);s.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&$e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&$e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&$e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Nf.className="RMSProp";ca(Nf);var fa=class{static sgd(e){return new md(e)}static momentum(e,t,n=!1){return new Cf(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new Nf(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new Sf(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new kf(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new Tf(e,t,n,r,s)}static adagrad(e,t=.1){return new If(e,t)}},ti={sgd:fa.sgd,momentum:fa.momentum,adadelta:fa.adadelta,adagrad:fa.adagrad,rmsprop:fa.rmsprop,adamax:fa.adamax,adam:fa.adam},nB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function TI(){return new Promise(e=>nB(()=>e()))}var _={};Ae(_,{ERF_A1:()=>hB,ERF_A2:()=>fB,ERF_A3:()=>mB,ERF_A4:()=>gB,ERF_A5:()=>bB,ERF_P:()=>pB,PARALLELIZE_THRESHOLD:()=>wv,SELU_SCALE:()=>NI,SELU_SCALEALPHA:()=>CI,applyActivation:()=>vf,assertAndGetBroadcastShape:()=>ht,assertAxesAreInnerMostDims:()=>vO,assertParamsConsistent:()=>rB,assignToTypedArray:()=>IB,axesAreInnerMostDims:()=>tv,calculateShapes:()=>hk,checkEinsumDimSizes:()=>EB,checkPadOnDimRoundingMode:()=>xn,combineLocations:()=>Zk,complexWithEvenIndex:()=>xB,complexWithOddIndex:()=>wB,computeConv2DInfo:()=>td,computeConv3DInfo:()=>Dk,computeDefaultPad:()=>zy,computeDilation2DInfo:()=>UR,computeOptimalWindowSize:()=>aB,computeOutAndReduceShapes:()=>Jk,computeOutShape:()=>sB,computePool2DInfo:()=>Ak,computePool3DInfo:()=>GR,convertConv2DDataFormat:()=>$k,decodeEinsumEquation:()=>NB,eitherStridesOrDilationsAreOne:()=>rs,expandShapeToKeepDim:()=>Jo,exponent:()=>TB,exponents:()=>SB,fromStringArrayToUint8:()=>YB,fromUint8ToStringArray:()=>XB,getAxesPermutation:()=>Qk,getBroadcastDims:()=>lk,getComplexWithIndex:()=>kB,getEinsumComputePath:()=>AB,getEinsumPermutation:()=>_B,getFusedBiasGradient:()=>yf,getFusedDyActivation:()=>bf,getImageCenter:()=>oB,getInnerMostAxes:()=>xO,getPermuted:()=>cB,getReductionAxes:()=>Bt,getReshaped:()=>iB,getReshapedPermuted:()=>uB,getSliceBeginCoords:()=>lB,getSliceSize:()=>dB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>RB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>PB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>OB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>BB,getSparseReshapeInputOutputMismatchErrorMessage:()=>WB,getSparseReshapeInputOutputMultipleErrorMessage:()=>zB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>MB,getSparseReshapeNegativeOutputDimErrorMessage:()=>LB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>HB,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>VB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>UB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>GB,getUndoAxesPermutation:()=>nv,isIdentityPermutation:()=>DB,log:()=>p$,mergeRealAndImagArrays:()=>yB,prepareAndValidate:()=>pk,prepareSplitSize:()=>FB,segment_util:()=>AI,shouldFuse:()=>xf,slice_util:()=>Ht,splitRealAndImagArrays:()=>vB,tupleValuesAreOne:()=>ua,upcastType:()=>Tr,validateInput:()=>Cy,validateUpdateShape:()=>Ty,warn:()=>na});function rB(e,t){let n=e[0].length;e.forEach((s,a)=>{O(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o<n;o++)O(o===t||s[o]===r[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function sB(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var wv=30;function aB(e){return e<=wv?e:Yp(e,Math.floor(Math.sqrt(e)))}function oB(e,t,n){let r=n*(typeof e=="number"?e:e[0]),s=t*(typeof e=="number"?e:e[1]);return[r,s]}function iB(e,t,n,r=!0){let s=[];if(r)s=s.concat(t.slice(0)),s.push(e[0]/n),s=s.concat(e.slice(1));else{s=s.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)s=s.concat([e[o+1]/t[o],t[o]]);s=s.concat(e.slice(a+1))}return s}function cB(e,t,n=!0){let r=[];if(n){r.push(t);for(let s=t+1;s<e;++s)s<=2*t?(r.push(s),r.push(s-(t+1))):r.push(s)}else{let s=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function uB(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?r?s.push(t[a-1]*e[a]):s.push(e[a]/t[a-1]):s.push(e[a]);return s}function lB(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function dB(e,t,n){let r=e.slice(0,1);for(let s=0;s<n;++s)r.push(e[s+1]-t[s][0]-t[s][1]);return r}var CI=1.7580993408473768,NI=1.0507009873554805,pB=.3275911,hB=.254829592,fB=-.284496736,mB=1.421413741,gB=-1.453152027,bB=1.061405429;function yB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function vB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function xB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let s=0;s<e.length;s+=4)n[Math.floor(s/4)]=e[s],r[Math.floor(s/4)]=e[s+1];return{real:n,imag:r}}function wB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let s=2;s<e.length;s+=4)n[Math.floor(s/4)]=e[s],r[Math.floor(s/4)]=e[s+1];return{real:n,imag:r}}function kB(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function IB(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function SB(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let s=0;s<Math.ceil(e/2);s++){let a=(t?2:-2)*Math.PI*(s/e);n[s]=Math.cos(a),r[s]=Math.sin(a)}return{real:n,imag:r}}function TB(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),s=Math.cos(r),a=Math.sin(r);return{real:s,imag:a}}var kv="->",CB=/->/g,_I=",",EI="...";function NB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(CB,"").length)/kv.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${kv}").`);let[r,s]=e.split(kv);O(r.indexOf(EI)===-1,()=>`The ellipsis notation ("${EI}") is not supported yet.`);let a=r.split(_I),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<s.length;++p){let h=s[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<r.length;++p){let h=r[p];i.indexOf(h)===-1&&h!==_I&&i.push(h)}let c=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);c[p]=[];for(let h=0;h<a[p].length;++h)c[p].push(i.indexOf(a[p][h]))}let l=i.length,u=s.length,d=[];for(let p=u;p<l;++p)d.push(p);return{allDims:i,summedDims:d,idDims:c}}function _B(e,t){let n=new Array(e);n.fill(-1);for(let s=0;s<t.length;++s)n[t[s]]=s;let r=[];for(let s=0;s<e;++s)n[s]===-1&&r.push(s);return n=n.filter(s=>s!==-1),{permutationIndices:n,expandDims:r}}function EB(e,t,n){let r=new Array(e);for(let s=0;s<n.length;++s){let a=n[s].shape;for(let o=0;o<t[s].length;++o)r[t[s][o]]===void 0?r[t[s][o]]=a[o]:O(r[t[s][o]]===a[o],()=>`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function AB(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;o<s;++o)r.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],c=$B(t,i);for(let l of c)a.indexOf(l)===-1&&(r[o].push(l),a.push(l))}return{path:n,steps:r}}function DB(e){return e.every((t,n)=>t===n)}function $B(e,t){let n=[];for(let r=0;r<e.length;++r)(e[r].length===0||e[r].indexOf(t)!==-1||t===-1)&&n.push(r);return n}function FB(e,t,n=0){let r=[];if(typeof t=="number")O(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,c)=>c>0?i+c:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}function RB(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function PB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function OB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function MB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function LB(e,t){return`size ${e} must be non-negative, not ${t}`}function BB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function zB(e,t){let n=vt(e),r=vt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${r}. inputShape=${e} outputShape= ${t}`}function WB(e,t){let n=vt(e),r=vt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${r}. inputShape=${e} outputShape=${t}`}function VB(){return"segment ids must be >= 0"}function UB(){return"segment ids are not increasing"}function GB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function HB(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var AI={};Ae(AI,{collectGatherOpShapeInfo:()=>KB,computeOutShape:()=>qB,segOpComputeOptimalWindowSize:()=>jB});function jB(e,t){let n=!1,r;for(e<=wv?(r=e,n=!0):r=Yp(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Yp(e,r+1);return r}function qB(e,t,n){let r=[],s=e.length;for(let a=0;a<s;a++)a!==t?r.push(e[a]):r.push(n);return r}function KB(e,t,n,r){let s=t.shape.length,a=e.shape.length;if(r!==0&&(r<-s||r>s))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${a}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let d=0;d<r;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],c=1,l=1,u=1;for(let d=0;d<r;++d)i.push(e.shape[d]),c*=e.shape[d];for(let d=r;d<n;d++)i.push(e.shape[d]),l*=e.shape[d];for(let d=r;d<s;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:c,sliceSize:u,outerSize:l,dimSize:o,outputShape:i}}function XB(e){try{return e.map(t=>Oh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function YB(e){return e.map(t=>jl(t))}var is={};Ae(is,{nonMaxSuppressionV3Impl:()=>bI,nonMaxSuppressionV4Impl:()=>yI,nonMaxSuppressionV5Impl:()=>vI,whereImpl:()=>iI});var DI={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,fu(ce(n,"float32"),-1))}}},ZB={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ut(ce(n,"float32")),s=on(fe(Ie(1),r));return St(me(e,s))}}}},JB={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=on(fe(ut(ce(n,"float32")),1));return me(e,r)}}}},QB={kernelName:Js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=e,c=Bt(n.shape,s);return c.length>0&&(i=xe(i,c)),U(i,n.shape)},b:()=>{let i=e,c=Bt(r.shape,s);return c.length>0&&(i=xe(i,c)),U(i,r.shape)}}}},ez={kernelName:Ba,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,s)=>{n[s]=()=>e.clone()}),n}},tz={kernelName:za,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},nz={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},rz={kernelName:tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,on(fe(Ie(1),ut(ce(n,"float32")))))}}},sz={kernelName:nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=on(Y(Ie(1),ut(ce(n,"float32"))));return me(e,r)}}}},az={kernelName:ac,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=Y(ut(n),ut(r)),c=V(e,me(r,i)),l=Bt(n.shape,s);return l.length>0&&(c=xe(c,l)),U(c,n.shape)},b:()=>{let i=Y(ut(n),ut(r)),c=St(V(e,me(n,i))),l=Bt(r.shape,s);return l.length>0&&(c=xe(c,l)),U(c,r.shape)}}}},oz={kernelName:rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Y(ut(ce(n,"float32")),1))}}},iz={kernelName:sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,fe(Ie(1),ut(ce(n,"float32"))))}}};function cz(e,t,n,r,s,a){let o=A(e,"dy","avgPool3dGrad"),i=A(t,"input","avgPool3dGrad"),c=o,l=i,u=!1;i.rank===4&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(c.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),xn("avgPool3dGrad",s,a);let d={dy:c,input:l},p={filterSize:n,strides:r,pad:s,dimRoundingMode:a},h=z.runKernel(Qp,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var uz=W({avgPool3dGrad_:cz}),lz={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>uz(e,r,s,a,o,i)}}};function dz(e,t,n,r,s){let a=A(e,"dy","avgPoolGrad"),o=A(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,c=a,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(c.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${c.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:c,input:i},d={filterSize:n,strides:r,pad:s},p=z.runKernel(Jp,u,d);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var pz=W({avgPoolGrad_:dz}),hz={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o}=n;return{x:()=>pz(e,r,s,a,o)}}},fz={kernelName:Va,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,s]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>De(e,s,!1,!0),b:()=>De(r,e,!0,!1)}:!a&&o?{a:()=>De(e,s,!1,!1),b:()=>De(e,r,!0,!1)}:a&&!o?{a:()=>De(s,e,!1,!0),b:()=>De(r,e,!1,!1)}:{a:()=>De(s,e,!0,!0),b:()=>De(e,r,!0,!0)}}},mz={kernelName:oc,gradFunc:(e,t,n)=>{let{blockShape:r,crops:s}=n;return{x:()=>cd(e,r,s)}}},gz={kernelName:E1,gradFunc:(e,t,n)=>{let r=n,s=r.inputShape,a=r.shape,o=Array.from(a);for(let c=s.length-1;c>=0;c--)if(s[c]===a[c])o[c]=1;else if(s[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${a}].`);let i=[];for(let c=0;c<o.length;c++)o[c]>1&&i.push(c);return{x:()=>xe(e,i,!0)}}},bz={kernelName:Ua,gradFunc:e=>({x:()=>e.clone()})},yz={kernelName:Ga,gradFunc:e=>({x:()=>He(e)})},vz={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:s,clipValueMax:a}=n;return{x:()=>fn(Nr(da(r,s),pa(r,a)),e,He(e))}}},xz={kernelName:Nl,inputsToSave:["x"],gradFunc:DI.gradFunc},wz={kernelName:ic,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(c=>c.shape),{axis:s}=n,a=Sr(s,t[0].shape)[0],o=r.map(c=>c[a]);return Ln(e,o,a).map(c=>()=>c)}},kz={kernelName:Ha,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{dilations:a,strides:o,pad:i,dataFormat:c}=n;return O(ua(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Hy(r.shape,e,s,o,i,c),filter:()=>vv(r,e,s.shape,o,i,c)}}},Iz={kernelName:ja,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:c}=n;return{dy:()=>Pt(e,s,a,o,i,1,c),filter:()=>vv(e,r,s.shape,a,o,i,c)}}};function Sz(e,t,n,r,s){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},c={strides:r,pad:s,filterShape:n};return z.runKernel(sh,i,c)}var Tz=W({conv3DBackpropFilter_:Sz}),Cz={kernelName:_l,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a}=n;O(ua(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[o,i]=t;return{x:()=>Wk(o.shape,e,i,s,a),filter:()=>Tz(o,e,i.shape,s,a)}}},Nz={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(St(uf(ce(n,"float32"))),e)}}},_z={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(lf(ce(n,"float32")),e)}}},Ez={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s,exclusive:a,reverse:o}=n;return{x:()=>{let i=Qk([s],r.rank),c=Yh(e,s,a,!o);return i!=null&&(c=Re(c,i)),c}}}},Az={kernelName:Ya,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a,dimRoundingMode:o}=n,i=r==null?[1,1]:r;O(ua(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[c,l]=t;return O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),O(rs(s,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'.`),xn("depthwiseConv2d",a,o),{x:()=>fI(c.shape,e,l,s,a,i,o),filter:()=>hI(c,e,l.shape,s,a,i,o)}}},Dz={kernelName:El,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,a={x:r,filter:s,dy:e},o={x:r,filter:s,dy:e};return{x:()=>z.runKernel(lh,a,n),filter:()=>z.runKernel(dh,o,n)}}},$z={kernelName:Ja,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>z.runKernel(hh,r)}}},Fz={kernelName:lc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(mn(St(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,r)}}},Rz={kernelName:Qa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},Pz={kernelName:pc,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},Oz={kernelName:hc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,mn(n))}}},Mz={kernelName:eo,gradFunc:e=>({x:()=>He(e)})},Lz={kernelName:to,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=me(e,ce(r,"float32")),c=Bt(n.shape,s);return c.length>0?U(xe(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Bt(r.shape,s);c.length>0&&(i=U(xe(i,c),r.shape));let l=ut(r);return St(me(i,ce(l,"float32")))}}}},Bz={kernelName:no,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[s,a,o,i]=t,c=i==null?Ie(1):i,l=Bt(a.shape,s.shape),u=[];if(a.rank===1){for(let x=0;x<s.shape.length-1;++x)u.push(s.shape[x]);u.push(1)}let d=fe(s,a),p=V(e,c),h=of(Y(o,Ie(r))),f=V(V(V(h,h),h),Ie(-.5));return{x:()=>a.rank===1?U(V(V(e,On(U(h,[1,1,1,a.shape[0]]),u)),c),s.shape):U(V(V(e,h),c),s.shape),mean:()=>{let x=V(V(h,Ie(-1)),p);return a.rank===1&&(x=xe(x,l)),U(x,a.shape)},variance:()=>{let x=V(V(f,d),p);return a.rank===1&&(x=xe(x,l)),U(x,a.shape)},scale:()=>{let x=V(d,h),w=V(e,x);return a.rank===1&&(w=xe(w,l)),U(w,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=xe(x,l)),U(x,a.shape)}}}},zz={kernelName:mc,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,s]=t,{axis:a}=n,o=Sr(a,r.shape)[0];return{x:()=>{let c=r.shape,l=s.size,u=c.slice(0,o),d=u.length,p=c.slice(a,c.length).slice(1),h=p.length,f=$I(0,d),m=$I(d+1,d+1+h),g=FI([u,[l],p]),b=U(e,g),y=U(s,[l]),v=FI([[d],f,m]),x=Re(b,v),w=mv(x,y,r.shape[o]),T=nv(v);return w=Re(w,T),w},indices:()=>s}}};function $I(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function FI(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var Wz={kernelName:ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},Vz={kernelName:so,gradFunc:e=>({x:()=>ce(e,"float32")})},Uz={kernelName:yc,gradFunc:e=>({x:()=>He(e)})},Gz={kernelName:vc,gradFunc:e=>({x:()=>He(e)})},Hz={kernelName:xc,gradFunc:e=>({x:()=>He(e)})},jz={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:s}=n,a=Mn(r,0);return{x:()=>fn(a,e,V(e,s))}}},qz={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Y(n,1))}}},Kz={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ce(n,"float32"))}}},Xz={kernelName:A1,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n;return{logits:()=>{let a=!0,o=mn(r);return fe(e,V(xe(e,s,a),o))}}}};function Yz(e,t,n,r=5,s=1,a=1,o=.5){let i={x:e,y:t,dy:n},c={depthRadius:r,bias:s,alpha:a,beta:o};return z.runKernel(yh,i,c)}var Zz=W({localResponseNormalizationBackprop_:Yz}),Jz={kernelName:Fl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{depthRadius:a,bias:o,alpha:i,beta:c}=n;return{x:()=>Zz(r,s,e,a,o,i,c)}}};function RI(e,t,n,r){return t.rank<n.rank&&(t=U(t,Jo(t.shape,r))),e.rank<n.rank&&(e=U(e,Jo(e.shape,r))),{x:()=>V(e,ce(Yn(n,t),e.dtype))}}var PI={kernelName:io,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:s}=r,a=t[0],o=t[1],i=Sr(s,a.shape),c=RI(e,o,a,i);return{x:()=>c.x()}}},Qz={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ce(da(n,r),"float32")),b:()=>V(e,ce(Jh(n,r),"float32"))}}};function e4(e,t,n,r,s,a,o){let i=A(e,"dy","maxPool3dGrad"),c=A(t,"input","maxPool3dGrad"),l=A(n,"output","maxPool3dGrad"),u=i,d=c,p=l,h=!1;c.rank===4&&(h=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),xn("maxPool3dGrad",a,o);let f={dy:u,input:d,output:p},m={filterSize:r,strides:s,pad:a,dimRoundingMode:o},g=z.runKernel(xh,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var t4=W({maxPool3dGrad_:e4}),n4={kernelName:Rl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=n;return{x:()=>t4(e,r,s,a,o,i,c)}}};function r4(e,t,n,r,s,a,o){let i=A(e,"dy","maxPoolGrad"),c=A(t,"input","maxPoolGrad"),l=A(n,"output","maxPoolGrad");O(c.rank===i.rank,()=>`Rank of input (${c.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(c.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${c.rank}.`),xn("maxPoolGrad",a,o);let u={dy:i,input:c,output:l},d={filterSize:r,strides:s,pad:a,dimRoundingMode:o};return z.runKernel(vh,u,d)}var s4=W({maxPoolGrad_:r4}),a4={kernelName:uo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>s4(e,r,s,a,o,i)}}},o4={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n,a=Sr(s,r.shape),i=Jk(r.shape,a)[1],c=vt(i);return{x:()=>{let u=r.shape.slice();a.forEach(h=>{u[h]=1});let d=U(e,u);return me(V(d,Jn(r.shape,"float32")),c)}}}},i4={kernelName:po,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:s}=r,[a,o]=t,i=Sr(s,a.shape),c=RI(e,o,a,i);return{x:()=>c.x()}}},c4={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ce(pa(n,r),"float32")),b:()=>V(e,ce(Mn(n,r),"float32"))}}},u4={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>We(e,a,r.shape)}}},l4={kernelName:Tc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=Bt(n.shape,s);return i.length>0?U(xe(e,i),n.shape):e},b:()=>{let i=V(e,St(cu(me(n,r)))),c=Bt(r.shape,s);return c.length>0?U(xe(i,c),r.shape):i}}}},d4={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=V(e,ce(r,"float32")),c=Bt(n.shape,s);return c.length>0?U(xe(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Bt(r.shape,s);return c.length>0?U(xe(i,c),r.shape):i}}}},p4={kernelName:Cc,gradFunc:e=>({x:()=>St(e)})},h4={kernelName:go,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Tt(n.shape,"float32")}}},f4={kernelName:Dc,gradFunc:e=>({x:()=>He(e)})},m4={kernelName:$c,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ft(e,r).map(a=>()=>a)}},OI={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>We(e,a,r.shape)}}},g4={kernelName:yo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,s]=t,a=n,o=r,i=ht(a.shape,o.shape);return{a:()=>{let u=ce(o,"float32"),d=V(e,V(u,Ts(a,fe(u,Ie(1))))),p=Bt(a.shape,i);return p.length>0&&(d=xe(d,p)),U(d,a.shape)},b:()=>{let u=Mn(a,0),d=fn(u,Zn(a),He(a)),p=V(e,V(s,d)),h=Bt(o.shape,i);return h.length>0&&(p=xe(p,h)),U(p,o.shape)}}}},b4={kernelName:vo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,s=Mn(n,0);return{x:()=>fn(s,e,V(e,r)),alpha:()=>{let a=fn(s,He(e),V(e,n)),o=Bt(r.shape,e.shape);return o.length>0&&(a=xe(a,o)),U(a,r.shape)}}}},y4={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=me(e,ce(r,"float32")),c=Bt(n.shape,s);return c.length>0?U(xe(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Bt(r.shape,s);c.length>0&&(i=U(xe(i,c),r.shape));let l=ut(r);return St(me(i,ce(l,"float32")))}}}},v4={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,St(ut(n)))}}},x4={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(pa(n,6),fu(n));return{x:()=>V(e,ce(r,"float32"))}}},w4={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,ce(fu(n),"float32"))}}},k4={kernelName:Pc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},I4={kernelName:wo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>z.runKernel(Th,s,n)}}},S4={kernelName:Ol,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>z.runKernel(Sh,s,n)}}},T4={kernelName:Io,gradFunc:(e,t,n)=>{let{dims:r}=n,s=Sr(r,e.shape);return{x:()=>er(e,s)}}},C4={kernelName:So,gradFunc:e=>({x:()=>He(e)})},N4={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(me(e,V(Ts(n,1.5),2)))}}},_4={kernelName:Mc,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(He(n),"float32"),t:()=>V(e,ce(n,e.dtype)),e:()=>V(e,ce(od(n),e.dtype))}}},E4={kernelName:Lc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Mn(n,Ie(0)),s=Ie(CI),a=Ie(NI),o=V(e,a),i=V(V(e,s),mn(ce(n,"float32")));return fn(r,o,i)}}}},A4={kernelName:No,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,fe(Ie(1),n)))}}},D4={kernelName:Wc,gradFunc:e=>({x:()=>He(e)})},$4={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(rd(ce(n,"float32")),e)}}},F4={kernelName:zc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Xh(ce(n,"float32")),e)}}},R4={kernelName:Bc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:s,size:a}=n,o=r.shape,[i,c]=kk(r,s,a),l=[];for(let u=0;u<e.rank;u++)l.push([i[u],o[u]-i[u]-c[u]]);return{x:()=>fr(e,l)}}},P4={kernelName:Ao,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:s}=n,a=!0,o=V(e,r);return{logits:()=>fe(o,V(xe(o,[s],a),r))}}},O4={kernelName:Vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,hr(n))}}},MI={kernelName:Uc,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:s}=n;return{x:()=>nd(e,r,s)}}},LI={kernelName:Gc,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>tt(e,r)}}},M4={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,V(on(ce(n,"float32")),2))}}},L4={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(ce(n,"float32"),2))}}},B4={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Ie(2);return{a:()=>V(e,V(s,fe(n,r))),b:()=>V(e,V(s,fe(r,n)))}}},z4={kernelName:ta,gradFunc:e=>({x:()=>He(e)})},W4={kernelName:$o,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=e,c=Bt(n.shape,s);return c.length>0&&(i=xe(i,c)),U(i,n.shape)},b:()=>{let i=e,c=Bt(r.shape,s);return c.length>0&&(i=xe(i,c)),U(St(i),r.shape)}}}},V4={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,s=r.shape.slice(),{axis:a}=n;Sr(a,r.shape).forEach(l=>{s[l]=1});let i=U(e,s),c=V(i,Jn(r.shape,"float32"));return{x:()=>c}}},U4={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ut(rd(n)))}}},G4={kernelName:Ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(fe(Ie(1),ut(n)),e)}}},H4={kernelName:ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:s}=n;return{x:()=>{let o=He(r);if(r.rank===1)for(let i=0;i<s[0];++i)o=Y(o,We(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<s[0];++i)for(let c=0;c<s[1];++c)o=Y(o,We(e,[i*r.shape[0],c*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<s[0];++i)for(let c=0;c<s[1];++c)for(let l=0;l<s[2];++l)o=Y(o,We(e,[i*r.shape[0],c*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<s[0];++i)for(let c=0;c<s[1];++c)for(let l=0;l<s[2];++l)for(let u=0;u<s[3];++u)o=Y(o,We(e,[i*r.shape[0],c*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return o}}}},j4={kernelName:Po,gradFunc:(e,t,n)=>{let r=n,{perm:s}=r,a=nv(s);return{x:()=>Re(e,a)}}},q4={kernelName:Xc,gradFunc:(e,t,n)=>{let r=n,{axis:s}=r;return{value:()=>Mt(e,s)}}},K4={kernelName:Wl,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>X4(e,n)}}};function X4(e,t){let n=as(t,He(t)),r=Yo(e,n),s=da(t,Ie(0,"int32")),a=r.rank-s.rank;for(let i=0;i<a;++i)s=gn(s,i+1);s=Nr(s,Jn(r.shape,"bool"));let o=He(r);return fn(s,r,o)}var Y4={kernelName:Yc,gradFunc:e=>({x:()=>He(e)})},Z4=[DI,ZB,JB,QB,ez,tz,nz,rz,sz,az,oz,iz,lz,hz,fz,mz,gz,bz,yz,vz,xz,wz,Iz,kz,Cz,Nz,_z,Ez,Az,Dz,y4,$z,Fz,Rz,Pz,Oz,Lz,Mz,Bz,zz,Wz,Vz,Uz,Gz,Hz,jz,qz,Kz,Xz,Jz,PI,PI,Qz,n4,a4,o4,i4,c4,u4,l4,d4,p4,h4,f4,m4,OI,OI,g4,b4,v4,x4,w4,k4,I4,S4,T4,C4,N4,_4,E4,A4,D4,$4,F4,R4,P4,O4,MI,MI,LI,LI,M4,B4,L4,z4,W4,V4,U4,G4,H4,j4,q4,K4,Y4];for(let e of Z4)D1(e);ee().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};ee().prototype.acos=function(){return this.throwIfDisposed(),$y(this)};ee().prototype.acosh=function(){return this.throwIfDisposed(),Fy(this)};ee().prototype.add=function(e){return this.throwIfDisposed(),Y(this,e)};ee().prototype.all=function(e,t){return this.throwIfDisposed(),Hh(this,e,t)};ee().prototype.any=function(e,t){return this.throwIfDisposed(),ed(this,e,t)};ee().prototype.argMax=function(e){return this.throwIfDisposed(),qo(this,e)};ee().prototype.argMin=function(e){return this.throwIfDisposed(),Ry(this,e)};ee().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),U(this,[])};ee().prototype.asType=function(e){return this.throwIfDisposed(),ce(this,e)};ee().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};ee().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};ee().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};ee().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),U(this,[e,t,n,r])};ee().prototype.as5D=function(e,t,n,r,s){return this.throwIfDisposed(),U(this,[e,t,n,r,s])};ee().prototype.asin=function(){return this.throwIfDisposed(),Py(this)};ee().prototype.asinh=function(){return this.throwIfDisposed(),Oy(this)};ee().prototype.atan=function(){return this.throwIfDisposed(),My(this)};ee().prototype.atan2=function(e){return this.throwIfDisposed(),Ly(this,e)};ee().prototype.atanh=function(){return this.throwIfDisposed(),By(this)};ee().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),pr(this,e,t,n,r)};ee().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),nd(this,e,t)};ee().prototype.batchNorm=function(e,t,n,r,s){return this.throwIfDisposed(),Ss(this,e,t,n,r,s)};ee().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ou(this,e)};ee().prototype.cast=function(e){return this.throwIfDisposed(),ce(this,e)};ee().prototype.ceil=function(){return this.throwIfDisposed(),Gy(this)};ee().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Qt(this,e,t)};ee().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ee&&(e=[e]),tt([this,...e],t)};ee().prototype.conv1d=function(e,t,n,r,s,a){return this.throwIfDisposed(),qh(this,e,t,n,r,s,a)};ee().prototype.conv2dTranspose=function(e,t,n,r,s){return this.throwIfDisposed(),Kh(this,e,t,n,r,s)};ee().prototype.conv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),Pt(this,e,t,n,r,s,a)};ee().prototype.cos=function(){return this.throwIfDisposed(),rd(this)};ee().prototype.cosh=function(){return this.throwIfDisposed(),Xh(this)};ee().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Yh(this,e,t,n)};ee().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),qy(this,e,t)};ee().prototype.depthwiseConv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),la(this,e,t,n,r,s,a)};ee().prototype.dilation2d=function(e,t,n,r,s){return this.throwIfDisposed(),Ky(this,e,t,n,r,s)};ee().prototype.divNoNan=function(e){return this.throwIfDisposed(),Xy(this,e)};ee().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};ee().prototype.dot=function(e){return this.throwIfDisposed(),Gk(this,e)};ee().prototype.elu=function(){return this.throwIfDisposed(),iu(this)};ee().prototype.equal=function(e){return this.throwIfDisposed(),Yn(this,e)};ee().prototype.erf=function(){return this.throwIfDisposed(),Yy(this)};ee().prototype.exp=function(){return this.throwIfDisposed(),mn(this)};ee().prototype.expandDims=function(e){return this.throwIfDisposed(),gn(this,e)};ee().prototype.expm1=function(){return this.throwIfDisposed(),Zy(this)};ee().prototype.fft=function(){return this.throwIfDisposed(),pd(this)};ee().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};ee().prototype.floor=function(){return this.throwIfDisposed(),cu(this)};ee().prototype.floorDiv=function(e){return this.throwIfDisposed(),Gh(this,e)};ee().prototype.gather=function(e,t){return this.throwIfDisposed(),Yo(this,e,t)};ee().prototype.greaterEqual=function(e){return this.throwIfDisposed(),da(this,e)};ee().prototype.greater=function(e){return this.throwIfDisposed(),Mn(this,e)};ee().prototype.ifft=function(){return this.throwIfDisposed(),hu(this)};ee().prototype.irfft=function(){return this.throwIfDisposed(),pf(this)};ee().prototype.isFinite=function(){return this.throwIfDisposed(),jk(this)};ee().prototype.isInf=function(){return this.throwIfDisposed(),qk(this)};ee().prototype.isNaN=function(){return this.throwIfDisposed(),Qy(this)};ee().prototype.leakyRelu=function(e){return this.throwIfDisposed(),sd(this,e)};ee().prototype.lessEqual=function(e){return this.throwIfDisposed(),pa(this,e)};ee().prototype.less=function(e){return this.throwIfDisposed(),Jh(this,e)};ee().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),ev(this,e,t,n,r)};ee().prototype.logSigmoid=function(){return this.throwIfDisposed(),Yk(this)};ee().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ef(this,e)};ee().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),rv(this,e,t)};ee().prototype.log=function(){return this.throwIfDisposed(),Zn(this)};ee().prototype.log1p=function(){return this.throwIfDisposed(),ad(this)};ee().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Nr(this,e)};ee().prototype.logicalNot=function(){return this.throwIfDisposed(),od(this)};ee().prototype.logicalOr=function(e){return this.throwIfDisposed(),tf(this,e)};ee().prototype.logicalXor=function(e){return this.throwIfDisposed(),eI(this,e)};ee().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),De(this,e,t,n)};ee().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Ot(this,e,t,n,r)};ee().prototype.max=function(e,t){return this.throwIfDisposed(),Cr(this,e,t)};ee().prototype.maximum=function(e){return this.throwIfDisposed(),as(this,e)};ee().prototype.mean=function(e,t){return this.throwIfDisposed(),At(this,e,t)};ee().prototype.min=function(e,t){return this.throwIfDisposed(),id(this,e,t)};ee().prototype.minimum=function(e){return this.throwIfDisposed(),uu(this,e)};ee().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),av(this,e,t)};ee().prototype.mod=function(e){return this.throwIfDisposed(),ov(this,e)};ee().prototype.mul=function(e){return this.throwIfDisposed(),V(this,e)};ee().prototype.neg=function(){return this.throwIfDisposed(),St(this)};ee().prototype.norm=function(e,t,n){return this.throwIfDisposed(),gf(this,e,t,n)};ee().prototype.notEqual=function(e){return this.throwIfDisposed(),Qo(this,e)};ee().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ru(this,e,t,n)};ee().prototype.onesLike=function(){return this.throwIfDisposed(),Qn(this)};ee().prototype.pad=function(e,t){return this.throwIfDisposed(),fr(this,e,t)};ee().prototype.pool=function(e,t,n,r,s,a){return this.throwIfDisposed(),rI(this,e,t,n,r,s,a)};ee().prototype.pow=function(e){return this.throwIfDisposed(),Ts(this,e)};ee().prototype.prelu=function(e){return this.throwIfDisposed(),ud(this,e)};ee().prototype.prod=function(e,t){return this.throwIfDisposed(),rf(this,e,t)};ee().prototype.reciprocal=function(){return this.throwIfDisposed(),uv(this)};ee().prototype.relu=function(){return this.throwIfDisposed(),Ke(this)};ee().prototype.relu6=function(){return this.throwIfDisposed(),sf(this)};ee().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};ee().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};ee().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),wI(this,e,t,n)};ee().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),kI(this,e,t,n)};ee().prototype.reverse=function(e){return this.throwIfDisposed(),er(this,e)};ee().prototype.rfft=function(){return this.throwIfDisposed(),hd(this)};ee().prototype.round=function(){return this.throwIfDisposed(),af(this)};ee().prototype.rsqrt=function(){return this.throwIfDisposed(),of(this)};ee().prototype.selu=function(){return this.throwIfDisposed(),cf(this)};ee().prototype.separableConv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),ei(this,e,t,n,r,s,a)};ee().prototype.sigmoid=function(){return this.throwIfDisposed(),hr(this)};ee().prototype.sign=function(){return this.throwIfDisposed(),lv(this)};ee().prototype.sin=function(){return this.throwIfDisposed(),uf(this)};ee().prototype.sinh=function(){return this.throwIfDisposed(),lf(this)};ee().prototype.slice=function(e,t){return this.throwIfDisposed(),We(this,e,t)};ee().prototype.softmax=function(e){return this.throwIfDisposed(),zr(this,e)};ee().prototype.softplus=function(){return this.throwIfDisposed(),Zo(this)};ee().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),cd(this,e,t)};ee().prototype.split=function(e,t){return this.throwIfDisposed(),Ln(this,e,t)};ee().prototype.sqrt=function(){return this.throwIfDisposed(),on(this)};ee().prototype.square=function(){return this.throwIfDisposed(),ut(this)};ee().prototype.squaredDifference=function(e){return this.throwIfDisposed(),hf(this,e)};ee().prototype.squeeze=function(e){return this.throwIfDisposed(),os(this,e)};ee().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ee?[this,e]:[this,...e];return Mt(n,t)};ee().prototype.step=function(e){return this.throwIfDisposed(),fu(this,e)};ee().prototype.stridedSlice=function(e,t,n,r,s,a,o,i){return this.throwIfDisposed(),pv(this,e,t,n,r,s,a,o,i)};ee().prototype.sub=function(e){return this.throwIfDisposed(),fe(this,e)};ee().prototype.sum=function(e,t){return this.throwIfDisposed(),xe(this,e,t)};ee().prototype.tan=function(){return this.throwIfDisposed(),hv(this)};ee().prototype.tanh=function(){return this.throwIfDisposed(),Xo(this)};ee().prototype.tile=function(e){return this.throwIfDisposed(),On(this,e)};ee().prototype.toBool=function(){return this.throwIfDisposed(),ce(this,"bool")};ee().prototype.toFloat=function(){return this.throwIfDisposed(),ce(this,"float32")};ee().prototype.toInt=function(){return this.throwIfDisposed(),ce(this,"int32")};ee().prototype.topk=function(e,t){return this.throwIfDisposed(),fv(this,e,t)};ee().prototype.transpose=function(e){return this.throwIfDisposed(),Re(this,e)};ee().prototype.unique=function(e){return this.throwIfDisposed(),mf(this,e)};ee().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),mv(this,e,t)};ee().prototype.unstack=function(e){return this.throwIfDisposed(),ft(this,e)};ee().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};ee().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var BI={};Ae(BI,{maxNorm:()=>tW,minMaxNorm:()=>sW,nonNeg:()=>rW,unitNorm:()=>nW});var Iv;function jt(){return Iv==null&&(Iv=_k().epsilon()),Iv}function Ur(){return"channelsLast"}var _s=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,_s.prototype)}},Gr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Gr.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},Fe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Fe.prototype)}},zI=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,zI.prototype)}};function ni(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function cs(e,t){if(!e)throw new zI(t)}function WI(e,t){let n=0;for(let r of e)r===t&&n++;return n}function Bn(e){return e.length===1?e[0]:e}function xt(e){return Array.isArray(e)?e:[e]}function Es(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ri(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var _r={};function Sv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Tv(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Tv(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:Tv(r))}}}function gd(e,t={},n={},r="object",s=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in _r)o=_r[a];else if(o=t[a],o==null)throw new H(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${r}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,c;if(o in n?[i,c]=n[o]:o in _r?[i,c]=_r.className:o in t&&([i,c]=t[o]),i==null)throw new H(`Unknown ${r}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(c!=null){let l={};for(let h of Object.keys(_r))l[h]=_r[h];for(let h of Object.keys(n))l[h]=n[h];let u=a.config;u.customObjects=l;let d=Object.assign({},_r);for(let h of Object.keys(n))_r[h]=n[h];Tv(a.config);let p=c(i,a.config,n,s);return _r=Object.assign({},d),p}else{let l=Object.assign({},_r);for(let d of Object.keys(n))_r[d]=n[d];let u=new i(a.config);return _r=Object.assign({},l),u}}}function J4(e,t){return e<t?-1:e>t?1:0}function _f(e,t){return-1*J4(e,t)}function ma(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Q4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function si(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Cv(e,t,n=0,r=1/0){return cs(n>=0),cs(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(s=>typeof s===t)}function en(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>en(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${VI(e)}.`)}function VI(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>VI(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function eW(e,t,n){let r=n!=null?n():k.now(),s;return(...o)=>{let i=n!=null?n():k.now();return i-r<t||(r=i,s=e(...o)),s}}function UI(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Nv(e,t){return M(()=>on(xe(V(e,e),t,!0)))}var bd=class extends ie.Serializable{getConfig(){return{}}},_v=class extends bd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=Nv(e,this.axis),n=Qt(t,0,this.maxValue);return V(e,me(n,Y(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};_v.className="MaxNorm";ie.registerClass(_v);var Ev=class extends bd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>me(e,Y(jt(),Nv(e,this.axis))))}getConfig(){return{axis:this.axis}}};Ev.className="UnitNorm";ie.registerClass(Ev);var Av=class extends bd{apply(e){return Ke(e)}};Av.className="NonNeg";ie.registerClass(Av);var Dv=class extends bd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=Nv(e,this.axis),n=Y(V(this.rate,Qt(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,me(n,Y(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Dv.className="MinMaxNorm";ie.registerClass(Dv);var GI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return Sv(e)}function HI(e,t={}){return gd(e,ie.SerializationMap.getMap().classNameMap,t,"constraint")}function Kt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in GI?GI[e]:e,config:{}};return HI(n)}else return e instanceof bd?e:HI(e)}function tW(e){return new _v(e)}function nW(e){return new Ev(e)}function rW(){return new Av}function sW(e){return new Dv(e)}var jI={};Ae(jI,{constant:()=>NW,glorotNormal:()=>RW,glorotUniform:()=>FW,heNormal:()=>PW,heUniform:()=>OW,identity:()=>DW,leCunNormal:()=>MW,leCunUniform:()=>LW,ones:()=>CW,orthogonal:()=>BW,randomNormal:()=>EW,randomUniform:()=>_W,truncatedNormal:()=>AW,varianceScaling:()=>$W,zeros:()=>TW});var aW=["channelsFirst","channelsLast"],oW=["nearest","bilinear"],iW=["valid","same","causal"],cW=["max","avg"],uW=["sum","mul","concat","ave"],gu=new Map;function Lt(e){si(aW,"DataFormat",e)}function lW(e){si(oW,"InterpolationFormat",e)}function mr(e){si(iW,"PaddingMode",e)}function qI(e){si(cW,"PoolMode",e)}var yd=[],KI="/";function ai(e,t){yd.push(e);try{let n=t();return yd.pop(),n}catch(n){throw yd.pop(),n}}function dW(){return yd.length===0?"":yd.join(KI)+KI}function XI(e){if(!ZI(e))throw new Error("Not a valid tensor name: '"+e+"'");return dW()+e}function YI(e){if(!ZI(e))throw new Error("Not a valid tensor name: '"+e+"'");gu.has(e)||gu.set(e,0);let t=gu.get(e);if(gu.set(e,gu.get(e)+1),t>0){let n=`${e}_${t}`;return gu.set(n,1),n}else return e}var pW=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function ZI(e){return!!e.match(pW)}function hW(e){return e===parseInt(e.toString(),10)}function ga(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let s=t;s<n;++s)r*=e[s];return r}function bu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let r=e[n];r<t&&(t=r)}return t}function ba(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let r=e[n];r>t&&(t=r)}return t}function Hr(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Ef(e,t){return ce(e,t)}function vd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function fW(e,t){return M(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=vd(e,1);return Rv(n,[1,t,1])})}function mW(e){let t=[ga(e.shape)];return U(e,t)}function gW(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ga(e.shape,1)];return U(e,t)}function oi(e,t,n){return M(()=>{switch(e.rank){case 1:return df(e,t,n);case 2:return dv(e,[t,0],[n,e.shape[1]]);case 3:return pu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return dd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function $v(e,t,n){return M(()=>{switch(e.rank){case 1:return df(e,t,n);case 2:return dv(e,[0,t],[e.shape[0],n]);case 3:return pu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return dd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Af(e,t,n,r){return M(()=>{switch(e.rank){case 1:return df(e,t,n);case 2:switch(r){case 1:return oi(e,t,n);case 2:return $v(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return oi(e,t,n);case 2:return pu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return $v(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return oi(e,t,n);case 2:return dd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return dd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return $v(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Fv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),tt(e,t)}function JI(e,t){switch(e.rank){case 1:return Mk([e,t]);case 2:return Lk([e,t],0);case 3:return Bk([e,t],0);case 4:return zk([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Rv(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return On(e,t)}function Df(e,t=0,n=1,r,s){return sI(e,t,n,r,s)}function us(e,t,n,r){if(e.rank<2||t.rank<2)throw new Fe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let s=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(s!==a)throw new Fe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let s=!1,a=!1;return ha.matMul({a:e,b:t,transposeA:s,transposeB:a,bias:r?Pv(e.rank,r,Ur()):null,activation:n})}else{let s=e.shape.slice(),a=s.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),c=o.pop(),l=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Re(t,u),[c,-1]);let d=[...s,...l],p=!1,h=!1;return U(ha.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:r?Pv(e.rank,r,Ur()):null,activation:n}),d)}}function QI(e,t,n){return M(()=>(Array.isArray(t)?t=je(t,"int32"):t=ce(t,"int32"),Yo(e,t,n)))}function xd(e){return V(e,e)}function Pv(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1,1,1]):U(t,[1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,1,1,r[0]]):U(t,[1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1,1]):U(t,[1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,1,r[0]]):U(t,[1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1]):U(t,[1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,r[0]]):U(t,[1].concat(r))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function jr(e,t,n){return M(()=>(n==null&&(n=Ur()),Lt(n),Y(e,Pv(e.rank,t,n))))}function bW(e,t=1){if(t!==1)throw new Fe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return iu(e)}function yW(e){return M(()=>me(e,Y(zt(e),1)))}function eS(e,t,n,r){return M(()=>dI(e,t,n,r))}function vW(e){return M(()=>{let t=Y(.5,V(.2,e));return Qt(t,0,1)})}function wd(e,t,n=!1){return n?e():t()}var xW=["fanIn","fanOut","fanAvg"],wW=["normal","uniform","truncatedNormal"];function kW(e){si(xW,"FanMode",e)}function IW(e){si(wW,"Distribution",e)}var Er=class extends ie.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Ov=class extends Er{apply(e,t){return Tt(e,t)}};Ov.className="Zeros";ie.registerClass(Ov);var $f=class extends Er{apply(e,t){return Jn(e,t)}};$f.className="Ones";ie.registerClass($f);var Mv=class extends Er{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return M(()=>V(Ie(this.value),Jn(e,t)))}getConfig(){return{value:this.value}}};Mv.className="Constant";ie.registerClass(Mv);var Lv=class extends Er{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return lu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Lv.className="RandomUniform";ie.registerClass(Lv);var Bv=class extends Er{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`randomNormal does not support dType ${t}.`);return Df(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Bv.className="RandomNormal";ie.registerClass(Bv);var zv=class extends Er{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`truncatedNormal does not support dType ${t}.`);return ff(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};zv.className="TruncatedNormal";ie.registerClass(zv);var Wv=class extends Er{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return M(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,Jy(e[0]))})}getConfig(){return{gain:this.gain}}};Wv.className="Identity";ie.registerClass(Wv);function SW(e,t="channelsLast"){let n,r;if(Lt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let s=ga(e,2);n=e[1]*s,r=e[0]*s}else if(t==="channelsLast"){let s=ga(e,0,e.length-2);n=e[e.length-2]*s,r=e[e.length-1]*s}}else{let s=ga(e);n=Math.sqrt(s),r=Math.sqrt(s)}return[n,r]}var zn=class extends Er{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,kW(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,IW(this.distribution),this.seed=e.seed}apply(e,t){let n=SW(e),r=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,r):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(r+s)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`${this.getClassName()} does not support dType ${t}.`);return ff(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return lu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};zn.className="VarianceScaling";ie.registerClass(zn);var Ff=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Ff.className="GlorotUniform";ie.registerClass(Ff);var Rf=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Rf.className="GlorotNormal";ie.registerClass(Rf);var Pf=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Pf.className="HeNormal";ie.registerClass(Pf);var Of=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Of.className="HeUniform";ie.registerClass(Of);var Mf=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Mf.className="LeCunNormal";ie.registerClass(Mf);var Lf=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Lf.className="LeCunNormal";ie.registerClass(Lf);var Vv=class extends Er{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Fe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return M(()=>{if(e.length<2)throw new Fe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Df(n,0,1,"float32"),s=SI.gramSchmidt(r);return e[0]>e[1]&&(s=Re(s)),V(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Vv.className="Orthogonal";ie.registerClass(Vv);var tS={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function nS(e,t={}){return gd(e,ie.SerializationMap.getMap().classNameMap,t,"initializer")}function Dt(e){return Sv(e)}function Ct(e){if(typeof e=="string"){let t=e in tS?tS[e]:e;if(t==="GlorotNormal")return new Rf;if(t==="GlorotUniform")return new Ff;if(t==="HeNormal")return new Pf;if(t==="HeUniform")return new Of;if(t==="LeCunNormal")return new Mf;if(t==="LeCunUniform")return new Lf;{let n={};return n.className=t,n.config={},nS(n)}}else return e instanceof Er?e:nS(e)}function TW(){return new Ov}function CW(){return new $f}function NW(e){return new Mv(e)}function _W(e){return new Lv(e)}function EW(e){return new Bv(e)}function AW(e){return new zv(e)}function DW(e){return new Wv(e)}function $W(e){return new zn(e)}function FW(e){return new Ff(e)}function RW(e){return new Rf(e)}function PW(e){return new Pf(e)}function OW(e){return new Of(e)}function MW(e){return new Mf(e)}function LW(e){return new Lf(e)}function BW(e){return new Vv(e)}var rS={};Ae(rS,{Layer:()=>Xe,RNN:()=>ps,RNNCell:()=>Ad,activation:()=>wU,add:()=>AU,alphaDropout:()=>hG,average:()=>DU,averagePooling1d:()=>ow,averagePooling2d:()=>iw,averagePooling3d:()=>cw,avgPool1d:()=>zU,avgPool2d:()=>VU,avgPool3d:()=>GU,avgPooling1d:()=>WU,avgPooling2d:()=>UU,avgPooling3d:()=>HU,batchNormalization:()=>MU,bidirectional:()=>aG,concatenate:()=>$U,conv1d:()=>pU,conv2d:()=>hU,conv2dTranspose:()=>fU,conv3d:()=>mU,conv3dTranspose:()=>gU,convLstm2d:()=>tG,convLstm2dCell:()=>nG,cropping2D:()=>yU,dense:()=>kU,depthwiseConv2d:()=>xU,dot:()=>OU,dropout:()=>IU,elu:()=>oU,embedding:()=>EU,flatten:()=>TU,gaussianDropout:()=>pG,gaussianNoise:()=>dG,globalAveragePooling1d:()=>jU,globalAveragePooling2d:()=>qU,globalMaxPool1d:()=>iG,globalMaxPool2d:()=>cG,globalMaxPooling1d:()=>pT,globalMaxPooling2d:()=>hT,gru:()=>XU,gruCell:()=>YU,input:()=>OS,inputLayer:()=>aU,layerNormalization:()=>LU,leakyReLU:()=>cU,lstm:()=>ZU,lstmCell:()=>JU,masking:()=>fG,maxPool1d:()=>uG,maxPool2d:()=>lG,maxPooling1d:()=>fT,maxPooling2d:()=>mT,maxPooling3d:()=>KU,maximum:()=>FU,minimum:()=>RU,multiply:()=>PU,permute:()=>_U,prelu:()=>uU,reLU:()=>iU,repeatVector:()=>CU,reshape:()=>NU,rnn:()=>rG,separableConv2d:()=>bU,simpleRNN:()=>QU,simpleRNNCell:()=>eG,softmax:()=>lU,spatialDropout1d:()=>SU,stackedRNNCells:()=>sG,thresholdedReLU:()=>dU,timeDistributed:()=>oG,upSampling2d:()=>vU,zeroPadding2d:()=>BU});var zW=0;function sS(){return zW++}var Bf={};function zf(e=""){return e in Bf||(Bf[e]=0),Bf[e]+=1,e+Bf[e].toString()}function Uv(e){return Array.isArray(e)&&Array.isArray(e[0])}function Wf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Me(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ot(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Vf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,s)=>r*s);return t}var aS="Variable",oS=class{constructor(e,t="float32",n=aS,r=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=sS(),n=n==null?aS:n,this.originalName=XI(n),this.name=YI(this.originalName),this.trainable_=r,this.constraint=s,this.val=oI(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),WW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function WW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Gv(e){return e.map(t=>t.read())}function Hv(e){e.forEach(t=>{t[0].write(t[1])})}var Wt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},qr=class{constructor(e,t,n,r,s,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=s,this.outputTensorIndex=o,this.id=sS(),a!=null&&(this.originalName=XI(a),this.name=YI(this.originalName)),this.rank=t.length}},VW=0,Uf=class{constructor(e,t){this.callArgs=t,this.id=VW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},UW=0,Xe=class extends ie.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=UW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Es(n)+"_"+zf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Gr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Bn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Bn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new _s(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new _s(`Layer ${this.name} is not connected, no input to return.`);return Bn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new _s(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new _s(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Bn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=xt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=xt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],s=t[n];if(s==null)continue;let a=r.rank;if(s.ndim!=null&&a!==s.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&r.dtype!==s.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${r.dtype}.`);if(s.axes){let o=r.shape;for(let i in s.axes){let c=Number(i),l=s.axes[i],u=c>=0?o[c]:o[o.length+c];if(l!=null&&[l,null].indexOf(u)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${c} of input shape to have value ${l} but got shape ${o}.`)}}if(s.shape!=null)for(let o=0;o<s.shape.length;++o){let i=s.shape[o],c=r.shape[o];if(i!=null&&c!=null&&i!==c)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=xt(e),r=!0;for(let a of n)if(!(a instanceof qr)){r=!1;break}let s=!0;for(let a of n)if(a instanceof qr){s=!1;break}if(r===s)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return ai(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of xt(e))a.push(o.shape);this.build(Bn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),o=xt(a),i=[];for(let c of o)n.indexOf(c)!==-1&&(c=c.clone()),i.push(c);if(a=Bn(i),this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=GW(e),o=this.computeOutputShape(a),i,c=HW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((l,u)=>new qr(c,l,this,xt(e),t,this.name,u)):i=new qr(c,o,this,xt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new _s(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new _s(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Gr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Vf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Gv(e?this.trainableWeights:this.weights)}setWeights(e){M(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=Gv(t);for(let s=0;s<r.length;++s){let a=r[s],o=t[s],i=e[s];if(!k.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}Hv(n)})}addWeight(e,t,n,r,s,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=i!=null?i():Ct("zeros"));let c=r.apply(t,n),l=new oS(c,n,e,a,o);return c.dispose(),s!=null&&this.addLoss(()=>s.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=xt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,s,a,o=null){let i=xt(e);t=xt(t),n=xt(n),r=xt(r),s=Wf(s),a=Wf(a);let c=[],l=[],u=[];for(let d of i)c.push(d.sourceLayer),l.push(d.nodeIndex),u.push(d.tensorIndex);new Uf({outboundLayer:this,inboundLayers:c,nodeIndices:l,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:s,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function GW(e){e=xt(e);let t=[];for(let n of e)t.push(n.shape);return Bn(t)}function HW(e){return"float32"}function iS(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let s=[];for(let a=0;a<r.inboundLayers.length;a++){let o=r.inputTensors[a],i=r.inboundLayers[a],c=r.nodeIndices[a],l=iS(o,i,c);for(let u of l)s.indexOf(u)===-1&&s.push(u)}return s}}}var yu=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:zf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new qr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};yu.className="InputLayer";ie.registerClass(yu);function cS(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new yu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function ya(e){if(e==null)return;let t=[],n=[],r=[];for(let s in e){let a=e[s];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(s),r.push(o)}}if(t.length>0){let s=await Promise.all(t);for(let a=0;a<s.length;++a)e[n[a]]=s[a][0];$e(r)}}function uS(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var lS;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(lS||(lS={}));var jW=125,vu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},dS=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},qW=class extends vu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let s=t[r];if(typeof s=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+s*n;else{let a;r in this.totals?a=this.totals[r]:this.totals[r]=0;let o=M(()=>Y(this.totals[r],V(s,n)));this.totals[r]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:M(()=>{let r=V(me(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Jt(t[n])}))}},pS=class extends vu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(s),n.push(o)}}let r=await Promise.all(e);for(let s=0;s<r.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=r[s][0]}},hS=class extends vu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||TI,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=jW),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=eW(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await ya(n),r.push(this.yield(e,t,n))),r.push(this.nextFrameFunc()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ya(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ya(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ya(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ya(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ya(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ya(e),await this.trainEnd(e))}};function fS(e,t){return e==null&&(e={}),e instanceof vu?[e]:Array.isArray(e)&&e[0]instanceof vu?e:xt(e).map(r=>new hS(r,t))}var Ar=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ar.checkForDuplicate(t),Ar.constructors[e]==null&&(Ar.constructors[e]=[]),Ar.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ar.constructors)Ar.constructors[+t].forEach(r=>{if(r===e)throw new H("Duplicate callback constructor.")})}static clear(){Ar.constructors={}}static createCallbacks(e){let t=[];for(let n in Ar.constructors){let r=+n;e>=r&&t.push(...Ar.constructors[r])}return t.map(n=>new n)}};Ar.constructors={};function mS(e,t,n,r,s,a,o,i,c){let l=new pS,u=[new qW,...Ar.createCallbacks(t)];e!=null&&u.push(...e),u.push(l);let d=new dS(u);return d.setParams({epochs:n,initialEpoch:r,samples:s,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:c}),{callbackList:d,history:l}}function Kr(e,t={},n=!1){return gd(e,ie.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gf(e,t){return M(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=xe(xd(e),t,!0),r=wn(n.shape,jt()),s=on(as(n,r));return me(e,s)})}function ii(e,t){return M(()=>At(xd(fe(t,e)),-1))}function Hf(e,t){return M(()=>At(zt(fe(t,e)),-1))}function xu(e,t){return M(()=>{let n=fe(e,t),r=Qt(zt(e),jt(),Number.MAX_VALUE),s=zt(me(n,r));return V(100,At(s,-1))})}function KW(e,t){return M(()=>{let n=Qt(t,jt(),Number.MAX_VALUE),r=Zn(Y(1,n)),s=Qt(e,jt(),Number.MAX_VALUE),a=Zn(Y(1,s));return At(xd(fe(r,a)),-1)})}function XW(e,t){return M(()=>{let n=as(0,fe(1,V(e,t)));return At(xd(n),-1)})}function YW(e,t){return M(()=>{let n=as(0,fe(1,V(e,t)));return At(n,-1)})}function ZW(e,t){return M(()=>{let n=xe(V(e,t),-1),r=Cr(V(fe(1,e),t),-1);return as(0,Y(1,fe(r,n)))})}function JW(e,t){return M(()=>{let n=Math.log(2),r=fe(t,e),s=fe(Y(r,Zo(V(-2,r))),n);return At(s,-1)})}function kd(e,t,n=!1){return M(()=>{if(n)t=zr(t);else{let r=xe(t,t.shape.length-1,!0);t=me(t,r)}return t=Qt(t,jt(),1-jt()),St(xe(V(ce(e,"float32"),Zn(t)),t.shape.length-1))})}function jf(e,t,n=!1){return M(()=>{let r=ce(cu(mW(e)),"int32");t=Qt(t,jt(),1-jt());let s=t.shape,a=U(ru(r,s[s.length-1]),s);return kd(a,t,n)})}function QW(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return M(()=>{let n=Ke(t),r=St(zt(t));return Y(fe(n,V(t,e)),ad(mn(r)))})}function qf(e,t){return M(()=>{let n;return n=Qt(t,jt(),1-jt()),n=Zn(me(n,fe(1,n))),At(QW(e,n),-1)})}function eV(e,t){return M(()=>{let n=Qt(e,jt(),1),r=Qt(t,jt(),1);return xe(V(e,Zn(me(n,r))),-1)})}function tV(e,t){return M(()=>{let n=Zn(Y(jt(),t));return At(fe(t,V(e,n)),-1)})}function jv(e,t){return M(()=>{let n=Gf(e,-1),r=Gf(t,-1),s=V(n,r);return St(xe(s,-1))})}var Kf={meanSquaredError:ii,meanAbsoluteError:Hf,meanAbsolutePercentageError:xu,meanSquaredLogarithmicError:KW,squaredHinge:XW,hinge:YW,categoricalHinge:ZW,logcosh:JW,categoricalCrossentropy:kd,sparseCategoricalCrossentropy:jf,binaryCrossentropy:qf,kullbackLeiblerDivergence:eV,poisson:tV,cosineProximity:jv};function qv(e){if(typeof e=="string"){if(e in Kf)return Kf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Kv(e,t){return M(()=>{let n=V(.5,Qn(t)),r=Ef(Mn(t,n),e.dtype);return At(Yn(e,r),-1)})}function Xv(e,t){return M(()=>Ef(Yn(qo(e,-1),qo(t,-1)),"float32"))}function gS(e,t){return M(()=>ce(xe(Nr(Yn(e,1),Yn(t,1))),"float32"))}function nV(e,t){return M(()=>ce(xe(Nr(Yn(e,1),Yn(t,0))),"float32"))}function rV(e,t){return M(()=>ce(xe(Nr(Yn(e,0),Yn(t,1))),"float32"))}function bS(e,t){return M(()=>{let n=gS(e,t),r=rV(e,t),s=Y(n,r);return ce(fn(Mn(s,0),me(n,s),0),"float32")})}function sV(e,t){return M(()=>{let n=gS(e,t),r=nV(e,t),s=Y(n,r);return ce(fn(Mn(s,0),me(n,s),0),"float32")})}function yS(e,t){return qf(e,t)}function vS(e,t){return e.rank===t.rank&&(e=os(e,[e.rank-1])),t=qo(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(Yn(e,t),"float32")}var aV=ii,oV=ii,iV=Hf,cV=Hf,uV=xu,lV=xu,Yv=kd,dV=jv,xS=jf,Xf={binaryAccuracy:Kv,categoricalAccuracy:Xv,precision:bS,categoricalCrossentropy:Yv,sparseCategoricalCrossentropy:xS,mse:aV,MSE:oV,mae:iV,MAE:cV,mape:uV,MAPE:lV,cosine:dV};function pV(e){if(typeof e=="string"&&e in Xf)return Xf[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Yf(e){if(cs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Kf))if(Kf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Xf))if(Xf[n]===e){t=n;break}return t!==void 0?t:e.name}}function hV(e){let t={Adagrad:()=>ti.adagrad(.01),Adadelta:()=>ti.adadelta(1,.95,jt()),Adam:()=>ti.adam(.001,.9,.999,jt()),Adamax:()=>ti.adamax(.002,.9,.999,jt(),0),RMSProp:()=>ti.rmsprop(.001,.9,0,jt()),SGD:()=>ti.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var wS=1*1024*1024;function kS(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Zv(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>wS&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${wS}.`)}}function Zv(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Zv(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Zv(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function fV(e,t,n,r=console.log){let s=gV(e),a=["Layer (type)","Output shape","Param #"];s?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!s){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}r("_".repeat(t)),Zf(a,n,r),r("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)s?bV(i[u],n,r):yV(i[u],n,o,r),r((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let c=mV(e),l=Vf(e.nonTrainableWeights);r(`Total params: ${c+l}`),r(`Trainable params: ${c}`),r(`Non-trainable params: ${l}`),r("_".repeat(t))}function mV(e){let t;return e.collectedTrainableWeights!=null?t=Vf(e.collectedTrainableWeights):t=Vf(e.trainableWeights),t}function gV(e){let t=!0,n=[],r=[];for(let s in e.nodesByDepth)n.push(e.nodesByDepth[s]);for(let s of n){if(s.length>1||s.length===1&&s[0].inboundLayers.length>1){t=!1;break}r.push(...s)}if(t)for(let s of e.layers){let a=!1;for(let o of s.inboundNodes)if(r.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Zf(e,t,n=console.log){let r="";for(let s=0;s<e.length;++s)s>0&&(r=r.slice(0,r.length-1)+" "),r+=e[s],r=r.slice(0,t[s]),r+=" ".repeat(t[s]-r.length);n(r)}function bV(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(i){r="multiple"}let s=e.name,a=e.getClassName(),o=[`${s} (${a})`,r,e.countParams().toString()];Zf(o,t,n)}function yV(e,t,n,r){let s;try{s=JSON.stringify(e.outputShape)}catch(u){s="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),c=a.length===0?"":a[0],l=[`${o} (${i})`,s,e.countParams().toString(),c];Zf(l,t,r);for(let u=1;u<a.length;++u)Zf(["","","",a[u]],t,r)}function IS(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Id(e,t){if(e===null)return null;if(typeof e=="string")return ri(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let s=0;s<r;++s){let a=e[s];IS(t,s,a)?n.push(a):n.push(Id(a,t))}return n}else{let n={};for(let r of Object.keys(e)){let s=e[r];if(r==="name"&&typeof s=="string")n[r]=s;else{let a=ri(r);n[a]=Id(s,a)}}return n}}function Jv(e,t){if(e==null)return null;if(typeof e=="string")return Es(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let s=0;s<r;++s){let a=e[s];IS(t,s,a)?n.push(a):n.push(Jv(a,t))}return n}else{let n={};for(let r of Object.keys(e)){let s=e[r],a=Es(r);(r==="name"||r==="className")&&typeof s=="string"?n[a]=s:n[a]=Jv(s,r)}return n}}var Qv="3.13.0";function vV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ce(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ci=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ci)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=vV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof qr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof qr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&$e(this.id2Mask)}},ex={},SS={};function Sd(e,t,n,r){let s=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),c=[],l=t.names();for(let f of i)l.indexOf(f)!==-1?c.push(t.getValue(f)):c.push(null);r!=null&&(r.maxNumTensors=-1/0,r.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(ex[u]==null){let f=xV(o,t);d=f.sorted,p=f.recipientCounts,ex[u]=d,SS[u]=p}d=ex[u],p={},s||Object.assign(p,SS[u]);let h=new ci(t);for(let f=0;f<d.length;++f){if(r!=null){let D=Vh().numTensors;D>r.maxNumTensors&&(r.maxNumTensors=D),D<r.minNumTensors&&(r.minNumTensors=D)}let m=d[f],g=m.sourceLayer;if(g instanceof yu)continue;let b=[],y=[],v=[],x=!1;for(let D of m.inputs){let P=h.getValue(D),F=h.getMask(D);b.push(P),y.push(F),F!=null&&(x=!0),s||(p[D.name]--,p[D.name]===0&&!t.hasKey(D)&&i.indexOf(D.name)===-1&&!P.isDisposed&&D.sourceLayer.stateful!==!0&&v.push(P))}x&&(n=n||{},n.mask=y[0]);let w=xt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let N=kV(m),$=Array.isArray(N)?N:[N];for(let D=0;D<$.length;++D){h.hasKey($[D])||h.add($[D],w[D],Array.isArray(T)?T[0]:T);let P=i.indexOf($[D].name);P!==-1&&(c[P]=w[D])}s||$e(v)}return h.disposeMasks(),a?c:c[0]}function xV(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let s=TS(e[0],t);n=s.sorted,r=s.recipientMap}else{let s=new Set;for(let a of e){let{sorted:o,recipientMap:i}=TS(a,t);for(let c of o)s.has(c.name)||(n.push(c),s.add(c.name));for(let c in i)r[c]==null&&(r[c]=new Set),i[c].forEach(l=>r[c].add(l))}}return{sorted:n,recipientCounts:wV(r)}}function wV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function TS(e,t){let n=new Set,r=[],s={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let c=o[o.length-1]===a.length-1;if(i.inputs.length===0||c)a.pop(),r.push(i),n.add(i.name),c&&o.pop();else{o.push(a.length-1);for(let l of i.inputs)s[l.name]==null&&(s[l.name]=new Set),s[l.name].add(i.name),!n.has(l.name)&&a.push(l)}}return{sorted:r,recipientMap:s}}function kV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let s of e.sourceLayer.inboundNodes[r].outputTensors)if(s.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var ls=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=zf(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ma(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);ma(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;cs(v===0,"input layer has >1 nodes"),cs(x===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof yu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},r={},s={},a={},o=[],i=(b,y,v,x,w,T)=>{(x==null||w==null||T==null)&&(x=b.sourceLayer,w=b.nodeIndex,T=b.tensorIndex);let N=x.inboundNodes[w];if(v.indexOf(N)!==-1)throw new Gr(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(y.indexOf(N)!==-1)return;this.containerNodes.add(ls.nodeKey(x,w)),x.id in a||(a[x.id]=Object.keys(a).length),v.indexOf(N)===-1&&v.push(N);let $=N.inboundLayers.length;for(let D=0;D<$;D++){let P=N.inputTensors[D],F=N.inboundLayers[D],R=N.nodeIndices[D],C=N.tensorIndices[D];i(P,y,v,F,R,C)}for(y.push(N);v.indexOf(N)>=0;)v.splice(v.indexOf(N),1);o.push(N)},c=[],l=[];for(let b of this.outputs)i(b,c,l);let u=o.slice().reverse();for(let b of u){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],v=r[b.outboundLayer.id]==null?0:r[b.outboundLayer.id];y=Math.max(y,v),r[b.outboundLayer.id]=y,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let x=0;x<b.inboundLayers.length;x++){let w=b.inboundLayers[x],T=b.nodeIndices[x],N=w.inboundNodes[T],$=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(y+1,$),n[N.id]=N}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let p={};for(let b in r){let y=r[b];y in p||(p[y]=[]),p[y].push(s[b])}let h=Object.keys(p).map(b=>parseInt(b,10)).sort(_f);this.layers=[];for(let b of h){let y=p[b];y.sort((v,x)=>{let w=a[v.id],T=a[x.id];return w<T?-1:w>T?1:0});for(let v of y)v instanceof ls&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=p,h=Object.keys(d).map(b=>parseInt(b,10)).sort(_f);let f=this.inputs.slice(),m=[];for(let b of h)for(let y of d[b]){let v=y.outboundLayer;if(v!=null){for(let x of y.inputTensors)if(f.indexOf(x)===-1)throw new Gr(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${m}`);for(let x of y.outputTensors)f.push(x);m.push(v.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(v=>v===b).length;if(y!==1)throw new Gr(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,r++}let s=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)s.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${r} weights are not set: ${a}`)}Hv(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Qv}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Jv(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return M(()=>{e=xt(e);let n=new ci;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Sd(this.outputs,n,t)})}computeMask(e,t){return M(()=>{e=xt(e);let n;return t==null?n=ni(null,e.length):n=xt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Wf(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],c=t[o],l=i.name+"_0_0";n[l]=c}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(_f);if(r.length>1)for(let o of r){let i=this.nodesByDepth[o];for(let c of i){let l=c.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(l.id)!==-1)continue;let u=[];for(let f=0;f<c.inboundLayers.length;f++){let m=c.inboundLayers[f],g=c.nodeIndices[f],b=c.tensorIndices[f],y=`${m.name}_${g}_${b}`,v=n[y];u.push(v)}let d=l.computeOutputShape(Bn(u)),p=Wf(d),h=l.inboundNodes.indexOf(c);for(let f=0;f<p.length;f++){let m=`${l.name}_${h}_${f}`;n[m]=p[f]}}}let s=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],c=this.outputLayersNodeIndices[o],l=this.outputLayersTensorIndices[o],u=`${i.name}_${c}_${l}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];cs(i in n),s.push(n[i])}return Bn(s)}runInternalGraph(e,t){t==null&&(t=ni(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let c=this.inputs[i],l=e[i],u=t[i];n[c.id]=[l,u]}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(_f);for(let i of r){let c=this.nodesByDepth[i];for(let l of c){let u=l.outboundLayer,d=l.inputTensors,p=l.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,b,y;if(l.callArgs!=null&&(f=l.callArgs),h.length===1){let[v,x]=h[0];f.mask==null&&(f.mask=x),b=xt(u.call(v,f)),y=xt(u.computeMask(v,x)),m=[v],g=[x]}else m=h.map(v=>v[0]),g=h.map(v=>v[1]),f.mask==null&&(f.mask=g),b=xt(u.call(m,f)),y=xt(u.computeMask(m,g));if(u.activityRegularizer)throw new Fe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<p.length;++v){let x=p[v],w=b[v],T=y[v];n[x.id]=[w,T]}}}}let s=[],a=[],o=[];for(let i of this.outputs){cs(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[c,l]=n[i.id];o.push(c.shape),s.push(c),a.push(l)}return[s,a,o]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof ls?1:0;for(let s=0;s<r.inboundNodes.length;s++){let a=ls.nodeKey(r,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return M(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=ls.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),c=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=ls.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],b=d.nodeIndices[m],y=d.tensorIndices[m],v=ls.nodeKey(g,b),x=t[v];x==null&&(x=0),f.push([g.name,x,y,h])}c.push(f)}}}let l={};l.name=a.name,l.className=o,l.config=i,l.inboundNodes=c,n.push(l)}e.layers=n;let r=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],c=ls.nodeKey(o,i);if(!this.containerNodes.has(c))continue;let l=t[c];l==null&&(l=0);let u=this.inputLayersTensorIndices[a];r.push([o.name,l,u])}e.inputLayers=r;let s=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],c=ls.nodeKey(o,i);if(!this.containerNodes.has(c))continue;let l=t[c];l==null&&(l=0);let u=this.outputLayersTensorIndices[a];s.push([o.name,l,u])}return e.outputLayers=s,e}static fromConfig(e,t,n={},r=!1){let s={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let b=[],y;for(let v of g){let x=v[0],w=v[1],T=v[2];if(y=v[3]==null?{}:v[3],!(x in s)){o(m,g);return}let N=s[x];if(N.inboundNodes.length<=w){o(m,g);return}let $=N.inboundNodes[w];b.push($.outputTensors[T])}b.length>0&&m.apply(Bn(b),y)}function c(m){let g=m.name,b=Kr(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(r),s[g]=b,m.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${v}`);o(b,v)})}let l=t.name,u=t.layers;for(let m of u)c(m);for(;!Q4(a);)for(let m of u){let g=s[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let y of b)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],y=m[2];cs(g in s);let x=s[g].inboundNodes[b].outputTensors;d.push(x[y])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],y=m[2];cs(g in s);let x=s[g].inboundNodes[b].outputTensors;p.push(x[y])}return new e({inputs:d,outputs:p,name:l})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){M(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function IV(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let s=[];return t.forEach(a=>{a in e?s.push(e[a]):s.push(null)}),s}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function CS(e,t){return IV(e,t,"classWeight")}async function NS(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let s=M(()=>{if(e.shape.length===1)return Is(e);if(e.shape.length===2){if(e.shape[1]>1)return qo(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await s.data());$e(s);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),je(o,"float32")}else return null}function SV(e,t){return V(e,t)}var TV=32;function _S(e,t){let n,r,s=t;n=s.xs,r=s.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=ES("input",e.inputNames,n),o=ES("output",e.outputNames,r),i=a[0].shape[0];k.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let c=0;c<a.length;c++)k.assert(a[c].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[c]} has ${a[c].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let c=0;c<o.length;c++)k.assert(o[c].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[c]} has ${o[c].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function ES(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let s of t){if(n[s]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${s}'.`);r.push(n[s])}return r}}function CV(e){if(e.length===3)throw new Fe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function NV(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let s=n.validationData!=null,a,o;if(s)if(AS(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=CV(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),c=e.getDedupedMetricsNames(),l;s?l=c.slice().concat(c.map(g=>"val_"+g)):l=c.slice();let u=fS(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=mS(u,d,n.epochs,null,null,_V(t,n),null,s,l);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let b=0,y=0;for(r||(m=await t.iterator());r?b<n.batchesPerEpoch:!0;){let v=await m.next();if(r&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:w}=_S(e,v.value),T={};T.batch=y,T.size=x[0].shape[0],await p.onBatchBegin(y,T);let N=[];if(n.classWeight!=null){let P=CS(n.classWeight,e.outputNames);for(let F=0;F<P.length;++F)N.push(await NS(w[F],null,P[F]))}let $=x.concat(w).concat(N),D=i($);$e($);for(let P=0;P<c.length;++P){let F=c[P],R=D[P];T[F]=R,Jt(R)}await p.onBatchEnd(y,T),uS(T),y++,b++}if(r?b>=n.batchesPerEpoch:v.done){if(s){let x;AS(n.validationData)?x=xt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=xt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?TV:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=x[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function _V(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function AS(e){return typeof e.iterator=="function"}function EV(e){return typeof e.next=="function"}async function AV(e,t,n){n=n||{};let r=n.batches!=null,s=e.testFunction,a=[];if(n.verbose>0)throw new Fe("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=EV(t)?t:await t.iterator(),i=0,c=0;for(;r?c<n.batches:!0;){let l=await o.next();if(a=M(()=>{if(l.value){let{xs:u,ys:d}=_S(e,l.value),p=u.concat(d),h=M(()=>s(p));if($e(p),c===0)for(let m=0;m<h.length;++m)a.push(Ie(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],b=a[m];a[m]=M(()=>Y(a[m],V(f,g))),c>0&&$e(b)}$e(h),i+=f,++c}return a}),l.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<a.length;++l){let u=a[l];a[l]=me(a[l],i),$e(u)}return Bn(a)}function tx(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Td(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>oi(r,t,n-t)):oi(e,t,n-t)}function nx(e,t){return M(()=>e==null?null:Array.isArray(e)?e.map(n=>nx(n,t)):QI(e,t.dtype==="int32"?t:ce(t,"int32")))}function rx(e,t){let n=[],r=0,s=null;for(;r<e;)s=r+t,s>=e&&(s=e),n.push([r,s]),r=s;return n}async function DV(e,t,n,r,s,a,o,i,c,l,u,d,p,h,f){s==null&&(s=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(c!=null&&l!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,s,h,"steps_per_epoch"),b;g!=null&&(b=Hr(0,g)),o==null&&(o=1);let{callbackList:y,history:v}=mS(i,o,a,p,g,h,s,m,d);y.setModel(e),e.history=v,await y.onTrainBegin(),e.stopTraining_=!1;for(let x=p;x<a;++x){await y.onEpochBegin(x);let w={};if(h!=null)throw new Fe("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Fe("batch shuffling is not implemneted yet");u&&k.shuffle(b);let T=je(b),N=rx(g,s);for(let $=0;$<N.length;++$){let D={};if(await y.onBatchBegin($,D),M(()=>{let P=N[$][0],F=N[$][1],R=oi(T,P,F-P);D.batch=$,D.size=F-P;let C=nx(n,R),L=t(C);for(let G=0;G<r.length;++G){let j=r[G],K=L[G];D[j]=K,Jt(K)}if($===N.length-1&&m){let G=e.testLoop(c,l,s);for(let j=0;j<r.length;++j){let K=r[j],q=G[j];Jt(q),w["val_"+K]=q}}}),await y.onBatchEnd($,D),uS(D),e.stopTraining_)break}T.dispose()}if(await y.onEpochEnd(x,w),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function $V(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let s,a,o,i,c,l,u,d,p;try{let h=r.batchSize==null?32:r.batchSize;tx(h);let f=!1,m=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,f,h);s=m[0],a=m[1],p=m[2];let g=!1,b;if(r.validationData!=null&&r.validationData.length>0){if(g=!0,r.validationData.length===2)c=r.validationData[0],l=r.validationData[1];else throw r.validationData.length===3?new Fe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let D=!0,P=await e.standardizeUserData(c,l,null,null,D,h);u=P[0],d=P[1],b=u.concat(d)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){g=!0;let D=Math.floor(s[0].shape[0]*(1-r.validationSplit)),P=s[0].shape[0];u=Td(s,D,P),o=s,s=Td(s,0,D),d=Td(a,D,P),i=a,a=Td(a,0,D),b=u.concat(d)}else r.validationSteps!=null&&(g=!0);let y=s.concat(a).concat(p);e.checkTrainableWeightsConsistency();let v=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),w,T;g?(e.makeTestFunction(),w=e.testFunction,T=x.slice().concat(x.map(D=>"val_"+D))):(w=null,b=[],T=x.slice());let N=fS(r.callbacks,r.yieldEvery);return await DV(e,v,y,x,h,r.epochs,r.verbose,N,w,b,r.shuffle,T,r.initialEpoch,null,null)}finally{e.isTraining=!1,Xr(s,t),Xr(a,n),Xr(o,t),Xr(i,n),Xr(u,c),Xr(d,l),p!=null&&$e(p)}}function DS(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(vd(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Xr(e,t){if(e==null)return;let n=[];if(t instanceof Ee)n.push(t.id);else if(Array.isArray(t))t.forEach(s=>n.push(s.id));else if(t!=null)for(let s in t){let a=t[s];n.push(a.id)}let r=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(s=>{n.indexOf(s.id)===-1&&r.push(s)});else if(e!=null)for(let s in e){let a=e[s];n.indexOf(a.id)===-1&&r.push(a)}r.forEach(s=>{s.isDisposed||s.dispose()})}function FV(e){return e instanceof Ee}function sx(e){return Array.isArray(e)}function $S(e){return!FV(e)&&!sx(e)}function FS(e,t,n,r=!0,s=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(sx(e)&&e.length>0)o=!0;else if($S(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${s} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if($S(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(sx(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${s} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=DS(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${s}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let c=0;c<n[o].length;++c){if(c===0&&!r)continue;let l=i.shape[c],u=n[o][c];if(u!=null&&u>=0&&l!==u)throw new H(`${s} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${s} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function RV(e,t,n){let r=ma(e.map(a=>a.shape[0]));r.sort();let s=ma(t.map(a=>a.shape[0]));if(s.sort(),r.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(s.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(r.length>0&&s.length>0&&!k.arraysEqual(r,s))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${s[0]} target sample(s).`)}function PV(e,t,n){let r=[ii,qf,kd];for(let s=0;s<e.length;++s){let a=e[s],o=t[s],i=n[s];if(o!=null){if(o===kd&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(o)!==-1){let c=a.shape.slice(1),l=i.slice(1);for(let u=0;u<c.length;++u){let d=c[u],p=l[u];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function RS(e,t,n,r=!0,s=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${s} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${s}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let c=0;c<n[o].length;++c){if(c===0&&!r)continue;let l=i.shape[c],u=n[o][c];if(u!=null&&u!==l)throw new H(`Error when checking ${s}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function OV(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let s of t){let a=n.hasOwnProperty(s)?n[s]:[];Array.isArray(a)||(a=[a]),r.push(a)}return r}}var MV="layers-model",As=class extends ls{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");fV(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=hV(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ns))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(qv(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>qv(o))}else{let a=qv(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ai("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let r=OV(e.metrics,this.outputNames),s=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ai("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=r[a];(c=>{let l="",u,d,p;for(let h of c){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===qf?["accuracy","acc"].indexOf(h)!==-1?d=Kv:["crossentropy","ce"].indexOf(h)!==-1&&(d=yS):this.lossFunctions[a]===jf?["accuracy","acc"].indexOf(h)!==-1?d=vS:["crossentropy","ce"].indexOf(h)!==-1&&(d=xS):["accuracy","acc"].indexOf(h)!==-1?d=Xv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Yv);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=l+g}else p=pV(h),u=l+Yf(h);let f;ai(u,()=>{f=p}),s(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;tx(r);let s=!0,a=this.standardizeUserDataXY(e,t,s,r);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,c=this.testLoop(i,o,r,n.verbose,n.steps);return Bn(c)}finally{Xr(a[0],e),Xr(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),AV(this,e,t)}checkNumSamples(e,t,n,r="steps"){let s;if(n!=null){if(s=null,t!=null)throw new H(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],s=this.retrieveSymbolicTensors(r),a=new ci;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let c=e[i.name];if(c==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,c)}let o=Sd(s,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=ni(null,e.length),n=e.length;for(let r of this.layers){let s=Array.isArray(r.output)?r.output:[r.output],a=s.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=s[i],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((s,a)=>{s==null&&r.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return M(()=>{let r=this.checkNumSamples(e);if(n)throw new Fe("Verbose predictLoop() is not implemented yet.");let s=rx(r,t),a=this.outputs.map(o=>[]);for(let o=0;o<s.length;++o)M(()=>{let c=s[o][0],l=s[o][1],u=Td(e,c,l),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new ci(d);return Sd(this.outputs,p)}).forEach((c,l)=>a[l].push(c));return Bn(a.map(o=>tt(o,0)))})}predict(e,t={}){let n=DS(e);RS(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return tx(r),this.predictLoop(n,r)}finally{Xr(n,e)}}predictOnBatch(e){RS(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Gr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===jf?s.push(o.slice(0,o.length-1).concat([1])):s.push(o)}if(e=FS(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=FS(t,this.feedOutputNames,s,!1,"target"),RV(e,t,null),PV(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!==0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,s=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let c=null;if(r!=null){let l=CS(r,this.outputNames);c=[];for(let u=0;u<l.length;++u)c.push(await NS(i[u],null,l[u]))}return[o,i,c]}testLoop(e,t,n,r=0,s){return M(()=>{let a=this.checkNumSamples(t,n,s,"steps"),o=[];if(r>0)throw new Fe("Verbose mode is not implemented yet.");if(s!=null)throw new Fe("steps mode in testLoop() is not implemented yet");{let i=rx(a,n),c=je(Hr(0,a));for(let l=0;l<i.length;++l){let u=i[l][0],d=i[l][1],p=oi(c,u,d-u),h=nx(t,p),f=e(h);if(l===0)for(let m=0;m<f.length;++m)o.push(Ie(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=Y(o[m],V(d-u,g))}}for(let l=0;l<o.length;++l)o[l]=me(o[l],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],s=r;WI(e,r)>1&&(s+=`_${WI(e.slice(0,n),r)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new ci(u),p=Sd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](r[f],p[f]);s[f]!=null&&(g=SV(g,s[f]));let b=At(g);t.push(b),f===0?h=g:h=Y(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],b=this.metricsTensors[f][1];m=At(g(r[b],p[b]))}Jt(m),a.push(m)}return h=At(h),this.calculateLosses().forEach(f=>{h=Y(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),c=!0;return[this.optimizer_.minimize(o,c,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>M(()=>{let t=[],n,r=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let c=0;c<this.inputs.length;++c)a.push({key:this.inputs[c],value:r[c]});let o=new ci(a),i=Sd(this.outputs,o);for(let c=0;c<this.lossFunctions.length;++c){let l=this.lossFunctions[c],u=At(l(s[c],i[c]));c===0?n=u:n=Y(n,u),t.push(n)}for(let c=0;c<this.metricsTensors.length;++c){let l=this.metricsTensors[c][0],u=this.metricsTensors[c][1],d=At(l(s[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return $V(this,e,t,n)}async fitDataset(e,t){return NV(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],s=n[1],o=this.makeTrainFunction()(r.concat(s)),i=[];for(let c of o){let l=await c.data();i.push(l[0])}return $e(o),Xr(n[0],e),Xr(n[1],t),Bn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<r.length;++a)n&&!r[a].trainable||t.push({name:r[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Vh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Vh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Es(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Es(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=Es(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Es(Yf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Es(Yf(e)));{let e={};for(let t in this.metrics)e[t]=Es(Yf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Id(e.optimizer_config),n=Kr(t),r;if(typeof e.loss=="string")r=ri(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(a=>ri(a));else if(e.loss!=null){r={};for(let a in e.loss)r[a]=ri(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>ri(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=ri(e.metrics[a])}this.compile({loss:r,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let c=Zt.getSaveHandlers(e);if(c.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(c.length>1)throw new H(`Found more than one (${c.length}) save handlers for URL '${e}'`);e=c[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Zt.encodeWeights(this.getNamedWeights(t)),r=!1,s=null,o={modelTopology:this.toJSON(s,r),format:MV,generatedBy:`TensorFlow.js tfjs-layers v${Qv}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let c="optimizer",{data:l,specs:u}=await Zt.encodeWeights(await this.optimizer.getWeights(),c);n.specs.push(...u),n.data=Zt.concatenateArrayBuffers([n.data,l])}if(this.userDefinedMetadata!=null){let c=!0;kS(this.userDefinedMetadata,this.name,c),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){kS(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};As.className="Model";ie.registerClass(As);var PS=class extends As{};PS.className="Functional";ie.registerClass(PS);async function LV(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Id(n),s=Kr(r,t);if(e.weightsManifest!=null){let a=await Zt.loadWeights(e.weightsManifest,e.pathPrefix,s.weights.map(i=>i.originalName)),o={};for(let i of s.weights)o[i.originalName]=a[i.originalName];s.loadWeights(o),$e(a)}return s}async function BV(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Zt.getLoadHandlers(e,t);if(n.length===0)n.push(Zt.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return zV(e,void 0,t)}async function zV(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),s=r.modelTopology;s.model_config!=null&&(s=s.model_config);let a=n.strict==null?!0:n.strict,o=r.weightData!=null&&r.weightSpecs!=null&&a,i=Kr(Id(s),t,o),c=r.trainingConfig;if(c!=null&&i.loadTrainingConfig(c),r.userDefinedMetadata!=null&&i.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:u}=WV(r.weightData,r.weightSpecs);i.loadWeights(l,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),$e(l),$e(u.map(d=>d.tensor))}return i}function WV(e,t){let n=Zt.decodeWeights(e,t),r={},s=[];return t.forEach(a=>{a.group==="optimizer"?s.push({name:a.name,tensor:n[a.name]}):r[a.name]=n[a.name]}),{modelWeights:r,optimizerWeights:s}}var wu=class extends As{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:zf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof wu||e instanceof As,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=cS({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=iS(this.outputs[0])}this.inboundNodes=[],new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ni(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ot(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new As({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Gr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");s=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof wu))throw new Fe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of s){let l=Kr(i,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),o.add(l)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};wu.className="Sequential";ie.registerClass(wu);function VV(e){return new As(e)}function UV(e){return new wu(e)}function GV(e,t){return t==null&&(t={}),BV(e,t)}function OS(e){return cS(e)}function HV(e,t){Ar.registerCallbackConstructor(e,t)}var Wn=class extends ie.Serializable{getConfig(){return{}}},MS=class extends Wn{apply(e,t=1){return bW(e,t)}};MS.className="elu";ie.registerClass(MS);var LS=class extends Wn{apply(e){return cf(e)}};LS.className="selu";ie.registerClass(LS);var BS=class extends Wn{apply(e){return Ke(e)}};BS.className="relu";ie.registerClass(BS);var zS=class extends Wn{apply(e){return M(()=>uu(6,Ke(e)))}};zS.className="relu6";ie.registerClass(zS);var WS=class extends Wn{apply(e){return e}};WS.className="linear";ie.registerClass(WS);var VS=class extends Wn{apply(e){return hr(e)}};VS.className="sigmoid";ie.registerClass(VS);var US=class extends Wn{apply(e){return vW(e)}};US.className="hardSigmoid";ie.registerClass(US);var GS=class extends Wn{apply(e){return Zo(e)}};GS.className="softplus";ie.registerClass(GS);var HS=class extends Wn{apply(e){return yW(e)}};HS.className="softsign";ie.registerClass(HS);var jS=class extends Wn{apply(e){return Xo(e)}};jS.className="tanh";ie.registerClass(jS);var ax=class extends Wn{apply(e,t=-1){return zr(e,t)}};ax.className="softmax";ie.registerClass(ax);var qS=class extends Wn{apply(e,t=-1){return ef(e,t)}};qS.className="logSoftmax";ie.registerClass(qS);var KS=class extends Wn{apply(e,t=1){return M(()=>V(hr(V(e,t)),e))}};KS.className="swish";ie.registerClass(KS);var XS=class extends Wn{apply(e){return M(()=>V(e,Xo(Zo(e))))}};XS.className="mish";ie.registerClass(XS);function va(e){return e.getClassName()}function ox(e,t={}){return gd(e,ie.SerializationMap.getMap().classNameMap,t,"activation")}function xa(e){if(e==null){let t={};return t.className="linear",t.config={},ox(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},ox(t)}else return e instanceof Wn?e:ox(e)}function ix(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var YS=class extends ie.Serializable{},Cd=class extends YS{constructor(e){super();ix(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return M(()=>{let t=Tt([1]);return this.hasL1&&(t=Y(t,xe(V(this.l1,zt(e))))),this.hasL2&&(t=Y(t,xe(V(this.l2,xd(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Cd.className="L1L2";ie.registerClass(Cd);function jV(e){return ix(e),new Cd({l1:e!=null?e.l1:null,l2:0})}function qV(e){return ix(e),new Cd({l2:e!=null?e.l2:null,l1:0})}var ZS={l1l2:"L1L2"};function mt(e){return Sv(e)}function JS(e,t={}){return gd(e,ie.SerializationMap.getMap().classNameMap,t,"regularizer")}function Nt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in ZS?ZS[e]:e,config:{}};return JS(n)}else return e instanceof YS?e:JS(e)}var cx=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Me(e);let n=Ke(e);return this.maxValue!=null&&(n=Qt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};cx.className="ReLU";ie.registerClass(cx);var ux=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return sd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ux.className="LeakyReLU";ie.registerClass(ux);var lx=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ct(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Nt(e.alphaRegularizer),this.alphaConstraint=Kt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ot(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Wt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Me(e),ud(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Dt(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};lx.className="PReLU";ie.registerClass(lx);var dx=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Fe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return iu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};dx.className="ELU";ie.registerClass(dx);var px=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Me(e);return V(n,ce(Mn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};px.className="ThresholdedReLU";ie.registerClass(px);var hx=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new ax().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Me(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};hx.className="Softmax";ie.registerClass(hx);function ku(e,t,n){if(typeof e=="number")return ni(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let s=e[r];if(!hW(s))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${s}`)}return e}function Yr(e,t,n,r,s=1){if(e==null)return e;let a=t+(t-1)*(s-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+r-1)/r)}function ds(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+ba([n-t,0]);else if(r==="same")e=e*t;else throw new H(`Unsupport padding mode: ${r}.`);return e}function fx(e,t){return M(()=>(Lt(t),t==="channelsFirst"?Re(e,[0,2,3,1]):e))}function QS(e,t){return M(()=>(Lt(t),t==="channelsFirst"?Re(e,[0,2,3,4,1]):e))}function KV(e,t,n,r=1,s="valid",a,o=1){return M(()=>{if(a==null&&(a=Ur()),Lt(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Re(e,[0,2,1])),s==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=qh(e,t,r,s==="same"?"same":"valid","NWC",o);return n!=null&&(i=jr(i,n)),i})}function eT(e,t,n,r=[1,1],s="valid",a,o,i=null){return M(()=>{if(a==null&&(a=Ur()),Lt(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let c=fx(e,a);if(s==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return c=ha.conv2d({x:c,filter:t,strides:r,pad:s==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(c=Re(c,[0,3,1,2])),c})}function XV(e,t,n,r=[1,1,1],s="valid",a,o){return M(()=>{if(a==null&&(a=Ur()),Lt(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=QS(e,a);if(s==="causal")throw new Fe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=jy(i,t,r,s==="same"?"same":"valid","NDHWC",o),n!=null&&(i=jr(i,n)),a==="channelsFirst"&&(i=Re(i,[0,4,1,2,3])),i})}var mx=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",mx.verifyArgs(t),this.rank=e,en(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Fe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=ku(t.kernelSize,e,"kernelSize"),this.strides=ku(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,mr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Lt(this.dataFormat),this.activation=xa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ct(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Kt(t.biasConstraint),this.biasRegularizer=Nt(t.biasRegularizer),this.activityRegularizer=Nt(t.activityRegularizer),this.dilationRate=ku(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(cs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Cv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:va(this.activation),useBias:this.useBias,biasInitializer:Dt(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Nd=class extends mx{constructor(e,t){super(e,t);this.kernel=null,Nd.verifyArgs(t),this.filters=t.filters,en(this.filters,"filters"),this.kernelInitializer=Ct(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Kt(t.kernelConstraint),this.kernelRegularizer=Nt(t.kernelRegularizer)}build(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return M(()=>{e=Me(e);let n,r=this.bias==null?null:this.bias.read(),s=UI(this.activation.getClassName());if(s!=null&&this.rank===2)n=eT(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=KV(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=eT(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=XV(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Fe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ot(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=Yr(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:Dt(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},_d=class extends Nd{constructor(e){super(2,e);_d.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Cv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};_d.className="Conv2D";ie.registerClass(_d);var Ed=class extends Nd{constructor(e){super(3,e);Ed.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Ed.className="Conv3D";ie.registerClass(Ed);var gx=class extends _d{constructor(e){super(e);if(this.inputSpec=[new Wt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ot(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Wt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Me(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=r[a],c=r[o],l=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=ds(i,d,l,this.padding),f=ds(c,p,u,this.padding),m=[s,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Re(n,[0,2,3,1]));let g=Kh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Re(g,[0,3,1,2])),this.bias!=null&&(g=jr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ot(e);let t=e.slice(),n,r,s;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3):(n=3,r=1,s=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],c=this.strides[1];return t[n]=this.filters,t[r]=ds(t[r],i,a,this.padding),t[s]=ds(t[s],c,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};gx.className="Conv2DTranspose";ie.registerClass(gx);var bx=class extends Ed{constructor(e){super(e);if(this.inputSpec=[new Wt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ot(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Wt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Me(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let c=r[i],l=r[a],u=r[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=ds(c,f,d,this.padding),y=ds(l,m,p,this.padding),v=ds(u,g,h,this.padding),x=[s,b,y,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Re(n,[0,2,3,4,1]));let w=Vk(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Re(w,[0,4,1,2,3])),this.bias!==null&&(w=jr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=ot(e);let t=e.slice(),n,r,s,a;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3,a=4):(n=4,r=1,s=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],c=this.kernelSize[2],l=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[r]=ds(t[r],l,o,this.padding),t[s]=ds(t[s],u,i,this.padding),t[a]=ds(t[a],d,c,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};bx.className="Conv3DTranspose";ie.registerClass(bx);var tT=class extends Nd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Nt(t.depthwiseRegularizer),this.depthwiseConstraint=Kt(t.depthwiseConstraint),this.pointwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Nt(t.pointwiseRegularizer),this.pointwiseConstraint=Kt(t.pointwiseConstraint)}build(e){if(e=ot(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let o=0;o<this.rank;++o)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Wt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{e=Me(e);let n;if(this.rank===1)throw new Fe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Re(e,[0,2,3,1])),n=ei(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=jr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Re(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Dt(this.depthwiseInitializer),e.pointwiseInitializer=Dt(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};tT.className="SeparableConv";var yx=class extends tT{constructor(e){super(2,e)}};yx.className="SeparableConv2D";ie.registerClass(yx);var Jf=class extends Nd{constructor(e){super(1,e);Jf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Cv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Jf.className="Conv1D";ie.registerClass(Jf);var vx=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return M(()=>{if(e=Me(e),this.dataFormat==="channelsLast"){let n=Af(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Af(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Af(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Af(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};vx.className="Cropping2D";ie.registerClass(vx);var xx=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,lW(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return M(()=>{let n=Me(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Re(n,[0,2,3,1]);let s=this.size[0]*r[2],a=this.size[1]*r[3],o=this.interpolation==="nearest"?tr.resizeNearestNeighbor(n,[s,a]):tr.resizeBilinear(n,[s,a]);return Re(o,[0,3,1,2])}else{let s=this.size[0]*r[1],a=this.size[1]*r[2];return this.interpolation==="nearest"?tr.resizeNearestNeighbor(n,[s,a]):tr.resizeBilinear(n,[s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};xx.className="UpSampling2D";ie.registerClass(xx);function YV(e,t,n=[1,1],r="valid",s,a){return M(()=>{s==null&&(s=Ur()),Lt(s);let o=fx(e,s);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=la(o,t,n,r==="same"?"same":"valid","NHWC",a),s==="channelsFirst"&&(o=Re(o,[0,3,1,2])),o})}var wx=class extends mx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ct(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Kt(e.depthwiseConstraint),this.depthwiseRegularizer=Nt(e.depthwiseRegularizer)}build(e){if(e=ot(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{e=Me(e);let n=YV(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=jr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=Yr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Yr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,s,a]:[e[0],s,a,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Dt(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};wx.className="DepthwiseConv2D";ie.registerClass(wx);function nT(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function s(a){return a==null||Array.isArray(a)?a:[a]}return t=s(t),n=s(n),{inputs:e,initialState:t,constants:n}}function rT(e,t,n,r=!1,s,a,o=!1,i=!1){return M(()=>{let c=t.shape.length;if(c<3)throw new H(`Input should be at least 3D, but is ${c}D.`);let l=[1,0].concat(Hr(2,c));if(t=Re(t,l),a!=null)throw new Fe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),s!=null&&(s=ce(ce(s,"bool"),"float32"),s.rank===c-1&&(s=gn(s,-1)),s=Re(s,l)),r&&(t=er(t,0),s!=null&&(s=er(s,0)));let u=[],d,p=n,h=t.shape[0],f=ft(t),m;s!=null&&(m=ft(s));for(let b=0;b<h;++b){let y=f[b],v=M(()=>e(y,p));if(s==null)d=v[0],p=v[1];else{let x=M(()=>{let w=m[b],T=fe(Qn(w),w),N=Y(V(v[0],w),V(p[0],T)),$=p.map((D,P)=>Y(V(v[1][P],w),V(D,T)));return{output:N,newStates:$}});d=x.output,p=x.newStates}i&&u.push(d)}let g;return i&&(g=Mt(u,1)),[d,g,p]})}var ps=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new tm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Wt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Hr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Uv(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[r].concat(s)}else return r}computeMask(e,t){return M(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(s=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Fe("Constants support is not implemented in RNN yet.");Uv(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Wt({shape:[n,null,...r]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Fe("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Wt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new _s("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Tt([n,r])):this.states_=[Tt([n,this.cell.stateSize])];else if(e==null)$e(this.states_),this.keptStates!=null&&($e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Tt([n,r])):this.states_[0]=Tt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):$e(this.states_);for(let r=0;r<this.states_.length;++r){let s=e[r],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,o=[n,a];if(!k.arraysEqual(s.shape,o))throw new H(`State ${r} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${s.shape}`);this.states_[r]=s}}this.states_=this.states_.map(r=>Jt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=nT(e,n,r,this.numConstants);e=s.inputs,n=s.initialState,r=s.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let c of n)this.stateSpec.push(new Wt({shape:c.shape}));o=o.concat(this.stateSpec)}if(r!=null&&(t.constants=r,a=a.concat(r),this.numConstants=r.length),a[0]instanceof qr){let c=[e].concat(a),l=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=l;let d=super.apply(c,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;e=Me(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:r},c=rT((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),l=c[0],u=c[1],d=c[2];this.stateful&&this.resetStates(d,r);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return M(()=>{let t=Tt(e.shape);return t=xe(t,[1,2]),t=vd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Rv(t,[1,n]):t):this.cell.stateSize>1?[Rv(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ps.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,s=Kr(r,n);return new e(Object.assign(t,{cell:s}))}};ps.className="RNN";ie.registerClass(ps);var Ad=class extends Xe{},Qf=class extends Ad{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=xa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=bu([1,ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ot(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wa({ones:()=>Qn(e),rate:this.dropout,training:r,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wa({ones:()=>Qn(n),rate:this.recurrentDropout,training:r,dropoutFunc:this.dropoutFunc}));let s,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?s=us(V(e,a),this.kernel.read()):s=us(e,this.kernel.read()),this.bias!=null&&(s=jr(s,this.bias.read())),o!=null&&(n=V(n,o));let i=Y(s,us(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:va(this.activation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),recurrentInitializer:Dt(this.recurrentInitializer),biasInitializer:Dt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Qf.className="SimpleRNNCell";ie.registerClass(Qf);var kx=class extends ps{constructor(e){e.cell=new Qf(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return new e(t)}};kx.className="SimpleRNN";ie.registerClass(kx);var em=class extends Ad{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,en(this.units,"units"),this.activation=xa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=xa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=bu([1,ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ot(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wa({ones:()=>Qn(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wa({ones:()=>Qn(r),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,a=this.recurrentDropoutMask,o,i,c;0<this.dropout&&this.dropout<1&&(e=V(e,s[0]));let l=us(e,this.kernel.read());this.useBias&&(l=jr(l,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=V(r,a[0]));let u=this.recurrentKernel.read(),[d,p]=Ln(u,[2*this.units,this.units],u.rank-1),h=us(r,d),[f,m,g]=Ln(l,3,l.rank-1),[b,y]=Ln(h,2,h.rank-1);o=this.recurrentActivation.apply(Y(f,b)),i=this.recurrentActivation.apply(Y(m,y));let v=us(V(i,r),p);c=this.activation.apply(Y(g,v));let x=Y(V(o,r),V(Y(1,St(o)),c));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:va(this.activation),recurrentActivation:va(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),recurrentInitializer:Dt(this.recurrentInitializer),biasInitializer:Dt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};em.className="GRUCell";ie.registerClass(em);var Ix=class extends ps{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new em(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ix.className="GRU";ie.registerClass(Ix);var Dd=class extends Ad{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=xa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=xa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Nt(e.kernelRegularizer),this.recurrentRegularizer=Nt(e.recurrentRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=bu([1,ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=bu([1,ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ot(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;r=new(t=class extends Er{apply(i,c){let l=s.apply([a]),u=new $f().apply([a]),d=s.apply([a*2]);return JI(JI(l,u),d)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wa({ones:()=>Qn(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wa({ones:()=>Qn(r),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,c,l,u;0<this.dropout&&this.dropout<1&&(e=V(e,a[0]));let d=us(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=V(r,o[0])),d=Y(d,us(r,this.recurrentKernel.read())),this.useBias&&(d=jr(d,this.bias.read()));let[p,h,f,m]=Ln(d,4,d.rank-1);i=this.recurrentActivation.apply(p),c=this.recurrentActivation.apply(h),l=Y(V(c,s),V(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=V(u,this.activation.apply(l));return[g,g,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:va(this.activation),recurrentActivation:va(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),recurrentInitializer:Dt(this.recurrentInitializer),biasInitializer:Dt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Dd.className="LSTMCell";ie.registerClass(Dd);var Sx=class extends ps{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Dd(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Sx.className="LSTM";ie.registerClass(Sx);var tm=class extends Ad{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return M(()=>{e=e;let n=e.slice(1),r=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?r.push(n.splice(0,o.stateSize.length)):r.push(n.splice(0,1));r.reverse();let s=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=r[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),s.push(a.slice(1))}n=[];for(let o of s.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){Uv(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{ai(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),r={cells:this.cells.map(t)};return Object.assign({},e,r)}static fromConfig(e,t,n={}){let r=[];for(let s of t.cells)r.push(Kr(s,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Gv(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,s=e.splice(r);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}Hv(t)}};tm.className="StackedRNNCells";ie.registerClass(tm);function wa(e){let{ones:t,rate:n,training:r=!1,count:s=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):eS(t(),n),i=()=>wd(o,t,r);return!s||s<=1?Jt(i().clone()):Array(s).fill(void 0).map(i).map(l=>Jt(l.clone()))}var ZV=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var s=0,r=Object.getOwnPropertySymbols(e);s<r.length;s++)t.indexOf(r[s])<0&&Object.prototype.propertyIsEnumerable.call(e,r[s])&&(n[r[s]]=e[r[s]]);return n},sT=class extends ps{constructor(e){if(e.unroll)throw new Fe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Fe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Wt({ndim:5})]}call(e,t){return M(()=>{if(this.cell.dropoutMask!=null&&($e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&($e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return M(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)],a=Tt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new _s("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Tt(s)):this.states_=[Tt(s)];else if(e==null)$e(this.states_),this.keptStates!=null&&($e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Tt(s)):this.states_[0]=Tt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):$e(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],c=s;if(!k.arraysEqual(i.shape,c))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${c}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>Jt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:s,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",c=e[i?3:2],l=e[i?4:3],u=Yr(c,r[0],s,a[0],o[0]),d=Yr(l,r[1],s,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};sT.className="ConvRNN2D";var nm=class extends Dd{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:s,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,en(this.filters,"filters"),this.kernelSize=ku(n,2,"kernelSize"),this.kernelSize.forEach(i=>en(i,"kernelSize")),this.strides=ku(r||1,2,"strides"),this.strides.forEach(i=>en(i,"strides")),this.padding=s||"valid",mr(this.padding),this.dataFormat=a||"channelsLast",Lt(this.dataFormat),this.dilationRate=ku(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>en(i,"dilationRate"))}build(e){var t;e=ot(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],s=4,a=this.kernelSize.concat([r,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let c=this.biasInitializer,l=this.filters;i=new(t=class extends Er{apply(d,p){let h=c.apply([l]),f=Jn([l]),m=c.apply([l*2]);return Fv([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return M(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],s=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=wa({ones:()=>Qn(r),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,c=(Z,te,se)=>!te||!te[se]?Z:V(te[se],Z),l=c(r,i,0),u=c(r,i,1),d=c(r,i,2),p=c(r,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=wa({ones:()=>Qn(s),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=c(s,h,0),m=c(s,h,1),g=c(s,h,2),b=c(s,h,3),y=3,[v,x,w,T]=Ln(this.kernel.read(),o,y),[N,$,D,P]=this.useBias?Ln(this.bias.read(),o):[null,null,null,null];l=this.inputConv(l,v,N,this.padding),u=this.inputConv(u,x,$,this.padding),d=this.inputConv(d,w,D,this.padding),p=this.inputConv(p,T,P,this.padding);let[F,R,C,L]=Ln(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,F),m=this.recurrentConv(m,R),g=this.recurrentConv(g,C),b=this.recurrentConv(b,L);let G=this.recurrentActivation.apply(Y(l,f)),j=this.recurrentActivation.apply(Y(u,m)),K=Y(V(j,a),V(G,this.activation.apply(Y(d,g)))),q=V(this.recurrentActivation.apply(Y(p,b)),this.activation.apply(K));return[q,q,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=ZV(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let s=Pt(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?jr(s,n,this.dataFormat):s}recurrentConv(e,t){return Pt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};nm.className="ConvLSTM2DCell";ie.registerClass(nm);var Tx=class extends sT{constructor(e){let t=new nm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Tx.className="ConvLSTM2D";ie.registerClass(Tx);var rm=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,s=this.getNoiseShape(n);return wd(()=>eS(n,this.rate,s,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};rm.className="Dropout";ie.registerClass(rm);var Cx=class extends rm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Cx.className="SpatialDropout1D";ie.registerClass(Cx);var Nx=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,en(this.units,"units"),this.activation=xa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Kt(e.kernelConstraint),this.biasConstraint=Kt(e.biasConstraint),this.kernelRegularizer=Nt(e.kernelRegularizer),this.biasRegularizer=Nt(e.biasRegularizer),this.activityRegularizer=Nt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ot(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ot(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=UI(this.activation.getClassName()),s;return r!=null?s=us(n,this.kernel.read(),r,this.bias?this.bias.read():null):(s=us(n,this.kernel.read()),this.bias!=null&&(s=jr(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:va(this.activation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),biasInitializer:Dt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Nx.className="Dense";ie.registerClass(Nx);var _x=class extends Xe{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ot(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ga(e,1)]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let s=2;s<n.rank;++s)r.push(s);r.push(1),n=Re(n,r)}return gW(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};_x.className="Flatten";ie.registerClass(_x);var Ex=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=xa(e.activation)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.activation.apply(n)})}getConfig(){let e={activation:va(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Ex.className="Activation";ie.registerClass(Ex);var Ax=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return M(()=>(e=Me(e),fW(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="RepeatVector";ie.registerClass(Ax);var Dx=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),s=1,a=null;for(let i=0;i<r.length;++i){let c=r[i];if(this.isUnknown(c))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else s*=c}let o=ga(e);if(a!==null){if(s===0||o%s!==0)throw new H(n);r[a]=o/s}else if(o!==s)throw new H(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=n.shape,s=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return U(n,s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="Reshape";ie.registerClass(Dx);var $x=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Hr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Wt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ot(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Re(Me(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};$x.className="Permute";ie.registerClass($x);var Fx=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Me(e),r=-1;return ed(Qo(n,this.maskValue),r)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=-1,s=!0,a=ed(Qo(n,this.maskValue),r,s);return V(n,ce(a,n.dtype))})}};Fx.className="Masking";ie.registerClass(Fx);var Rx=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(xt(e.inputLength))}this.inputDim=e.inputDim,en(this.inputDim,"inputDim"),this.outputDim=e.outputDim,en(this.outputDim,"outputDim"),this.embeddingsInitializer=Ct(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Nt(e.embeddingsRegularizer),this.activityRegularizer=Nt(e.activityRegularizer),this.embeddingsConstraint=Kt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return M(()=>this.maskZero?(e=Me(e),Qo(e,He(e))):null)}computeOutputShape(e){if(e=ot(e),this.inputLength==null)return[...e,this.outputDim];let t=xt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let s=t[r],a=e[r+1];if(s!=null&&a!=null&&s!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);n.dtype!=="int32"&&(n=Ef(n,"int32"));let r=QI(this.embeddings.read(),U(n,[n.size]));return U(r,ot(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Dt(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Rx.className="Embedding";ie.registerClass(Rx);var ui=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Fe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let s=e[e.length-t.length+r],a=t[r];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ot(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=ma(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let r=e.map(s=>s.length);e.indexOf(null)===-1&&ma(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return M(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(s=>s.rank);if(r.indexOf(null)===-1){let s=ba(r);for(let a of e){let o=a.rank;for(let i=0;i<s-o;++i)a=vd(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let i of e){let c=i.rank;if(c==null){let l=i.shape,u=l[0],d=l.slice(1).concat([u]),p=U(i,[u].concat(ga(l.slice(1))));p=Re(p,[1,0]),p=U(p,d),n.push(p),s=!0}else if(c>1){let l=Hr(1,c).concat([0]);n.push(Re(i,l)),s=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(s){if(o==null){let i=a.shape,c=i.length,l=i[c-1],u=[l].concat(i.slice(0,i.length-1));a=U(Re(U(a,[-1,l]),[1,0]),u)}else if(o>1){let i=[o-1].concat(Hr(0,o-1));a=Re(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=ma(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return M(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:gn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=Nr(n,t[r]);return n})}},Px=class extends ui{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return t})}};Px.className="Add";ie.registerClass(Px);var Ox=class extends ui{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=V(t,e[n]);return t})}};Ox.className="Multiply";ie.registerClass(Ox);var Mx=class extends ui{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Y(t,e[n]);return V(1/e.length,t)})}};Mx.className="Average";ie.registerClass(Mx);var Lx=class extends ui{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=as(t,e[n]);return t})}};Lx.className="Maximum";ie.registerClass(Lx);var Bx=class extends ui{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=uu(t,e[n]);return t})}};Bx.className="Minimum";ie.registerClass(Bx);var zx=class extends ui{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let s=e[r].slice();s.splice(this.axis,1);let a=!1;for(let o of n)if(k.arraysEqual(o,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return M(()=>Fv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[r]==null||s[r]==null){n[r]=null;break}n[r]+=s[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return M(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let r=[];for(let a=0;a<e.length;++a)t[a]==null?r.push(ce(Qn(e[a]),"bool")):t[a].rank<e[a].rank?r.push(gn(t[a],-1)):r.push(t[a]);let s=tt(r,this.axis);return Hh(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};zx.className="Concatenate";ie.registerClass(zx);function $d(e,t){for(;e<0;)e+=t;return e}function JV(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Fe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Fe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,s=t.shape.length;n==null&&(n=[r-1,s-2]);let a=n;return M(()=>{let o;if(r>s){o=r-s;let c=[];for(let l=0;l<o;++l)c.push(1);t=U(t,t.shape.concat(c))}else if(s>r){o=s-r;let c=[];for(let l=0;l<o;++l)c.push(1);e=U(e,e.shape.concat(c))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=xe(V(e,t),a[0]):i=xe(V(Re(e,[1,0]),t),a[1]);else{let c=a[0]!==e.shape.length-1,l=a[1]===t.shape.length-1;i=De(e,t,c,l)}if(o>0){let c;r>s?c=r+s-3:c=r-1;let l=[];for(let u=c;u<c+o;++u)l.push(u);i=os(i,l)}return i.shape.length===1&&(i=gn(i,1)),i})}var Wx=class extends ui{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new H(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((s,a)=>$d(s,e[a].shape.length)):r=[$d(this.axes,t.shape.length),$d(this.axes,n.shape.length)],this.normalize&&(t=Gf(t,r[0]),n=Gf(n,r[1])),JV(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[$d(this.axes,e.length),$d(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Wx.className="Dot";ie.registerClass(Wx);var Vx=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return wd(()=>Y(Df(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Vx.className="GaussianNoise";ie.registerClass(Vx);var Ux=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.rate>0&&this.rate<1?wd(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return V(n,Df(n.shape,1,s))},()=>n,t.training||!1):n})}};Ux.className="GaussianDropout";ie.registerClass(Ux);var Gx=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Me(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return wd(()=>{let s=Me(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,c=da(lu(n),this.rate);c=Ef(c,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=Y(V(s,c),V(Y(c,-1),i));return Y(V(d,l),u)},()=>Me(e),t.training||!1)}return e})}};Gx.className="AlphaDropout";ie.registerClass(Gx);function Fd(e,t,n,r,s,a=.001){let o;if(e.rank===2)o=Fk(e,t,n,r,s,a);else if(e.rank===3)o=Rk(e,t,n,r,s,a);else if(e.rank===4)o=Pk(e,t,n,r,s,a);else throw new Fe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function QV(e,t,n,r,s=.001){return M(()=>{let a=nf(e,r),o=a.mean,i=a.variance;return[Fd(e,o,i,n,t,s),o,i]})}function eU(e,t,n,r,s=.001){return M(()=>{let a=nf(e,r),o=a.mean,i=a.variance,c=[];for(let f of Hr(0,e.rank))r.indexOf(f)!==-1?c.push(1):c.push(e.shape[f]);let l=U(o,c),u=U(i,c),d=t==null?null:U(t,c),p=n==null?null:U(n,c);return[Fd(e,l,u,p,d,s),o,i]})}function tU(e,t,n,r,s=.001){return k.arraysEqual(r.slice().sort(),Hr(0,e.rank-1))?QV(e,t,n,r,s):eU(e,t,n,r,s)}var Hx=class extends Xe{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ct(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ct(e.movingVarianceInitializer||"ones"),this.betaConstraint=Kt(e.betaConstraint),this.gammaConstraint=Kt(e.gammaConstraint),this.betaRegularizer=Nt(e.betaRegularizer),this.gammaRegularizer=Nt(e.gammaRegularizer)}build(e){e=ot(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Wt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training,r=Me(e),s=r.shape,a=s.length,o=Hr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let c=ni(1,a);c[i]=s[i];let l=o.slice();l.sort();let u=!k.arraysEqual(l,Hr(0,a).slice(0,a-1)),d=()=>{if(u){let b=U(this.movingMean.read(),c),y=U(this.movingVariance.read(),c),v=this.center?U(this.beta.read(),c):null,x=this.scale?U(this.gamma.read(),c):null;return Fd(r,b,y,v,x,this.epsilon)}else return Fd(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=tU(r,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(b,y,v)=>{M(()=>{let x=1-v,w=b.read(),T=V(fe(w,y),x);b.write(fe(w,T))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Dt(this.betaInitializer),gammaInitializer:Dt(this.gammaInitializer),movingMeanInitializer:Dt(this.movingMeanInitializer),movingVarianceInitializer:Dt(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Hx.className="BatchNormalization";ie.registerClass(Hx);var jx=class extends Xe{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.betaRegularizer=Nt(e.betaRegularizer),this.gammaRegularizer=Nt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ot(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==ma(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Me(e),r=n.shape,s=r.length;return M(()=>{let a=!0,{mean:o,variance:i}=nf(n,this.axis,a),c=ni(1,s);for(let f of this.axis)c[f]=r[f];let l=f=>f!=null&&f.shape.length!==s?U(f,c):f,u=l(this.gamma.read()),d=l(this.beta.read()),p=[],h=[];for(let f=0;f<s;++f)this.axis.indexOf(f)!==-1?(p.push(r[f]),h.push(1)):(p.push(1),h.push(r[f]));return o=On(o,p),i=On(i,p),u=On(u,h),d=On(d,h),Fd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Dt(this.betaInitializer),gammaInitializer:Dt(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};jx.className="LayerNormalization";ie.registerClass(jx);function nU(e,t,n){return M(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ur()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],fr(e,r)})}var qx=class extends Xe{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Ur():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Wt({ndim:4})]}computeOutputShape(e){e=ot(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return M(()=>nU(Me(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};qx.className="ZeroPadding2D";ie.registerClass(qx);function sm(e,t,n,r,s,a){return M(()=>{Lt(s),qI(a),mr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),s==null&&(s=Ur()),a==null&&(a="max"),e=fx(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=Ot(e,t,n,i):o=pr(e,t,n,i),s==="channelsFirst"&&(o=Re(o,[0,3,1,2])),o})}function aT(e,t,n,r,s,a){return M(()=>{Lt(s),qI(a),mr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),s==null&&(s=Ur()),a==null&&(a="max"),e=QS(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=sv(e,t,n,i):o=Vy(e,t,n,i),s==="channelsFirst"&&(o=Re(o,[0,4,1,2,3])),o})}var oT=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(en(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,mr(this.padding),this.inputSpec=[new Wt({ndim:3})]}computeOutputShape(e){e=ot(e);let t=Yr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return M(()=>{this.invokeCallHook(e,t),e=vd(Me(e),2);let n=this.poolingFunction(Me(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return os(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Kx=class extends oT{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Lt(s),mr(r),sm(e,t,n,r,s,"max")}};Kx.className="MaxPooling1D";ie.registerClass(Kx);var Xx=class extends oT{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Lt(s),mr(r),sm(e,t,n,r,s,"avg")}};Xx.className="AveragePooling1D";ie.registerClass(Xx);var iT=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),mr(this.padding),this.inputSpec=[new Wt({ndim:4})]}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Yr(t,this.poolSize[0],this.padding,this.strides[0]),n=Yr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Yx=class extends iT{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Lt(s),mr(r),sm(e,t,n,r,s,"max")}};Yx.className="MaxPooling2D";ie.registerClass(Yx);var Zx=class extends iT{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Lt(s),mr(r),sm(e,t,n,r,s,"avg")}};Zx.className="AveragePooling2D";ie.registerClass(Zx);var cT=class extends Xe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),mr(this.padding),this.inputSpec=[new Wt({ndim:5})]}computeOutputShape(e){e=ot(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Yr(t,this.poolSize[0],this.padding,this.strides[0]),n=Yr(n,this.poolSize[1],this.padding,this.strides[1]),r=Yr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Jx=class extends cT{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Lt(s),mr(r),aT(e,t,n,r,s,"max")}};Jx.className="MaxPooling3D";ie.registerClass(Jx);var Qx=class extends cT{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Lt(s),mr(r),aT(e,t,n,r,s,"avg")}};Qx.className="AveragePooling3D";ie.registerClass(Qx);var uT=class extends Xe{constructor(e){super(e);this.inputSpec=[new Wt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Fe}},ew=class extends uT{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Me(e);return At(n,1)})}};ew.className="GlobalAveragePooling1D";ie.registerClass(ew);var tw=class extends uT{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Me(e);return Cr(n,1)})}};tw.className="GlobalMaxPooling1D";ie.registerClass(tw);var lT=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),this.inputSpec=[new Wt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Fe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},nw=class extends lT{call(e,t){return M(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?At(n,[1,2]):At(n,[2,3])})}};nw.className="GlobalAveragePooling2D";ie.registerClass(nw);var rw=class extends lT{call(e,t){return M(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?Cr(n,[1,2]):Cr(n,[2,3])})}};rw.className="GlobalMaxPooling2D";ie.registerClass(rw);var dT=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,s=Kr(r,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},sw=class extends dT{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ot(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ot(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return M(()=>(e=Me(e),rT((a,o)=>[Me(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};sw.className="TimeDistributed";ie.registerClass(sw);function rU(e){si(uW,"BidirectionalMergeMode",e)}var sU="concat",aw=class extends dT{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Kr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Kr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?sU:e.mergeMode,rU(this.mergeMode),e.weights)throw new Fe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Bn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=nT(e,n,r,this.numConstants);if(e=s.inputs,n=s.initialState,r=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let c=n.length;if(c%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let l=n.map(u=>new Wt({shape:u.shape}));this.forwardLayer.stateSpec=l.slice(0,c/2),this.backwardLayer.stateSpec=l.slice(c/2),o.push(...l)}if(r!=null)throw new Fe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof qr;for(let c of a)if(c instanceof qr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let c=[e].concat(a),l=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=l;let d=super.apply(c,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t.initialState,r,s;if(n==null)r=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),c=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:c}))}let a;this.returnState&&(Array.isArray(r)&&(a=r.slice(1).concat(s.slice(1))),r=r[0],s=s[0]),this.returnSequences&&(s=er(s,1));let o;return this.mergeMode==="concat"?o=Fv([r,s]):this.mergeMode==="sum"?o=Y(r,s):this.mergeMode==="ave"?o=V(.5,Y(r,s)):this.mergeMode==="mul"?o=V(r,s):this.mergeMode==null&&(o=[r,s]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Kr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Fe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};aw.className="Bidirectional";ie.registerClass(aw);function aU(e){return new yu(e)}function oU(e){return new dx(e)}function iU(e){return new cx(e)}function cU(e){return new ux(e)}function uU(e){return new lx(e)}function lU(e){return new hx(e)}function dU(e){return new px(e)}function pU(e){return new Jf(e)}function hU(e){return new _d(e)}function fU(e){return new gx(e)}function mU(e){return new Ed(e)}function gU(e){return new bx(e)}function bU(e){return new yx(e)}function yU(e){return new vx(e)}function vU(e){return new xx(e)}function xU(e){return new wx(e)}function wU(e){return new Ex(e)}function kU(e){return new Nx(e)}function IU(e){return new rm(e)}function SU(e){return new Cx(e)}function TU(e){return new _x(e)}function CU(e){return new Ax(e)}function NU(e){return new Dx(e)}function _U(e){return new $x(e)}function EU(e){return new Rx(e)}function AU(e){return new Px(e)}function DU(e){return new Mx(e)}function $U(e){return new zx(e)}function FU(e){return new Lx(e)}function RU(e){return new Bx(e)}function PU(e){return new Ox(e)}function OU(e){return new Wx(e)}function MU(e){return new Hx(e)}function LU(e){return new jx(e)}function BU(e){return new qx(e)}function ow(e){return new Xx(e)}function zU(e){return ow(e)}function WU(e){return ow(e)}function iw(e){return new Zx(e)}function VU(e){return iw(e)}function UU(e){return iw(e)}function cw(e){return new Qx(e)}function GU(e){return cw(e)}function HU(e){return cw(e)}function jU(e){return new ew(e)}function qU(e){return new nw(e)}function pT(e){return new tw(e)}function hT(e){return new rw(e)}function fT(e){return new Kx(e)}function mT(e){return new Yx(e)}function KU(e){return new Jx(e)}function XU(e){return new Ix(e)}function YU(e){return new em(e)}function ZU(e){return new Sx(e)}function JU(e){return new Dd(e)}function QU(e){return new kx(e)}function eG(e){return new Qf(e)}function tG(e){return new Tx(e)}function nG(e){return new nm(e)}function rG(e){return new ps(e)}function sG(e){return new tm(e)}function aG(e){return new aw(e)}function oG(e){return new sw(e)}var iG=pT,cG=hT,uG=fT,lG=mT;function dG(e){return new Vx(e)}function pG(e){return new Ux(e)}function hG(e){return new Gx(e)}function fG(e){return new Fx(e)}var gT={};Ae(gT,{MAPE:()=>TG,MSE:()=>_G,binaryAccuracy:()=>mG,binaryCrossentropy:()=>gG,categoricalAccuracy:()=>yG,categoricalCrossentropy:()=>vG,cosineProximity:()=>kG,mape:()=>CG,meanAbsoluteError:()=>IG,meanAbsolutePercentageError:()=>SG,meanSquaredError:()=>NG,mse:()=>EG,precision:()=>xG,recall:()=>wG,sparseCategoricalAccuracy:()=>bG});function mG(e,t){return Kv(e,t)}function gG(e,t){return yS(e,t)}function bG(e,t){return vS(e,t)}function yG(e,t){return Xv(e,t)}function vG(e,t){return Yv(e,t)}function xG(e,t){return bS(e,t)}function wG(e,t){return sV(e,t)}function kG(e,t){return jv(e,t)}function IG(e,t){return Hf(e,t)}function SG(e,t){return xu(e,t)}function TG(e,t){return xu(e,t)}function CG(e,t){return xu(e,t)}function NG(e,t){return ii(e,t)}function _G(e,t){return ii(e,t)}function EG(e,t){return ii(e,t)}var bT={};Ae(bT,{modelFromJSON:()=>LV});var yT={};Ae(yT,{l1:()=>DG,l1l2:()=>AG,l2:()=>$G});function AG(e){return new Cd(e)}function DG(e){return jV(e)}function $G(e){return qV(e)}var vT=class extends vu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof As))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function am(e,t){return e<t}function xT(e,t){return e>t}var wT=class extends vT{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Fe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=am:this.mode==="max"?this.monitorFunc=xT:this.monitor.indexOf("acc")!==-1?this.monitorFunc=xT:this.monitorFunc=am,this.monitorFunc===am&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===am?1/0:-1/0}async onEpochEnd(e,t){await ya(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function FG(e){return new wT(e)}var RG={earlyStopping:FG},PG=J();PG.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Dr||(Dr={}));var kT;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(kT||(kT={}));var uw={};function OG(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};uw[e]=n}function IT(e){return uw[e]}function MG(e){delete uw[e]}function I(e,t,n,r,s){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,c=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return In(t.inputNames[a.inputIndexStart],n,r,s);if(a.type==="tensors")return t.inputNames.slice(i,c).map(p=>In(p,n,r,s));let l=In(t.inputNames.slice(i)[0],n,r,s),u=l.dataSync();return a.type==="number"?u[0]:k.toNestedArray(l.shape,u)}let o=t.attrParams[e];return o&&o.value}function In(e,t,n,r){let[s,a]=nr(e);if(r!=null){let i=r.getHashTableHandleByName(s);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[om(s,i)]);return o!==void 0?t[om(s,o)][a]:void 0}function LG(e,t,n){return t[om(e,n.currentContextId)]}function hs(e,t){let[n,r,s]=nr(e);return[om(n,t&&t.currentContextId),r,s]}function om(e,t){return t?`${e}-${t}`:e}function nr(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],r=t.length===3?t[1]:void 0,s=Number(t[t.length-1]);return[n,s,r]}function im(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let s=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)s[a][0]=r[a*2],s[a][1]=r[a*2+1];return s}return r}function Ds(e){return e.kept?e:Is(e)}var ST={};Ae(ST,{json:()=>BG});var BG=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],TT={};Ae(TT,{json:()=>zG});var zG=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],CT={};Ae(CT,{json:()=>WG});var WG=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],NT={};Ae(NT,{json:()=>VG});var VG=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],_T={};Ae(_T,{json:()=>UG});var UG=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],ET={};Ae(ET,{json:()=>GG});var GG=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],AT={};Ae(AT,{json:()=>HG});var HG=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],DT={};Ae(DT,{json:()=>jG});var jG=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],$T={};Ae($T,{json:()=>qG});var qG=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],FT={};Ae(FT,{json:()=>KG});var KG=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],RT={};Ae(RT,{json:()=>XG});var XG=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],PT={};Ae(PT,{json:()=>YG});var YG=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],OT={};Ae(OT,{json:()=>ZG});var ZG=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],MT={};Ae(MT,{json:()=>JG});var JG=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],LT={};Ae(LT,{json:()=>QG});var QG=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],BT={};Ae(BT,{json:()=>eH});var eH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],zT={};Ae(zT,{json:()=>tH});var tH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],WT={};Ae(WT,{json:()=>nH});var nH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],VT={};Ae(VT,{json:()=>rH});var rH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],UT=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[ST,TT,CT,NT,_T,ET,AT,DT,$T,FT,RT,PT,OT,MT,LT,BT,zT,WT,VT],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],s=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?s.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],c=[],l={},u={};t!=null&&(l=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,b)=>{let[y,,v]=hs(g),x=o[y];if(x.outputs!=null){let w=x.outputs.indexOf(v);if(w!==-1){let T=`${y}:${w}`;m.inputNames[b]=T}}m.inputs.push(x),x.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&c.push(m)}):Object.keys(u).forEach(f=>{let[m]=hs(f),g=o[m];g!=null&&(g.signatureKey=u[f],c.push(g))}),Object.keys(l).length>0?Object.keys(l).forEach(f=>{let[m]=hs(f),g=o[m];g&&(g.signatureKey=l[f],i.push(g))}):i=r;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:c,weights:s,placeholders:r,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=IT(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,s)=>(r[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,s)=>{let a=s.type,o;switch(s.type){case"string":o=lw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=lw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":o=yw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=yw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":o=pw(e.attr,s.tfName,s.defaultValue||0),o===void 0&&!!s.tfDeprecatedName&&(o=pw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":o=bw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=bw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":o=dw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=dw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":o=xw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=xw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":o=gw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=gw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":o=vw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=vw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":o=fw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=fw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":o=mw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=mw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":o=HT(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=HT(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return r[s.name]={value:o,type:a},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],s={};t!=null&&(s=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&r.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=hs(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:hw(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),s[d]=p}),Object.keys(s).forEach(u=>{let d=s[u];d.inputNames.forEach((p,h)=>{let[f,,m]=hs(p),g=s[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let y=`${f}:${b}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let c=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=hs(c[u.name]),h=s[d];h!=null&&(h.defaultOutput=p,o.push(h))});let l=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:o,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function sH(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function GT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):sH(e);return t?n:n.toLowerCase()}function lw(e,t,n,r=!1){let s=e[t];return s!=null?GT(s.s,r):n}function dw(e,t,n){let r=e[t];return r?r.b:n}function pw(e,t,n){let r=e[t]||{},s=r.i!=null?r.i:r.f!=null?r.f:n;return typeof s=="number"?s:parseInt(s,10)}function hw(e){switch(typeof e=="string"&&(e=Dr[e]),e){case Dr.DT_FLOAT:case Dr.DT_HALF:return"float32";case Dr.DT_INT32:case Dr.DT_INT64:case Dr.DT_INT8:case Dr.DT_UINT8:return"int32";case Dr.DT_BOOL:return"bool";case Dr.DT_DOUBLE:return"float32";case Dr.DT_STRING:return"string";default:return null}}function HT(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function fw(e,t,n){let r=e[t];return r&&r.type?hw(r.type):n}function mw(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(s=>hw(s)):n}function jT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function gw(e,t,n){let r=e[t];return r&&r.shape?jT(r.shape):n}function bw(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(s=>typeof s=="number"?s:parseInt(s,10)):n}function yw(e,t,n,r=!1){let s=e[t];return s&&s.list&&s.list.s?s.list.s.map(a=>GT(a,r)):n}function vw(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(s=>jT(s)):n}function xw(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var aH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,s)=>(r[s]=this.getAttr(s),r),{}))}getInput(e){return In(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return In(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return pw(this.node.rawAttrs,e,t);if(n.s!=null)return lw(this.node.rawAttrs,e,t);if(n.b!=null)return dw(this.node.rawAttrs,e,t);if(n.shape!=null)return gw(this.node.rawAttrs,e,t);if(n.type!=null)return fw(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return bw(this.node.rawAttrs,e,t);if(n.list.s!=null)return yw(this.node.rawAttrs,e,t);if(n.list.shape!=null)return vw(this.node.rawAttrs,e,t);if(n.list.b!=null)return xw(this.node.rawAttrs,e,t);if(n.list.type!=null)return mw(this.node.rawAttrs,e,t)}return t}},oH=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[Y(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Ek(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[ov(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[V(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Xy(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Gh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[fe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[uu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[as(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Ts(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[hf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iH=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[$y(I("x",e,t,n))];case"Acosh":return[Fy(I("x",e,t,n))];case"Asin":return[Py(I("x",e,t,n))];case"Asinh":return[Oy(I("x",e,t,n))];case"Atan":return[My(I("x",e,t,n))];case"Atan2":return[Ly(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[By(I("x",e,t,n))];case"Ceil":return[Gy(I("x",e,t,n))];case"Complex":return[aa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[rd(I("x",e,t,n))];case"Cosh":return[Xh(I("x",e,t,n))];case"Elu":return[iu(I("x",e,t,n))];case"Erf":return[Yy(I("x",e,t,n))];case"Exp":return[mn(I("x",e,t,n))];case"Expm1":return[Zy(I("x",e,t,n))];case"Floor":return[cu(I("x",e,t,n))];case"Log":return[Zn(I("x",e,t,n))];case"Log1p":return[ad(I("x",e,t,n))];case"Imag":return[Zh(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[uv(I("x",e,t,n))];case"Real":return[ld(I("x",e,t,n))];case"Relu":return[Ke(I("x",e,t,n))];case"Round":return[af(I("x",e,t,n))];case"Selu":return[cf(I("x",e,t,n))];case"Sigmoid":return[hr(I("x",e,t,n))];case"Sin":return[uf(I("x",e,t,n))];case"Sign":return[lv(I("x",e,t,n))];case"Sinh":return[lf(I("x",e,t,n))];case"Softplus":return[Zo(I("x",e,t,n))];case"Sqrt":return[on(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[Xo(I("x",e,t,n))];case"Tan":return[hv(I("x",e,t,n))];case"ClipByValue":return[Qt(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[sf(I("x",e,t,n))];case"Rsqrt":return[of(In(e.inputNames[0],t,n))];case"Prod":return[rf(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[sd(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ud(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Qy(In(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function $r(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let s=e[r],a=t[r];k.assert(s<0||a<0||s===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function qT(e){return!(typeof e=="number"||e.some(t=>t<0))}function Rd(e,t,n){let r=ww(e,n),s=!qT(r);if(s&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(s&&t.forEach(a=>{r=ww(a.shape,r)}),!qT(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function ww(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let s=e[r],a=t[r];if(s>=0&&a>=0&&s!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=s>=0?s:a}return n}var cH=class{constructor(e,t,n,r,s,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ie(0),Jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),$r(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return Xn([],[0].concat(this.elementShape));let n=this.readMany(e);return $r(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Mt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Xn([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return $r(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),tt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ft(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];M(()=>{t=U(t,[1,n,s]);for(let i=0;i<e.length;++i){let c=i===0?0:r[i-1],l=[0,c,0],u=[1,e[i],s];a[i]=U(We(t,l,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Pd=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);$r(t,s.shape,"TensorList shape mismatch: "),Jt(s)}),this.idTensor=Ie(0),this.maxNumElements=r,Jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Pd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);$r(e,this.elementShape,"TensorList shape mismatch: ");let r=Rd(this.elementShape,this.tensors,e);return M(()=>{let s=this.tensors.map(a=>U(a,r));return Mt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Rd(this.elementShape,this.tensors,e),r=this.tensors.pop();return $r(r.shape,e,"TensorList shape mismatch: "),U(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if($r(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);$r(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Rd(this.elementShape,this.tensors,t);return U(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);$r(this.elementShape,t.shape,"TensorList shape mismatch: "),Jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);$r(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Rd(this.elementShape,this.tensors,n);return e.length===0?Xn([],[0].concat(r)):M(()=>{let s=e.map(a=>U(this.tensors[a],r));return Mt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);$r(this.elementShape,t,"TensorList shape mismatch: ");let n=Rd(this.elementShape,this.tensors,t);return this.size()===0?Xn([],[0].concat(n)):M(()=>{let r=this.tensors.map(s=>U(s,n));return tt(r,0)})}};function uH(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let s=e.shape.slice(1);$r(s,t,"TensorList shape mismatch: ");let a=ft(e);return new Pd(a,t,r)}function lH(e,t,n){return new Pd([],e,t,n)}function dH(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let s=Math.max(...t);if(r!=null&&r!==-1&&s>=r)throw new Error(`Max index must be < array size (${s} vs. ${r})`);let a=new Pd([],n,e.dtype,r),o=ft(e,0);return t.forEach((i,c)=>{a.setItem(i,o[c])}),a}function pH(e,t,n){let r=0,s=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=ww(a,n),i=r===0?0:e.size/r,c=M(()=>{let u=[];e=U(e,[1,r,i]);for(let d=0;d<t.length;++d){let p=d===0?0:s[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=U(We(e,h,f),o)}return e.dispose(),u}),l=new Pd([],n,e.dtype,t.length);for(let u=0;u<c.length;u++)l.setItem(u,c[u]);return l}var hH=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),s=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),s=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),c=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let l=a;for(;c[0];){let u=l;l=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let d=l.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[s].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);c=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let r=I("pred",e,t,n);return[Ds(r)]}case"Switch":{let r=I("pred",e,t,n),s=I("data",e,t,n);return s.kept||(s=Ds(s)),(await r.data())[0]?[void 0,s]:[s,void 0]}case"Merge":{let r=e.inputNames.find(s=>In(s,t,n)!==void 0);if(r){let s=In(r,t,n);return[Ds(s)]}return}case"Enter":{let r=I("frameName",e,t,n),s=I("tensor",e,t,n);return n.enterFrame(r),[Ds(s)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[Ds(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[Ds(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),s=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),c=I("identicalElementShapes",e,t,n),l=I("name",e,t,n),u=new cH(l,s,r,a,c,o,i);return n.addTensorArray(u),[u.idTensor,Ie(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.write(s,a),[o.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n);return[n.getTensorArray(r.id).read(s)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(s,a)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.scatter(s,a),[o.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id),a=I("dtype",e,t,n);return[s.concat(a)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),s=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(r.id);return o.split(a,s),[o.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return[Ie(s.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return s.clearAndClose(),[s.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(r.id);return o.setItem(s,a),[o.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(s,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),s=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=dH(s,r,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=lH(r,s,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),s=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(s,o,a)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(s,a,o)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=uH(r,s,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),s=n.getTensorList(r.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[s.concat(a,o)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),s=I("tensor",e,t,n),a=n.getTensorList(r.id);return a.pushBack(s),[a.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(s,a)]}case"TensorListSplit":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=pH(r,a,s);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function KT(e,t,n){let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=!a,i=s==="prelu",c=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(a){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(c)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=im(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:s,leakyreluAlpha:g}}var fH=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[qh(I("x",e,t,n),I("filter",e,t,n),r,s,a,o)]}case"Conv2D":{let r=I("strides",e,t,n),s=im(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Pt(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:c,activationFunc:l,leakyreluAlpha:u}=KT(e,t,n);return[ha.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:l,preluActivationWeights:c,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:c,activationFunc:l,leakyreluAlpha:u}=KT(e,t,n);return[ha.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:l,preluActivationWeights:c,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),s=I("strides",e,t,n),a=im(e,t,n);return[Kh(I("x",e,t,n),I("filter",e,t,n),r,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),s=im(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[la(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,o,[a[1],a[2]])]}case"Conv3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[jy(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],s,a,[o[1],o[2],o[3]])]}case"AvgPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[pr(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Ot(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:c}=tI(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s,o);return[i,c]}case"AvgPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Vy(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[sv(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dilations",e,t,n),o=r[1],i=r[2],c=a[1],l=a[2];return[Ky(I("x",e,t,n),I("filter",e,t,n),[o,i],s,[c,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mH=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),s=I("dtype",e,t,n),a=I("value",e,t,n);return[wn(r,a,s)]}case"LinSpace":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("num",e,t,n);return[Kk(r,s,a)]}case"Multinomial":{let r=I("logits",e,t,n),s=I("numSamples",e,t,n),a=I("seed",e,t,n);return[nI(r,s,a)]}case"OneHot":{let r=I("indices",e,t,n),s=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[ru(r,s,a,o)]}case"Ones":return[Jn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Qn(I("x",e,t,n))];case"RandomUniform":return[lu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("step",e,t,n);return[du(r,s,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),s=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[ff(r,s,a,I("dtype",e,t,n),o)]}case"Zeros":return[Tt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function kw(e,t,n){let r=I("boxes",e,t,n),s=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),c=I("softNmsSigma",e,t,n);return{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:c}}var gH=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:c}=kw(e,t,n),l=await tr.nonMaxSuppressionWithScoreAsync(r,s,a,o,i,c);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=kw(e,t,n),c=I("padToMaxOutputSize",e,t,n),l=await tr.nonMaxSuppressionPaddedAsync(r,s,a,o,i,c);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=kw(e,t,n);return[await tr.nonMaxSuppressionAsync(r,s,a,o,i)]}case"Where":{let r=ce(I("condition",e,t,n),"bool"),s=[await gv(r)];return r.dispose(),s}case"ListDiff":return aI(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},bH=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),s=I("k",e,t,n),a=I("sorted",e,t,n),o=fv(r,s,a);return[o.values,o.indices]}case"Unique":{let r=I("x",e,t,n),s=mf(r);return[s.values,s.indices]}case"UniqueV2":{let r=I("x",e,t,n),s=I("axis",e,t,n),a=mf(r,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},yH=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[In(e.name,t,n)||r];case"Placeholder":return[In(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=I("x",e,t,n);return[Ds(l)]}case"IdentityN":return I("x",e,t,n).map(l=>Ds(l));case"Snapshot":let s=I("x",e,t,n);return[Ds(s)];case"Shape":return[je(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(l=>je(l.shape));case"Size":return[Ie(I("x",e,t,n).size,"int32")];case"Rank":return[Ie(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ie(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),c=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let l=0;l<o.length;l++)console.log(Array.prototype.slice.call(o[l].dataSync()).slice(0,c));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vH=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ie(0),this.tensorMap=new Map,Jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ie(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),M(()=>{let r=ft(t),s=n.length,a=r.length;k.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let o=0;o<s;o++){let i=n[o],c=r[o];Jt(c),this.tensorMap.set(i,c)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return M(()=>{let r=[];for(let s=0;s<n.length;s++){let a=n[s],o=this.findWithDefault(a,t);r.push(o)}return Mt(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},xH=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let s=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new vH(s,a);return r.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("values",e,t,n);return[await r.getHashTableById(s.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await r.getHashTableById(s.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let s=I("tableHandle",e,t,n,r);return[r.getHashTableById(s.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wH=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[tr.resizeBilinear(r,[s[0],s[1]],a,o)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[tr.resizeNearestNeighbor(r,[s[0],s[1]],a,o)]}case"CropAndResize":{let r=I("image",e,t,n),s=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),c=I("extrapolationValue",e,t,n);return[tr.cropAndResize(r,s,a,o,i,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kH=(e,t,n)=>{switch(e.op){case"Equal":return[Yn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Qo(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Mn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[da(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Jh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[pa(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Nr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[od(I("a",e,t,n))];case"LogicalOr":return[tf(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[fn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IH=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[De(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Hk(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Re(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=s==="prelu",i=I("numArgs",e,t,n),c=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,u]=I("args",e,t,n);return[ha.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:l,activation:s,preluActivationWeights:u,leakyreluAlpha:c})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},SH=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ss(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ss(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[ev(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[zr(I("x",e,t,n))];case"LogSoftmax":return[ef(I("x",e,t,n))];case"SparseToDense":return[bv(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},TH=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Cr(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[At(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[id(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[xe(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Hh(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ed(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[qo(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[Ry(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[rf(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),c=I("reverse",e,t,n);return[Yh(I("x",e,t,n),o,i,c)]}case"Bincount":let r=I("x",e,t,n),s=I("weights",e,t,n),a=I("size",e,t,n);return[Uy(r,s,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),c=I("size",e,t,n),l=I("binaryOutput",e,t,n);return[Uk(o,i,c,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},CH=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),s=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,r),[tt(a,s)]}case"Gather":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[Yo(r,ce(s,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),s=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Yo(a,ce(o,"int32"),r,s)]}case"Reverse":{let r=I("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let a=I("x",e,t,n);return[er(a,s)]}case"ReverseV2":{let r=I("axis",e,t,n),s=I("x",e,t,n);return[er(s,r)]}case"Slice":{let r=I("begin",e,t,n),s=I("size",e,t,n);return[We(I("x",e,t,n),r,s)]}case"StridedSlice":{let r=I("begin",e,t,n),s=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),c=I("ellipsisMask",e,t,n),l=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[pv(d,r,s,a,o,i,c,l,u)]}case"Pack":return M(()=>{let r=I("axis",e,t,n),s=I("tensors",e,t,n),a=s[0].shape,o=os(s[0]).shape,i=s.map(c=>{let l=k.arraysEqual(c.shape,a);if(!l&&!k.arraysEqual(os(c).shape,o))throw new Error("the input tensors shape does not match");return l?c:U(c,a)});return[Mt(i,r)]});case"Unpack":{let r=I("axis",e,t,n),s=I("tensor",e,t,n);return ft(s,r)}case"Tile":{let r=I("reps",e,t,n);return[On(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),s=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Ln(a,s,r)}case"ScatterNd":{let r=I("indices",e,t,n),s=I("values",e,t,n),a=I("shape",e,t,n);return[uI(r,s,a)]}case"GatherNd":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[lI(r,s)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),s=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[bv(r,a,s,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},NH=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:a,reverseIndexMap:o}=fd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,s,a,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=fd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[fd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[fd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_H=(e,t,n)=>{switch(e.op){case"FFT":return[pd(I("x",e,t,n))];case"IFFT":return[hu(I("x",e,t,n))];case"RFFT":return[hd(I("x",e,t,n))];case"IRFFT":return[pf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},EH=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=wf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:a}=wf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,s,a]}case"StringToHashBucketFast":return[wf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},AH=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[gn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[os(I("x",e,t,n),r)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[av(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[fr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),s=I("paddings",e,t,n);return[cd(I("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),s=I("crops",e,t,n);return[nd(I("x",e,t,n),r,s)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),s=I("dataFormat",e,t,n).toUpperCase();return[qy(I("x",e,t,n),r,s)]}case"BroadcastTo":return[ou(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[Ok(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function XT(e,t,n,r){let s=((a,o,i)=>{switch(a.category){case"arithmetic":return M(()=>oH(a,o,i));case"basic_math":return M(()=>iH(a,o,i));case"control":return hH(a,o,i);case"convolution":return M(()=>fH(a,o,i));case"creation":return M(()=>mH(a,o,i));case"dynamic":return gH(a,o,i);case"evaluation":return M(()=>bH(a,o,i));case"image":return M(()=>wH(a,o,i));case"graph":return M(()=>yH(a,o,i));case"logical":return M(()=>kH(a,o,i));case"matrices":return M(()=>IH(a,o,i));case"normalization":return M(()=>SH(a,o,i));case"reduction":return M(()=>TH(a,o,i));case"slice_join":return M(()=>CH(a,o,i));case"sparse":return M(()=>NH(a,o,i));case"spectral":return M(()=>_H(a,o,i));case"string":return M(()=>EH(a,o,i));case"transformation":return M(()=>AH(a,o,i));case"hash_table":return xH(a,o,i,r);case"custom":let c=IT(a.op);if(c&&c.customExecutor)return c.customExecutor(new aH(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var YT=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function ZT(e,t,n,r){let s=new Set,a=[],o=null,i=null,c=new Set,l=Object.keys(e).map(p=>nr(p)[0]),u=[];r!=null&&(u=r.map(p=>nr(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((JT(p)||PH(p)||OH(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>s.has(h))),s.add(p.name),n[p.name]==null&&l.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{c.has(h.name)||(c.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:s,missingInputs:a,dynamicNode:o,syncInputs:i}}function DH(e,t,n){let{usedNodes:r,inputs:s}=n,a=[],o=Object.keys(s).map(u=>nr(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{r.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{r.has(u.name)&&a.push(u)});let c=new Set,l=[];for(;a.length>0;){let u=a.pop();c.add(u.name),t[u.name]||l.push(u),u.children.forEach(d=>{!c.has(d.name)&&r.has(d.name)&&d.inputs.every(p=>c.has(p.name))&&a.push(d)})}return l}var $H=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],FH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],RH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function JT(e){return $H.indexOf(e.op)>=0}function PH(e){return FH.indexOf(e.op)>=0}function OH(e){return RH.indexOf(e.op)>=0}var Iw=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Iw(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),r=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=ZT(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(r.length>0){let o=t.map(c=>c.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${r}]`)}return DH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[nr(u)[0]]),s=t.map(u=>nr(u)[0]),a=s.map(u=>this.graph.nodes[u]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(r,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let c={},l={};return M(()=>{let u=new YT(this.weightMap,c,l,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=nr(f),b=[];b[g]=e[f],d[m]=b});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=XT(m,d,u,this._resourceManager);if(k.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,s,h)}}return this.parent==null&&u.dispose(p),t.map(f=>In(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,s,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let c=LG(i.name,n,r);c!=null&&c.forEach(l=>{if(l&&!l.kept&&!s.has(l.id)){let u=o[l.id];if(u===1){if(!this.keepTensorForDebug)l.dispose();else{let[d,p]=hs(t.name,r);this.intermediateTensors[d]?this.intermediateTensors[d][p]=l:(this.intermediateTensors[d]=[],this.intermediateTensors[d][p]=l)}delete o[l.id]}else u!=null&&o[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,r={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=J().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(l){console.warn(l.message)}this.resetIntermediateTensors();let a=new YT(this.weightMap,r,s,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(l=>In(l,this.tensorsMap,a)),i=o.map(l=>l.id),c=Object.keys(e).map(l=>e[l].id);return this.keepIds=new Set([...i,...c,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let r=e.reduce((s,a,o)=>(s[this.inputs[o].name]=a,s),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let s=Object.keys(e),a=s.map(y=>this.graph.nodes[nr(y)[0]]),o=n.map(y=>nr(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:c,missingInputs:l,dynamicNode:u,syncInputs:d}=ZT(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[v,x]=nr(y),w=[];w[x]=e[y],h[v]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,c);await Promise.all(y)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=i.filter(y=>!JT(y)&&!In(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw u!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${l}]. ${y}`)}return h}processStack(e,t,n,r,s,a,o,i,c){let l=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([d]=hs(u.node.name,n)),r[u.node.name]==null){let p=XT(u.node,r,n,this._resourceManager);d||([d]=hs(u.node.name,n));let h=n.currentContext;k.isPromise(p)?l.push(p.then(f=>(r[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,r,n,a,o,i),this.processChildNodes(u.node,t,n,r,s,c),f))):(r[d]=p,this.checkTensorForDisposal(d,u.node,r,n,a,o,i),this.processChildNodes(u.node,t,n,r,s,c))}else this.processChildNodes(u.node,t,n,r,s,c)}return l}processChildNodes(e,t,n,r,s,a){e.children.forEach(o=>{let[i]=hs(o.name,n);s[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(c=>!!In(c,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(c=>!!In(c,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=nr(t),s=this.graph.nodes[r];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,c)=>a[c]===-1||a[c]===i);k.assert(o,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&k.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=nr(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=nr(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},MH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},LH="?tfjs-format=file",BH="model.json",QT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new MH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Zt.browserHTTPRequest(e,this.loadOptions);else{let t=Zt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Zt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Zt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Iw(UT.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=UT.Instance.transformGraph(e.modelInitializer);this.initializer=new Iw(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Zt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function zH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${BH}${LH}`);let n=new QT(e,t);return await n.load(),n}var WH="3.13.0",eC={};Ae(eC,{CSVDataset:()=>pC,Dataset:()=>Su,FileDataSource:()=>vC,TextLineDataset:()=>uC,URLDataSource:()=>xC,array:()=>l6,csv:()=>w6,func:()=>k6,generator:()=>I6,microphone:()=>T6,version_data:()=>C6,webcam:()=>S6,zip:()=>d6});var VH=Oa(f1()),UH=Oa(f1());function GH(e,t){return cm(e,t)}function cm(e,t,n=new Map,r=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(s.recurse)if(Iu(e)){let a=Array.isArray(e)?[]:{};r.add(e);for(let o in e){let i=e[o],c=cm(i,t,n,r);a[o]=c}return r.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,s.value),s.value}function HH(e,t=nC){return tC(e,t)}function tC(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(s.recurse)if(Iu(r)){let a=Array.isArray(r)?[]:{};n.add(r);for(let o in r){let i=e.map(l=>l[o]),c=tC(i,t,n);a[o]=c}return n.delete(r),a}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return s.value}function nC(e){return e===null?null:Iu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function rC(e,t){let n=new Map;cm(e,t,n);for(let s of Array.from(n.keys())){let a=n.get(s);if(k.isPromise(a)){let o=await a;n.set(s,o)}}return cm(e,t,n)}function Iu(e){let t=!1;if(J().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=m1();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee)&&!(e instanceof Promise)&&!t)}function jH(e){return e==null||qH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||k.isTypedArray(e)}function qH(e){return e===null||typeof e!="object"&&typeof e!="function"}function KH(e){return GH(e,XH)}function XH(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:Iu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var sC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Sw=class extends sC{constructor(){super(Sw.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Sw.INITIAL_CAPACITY=32;function aC(e){return new JH(e)}function Tw(e){return new QH(e)}function YH(e,t){return new iC(e,t)}function ZH(e,t=ka.FAIL){return new c6(e,t)}var tn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new o6(this,e)}filter(e){return new s6(this,e)}map(e){return new a6(this,e)}mapAsync(e){return new oC(this,e)}serialMapAsync(e){return new oC(this,e).serial()}flatmap(e){return new i6(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new r6(this,e,t)}columnMajorBatch(e,t=!0,n=nC){return this.rowMajorBatch(e,t).map(s=>HH(s,n))}concatenate(e,t){return new iC(aC([this,e]),t)}take(e){return e<0||e==null?this:new n6(this,e)}skip(e){return e<0||e==null?this:new t6(this,e)}prefetch(e){return new cC(this,e)}shuffle(e,t){return new u6(this,e,t)}serial(){return new e6(this)}},JH=class extends tn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:KH(e),done:!1}}},QH=class extends tn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},e6=class extends tn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},t6=class extends tn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;$e(e.value)}return this.upstream.next()}},n6=class extends tn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},r6=class extends tn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},s6=class extends tn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;$e(e.value)}}},a6=class extends tn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Lr.getTensorsInContainer(e.value),n=this.transform(e.value),r=Lr.getTensorsInContainer(n);for(let s of t)Lr.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},o6=class extends tn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},oC=class extends tn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Lr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=Lr.getTensorsInContainer(n);for(let s of t)Lr.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},Cw=class extends tn{constructor(){super();this.outputQueue=new Sw,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},i6=class extends Cw{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Lr.getTensorsInContainer(e.value),n=this.transform(e.value),r=Lr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Lr.isTensorInList(s,r)||s.dispose();return!0}},iC=class extends tn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ka;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ka||(ka={}));var c6=class extends tn{constructor(e,t=ka.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(a){return a instanceof tn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let s=await rC(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ka.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ka.SHORTEST:return{value:null,done:!0};case ka.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},cC=class extends tn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new sC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},u6=class extends cC{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=UH.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Su=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===1/0||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),rr(async()=>(await n.iterator()).columnMajorBatch(e,t,p6),r)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,rr(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,rr(async()=>(await t.iterator()).filter(r=>M(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return rr(async()=>(await t.iterator()).map(n=>M(()=>e(n))),this.size)}mapAsync(e){let t=this;return rr(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return rr(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,rr(async()=>{let r=Tw(async()=>({value:await t.iterator(),done:!1}));return YH(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,rr(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,s=VH.alea(t||k.now().toString());return rr(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await r.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,rr(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Su.MAX_BUFFER_SIZE=1e4;function rr(e,t=null){return new class extends Su{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function l6(e){return rr(async()=>aC(e),e.length)}function d6(e){if(!Iu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return rr(async()=>{let n=await rC(e,r=>{if(r instanceof Su)return{value:r.iterator(),recurse:!1};if(Iu(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return ZH(n,ka.SHORTEST)},t)}function p6(e){if(e===null)return null;let t=e[0];return jH(t)?{value:h6(e),recurse:!1}:{value:null,recurse:!0}}function h6(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?Mt(e):Xn(e)}var uC=class extends Su{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(r=>(r.endsWith("\r")&&(r=r.slice(0,-1)),r))}},um='"',Od=Symbol("out"),lC=Symbol("field"),lm=Symbol("quote"),Nw=Symbol("quoteafterquote"),dC=Symbol("quoteinquote"),pC=class extends Su{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new uC(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,s)=>(r[s]=r[s]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[s],c=null;if(i==="")if(o&&o.default!==void 0)c=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);c=void 0}else{let l=Number(i);if(isNaN(l))o&&o.dtype==="bool"?c=this.getBoolean(i):c=i;else if(!o||!o.dtype)c=l;else switch(o.dtype){case"float32":c=l;break;case"int32":c=Math.floor(l);break;case"bool":c=this.getBoolean(i);break;default:c=l}}o&&o.isLabel?r[a]=c:n[a]=c}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,s=e.length,a=Od;for(let o=0;o<s;o++)switch(a){case Od:switch(e.charAt(o)){case um:r=o+1,a=lm;break;case this.delimiter:if(r=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Od;break;default:a=lC,r=o;break}break;case lC:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(r,o)),a=Od,r=o+1;break;default:}break;case lm:switch(e.charAt(o)){case um:a=Nw;break;default:}break;case Nw:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(r,o-1)),a=Od,r=o+1;break;case um:a=lm;break;default:a=dC;break}break;case dC:switch(e.charAt(o)){case um:a=lm;break;default:}break;default:}if(a===Nw?n.push(e.substring(r,s-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},hC=class extends tn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new hC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,s)=>n.set(r,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Xn(n,t)}},fC=class extends tn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=je([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-r)/2,o=s+n,i=r+a;this.cropBox=Wr([a,s,i,o],[1,4])}else this.cropBox=Wr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new fC(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Go.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return M(()=>{let t=gn(ce(e,"float32"),0),n;n=tr.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return U(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},mC=class{},gC=class extends tn{split(e){return new f6(this,e)}},f6=class extends gC{constructor(e,t){super();this.upstream=e,this.impl=new m6(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},m6=class extends Cw{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},g6=class extends tn{decodeUTF8(){return new b6(this)}},b6=class extends gC{constructor(e){super();this.upstream=e,this.impl=new y6(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},y6=class extends Cw{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=m1();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},bC=class extends g6{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,r)));else{let s=new FileReader;s.onload=o=>{let i=s.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},s.onabort=o=>n(new Error("Aborted")),s.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,r);s.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function v6(e,t={},n){let r,s;typeof e=="string"?r=e:(r=e.url,s=x6(e));let a=await(n||k.fetch)(r,s);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new bC(o,t)}else throw new Error(a.statusText)}var x6=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function yC(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var vC=class extends mC{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(yC(this.input)&&J().get("IS_NODE")){let e=jp();this.input=e.readFileSync(this.input.substr(7))}return new bC(this.input,this.options)}},xC=class extends mC{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return yC(this.url)?new vC(this.url,this.fileOptions).iterator():v6(this.url,this.fileOptions)}};function w6(e,t={}){return new pC(new xC(e),t)}function k6(e){let t=Tw(e);return rr(async()=>t)}function I6(e){return rr(async()=>{let t=await e();return Tw(()=>t.next())})}async function S6(e,t){return fC.create(e,t)}async function T6(e){return hC.create(e)}var C6="3.13.0";function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var N6=is.whereImpl,_w=class extends kl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new qp(this,ns())}nextDataId(){return _w.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&_.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let s=n.map(a=>k.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,s){this.data.set(e,{values:t,dtype:r,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(r,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ns().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return N6(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};_w.nextDataId=0;var wC={};Ae(wC,{addImpl:()=>IC,bincountImpl:()=>Aw,bincountReduceImpl:()=>SC,ceilImpl:()=>TC,concatImpl:()=>Dw,equalImpl:()=>CC,expImpl:()=>_C,expm1Impl:()=>AC,floorImpl:()=>DC,gatherNdImpl:()=>$C,gatherV2Impl:()=>FC,greaterEqualImpl:()=>PC,greaterImpl:()=>RC,lessEqualImpl:()=>MC,lessImpl:()=>OC,linSpaceImpl:()=>LC,logImpl:()=>BC,maxImpl:()=>zC,maximumImpl:()=>WC,minimumImpl:()=>VC,multiplyImpl:()=>$w,negImpl:()=>UC,notEqualImpl:()=>GC,prodImpl:()=>HC,rangeImpl:()=>Rw,rsqrtImpl:()=>jC,sigmoidImpl:()=>m5,simpleAbsImpl:()=>kC,sliceImpl:()=>hm,sparseFillEmptyRowsImpl:()=>KC,sparseReshapeImpl:()=>XC,sparseSegmentReductionImpl:()=>Pw,sqrtImpl:()=>y5,squaredDifferenceImpl:()=>YC,stridedSliceImpl:()=>ZC,stringNGramsImpl:()=>JC,stringSplitImpl:()=>QC,stringToHashBucketFastImpl:()=>e2,subImpl:()=>t2,tileImpl:()=>n2,topKImpl:()=>s2,transposeImpl:()=>Fw,uniqueImpl:()=>a2});function kC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var _6=e=>{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),s=n.data.get(t.dataId).values;return r=kC(s),n.makeOutput(r,t.shape,t.dtype)},E6={kernelName:Yi,backendName:"cpu",kernelFunc:_6};function Vt(e){return(t,n,r,s,a)=>{let o=_.assertAndGetBroadcastShape(t,n),i=o.length,c=k.computeStrides(o),l=k.sizeFromShape(o),u=k.getTypedArrayFromDType(a,l),d=t.length,p=n.length,h=k.computeStrides(t),f=k.computeStrides(n),m=_.getBroadcastDims(t,o),g=_.getBroadcastDims(n,o);if(m.length+g.length===0)for(let b=0;b<u.length;++b)u[b]=e(r[b%r.length],s[b%s.length]);else for(let b=0;b<u.length;++b){let y=k.indexToLoc(b,i,c),v=y.slice(-d);m.forEach(N=>v[N]=0);let x=k.locToIndex(v,d,h),w=y.slice(-p);g.forEach(N=>w[N]=0);let T=k.locToIndex(w,p,f);u[b]=e(r[x],s[T])}return[u,o]}}function sr(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),c=n.data.get(i.dataId);return c.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}var A6={kernelName:nh,backendName:"cpu",kernelFunc:sr};function dm(e,t,n="float32"){if(n==="complex64"){let s=dm(e,t,"float32"),a=dm(e,t,"float32");return sr({inputs:{real:s,imag:a},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function fs(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var D6={kernelName:so,backendName:"cpu",kernelFunc:fs};function li(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var $6={kernelName:Ih,backendName:"cpu",kernelFunc:li};function Ia(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return fs({inputs:{x:s},backend:n});let o=dm(n,s.shape,s.dtype),i=Ia({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),c=sr({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}if(s.dtype==="complex64"){let o=li({inputs:{input:s},backend:n}),i=Ia({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=fs({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=k.toTypedArray([0],s.dtype),[c,l]=Vt((u,d)=>u!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(l,"bool",c)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var F6={kernelName:Ua,backendName:"cpu",kernelFunc:Ia};function nn(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,c=a;ke([o,i],e);let l=c.data.get(o.dataId).values,u=c.data.get(i.dataId).values,d=o.dtype==="string"?_.fromUint8ToStringArray(l):l,p=o.dtype==="string"?_.fromUint8ToStringArray(u):u,h=r||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return c.makeTensorInfo(m,h,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,c=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let l=Ia({inputs:{x:o},backend:c,attrs:{dtype:"complex64"}}),u=c.data.get(l.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=c.data.get(d.dataId).values,f=c.data.get(p.dataId).values,m=Ia({inputs:{x:i},backend:c,attrs:{dtype:"complex64"}}),g=c.data.get(m.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,v=c.data.get(b.dataId).values,x=c.data.get(y.dataId).values,[w,T,N]=n(o.shape,i.shape,h,f,v,x),$=c.makeTensorInfo(N,"float32",w),D=c.makeTensorInfo(N,"float32",T),P=sr({inputs:{real:$,imag:D},backend:c});return c.disposeIntermediateTensorInfo(l),c.disposeIntermediateTensorInfo(m),c.disposeIntermediateTensorInfo($),c.disposeIntermediateTensorInfo(D),P}else{let l=c.data.get(o.dataId).values,u=c.data.get(i.dataId).values,d=r||o.dtype,[p,h]=t(o.shape,i.shape,l,u,d);return c.makeTensorInfo(h,d,p)}}}function Ew(e){return(t,n,r,s,a,o)=>{let i=_.assertAndGetBroadcastShape(t,n),c=k.sizeFromShape(i),l=i.length,u=k.computeStrides(i),d=k.getTypedArrayFromDType("float32",c),p=k.getTypedArrayFromDType("float32",c),h=_.getBroadcastDims(t,i),f=_.getBroadcastDims(n,i),m=_.mergeRealAndImagArrays(r,s),g=_.mergeRealAndImagArrays(a,o),b=t.length,y=k.computeStrides(t),v=n.length,x=k.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let T=w%m.length,N=w%g.length,$=e(m[T*2],m[T*2+1],g[N*2],g[N*2+1]);d[w]=$.real,p[w]=$.imag}else for(let w=0;w<d.length;w++){let T=k.indexToLoc(w,l,u),N=T.slice(-b);h.forEach(R=>N[R]=0);let $=k.locToIndex(N,b,y),D=T.slice(-v);f.forEach(R=>D[R]=0);let P=k.locToIndex(D,v,x),F=e(m[$*2],m[$*2+1],g[P*2],g[P*2+1]);d[w]=F.real,p[w]=F.imag}return[d,p,i]}}var IC=Vt((e,t)=>e+t),R6=Ew((e,t,n,r)=>({real:e+n,imag:t+r})),Md=nn(Js,IC,R6),P6={kernelName:Js,backendName:"cpu",kernelFunc:Md};function Aw(e,t,n,r,s){let a=k.sizeFromShape(r),o=k.makeZerosTypedArray(s,n);for(let i=0;i<e.length;i++){let c=e[i];if(c<0)throw new Error("Input x must be non-negative!");c>=s||(a>0?o[c]+=t[i]:o[c]+=1)}return o}function SC(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=ze([s,n],t.dtype);for(let i=0;i<s;i++)for(let c=0;c<a;c++){let l=e.get(i,c);if(l<0)throw new Error("Input x must be non-negative!");l>=n||(r?o.set(1,i,l):t.size>0?o.set(o.get(i,l)+t.get(i,c),i,l):o.set(o.get(i,l)+1,i,l))}return o}function Sa(e){return(t,n,r)=>{let s=k.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)s[a]=e(t[a],r);return s}}function it(e,t,n){return({inputs:r,attrs:s,backend:a})=>{let{x:o}=r;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,c=i.data.get(o.dataId).values,l=k.sizeFromShape(o.shape),u=n||o.dtype,d=k.getArrayFromDType(u,l);for(let p=0;p<l;++p)d[p]=t(c[p],s);return i.makeTensorInfo(o.shape,u,d)}}function Tu(e,t,n){return({inputs:r,attrs:s,backend:a})=>{let{x:o}=r;if(ke(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,c=i.data.get(o.dataId).values,l=n||o.dtype,u=t(c,l,s);return i.makeTensorInfo(o.shape,l,u)}}var TC=Sa(e=>Math.ceil(e)),O6=Tu(Ga,TC),M6={kernelName:Ga,backendName:"cpu",kernelFunc:O6};function Dw(e,t,n,r){let s=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=k.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?_.fromUint8ToStringArray(o.vals):o.vals,c=0;for(let l=0;l<o.shape[0];++l){let u=l*t[1]+a;for(let d=0;d<o.shape[1];++d)s[u+d]=i[c++]}a+=o.shape[1]})}return s}var CC=Vt((e,t)=>e===t?1:0),NC=nn(dc,CC,null,"bool"),L6={kernelName:dc,backendName:"cpu",kernelFunc:NC},_C=Sa(e=>Math.exp(e)),EC=Tu(Qa,_C,"float32"),B6={kernelName:Qa,backendName:"cpu",kernelFunc:EC},AC=Sa(e=>Math.expm1(e)),z6=Tu(hc,AC),W6={kernelName:hc,backendName:"cpu",kernelFunc:z6},DC=Sa(e=>Math.floor(e)),V6=Tu(eo,DC),U6={kernelName:eo,backendName:"cpu",kernelFunc:V6};function $C(e,t,n,r,s,a,o,i,c){let l=ze([r,a],n);for(let u=0;u<r;u++){let d=[],p=0;for(let h=0;h<s;h++){let f=e[u*s+h];p+=f*o[h],d.push(f)}if(p<0||p>=c/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)l.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return l}function FC(e,t,n){let r=ze(n,e.dtype);for(let s=0;s<r.size;++s){let o=r.indexToLoc(s).slice(),i=o[0],c=o[2],l=t.locToIndex([i,c]);o[2]=t.values[l];let u=e.locToIndex(o);0<=u&&u<e.values.length&&(r.values[s]=e.values[u])}return r}var RC=Vt((e,t)=>e>t?1:0),G6=nn(bc,RC,null,"bool"),H6={kernelName:bc,backendName:"cpu",kernelFunc:G6},PC=Vt((e,t)=>e>=t?1:0),j6=nn(ro,PC,null,"bool"),q6={kernelName:ro,backendName:"cpu",kernelFunc:j6},OC=Vt((e,t)=>e<t?1:0),K6=nn(wc,OC,null,"bool"),X6={kernelName:wc,backendName:"cpu",kernelFunc:K6},MC=Vt((e,t)=>e<=t?1:0),Y6=nn(kc,MC,null,"bool"),Z6={kernelName:kc,backendName:"cpu",kernelFunc:Y6};function LC(e,t,n){let r=(t-e)/(n-1),s=k.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;a<s.length;a++)s[a]=s[a-1]+r;return s}var BC=Sa(e=>Math.log(e)),J6=Tu(oo,BC),Q6={kernelName:oo,backendName:"cpu",kernelFunc:J6};function zC(e,t,n,r){let s=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let a=0;a<s.length;++a){let o=a*t,i=e[o];for(let c=0;c<t;++c){let l=e[o+c];(Number.isNaN(l)||l>i)&&(i=l)}s[a]=i}return s}var WC=Vt((e,t)=>Math.max(e,t)),e5=nn(co,WC),t5={kernelName:co,backendName:"cpu",kernelFunc:e5},VC=Vt((e,t)=>Math.min(e,t)),n5=nn(ho,VC),r5={kernelName:ho,backendName:"cpu",kernelFunc:n5},$w=Vt((e,t)=>e*t),s5=Ew((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),pm=nn(mo,$w,s5),a5={kernelName:mo,backendName:"cpu",kernelFunc:pm};function UC(e,t,n){let r=k.createScalarValue(-1,n);return $w([],t,r,e,n)}function o5(e){let{inputs:t,backend:n}=e,{x:r}=t;ke(r,"neg");let s=n.data.get(r.dataId).values,[a,o]=UC(s,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,a)}var i5={kernelName:Cc,backendName:"cpu",kernelFunc:o5},GC=Vt((e,t)=>e!==t?1:0),c5=nn(Nc,GC,null,"bool"),u5={kernelName:Nc,backendName:"cpu",kernelFunc:c5};function Fw(e,t,n,r,s){let a=t.length,o=k.sizeFromShape(t),i=k.computeStrides(t),c=k.computeStrides(s),l=k.getTypedArrayFromDType(n,k.sizeFromShape(s));for(let u=0;u<o;++u){let d=k.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[r[f]];let h=k.locToIndex(p,a,c);l[h]=e[u]}return l}function gr(e){let{inputs:t,attrs:n,backend:r}=e,{x:s}=t,{perm:a}=n;ke(s,"transpose");let o=s.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=s.shape[a[d]];let c=r.data.get(s.dataId).values,l=Fw(c,s.shape,s.dtype,a,i);return{dataId:r.write(l,i,s.dtype),shape:i,dtype:s.dtype}}var l5={kernelName:Po,backendName:"cpu",kernelFunc:gr};function HC(e,t,n,r){let[s,a]=_.computeOutAndReduceShapes(e,r),o=Tr(t,"int32"),i=k.makeZerosTypedArray(k.sizeFromShape(s),o),c=k.sizeFromShape(a);for(let l=0;l<i.length;++l){let u=l*c,d=1;for(let p=0;p<c;++p)d*=n[u+p];i[l]=d}return{outVals:i,outShape:s,outDtype:o}}function d5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;ke(s,"prod");let i=s.shape.length,c=k.parseAxisParam(a,s.shape),l=_.getAxesPermutation(c,i),u=c,d=s,p=[];l!=null&&(d=gr({inputs:{x:s},backend:n,attrs:{perm:l}}),p.push(d),u=_.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=HC(d.shape,d.dtype,h,u),b=m;return o&&(b=_.expandShapeToKeepDim(m,c)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,f)}var p5={kernelName:Fc,backendName:"cpu",kernelFunc:d5};function Rw(e,t,n,r){let s=e===t,a=e<t&&n<0,o=t<e&&n>1;if(s||a||o)return k.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),c=k.makeZerosTypedArray(i,r);t<e&&n===1&&(n=-1),c[0]=e;for(let l=1;l<c.length;l++)c[l]=c[l-1]+n;return c}var jC=Sa(e=>1/Math.sqrt(e)),h5=Tu(To,jC),f5={kernelName:To,backendName:"cpu",kernelFunc:h5},m5=Sa(e=>1/(1+Math.exp(-e))),qC=it(No,e=>1/(1+Math.exp(-e))),g5={kernelName:No,backendName:"cpu",kernelFunc:qC};function hm(e,t,n,r,s){let a=Ht.isSliceContinous(r,t,n),o=k.sizeFromShape(n),i=k.computeStrides(r);if(a){let d=Ht.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let c=s==="string"?_.fromUint8ToStringArray(e):e,l=ze(r,s,c),u=ze(n,s);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(l.get(...h),...p)}return s==="string"?_.fromStringArrayToUint8(u.values):u.values}function di(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r;ke(s,"slice");let[i,c]=Ht.parseSliceParams(s,a,o);Ht.assertParamsValid(s,i,c);let l=n.data.get(s.dataId).values,u=hm(l,i,c,s.shape,s.dtype);return n.makeTensorInfo(c,s.dtype,u)}var b5={kernelName:Bc,backendName:"cpu",kernelFunc:di};function KC(e,t,n,r,s,a,o){let i=t[0],c=a[0],l=new Array(c),u=new Array(i),d=t[1];if(c===0){if(i!==0)throw new Error(_.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=k.getArrayFromDType(n,0),b=k.getArrayFromDType(s,0);return[g,[0,d],b,l,u]}let p=!0,h=0,f=new Array(c).fill(0);for(let g=0;g<i;++g){let b=e[g*d];if(b<0)throw new Error(_.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=c)throw new Error(_.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,c));++f[b],p=p&&b>=h,h=b}let m=!0;for(let g=0;g<c;++g){let b=f[g]===0;l[g]=b,m=m&&!b,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,b=r;for(let y=0;y<i;++y)u[y]=y;return[g,[i,d],b,l,u]}else{let g=f[c-1],b=k.getArrayFromDType(n,g*d),y=k.getArrayFromDType(s,g),v=new Array(c).fill(0);for(let x=0;x<i;++x){let w=e[x*d],T=v[w],N=(w===0?0:f[w-1])+T;v[w]++;for(let $=0;$<d;++$)b[N*d+$]=e[x*d+$];y[N]=r[x],u[x]=N}for(let x=0;x<c;++x)if(v[x]===0){let T=x===0?0:f[x-1];b[T*d+0]=x;for(let N=1;N<d;++N)b[T*d+N]=0;y[T]=o}return[b,[g,d],y,l,u]}}function XC(e,t,n,r,s){let a=k.sizeFromShape(r),o=t[0],i=s.length,c=[],l=1,u=-1;for(let g=0;g<i;++g){let b=s[g];if(b===-1){if(u!==-1)throw new Error(_.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(u,g));u=g,c.push(1)}else{if(b<0)throw new Error(_.getSparseReshapeNegativeOutputDimErrorMessage(g,b));l*=b,c.push(b)}}if(u!==-1){if(l<=0)throw new Error(_.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/l);if(l*g!==a)throw new Error(_.getSparseReshapeInputOutputMultipleErrorMessage(r,c));c[u]=g}if(k.sizeFromShape(c)!==a)throw new Error(_.getSparseReshapeInputOutputMismatchErrorMessage(r,c));let p=r.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*c[g+1]}let m=k.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let b=0;for(let y=0;y<p;++y)b+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(b/f[y]),b%=f[y]}return[m,[o,i],c]}function Pw(e,t,n,r,s,a=!1,o=0){let i=r.length,c=[t[0],e.length/t[0]],l=c[1],d=i>0?s[i-1]+1:0;if(d<0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=t.slice();p[0]=d;let h=p.reduce((v,x)=>v*x,1),f=k.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,b=0,y=s[m];for(;;){let v=0;if(g<i){if(v=s[g],y===v){++g;continue}if(y>=v)throw new Error(_.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(_.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>b&&f.fill(o,b*l,y*l);for(let x=m;x<g;++x){let w=r[x];if(w<0||w>=c[0])throw new Error(_.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,r[x],c[0]));for(let T=0;T<l;T++)f[y*l+T]+=e[w*l+T]}if(a)for(let x=0;x<l;x++)f[y*l+x]/=g-m;if(m=g,++g,b=y+1,y=v,g>i)break}return b<d&&f.fill(o,b*l,d*l),[f,p]}var y5=Sa(e=>Math.sqrt(e)),v5=it(_o,e=>Math.sqrt(e)),x5={kernelName:_o,backendName:"cpu",kernelFunc:v5},YC=Vt((e,t)=>{let n=e-t;return n*n}),w5=nn(Do,YC),k5={kernelName:Do,backendName:"cpu",kernelFunc:w5};function ZC(e,t,n,r){let s=ze(e,t.dtype);for(let a=0;a<s.size;a++){let o=s.indexToLoc(a),i=new Array(o.length);for(let c=0;c<i.length;c++)i[c]=o[c]*n[c]+r[c];s.set(t.get(...i),...o)}return s}var I5=class{constructor(e,t,n,r,s,a){this.separator=k.encodeString(e),this.nGramWidths=t,this.leftPad=k.encodeString(n),this.rightPad=k.encodeString(r),this.padWidth=s,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,r,s,a){for(let o=0;o<s;++o){let i=this.getPadWidth(a),c=Math.max(0,i-o),l=Math.max(0,i-(s-(o+1))),u=a-(c+l),d=t+(c>0?0:o-i),p=0;p+=c*this.leftPad.length;for(let b=0;b<u;++b)p+=e[d+b].length;p+=l*this.rightPad.length,p+=(c+l+u-1)*this.separator.length,n[r+o]=new Uint8Array(p);let f=n[r+o],m=0,g=b=>b.forEach(y=>f[m++]=y);for(let b=0;b<c;++b)g(this.leftPad),g(this.separator);for(let b=0;b<u-1;++b)g(e[d+b]),g(this.separator);if(u>0){g(e[d+u-1]);for(let b=0;b<l;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<l-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,r=t.length;if(r>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let c=1;c<r;++c){let l=t[c]>=i;if(l=l&&t[c]<=n,!l)throw new Error(`Invalid split value ${t[c]}, must be in [${i}, ${n}]`);i=t[c]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=k.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let c=0;c<=s;++c)a[c]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let c=t[i]-t[i-1],l=0;this.nGramWidths.forEach(u=>{l+=this.getNumNGrams(c,u)}),this.preserveShort&&c>0&&l===0&&(l=1),a[i]=a[i-1]+l}let o=new Array(a[s]);for(let i=0;i<s;++i){let c=t[i],l=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,c,o,l,p,u),l+=p}),this.preserveShort&&l===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,c,o,l,p,d)}}return[o,a]}};function JC(e,t,n,r,s,a,o,i){return new I5(n,r,s,a,o,i).compute(e,t)}function S5(e,t,n,r){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)r.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&r.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&r.push(e);return}let s=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(s,a);(!n||o.length!==0)&&r.push(o),s=a+1}}function QC(e,t,n){let r=e.length,s=[],a=0,o=0,i=new Array(r);for(let p=0;p<r;++p){let h=s.length;S5(e[p],t,n,s);let f=s.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let c=k.getArrayFromDType("int32",a*2),l=new Array(a),u=[r,o],d=0;for(let p=0;p<r;++p)for(let h=0;h<i[p];++h)c[d*2]=p,c[d*2+1]=h,l[d]=s[d],++d;return[c,l,u]}function e2(e,t){let n=k.getArrayFromDType("int32",e.length);for(let r=0;r<e.length;++r)n[r]=k.fingerPrint64(e[r]).modulo(t).getLowBitsUnsigned();return n}var t2=Vt((e,t)=>e-t),T5=Ew((e,t,n,r)=>({real:e-n,imag:t-r})),Ow=nn($o,t2,T5),C5={kernelName:$o,backendName:"cpu",kernelFunc:Ow};function n2(e,t){let n=new Array(e.rank);for(let s=0;s<n.length;s++)n[s]=e.shape[s]*t[s];let r=ze(n,e.dtype);for(let s=0;s<r.values.length;++s){let a=r.indexToLoc(s),o=new Array(e.rank);for(let c=0;c<o.length;c++)o[c]=a[c]%e.shape[c];let i=e.locToIndex(o);r.values[s]=e.values[i]}return r}var Ld=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function r2(e,t,n=0,r=e.length-1){for(;r>n;){if(r-n>600){let i=r-n+1,c=t-n+1,l=Math.log(i),u=.5*Math.exp(2*l/3),d=.5*Math.sqrt(l*u*(i-u)/i)*Math.sign(c-i/2),p=Math.max(n,Math.floor(t-c*u/i+d)),h=Math.min(r,Math.floor(t+(i-c)*u/i+d));r2(e,t,p,h)}let s=e[t],a=n,o=r;for(k.swap(e,n,t),Ld(e[r],s)>0&&k.swap(e,n,r);a<o;){for(k.swap(e,a,o),a++,o--;Ld(e[a],s)<0;)a=a+1;for(;Ld(e[o],s)>0;)o=o-1}Ld(e[n],s)===0?k.swap(e,n,o):(o=o+1,k.swap(e,o,r)),o<=t&&(n=o+1),t<=o&&(r=o-1)}}function s2(e,t,n,r,s){let a=t[t.length-1],[o,i]=[e.length/a,a],c=k.getTypedArrayFromDType(n,o*r),l=k.getTypedArrayFromDType("int32",o*r);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,v)=>f[v]={value:y,index:v}),r<f.length&&(r2(f,r),f=f.slice(0,r)),s&&f.sort(Ld);let m=d*r,g=c.subarray(m,m+r),b=l.subarray(m,m+r);for(let y=0;y<r;y++)g[y]=f[y].value,b[y]=f[y].index}let u=t.slice();return u[u.length-1]=r,[ze(u,n,c),ze(u,"int32",l)]}function a2(e,t,n,r){let s=k.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<s;f++)a[0]*=n[f];a[1]=n[s];for(let f=s+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[s]),c=new Gt(a,r,e),l=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[s];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let b=0;b<a[0];b++)for(let y=0;y<a[2];y++)g.push(c.get(b,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,l.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Gt(d,r);l.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let b=0;b<a[2];b++)p.set(c.get(g,f,b),g,m,b)});let h=n.slice();return h[s]=d[1],{outputValues:p.values,outputShape:h,indices:i}}Uh("cpu",()=>new _w,1);var o2=it(Ja,e=>e>=0?e:Math.exp(e)-1),N5={kernelName:Ja,backendName:"cpu",kernelFunc:o2};function i2(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r;ke([s],"leakyRelu");let o=k.sizeFromShape(s.shape),i=n.data.get(s.dataId).values,c=k.getTypedArrayFromDType("float32",o);for(let l=0;l<i.length;l++)c[l]=i[l]<0?a*i[l]:i[l];return n.makeTensorInfo(s.shape,"float32",c)}var _5={kernelName:ao,backendName:"cpu",kernelFunc:i2},E5=Vt((e,t)=>e<0?t*e:e);function c2(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t;ke([r,s],"prelu");let a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,[i,c]=E5(r.shape,s.shape,a,o,"float32");return n.makeTensorInfo(c,"float32",i)}var A5={kernelName:vo,backendName:"cpu",kernelFunc:c2},u2=it(xo,e=>Math.max(0,e)),D5={kernelName:xo,backendName:"cpu",kernelFunc:u2},l2=it(ko,e=>Math.min(Math.max(0,e),6)),$5={kernelName:ko,backendName:"cpu",kernelFunc:l2};function Mw(e,t,n,r,s){if(n==="linear")return fs({inputs:{x:t},backend:e});if(n==="relu")return u2({inputs:{x:t},backend:e});if(n==="elu")return o2({inputs:{x:t},backend:e});if(n==="relu6")return l2({inputs:{x:t},backend:e});if(n==="prelu")return c2({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return i2({inputs:{x:t},backend:e,attrs:{alpha:s}});if(n==="sigmoid")return qC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function _t(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=k.sizeFromShape(s.shape),i=k.inferFromImplicitShape(a,o),c=k.sizeFromShape(i);k.assert(o===c,()=>`The new shape (${i}) has ${c} elements and the old shape (${s.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(s.dataId);let l=n.data.get(s.dataId);if(l.complexTensorInfos!=null){let u=l.complexTensorInfos.real,d=l.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:s.dataId,shape:i,dtype:s.dtype}}var F5={kernelName:Pc,backendName:"cpu",kernelFunc:_t};function d2(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;ke([s,a],"matMul");let c=s.shape.length,l=a.shape.length,u=o?s.shape[c-2]:s.shape[c-1],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-1]:s.shape[c-2],h=i?a.shape[l-2]:a.shape[l-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=k.sizeFromShape(f),b=k.sizeFromShape(m),v=su.assertAndGetBroadcastShape(s.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);k.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let x=o?[g,u,p]:[g,p,u],w=i?[b,h,d]:[b,d,h],T=_t({inputs:{x:s},backend:n,attrs:{shape:x}}),N=_t({inputs:{x:a},backend:n,attrs:{shape:w}}),$=o?T.shape[1]:T.shape[2],D=o?T.shape[2]:T.shape[1],P=i?N.shape[1]:N.shape[2],F=Math.max(g,b),R=n.data.get(T.dataId).values,C=n.data.get(N.dataId).values,L=k.computeStrides(T.shape),G=k.computeStrides(N.shape),[j,K,q]=o?[L[0],1,L[1]]:[L[0],L[1],1],[Z,te,se]=i?[1,G[1],G[0]]:[G[1],1,G[0]],oe=D*P,re=ze([F,D,P],T.dtype),ue=re.values,ne=n.blockSize;for(let he=0;he<F;he++)for(let ye=0;ye<D;ye+=ne)for(let Ce=0;Ce<P;Ce+=ne)for(let Se=0;Se<$;Se+=ne){let _e=Math.min(ye+ne,D),Le=Math.min(Ce+ne,P),Ze=Math.min(Se+ne,$);for(let Ve=ye;Ve<_e;Ve++)for(let Ue=Ce;Ue<Le;Ue++){let ct=0;for(let Je=Se;Je<Ze;Je++){let dt=Math.min(he,g-1)*j,kt=Math.min(he,b-1)*se,Dn=R[dt+Ve*K+Je*q],Qe=C[Je*Z+Ue*te+kt];ct+=Dn*Qe}ue[he*oe+(Ve*P+Ue)]+=ct}}return n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(v,re.dtype,re.values)}var R5={kernelName:Va,backendName:"cpu",kernelFunc:d2};function P5(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:c,transposeB:l,activation:u,leakyreluAlpha:d}=r,p,h,f,m=[];p=d2({inputs:{a:s,b:a},attrs:{transposeA:c,transposeB:l},backend:n}),o&&(h=Md({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=Mw(n,p,u,i,d),m.push(p),p=f);for(let b of m)n.disposeIntermediateTensorInfo(b);return p}var O5={kernelName:Oo,backendName:"cpu",kernelFunc:P5},M5=it(Zi,e=>Math.acos(e)),L5={kernelName:Zi,backendName:"cpu",kernelFunc:M5},B5=it(Ji,e=>Math.acosh(e)),z5={kernelName:Ji,backendName:"cpu",kernelFunc:B5};function W5(e){let{inputs:t,backend:n}=e,r=t;ke(t,"addN");let s=r.map(i=>n.data.get(i.dataId).values),a=ze(r[0].shape,r[0].dtype),o=a.values;for(let i=0;i<r.length;i++){let c=s[i];for(let l=0;l<o.length;l++)o[l]+=c[l]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var V5={kernelName:Ba,backendName:"cpu",kernelFunc:W5};function U5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;ke(s,"all");let i=k.parseAxisParam(a,s.shape),c=i,l=_.getAxesPermutation(c,s.shape.length),u=s;l!=null&&(u=gr({inputs:{x:s},backend:n,attrs:{perm:l}}),c=_.getInnerMostAxes(c.length,s.shape.length)),_.assertAxesAreInnerMostDims("all",c,u.shape.length);let[d,p]=_.computeOutAndReduceShapes(u.shape,c),h=k.sizeFromShape(p),f=k.makeZerosTypedArray(k.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let w=m[y+x];v=v&&w}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let b=_.expandShapeToKeepDim(d,i),y=_t({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var G5={kernelName:Qi,backendName:"cpu",kernelFunc:U5};function H5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;ke(s,"any");let i=k.parseAxisParam(a,s.shape),c=i,l=_.getAxesPermutation(c,s.shape.length),u=s;l!=null&&(u=gr({inputs:{x:s},backend:n,attrs:{perm:l}}),c=_.getInnerMostAxes(c.length,s.shape.length)),_.assertAxesAreInnerMostDims("any",c,u.shape.length);let[d,p]=_.computeOutAndReduceShapes(u.shape,c),h=k.sizeFromShape(p),f=k.makeZerosTypedArray(k.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let w=m[y+x];v=v||w}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let b=_.expandShapeToKeepDim(d,i),y=_t({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var j5={kernelName:ec,backendName:"cpu",kernelFunc:H5};function q5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;ke(s,"argMax");let o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=gr({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMax",o,c.shape.length);let[u,d]=_.computeOutAndReduceShapes(c.shape,o),p=k.sizeFromShape(u),h=k.makeZerosTypedArray(p,"int32"),f=k.sizeFromShape(d),m=n.data.get(c.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let w=m[b+x];w>y&&(y=w,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var K5={kernelName:za,backendName:"cpu",kernelFunc:q5};function X5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;ke(s,"argMin");let o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=gr({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMin",o,c.shape.length);let[u,d]=_.computeOutAndReduceShapes(c.shape,o),p=k.sizeFromShape(u),h=k.makeZerosTypedArray(p,"int32"),f=k.sizeFromShape(d),m=n.data.get(c.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let w=m[b+x];w<y&&(y=w,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var Y5={kernelName:Tl,backendName:"cpu",kernelFunc:X5},Z5=it(tc,e=>Math.asin(e)),J5={kernelName:tc,backendName:"cpu",kernelFunc:Z5},Q5=it(nc,e=>Math.asinh(e)),ej={kernelName:nc,backendName:"cpu",kernelFunc:Q5},tj=it(rc,e=>Math.atan(e)),nj={kernelName:rc,backendName:"cpu",kernelFunc:tj},rj=Vt((e,t)=>Math.atan2(e,t)),sj=nn(ac,rj),aj={kernelName:ac,backendName:"cpu",kernelFunc:sj},oj=it(sc,e=>Math.atanh(e)),ij={kernelName:sc,backendName:"cpu",kernelFunc:oj};function Lw(e,t,n,r,s,a){let o=s.strideHeight,i=s.strideWidth,c=s.dilationHeight,l=s.dilationWidth,u=s.effectiveFilterHeight,d=s.effectiveFilterWidth,p=s.padInfo.top,h=s.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=ze(s.outShape,n),g=m.values,b=s.outShape[1]*s.outShape[2]*s.outShape[3],y=s.outShape[2]*s.outShape[3],v=s.outShape[3];for(let x=0;x<s.batchSize;++x){let w=x*b,T=x*r[0];for(let N=0;N<s.inChannels;++N)for(let $=0;$<s.outHeight;++$){let D=$*o-p,P=Math.max(0,D),F=Math.min(s.inHeight,u+D),R=w+$*y;for(let C=0;C<s.outWidth;++C){let L=C*i-h,G=Math.max(0,L),j=Math.min(s.inWidth,d+L),K=f,q=0,Z=0;for(let se=P;se<F;se+=c){let oe=T+se*r[1];for(let re=G;re<j;re+=l){let ue=oe+re*r[2],ne=e[ue+N];a==="max"&&ne>K?K=ne:a==="avg"&&(q+=ne,Z++)}if(isNaN(K))break}let te=R+C*v+N;g[te]=a==="avg"?q/Z:K}}}return m}function p2(e,t,n,r,s=!1,a=!1){let o=ze(r.outShape,"int32"),i=r.strideHeight,c=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,h=r.padInfo.top,f=r.padInfo.left,m=ze(t,n,e);for(let g=0;g<r.batchSize;++g)for(let b=0;b<r.inChannels;++b)for(let y=0;y<r.outHeight;++y){let v=y*i-h,x=v;for(;x<0;)x+=l;let w=Math.min(r.inHeight,d+v);for(let T=0;T<r.outWidth;++T){let N=T*c-f,$=N;for(;$<0;)$+=u;let D=Math.min(r.inWidth,p+N),P=Number.NEGATIVE_INFINITY,F=-1;for(let R=x;R<w;R+=l){let C=R-v;for(let L=$;L<D;L+=u){let G=L-N,j=m.get(g,R,L,b);j>P&&(P=j,s?F=a?((g*r.inHeight+R)*r.inWidth+L)*r.inChannels+b:(R*r.inWidth+L)*r.inChannels+b:F=C*p+G)}}o.set(F,g,y,T,b)}}return o}function h2(e,t,n,r,s,a){let o=s.strideDepth,i=s.strideHeight,c=s.strideWidth,l=s.dilationDepth,u=s.dilationHeight,d=s.dilationWidth,p=s.effectiveFilterDepth,h=s.effectiveFilterHeight,f=s.effectiveFilterWidth,m=s.padInfo.front,g=s.padInfo.top,b=s.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=ze(s.outShape,n),x=v.values,w=s.outShape[1]*s.outShape[2]*s.outShape[3]*s.outShape[4],T=s.outShape[2]*s.outShape[3]*s.outShape[4],N=s.outShape[3]*s.outShape[4],$=s.outShape[4];for(let D=0;D<s.batchSize;++D){let P=D*w,F=D*r[0];for(let R=0;R<s.inChannels;++R)for(let C=0;C<s.outDepth;++C){let L=C*o-m,G=L;for(;G<0;)G+=l;let j=Math.min(s.inDepth,p+L),K=P+C*T;for(let q=0;q<s.outHeight;++q){let Z=q*i-g,te=Z;for(;te<0;)te+=u;let se=Math.min(s.inHeight,h+Z),oe=K+q*N;for(let re=0;re<s.outWidth;++re){let ue=re*c-b,ne=ue;for(;ne<0;)ne+=d;let he=Math.min(s.inWidth,f+ue),ye=oe+re*$,Ce=y,Se=0,_e=0;for(let Ze=G;Ze<j;Ze+=l){let Ve=F+Ze*r[1];for(let Ue=te;Ue<se;Ue+=u){let ct=Ve+Ue*r[2];for(let Je=ne;Je<he;Je+=d){let dt=ct+Je*r[3],kt=e[dt+R];if(a==="max"&&kt>Ce?Ce=kt:a==="avg"&&(Se+=kt,_e++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Le=ye+R;x[Le]=a==="avg"?Se/_e:Ce}}}}return v}function cj(e,t){let n=ze(t.outShape,"int32"),r=t.strideDepth,s=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,c=t.dilationWidth,l=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*r-p,v=y;for(;v<0;)v+=o;let x=Math.min(t.inDepth,l+y);for(let w=0;w<t.outHeight;++w){let T=w*s-h,N=T;for(;N<0;)N+=i;let $=Math.min(t.inHeight,u+T);for(let D=0;D<t.outWidth;++D){let P=D*a-f,F=P;for(;F<0;)F+=c;let R=Math.min(t.inWidth,d+P),C=Number.NEGATIVE_INFINITY,L=-1;for(let G=v;G<x;G+=o){let j=G-y;for(let K=N;K<$;K+=i){let q=K-T;for(let Z=F;Z<R;Z+=c){let te=Z-P,se=e.get(m,G,K,Z,g);se>=C&&(C=se,L=j*u*d+q*u+te)}}}n.set(L,m,b,w,D,g)}}}return n}function uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;ke(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,l=1;k.assert(_.eitherStridesOrDilationsAreOne(o,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=_.computePool2DInfo(s.shape,a,o,l,i,c),d;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))d=fs({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=k.computeStrides(s.shape),f=Lw(p,s.shape,s.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,s.dtype,f.values)}return d}var lj={kernelName:Wa,backendName:"cpu",kernelFunc:uj};function dj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:l}=r;ke(s,"avgPool3d");let u=_.computePool3DInfo(s.shape,a,o,1,i,c,l),d=n.data.get(s.dataId).values,p=h2(d,s.shape,s.dtype,k.computeStrides(s.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var pj={kernelName:Cl,backendName:"cpu",kernelFunc:dj};function hj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=r;ke([s,a],"avgPool3DGrad");let u=_.computePool3DInfo(a.shape,o,i,1,c,l),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,b=u.dilationDepth,y=u.dilationHeight,v=u.dilationWidth,x=u.effectiveFilterDepth,w=u.effectiveFilterHeight,T=u.effectiveFilterWidth,N=x-1-u.padInfo.front,$=T-1-u.padInfo.left,D=w-1-u.padInfo.top,P=ze(a.shape,"float32"),F=1/(f*m*g),R=n.bufferSync(s);for(let C=0;C<u.batchSize;++C)for(let L=0;L<u.inChannels;++L)for(let G=0;G<u.inDepth;++G)for(let j=0;j<u.inHeight;++j)for(let K=0;K<u.inWidth;++K){let q=G-N,Z=j-D,te=K-$,se=0;for(let oe=0;oe<x;oe+=b){let re=(q+oe)/d;if(!(re<0||re>=u.outDepth||Math.floor(re)!==re))for(let ue=0;ue<w;ue+=y){let ne=(Z+ue)/p;if(!(ne<0||ne>=u.outHeight||Math.floor(ne)!==ne))for(let he=0;he<T;he+=v){let ye=(te+he)/h;if(ye<0||ye>=u.outWidth||Math.floor(ye)!==ye)continue;se+=R.get(C,re,ne,ye,L)}}}P.set(se*F,C,G,j,K,L)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var fj={kernelName:Qp,backendName:"cpu",kernelFunc:hj};function mj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;ke([s,a],"avgPoolGrad");let{filterSize:i,strides:c,pad:l}=r,u=_.computePool2DInfo(o.shape,i,c,1,l),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,b=u.effectiveFilterHeight,y=u.effectiveFilterWidth,v=y-1-u.padInfo.left,x=b-1-u.padInfo.top,w=ze(o.shape,"float32"),T=1/(h*f),N=n.data.get(s.dataId).values,$=ze(s.shape,"float32",N);for(let D=0;D<u.batchSize;++D)for(let P=0;P<u.inChannels;++P)for(let F=0;F<u.inHeight;++F)for(let R=0;R<u.inWidth;++R){let C=F-x,L=R-v,G=0;for(let j=0;j<b;j+=m){let K=(C+j)/d;if(!(K<0||K>=u.outHeight||Math.floor(K)!==K))for(let q=0;q<y;q+=g){let Z=(L+q)/p;if(Z<0||Z>=u.outWidth||Math.floor(Z)!==Z)continue;G+=$.get(D,K,Z,P)}}w.set(G*T,D,F,R,P)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var gj={kernelName:Jp,backendName:"cpu",kernelFunc:mj};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,scale:a,offset:o,mean:i,variance:c}=t;k.assert(i.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([s,i,c,a,o],"batchNorm");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(c.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,b=h.length,y=p.length,v=d.length,x=0,w=0,T=0,N=0;for(let $=0;$<u.length;++$)m[$]=f[x++]+(u[$]-d[w++])*h[T++]/Math.sqrt(p[N++]+l),x>=g&&(x=0),w>=v&&(w=0),T>=b&&(T=0),N>=y&&(N=0);return n.makeTensorInfo(s.shape,s.dtype,m)}var yj={kernelName:no,backendName:"cpu",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;ke([s],"batchToSpaceND");let i=a.reduce((b,y)=>b*y),c=_.getReshaped(s.shape,a,i),l=_.getPermuted(c.length,a.length),u=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(u,o,a.length),h=_t({inputs:{x:s},backend:n,attrs:{shape:c}}),f=gr({inputs:{x:h},backend:n,attrs:{perm:l}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:u}}),g=di({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var xj={kernelName:oc,backendName:"cpu",kernelFunc:vj};function wj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,l=Aw(i,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}var kj={kernelName:eh,backendName:"cpu",kernelFunc:wj};function Ij(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=_.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Sj={kernelName:th,backendName:"cpu",kernelFunc:Ij},Tj=it(Qs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),Cj={kernelName:Qs,backendName:"cpu",kernelFunc:Tj},Nj=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),s=n.data.get(t.dataId),a=s.complexTensorInfos.real,o=s.complexTensorInfos.imag,i=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values;for(let l=0;l<i.length;l++){let u=i[l],d=c[l];r[l]=Math.hypot(u,d)}return n.makeOutput(r,t.shape,"float32")},_j={kernelName:Nl,backendName:"cpu",kernelFunc:Nj};function Cu(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.imag,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var Ej={kernelName:gh,backendName:"cpu",kernelFunc:Cu};function Nu(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=k.parseAxisParam(s,t[0].shape)[0],o=_.computeOutShape(t.map(m=>m.shape),a);if(k.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>k.sizeFromShape(m.shape)>0);if(i.length===1)return fs({inputs:{x:i[0]},backend:n});let c=i.map(m=>m.shape);if(_.assertParamsConsistent(c,a),i[0].dtype==="complex64"){let m=i.map(x=>li({inputs:{input:x},backend:n})),g=i.map(x=>Cu({inputs:{input:x},backend:n})),b=Nu({inputs:m,backend:n,attrs:{axis:a}}),y=Nu({inputs:g,backend:n,attrs:{axis:a}}),v=sr({inputs:{real:b,imag:y},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),v}let l=i.map(m=>{let g=k.sizeFromShape(m.shape.slice(a));return _t({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=l.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=_.computeOutShape(l.map(m=>m.shape),1);let d=l[0].shape[0]===1,p=Dw(u,o,t[0].dtype,d),h=_.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Aj={kernelName:ic,backendName:"cpu",kernelFunc:Nu};function f2(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:c,dilations:l,dimRoundingMode:u}=r;ke([s,a],"conv2d");let d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,a.shape,o,l,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,b=p.padInfo.left,y=p.padInfo.top,v=p.dataFormat==="channelsLast",x=new Gt(p.outShape,s.dtype),w=k.computeStrides(s.shape),T=k.computeStrides(a.shape),N=w[0],$=v?w[1]:w[2],D=v?w[2]:1,P=v?1:w[1],F=x.strides[0],R=v?x.strides[1]:x.strides[2],C=v?x.strides[2]:1,L=v?1:x.strides[1],G=n.data.get(s.dataId).values,j=n.data.get(a.dataId).values,K=x.values;for(let q=0;q<p.batchSize;++q){let Z=q*N,te=q*F;for(let se=0;se<p.outHeight;++se){let oe=te+se*R,re=se*p.strideHeight-y;for(let ue=0;ue<h;++ue){let ne=re+ue*m;if(ne<0||ne>=p.inHeight)continue;let he=ue*T[0],ye=Z+ne*$;for(let Ce=0;Ce<p.outWidth;++Ce){let Se=oe+Ce*C,_e=Ce*p.strideWidth-b;for(let Le=0;Le<f;++Le){let Ze=_e+Le*g;if(Ze<0||Ze>=p.inWidth)continue;let Ve=he+Le*T[1],Ue=ye+Ze*D,ct=Ve;for(let Je=0;Je<p.inChannels;++Je){let dt=G[Ue+Je*P];for(let kt=0;kt<p.outChannels;++kt)K[Se+kt*L]+=dt*j[ct+kt];ct+=p.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,K)}var Dj={kernelName:Ha,backendName:"cpu",kernelFunc:f2};function $j(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:c,dimRoundingMode:l,filterShape:u}=r;ke([s,a],"conv2dBackpropFilter");let d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,u,o,1,i,l,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,b=p.dataFormat==="channelsLast",y=new Gt(p.filterShape,"float32"),v=p.padInfo.left,x=p.padInfo.top,w=n.data.get(s.dataId).values,T=n.data.get(a.dataId).values,N=new Gt(s.shape,s.dtype,w),$=new Gt(a.shape,a.dtype,T);for(let D=0;D<m;++D){let P=Math.max(0,Math.ceil((x-D)/h)),F=Math.min(p.outHeight,(p.inHeight+x-D)/h);for(let R=0;R<g;++R){let C=Math.max(0,Math.ceil((v-R)/f)),L=Math.min(p.outWidth,(p.inWidth+v-R)/f);for(let G=0;G<p.inChannels;++G)for(let j=0;j<p.outChannels;++j){let K=0;for(let q=0;q<p.batchSize;++q)for(let Z=P;Z<F;++Z){let te=D+Z*h-x;for(let se=C;se<L;++se){let oe=R+se*f-v;b?K+=N.get(q,te,oe,G)*$.get(q,Z,se,j):K+=N.get(q,G,te,oe)*$.get(q,j,Z,se)}}y.set(K,D,R,G,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Fj={kernelName:rh,backendName:"cpu",kernelFunc:$j};function Rj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:c,dataFormat:l,dimRoundingMode:u}=r;ke([s,a],"conv2dBackpropInput");let d=k.computeStrides(a.shape),p=k.computeStrides(s.shape),h=_.convertConv2DDataFormat(l),f=_.computeConv2DInfo(o,a.shape,i,1,c,u,!1,h),m=new Gt(f.inShape,"float32"),g=m.values,b=n.data.get(s.dataId).values,y=n.data.get(a.dataId).values,[v,x,w]=d,{batchSize:T,filterHeight:N,filterWidth:$,inChannels:D,inHeight:P,inWidth:F,outChannels:R,outHeight:C,outWidth:L,strideHeight:G,strideWidth:j}=f;h=f.dataFormat;let K=N-1-f.padInfo.top,q=$-1-f.padInfo.left,Z=h==="channelsLast",te=m.strides[0],se=Z?m.strides[1]:m.strides[2],oe=Z?m.strides[2]:1,re=Z?1:m.strides[1],ue=p[0],ne=Z?p[1]:p[2],he=Z?p[2]:1,ye=Z?1:p[1];for(let Ce=0;Ce<T;++Ce)for(let Se=0;Se<D;++Se)for(let _e=0;_e<P;++_e){let Le=_e-K,Ze=Math.max(0,Math.ceil(Le/G)),Ve=Math.min(C,(N+Le)/G);for(let Ue=0;Ue<F;++Ue){let ct=Ue-q,Je=Math.max(0,Math.ceil(ct/j)),dt=Math.min(L,($+ct)/j),kt=0;for(let Qe=Ze;Qe<Ve;++Qe){let jn=Qe*G-Le;for(let sn=Je;sn<dt;++sn){let wr=sn*j-ct,$n=ue*Ce+ne*Qe+he*sn,qn=v*(N-1-jn)+x*($-1-wr)+w*Se;for(let ir=0;ir<R;++ir){let kr=b[$n+ye*ir],cr=y[qn+ir];kt+=kr*cr}}}let Dn=te*Ce+se*_e+oe*Ue+re*Se;g[Dn]=kt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Pj={kernelName:ja,backendName:"cpu",kernelFunc:Rj};function Oj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r;ke([s,a],"conv3d");let l=_.computeConv3DInfo(s.shape,a.shape,o,c,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=l,b=g.front,y=g.left,v=g.top,x=new Gt(l.outShape,s.dtype),w=n.data.get(s.dataId).values,T=n.data.get(a.dataId).values,N=x.values,$=k.computeStrides(s.shape),D=k.computeStrides(a.shape);for(let P=0;P<l.batchSize;++P){let F=P*$[0],R=P*x.strides[0];for(let C=0;C<l.outDepth;++C){let L=R+C*x.strides[1],G=C*l.strideDepth-b;for(let j=0;j<u;++j){let K=G+j*h;if(K<0||K>=l.inDepth)continue;let q=j*D[0],Z=F+K*$[1];for(let te=0;te<l.outHeight;++te){let se=L+te*x.strides[2],oe=te*l.strideHeight-v;for(let re=0;re<d;++re){let ue=oe+re*f;if(ue<0||ue>=l.inHeight)continue;let ne=q+re*D[1],he=Z+ue*$[2];for(let ye=0;ye<l.outWidth;++ye){let Ce=se+ye*l.outChannels,Se=ye*l.strideWidth-y;for(let _e=0;_e<p;++_e){let Le=Se+_e*m;if(Le<0||Le>=l.inWidth)continue;let Ze=ne+_e*D[2],Ve=he+Le*l.inChannels,Ue=Ze;for(let ct=0;ct<l.inChannels;++ct){let Je=w[Ve+ct];for(let dt=0;dt<l.outChannels;++dt)N[Ce+dt]+=Je*T[Ue+dt];Ue+=l.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Mj={kernelName:_l,backendName:"cpu",kernelFunc:Oj};function Lj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:c}=r;ke([s,a],"conv3dBackpropFilterV2");let l=k.computeStrides(s.shape),u=k.computeStrides(a.shape),d=_.computeConv3DInfo(s.shape,c,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Gt(d.filterShape,"float32"),v=y.values,[x,w,T,N]=y.strides,$=n.data.get(a.dataId).values,[D,P,F,R]=u,C=n.data.get(s.dataId).values,[L,G,j,K]=l,q=d.padInfo.front,Z=d.padInfo.left,te=d.padInfo.top;for(let se=0;se<m;++se){let oe=Math.max(0,Math.ceil((q-se)/p)),re=Math.min(d.outDepth,(d.inDepth+q-se)/p),ue=se*x;for(let ne=0;ne<g;++ne){let he=Math.max(0,Math.ceil((te-ne)/h)),ye=Math.min(d.outHeight,(d.inHeight+te-ne)/h),Ce=ne*w+ue;for(let Se=0;Se<b;++Se){let _e=Math.max(0,Math.ceil((Z-Se)/f)),Le=Math.min(d.outWidth,(d.inWidth+Z-Se)/f),Ze=Se*T+Ce;for(let Ve=0;Ve<d.inChannels;++Ve){let Ue=Ve*N+Ze;for(let ct=0;ct<d.outChannels;++ct){let Je=0;for(let dt=0;dt<d.batchSize;++dt){let kt=dt*L,Dn=dt*D;for(let Qe=oe;Qe<re;++Qe){let sn=(se+Qe*p-q)*G+kt,wr=Qe*P+Dn;for(let $n=he;$n<ye;++$n){let ir=(ne+$n*h-te)*j+sn,kr=$n*F+wr;for(let cr=_e;cr<Le;++cr){let Ws=(Se+cr*f-Z)*K+ir,pn=cr*R+kr;Je+=C[Ws+Ve]*$[pn+ct]}}}}v[Ue+ct]=Je}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Bj={kernelName:sh,backendName:"cpu",kernelFunc:Lj};function zj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:c}=r;ke([s],"conv3dBackpropInputV2");let l=k.computeStrides(s.shape),u=k.computeStrides(a.shape),d=_.computeConv3DInfo(c,a.shape,i,1,o),p=new Gt(d.inShape,"float32"),h=p.values,[f,m,g,b]=p.strides,y=n.data.get(s.dataId).values,[v,x,w,T]=l,N=n.data.get(a.dataId).values,[$,D,P,F]=u,{batchSize:R,filterDepth:C,filterHeight:L,filterWidth:G,inChannels:j,inDepth:K,inHeight:q,inWidth:Z,outChannels:te,outDepth:se,outHeight:oe,outWidth:re,strideDepth:ue,strideHeight:ne,strideWidth:he}=d,ye=C-1-d.padInfo.front,Ce=L-1-d.padInfo.top,Se=G-1-d.padInfo.left;for(let _e=0;_e<R;++_e)for(let Le=0;Le<j;++Le)for(let Ze=0;Ze<K;++Ze){let Ve=Ze-ye,Ue=Math.max(0,Math.ceil(Ve/ue)),ct=Math.min(se,(C+Ve)/ue);for(let Je=0;Je<q;++Je){let dt=Je-Ce,kt=Math.max(0,Math.ceil(dt/ne)),Dn=Math.min(oe,(L+dt)/ne);for(let Qe=0;Qe<Z;++Qe){let jn=Qe-Se,sn=Math.max(0,Math.ceil(jn/he)),wr=Math.min(re,(G+jn)/he),$n=0;for(let qn=Ue;qn<ct;++qn){let ir=qn*ue-Ve;for(let kr=kt;kr<Dn;++kr){let cr=kr*ne-dt;for(let Fn=sn;Fn<wr;++Fn){let Ws=Fn*he-jn,pn=v*_e+x*qn+w*kr+T*Fn,Vs=$*(C-1-ir)+D*(L-1-cr)+P*(G-1-Ws)+F*Le;for(let ur=0;ur<te;++ur){let cl=y[pn+ur],ul=N[Vs+ur];$n+=cl*ul}}}}h[f*_e+m*Ze+g*Je+b*Qe+Le]=$n}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var Wj={kernelName:ah,backendName:"cpu",kernelFunc:zj},Vj=it(qa,e=>Math.cos(e)),Uj={kernelName:qa,backendName:"cpu",kernelFunc:Vj},Gj=it(Ka,e=>Math.cosh(e)),Hj={kernelName:Ka,backendName:"cpu",kernelFunc:Gj};function jj(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:c,extrapolationValue:l}=r,[u,d,p,h]=s.shape,f=a.shape[0],[m,g]=i,b=ze([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,v=n.data.get(o.dataId).values,x=n.data.get(s.dataId).values,w=k.computeStrides(s.shape),T=k.computeStrides(b.shape);for(let N=0;N<f;N++){let $=N*4,D=y[$],P=y[$+1],F=y[$+2],R=y[$+3],C=v[N];if(C>=u)continue;let L=m>1?(F-D)*(d-1)/(m-1):0,G=g>1?(R-P)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let K=m>1?D*(d-1)+j*L:.5*(D+F)*(d-1);if(K<0||K>d-1){for(let q=0;q<g;q++)for(let Z=0;Z<h;Z++){let te=Z+q*T[2]+j*T[1]+N*T[0];b.values[te]=l}continue}if(c==="bilinear"){let q=Math.floor(K),Z=Math.ceil(K),te=K-q;for(let se=0;se<g;se++){let oe=g>1?P*(p-1)+se*G:.5*(P+R)*(p-1);if(oe<0||oe>p-1){for(let he=0;he<h;he++){let ye=he+se*T[2]+j*T[1]+N*T[0];b.values[ye]=l}continue}let re=Math.floor(oe),ue=Math.ceil(oe),ne=oe-re;for(let he=0;he<h;he++){let ye=he+re*w[2]+q*w[1]+C*w[0],Ce=x[ye];ye=he+ue*w[2]+q*w[1]+C*w[0];let Se=x[ye];ye=he+re*w[2]+Z*w[1]+C*w[0];let _e=x[ye];ye=he+ue*w[2]+Z*w[1]+C*w[0];let Le=x[ye],Ze=Ce+(Se-Ce)*ne,Ve=_e+(Le-_e)*ne;ye=he+se*T[2]+j*T[1]+N*T[0],b.values[ye]=Ze+(Ve-Ze)*te}}}else for(let q=0;q<g;++q){let Z=g>1?P*(p-1)+q*G:.5*(P+R)*(p-1);if(Z<0||Z>p-1){for(let oe=0;oe<h;oe++){let re=oe+q*T[2]+j*T[1]+N*T[0];b.values[re]=l}continue}let te=Math.round(Z),se=Math.round(K);for(let oe=0;oe<h;oe++){let re=oe+te*w[2]+se*w[1]+C*w[0],ue=oe+q*T[2]+j*T[1]+N*T[0];b.values[ue]=x[re]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var qj={kernelName:cc,backendName:"cpu",kernelFunc:jj};function Kj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r;ke(s,"cumsum");let c=_.getAxesPermutation([a],s.shape.length),l=s;c!=null&&(l=gr({inputs:{x:s},backend:n,attrs:{perm:c}}));let u=_.getInnerMostAxes(1,s.shape.length)[0];if(u!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${u}`);let d=Tr(l.dtype,"int32"),p=k.makeZerosTypedArray(k.sizeFromShape(l.shape),d),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=i?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)p[v]=o?0:h[v];else{let x=m(b,y-1);p[v]=o?h[x]+p[x]:h[v]+p[x]}}let g=n.makeTensorInfo(l.shape,d,p);if(c!=null){let b=_.getUndoAxesPermutation(c),y=gr({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var Xj={kernelName:Xa,backendName:"cpu",kernelFunc:Kj};function Yj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let c=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,u=Aw(c,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(s.shape.length===2){let c=n.bufferSync(s),l=n.bufferSync(a),u=SC(c,l,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var Zj={kernelName:oh,backendName:"cpu",kernelFunc:Yj};function Jj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r;k.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=s.shape[0],c=s.shape[1],l=s.shape[2],u=s.shape[3],d=c*a,p=l*a,h=u/(a*a),f=n.data.get(s.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let b=0;b<i;++b)for(let y=0;y<d;++y){let v=Math.floor(y/a),x=y%a;for(let w=0;w<p;++w){let T=Math.floor(w/a),N=w%a,$=(x*a+N)*h;for(let D=0;D<h;++D){let F=D+$+u*(T+l*(v+c*b));m[g++]=f[F]}}}return n.makeTensorInfo([i,d,p,h],s.dtype,m)}var Qj={kernelName:uc,backendName:"cpu",kernelFunc:Jj};function m2(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c,dimRoundingMode:l}=r;ke([s,a],"depthwiseConv2DNative");let u=k.computeStrides(s.shape),d=k.computeStrides(a.shape),p=c;p==null&&(p=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=_.computeConv2DInfo(s.shape,a.shape,o,p,i,l,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:y}=h,v=y.left,x=y.top,w=h.outChannels/h.inChannels,T=new Gt(h.outShape,s.dtype),N=n.data.get(s.dataId).values,$=n.data.get(a.dataId).values,D=T.values;for(let P=0;P<h.batchSize;++P){let F=P*u[0],R=P*T.strides[0];for(let C=0;C<h.outHeight;++C){let L=R+C*T.strides[1],G=C*h.strideHeight-x;for(let j=0;j<f;++j){let K=G+j*g;if(K<0||K>=h.inHeight)continue;let q=j*d[0],Z=F+K*u[1];for(let te=0;te<h.outWidth;++te){let se=L+te*T.strides[2],oe=te*h.strideWidth-v;for(let re=0;re<m;++re){let ue=oe+re*b;if(ue<0||ue>=h.inWidth)continue;let ne=q+re*d[1],he=Z+ue*h.inChannels,ye=se,Ce=ne;for(let Se=0;Se<h.inChannels;++Se){let _e=N[he+Se];for(let Le=0;Le<w;++Le)D[ye+Le]+=_e*$[Ce+Le];ye+=w,Ce+=w}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var eq={kernelName:Ya,backendName:"cpu",kernelFunc:m2};function tq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:l,filterShape:u}=r;ke([s,a],"depthwiseConv2dNativeBackpropFilter");let d=_.computeConv2DInfo(s.shape,u,o,i,c,l,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Gt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,v=d.outChannels/d.inChannels,x=n.data.get(s.dataId).values,w=new Gt(s.shape,s.dtype,x),T=n.data.get(a.dataId).values,N=new Gt(a.shape,a.dtype,T);for(let $=0;$<f;++$){let D=Math.max(0,Math.ceil((y-$)/p)),P=Math.min(d.outHeight,(d.inHeight+y-$)/p);for(let F=0;F<m;++F){let R=Math.max(0,Math.ceil((b-F)/h)),C=Math.min(d.outWidth,(d.inWidth+b-F)/h);for(let L=0;L<d.outChannels;++L){let G=Math.trunc(L/v),j=L%v,K=0;for(let q=0;q<d.batchSize;++q)for(let Z=D;Z<P;++Z){let te=$+Z*p-y;for(let se=R;se<C;++se){let oe=F+se*h-b;K+=w.get(q,te,oe,G)*N.get(q,Z,se,L)}}g.set(K,$,F,G,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var nq={kernelName:ih,backendName:"cpu",kernelFunc:tq};function rq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:l,inputShape:u}=r;ke([s,a],"depthwiseConv2DNativeBackpropInput");let d=k.computeStrides(s.shape),p=k.computeStrides(a.shape),h=_.computeConv2DInfo(u,a.shape,o,i,c,l,!0),f=new Gt(h.inShape,"float32"),m=f.values,[g,b,y]=f.strides,v=n.data.get(s.dataId).values,[x,w,T]=d,N=n.data.get(a.dataId).values,[$,D,P]=p,{batchSize:F,filterHeight:R,filterWidth:C,inChannels:L,inHeight:G,inWidth:j,outChannels:K,outHeight:q,outWidth:Z,strideHeight:te,strideWidth:se}=h,oe=R-1-h.padInfo.top,re=C-1-h.padInfo.left,ue=K/L;for(let ne=0;ne<F;++ne)for(let he=0;he<L;++he)for(let ye=0;ye<G;++ye){let Ce=ye-oe,Se=Math.max(0,Math.ceil(Ce/te)),_e=Math.min(q,(R+Ce)/te);for(let Le=0;Le<j;++Le){let Ze=Le-re,Ve=Math.max(0,Math.ceil(Ze/se)),Ue=Math.min(Z,(C+Ze)/se),ct=0;for(let Je=Se;Je<_e;++Je){let dt=Je*te-Ce;for(let kt=Ve;kt<Ue;++kt){let Dn=kt*se-Ze,Qe=x*ne+w*Je+T*kt,jn=$*(R-1-dt)+D*(C-1-Dn)+P*he;for(let sn=0;sn<ue;++sn){let wr=he*ue+sn,$n=v[Qe+wr],qn=N[jn+sn];ct+=$n*qn}}}m[g*ne+b*ye+y*Le+he]=ct}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var sq={kernelName:ch,backendName:"cpu",kernelFunc:rq};function aq(e){let{inputs:t,backend:n}=e,{x:r}=t,s=k.sizeFromShape(r.shape),a=n.data.get(r.dataId).values,o=ze([s,s],r.dtype),i=o.values;for(let l=0;l<a.length;l++)i[l*s+l]=a[l];let c=[...r.shape,...r.shape];return n.makeTensorInfo(c,o.dtype,o.values)}var oq={kernelName:uh,backendName:"cpu",kernelFunc:aq},iq={kernelName:El,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s}=e,{strides:a,pad:o,dilations:i}=n,c=t,l=c.data.get(r.dataId).values,u=r.shape.length,d=c.data.get(s.dataId).values,p=s.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:y,padInfo:v,strideHeight:x,strideWidth:w,filterHeight:T,filterWidth:N,dilationHeight:$,dilationWidth:D,outShape:P}=_.computeDilation2DInfo(r.shape,s.shape,a,o,"NHWC",i),F=k.sizeFromShape(P),R=P.length,C=k.getArrayFromDType(r.dtype,F);for(let G=0;G<h;++G)for(let j=0;j<b;++j){let K=j*x-v.top;for(let q=0;q<y;++q){let Z=q*w-v.left;for(let te=0;te<g;++te){let se=Number.MIN_SAFE_INTEGER;for(let re=0;re<T;++re){let ue=K+re*$;if(ue>=0&&ue<f)for(let ne=0;ne<N;++ne){let he=Z+ne*D;if(he>=0&&he<m){let ye=k.locToIndex([G,ue,he,te],u,k.computeStrides(r.shape)),Ce=k.locToIndex([re,ne,te],p,k.computeStrides(s.shape)),Se=l[ye]+d[Ce];Se>se&&(se=Se)}}}let oe=k.locToIndex([G,j,q,te],R,k.computeStrides(P));C[oe]=se}}}return{dataId:c.write(k.toTypedArray(C,r.dtype),P,r.dtype),shape:P,dtype:r.dtype}}},cq={kernelName:dh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:c}=n,l=t,u=k.toNestedArray(r.shape,l.data.get(r.dataId).values),d=k.toNestedArray(s.shape,l.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:w,filterWidth:T,dilationHeight:N,dilationWidth:$,outShape:D}=_.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",c);k.assert(a.rank===D.length,()=>`Error in ${dh}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let P=k.toNestedArray(D,l.data.get(a.dataId).values),F=k.makeZerosNestedTypedArray(s.shape,s.dtype);for(let C=0;C<p;++C)for(let L=0;L<g;++L){let G=L*v-y.top;for(let j=0;j<b;++j){let K=j*x-y.left;for(let q=0;q<m;++q){let Z=Number.MIN_SAFE_INTEGER,te=0,se=0;for(let oe=0;oe<w;++oe){let re=G+oe*N;if(re>=0&&re<h)for(let ue=0;ue<T;++ue){let ne=K+ue*$;if(ne>=0&&ne<f){let he=u[C][re][ne][q]+d[oe][ue][q];he>Z&&(Z=he,te=oe,se=ue)}}}F[te][se][q]+=P[C][L][j][q]}}}return{dataId:l.write(k.toTypedArray(F,r.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},uq={kernelName:lh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:c}=n,l=t,u=k.toNestedArray(r.shape,l.data.get(r.dataId).values),d=k.toNestedArray(s.shape,l.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:w,filterWidth:T,dilationHeight:N,dilationWidth:$,outShape:D}=_.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",c);k.assert(a.rank===D.length,()=>`Error in ${lh}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let P=k.toNestedArray(D,l.data.get(a.dataId).values),F=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let C=0;C<p;++C)for(let L=0;L<g;++L){let G=L*v-y.top;for(let j=0;j<b;++j){let K=j*x-y.left;for(let q=0;q<m;++q){let Z=Number.MIN_SAFE_INTEGER,te=G<0?0:G,se=K<0?0:K;for(let oe=0;oe<w;++oe){let re=G+oe*N;if(re>=0&&re<h)for(let ue=0;ue<T;++ue){let ne=K+ue*$;if(ne>=0&&ne<f){let he=u[C][re][ne][q]+d[oe][ue][q];he>Z&&(Z=he,te=re,se=ne)}}}F[C][te][se][q]+=P[C][L][j][q]}}}return{dataId:l.write(k.toTypedArray(F,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function Bd(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;ke(s,"sum");let i;s.dtype==="bool"?i=Ia({inputs:{x:s},backend:n,attrs:{dtype:"int32"}}):i=fs({inputs:{x:s},backend:n});let c=i.shape.length,l=k.parseAxisParam(a,i.shape),u=_.getAxesPermutation(l,c),d=l,p=i;u!=null&&(p=gr({inputs:{x:i},backend:n,attrs:{perm:u}}),d=_.getInnerMostAxes(d.length,c)),_.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=_.computeOutAndReduceShapes(p.shape,d),m=_.upcastType(p.dtype,"int32"),g=dm(n,h,m),b=k.sizeFromShape(f),y=n.data.get(g.dataId).values,v=n.data.get(p.dataId).values;for(let x=0;x<y.length;++x){let w=x*b,T=0;for(let N=0;N<b;++N)T+=v[w+N];y[x]=T}if(o){let x=_.expandShapeToKeepDim(g.shape,l),w=g;g=_t({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var lq={kernelName:Eo,backendName:"cpu",kernelFunc:Bd};function dq(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:c}=_.decodeEinsumEquation(s,a.length);_.checkEinsumDimSizes(o.length,c,a);let{path:l,steps:u}=_.getEinsumComputePath(i,c),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:b,expandDims:y}=_.getEinsumPermutation(h,c[g]),v;_.isIdentityPermutation(b)?v=a[g]:(v=gr({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let w=0;w<y.length;++w)x.splice(y[w],0,1);k.arraysEqual(v.shape,x)||(v=_t({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=pm({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(l[m]>=0&&(p=Bd({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var pq={kernelName:ph,backendName:"cpu",kernelFunc:dq};function hq(e){let{inputs:t,backend:n}=e,{dy:r,y:s}=t;ke([r,s],"eluGrad");let a=new Float32Array(k.sizeFromShape(s.shape)),o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values;for(let c=0;c<o.length;++c){let l=o[c];l>=1?a[c]=i[c]:a[c]=i[c]*(l+1)}return n.makeTensorInfo(s.shape,"float32",a)}var fq={kernelName:hh,backendName:"cpu",kernelFunc:hq},mq=_.ERF_P,gq=_.ERF_A1,bq=_.ERF_A2,yq=_.ERF_A3,vq=_.ERF_A4,xq=_.ERF_A5,wq=it(lc,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+mq*n);return t*(1-((((xq*r+vq)*r+yq)*r+bq)*r+gq)*r*Math.exp(-n*n))}),kq={kernelName:lc,backendName:"cpu",kernelFunc:wq};function fm(e){let{inputs:t,backend:n,attrs:r}=e,{input:s}=t,{dim:a}=r,o=s.shape.length,i=s.shape.slice(),c=a;return a<0&&(k.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+a+1),i.splice(c,0,1),_t({inputs:{x:s},backend:n,attrs:{shape:i}})}var Iq={kernelName:pc,backendName:"cpu",kernelFunc:fm},Sq=Vt((e,t)=>e/t),Bw=nn(Za,Sq),zw={kernelName:Za,backendName:"cpu",kernelFunc:Bw};function g2(e,t,n){let r=e.shape,s=r[0],a=r[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,c=o.complexTensorInfos.imag,l=[s,a],u=k.sizeFromShape(l),d=k.getTypedArrayFromDType("float32",u),p=k.getTypedArrayFromDType("float32",u);for(let g=0;g<s;g++){let b=di({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=di({inputs:{x:c},backend:n,attrs:{begin:[g,0],size:[1,a]}}),v=sr({inputs:{real:b,imag:y},backend:n}),{real:x,imag:w}=Tq(v,t,n),T=_.mergeRealAndImagArrays(x,w);for(let N=0;N<a;N++){let $=_.getComplexWithIndex(T,N);d[g*a+N]=$.real,p[g*a+N]=$.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(l,"float32",d),f=n.makeTensorInfo(l,"float32",p),m=sr({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Tq(e,t,n){let r=k.sizeFromShape(e.shape),s=n.data.get(e.dataId),a=n.data.get(s.complexTensorInfos.real.dataId).values,o=n.data.get(s.complexTensorInfos.imag.dataId).values;if(Cq(r)){let i=Ww(a,o,r,t,n),c=[e.shape[0],e.shape[1]];if(t){let l=n.makeTensorInfo(c,"float32",i.real),u=n.makeTensorInfo(c,"float32",i.imag),d=n.makeTensorInfo([],"float32",k.createScalarValue(r,"float32")),p=fs({inputs:{x:d},backend:n}),h=zw.kernelFunc({inputs:{a:l,b:d},backend:n}),f=zw.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=_.mergeRealAndImagArrays(a,o),c=Nq(i,r,t);return _.splitRealAndImagArrays(c)}}function Cq(e){return(e&e-1)===0}function Ww(e,t,n,r,s){if(n===1)return{real:e,imag:t};let a=_.mergeRealAndImagArrays(e,t),o=n/2,i=_.complexWithEvenIndex(a),c=i.real,l=i.imag,u=[c.length],d=s.makeTensorInfo(u,"float32",c),p=s.makeTensorInfo(u,"float32",l),h=sr({inputs:{real:d,imag:p},backend:s}),f=_.complexWithOddIndex(a),m=f.real,g=f.imag,b=[m.length],y=s.makeTensorInfo(b,"float32",m),v=s.makeTensorInfo(b,"float32",g),x=sr({inputs:{real:y,imag:v},backend:s}),w=Ww(c,l,o,r,s),T=w.real,N=w.imag,$=[T.length],D=s.makeTensorInfo($,"float32",T),P=s.makeTensorInfo($,"float32",N),F=sr({inputs:{real:D,imag:P},backend:s}),R=Ww(m,g,o,r,s),C=R.real,L=R.imag,G=[C.length],j=s.makeTensorInfo(G,"float32",C),K=s.makeTensorInfo(G,"float32",L),q=sr({inputs:{real:j,imag:K},backend:s}),Z=_.exponents(n,r),te=[Z.real.length],se=s.makeTensorInfo(te,"float32",Z.real),oe=s.makeTensorInfo(te,"float32",Z.imag),re=sr({inputs:{real:se,imag:oe},backend:s}),ue=pm({inputs:{a:re,b:q},backend:s}),ne=Md({inputs:{a:F,b:ue},backend:s}),he=Ow({inputs:{a:F,b:ue},backend:s}),ye=li({inputs:{input:ne},backend:s}),Ce=li({inputs:{input:he},backend:s}),Se=Cu({inputs:{input:ne},backend:s}),_e=Cu({inputs:{input:he},backend:s}),Le=Nu({inputs:[ye,Ce],backend:s,attrs:{axis:0}}),Ze=Nu({inputs:[Se,_e],backend:s,attrs:{axis:0}}),Ve=s.data.get(Le.dataId).values,Ue=s.data.get(Ze.dataId).values;return s.disposeIntermediateTensorInfo(d),s.disposeIntermediateTensorInfo(p),s.disposeIntermediateTensorInfo(h),s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(v),s.disposeIntermediateTensorInfo(x),s.disposeIntermediateTensorInfo(D),s.disposeIntermediateTensorInfo(P),s.disposeIntermediateTensorInfo(F),s.disposeIntermediateTensorInfo(j),s.disposeIntermediateTensorInfo(K),s.disposeIntermediateTensorInfo(q),s.disposeIntermediateTensorInfo(se),s.disposeIntermediateTensorInfo(oe),s.disposeIntermediateTensorInfo(re),s.disposeIntermediateTensorInfo(ue),s.disposeIntermediateTensorInfo(ne),s.disposeIntermediateTensorInfo(he),s.disposeIntermediateTensorInfo(ye),s.disposeIntermediateTensorInfo(Se),s.disposeIntermediateTensorInfo(Ce),s.disposeIntermediateTensorInfo(_e),s.disposeIntermediateTensorInfo(Le),s.disposeIntermediateTensorInfo(Ze),{real:Ve,imag:Ue}}function Nq(e,t,n){let r=new Float32Array(t*2);for(let s=0;s<t;s++){let a=0,o=0;for(let i=0;i<t;i++){let c=_.exponent(s*i,t,n),l=_.getComplexWithIndex(e,i);a+=l.real*c.real-l.imag*c.imag,o+=l.real*c.imag+l.imag*c.real}n&&(a/=t,o/=t),_.assignToTypedArray(r,a,o,s)}return r}function _q(e){let{inputs:t,backend:n}=e,{input:r}=t,s=k.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=_t({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),c=g2(i,!1,n),l=_t({inputs:{x:c},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),l}var Eq={kernelName:fh,backendName:"cpu",kernelFunc:_q};function Vw(e){let{backend:t,attrs:n}=e,{shape:r,value:s,dtype:a}=n,o=a||k.inferDtype(s),i=k.getArrayFromDType(o,k.sizeFromShape(r));return Dq(i,s,o),t.makeTensorInfo(r,o,i)}var Aq={kernelName:Al,backendName:"cpu",kernelFunc:Vw};function Dq(e,t,n){e.fill(t)}var $q={kernelName:fc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,s=n,a=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[o,i,c,l]=r.shape,u=s.data.get(r.dataId).values;for(let p=0;p<o;p++){let h=p*c*i*l;for(let f=0;f<i;f++){let m=f*(c*l);for(let g=0;g<c;g++){let b=g*l;for(let y=0;y<l;y++){let v=Math.round(c-g-1),x=h+m+b+y,w=u[x];if(v>=0&&v<c){let T=v*l,N=h+m+T+y;w=u[N]}a[x]=w}}}}return{dataId:s.write(a,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Fq=Vt((e,t)=>Math.floor(e/t)),Rq=nn(to,Fq,null,"int32"),Pq={kernelName:to,backendName:"cpu",kernelFunc:Rq};function Oq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=f2({inputs:{x:s,filter:a},backend:n,attrs:{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Md({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Mw(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Mq={kernelName:Mo,backendName:"cpu",kernelFunc:Oq};function Lq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=m2({inputs:{x:s,filter:a},backend:n,attrs:{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Md({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Mw(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Bq={kernelName:Lo,backendName:"cpu",kernelFunc:Lq};function zq(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=k.sizeFromShape(r.shape),o=s.shape,i=o[o.length-1],[c,l,u,d]=_.prepareAndValidate(r,s);if(l===0)return n.makeTensorInfo(c,r.dtype,[]);let p=n.data.get(s.dataId).values,h=n.bufferSync(r),f=$C(p,h,r.dtype,l,i,u,d,r.shape,a);return n.makeTensorInfo(c,r.dtype,f.values)}var Wq={kernelName:gc,backendName:"cpu",kernelFunc:zq};function Vq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r;ke([s,a],"gatherV2");let c=k.parseAxisParam(o,s.shape)[0],l=n.data.get(a.dataId).values,u=s.shape[c];for(let x=0;x<l.length;++x){let w=l[x];k.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=k.sizeFromShape(a.shape),h=_.segment_util.collectGatherOpShapeInfo(s,a,c,d),f=_t({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=_t({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],b=n.bufferSync(m),y=n.bufferSync(f),v=FC(y,b,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,v.dtype,v.values)}var Uq={kernelName:mc,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n}=e,{input:r}=t,s=k.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=_t({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),c=g2(i,!0,n),l=_t({inputs:{x:c},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),l}var Hq={kernelName:mh,backendName:"cpu",kernelFunc:Gq},jq=it(yc,e=>Number.isFinite(e)?1:0,"bool"),qq={kernelName:yc,backendName:"cpu",kernelFunc:jq},Kq=it(vc,e=>Math.abs(e)===1/0?1:0,"bool"),Xq={kernelName:vc,backendName:"cpu",kernelFunc:Kq},Yq=it(xc,e=>Number.isNaN(e)?1:0,"bool"),Zq={kernelName:xc,backendName:"cpu",kernelFunc:Yq};function Jq(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=LC(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var Qq={kernelName:bh,backendName:"cpu",kernelFunc:Jq},e8=it(Ic,e=>Math.log1p(e)),t8={kernelName:Ic,backendName:"cpu",kernelFunc:e8},n8=Vt((e,t)=>e&&t),r8=nn(Sc,n8,null,"bool"),s8={kernelName:Sc,backendName:"cpu",kernelFunc:r8},a8=it(Dl,e=>e?0:1,"bool"),o8={kernelName:Dl,backendName:"cpu",kernelFunc:a8},i8=Vt((e,t)=>e||t),c8=nn($l,i8,null,"bool"),u8={kernelName:$l,backendName:"cpu",kernelFunc:c8};function l8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:c}=r;ke(s,"LRN");let l=s.shape[3],u=l-1,d=n.data.get(s.dataId).values,p=k.sizeFromShape(s.shape),h=new Float32Array(p);function f(m){let g=m%l,b=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,u),v=0;for(;b<=y;b++){let x=d[b];v+=x*x}return v}for(let m=0;m<p;m++){let g=f(m),b=d[m]*Math.pow(o+i*g,-c);h[m]=b}return n.makeTensorInfo(s.shape,s.dtype,h)}var d8={kernelName:Fl,backendName:"cpu",kernelFunc:l8};function p8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:c,alpha:l,beta:u}=r;ke(o,"LRNGrad");let d=k.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(s.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let v=y%p,x=y-v+Math.max(0,v-i),w=y-v+Math.min(p,v+i+1),T=0;for(let N=x;N<w;N++)T+=Math.pow(f[N],2);T=l*T+c;for(let N=x;N<w;N++){let $=-2*l*u*f[N]*m[y]/T;y===N&&($+=Math.pow(T,-u)),$*=h[y],g[N]+=$}}return n.makeTensorInfo(o.shape,s.dtype,g)}var h8={kernelName:yh,backendName:"cpu",kernelFunc:p8};function b2(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=n,c=s.shape,l=c.length,u=k.parseAxisParam(a,c),d=u,p=_.getAxesPermutation(d,l),h=i.data.get(s.dataId).values;if(p!=null){let x=new Array(l);for(let w=0;w<x.length;w++)x[w]=c[p[w]];h=Fw(h,c,s.dtype,p,x),d=_.getInnerMostAxes(d.length,l),c=x}ke(s,"max"),_.assertAxesAreInnerMostDims("max",d,l);let[f,m]=_.computeOutAndReduceShapes(c,d),g=k.sizeFromShape(m),b=zC(h,g,f,s.dtype),y=i.write(b,f,s.dtype),v=f;return o&&(v=_.expandShapeToKeepDim(f,u)),{dataId:y,shape:v,dtype:s.dtype}}var f8={kernelName:io,backendName:"cpu",kernelFunc:b2};function m8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;ke(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,l=1;k.assert(_.eitherStridesOrDilationsAreOne(o,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=_.computePool2DInfo(s.shape,a,o,l,i,c),d;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))d=fs({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=k.computeStrides(s.shape),f=Lw(p,s.shape,s.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,s.dtype,f.values)}return d}var g8={kernelName:uo,backendName:"cpu",kernelFunc:m8};function b8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:l}=r;ke(s,"maxPool3d");let u=_.computePool3DInfo(s.shape,a,o,1,i,c,l),d=n.data.get(s.dataId).values,p=h2(d,s.shape,s.dtype,k.computeStrides(s.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var y8={kernelName:Rl,backendName:"cpu",kernelFunc:b8};function v8(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=r;ke([s,a],"maxPool3DGrad");let u=_.computePool3DInfo(a.shape,o,i,1,c,l),d=n.bufferSync(a),p=cj(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,b=u.dilationHeight,y=u.dilationWidth,v=u.effectiveFilterDepth,x=u.effectiveFilterHeight,w=u.effectiveFilterWidth,T=v-1-u.padInfo.front,N=w-1-u.padInfo.left,$=x-1-u.padInfo.top,D=ze(a.shape,"float32"),P=n.bufferSync(s);for(let F=0;F<u.batchSize;++F)for(let R=0;R<u.inChannels;++R)for(let C=0;C<u.inDepth;++C)for(let L=0;L<u.inHeight;++L)for(let G=0;G<u.inWidth;++G){let j=C-T,K=L-$,q=G-N,Z=0;for(let te=0;te<v;te+=g){let se=(j+te)/h;if(!(se<0||se>=u.outDepth||Math.floor(se)!==se))for(let oe=0;oe<x;oe+=b){let re=(K+oe)/f;if(!(re<0||re>=u.outHeight||Math.floor(re)!==re))for(let ue=0;ue<w;ue+=y){let ne=(q+ue)/m;if(ne<0||ne>=u.outWidth||Math.floor(ne)!==ne)continue;let he=v*x*w-1-p.get(F,se,re,ne,R),ye=te*x*w+oe*w+ue,Ce=he===ye?1:0;if(Ce===0)continue;Z+=P.get(F,se,re,ne,R)*Ce}}}D.set(Z,F,C,L,G,R)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var x8={kernelName:xh,backendName:"cpu",kernelFunc:v8};function w8(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;ke([a,o],"maxPoolGrad");let{filterSize:c,strides:l,pad:u,dimRoundingMode:d}=r,p=_.computePool2DInfo(i.shape,c,l,1,u,d),h=n.data.get(i.dataId).values,f=ze(p.outShape,i.dtype,p2(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,b=p.dilationHeight,y=p.dilationWidth,v=p.effectiveFilterHeight,x=p.effectiveFilterWidth,w=x-1-p.padInfo.left,T=v-1-p.padInfo.top,N=ze(i.shape,"float32"),$=n.data.get(s.dataId).values,D=ze(s.shape,"float32",$);for(let P=0;P<p.batchSize;++P)for(let F=0;F<p.inChannels;++F)for(let R=0;R<p.inHeight;++R)for(let C=0;C<p.inWidth;++C){let L=R-T,G=C-w,j=0;for(let K=0;K<v;K+=b){let q=(L+K)/m;if(!(q<0||q>=p.outHeight||Math.floor(q)!==q))for(let Z=0;Z<x;Z+=y){let te=(G+Z)/g;if(te<0||te>=p.outWidth||Math.floor(te)!==te)continue;let se=v*x-1-f.get(P,q,te,F),oe=K*x+Z,re=se===oe?1:0;if(re===0)continue;j+=D.get(P,q,te,F)*re}}N.set(j,P,R,C,F)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var k8={kernelName:vh,backendName:"cpu",kernelFunc:w8};function I8(e,t,n,r,s){let a=k.computeStrides(t),o=Lw(e,t,n,a,s,"max"),i=p2(e,t,n,s,!0,r);return[o.values,i.values]}var S8={kernelName:wh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,c=n;ke(r,"MaxPoolWithArgmax");let l=c.data.get(r.dataId).values,u=_.computePool2DInfo(r.shape,s,a,[1,1],o),[d,p]=I8(l,r.shape,r.dtype,i,u),h=c.write(d,u.outShape,r.dtype),f=c.write(p,u.outShape,r.dtype);return[{dataId:h,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function T8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=k.parseAxisParam(a,s.shape),l=_.computeOutAndReduceShapes(s.shape,i)[1],u=k.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Ia({inputs:{x:s},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Bw({inputs:{a:h,b:p},backend:n});d.push(f);let m=Bd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var C8={kernelName:lo,backendName:"cpu",kernelFunc:T8};function N8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;ke(s,"min");let i=k.parseAxisParam(a,s.shape),c=i,l=_.getAxesPermutation(c,s.shape.length),u=s;l!=null&&(u=gr({inputs:{x:s},backend:n,attrs:{perm:l}}),c=_.getInnerMostAxes(c.length,s.shape.length)),_.assertAxesAreInnerMostDims("min",c,u.shape.length);let[d,p]=_.computeOutAndReduceShapes(u.shape,c),h=k.sizeFromShape(p),f=k.makeZerosTypedArray(k.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let w=m[y+x];(Number.isNaN(w)||w<v)&&(v=w)}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let b=_.expandShapeToKeepDim(d,i),y=_t({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var _8={kernelName:po,backendName:"cpu",kernelFunc:N8};function E8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,mode:o}=r;ke(s,"mirrorPad");let i=a.map((v,x)=>v[0]+s.shape[x]+v[1]),c=a.map(v=>v[0]),l=a.map((v,x)=>v[0]+s.shape[x]),u=o==="reflect"?0:1,d=n.data.get(s.dataId).values,p=s.shape.length,h=k.computeStrides(s.shape),f=k.sizeFromShape(i),m=i.length,g=k.computeStrides(i),b=k.getTypedArrayFromDType(s.dtype,f);for(let v=0;v<f;v++){let x=k.indexToLoc(v,m,g);for(let T=0;T<m;T++)x[T]<c[T]?x[T]=c[T]*2-x[T]-u:x[T]>=l[T]&&(x[T]=(l[T]-1)*2-x[T]+u);x=x.map((T,N)=>T-c[N]);let w=k.locToIndex(x,p,h);b[v]=d[w]}return{dataId:n.write(b,i,s.dtype),shape:i,dtype:s.dtype}}var A8={kernelName:fo,backendName:"cpu",kernelFunc:E8},D8=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),$8=nn(Tc,D8),F8={kernelName:Tc,backendName:"cpu",kernelFunc:$8},R8=Oa(h1());function y2(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=s.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let c=k.parseAxisParam([i],s.shape),l=b2({inputs:{x:s},backend:n,attrs:{reductionIndices:c,keepDims:!1}}),u=_.expandShapeToKeepDim(l.shape,c),d=_t({inputs:{x:l},backend:n,attrs:{shape:u}}),p=Ow({inputs:{a:s,b:d},backend:n}),h=EC({inputs:{x:p},backend:n}),f=Bd({inputs:{x:h},backend:n,attrs:{axis:c,keepDims:!1}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Bw({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var P8={kernelName:Ao,backendName:"cpu",kernelFunc:y2};function O8(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r;ke(s,"multinomial");let c=i?s:y2({inputs:{logits:s},backend:n,attrs:{dim:-1}}),l=c.shape[0],u=c.shape[1],d=n.data.get(c.dataId).values,p=[l,a],h=k.makeZerosTypedArray(k.sizeFromShape(p),"int32");for(let f=0;f<l;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let v=1;v<g.length;++v)g[v]=g[v-1]+d[m+v];let b=R8.alea(o.toString()),y=f*a;for(let v=0;v<a;++v){let x=b();h[y+v]=g.length;for(let w=0;w<g.length;w++)if(x<g[w]){h[y+v]=w;break}}}return i||n.disposeIntermediateTensorInfo(c),n.makeTensorInfo(p,"int32",h)}var M8={kernelName:kh,backendName:"cpu",kernelFunc:O8},L8=is.nonMaxSuppressionV3Impl;function B8(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c}=r;ke(s,"NonMaxSuppression");let l=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=L8(l,u,o,i,c);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var z8={kernelName:_c,backendName:"cpu",kernelFunc:B8},W8=is.nonMaxSuppressionV4Impl;function V8(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,padToMaxOutputSize:l}=r;ke(s,"NonMaxSuppressionPadded");let u=n.data.get(s.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=W8(u,d,o,i,c,l);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var U8={kernelName:Ec,backendName:"cpu",kernelFunc:V8},G8=is.nonMaxSuppressionV5Impl;function H8(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,softNmsSigma:l}=r;ke(s,"NonMaxSuppressionWithScore");let u=n.data.get(s.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=c,m=l,{selectedIndices:g,selectedScores:b}=G8(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var j8={kernelName:Ac,backendName:"cpu",kernelFunc:H8};function q8(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r;ke(s,"oneHot");let c=k.sizeFromShape(s.shape),l=new Float32Array(c*a);l.fill(i);let u=n.data.get(s.dataId).values;for(let d=0;d<c;++d)u[d]>=0&&u[d]<a&&(l[d*a+u[d]]=o);return n.makeTensorInfo([...s.shape,a],"int32",l)}var K8={kernelName:go,backendName:"cpu",kernelFunc:q8};function mm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let s=li({inputs:{input:r},backend:n}),a=mm({inputs:{x:s},backend:n}),o=Cu({inputs:{input:r},backend:n}),i=mm({inputs:{x:o},backend:n}),c=sr({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Vw({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var X8={kernelName:Yc,backendName:"cpu",kernelFunc:mm};function v2(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let s=li({inputs:{input:r},backend:n}),a=v2({inputs:{x:s},backend:n}),o=Cu({inputs:{input:r},backend:n}),i=mm({inputs:{x:o},backend:n}),c=sr({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Vw({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var Y8={kernelName:Dc,backendName:"cpu",kernelFunc:v2};function x2(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return fm({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(u=>{let d=fm({inputs:{input:u},backend:n,attrs:{dim:s}});return i.push(d),d}),l=Nu({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),l}var Z8={kernelName:$c,backendName:"cpu",kernelFunc:x2};function J8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;ke(s,"pad");let i=a.map((y,v)=>y[0]+s.shape[v]+y[1]),c=a.map(y=>y[0]),l=n.data.get(s.dataId).values,u=k.sizeFromShape(s.shape),d=s.shape.length,p=k.computeStrides(s.shape),h=k.sizeFromShape(i),f=i.length,m=k.computeStrides(i),g=k.getTypedArrayFromDType(s.dtype,h);o!==0&&g.fill(o);for(let y=0;y<u;y++){let x=k.indexToLoc(y,d,p).map((T,N)=>T+c[N]),w=k.locToIndex(x,f,m);g[w]=l[y]}return{dataId:n.write(g,i,s.dtype),shape:i,dtype:s.dtype}}var w2={kernelName:bo,backendName:"cpu",kernelFunc:J8},Q8=Vt((e,t)=>Math.pow(e,t)),eK=nn(yo,Q8),tK={kernelName:yo,backendName:"cpu",kernelFunc:eK};function nK(e){let{backend:t,attrs:n}=e,{start:r,stop:s,dtype:a,step:o}=n,i=Rw(r,s,o,a);return t.makeTensorInfo([i.length],a,i)}var rK={kernelName:Pl,backendName:"cpu",kernelFunc:nK},sK=it(Rc,e=>1/e),aK={kernelName:Rc,backendName:"cpu",kernelFunc:sK};function oK(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;ke(s,"resizeBilinear");let c=k.computeStrides(s.shape),[l,u]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(k.sizeFromShape([d,l,u,f])),b=[a&&l>1?p-1:p,a&&u>1?h-1:h],y=[a&&l>1?l-1:l,a&&u>1?u-1:u],v=0,x=b[0]/y[0],w=b[1]/y[1];for(let T=0;T<d;T++)for(let N=0;N<l;N++){let $;o?$=x*(N+.5)-.5:$=x*N;let D=Math.max(0,Math.floor($)),P=$-D,F=Math.min(p-1,Math.ceil($)),R=T*c[0]+D*c[1],C=T*c[0]+F*c[1];for(let L=0;L<u;L++){let G;o?G=w*(L+.5)-.5:G=w*L;let j=Math.max(0,Math.floor(G)),K=G-j,q=Math.min(h-1,Math.ceil(G)),Z=R+j*c[2],te=C+j*c[2],se=R+q*c[2],oe=C+q*c[2];for(let re=0;re<f;re++){let ue=m[Z+re],ne=m[te+re],he=m[se+re],ye=m[oe+re],Ce=ue+(he-ue)*K,Se=ne+(ye-ne)*K,_e=Ce+(Se-Ce)*P;g[v++]=_e}}}return n.makeTensorInfo([d,l,u,f],"float32",g)}var iK={kernelName:wo,backendName:"cpu",kernelFunc:oK};function cK(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r;ke([a,s],"resizeBilinearGrad");let i=k.computeStrides(s.shape),[c,l,u,d]=s.shape,[,p,h]=a.shape,f=new Float32Array(c*l*u*d),m=[o&&p>1?l-1:l,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],b=m[0]/g[0],y=m[1]/g[1],v=n.data.get(a.dataId).values,x=0;for(let w=0;w<c;w++){let T=w*i[0];for(let N=0;N<p;N++){let $=N*b,D=Math.floor($),P=Math.min(Math.ceil($),l-1),F=T+D*i[1],R=T+P*i[1],C=$-D,L=1-C;for(let G=0;G<h;G++){let j=G*y,K=Math.floor(j),q=Math.min(Math.ceil(j),u-1),Z=j-K,te=1-Z,se=F+K*i[2],oe=F+q*i[2],re=R+K*i[2],ue=R+q*i[2],ne=L*te,he=L*Z,ye=C*te,Ce=C*Z;for(let Se=0;Se<d;Se++){let _e=v[x++];f[se+Se]+=_e*ne,f[oe+Se]+=_e*he,f[re+Se]+=_e*ye,f[ue+Se]+=_e*Ce}}}}return n.makeTensorInfo([c,u,l,d],"float32",f)}var uK={kernelName:Th,backendName:"cpu",kernelFunc:cK};function lK(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;ke(s,"resizeNearestNeighbor");let c=k.computeStrides(s.shape),[l,u]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(d*l*u*f),b=[a&&l>1?p-1:p,a&&u>1?h-1:h],y=[a&&l>1?l-1:l,a&&u>1?u-1:u],v=b[0]/y[0],x=b[1]/y[1],w=0;for(let T=0;T<d;T++){let N=T*c[0];for(let $=0;$<l;$++){let D=o?v*($+.5):v*$,P=Math.min(p-1,a?Math.round(D):Math.floor(D));o&&(P=Math.max(0,P));let F=N+P*c[1];for(let R=0;R<u;R++){let C=o?x*(R+.5):x*R,L=Math.min(h-1,a?Math.round(C):Math.floor(C));o&&(L=Math.max(0,L));let G=F+L*c[2];for(let j=0;j<f;j++){let K=m[G+j];g[w++]=K}}}}return n.makeTensorInfo([d,l,u,f],s.dtype,g)}var dK={kernelName:Ol,backendName:"cpu",kernelFunc:lK};function pK(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r;ke([a,s],"resizeNearestNeighborGrad");let i=k.computeStrides(s.shape),c=k.computeStrides(a.shape),[l,u,d,p]=s.shape,[,h,f]=a.shape,m=new Float32Array(l*u*d*p),g=n.data.get(a.dataId).values,b=[o&&h>1?u-1:u,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],v=b[0]/y[0],x=b[1]/y[1],w=1/v,T=1/x,N=Math.ceil(w)*2+2,$=Math.ceil(T)*2+2;for(let D=0;D<l;D++){let P=D*i[0];for(let F=0;F<u;F++){let R=P+F*i[1],C=Math.floor(F*w),L=Math.floor(C-N/2);for(let G=0;G<d;G++){let j=R+G*i[2],K=Math.floor(G*T),q=Math.floor(K-$/2);for(let Z=0;Z<p;Z++){let te=0;for(let se=0;se<N;se++){let oe=se+L;if(oe<0||oe>=h)continue;let re=P+oe*c[1],ue=oe*v,ne=Math.min(u-1,o?Math.round(ue):Math.floor(ue));if(F===ne)for(let he=0;he<$;he++){let ye=he+q;if(ye<0||ye>=f)continue;let Ce=re+ye*c[2],Se=ye*x,_e=Math.min(d-1,o?Math.round(Se):Math.floor(Se));G===_e&&(te+=g[Ce+Z])}}m[j+Z]=te}}}}return n.makeTensorInfo(s.shape,s.dtype,m)}var hK={kernelName:Sh,backendName:"cpu",kernelFunc:pK};function fK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r;ke(s,"reverse");let o=s.shape.length,i=k.parseAxisParam(a,s.shape);if(o===0)return fs({inputs:{x:s},backend:n});let c=new Gt(s.shape,s.dtype),l=n.bufferSync(s);for(let u=0;u<c.size;u++){let d=c.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=s.shape[h]-1-p[h]),c.set(l.get(...p),...d)}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var mK={kernelName:Io,backendName:"cpu",kernelFunc:fK},gK={kernelName:Zc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,c=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[l,u,d,p]=r.shape,[h,f]=_.getImageCenter(o,u,d),m=255,g=Math.sin(s),b=Math.cos(s),y=i.data.get(r.dataId).values;for(let x=0;x<l;x++){let w=x*d*u*p;for(let T=0;T<u;T++){let N=T*(d*p);for(let $=0;$<d;$++){let D=$*p;for(let P=0;P<p;P++){let F=[l,T,$,P],R=F[2],C=F[1],L=(R-h)*b-(C-f)*g,G=(R-h)*g+(C-f)*b;L=Math.round(L+h),G=Math.round(G+f);let j=a;if(typeof a!="number"&&(P===3?j=m:j=a[P]),L>=0&&L<d&&G>=0&&G<u){let q=G*(d*p),Z=L*p,te=w+q+Z+P;j=y[te]}let K=w+N+D+P;c[K]=j}}}}return{dataId:i.write(c,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},bK=it(So,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),yK={kernelName:So,backendName:"cpu",kernelFunc:bK};function k2(e,t,n,r,s,a,o,i,c,l){let u=[r/s,s],d=e.values,p=t.values;if(r===0)return ze(n,t.dtype);let h=ze(u,t.dtype);h.values.fill(c);for(let f=0;f<a;f++){let m=[],g=0;for(let b=0;b<o;b++){let y=d[f*o+b];m.push(y),g+=y*i[b]}if(g<0||g>=r/s)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b<s;b++)l?h.values[g*s+b]+=p[f*s+b]:h.values[g*s+b]=t.rank===0?p[0]:p[f*s+b]}return h}function vK(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:c,sliceSize:l,strides:u,outputSize:d}=_.calculateShapes(a,s,o),p=!0,h=n.bufferSync(s),f=n.bufferSync(a),m=k2(h,f,o,d,l,c,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var xK={kernelName:Oc,backendName:"cpu",kernelFunc:vK};function wK(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t;ke([r,s,a],"select");let o=r.shape.length,i=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,u=Tr(s.dtype,a.dtype),d=k.makeZerosTypedArray(k.sizeFromShape(s.shape),u),p=0,h=o===0||o>1||s.shape.length===1?1:k.sizeFromShape(s.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=c[f]:d[p++]=l[f];return n.makeTensorInfo(s.shape,u,d)}var kK={kernelName:Mc,backendName:"cpu",kernelFunc:wK},IK=_.SELU_SCALEALPHA,SK=_.SELU_SCALE,TK=it(Lc,e=>e>=0?SK*e:IK*(Math.exp(e)-1)),CK={kernelName:Lc,backendName:"cpu",kernelFunc:TK},NK=it(Wc,e=>e<0?-1:e>0?1:0),_K={kernelName:Wc,backendName:"cpu",kernelFunc:NK},EK=it(Co,e=>Math.sin(e)),AK={kernelName:Co,backendName:"cpu",kernelFunc:EK},DK=it(zc,e=>Math.sinh(e)),$K={kernelName:zc,backendName:"cpu",kernelFunc:DK},FK=11920928955078125e-23,I2=Math.log(FK)+2,RK=it(Vc,e=>{let t=e>-I2,n=e<I2,r=Math.exp(e),s;return n?s=r:t?s=e:s=Math.log(1+r),s}),PK={kernelName:Vc,backendName:"cpu",kernelFunc:RK};function OK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;ke([s],"spaceToBatchND");let i=k.sizeFromShape(a),c=[[0,0]];c.push(...o);for(let T=1+a.length;T<s.shape.length;++T)c.push([0,0]);let l=w2.kernelFunc({inputs:{x:s},backend:n,attrs:{paddings:c,constantValue:0}}),u=_.getReshaped(l.shape,a,i,!1),d=_.getPermuted(u.length,a.length,!1),p=_.getReshapedPermuted(l.shape,a,i,!1),m=_t({inputs:{x:l},backend:n,attrs:{shape:u}}),y=gr({inputs:{x:m},backend:n,attrs:{perm:d}}),w=_t({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),w}var MK={kernelName:Uc,backendName:"cpu",kernelFunc:OK};function LK(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=KC(i,r.shape,r.dtype,c,s.dtype,l,u);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var BK={kernelName:Ml,backendName:"cpu",kernelFunc:LK};function zK(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(s.dataId).values),i=n.data.get(r.dataId).values,c=Array.from(n.data.get(a.dataId).values),[l,u,d]=XC(i,r.shape,r.dtype,o,c);return[n.makeTensorInfo(u,r.dtype,l),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var WK={kernelName:Hc,backendName:"cpu",kernelFunc:zK};function VK(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(s.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,[l,u]=Pw(o,r.shape,r.dtype,i,c,!0);return n.makeTensorInfo(u,r.dtype,l)}var UK={kernelName:Ll,backendName:"cpu",kernelFunc:VK};function GK(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(s.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,[l,u]=Pw(o,r.shape,r.dtype,i,c);return n.makeTensorInfo(u,r.dtype,l)}var HK={kernelName:Bl,backendName:"cpu",kernelFunc:GK};function jK(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:c,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=_.calculateShapes(a,s,i),h=!1,f=n.bufferSync(s),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],b=k2(f,m,i,p,u,l,c,d,g,h);return n.makeTensorInfo(i,b.dtype,b.values)}var qK={kernelName:Ch,backendName:"cpu",kernelFunc:jK};function KK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=k.parseAxisParam(o,s.shape)[0],c=_.prepareSplitSize(s,a,i),l=new Array(s.shape.length).fill(0),u=s.shape.slice();return c.map(d=>{let p=[...u];p[i]=d;let h=di({inputs:{x:s},backend:n,attrs:{begin:l,size:p}});return l[i]+=d,h})}var XK={kernelName:Gc,backendName:"cpu",kernelFunc:KK},YK={kernelName:zl,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ke(n,"square");let s=r.data.get(n.dataId).values,a=new Float32Array(s.length);for(let i=0;i<s.length;++i){let c=s[i];a[i]=c*c}return{dataId:r.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},ZK=it(ta,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),JK={kernelName:ta,backendName:"cpu",kernelFunc:ZK};function QK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:c,endMask:l,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=r;ke(s,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=Ht.sliceInfo(s.shape,a,o,i,c,l,u,d,p),w;if(m)w=_t({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){k.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let T=Ht.computeOutShape(y,v,x),N=di({inputs:{x:s},backend:n,attrs:{begin:y,size:T}});w=_t({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(N)}else{let T=n.bufferSync(s),N=ZC(h,T,x,y);w=n.makeTensorInfo(f,N.dtype,N.values)}return w}var eX={kernelName:jc,backendName:"cpu",kernelFunc:QK};function tX(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:c,preserveShortSequences:l}=r,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=JC(p,h,s,a,o,i,c,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var nX={kernelName:Nh,backendName:"cpu",kernelFunc:tX};function rX(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[l,u,d]=QC(i,c,s),p=u.length;return[n.makeTensorInfo([p,2],"int32",l),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var sX={kernelName:_h,backendName:"cpu",kernelFunc:rX};function aX(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=e2(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var oX={kernelName:Eh,backendName:"cpu",kernelFunc:aX},iX=it(Fo,e=>Math.tan(e)),cX={kernelName:Fo,backendName:"cpu",kernelFunc:iX},uX=it(Ro,e=>Math.tanh(e)),lX={kernelName:Ro,backendName:"cpu",kernelFunc:uX};function dX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;ke(s,"tile");let o=n2(n.bufferSync(s),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var pX={kernelName:ea,backendName:"cpu",kernelFunc:dX};function hX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r;ke(s,"topk");let i=n.data.get(s.dataId).values,[c,l]=s2(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(c.shape,c.dtype,c.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var fX={kernelName:qc,backendName:"cpu",kernelFunc:hX};function mX(e){let{inputs:t,attrs:n,backend:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:c,outputShape:l}=n,[u,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[u,f,m,h],b=k.computeStrides(s.shape),y=b[0],v=b[1],x=b[2],w=k.getTypedArrayFromDType(s.dtype,k.sizeFromShape(g));w.fill(c);let T=r.data.get(s.dataId).values,N=r.data.get(a.dataId).values;for(let D=0;D<u;++D){let P=a.shape[0]===1?N:N.subarray(D*8,D*8+8);for(let F=0;F<f;++F)for(let R=0;R<m;++R)for(let C=0;C<h;++C){let L,G=P[6]*R+P[7]*F+1;if(G===0)continue;let j=(P[0]*R+P[1]*F+P[2])/G,K=(P[3]*R+P[4]*F+P[5])/G,q=S2(j,p,i),Z=S2(K,d,i);switch(o){case"nearest":L=wX(T,d,p,y,v,x,D,Z,q,C,c);break;case"bilinear":L=kX(T,d,p,y,v,x,D,Z,q,C,c);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let te=D*y+F*v+R*x+C;w[te]=L}return r.makeTensorInfo(g,s.dtype,w)}return{dataId:r.write(w,g,s.dtype),shape:s.shape,dtype:s.dtype}}var gX={kernelName:Kc,backendName:"cpu",kernelFunc:mX};function S2(e,t,n){switch(n){case"reflect":return bX(e,t);case"wrap":return yX(e,t);case"nearest":return xX(e,t);case"constant":default:return vX(e,t)}}function bX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=2*t;n<r&&(n=r*Math.trunc(-n/r)+n),n=n<-t?n+r:-n-1}else if(n>t-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return k.clamp(0,n,t-1)}function yX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return k.clamp(0,n,t-1)}function vX(e,t){return e}function xX(e,t){return k.clamp(0,e,t-1)}function zd(e,t,n,r,s,a,o,i,c,l,u){let d=o*r+i*s+c*a+l;return 0<=i&&i<t&&0<=c&&c<n?e[d]:u}function wX(e,t,n,r,s,a,o,i,c,l,u){let d=Math.round(i),p=Math.round(c);return zd(e,t,n,r,s,a,o,d,p,l,u)}function kX(e,t,n,r,s,a,o,i,c,l,u){let d=Math.floor(i),p=Math.floor(c),h=d+1,f=p+1,m=(f-c)*zd(e,t,n,r,s,a,o,d,p,l,u)+(c-p)*zd(e,t,n,r,s,a,o,d,f,l,u),g=(f-c)*zd(e,t,n,r,s,a,o,h,p,l,u)+(c-p)*zd(e,t,n,r,s,a,o,h,f,l,u);return(h-i)*m+(i-d)*g}function IX(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;ke(a,"unique");let o=r.data.get(a.dataId).values,{outputValues:i,outputShape:c,indices:l}=a2(o,s,a.shape,a.dtype);return[r.makeTensorInfo(c,a.dtype,i),r.makeTensorInfo([l.length],"int32",l)]}var SX={kernelName:Ah,backendName:"cpu",kernelFunc:IX};function TX(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape.length,i=s.shape[a],c=new Array(o-1),l=0;for(let h=0;h<o;h++)h!==a&&(c[l++]=s.shape[h]);let u=new Array(o).fill(0),d=s.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=di({inputs:{x:s},backend:n,attrs:{begin:u,size:d}});p[h]=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),n.disposeIntermediateTensorInfo(f)}return p}var CX={kernelName:Xc,backendName:"cpu",kernelFunc:TX};function NX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r;ke(s,"unsortedSegmentSum");let i=s.shape.length,c=a.shape.length,l=[],u=[],d=i-c,p=a;for(let f=0;f<d;++f){let m=fm({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=k.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),b=NC({inputs:{a:g,b:p},backend:n}),y=Ia({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),v=pm({inputs:{a:y,b:s},backend:n}),x=Bd({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});l.push(x),u.push(g),u.push(b),u.push(y),u.push(v),u.push(x)}let h=x2({inputs:l,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var _X={kernelName:Wl,backendName:"cpu",kernelFunc:NX},EX=[O5,E6,L5,z5,P6,V5,G5,j5,K5,Y5,J5,ej,nj,aj,ij,lj,pj,fj,gj,R5,yj,xj,kj,Sj,F6,M6,Cj,A6,_j,Aj,Dj,Fj,Pj,Mj,Bj,Wj,Uj,Hj,qj,Xj,Zj,Qj,eq,nq,sq,oq,iq,cq,uq,pq,N5,fq,L6,kq,B6,Iq,W6,Eq,Aq,$q,U6,Pq,Mq,Bq,Wq,Uq,H6,q6,D6,Hq,Ej,qq,Xq,Zq,_5,X6,Z6,Qq,Q6,t8,s8,o8,u8,d8,h8,f8,t5,g8,y8,x8,k8,S8,C8,_8,r5,A8,F8,M8,a5,i5,z8,U8,j8,u5,K8,Y8,Z8,w2,tK,A5,p5,rK,$6,zw,aK,D5,$5,F5,iK,uK,dK,hK,mK,gK,yK,f5,xK,kK,CK,g5,_K,AK,$K,b5,P8,PK,MK,BK,WK,UK,HK,qK,XK,x5,YK,k5,JK,eX,nX,sX,oX,C5,lq,cX,lX,pX,fX,gX,l5,SX,CX,_X,X8];for(let e of EX)Ul(e);var T2={};Ae(T2,{assertNotComplex:()=>Eu,bindCanvasToFramebuffer:()=>WX,bindColorTextureToFramebuffer:()=>ym,bindTextureToProgramUniformSampler:()=>W2,bindTextureUnit:()=>L2,bindVertexBufferToProgramAttribute:()=>Hw,callAndCheck:()=>be,canBeRepresented:()=>N2,createFragmentShader:()=>A2,createFramebuffer:()=>M2,createProgram:()=>D2,createStaticIndexBuffer:()=>R2,createStaticVertexBuffer:()=>F2,createTexture:()=>P2,createVertexShader:()=>E2,getBatchDim:()=>hi,getExtensionOrThrow:()=>Ud,getFramebufferErrorMessage:()=>V2,getMaxTexturesInShader:()=>j2,getNumChannels:()=>BX,getProgramUniformLocation:()=>z2,getProgramUniformLocationOrThrow:()=>B2,getRowsCols:()=>fi,getShapeAs3D:()=>vm,getTextureShapeFromLogicalShape:()=>G2,getWebGLDisjointQueryTimerVersion:()=>q2,getWebGLErrorMessage:()=>_2,getWebGLMaxTextureSize:()=>H2,hasExtension:()=>yr,isCapableOfRenderingToFloatTexture:()=>K2,isDownloadFloatTextureEnabled:()=>X2,isReshapeFree:()=>Hd,isWebGLFenceEnabled:()=>Y2,isWebGLVersionEnabled:()=>qw,linkProgram:()=>$2,resetMaxTextureSize:()=>VX,resetMaxTexturesInShader:()=>UX,unbindColorTextureFromFramebuffer:()=>jw,unbindTextureUnit:()=>zX,validateFramebuffer:()=>Gd,validateProgram:()=>bm,validateTextureSize:()=>O2});var pi={},Uw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function C2(e,t){pi[e]=t}function Zr(e,t){if(!(e in pi)){let r=DX(e,t);if(r!==null)pi[e]=r;else return console.log("Could not get context for WebGL version",e),null}let n=pi[e];return n==null||n.isContextLost()?(delete pi[e],Zr(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),pi[e])}function AX(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function DX(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?AX(e):t;return n.addEventListener("webglcontextlost",r=>{r.preventDefault(),delete pi[e]},!1),e===1?n.getContext("webgl",Uw)||n.getContext("experimental-webgl",Uw):n.getContext("webgl2",Uw)}var Wd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Wd||(Wd={}));var br;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(br||(br={}));var cn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(cn||(cn={}));function Vd(e,t){return[t,e]}function $X(e,t){return e*t}function gm(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function _u(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function FX(e,t){let[n,r]=_u(e,t);return n*r*4}function Gw(e,t){let n=e,r,s,a,o,i,c,l,u,d,p;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,s=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,l=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT,c=n.RGBA8):(r=e.RGBA,s=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,l=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,c=e.RGBA),{internalFormatFloat:r,internalFormatHalfFloat:s,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:c,downloadUnpackNumChannels:l,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function be(e,t){let n=t();return J().getBool("DEBUG")&&RX(e),n}function RX(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+_2(e,t))}var PX=596e-10,OX=65504;function N2(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||PX<Math.abs(e)&&Math.abs(e)<OX)}function _2(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Ud(e,t){return $s(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function E2(e,t){let n=$s(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function A2(e,t){let n=$s(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw LX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var MX=/ERROR: [0-9]+:([0-9]+):/g;function LX(e,t){let n=MX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],s=e.split(`
|
|
`),a=s.length.toString().length+2,o=s.map((d,p)=>k.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let c=o.slice(0,r-1),l=o.slice(r-1,r),u=o.slice(r);console.log(c.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(l[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function D2(e){return $s(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function $2(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function bm(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function F2(e,t){let n=$s(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function R2(e,t){let n=$s(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function BX(){return J().getNumber("WEBGL_VERSION")===2?1:4}function P2(e){return $s(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function O2(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,s=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+s+".")}}function M2(e){return $s(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Hw(e,t,n,r,s,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),be(e,()=>e.vertexAttribPointer(i,s,e.FLOAT,!1,a,o)),be(e,()=>e.enableVertexAttribArray(i)),!0)}function L2(e,t,n){U2(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function zX(e,t){U2(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function B2(e,t,n){return $s(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function z2(e,t,n){return e.getUniformLocation(t,n)}function W2(e,t,n,r){be(e,()=>L2(e,t,r)),be(e,()=>e.uniform1i(n,r))}function WX(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function ym(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function jw(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Gd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+V2(e,t))}function V2(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function $s(e,t,n){let r=be(e,()=>t());if(r==null)throw new Error(n);return r}function U2(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let s=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${s}.`)}}function hi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function fi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function vm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[hi(e),...fi(e)]),t}function G2(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((s,a)=>a>=e.length-2?k.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let s=hi(e),a=2,o=2;return e.length&&([a,o]=fi(e)),r=s*(a/2)*(o/2),k.sizeToSquarishShape(r).map(i=>i*2)}return k.sizeToSquarishShape(r)}function xm(e){return e%2===0}function Hd(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||xm(n)&&xm(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&xm(e[0])&&xm(t[0])}var wm,km;function H2(e){if(wm==null){let t=Zr(e);wm=t.getParameter(t.MAX_TEXTURE_SIZE)}return wm}function VX(){wm=null}function UX(){km=null}function j2(e){if(km==null){let t=Zr(e);km=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,km)}function q2(e){if(e===0)return 0;let t,n=Zr(e);return yr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:yr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function yr(e,t){return e.getExtension(t)!=null}function qw(e){try{if(Zr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function K2(e){if(e===0)return!1;let t=Zr(e);if(e===1){if(!yr(t,"OES_texture_float"))return!1}else if(!yr(t,"EXT_color_buffer_float"))return!1;return Kw(t)}function X2(e){if(e===0)return!1;let t=Zr(e);if(e===1){if(!yr(t,"OES_texture_float")||!yr(t,"WEBGL_color_buffer_float"))return!1}else{if(yr(t,"EXT_color_buffer_float"))return Kw(t);let r="EXT_color_buffer_half_float";if(yr(t,r)){let s=t.getExtension(r);return GX(t,s)}return!1}return Kw(t)}function Kw(e){let t=Gw(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,s,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function GX(e,t){let n=Gw(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let s=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,s,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(o),i}function Y2(e){return e!==2?!1:Zr(e).fenceSync!=null}function Eu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=J();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>qw(2)?2:qw(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>H2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>j2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:q2(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zl.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>K2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>X2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Y2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Zl.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Sn(){let e,t,n,r,s,a,o,i,c,l;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",s="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,c="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",s="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,c=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:s,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:c,defineRound:l}}function mi(e,t,n="index"){let r=k.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / ${s}`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${s}`:`index -= ${e[a]} * ${s}`;return`${o}; ${i};`}).join("")}function Im(e,t,n="index"){let r=k.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function HX(e,t){let n=e.length,r=e.map(a=>`${t}[${a}]`),s=new Array(n-1);s[n-2]=r[n-1];for(let a=n-3;a>=0;--a)s[a]=`(${s[a+1]} * ${r[a+1]})`;return s}function jX(e,t,n="index"){let r=e.map((a,o)=>o),s=HX(r,t);return s.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${s[o]}`,c=o===s.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${s[o]}`:`index -= ${e[o]} * ${s[o]}`;return`${i}; ${c};`}).join("")}function Xw(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function Yw(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var Z2=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:J2}=_;function qX(e,t,n){let r=[];if(e.forEach(h=>{let f=k.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Zw(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:r.push(`uniform int ${h.name}Shape;`);break;case 2:r.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:r.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:r.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}r.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:r.push("uniform int outShape;");break;case 2:r.push("uniform ivec2 outShape;"),r.push("uniform int outShapeStrides;");break;case 3:r.push("uniform ivec3 outShape;"),r.push("uniform ivec2 outShapeStrides;");break;case 4:r.push("uniform ivec4 outShape;"),r.push("uniform ivec3 outShapeStrides;");break;default:break}r.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{r.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let s=r.join(`
|
|
`),a=e.map(h=>KX(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=Sn(),c=ZX(i),l,u,d=e7(i);return t.isPacked?(l=XX(t.logicalShape,o,n.enableShapeUniforms),u=QX(i)):(l=YX(t.logicalShape,o,n.enableShapeUniforms),u=JX(i)),n.packedInputs&&(d+=s7),[d,c,u,s,l,a,n.userCode].join(`
|
|
`)}function Au(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return g7(e,t);case 1:return y7(e,t);case 2:return x7(e,t);case 3:return k7(e,t);case 4:return S7(e,t);case 5:return T7(e);case 6:return C7(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function Q2(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return m7(e);case 1:return b7(e,t);case 2:return v7(e,t);case 3:return w7(e,t);default:return I7(e,t)}}function KX(e,t,n=!1,r){let s="";n?s+=Q2(e,r):s+=Au(e,r);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?s+=N7(e,t):s+=_7(e,t)),s}function XX(e,t,n){switch(e.length){case 0:return eN();case 1:return a7(e,t,n);case 2:return h7(e,t,n);case 3:return i7(e,t,n);default:return u7(e,t,n)}}function YX(e,t,n){switch(e.length){case 0:return eN();case 1:return o7(e,t,n);case 2:return f7(e,t,n);case 3:return c7(e,t,n);case 4:return l7(e,t,n);case 5:return d7(e,t);case 6:return p7(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function ZX(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function JX(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function QX(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function e7(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${t7}
|
|
${n7}
|
|
${r7}
|
|
`}var t7=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,n7=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,r7=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,s7=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function eN(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function a7(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return r[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${r[1]}.0);
|
|
}
|
|
`:r[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${r[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${r[0]}, ${r[1]}));
|
|
return 2 * (resTexRC.x * ${r[1]} + resTexRC.y);
|
|
}
|
|
`}function o7(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function i7(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),a=s*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${r[0]}, ${r[1]}));
|
|
int index = resTexRC.x * ${r[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${s});
|
|
int c = imod(index, ${s}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function c7(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Im(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let r=mi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${r}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function u7(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[e.length-1]/2),a=s*Math.ceil(e[e.length-2]/2),o=a,i="",c="b, r, c";for(let l=2;l<e.length-1;l++)o*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${o};
|
|
index -= b${l} * ${o};
|
|
`+i,c=`b${l}, `+c;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${r[0]}, ${r[1]}));
|
|
int index = resTexRC.x * ${r[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${s});
|
|
int c = imod(index, ${s}) * 2;
|
|
|
|
return ivec${e.length}(${c});
|
|
}
|
|
`}function l7(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Im(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let r=mi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${r}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function d7(e,t){let n=mi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function p7(e,t){let n=mi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function h7(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${r[0]}, ${r[1]}));
|
|
}
|
|
`;let s=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${r[0]}, ${r[1]}));
|
|
|
|
int index = resTexRC.x * ${r[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${s});
|
|
int c = imod(index, ${s}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function f7(e,t,n){return k.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function gi(e){return`offset${e}`}function m7(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=Sn();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function g7(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${r}() {return ${n};}`;let[s,a]=e.shapeInfo.texShape;if(s===1&&a===1)return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=gi(n);if(t)return`
|
|
float ${r}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,c]=e.shapeInfo.texShape;return`
|
|
float ${r}() {
|
|
vec2 uv = uvFromFlat(${i}, ${c}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function b7(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,a=Sn();if(t)return`
|
|
vec4 ${r}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];return`
|
|
vec4 ${r}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function y7(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int index) {
|
|
${Du(e)}
|
|
}
|
|
`;let s=e.shapeInfo.texShape,a=s[0],o=s[1];if(o===1&&a===1)return`
|
|
float ${r}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=gi(n);return o===1?t?`
|
|
float ${r}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${r}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function v7(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],c=Sn();if(a!=null&&k.arraysEqual(n,a))return t?`
|
|
vec4 ${s}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
|
|
|
|
return ${c.texture2D}(${r}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${s}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${c.texture2D}(${r}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${s}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${r}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${c.texture2D}(${r}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${s}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${c.texture2D}(${r}, uv);
|
|
}
|
|
`}function x7(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape;if(a!=null&&k.arraysEqual(n,a)){if(t)return`
|
|
float ${s}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${s}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=k.squeezeShape(n),c=o;if(c.length<n.length){let p=$u(e,c),h=["row","col"];return`
|
|
${Au(p,t)}
|
|
float ${s}(int row, int col) {
|
|
return ${s}(${Fu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let l=a[0],u=a[1],d=gi(r);return u===1?t?`
|
|
float ${s}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${r}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${r}TexShape[0]));
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:l===1?t?`
|
|
float ${s}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${r}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${r}TexShape[1]), 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function w7(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=$u(e,p),m=["b","row","col"];return`
|
|
${Q2(f,t)}
|
|
vec4 ${s}(int b, int row, int col) {
|
|
return ${s}(${Fu(m,h)});
|
|
}
|
|
`}let i=Sn();if(t)return`
|
|
vec4 ${s}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${r}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${r}, uv);
|
|
}
|
|
`;let c=o[0],l=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${s}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${c}, ${l}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${r}, uv);
|
|
}
|
|
`}function k7(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:c}=k.squeezeShape(n),l=i;if(l.length<n.length){let m=$u(e,l),g=["row","col","depth"];return`
|
|
${Au(m,t)}
|
|
float ${s}(int row, int col, int depth) {
|
|
return ${s}(${Fu(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${s}(int row, int col, int depth) {
|
|
int stride1 = ${r}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}TexShape[1], ${r}TexShape[0]);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${s}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${r}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let f=gi(r);return t?`
|
|
float ${s}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${r}Shape[1] * ${r}Shape[2];
|
|
int stride1 = ${r}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function I7(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=Sn();if(t)return`
|
|
vec4 ${r}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,c=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],l=c[0],u=c[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${r}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${l});
|
|
return ${s.texture2D}(${n}, uv);
|
|
}
|
|
`}function S7(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:c,keptDims:l}=k.squeezeShape(n);if(c.length<n.length){let y=$u(e,c),v=["row","col","depth","depth2"];return`
|
|
${Au(y,t)}
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
return ${s}(${Fu(v,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${r}Shape[3];`,m=`int stride1 = ${r}Shape[2] * stride2;`,g=`int stride0 = ${r}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}TexShape[1], ${r}TexShape[0]);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${r}Shape[1] * ${r}Shape[2], ${r}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}TexShape[1], ${r}TexShape[0]);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`;let b=gi(r);return t?`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${b});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${b});
|
|
return sampleTexture(${r}, uv);
|
|
}
|
|
`}function T7(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=t[4],a=t[3]*s,o=t[2]*a,i=t[1]*o,{newShape:c,keptDims:l}=k.squeezeShape(t);if(c.length<t.length){let m=$u(e,c),g=["row","col","depth","depth2","depth3"];return`
|
|
${Au(m)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${Fu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${s})) +
|
|
depth3;
|
|
${Du(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=gi(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${s} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function C7(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:s,keptDims:a}=k.squeezeShape(t);if(s.length<t.length){let g=$u(e,s),b=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Au(g)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${Fu(b,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,c=t[3]*i,l=t[2]*c,u=t[1]*l;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${l}, ${c}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${Du(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${c}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=gi(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${l} + depth * ${c} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Du(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function N7(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=J2(e.shapeInfo.logicalShape,t.logicalShape),c=gt(o),l=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(y=>`coords.${d[y+l]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,v)=>`coords.${d[v+l]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,b=k.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!b)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,v=a-1;i.indexOf(y)>-1&&i.indexOf(v)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(v)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${s}() {
|
|
${c} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${r}(${p});
|
|
${h}
|
|
}
|
|
`}function _7(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,c=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===c&&e.shapeInfo.flatOffset==null&&k.arraysEqual(o,a))return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let l=gt(c),u=J2(e.shapeInfo.logicalShape,t.logicalShape),d=c-i,p,h=["x","y","z","w","u","v"];i===0?p="":c<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return c<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${s}() {
|
|
${l} coords = getOutputCoords();
|
|
${p}
|
|
return get${r}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Zw(e,t,n){let{newShape:r,keptDims:s}=k.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):r,c=!e&&a>1&&!k.arraysEqual(t,n)&&r.length<a||o;return{useSqueezeShape:c,uniformShape:c?i:t,keptDims:s}}function $u(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Fu(e,t){return t.map(n=>e[n]).join(", ")}function E7(e,t,n,r){let s=n.map((x,w)=>{let T={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(T.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[w],shapeInfo:T}}),a=s.map(x=>x.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},i=qX(s,o,t),c=A2(e.gl,i),l=e.createProgram(c),u=null,d=e.getUniformLocation(l,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let p=!1,h={},f={},m={};for(let x=0;x<t.variableNames.length;x++){let w=t.variableNames[x];h[w]=e.getUniformLocation(l,w,p),h[`offset${w}`]=e.getUniformLocation(l,`offset${w}`,p),t.enableShapeUniforms&&(f[`${w}Shape`]=e.getUniformLocation(l,`${w}Shape`,p),m[`${w}TexShape`]=e.getUniformLocation(l,`${w}TexShape`,p))}let g,b,y;t.enableShapeUniforms&&(g=e.getUniformLocation(l,"outShape",p),y=e.getUniformLocation(l,"outShapeStrides",p),b=e.getUniformLocation(l,"outTexShape",p));let v=[];return t.customUniforms&&t.customUniforms.forEach((x,w)=>{v[w]=e.getUniformLocation(l,x.name,p)}),{program:t,fragmentShader:c,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:v,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:d,inShapesLocations:f,inTexShapesLocations:m,outShapeLocation:g,outShapeStridesLocation:y,outTexShapeLocation:b}}function tN(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let s=n.logicalShape,a=t[r],o=a.shape;if(!k.arraysEqual(s,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${s} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,c=a.isUniform?null:a.texData.texShape;if(!k.arraysEqual(i,c))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${c} must match`)})}function A7(e,t,n,r,s){t.program.enableShapeUniforms||(tN(t.inShapeInfos,n),tN([t.outShapeInfo],[r]));let a=r.texData.texture,o=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((c,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=Zw(t.program.packedInputs,c.shape,c.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,c.texData.texShape[0],c.texData.texShape[1]),d!=null){if(c.isUniform){if(k.sizeFromShape(c.shape)<2)e.gl.uniform1f(d,c.uniformValues[0]);else{let m=c.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}c.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,c.texData.slice.flatOffset),e.setInputMatrixTexture(c.texData.texture.texture,d,l)}});let i=t.outShapeLocation;if(i)switch(r.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(r.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(r.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(r.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(r.shape));break;default:break}if(t.outShapeStridesLocation){let c=k.computeStrides(r.shape);switch(r.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(c));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(c));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(c));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,r.texData.texShape[0],r.texData.texShape[1]),t.program.customUniforms&&s&&t.program.customUniforms.forEach((c,l)=>{let u=t.customUniformLocations[l],d=s[l];if(c.type==="float")e.gl.uniform1fv(u,d);else if(c.type==="vec2")e.gl.uniform2fv(u,d);else if(c.type==="vec3")e.gl.uniform3fv(u,d);else if(c.type==="vec4")e.gl.uniform4fv(u,d);else if(c.type==="int")e.gl.uniform1iv(u,d);else if(c.type==="ivec2")e.gl.uniform2iv(u,d);else if(c.type==="ivec3")e.gl.uniform3iv(u,d);else if(c.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${c.type} is not supported yet.`)}),e.executeProgram()}function D7(e,t,n){let r="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let c=o.texData.texShape,{useSqueezeShape:l,uniformShape:u,keptDims:d}=Zw(e.packedInputs,o.shape,c),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(c[0]/2),Math.ceil(c[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=k.computeStrides(u);f=`${w[0]===c[1]}_${w[w.length-1]===c[1]}`}let m=o.shape.length,g=u.length===2&&k.arraysEqual(o.shape,c),b=k.sizeFromShape(o.shape)===1,y=_.getBroadcastDims(o.shape,n.shape),v=!e.packedInputs&&m===n.shape.length&&k.arraysEqual(c,n.texData.texShape),x=e.packedInputs||u.length>2?"":`${c[0]>1}_${c[1]>1}`;r+=`${m}_${v}_${l?d:""}_${u.length}_${b}_${y}_${g}_${p}_${h}_${f}_${x}_${i}`}else{let c=o.isUniform?"uniform":o.texData.texShape;r+=`${o.shape}_${c}_${i}`}});let s=e.userCode,a=e.constructor.name;return a+="_"+r+"_"+s+`${J().getNumber("WEBGL_VERSION")}`,a}function Vn(e){return J().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var $7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Wd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Sn();this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Im(["r","c","d"],e):mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},F7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Wd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Sn();this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Im(["r","c","d"],e):mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},R7=class{constructor(e){this.variableNames=["A"],this.outTexUsage=br.DOWNLOAD;let t=Sn();this.outputShape=e,this.userCode=`
|
|
${Z2}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},P7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=br.DOWNLOAD;let t=Sn();this.outputShape=e,this.userCode=`
|
|
${Z2}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},O7=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Sn();this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?Yw():Xw(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${r}, 0., 0., 0.);
|
|
}
|
|
`}},M7=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Sn();this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length);let r="",s="result";t&&(s="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;r+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?Yw():Xw(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${r}
|
|
|
|
${n.output} = ${s};
|
|
}
|
|
`}},nN={};Ae(nN,{bindVertexProgramAttributeStreams:()=>dN,createBufferFromOutputTexture:()=>fN,createFloat16MatrixTexture:()=>iN,createFloat16PackedMatrixTexture:()=>lN,createFloat32MatrixTexture:()=>oN,createIndexBuffer:()=>aN,createPackedMatrixTexture:()=>uN,createUnsignedBytesMatrixTexture:()=>cN,createVertexBuffer:()=>sN,createVertexShader:()=>rN,downloadByteEncodedFloatMatrixFromOutputTexture:()=>gN,downloadFloat32MatrixFromBuffer:()=>mN,downloadMatrixFromPackedOutputTexture:()=>yN,downloadPackedMatrixFromBuffer:()=>bN,getInternalFormatForFloat16MatrixTexture:()=>Qw,getInternalFormatForFloat16PackedMatrixTexture:()=>n0,getInternalFormatForFloat32MatrixTexture:()=>Jw,getInternalFormatForPackedMatrixTexture:()=>t0,getInternalFormatForUnsignedBytesMatrixTexture:()=>e0,uploadDenseMatrixToTexture:()=>pN,uploadPixelDataToTexture:()=>hN});function rN(e){let t=Sn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return E2(e,n)}function sN(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return F2(e,t)}function aN(e){let t=new Uint16Array([0,1,2,2,1,3]);return R2(e,t)}function jd(e,t,n,r,s,a){O2(t,n);let o=P2(e),i=e.TEXTURE_2D;return be(e,()=>e.bindTexture(i,o)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),J().getNumber("WEBGL_VERSION")===1?be(e,()=>e.texImage2D(i,0,r,t,n,0,s,a,null)):be(e,()=>e.texStorage2D(i,1,r,t,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function Jw(e){return e.internalFormatFloat}function oN(e,t,n,r){let[s,a]=Vd(t,n);return jd(e,s,a,Jw(r),r.textureFormatFloat,e.FLOAT)}function Qw(e){return e.internalFormatHalfFloat}function iN(e,t,n,r){let[s,a]=Vd(t,n);return jd(e,s,a,Qw(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function e0(e){return e.downloadTextureFormat}function cN(e,t,n,r){let[s,a]=Vd(t,n);return jd(e,s,a,e0(r),e.RGBA,e.UNSIGNED_BYTE)}function t0(e){return e.internalFormatPackedFloat}function uN(e,t,n,r){let[s,a]=_u(t,n);return jd(e,s,a,t0(r),e.RGBA,e.FLOAT)}function n0(e){return e.internalFormatPackedHalfFloat}function lN(e,t,n,r){let[s,a]=_u(t,n);return jd(e,s,a,n0(r),e.RGBA,r.textureTypeHalfFloat)}function dN(e,t,n){let r=0,s=3*4,a=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Hw(e,t,"clipSpacePos",n,3,a,r)&&Hw(e,t,"uv",n,2,a,s)}function pN(e,t,n,r,s,a){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,c;s instanceof Uint8Array?(o=new Uint8Array(n*r*4),i=e.UNSIGNED_BYTE,c=e.RGBA):(o=new Float32Array(n*r*4),i=e.FLOAT,c=a.internalFormatPackedFloat),o.set(s),J().getNumber("WEBGL_VERSION")===2?be(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,r,e.RGBA,i,o)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,c,n,r,0,e.RGBA,i,o)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function hN(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?J().getNumber("WEBGL_VERSION")===2?be(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):J().getNumber("WEBGL_VERSION")===2?be(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function fN(e,t,n,r){let s=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,s));let i=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),s}function mN(e,t,n){let r=e,s=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,s),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),s}function gN(e,t,n,r){let[s,a]=Vd(t,n),o=4,i=new Uint8Array($X(t*n,o));return be(e,()=>e.readPixels(0,0,s,a,r.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function bN(e,t,n,r,s,a,o,i){let c=e,l=new Float32Array(FX(a,o));return c.bindBuffer(c.PIXEL_PACK_BUFFER,t),c.getBufferSubData(c.PIXEL_PACK_BUFFER,0,l),c.bindBuffer(c.PIXEL_PACK_BUFFER,null),l}function yN(e,t,n){let r=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Sm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,C2(t,e)):this.gl=Zr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Ud(this.gl,s),yr(this.gl,a))this.textureHalfFloatExtension=Ud(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),yr(this.gl,r))this.colorBufferHalfFloatExtension=Ud(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",yr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(yr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=sN(this.gl),this.indexBuffer=aN(this.gl),this.framebuffer=M2(this.gl),this.textureConfig=Gw(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),oN(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),iN(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),cN(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),hN(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),pN(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),lN(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),uN(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(jw(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>gN(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,s,a){return bN(this.gl,e,t,n,r,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return mN(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=fN(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,s=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=r.clientWaitSync(s,0,0);return a===r.ALREADY_SIGNALED||a===r.CONDITION_SATISFIED},t=s}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>yN(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=rN(t));let n=D2(t);return be(t,()=>t.attachShader(n,this.vertexShader)),be(t,()=>t.attachShader(n,e)),$2(t,n),this.debug&&bm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=dN(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&bm(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?B2(this.gl,e,t):z2(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),W2(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,s]=_u(t,n);this.setOutputMatrixTextureDriver(e,r,s)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&bm(this.gl,this.program),Gd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ud(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=L7(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ym(this.gl,e,this.framebuffer),this.debug&&Gd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ym(this.gl,this.outputTexture,this.framebuffer),this.debug&&Gd(this.gl)):jw(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;ym(r,e,this.framebuffer),this.debug&&Gd(r),this.outputTexture=e,be(r,()=>r.viewport(0,0,t,n)),be(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function L7(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:B7,bincountImpl:vN,bincountReduceImpl:z7,ceilImpl:W7,concatImpl:V7,equalImpl:U7,expImpl:G7,expm1Impl:H7,floorImpl:j7,gatherNdImpl:q7,gatherV2Impl:K7,greaterImpl:X7,greaterEqualImpl:Y7,lessImpl:Z7,lessEqualImpl:J7,linSpaceImpl:Q7,logImpl:e9,maxImpl:t9,maximumImpl:n9,minimumImpl:r9,multiplyImpl:s9,negImpl:a9,notEqualImpl:o9,prodImpl:i9,rangeImpl:c9,rsqrtImpl:u9,sigmoidImpl:l9,simpleAbsImpl:xN,sliceImpl:d9,sparseFillEmptyRowsImpl:p9,sparseReshapeImpl:h9,sparseSegmentReductionImpl:wN,sqrtImpl:f9,stridedSliceImpl:m9,stringNGramsImpl:g9,stringSplitImpl:b9,stringToHashBucketFastImpl:y9,subImpl:v9,tileImpl:x9,topKImpl:w9,transposeImpl:r0,uniqueImpl:k9}=wC;function kN(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Tn(e,t){return t===1?[e]:kN(e,t)}function I9(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var S9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Vn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=Tn("rc",this.rank),n=gt(this.rank),r=this.getOutOfBoundsCondition(t),s=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let r=0;r<=1;r++){let s=`${n===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],r=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${r};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},IN=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length);let n="";for(let r=0;r<4;r++){let s="thisRC = rc;";r%2===1&&(s+="thisRC.z += 1;"),r>1&&(s+="thisRC.y += 1;"),n+=`
|
|
${s}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${T9(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?Yw():Xw(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function T9(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?jX(["r","c","d"],"inputShape"):mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var C9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=TN(t,n),s=CN(e,r,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=SN(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[s].shift();return this.usedTextures[s].push(i),i}let o;return r===cn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===cn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===cn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===cn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===cn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let s=TN(n,r),a=CN(t,s,r);a in this.freeTextures||(this.freeTextures[a]=[]);let o=SN(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,r),i=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let c=this.usedTextures[a],l=c.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");c.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function N9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function SN(e,t,n,r,s){let a=_9(t,r),o;if(s){let[c,l]=_u(e[0],e[1]);o=c*l}else{let[c,l]=Vd(e[0],e[1]);o=c*l}let i=N9(n,a);return o*i}function _9(e,t){switch(e){case cn.PACKED_2X2_FLOAT32:return t0(t);case cn.PACKED_2X2_FLOAT16:return n0(t);case cn.UNPACKED_FLOAT32:return Jw(t);case cn.UNPACKED_FLOAT16:return Qw(t);case cn.PACKED_4X1_UNSIGNED_BYTE:return e0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function E9(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?cn.PACKED_2X2_FLOAT32:cn.UNPACKED_FLOAT32:e?cn.PACKED_2X2_FLOAT16:cn.UNPACKED_FLOAT16}function TN(e,t){if(e===br.UPLOAD)return cn.PACKED_2X2_FLOAT32;if(e===br.RENDER||e==null)return E9(t);if(e===br.DOWNLOAD||e===br.PIXELS)return cn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function CN(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Fs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Fr="if (isnan(x)) return x;",A9="return x;",NN="return abs(x);",D9="return (x >= 0.0) ? x : (exp(x) - 1.0);",$9=Fr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,F9=Fr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Ru="return x;",R9="return 1.0 / (1.0 + exp(-1.0 * x));",P9="return x;",O9=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,M9=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,L9=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,B9="return 1.0 / (1.0 + exp(-1.0 * x));",bi=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},z9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length);let t=e.length,n=Tn("rc",t),r=gt(t),s=I9(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${s});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},W9=is.whereImpl,V9=1e-7,U9=1e-4,Tm={};function G9(e){return e in Tm||(Tm[e]={}),Tm[e]}var H9=J().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),j9=600;function q9(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*j9/1024/1024}var Cm=class extends kl{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Sm)t=e;else{let n=Zr(J().getNumber("WEBGL_VERSION"),e);t=new Sm(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Zr(J().getNumber("WEBGL_VERSION"));t=new Sm(n),this.binaryCache=G9(J().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new C9(this.gpgpu),this.numMBBeforeWarning=q9(),this.texData=new qp(this,ns())}nextDataId(){return Cm.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:br.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,s){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:br.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:s,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new bi(o,Ru):d=new Fs(o,Ru);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:r}],r),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let c=this.activeTimers!=null,l;c&&(l=k.now());let u;if(r==="complex64"){let d=this.readSync(s.real.dataId),p=this.readSync(s.imag.dataId);u=_.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return c&&(this.downloadWaitMs+=k.now()-l),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:s,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(s!=null){let h;i?h=new bi(r,Ru):h=new Fs(r,Ru);let f=this.runWebGLProgram(h,[{dataId:e,shape:r,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(J().getBool("DEBUG")&&!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let c=null,l;if(a!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);c=this.gpgpu.createBufferFromTexture(h.texture.texture,...gm(r))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=_.mergeRealAndImagArrays(f,m)}else if(c==null)u=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(c,h)}if(l!=null&&this.disposeIntermediateTensorInfo(l),c!=null){let h=this.gpgpu.gl;be(h,()=>h.deleteBuffer(c))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ns().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:r,shape:s,slice:a,dtype:o,isPacked:i,texture:c}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let p;i?p=new bi(s,Ru):p=new Fs(s,Ru);let h=this.runWebGLProgram(p,[{dataId:e,shape:s,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(c==null)throw r!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let l=this.decode(e,t.customTexShape),u=ns().makeTensorFromDataId(l.dataId,l.shape,l.dtype),d=this.texData.get(l.dataId);return Object.assign({tensorRef:u},d.texture)}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!N2(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),s=k.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture.texture,...gm(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(d),h}let a=J().getBool("WEBGL_PACK")&&r===!0,o=a?vm(t):t,i=a?new P7(o):new R7(o),c=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),l=this.texData.get(c.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(l.texture.texture,l.texShape[0],l.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(c),u}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=k.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=k.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(s);o.kernelMs=k.sum(i),o.getExtraProfileInfo=()=>i.map((c,l)=>({name:a[l],ms:c})).map(c=>`${c.name}: ${c.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:s,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,c=this.dataRefCount.get(i);c>1?this.dataRefCount.set(i,c-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,s,a)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=H9){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return W9(e.shape,t)}packedUnaryOp(e,t,n){let r=new bi(e.shape,t),s=this.compileAndRun(r,[e],n);return ns().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=xN(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,NN,e.dtype);let t=new Fs(e.shape,NN),n=this.compileAndRun(t,[e]);return ns().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let s=n.map(a=>k.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ns().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new z9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new S9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[hi(e.shape),...fi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[hi(t),...fi(t)],a=new IN(s,n),o=!0,i=[n],c=this.runWebGLProgram(a,[r],e.dtype,i,o);return{dataId:c.dataId,shape:t,dtype:c.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:r,shape:s,dtype:a}=n;if(t!=null){let d=k.sizeFromShape(s),p=t[0]*t[1]*4;k.assert(d<=p,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=vm(s),i;r?i=new F7(o):i=new $7(o);let c=!0,l=[t!=null?t:gm(o)],u=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,l,c,t);return{dtype:a,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,r,s=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Wd.DENSE){let g=a!=null?a:gm(e.outputShape);i.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(o.shape)===0)return i.values=k.getTypedArrayFromDType(o.dtype,0),o;let c=[],l=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&k.sizeFromShape(g.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),c.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!Hd(b.shape,g.shape)){let y=g,v=g.shape;g.shape=b.shape,g=this.packedReshape(g,v),c.push(g),b=this.texData.get(g.dataId),y.shape=v}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(o.dataId);let u={shape:o.shape,texData:i,isUniform:!1},d=D7(e,l,u),p=this.getAndSaveBinary(d,()=>E7(this.gpgpu,e,l,u)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),A7(this.gpgpu,p,l,u,r),c.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=k.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,r,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=M(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Ie(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?V9:U9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:s,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let c=this.activeTimers!=null,l;c&&(l=k.now());let u=t.texShape;if(u==null&&(u=G2(n,i),t.texShape=u),s!=null){let d=vm(n),p,h=u[1],f=u[0],m=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(i||!m)&&([h,f]=_u(u[0],u[1])),i?p=new M7(d,m):p=new O7(d,m);let g=m?[f,h]:u,b=this.makeTensorInfo(g,r),y=this.texData.get(b.dataId);m?y.usage=br.PIXELS:y.usage=br.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,f,s);let v=[[f,h]],x=!0,w=this.runWebGLProgram(p,[b],r,v,x),T=this.texData.get(w.dataId);t.texture=T.texture,t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,this.disposeIntermediateTensorInfo(b),this.texData.delete(w.dataId),t.values=null,c&&(this.uploadWaitMs+=k.now()-l)}else{let d=this.acquireTexture(u,o,r,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=K9(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};Cm.nextDataId=0;function K9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var X9="3.13.0";function _N(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Zl.isBrowser()&&Uh("webgl",()=>new Cm,2);var Y9={forceHalfFloat:_N},EN=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Pu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Vn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Nm=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,qd=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length;this.enableShapeUniforms=Vn(s);let a="";if(r)if(s===0||k.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${gt(s)} coords = getOutputCoords();
|
|
`,s===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Tn("coords",s);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[s-2]} + 1) >= outShape[${s} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[s-1]} + 1) >= outShape[${s} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[s-2]} + 1) >= ${this.outputShape[s-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[s-1]} + 1) >= ${this.outputShape[s-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ar(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Z9={kernelName:so,backendName:"webgl",kernelFunc:ar};function Ta(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.texData.get(a.dataId),i=ar({inputs:{x:r},backend:n}),c=ar({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:c},a}var J9={kernelName:nh,backendName:"webgl",kernelFunc:Ta},AN="return (a < 0.) ? b * a : a;",DN=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function Q9(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r,o=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),i=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qd(DN,s.shape,o.shape):new Pu(AN,s.shape,o.shape),c=n.runWebGLProgram(i,[s,o],"float32");return n.disposeIntermediateTensorInfo(o),c}var eY={kernelName:ao,backendName:"webgl",kernelFunc:Q9},$N="return (a < 0.) ? b * a : a;",FN=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function tY(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qd(FN,r.shape,s.shape):new Pu($N,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],"float32")}var nY={kernelName:vo,backendName:"webgl",kernelFunc:tY},Ou="if (isnan(x)) return x;",rY=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,sY=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:s,backend:a})=>{let{x:o}=s,i=a,c=r||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,c);return i.makeTensorInfo(o.shape,c,p)}let l=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return l?u=new bi(o.shape,t):u=new Fs(o.shape,e),i.runWebGLProgram(u,[o],c)}}function un({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:s,dtype:a}){return({inputs:o,backend:i})=>{let{a:c,b:l}=o,u=i;if(r&&c.dtype==="complex64"){let f=u.texData.get(c.dataId),m=u.texData.get(l.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(v=>{let[x,w]=v,T={dataId:x.dataId,dtype:x.dtype,shape:c.shape},N={dataId:w.dataId,dtype:w.dtype,shape:l.shape},$=new Pu(e,c.shape,l.shape);return u.runWebGLProgram($,[T,N],Tr(x.dtype,w.dtype))}),y=Ta({inputs:{real:g,imag:b},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(b),y}let d=a||Tr(c.dtype,l.dtype);if((c.dtype==="string"||l.dtype==="string"||u.shouldExecuteOnCPU([c,l]))&&s!=null){let f=u.texData.get(c.dataId).values,m=u.texData.get(l.dataId).values,g=c.dtype==="string"?_.fromUint8ToStringArray(f):f,b=c.dtype==="string"?_.fromUint8ToStringArray(m):m,[y,v]=s(c.shape,l.shape,g,b,d),x=u.makeTensorInfo(v,d),w=u.texData.get(x.dataId);return w.values=y,x}let p=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new qd(t,c.shape,l.shape,n):h=new Pu(e,c.shape,l.shape),u.runWebGLProgram(h,[c,l],d)}}function _m(e,t=!1){if(e==="linear")return t?P9:A9;if(e==="relu")return t?M9:$9;if(e==="elu")return t?O9:D9;if(e==="relu6")return t?L9:F9;if(e==="prelu")return t?FN:$N;if(e==="leakyrelu")return t?DN:AN;if(e==="sigmoid")return t?B9:R9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var RN=class{constructor(e,t,n,r=!1,s=!1,a=!1,o=null,i=!1,c=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Vn(this.outputShape.length);let l=r?e[1]:e[2],u=Math.ceil(l/2),d=r?"i * 2, rc.y":"rc.y, i * 2",p=s?"rc.z, i * 2":"i * 2, rc.z",h=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:c?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),c&&this.variableNames.push("leakyreluAlpha");let y="rc.x",v="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${v};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},PN={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},ON=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},MN="return a * b;";function s0(e){let{inputs:t,backend:n}=e,{a:r,b:s}=t,a=_.upcastType(r.dtype,s.dtype);if(r.dtype==="complex64"){let i=n.texData.get(r.dataId),c=n.texData.get(s.dataId),l=new ON(PN.REAL,r.shape,s.shape),u=new ON(PN.IMAG,r.shape,s.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:r.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:c.complexTensorInfos.real.dataId,dtype:c.complexTensorInfos.real.dtype,shape:s.shape},{dataId:c.complexTensorInfos.imag.dataId,dtype:c.complexTensorInfos.imag.dtype,shape:s.shape}],p=n.runWebGLProgram(l,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Ta({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([r,s])){let i=n.texData.get(r.dataId),c=n.texData.get(s.dataId),[l,u]=s9(r.shape,s.shape,i.values,c.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=l,d}let o;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new qd(MN,r.shape,s.shape):o=new Pu(MN,r.shape,s.shape),n.runWebGLProgram(o,[r,s],a)}var aY={kernelName:mo,backendName:"webgl",kernelFunc:s0};function oY(e,t,n){let r=[hi(e.shape),...fi(e.shape)],s={dtype:e.dtype,shape:r,dataId:e.dataId},a=[hi(t),...fi(t)],o=new IN(a,r),i=!0,c=[r],l=n.runWebGLProgram(o,[s],e.dtype,c,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=n,i=k.sizeFromShape(s.shape),c=k.inferFromImplicitShape(a,i),l=k.sizeFromShape(c);k.assert(i===l,()=>`The new shape (${c}) has ${l} elements and the old shape (${s.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(s.dataId);return u.isPacked&&!Hd(s.shape,c)&&!(u.texture!==null&&Hd(u.shape,c))?oY(s,c,o):(o.incRef(s.dataId),{dataId:s.dataId,shape:c,dtype:s.dtype})}var iY={kernelName:Pc,backendName:"webgl",kernelFunc:ge},LN=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o=Math.floor(n/4)*4,i=n%4,c="sumValue += dot(values, ones);";if(t!=null){let u=1/t;c=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let l="";s%n>0&&(l=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${l}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${c}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${c}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${c}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${c}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},cY=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let c=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?c="sumValue":t==="prod"?c="prodValue":t==="all"?c="allValue":t==="any"&&(c="anyValue");let l=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";s%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${c});
|
|
}
|
|
`}};function uY(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function yi(e,t,n,r){let s=uY(e.shape),a=e;for(let o=0;o<s.length;o++){let{inSize:i,windowSize:c,outSize:l}=s[o],u,d;n==="mean"?u=o===0?new LN({windowSize:c,inSize:i,batchSize:e.shape[0],outSize:l},i):new LN({windowSize:c,inSize:i,batchSize:e.shape[0],outSize:l}):u=new cY({windowSize:c,inSize:i,batchSize:e.shape[0],outSize:l},n),d=a,a=r.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(d)}return a}var lY=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let r=gt(this.rank),s=dY(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function dY(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let s=0;s<e.length;s++)r[e[s]]=n[s];return r.join()}var pY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let l=0;l<n.length;l++)n[l]=e[t[l]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=gt(this.rank),s=kN("rc",this.rank),a=new Array(this.rank);for(let l=0;l<t.length;l++)a[t[l]]=s[l];let o=`vec2(${a.slice(-2).join()})`,i=`++${s[this.rank-1]} < ${n[this.rank-1]}`,c=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${c};
|
|
if(${i}) {
|
|
result[1] = ${c};
|
|
}
|
|
--${s[this.rank-1]};
|
|
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${c};
|
|
if(${i}) {
|
|
result[3] = ${c};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Em(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pY(e.shape,t):new lY(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function hY(e,t,n,r){let s=t,a=e.shape.length,o=k.parseAxisParam(s,e.shape),i=o,c=_.getAxesPermutation(i,a),l=c!=null,u=e;l&&(u=Em(e,c,r),i=_.getInnerMostAxes(i.length,a)),_.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=_.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=_.expandShapeToKeepDim(d,o));let f=k.sizeFromShape(p),g=k.sizeFromShape(e.shape)/f,b=ge({inputs:{x:u},attrs:{shape:[g,f]},backend:r}),y=Lh(e.dtype),v=yi(b,y,"sum",r),x=ge({inputs:{x:v},attrs:{shape:h},backend:r});return r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(v),l&&r.disposeIntermediateTensorInfo(u),x}function Am(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return hY(s,a,o,n)}var fY={kernelName:Eo,backendName:"webgl",kernelFunc:Am};function Cn(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{perm:a}=r,o=n,i=s.shape.length,c=new Array(i);for(let u=0;u<c.length;u++)c[u]=s.shape[a[u]];let l;if(o.shouldExecuteOnCPU([s])){let d=o.texData.get(s.dataId).values,p=r0(d,s.shape,s.dtype,a,c);l=o.makeTensorInfo(c,s.dtype);let h=o.texData.get(l.dataId);h.values=p}else l=Em(s,a,o);return l}var mY={kernelName:Po,backendName:"webgl",kernelFunc:Cn},BN=1e3;function Dm({a:e,b:t,transposeA:n,transposeB:r,backend:s,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:c=null}){let l=e.shape.length,u=t.shape.length,d=n?e.shape[l-2]:e.shape[l-1],p=r?t.shape[u-1]:t.shape[u-2],h=n?e.shape[l-1]:e.shape[l-2],f=r?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=k.sizeFromShape(m),y=k.sizeFromShape(g),x=su.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[b,d,h]:[b,h,d],T=r?[y,f,p]:[y,p,f],N=ge({inputs:{x:e},backend:s,attrs:{shape:w}}),$=ge({inputs:{x:t},backend:s,attrs:{shape:T}}),D=[N,$],P=Math.max(b,y),F=n?N.shape[1]:N.shape[2],R=a!=null,C=o!=null,L=c==="leakyrelu",G=c!=null?_m(c,!0):null,j=R||C||L||G!=null,K;if((h===1||f===1)&&F>BN&&j===!1){let Z=N,te=$;n&&(Z=Cn({inputs:{x:N},backend:s,attrs:{perm:[0,2,1]}}),D.push(Z)),r&&(te=Cn({inputs:{x:$},backend:s,attrs:{perm:[0,2,1]}}),D.push(te));let se=f!==1,oe=f===1,re=Z;se&&(re=ge({inputs:{x:Z},backend:s,attrs:{shape:[P,F,1]}}),D.push(re));let ue=f===1?2:1,ne=te;oe&&(ne=ge({inputs:{x:te},backend:s,attrs:{shape:[P,1,F]}}),D.push(ne));let he=s0({inputs:{a:re,b:ne},backend:s});K=Am({inputs:{x:he},backend:s,attrs:{axis:ue,keepDims:!0}}),D.push(he)}else{let Z=Tr(e.dtype,t.dtype),te=new RN(w,T,[P,h,f],n,r,R,G,C,L),se=[N,$];if(a!=null&&se.push(a),C&&se.push(o),L){let oe=s.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));se.push(oe),D.push(oe)}K=s.runWebGLProgram(te,se,Z)}let q=ge({inputs:{x:K},backend:s,attrs:{shape:x}});D.push(K);for(let Z of D)s.disposeIntermediateTensorInfo(Z);return q}function gY(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:c,transposeB:l,activation:u,leakyreluAlpha:d}=r;return Dm({a:s,b:a,transposeA:c,transposeB:l,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var bY={kernelName:Oo,backendName:"webgl",kernelFunc:gY},zN="return abs(x);";function yY(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let a=n.texData.get(r.dataId),o=xN(a.values);return n.makeTensorInfo(r.shape,r.dtype,o)}let s;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new bi(r.shape,zN):s=new Fs(r.shape,zN),n.runWebGLProgram(s,[r],r.dtype)}var vY={kernelName:Yi,backendName:"webgl",kernelFunc:yY},xY=Fr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,wY=Ye({opSnippet:xY}),kY={kernelName:Zi,backendName:"webgl",kernelFunc:wY},IY=Fr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,SY=Ye({opSnippet:IY}),TY={kernelName:Ji,backendName:"webgl",kernelFunc:SY},WN="return a + b;",CY=un({opSnippet:WN,packedOpSnippet:WN,supportsComplex:!0,cpuKernelImpl:B7}),NY={kernelName:Js,backendName:"webgl",kernelFunc:CY},_Y=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},EY=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function $m(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return ar({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(r.length/2),l=$m({inputs:r.slice(0,c),backend:n}),u=$m({inputs:r.slice(c),backend:n});return $m({inputs:[l,u],backend:n})}let s=r.map(c=>c.dtype).reduce((c,l)=>Tr(c,l)),a=r.map(c=>c.shape),i=J().getBool("WEBGL_PACK")?new EY(r[0].shape,a):new _Y(r[0].shape,a);return n.runWebGLProgram(i,r,s)}var AY={kernelName:Ba,backendName:"webgl",kernelFunc:$m};function DY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=k.parseAxisParam(a,s.shape),l=c,u=_.getAxesPermutation(l,i),d=s;u!=null&&(d=Cn({inputs:{x:s},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,i)),_.assertAxesAreInnerMostDims("all",l,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,l),f=k.sizeFromShape(h),m=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yi(m,m.dtype,"all",n),b;if(o){let y=_.expandShapeToKeepDim(p,c);b=ge({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ge({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),b}var $Y={kernelName:Qi,backendName:"webgl",kernelFunc:DY};function FY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=k.parseAxisParam(a,s.shape),l=c,u=_.getAxesPermutation(l,i),d=s;u!=null&&(d=Cn({inputs:{x:s},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,i)),_.assertAxesAreInnerMostDims("any",l,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,l),f=k.sizeFromShape(h),m=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yi(m,m.dtype,"any",n),b;if(o){let y=_.expandShapeToKeepDim(p,c);b=ge({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ge({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),b}var RY={kernelName:ec,backendName:"webgl",kernelFunc:FY},PY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},OY=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),r||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,c=gt(i),l=Tn("coords",i),u,d;if(a===1){d=i+1;let N=gt(d);u=`
|
|
${N} sourceLocR = ${N}(${l.join()}, 0);
|
|
++${l[i-1]};
|
|
${N} sourceLocG = ${N}(${l.join()}, 0);
|
|
++${l[i-2]};
|
|
${N} sourceLocA = ${N}(${l.join()}, 0);
|
|
--${l[i-1]};
|
|
${N} sourceLocB = ${N}(${l.join()}, 0);
|
|
--${l[i-2]};`}else d=i,u=`
|
|
${c} sourceLocR = coords;
|
|
++${l[i-1]};
|
|
${c} sourceLocG = coords;
|
|
++${l[i-2]};
|
|
${c} sourceLocA = coords;
|
|
--${l[i-1]};
|
|
${c} sourceLocB = coords;
|
|
--${l[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(N=>"int "+N),m=Tn("sourceLocR",d-1).concat("inIdx.r"),g=Tn("sourceLocG",d-1).concat("inIdx.g"),b=Tn("sourceLocB",d-1).concat("inIdx.b"),y=Tn("sourceLocA",d-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=r?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${T}
|
|
void main() {
|
|
${c} coords = getOutputCoords();
|
|
bool hasNextCol = ${l[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${l[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${x}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function VN(e,t,n,r=null){let s=t.shape[0],a=t.shape[1];r!=null&&(s=r.shape[0],a=r.shape[1]);let o=_.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:s,outSize:Math.ceil(a/o)},c=new PY(i,n,r==null),l=[t];r!=null&&l.push(r);let u=e.runWebGLProgram(c,l,"int32");if(u.shape[1]===1)return u;let d=VN(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function UN(e,t,n,r=null){let s=r!=null?r.shape:t.shape,a=s[s.length-1],o=_.computeOptimalWindowSize(a),i=new OY(s,o,n,r==null),c=r==null?[t]:[t,r],l=e.runWebGLProgram(i,c,"int32");if(l.shape.length===t.shape.length){let u=UN(e,t,n,l);return e.disposeIntermediateTensorInfo(l),u}return l}function GN(e,t,n,r){let s=[n];if(_.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),s,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,c=t;i&&(c=e.unpackTensor(t),a.push(c));let[l,u]=_.computeOutAndReduceShapes(c.shape,s),d=k.sizeFromShape(u),p=ge({inputs:{x:c},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=VN(e,p,r);a.push(h);let f=ge({inputs:{x:h},backend:e,attrs:{shape:l}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return UN(e,t,r)}function MY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=Cn({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),_.assertAxesAreInnerMostDims("argMax",[o[0]],c.shape.length);let u=GN(n,c,o[0],"max");return l.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var LY={kernelName:za,backendName:"webgl",kernelFunc:MY};function BY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=Cn({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=_.getInnerMostAxes(o.length,c.shape.length)),_.assertAxesAreInnerMostDims("argMin",[o[0]],c.shape.length);let u=GN(n,c,o[0],"min");return l.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var zY={kernelName:Tl,backendName:"webgl",kernelFunc:BY},WY=Fr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,VY=Ye({opSnippet:WY}),UY={kernelName:tc,backendName:"webgl",kernelFunc:VY},GY=Fr+"return log(x + sqrt(x * x + 1.0));",HY=Ye({opSnippet:GY}),jY={kernelName:nc,backendName:"webgl",kernelFunc:HY},qY=Fr+`
|
|
return atan(x);
|
|
`,KY=Ye({opSnippet:qY}),XY={kernelName:rc,backendName:"webgl",kernelFunc:KY},YY=rY+`
|
|
return atan(a, b);
|
|
`,ZY=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+sY+`
|
|
return result;
|
|
`,JY=un({opSnippet:YY,packedOpSnippet:ZY}),QY={kernelName:ac,backendName:"webgl",kernelFunc:JY},eZ=Fr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,tZ=Ye({opSnippet:eZ}),nZ={kernelName:sc,backendName:"webgl",kernelFunc:tZ},Kd=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,c=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${l}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?s?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(a/4)*4,w=a%4,T=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
getValue(batch, xR, xC + 3 * ${l}, d)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
`}},a0=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,c=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",v="0.0";if(y||(v="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${c});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let T=Math.floor(a/4)*4,N=a%4,$=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${c});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
const float initializationValue = ${v};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${v});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${T}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${$}
|
|
}
|
|
|
|
int xC = xCCorner + ${T};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${$}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function rZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Eu(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,l=1;k.assert(_.eitherStridesOrDilationsAreOne(o,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=_.computePool2DInfo(s.shape,a,o,l,i,c);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return ar({inputs:{x:s},backend:n});let d=new Kd(u,"avg",!1);return n.runWebGLProgram(d,[s],"float32")}var sZ={kernelName:Wa,backendName:"webgl",kernelFunc:rZ};function aZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:l}=r,u=[1,1,1],d=_.computePool3DInfo(s.shape,a,o,u,i,c,l),p=new a0(d,"avg",!1);return n.runWebGLProgram(p,[s],"float32")}var oZ={kernelName:Cl,backendName:"webgl",kernelFunc:aZ},iZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,c=e.effectiveFilterWidth,l=i-1-e.padInfo.top,u=c-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,c=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${s}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${c}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${l}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function uZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:c,pad:l,dimRoundingMode:u}=r,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,c,d,l,u),h=new cZ(p);return n.runWebGLProgram(h,[s],o.dtype)}var lZ={kernelName:Qp,backendName:"webgl",kernelFunc:uZ};function dZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;Eu([s,a],"avgPoolGrad");let{filterSize:i,strides:c,pad:l}=r,u=_.computePool2DInfo(o.shape,i,c,1,l),d=new iZ(u);return n.runWebGLProgram(d,[s],o.dtype)}var pZ={kernelName:Jp,backendName:"webgl",kernelFunc:dZ};function hZ(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return Dm({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var fZ={kernelName:Va,backendName:"webgl",kernelFunc:hZ},mZ=class{constructor(e,t,n,r,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="0.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},gZ=class{constructor(e,t,n,r,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},bZ=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:s,variance:a,offset:o,scale:i}=e;k.assert(s.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(o==null||s.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(i==null||s.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:c}=n;c==null&&(c=.001);let l=[r,s,a],u=null;o!=null&&(u=o.shape,l.push(o));let d=null;i!=null&&(d=i.shape,l.push(i));let p=J().getBool("WEBGL_PACK_NORMALIZATION")?new gZ(r.shape,s.shape,a.shape,u,d,c):new mZ(r.shape,s.shape,a.shape,u,d,c);return t.runWebGLProgram(p,l,l[0].dtype)},yZ={kernelName:no,backendName:"webgl",kernelFunc:bZ},vZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=xZ(this.rank),r,s=e.map((a,o)=>`sourceLoc.${o0[o]} = start[${o}] + coords.${o0[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},o0=["x","y","z","w","u","v"];function xZ(e){if(e===1)return"sourceLoc";if(e<=6)return o0.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var wZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=Tn("coords",this.rank),r=Tn("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,a=`getChannel(getSource(${r.join()}), ${s})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${a};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,c=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((l,u)=>`start[${u}]`).join()});`:e.map((l,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${c}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function kZ(e,t,n,r){let s=r.texData.get(e.dataId),a=r.makeTensorInfo(n,e.dtype),o=r.texData.get(a.dataId);Object.assign(o,s),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ht.computeFlatOffset(t,k.computeStrides(e.shape));s.slice&&(i+=s.slice.flatOffset),o.slice={flatOffset:i,origDataId:s.slice&&s.slice.origDataId||e.dataId};let c=r.dataRefCount.get(o.slice.origDataId)||1;return r.dataRefCount.set(o.slice.origDataId,c+1),a}function Mu(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,c]=Ht.parseSliceParams(s,a,o);if(Ht.assertParamsValid(s,i,c),k.sizeFromShape(c)===0)return n.makeTensorInfo(c,s.dtype,[]);if(n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.texData.get(s.dataId),p=d9(d.values,i,c,s.shape,s.dtype);return n.makeTensorInfo(c,s.dtype,p)}let{isPacked:l}=n.texData.get(s.dataId),u=Ht.isSliceContinous(s.shape,i,c);if(l||!u){let d=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wZ(c):new vZ(c),p=[i];return n.runWebGLProgram(d,[s],s.dtype,p)}return n.uploadToGPU(s.dataId),kZ(s,i,c,n)}var IZ={kernelName:Bc,backendName:"webgl",kernelFunc:Mu},SZ=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;k.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,v)=>y*v),c=_.getReshaped(s.shape,a,i),l=_.getPermuted(c.length,a.length),u=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(u,o,a.length),h=[],f=ge({inputs:{x:s},backend:n,attrs:{shape:c}}),m=Cn({inputs:{x:f},backend:n,attrs:{perm:l}}),g=ge({inputs:{x:m},backend:n,attrs:{shape:u}}),b=Mu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},TZ={kernelName:oc,backendName:"webgl",kernelFunc:SZ};function CZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.readSync(s.dataId),c=n.readSync(a.dataId),l=vN(i,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}var NZ={kernelName:eh,backendName:"webgl",kernelFunc:CZ};function _Z(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.readSync(r.dataId),o=n.readSync(s.dataId),i=_.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var EZ={kernelName:th,backendName:"webgl",kernelFunc:_Z},AZ="return float(a != b);",HN=un({opSnippet:AZ,cpuKernelImpl:o9,dtype:"bool"}),DZ={kernelName:Nc,backendName:"webgl",kernelFunc:HN};function Xd(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return ar({inputs:{x:s.complexTensorInfos.real},backend:n})}var $Z={kernelName:Ih,backendName:"webgl",kernelFunc:Xd},FZ="return float(int(x));";function RZ(e,t){let n=new Fs(e.shape,FZ),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function i0(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return ar({inputs:{x:s},backend:n});let o=Tt(s.shape),i=i0({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),c=Ta({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),c}if(s.dtype==="complex64"){let o=Xd({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=ar({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return RZ(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),c=HN({inputs:{a:s,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),c}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var PZ={kernelName:Ua,backendName:"webgl",kernelFunc:i0},jN="return ceil(x);",OZ=Ye({opSnippet:jN,packedOpSnippet:jN,cpuKernelImpl:W7}),MZ={kernelName:Ga,backendName:"webgl",kernelFunc:OZ},LZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},BZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function zZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i;J().getBool("WEBGL_PACK_CLIP")?i=new BZ(s.shape):i=new LZ(s.shape);let c=[[a],[o]];return n.runWebGLProgram(i,[s],s.dtype,c)}var WZ={kernelName:Qs,backendName:"webgl",kernelFunc:zZ},VZ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function qN(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function UZ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=n.texData.get(r.dataId),a=new VZ(r.shape),o=[qN(r,s.complexTensorInfos.real),qN(r,s.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var GZ={kernelName:Nl,backendName:"webgl",kernelFunc:UZ},HZ=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let r=t.length,s=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${s}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},jZ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,r=n.length,s=gt(r),a=Tn("coords",r),o=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let c=o[t],l=o.slice(-2),u=o.join(),d=`if (${c} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${l.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${c} < ${i[f]} && ${c} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Fm(o,c,m)}),
|
|
vec2(${Fm(l,c,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${Fm(o,c,h)}),
|
|
vec2(${Fm(l,c,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[r-1]} = ${a[r-1]} + 1;
|
|
if (${a[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[r-2]} = ${a[r-2]} + 1;
|
|
if (${a[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[r-1]} = ${a[r-1]} - 1;
|
|
if (${a[r-2]} < ${n[r-2]} &&
|
|
${a[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Fm(e,t,n){let r=e.indexOf(t);return e.map((a,o)=>o===r?`${a} - ${n}`:a).join()}function Rm(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return ar({inputs:{x:s.complexTensorInfos.imag},backend:n})}var qZ={kernelName:gh,backendName:"webgl",kernelFunc:Rm};function Lu(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>Xd({inputs:{input:m},backend:n})),d=e.map(m=>Rm({inputs:{input:m},backend:n})),p=Lu(u,t,n),h=Lu(d,t,n),f=Ta({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let u=e.map(b=>{let y=k.sizeFromShape(b.shape.slice(t));return ge({inputs:{x:b},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),p=_.computeOutShape(u.map(b=>b.shape),1),h=u[0].shape[0]===1,f=V7(d,p,r,h),m=_.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,r,f);return u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Lu(e.slice(0,u),t,n),p=Lu(e.slice(u),t,n),h=Lu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new jZ(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:o}=KZ(e,t,n),i=new HZ(a.map(u=>u.shape)),c=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=ge({inputs:{x:c},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(c),l}function KZ(e,t,n){let r=_.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ge({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function KN(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=k.parseAxisParam(s,t[0].shape)[0],o=_.computeOutShape(t.map(l=>l.shape),a);if(k.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(l=>k.sizeFromShape(l.shape)>0);if(i.length===1)return ar({inputs:{x:i[0]},backend:n});let c=i.map(l=>l.shape);return _.assertParamsConsistent(c,a),Lu(i,a,n)}var XZ={kernelName:ic,backendName:"webgl",kernelFunc:KN},XN=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,c=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,y=m?3:1,v="",x="";n&&(r?v=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?v=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:v=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${v}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${c});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}},YZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,c=e.dilationHeight,l=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${s}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},ZZ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Vn(this.outputShape.length);let{dataFormat:n}=t,r=Sn(),s=n==="channelsLast",a=s?0:1,o=s?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,c="";for(let l=0;l<=1;l++)for(let u=0;u<=1;u++)c+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${l};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${s}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${l*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${l*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${c}
|
|
|
|
${r.output} = result;
|
|
}
|
|
`}};function YN({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let c=e.shape,l=r.texData.get(e.dataId),u=n.inChannels,d=c[0]*c[1]*c[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(!((d===1||p===1)&&u>BN)&&l.isPacked&&h&&l.texture!=null&&c[2]%2!==0&&k.arraysEqual(l.shape.slice(-3),c.slice(-3))){let x=c[0]*c[1]*(c[2]+1),w={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},T=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,k.assert(Hd(l.shape,w.shape),()=>`packed reshape ${l.shape} to ${w.shape} isn't free`);let N=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(N);let $=Dm({a:w,b:N,backend:r,transposeA:f,transposeB:m,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),D=r.texData.get($.dataId);k.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=T,D.shape=n.outShape,g=ar({inputs:{x:$},backend:r}),g.shape=n.outShape,b.push($)}else{let x=h?c[0]*c[1]*c[2]:c[0]*c[2]*c[3],w=ge({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),T=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Dm({a:w,b:T,transposeA:f,transposeB:m,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ge({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),b.push(w),b.push(T),b.push(N)}for(let x of b)r.disposeIntermediateTensorInfo(x);return g}function ZN({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:c,filterHeight:l,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=c*l*u,g=p*d,b=[m,g],y=!0,v=!1,x=[],w=ge({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),T=ge({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});x.push(w),x.push(T);let N=new ZZ(b,n),$=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],D=r.runWebGLProgram(N,[w],"float32",$),P=ge({inputs:{x:D},backend:r,attrs:{shape:[1,b[0],b[1]]}});x.push(D),x.push(P);let F=s!=null,R=a!=null,C=i==="leakyrelu",L=i?_m(i,!0):null,G=new RN(P.shape,T.shape,[1,g,n.outChannels],y,v,F,L,R,C),j=[P,T];if(s&&j.push(s),R&&j.push(a),C){let te=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));j.push(te),x.push(te)}let K=r.runWebGLProgram(G,j,"float32"),q=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Z=ge({inputs:{x:K},backend:r,attrs:{shape:q}});x.push(K);for(let te of x)r.disposeIntermediateTensorInfo(te);return Z}function JZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:c,dilations:l,dimRoundingMode:u}=r,d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,a.shape,o,l,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=YN({x:s,filter:a,convInfo:p,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)h=ZN({x:s,filter:a,convInfo:p,backend:n});else{let m=new XN(p);h=n.runWebGLProgram(m,[s,a],"float32")}let f=ge({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var QZ={kernelName:Ha,backendName:"webgl",kernelFunc:JZ},eJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},tJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,c=a?1:2,l=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${c}], coords[${l}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${s};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,c=n-1-e.padInfo.top,l=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${c}, ${l});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${s}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function sJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:c,dimRoundingMode:l,filterShape:u}=r,d=_.convertConv2DDataFormat(c),p=_.computeConv2DInfo(s.shape,u,o,1,i,l,!1,d),h=new eJ(p);return n.runWebGLProgram(h,[s,a],"float32")}var aJ={kernelName:rh,backendName:"webgl",kernelFunc:sJ};function oJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:c,dataFormat:l,dimRoundingMode:u}=r,d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(o,a.shape,i,1,c,u,!1,d),h=new tJ(p);return n.runWebGLProgram(h,[s,a],"float32")}var iJ={kernelName:ja,backendName:"webgl",kernelFunc:oJ};function cJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r,l=_.computeConv3DInfo(s.shape,a.shape,o,c,i),u=new YZ(l);return n.runWebGLProgram(u,[s,a],"float32")}var uJ={kernelName:_l,backendName:"webgl",kernelFunc:cJ};function lJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:c}=r,l=_.computeConv3DInfo(s.shape,c,o,1,i),u=new nJ(l);return n.runWebGLProgram(u,[s,a],"float32")}var dJ={kernelName:sh,backendName:"webgl",kernelFunc:lJ};function pJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:c}=r,l=_.computeConv3DInfo(c,a.shape,i,1,o),u=new rJ(l);return n.runWebGLProgram(u,[s,a],"float32")}var hJ={kernelName:ah,backendName:"webgl",kernelFunc:pJ},fJ=Ou+`
|
|
return cos(x);
|
|
`,mJ=Ye({opSnippet:fJ}),gJ={kernelName:qa,backendName:"webgl",kernelFunc:mJ},bJ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,yJ=Ye({opSnippet:bJ}),vJ={kernelName:Ka,backendName:"webgl",kernelFunc:yJ},xJ=class{constructor(e,t,n,r,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,c]=e,[l]=t,[u,d]=n;this.outputShape=[l,u,d,c];let p=r==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,b]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,v,x]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${v};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
float in_x = ${x};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},wJ=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:c,extrapolationValue:l}=r,u=new xJ(s.shape,a.shape,i,c,l);return n.runWebGLProgram(u,[s,a,o],"float32")},kJ={kernelName:cc,backendName:"webgl",kernelFunc:wJ},JN=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let r=e.length,s=t?"0.0":`getX(${QN(r,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(r)} coords = getOutputCoords();
|
|
int end = ${e_(r,"coords")};
|
|
float val = ${s};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${e_(r,"coords")} = idx;
|
|
val += getX(${QN(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function QN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function e_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function IJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,c=s.shape.length,l=_.getAxesPermutation([a],c),u=s;l!=null&&(u=Cn({inputs:{x:s},backend:n,attrs:{perm:l}}));let d=_.getInnerMostAxes(1,c)[0];if(d!==c-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${s.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ar({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new JN(u.shape,!1,i),g=[[f]],b=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(b)}if(o){let f=new JN(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(l!=null){let f=_.getUndoAxesPermutation(l),m=Cn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var SJ={kernelName:Xa,backendName:"webgl",kernelFunc:IJ};function TJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let c=n.readSync(s.dataId),l=n.readSync(a.dataId),u=vN(c,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(s.shape.length===2){let c=n.bufferSync(s),l=n.bufferSync(a),u=z7(c,l,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var CJ={kernelName:oh,backendName:"webgl",kernelFunc:TJ},NJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _J(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r,i=s.shape[0],c=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],u=o==="NHWC"?s.shape[3]:s.shape[1],d=c*a,p=l*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new NJ(f,a,o);return n.runWebGLProgram(m,[s],s.dtype)}var EJ={kernelName:uc,backendName:"webgl",kernelFunc:_J},t_=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vn(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,c="",l="";n&&(r?c=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?c=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:c=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,l="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${c}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}},n_=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Vn(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,c=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(p+=`
|
|
xC = xCCorner + ${b*c};
|
|
`,i===1){if(b<u&&(o%2===1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,c===1&&b>0?p+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<u)){let y=o%2===0?k.nearestLargerEven(c):c;c%2===0&&o%2===1||c%2!==0&&o%2!==1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,c>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):y===1?p+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:p+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<u&&(o%2===1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<u&&(p+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<u&&(p+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<u&&(p+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function AJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c,dimRoundingMode:l}=r,u=c;u==null&&(u=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=_.computeConv2DInfo(s.shape,a.shape,o,u,i,l,!0),p;J().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?p=new n_(d):p=new t_(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[s,a],"float32",h)}var DJ={kernelName:Ya,backendName:"webgl",kernelFunc:AJ},$J=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},FJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function RJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:l,filterShape:u}=r,d=_.computeConv2DInfo(s.shape,u,o,i,c,l,!0),p=new $J(d);return n.runWebGLProgram(p,[s,a],"float32")}var PJ={kernelName:ih,backendName:"webgl",kernelFunc:RJ};function OJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:l,inputShape:u}=r,d=_.computeConv2DInfo(u,a.shape,o,i,c,l,!0),p=new FJ(d);return n.runWebGLProgram(p,[s,a],"float32")}var MJ={kernelName:ch,backendName:"webgl",kernelFunc:OJ},LJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function BJ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=[...r.shape,...r.shape],a=k.sizeFromShape(r.shape),o=ge({inputs:{x:r},backend:n,attrs:{shape:[a]}}),i=new LJ(a),c=n.runWebGLProgram(i,[o],o.dtype),l=ge({inputs:{x:c},backend:n,attrs:{shape:s}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),l}var zJ={kernelName:uh,backendName:"webgl",kernelFunc:BJ},WJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:s,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:c,dilationWidth:l}=e,{top:u,left:d}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${s}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${c};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${l};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function VJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r,l=_.computeDilation2DInfo(s.shape,a.shape,o,i,"NHWC",c),u,d=new WJ(l);u=n.runWebGLProgram(d,[s,a],"float32");let p=ge({inputs:{x:u},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(u),p}var UJ={kernelName:El,backendName:"webgl",kernelFunc:VJ};function GJ(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:c}=_.decodeEinsumEquation(s,a.length);_.checkEinsumDimSizes(o.length,c,a);let{path:l,steps:u}=_.getEinsumComputePath(i,c),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:b,expandDims:y}=_.getEinsumPermutation(h,c[g]),v;_.isIdentityPermutation(b)?v=a[g]:(v=Cn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let w=0;w<y.length;++w)x.splice(y[w],0,1);k.arraysEqual(v.shape,x)||(v=ge({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=s0({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(l[m]>=0&&(p=Am({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var HJ={kernelName:ph,backendName:"webgl",kernelFunc:GJ},jJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",qJ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,KJ=Ye({opSnippet:jJ,packedOpSnippet:qJ}),XJ={kernelName:Ja,backendName:"webgl",kernelFunc:KJ},YJ="return (b >= 1.0) ? a : a * (b + 1.0);",ZJ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,JJ=e=>{let{inputs:t,backend:n}=e,{dy:r,y:s}=t,a=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qd(ZJ,r.shape,s.shape):new Pu(YJ,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)},QJ={kernelName:hh,backendName:"webgl",kernelFunc:JJ},eQ=`
|
|
return vec4(equal(a, b));
|
|
`,tQ="return float(a == b);",nQ=un({opSnippet:tQ,packedOpSnippet:eQ,dtype:"bool",cpuKernelImpl:U7}),rQ={kernelName:dc,backendName:"webgl",kernelFunc:nQ},sQ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${_.ERF_P};
|
|
float a1 = ${_.ERF_A1};
|
|
float a2 = ${_.ERF_A2};
|
|
float a3 = ${_.ERF_A3};
|
|
float a4 = ${_.ERF_A4};
|
|
float a5 = ${_.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,aQ=Ye({opSnippet:sQ}),oQ={kernelName:lc,backendName:"webgl",kernelFunc:aQ},iQ=Ou+`
|
|
return exp(x);
|
|
`,cQ=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,r_=Ye({opSnippet:iQ,packedOpSnippet:cQ,cpuKernelImpl:G7,dtype:"float32"}),uQ={kernelName:Qa,backendName:"webgl",kernelFunc:r_};function c0(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),c=s;return s<0&&(k.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+s+1),i.splice(c,0,1),ge({inputs:{x:a},backend:r,attrs:{shape:i}})}var lQ={kernelName:pc,backendName:"webgl",kernelFunc:c0},s_="return exp(x) - 1.0;",dQ=Ye({opSnippet:s_,packedOpSnippet:s_,cpuKernelImpl:H7}),pQ={kernelName:hc,backendName:"webgl",kernelFunc:dQ},a_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${r}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${s};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function o_(e,t,n){let r=n.texData.get(e.dataId),s=k.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=s/a,i=ge({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),c=i.shape,l=new a_("real",c,t),u=new a_("imag",c,t),d=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:c},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:c}],p=n.runWebGLProgram(l,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Ta({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ge({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function hQ(e){let{inputs:t,backend:n}=e,{input:r}=t;return o_(r,!1,n)}var fQ={kernelName:fh,backendName:"webgl",kernelFunc:hQ},mQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Yd(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||k.inferDtype(s),a==="string"){let o=k.getArrayFromDType(a,k.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new mQ(r,s),i=[[s]];return t.runWebGLProgram(o,[],a,i)}}var gQ={kernelName:Al,backendName:"webgl",kernelFunc:Yd},bQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},yQ={kernelName:fc,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new bQ(n.shape);return r.runWebGLProgram(s,[n],n.dtype)}},i_="return floor(x);",vQ=Ye({opSnippet:i_,packedOpSnippet:i_,cpuKernelImpl:j7}),xQ={kernelName:eo,backendName:"webgl",kernelFunc:vQ},wQ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,kQ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,IQ=un({opSnippet:wQ,packedOpSnippet:kQ,dtype:"int32"}),SQ={kernelName:to,backendName:"webgl",kernelFunc:IQ},TQ=class{constructor(e){this.variableNames=["A"];let t=Sn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},CQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Sn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},NQ={kernelName:Dh,backendName:"webgl",kernelFunc:_Q},Bu;function _Q(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r,o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,[c,l]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],u=[l,c],d=[l,c,a];(i||o)&&(Bu==null&&(Bu=document.createElement("canvas").getContext("2d")),Bu.canvas.width=c,Bu.canvas.height=l,Bu.drawImage(s,0,0,c,l),s=Bu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=br.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),s);let h=J().getBool("WEBGL_PACK")?new CQ(d):new TQ(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function EQ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(s.shape,a.shape,c,d,l,p,!1,m),b,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=YN({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)b=ZN({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let x=o!=null,w=i!=null,T=h==="leakyrelu",N=h?_m(h,!1):null,$=new XN(g,x,N,w,T),D=[s,a];if(o&&D.push(o),i&&D.push(i),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));D.push(P),y.push(P)}b=n.runWebGLProgram($,D,"float32")}let v=ge({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var AQ={kernelName:Mo,backendName:"webgl",kernelFunc:EQ};function DQ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=r,f=[],m=u;m==null&&(m=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(c,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${c} and dilations '${m}'`);let g=_.computeConv2DInfo(s.shape,a.shape,c,m,l,d,!0),b=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=p?_m(p,b):null,v=[s,a],x=o!=null,w=i!=null,T=p==="leakyrelu";if(x&&v.push(o),w&&v.push(i),T){let P=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));v.push(P),f.push(P)}let N;b?N=new n_(g,x,y,w,T):N=new t_(g,x,y,w,T);let $=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=n.runWebGLProgram(N,v,"float32",$);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),D}var $Q={kernelName:Lo,backendName:"webgl",kernelFunc:DQ},FQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=gt(t.length),s=gt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function RQ(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=k.sizeFromShape(r.shape),[c,l,u,d]=_.prepareAndValidate(r,s),p=ge({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),h=ge({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/u,u]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.readSync(s.dataId),y=n.bufferSync(r),v=q7(b,y,r.dtype,l,o,u,d,r.shape,i);return n.makeTensorInfo(c,r.dtype,v.values)}let f=new FQ(o,d,[l,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ge({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var PQ={kernelName:gc,backendName:"webgl",kernelFunc:RQ},OQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),r=MQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${r}));
|
|
}
|
|
`}};function MQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;s<e.length;s++)s===2?r.push("index"):r.push(`${n[s]}`);return r.join()}function c_(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r,c=k.parseAxisParam(o,s.shape)[0];if(J().get("DEBUG")){let y=n.readSync(a.dataId),v=s.shape[c];for(let x=0;x<y.length;++x){let w=y[x];k.assert(w<=v-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${v-1}]`)}}let l=_.segment_util.collectGatherOpShapeInfo(s,a,c,i),u=k.sizeFromShape(a.shape),d=[],p=ge({inputs:{x:s},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=ge({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,u/l.batchSize]}});d.push(p),d.push(h);let f=[l.batchSize,l.outerSize,u/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([s,a])||s.dtype==="string"){let y=n.bufferSync(h),v=n.bufferSync(p),x=K7(v,y,f);return d.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(l.outputShape,x.dtype,x.values)}let m=new OQ(p.shape,f),g=n.runWebGLProgram(m,[p,h],p.dtype);d.push(g);let b=ge({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var LQ={kernelName:mc,backendName:"webgl",kernelFunc:c_},BQ="return float(a > b);",zQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,WQ=un({opSnippet:BQ,packedOpSnippet:zQ,cpuKernelImpl:X7,dtype:"bool"}),VQ={kernelName:bc,backendName:"webgl",kernelFunc:WQ},UQ="return float(a >= b);",GQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,HQ=un({opSnippet:UQ,packedOpSnippet:GQ,dtype:"bool",cpuKernelImpl:Y7}),jQ={kernelName:ro,backendName:"webgl",kernelFunc:HQ};function qQ(e){let{inputs:t,backend:n}=e,{input:r}=t;return o_(r,!0,n)}var KQ={kernelName:mh,backendName:"webgl",kernelFunc:qQ},XQ="return float(!isnan(x) && !isinf(x));",YQ=Ye({opSnippet:XQ,dtype:"bool"}),ZQ={kernelName:yc,backendName:"webgl",kernelFunc:YQ},JQ="return float(isinf(x));",QQ=Ye({opSnippet:JQ,dtype:"bool"}),eee={kernelName:vc,backendName:"webgl",kernelFunc:QQ},tee="return float(isnan(x));",nee=Ye({opSnippet:tee,dtype:"bool"}),ree={kernelName:xc,backendName:"webgl",kernelFunc:nee},see="return float(a < b);",aee=`
|
|
return vec4(lessThan(a, b));
|
|
`,oee=un({opSnippet:see,packedOpSnippet:aee,cpuKernelImpl:Z7,dtype:"bool"}),iee={kernelName:wc,backendName:"webgl",kernelFunc:oee},cee="return float(a <= b);",uee=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,lee=un({opSnippet:cee,packedOpSnippet:uee,cpuKernelImpl:J7,dtype:"bool"}),dee={kernelName:kc,backendName:"webgl",kernelFunc:lee};function pee(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=Q7(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var hee={kernelName:bh,backendName:"webgl",kernelFunc:pee},fee=Ou+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,mee=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,gee=Ye({opSnippet:fee,packedOpSnippet:mee,cpuKernelImpl:e9}),bee={kernelName:oo,backendName:"webgl",kernelFunc:gee},yee=Ou+`
|
|
return log(1.0 + x);
|
|
`,vee=Ye({opSnippet:yee}),xee={kernelName:Ic,backendName:"webgl",kernelFunc:vee},wee="return float(a >= 1.0 && b >= 1.0);",kee=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,Iee=un({opSnippet:wee,packedOpSnippet:kee,dtype:"bool"}),See={kernelName:Sc,backendName:"webgl",kernelFunc:Iee},Tee="return float(!(x >= 1.0));",Cee=Ye({opSnippet:Tee}),Nee={kernelName:Dl,backendName:"webgl",kernelFunc:Cee},_ee="return float(a >= 1.0 || b >= 1.0);",Eee=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Aee=un({opSnippet:_ee,packedOpSnippet:Eee,dtype:"bool"}),Dee={kernelName:$l,backendName:"webgl",kernelFunc:Aee},$ee=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,c=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${c})`:s===1?i=`1.0/(${c})`:i=`exp(log(${c}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Fee=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,c=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${c})`:s===1?i=`1.0/(${c})`:i=`exp(log(${c}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},Ree=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:c}=r,l=J().getBool("WEBGL_PACK_NORMALIZATION")?new Fee(s.shape,a,o,i,c):new $ee(s.shape,a,o,i,c);return n.runWebGLProgram(l,[s],s.dtype)},Pee={kernelName:Fl,backendName:"webgl",kernelFunc:Ree},Oee=class{constructor(e,t,n,r,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=s,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${s})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${s});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Mee=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:c,alpha:l,beta:u}=r,d=new Oee(s.shape,i,c,l,u);return n.runWebGLProgram(d,[s,a,o],s.dtype)},Lee={kernelName:yh,backendName:"webgl",kernelFunc:Mee};function Bee(e,t,n,r){let s=k.sizeFromShape(t),o=k.sizeFromShape(e.shape)/s,i=ge({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),c=yi(i,e.dtype,"max",r),l=ge({inputs:{x:c},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(c),l}function u_(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=s.shape.length,c=k.parseAxisParam(a,s.shape),l=c,u=_.getAxesPermutation(l,i),d=u!=null,p=n.shouldExecuteOnCPU([s]),h=s;if(d){if(p){let v=n.texData.get(h.dataId).values,x=new Array(i);for(let N=0;N<x.length;N++)x[N]=s.shape[u[N]];let w=r0(v,s.shape,s.dtype,u,x);h=n.makeTensorInfo(x,s.dtype);let T=n.texData.get(h.dataId);T.values=w}else h=Em(s,u,n);l=_.getInnerMostAxes(l.length,i)}_.assertAxesAreInnerMostDims("max",l,i);let[f,m]=_.computeOutAndReduceShapes(h.shape,l),g=f;o&&(g=_.expandShapeToKeepDim(f,c));let b;if(p){let v=n.texData.get(h.dataId).values,x=t9(v,k.sizeFromShape(m),g,s.dtype);b=n.makeTensorInfo(g,s.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=Bee(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var zee={kernelName:io,backendName:"webgl",kernelFunc:u_},Wee=EN+`
|
|
return max(a, b);
|
|
`,Vee=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Nm+`
|
|
return result;
|
|
`,Uee=un({opSnippet:Wee,packedOpSnippet:Vee,cpuKernelImpl:n9}),Gee={kernelName:co,backendName:"webgl",kernelFunc:Uee};function Hee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Eu(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,l=1;k.assert(_.eitherStridesOrDilationsAreOne(o,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=_.computePool2DInfo(s.shape,a,o,l,i,c);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return ar({inputs:{x:s},backend:n});let d=new Kd(u,"max",!1);return n.runWebGLProgram(d,[s],s.dtype)}var jee={kernelName:uo,backendName:"webgl",kernelFunc:Hee};function qee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dataFormat:c,dimRoundingMode:l}=r,u=[1,1,1],d=_.computePool3DInfo(s.shape,a,o,u,i,l,c),p=new a0(d,"max",!1);return n.runWebGLProgram(p,[s],s.dtype)}var Kee={kernelName:Rl,backendName:"webgl",kernelFunc:qee},Xee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=s-1-e.padInfo.top,i=a-1-e.padInfo.left,c=s*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${s};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${c} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Yee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,c=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=c-1-e.padInfo.top,p=l-1-e.padInfo.left,h=i*c*l-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${s}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${c} * ${l} +
|
|
wR * ${l} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Zee(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:c,pad:l,dimRoundingMode:u}=r,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,c,d,l,u),h=new a0(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Yee(p),g=n.runWebGLProgram(m,[s,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var Jee={kernelName:xh,backendName:"webgl",kernelFunc:Zee};function Qee(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;Eu([a,o],"maxPoolGrad");let{filterSize:c,strides:l,pad:u,dimRoundingMode:d}=r,p=_.computePool2DInfo(i.shape,c,l,1,u,d),h=!0,f=new Kd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Xee(p),b=n.runWebGLProgram(g,[s,m],i.dtype);return n.disposeIntermediateTensorInfo(m),b}var ete={kernelName:vh,backendName:"webgl",kernelFunc:Qee};function tte(e,t,n,r){let s=new Kd(n,"max",!1),a=r.runWebGLProgram(s,[e],"float32");s=new Kd(n,"max",!0,!0,t);let o=r.runWebGLProgram(s,[e],"float32");return[a,o]}var nte={kernelName:wh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,c=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let l=[1,1];k.assert(_.eitherStridesOrDilationsAreOne(a,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${l}'`);let u=_.computePool2DInfo(r.shape,s,a,l,o),[d,p]=tte(r,i,u,c);return[d,p]}};function rte(e,t,n,r){let s=k.sizeFromShape(t),o=k.sizeFromShape(e.shape)/s,i=ge({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),c=yi(i,"float32","mean",r),l=ge({inputs:{x:c},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(c),l}var ste={kernelName:lo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:s,axis:a}=t,o=n,i=r.shape.length,c=k.parseAxisParam(a,r.shape),l=c,u=_.getAxesPermutation(l,i),d=u!=null,p=o.shouldExecuteOnCPU([r]),h=[],f=r;if(d){if(p){let x=o.texData.get(f.dataId).values,w=new Array(i);for(let $=0;$<w.length;$++)w[$]=r.shape[u[$]];let T=r0(x,r.shape,r.dtype,u,w);f=o.makeTensorInfo(w,r.dtype);let N=o.texData.get(f.dataId);N.values=T}else f=Em(r,u,o);h.push(f),l=_.getInnerMostAxes(l.length,i)}_.assertAxesAreInnerMostDims("sum",l,i);let[m,g]=_.computeOutAndReduceShapes(f.shape,l),b=m;s&&(b=_.expandShapeToKeepDim(m,c));let y=rte(f,g,b,o);for(let v of h)o.disposeIntermediateTensorInfo(v);return y}};function ate(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=k.parseAxisParam(a,s.shape),l=c,u=_.getAxesPermutation(l,i),d=s;u!=null&&(d=Cn({inputs:{x:s},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,s.shape.length)),_.assertAxesAreInnerMostDims("min",l,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,l),f=k.sizeFromShape(h),m=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yi(m,m.dtype,"min",n),b;if(o){let y=_.expandShapeToKeepDim(p,c);b=ge({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ge({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),b}var ote={kernelName:po,backendName:"webgl",kernelFunc:ate},ite=EN+`
|
|
return min(a, b);
|
|
`,cte=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Nm+`
|
|
return result;
|
|
`,ute=un({opSnippet:ite,packedOpSnippet:cte,cpuKernelImpl:r9}),lte={kernelName:ho,backendName:"webgl",kernelFunc:ute},dte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,s=gt(r),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),c=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${c};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${c};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${o});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${c};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${c};
|
|
}
|
|
}
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},pte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let r=e.length,s=gt(r),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Tn("rc",r),c=Tn("source",r),l=`${i[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${c.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(r===1){let h=`
|
|
${s} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${s} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${c.join()}), ${u});
|
|
${i[r-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${c.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${s} source = rc;
|
|
${s} lt = ${s}(lessThan(source, start));
|
|
${s} gte = ${s}(greaterThanEqual(source, end));
|
|
${s} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${s} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${c.join()}), ${u});
|
|
${i[r-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${c.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[r-2]} += 1;
|
|
if(${i[r-2]} < ${this.outputShape[r-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${c.join()}), ${u});
|
|
${i[r-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${c.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${o});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},hte=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:s,mode:a}=n,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pte(r.shape,s,a):new dte(r.shape,s,a);return t.runWebGLProgram(o,[r],r.dtype)},fte={kernelName:fo,backendName:"webgl",kernelFunc:hte},mte=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,gte=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Nm+`
|
|
return result;
|
|
`,bte=un({opSnippet:mte,packedOpSnippet:gte}),yte={kernelName:Tc,backendName:"webgl",kernelFunc:bte},vte=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},xte=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,wte=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,l_=un({opSnippet:xte,packedOpSnippet:wte,checkOutOfBounds:!0}),kte={kernelName:Za,backendName:"webgl",kernelFunc:l_},d_="return a - b;",p_=un({opSnippet:d_,packedOpSnippet:d_,supportsComplex:!0,cpuKernelImpl:v9}),Ite={kernelName:$o,backendName:"webgl",kernelFunc:p_};function h_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=k.parseAxisParam([a],s.shape),i=u_({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),c=_.expandShapeToKeepDim(i.shape,o),l=ge({inputs:{x:i},backend:n,attrs:{shape:c}}),u=p_({inputs:{a:s,b:l},backend:n}),d=r_({inputs:{x:u},backend:n}),p=Am({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ge({inputs:{x:p},backend:n,attrs:{shape:c}}),f=l_({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Ste={kernelName:Ao,backendName:"webgl",kernelFunc:h_};function Tte(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r,c=i?s:h_({inputs:{logits:s},backend:n,attrs:{dim:s.shape.length-1}}),l=c.shape[0],u=c.shape[1],d=new vte(l,u,a),p=[[o]],h=n.runWebGLProgram(d,[c],"int32",p);return i||n.disposeIntermediateTensorInfo(c),h}var Cte={kernelName:kh,backendName:"webgl",kernelFunc:Tte},Nte=Fr+`
|
|
return -x;
|
|
`,_te=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function Ete(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.texData.get(r.dataId),[o,i]=a9(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new bi(r.shape,_te):s=new Fs(r.shape,Nte),n.runWebGLProgram(s,[r],r.dtype)}var Ate={kernelName:Cc,backendName:"webgl",kernelFunc:Ete},Dte=is.nonMaxSuppressionV3Impl;function $te(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c}=r,l=n.readSync(s.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Dte(l,u,o,i,c);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Fte={kernelName:_c,backendName:"webgl",kernelFunc:$te},Rte=is.nonMaxSuppressionV4Impl;function Pte(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,padToMaxOutputSize:l}=r,u=n.readSync(s.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Rte(u,d,o,i,c,l);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Ote={kernelName:Ec,backendName:"webgl",kernelFunc:Pte},Mte=is.nonMaxSuppressionV5Impl;function Lte(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,softNmsSigma:l}=r,u=n.readSync(s.dataId),d=n.readSync(a.dataId),p=o,h=i,f=c,m=l,{selectedIndices:g,selectedScores:b}=Mte(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Bte={kernelName:Ac,backendName:"webgl",kernelFunc:Lte},zte=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Wte=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,c=k.sizeFromShape(s.shape),l=new zte(c,a,o,i),u=ge({inputs:{x:s},backend:n,attrs:{shape:[c]}}),d=n.runWebGLProgram(l,[u],s.dtype);n.disposeIntermediateTensorInfo(u);let p=[...s.shape,a],h=ge({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Vte={kernelName:go,backendName:"webgl",kernelFunc:Wte};function Pm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=Xd({inputs:{input:r},backend:n}),a=Pm({inputs:{x:s},backend:n}),o=Rm({inputs:{input:r},backend:n}),i=Pm({inputs:{x:o},backend:n}),c=Ta({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Yd({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var Ute={kernelName:Yc,backendName:"webgl",kernelFunc:Pm};function f_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=Xd({inputs:{input:r},backend:n}),a=f_({inputs:{x:s},backend:n}),o=Rm({inputs:{input:r},backend:n}),i=Pm({inputs:{x:o},backend:n}),c=Ta({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Yd({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var Gte={kernelName:Dc,backendName:"webgl",kernelFunc:f_};function Hte(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return c0({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(u=>{let d=c0({inputs:{input:u},backend:n,attrs:{dim:s}});return i.push(d),d}),l=KN({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),l}var jte={kernelName:$c,backendName:"webgl",kernelFunc:Hte},qte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((c,l)=>c[0]+e[l]+c[1]);let r=e.length,s=gt(r),a=t.map(c=>c[0]).join(","),o=t.map((c,l)=>c[0]+e[l]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${o});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},Kte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,s=gt(r),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Tn("rc",r),c=Tn("source",r),l=`${i[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${c.slice(-2).join()})`,d=[`${s} rc = outputLoc;`,`${i[r-1]} += 1;
|
|
if(${l}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${i[r-2]} += 1;
|
|
if(${i[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${i[r-1]} += 1;
|
|
if(${l}) {`],p=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=r===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${s} source = rc - start;
|
|
result[${f}] = getChannel(getX(${c.join()}), ${u});
|
|
}
|
|
`;h+=r===1?"} ":"}}",this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${o});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},m_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;if(k.sizeFromShape(s.shape)===0){let l=a.map((u,d)=>u[0]+s.shape[d]+u[1]);return Yd({backend:n,attrs:{shape:l,value:o,dtype:s.dtype}})}let i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Kte(s.shape,a,o):new qte(s.shape,a,o),c=[[o]];return n.runWebGLProgram(i,[s],s.dtype,c)},Xte={kernelName:bo,backendName:"webgl",kernelFunc:m_},Yte=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Zte=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Nm+`
|
|
return result;
|
|
`,Jte=un({opSnippet:Yte,packedOpSnippet:Zte}),Qte={kernelName:yo,backendName:"webgl",kernelFunc:Jte};function ene(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=[],l=k.parseAxisParam(a,s.shape),u=l,d=_.getAxesPermutation(u,i),p=s;d!=null&&(p=Cn({inputs:{x:s},backend:n,attrs:{perm:d}}),u=_.getInnerMostAxes(u.length,i),c.push(p)),_.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:b}=i9(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=_.computeOutAndReduceShapes(p.shape,u),g=k.sizeFromShape(m),b=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=Lh(s.dtype),v=yi(b,y,"prod",n);h=ge({inputs:{x:v},backend:n,attrs:{shape:f}}),c.push(b),c.push(v)}if(o){c.push(h);let f=_.expandShapeToKeepDim(h.shape,l);h=ge({inputs:{x:h},backend:n,attrs:{shape:f}})}return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var tne={kernelName:Fc,backendName:"webgl",kernelFunc:ene},g_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=c9(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},nne={kernelName:Pl,backendName:"webgl",kernelFunc:g_},rne="return 1.0 / x;",sne=Ye({opSnippet:rne}),ane={kernelName:Rc,backendName:"webgl",kernelFunc:sne},one=Fr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,ine=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cne=Ye({opSnippet:one,packedOpSnippet:ine}),une={kernelName:xo,backendName:"webgl",kernelFunc:cne},lne=Fr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,dne=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,pne=Ye({opSnippet:lne,packedOpSnippet:dne}),hne={kernelName:ko,backendName:"webgl",kernelFunc:pne},fne=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/u[0]},
|
|
${l[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},mne=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/u[0]},
|
|
${l[1]/u[1]},
|
|
${l[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${c-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function gne(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,l]=i,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new mne(s.shape,c,l,a,o):new fne(s.shape,c,l,a,o);return n.runWebGLProgram(u,[s],"float32")}var bne={kernelName:wo,backendName:"webgl",kernelFunc:gne},yne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],c=[n&&a>1?a-1:a,n&&o>1?o-1:o],l=i[0]/c[0],u=i[1]/c[1],d=1/l,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function vne(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new yne(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var xne={kernelName:Th,backendName:"webgl",kernelFunc:vne},wne=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/u[0]},
|
|
${l[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},kne=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/u[0]},
|
|
${l[1]/u[1]},
|
|
${l[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${c-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Ine(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,l]=i,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kne(s.shape,c,l,a,o):new wne(s.shape,c,l,a,o);return n.runWebGLProgram(u,[s],s.dtype)}var Sne={kernelName:Ol,backendName:"webgl",kernelFunc:Ine},Tne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],c=[n&&a>1?a-1:a,n&&o>1?o-1:o],l=i[0]/c[0],u=i[1]/c[1],d=1/l,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${c[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${c[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Cne(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new Tne(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Nne={kernelName:Sh,backendName:"webgl",kernelFunc:Cne},_ne=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,s=e.map((o,i)=>r(i)).join(","),a=gt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${s}));
|
|
}
|
|
`}},Ene=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=Tn("rc",n),s=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,o=gt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${s}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(r.slice())};
|
|
if(${s}){
|
|
result.g = ${c(r.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${l(r.slice())};
|
|
if(${s}) {
|
|
result.a = ${u(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((b,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Ane(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=s.shape.length,i=k.parseAxisParam(a,s.shape);if(o===0)return ar({inputs:{x:s},backend:n});let c=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ene(s.shape,i):new _ne(s.shape,i);return n.runWebGLProgram(c,[s],s.dtype)}var Dne={kernelName:Io,backendName:"webgl",kernelFunc:Ane},$ne=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],r=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${s}
|
|
if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Fne={kernelName:Zc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,c=new $ne(r.shape,a),[l,u]=_.getImageCenter(o,r.shape[1],r.shape[2]),d=[[l,u,Math.sin(s),Math.cos(s)]];return i.runWebGLProgram(c,[r],r.dtype,d)}},Rne=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Pne=Ye({opSnippet:Rne}),One={kernelName:So,backendName:"webgl",kernelFunc:Pne},Mne="return inversesqrt(x);",Lne=Ye({opSnippet:Mne,cpuKernelImpl:u9}),Bne={kernelName:To,backendName:"webgl",kernelFunc:Lne},b_=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=gt(s.length),c=gt(a.length),l="";n===1?l="i":n===2&&(l="i, j");let u=`getIndices(${l})`,d="";r===1?d="i":r===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${s});
|
|
|
|
void main() {
|
|
${c} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function zne(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:c,sliceSize:l,strides:u,outputSize:d}=_.calculateShapes(a,s,o),p=[d/l,l];if(d===0)return n.makeTensorInfo(o,s.dtype);let h=ge({inputs:{x:s},backend:n,attrs:{shape:[c,i]}}),f=ge({inputs:{x:a},backend:n,attrs:{shape:[c,l]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new b_(c,i,h.shape.length,f.shape.length,u,p),b=n.runWebGLProgram(g,[f,h,m],f.dtype),y=ge({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),y}var Wne={kernelName:Oc,backendName:"webgl",kernelFunc:zne},Vne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",r="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],c=[];for(let l=0;l<t.length;l++)c.push(`${o[l]}`),l<e&&i.push(`${o[l]}`);r=i.join(),s=c.join()}let a=gt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${s}));
|
|
} else {
|
|
setOutput(getB(${s}));
|
|
}
|
|
}
|
|
`}};function Une(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=new Vne(r.shape.length,s.shape,s.shape.length);return n.runWebGLProgram(o,[r,s,a],Tr(s.dtype,a.dtype))}var Gne={kernelName:Mc,backendName:"webgl",kernelFunc:Une},Hne=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${_.SELU_SCALEALPHA};
|
|
float scale = ${_.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,jne=Ye({opSnippet:Hne}),qne={kernelName:Lc,backendName:"webgl",kernelFunc:jne},Kne=Ou+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,Xne=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Yne=Ye({opSnippet:Kne,packedOpSnippet:Xne,cpuKernelImpl:l9}),Zne={kernelName:No,backendName:"webgl",kernelFunc:Yne},Jne=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Qne=Ye({opSnippet:Jne}),ere={kernelName:Wc,backendName:"webgl",kernelFunc:Qne},tre=Ou+`
|
|
return sin(x);
|
|
`,nre=Ye({opSnippet:tre}),rre={kernelName:Co,backendName:"webgl",kernelFunc:nre},sre=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,are=Ye({opSnippet:sre}),ore={kernelName:zc,backendName:"webgl",kernelFunc:are},ire=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,cre=Ye({opSnippet:ire}),ure={kernelName:Vc,backendName:"webgl",kernelFunc:cre},lre=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;k.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((b,y)=>b*y),c=[[0,0]];c.push(...o);for(let b=1+a.length;b<s.shape.length;++b)c.push([0,0]);let l=[],u=m_({inputs:{x:s},backend:n,attrs:{paddings:c,constantValue:0}}),d=_.getReshaped(u.shape,a,i,!1),p=_.getPermuted(d.length,a.length,!1),h=_.getReshapedPermuted(u.shape,a,i,!1),f=ge({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Cn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ge({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(u),l.push(f),l.push(m),l.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},dre={kernelName:Uc,backendName:"webgl",kernelFunc:lre};function pre(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(r.dataId),c=n.readSync(s.dataId),l=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=p9(i,r.shape,r.dtype,c,s.dtype,l,u);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var hre={kernelName:Ml,backendName:"webgl",kernelFunc:pre};function fre(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(s.dataId)),i=n.readSync(r.dataId),c=Array.from(n.readSync(a.dataId)),[l,u,d]=h9(i,r.shape,r.dtype,o,c);return[n.makeTensorInfo(u,r.dtype,l),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var mre={kernelName:Hc,backendName:"webgl",kernelFunc:fre};function gre(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),c=n.readSync(a.dataId),[l,u]=wN(o,r.shape,r.dtype,i,c,!0);return n.makeTensorInfo(u,r.dtype,l)}var bre={kernelName:Ll,backendName:"webgl",kernelFunc:gre};function yre(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),c=n.readSync(a.dataId),[l,u]=wN(o,r.shape,r.dtype,i,c);return n.makeTensorInfo(u,r.dtype,l)}var vre={kernelName:Bl,backendName:"webgl",kernelFunc:yre};function xre(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:c,numUpdates:l,strides:u,outputSize:d}=_.calculateShapes(a,s,i),p=!1,h=new b_(l,c,s.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,s,o],a.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var wre={kernelName:Ch,backendName:"webgl",kernelFunc:xre};function kre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=k.parseAxisParam(o,s.shape)[0],c=_.prepareSplitSize(s,a,i),l=s.shape.length,u=new Array(l).fill(0),d=s.shape.slice();return c.map(p=>{let h=[...d];h[i]=p;let f=Mu({inputs:{x:s},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Ire={kernelName:Gc,backendName:"webgl",kernelFunc:kre},y_="return sqrt(x);",Sre=Ye({opSnippet:y_,packedOpSnippet:y_,cpuKernelImpl:f9}),Tre={kernelName:_o,backendName:"webgl",kernelFunc:Sre},Cre="return x * x;",Nre=Ye({opSnippet:Cre}),_re={kernelName:zl,backendName:"webgl",kernelFunc:Nre},v_="return (a - b) * (a - b);",Ere=un({opSnippet:v_,packedOpSnippet:v_}),Are={kernelName:Do,backendName:"webgl",kernelFunc:Ere};function Dre({inputs:e,attrs:t,backend:n}){let{x:r}=e,s=Fr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Fs(r.shape,s);return n.runWebGLProgram(a,[r],r.dtype)}var $re={kernelName:ta,backendName:"webgl",kernelFunc:Dre},Fre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,s=gt(n.length),a=gt(n.length),o="";if(r===1)o="coords * strides + begin";else{let i=0;o=n.map((c,l)=>(i++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${i-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=`
|
|
${s} begin = ${s}(${e});
|
|
${s} strides = ${s}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Rre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:c,endMask:l,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=Ht.sliceInfo(s.shape,a,o,i,c,l,u,d,p),w;if(m)w=ge({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){k.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let N=Ht.computeOutShape(y,v,x),$=Mu({inputs:{x:s},backend:n,attrs:{begin:y,size:N}});w=ge({inputs:{x:$},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo($)}else if(n.shouldExecuteOnCPU([s])){let $=n.readSync(s.dataId),D=ze(s.shape,s.dtype,$),P=m9(h,D,x,y);w=n.makeTensorInfo(f,s.dtype,P.values)}else{let $=new Fre(y,x,h);w=n.runWebGLProgram($,[s],s.dtype)}let T=ge({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),T}var Pre={kernelName:jc,backendName:"webgl",kernelFunc:Rre};function Ore(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:c,preserveShortSequences:l}=r,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=g9(p,h,s,a,o,i,c,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Mre={kernelName:Nh,backendName:"webgl",kernelFunc:Ore};function Lre(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[l,u,d]=b9(i,c,s),p=u.length;return[n.makeTensorInfo([p,2],"int32",l),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Bre={kernelName:_h,backendName:"webgl",kernelFunc:Lre};function zre(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=y9(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var Wre={kernelName:Eh,backendName:"webgl",kernelFunc:zre},Vre="return tan(x);",Ure=Ye({opSnippet:Vre}),Gre={kernelName:Fo,backendName:"webgl",kernelFunc:Ure},Hre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,jre=Ye({opSnippet:Hre}),qre={kernelName:Ro,backendName:"webgl",kernelFunc:jre},Kre=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let r=gt(this.rank),s=Xre(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Xre(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let s=0;s<e.length;s++)r.push(`imod(${n[s]}, ${e[s]})`);return r.join()}function x_(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;if(s.dtype==="string"||s.shape.length>5){let c=n.readSync(s.dataId),l=s.dtype==="string"?c.map(p=>k.decodeString(p)):c,u=ze(s.shape,s.dtype,l),d=x9(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Kre(s.shape,a);return n.runWebGLProgram(o,[s],s.dtype)}var Yre={kernelName:ea,backendName:"webgl",kernelFunc:x_},Zre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Jre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function vi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function w_(e){let t=1;for(;t<e;)t*=2;return t}function Qre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r,i=J().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),c=J().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=s.shape,u=l[l.length-1];if(n.shouldExecuteOnCPU([s])||u<i||a>c){let P=n.readSync(s.dataId),[F,R]=w9(P,l,s.dtype,a,o);return[n.makeTensorInfo(F.shape,F.dtype,F.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return l[l.length-1]=0,[n.makeTensorInfo(l,s.dtype,[]),n.makeTensorInfo(l,"int32",[])];if(u===1)return[s,Yd({attrs:{shape:l,dtype:"int32",value:0},backend:n})];let d=n.texData.get(s.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(s):s,m=k.sizeFromShape(l)/u,g=ge({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&vi(n,h);let b=w_(a),y=w_(u),v=null,x=()=>v===null?[g,g]:[g,v],w=(P,F,R)=>{let C=x(),L=new Zre(R),j=[[u],[v===null?1:0],[Number.NEGATIVE_INFINITY],[P],[F]],K=v;v=n.runWebGLProgram(L,C,"int32",j),vi(n,K)};for(let P=1;P<b;P*=2){let F=P*2;for(let R=P;R>=1;R/=2)w(F,R,[m,y])}for(let P=y;P>b;P/=2){let F=x(),R=new Jre([m,P/2]),L=[[u],[v===null?1:0],[b]],G=v;v=n.runWebGLProgram(R,F,"int32",L),vi(n,G);let j=b/2,K=j*2;for(let q=j;q>=1;q/=2)w(K,q,v.shape)}let T=v;v=Mu({inputs:{x:v},backend:n,attrs:{begin:0,size:[m,a]}}),vi(n,T);let N=c_({inputs:{x:g,indices:v},backend:n,attrs:{axis:1,batchDims:1}});vi(n,g);let $=l.slice(0,-1);$.push(a),T=v,v=ge({inputs:{x:v},attrs:{shape:$},backend:n}),vi(n,T);let D=N;return N=ge({inputs:{x:N},attrs:{shape:$},backend:n}),vi(n,D),[N,v]}var ese={kernelName:qc,backendName:"webgl",kernelFunc:Qre},tse=class{constructor(e,t,n,r,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(r){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${s});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${s});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function nse(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:c,outputShape:l}=r,[u,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[u,f,m,h],b=new tse(d,p,o,i,c,g);return n.runWebGLProgram(b,[s,a],"float32")}var rse={kernelName:Kc,backendName:"webgl",kernelFunc:nse};function sse(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;Eu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=r.readSync(a.dataId),{outputValues:i,outputShape:c,indices:l}=k9(o,s,a.shape,a.dtype);return[r.makeTensorInfo(c,a.dtype,i),r.makeTensorInfo([l.length],"int32",l)]}var ase={kernelName:Ah,backendName:"webgl",kernelFunc:sse};function ose(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,c=s.shape[a],l=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(l[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(c);for(let m=0;m<f.length;m++){p[a]=m;let g=Mu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),b=ge({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var ise={kernelName:Xc,backendName:"webgl",kernelFunc:ose},cse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,s=e.inSize,a=e.numSegments,o=a*Math.ceil(s/n);this.outputShape=[r,o];let i="0.0",c="sumValue",l=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";s%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";s%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${c});
|
|
}
|
|
`}};function use(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r,i=s.shape.length,c=[],l=0,u=_.getAxesPermutation([l],i),d=s;u!=null&&(d=Cn({inputs:{x:s},backend:n,attrs:{perm:u}}),c.push(d),l=_.getInnerMostAxes(1,i)[0]);let p=_.segment_util.computeOutShape(d.shape,l,o),h=k.sizeFromShape([d.shape[l]]),f=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});c.push(f);let m=Lh(s.dtype),g=(x,w,T,N,$)=>{let D=x.shape[0],P=x.shape[1],F=_.segment_util.segOpComputeOptimalWindowSize(P,$),R={windowSize:F,inSize:P,batchSize:D,numSegments:$},C=new cse(R,w),L=n.compileAndRun(C,[x,T],N);if(c.push(L),L.shape[1]===$)return L;let G=g_({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),j=x_({inputs:{x:G},backend:n,attrs:{reps:[P/F]}});return c.push(G),c.push(j),g(L,w,j,N,$)},b=g(f,"unsortedSegmentSum",a,m,o),y=ge({inputs:{x:b},backend:n,attrs:{shape:p}}),v=y;if(u!=null){c.push(y);let x=_.getUndoAxesPermutation(u);v=Cn({inputs:{x:v},backend:n,attrs:{perm:x}})}return c.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var lse={kernelName:Wl,backendName:"webgl",kernelFunc:use},dse=[bY,vY,kY,TY,NY,AY,$Y,RY,LY,zY,UY,jY,XY,QY,nZ,sZ,oZ,lZ,pZ,fZ,yZ,TZ,NZ,EZ,PZ,MZ,WZ,J9,GZ,XZ,QZ,aJ,iJ,uJ,dJ,hJ,gJ,vJ,kJ,SJ,CJ,EJ,DJ,PJ,MJ,zJ,UJ,HJ,XJ,QJ,rQ,oQ,uQ,lQ,pQ,fQ,gQ,yQ,xQ,SQ,NQ,AQ,$Q,PQ,LQ,VQ,jQ,Z9,KQ,qZ,ZQ,eee,ree,eY,iee,dee,hee,bee,xee,See,Nee,Dee,Pee,Lee,zee,Gee,jee,Kee,Jee,ete,nte,ste,ote,lte,fte,yte,Cte,aY,Ate,Fte,Ote,Bte,DZ,Vte,Gte,jte,Xte,Qte,nY,tne,nne,$Z,kte,ane,une,hne,iY,bne,xne,Sne,Nne,Dne,Fne,One,Bne,Wne,Gne,qne,Zne,ere,rre,ore,IZ,Ste,ure,dre,hre,mre,bre,vre,wre,Ire,Tre,_re,Are,$re,Pre,Mre,Bre,Wre,Ite,fY,Gre,qre,Yre,ese,rse,mY,ase,ise,lse,Ute];for(let e of dse)Ul(e);var Rt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Rt||(Rt={}));var Zd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Zd||(Zd={}));var k_;function pse(e){k_=e.wasm.cwrap(Oo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function hse(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:c,transposeB:l,activation:u,leakyreluAlpha:d}=r,p=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let $=n.dataIdMap.get(o.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);f=$.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Zd[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let b=c?s.shape[2]:s.shape[1],y=l?a.shape[1]:a.shape[2],v=su.assertAndGetBroadcastShape(s.shape.slice(0,-2),a.shape.slice(0,-2)),x=n.makeOutput([...v,b,y],s.dtype),w=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(s.shape).buffer),N=new Uint8Array(new Int32Array(a.shape).buffer);return k_(p,T,s.shape.length,h,N,a.shape.length,c,l,g,f,m,d||0,w),x}var fse={kernelName:Oo,backendName:"wasm",setupFunc:pse,kernelFunc:hse};function ln(e,t){let n;function r(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function s(a){let{backend:o,inputs:{x:i}}=a,c=o.dataIdMap.get(i.dataId).id,l=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||n(c,Rt[i.dtype],u),l}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var mse=ln(Yi);function Nn(e,t,n){let r;function s(o){r=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:c}=o,{a:l,b:u}=c,d=i.dataIdMap.get(l.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:l.dtype,f=_.assertAndGetBroadcastShape(l.shape,u.shape),m=i.makeOutput(f,h);if(k.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(l.shape).buffer),b=new Uint8Array(new Int32Array(u.shape).buffer),y=i.dataIdMap.get(m.dataId).id;return(()=>r(d,g,l.shape.length,p,b,u.shape.length,Rt[l.dtype],y))(),m}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:a}}var gse=!0,bse=Nn(Js,gse),I_;function yse(e){I_=e.wasm.cwrap(Ba,null,["array","number","number","number"])}function vse(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let s=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(s).buffer),o=n.dataIdMap.get(r.dataId).id;return I_(a,s.length,Rt[r.dtype],o),r}var xse={kernelName:Ba,backendName:"wasm",setupFunc:yse,kernelFunc:vse};function Om(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var wse={kernelName:so,backendName:"wasm",kernelFunc:Om},S_;function kse(e){S_=e.wasm.cwrap(Po,null,["number","array","number","number","number","array","number"])}function zu(e){let{inputs:t,backend:n,attrs:r}=e,[s,a]=Sse(t.x.shape,r.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Ise(t.x.shape,r.perm),c={dataId:t.x.dataId,shape:s,dtype:t.x.dtype};if(o){let f=Om({inputs:t,backend:n});return f.shape=i,f}let l=n.makeOutput(i,c.dtype),u=n.dataIdMap.get(c.dataId).id,d=n.dataIdMap.get(l.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(c.shape).buffer);return S_(u,h,c.shape.length,Rt[c.dtype],d,p,a.length),l}function Ise(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function Sse(e,t){let n=[],r=[];for(let s=0;s<e.length;++s)e[s]!==1&&n.push(e[s]),e[t[s]]!==1&&r.push(t[s]);for(let s=0;s<r.length;++s){let a=-1;for(let o=0;o<r.length;++o)r[o]>=s&&(a===-1||r[a]>r[o])&&(a=o);r[a]=s}return[n,r]}var Tse={kernelName:Po,backendName:"wasm",kernelFunc:zu,setupFunc:kse};function Ca(e,t,n){let r=e.shape,s=e.shape.length,a=k.parseAxisParam(t,r),o=a,i=_.getAxesPermutation(o,s),c=null,l=!1;if(i!=null){let u=new Array(s);for(let h=0;h<u.length;h++)u[h]=r[i[h]];o=_.getInnerMostAxes(o.length,s),c=zu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(c.dataId).id!==d&&(l=!0)}return{transposed:c,originalAxes:a,axes:o,inputWasTransposed:l}}var T_;function Cse(e){T_=e.wasm.cwrap(Qi,null,["number, number, number"])}function Nse(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t);if(h){let v=t.dataIdMap.get(u.dataId).id;l=u,c=v}let f=l.shape.length;_.assertAxesAreInnerMostDims("all",d,f);let[m,g]=_.computeOutAndReduceShapes(l.shape,d),b=k.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(k.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;T_(c,b,v)}if(h&&t.disposeData(u.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var _se={kernelName:Qi,backendName:"wasm",setupFunc:Cse,kernelFunc:Nse},C_;function Ese(e){C_=e.wasm.cwrap(ec,null,["number, number, number"])}function Ase(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t);if(h){let v=t.dataIdMap.get(u.dataId).id;l=u,c=v}let f=l.shape.length;_.assertAxesAreInnerMostDims("any",d,f);let[m,g]=_.computeOutAndReduceShapes(l.shape,d),b=k.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(k.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;C_(c,b,v)}if(h&&t.disposeData(u.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Dse={kernelName:ec,backendName:"wasm",setupFunc:Ese,kernelFunc:Ase},N_;function $se(e){N_=e.wasm.cwrap(za,null,["number","number","number","number","number"])}function Fse(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,c=a,{transposed:l,axes:u,inputWasTransposed:d}=Ca(a,s,t);if(d){let b=t.dataIdMap.get(l.dataId).id;b!==o&&(c=l,i=b)}let p=c.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=k.sizeFromShape(h.shape),g=c.shape[u[0]];return N_(i,Rt[c.dtype],m,g,f),d&&t.disposeData(l.dataId),h}var Rse={kernelName:za,backendName:"wasm",kernelFunc:Fse,setupFunc:$se},__;function Pse(e){__=e.wasm.cwrap(Wa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ose(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id,{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=n,u=_.computePool2DInfo(s.shape,o,i,1,c,l),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,b=u.strideHeight,y=u.strideWidth,v=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let x=r.makeOutput(u.outShape,"float32"),w=r.dataIdMap.get(x.dataId).id;return __(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,y,v,w),x}var Mse={kernelName:Wa,backendName:"wasm",setupFunc:Pse,kernelFunc:Ose};function Un(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:s}=n,a=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,a);return k.assert(a===k.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var Lse={kernelName:Pc,backendName:"wasm",kernelFunc:Un},E_;function Bse(e){E_=e.wasm.cwrap(Va,null,["number","array","number","number","array","number","number","number","number"])}function zse(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let c=s.shape.length,l=a.shape.length,u=o?s.shape[c-2]:s.shape[c-1],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-1]:s.shape[c-2],h=i?a.shape[l-2]:a.shape[l-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=k.sizeFromShape(f),b=k.sizeFromShape(m),v=su.assertAndGetBroadcastShape(s.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);k.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let x=o?[g,u,p]:[g,p,u],w=i?[b,h,d]:[b,d,h],T=Un({inputs:{x:s},backend:n,attrs:{shape:x}}),N=Un({inputs:{x:a},backend:n,attrs:{shape:w}}),$=n.dataIdMap.get(T.dataId).id,D=n.dataIdMap.get(N.dataId).id,P=o?T.shape[2]:T.shape[1],F=i?N.shape[1]:N.shape[2],R=Math.max(g,b),C=n.makeOutput([R,P,F],T.dtype),L=n.dataIdMap.get(C.dataId).id,G=new Uint8Array(new Int32Array(T.shape).buffer),j=new Uint8Array(new Int32Array(N.shape).buffer);return E_($,G,T.shape.length,D,j,N.shape.length,o,i,L),n.disposeData(T.dataId),n.disposeData(N.dataId),C.shape=v,C}var Wse={kernelName:Va,backendName:"wasm",setupFunc:Bse,kernelFunc:zse};function xi(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:s}=e,[a,o]=Ht.parseSliceParams(t,n,r),i=Ht.isSliceContinous(t.shape,a,o),c=s.readSync(t.dataId),l=s.makeOutput(o,t.dtype),u=k.computeStrides(t.shape),d=s.dataIdMap.get(l.dataId);if(i){let f=Ht.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=c.slice(f,f+k.sizeFromShape(o)):s.typedArrayFromHeap(l).set(c.subarray(f,f+k.sizeFromShape(o))),l}if(t.dtype==="string"){let f=hm(c,a,o,t.shape,t.dtype);return d.stringBytes=f,l}let p=s.typedArrayFromHeap(l),h=t.shape.length;if(h===2)Vse(c,u[0],p,a,o);else if(h===3)Use(c,u[0],u[1],p,a,o);else if(h===4)Gse(c,u[0],u[1],u[2],p,a,o);else{let f=hm(c,a,o,t.shape,t.dtype);p.set(f)}return l}function Vse(e,t,n,r,s){let a=0,o=r[0],i=r[1],c=o+s[0];for(let l=o;l<c;l++){let u=l*t+i;n.set(e.subarray(u,u+s[1]),a),a+=s[1]}}function Use(e,t,n,r,s,a){let o=0,i=s[0],c=s[1],l=s[2],u=i+a[0],d=c+a[1];for(let p=i;p<u;p++)for(let h=c;h<d;h++){let f=p*t+h*n+l;r.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Gse(e,t,n,r,s,a,o){let i=0,c=a[0],l=a[1],u=a[2],d=c+o[0],p=l+o[1],h=u+o[2],f=a[3];for(let m=c;m<d;m++)for(let g=l;g<p;g++)for(let b=u;b<h;b++){let y=m*t+g*n+b*r+f;s.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var Hse={kernelName:Bc,backendName:"wasm",kernelFunc:xi};function jse(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r,i=a.reduce((b,y)=>b*y),c=_.getReshaped(s.shape,a,i),l=_.getPermuted(c.length,a.length),u=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(u,o,a.length),h=Un({inputs:{x:s},backend:n,attrs:{shape:c}}),f=zu({inputs:{x:h},backend:n,attrs:{perm:l}}),m=Un({inputs:{x:f},backend:n,attrs:{shape:u}}),g=xi({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var qse={kernelName:oc,backendName:"wasm",kernelFunc:jse};function Jd(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,s=r.makeOutput(t.shape,n),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(s).set(a),s}var Kse={kernelName:Ua,backendName:"wasm",kernelFunc:Jd},Xse=ln(Ga),A_;function Yse(e){A_=e.wasm.cwrap(Qs,null,["number","number","number","number"])}function Zse(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(c.dataId).id;return A_(i,a,o,l),c}var Jse={kernelName:Qs,backendName:"wasm",setupFunc:Yse,kernelFunc:Zse};function D_(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],s=_.computeOutShape(t.map(h=>h.shape),r),a=t.filter(h=>k.sizeFromShape(h.shape)>0);if(a.length===1)return Om({inputs:{x:a[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(k.sizeFromShape(s)===0)return o;let i=a.map(h=>h.shape);if(_.assertParamsConsistent(i,r),a[0].dtype==="string"){let h=a.map(v=>{let x=k.sizeFromShape(v.shape.slice(r));return Un({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));s=_.computeOutShape(h.map(v=>v.shape),1);let m=h[0].shape[0]===1,g=Dw(f,s,t[0].dtype,m),b=_.computeOutShape(a.map(v=>v.shape),r);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=_.fromStringArrayToUint8(g),h.forEach(v=>n.disposeData(v.dataId)),o}let c=k.sizeFromShape(a[0].shape.slice(0,r)),l=0,u=a.map(h=>{let f=k.sizeFromShape(h.shape.slice(r));return l+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<c;h++){let f=h*l;for(let m=0;m<d.length;m++){let g=u[m],b=h*g,y=d[m].subarray(b,b+g);p.set(y,f),f+=g}}return o}var Qse={kernelName:ic,backendName:"wasm",kernelFunc:D_},$_;function eae(e){$_=e.wasm.cwrap(Ha,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tae(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:c,dilations:l,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=_.convertConv2DDataFormat(p),f=_.computeConv2DInfo(s.shape,a.shape,c,l,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,b=f.padInfo.top,y=f.padInfo.right,v=f.padInfo.bottom,x=f.padInfo.left,w=f.dilationHeight,T=f.dilationWidth,N=f.strideHeight,$=f.strideWidth,D=f.inChannels,P=f.outChannels,F=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let R=r.makeOutput(f.outShape,"float32"),C=r.dataIdMap.get(R.dataId).id;return $_(o,s.shape[0],s.shape[1],s.shape[2],i,m,g,b,y,v,x,F,w,T,N,$,D,P,C),R}var nae={kernelName:Ha,backendName:"wasm",setupFunc:eae,kernelFunc:tae},F_;function rae(e){F_=e.wasm.cwrap(ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sae(e){let{backend:t,inputs:n,attrs:r}=e,{dy:s,filter:a}=n,{strides:o,pad:i,dataFormat:c,dimRoundingMode:l,inputShape:u}=r,d=1,p=_.convertConv2DDataFormat(c),h=_.computeConv2DInfo(u,a.shape,o,d,i,l,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:b,inHeight:y,inWidth:v,outChannels:x,outHeight:w,outWidth:T,strideHeight:N,strideWidth:$}=h,D=m-1-h.padInfo.top,P=g-1-h.padInfo.left,F=h.dataFormat==="channelsLast",R=k.computeStrides(h.inShape),C=k.computeStrides(s.shape),[L,G,j]=k.computeStrides(a.shape),K=R[0],q=F?R[1]:R[2],Z=F?R[2]:1,te=F?1:R[1],se=C[0],oe=F?C[1]:C[2],re=F?C[2]:1,ue=F?1:C[1],ne=t.makeOutput(h.inShape,"float32"),he=t.dataIdMap.get(ne.dataId).id,ye=t.dataIdMap.get(s.dataId).id,Ce=t.dataIdMap.get(a.dataId).id;return F_(ye,Ce,f,m,g,y,v,b,w,T,x,N,$,D,P,L,G,j,K,q,Z,te,se,oe,re,ue,he),ne}var aae={kernelName:ja,backendName:"wasm",setupFunc:rae,kernelFunc:sae},oae=ln(qa),iae=ln(Ka),u0;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(u0||(u0={}));var R_;function cae(e){R_=e.wasm.cwrap(cc,null,["number","number","number","number","array","number","number","number","number","number"])}function uae(e){let{backend:t,inputs:n,attrs:r}=e,{method:s,extrapolationValue:a,cropSize:o}=r,{image:i,boxes:c,boxInd:l}=n,u=c.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Jd({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,b=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(l.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return R_(g,b,y,u,w,d,p,u0[s],a,x),m!=null&&t.disposeData(m.dataId),v}var lae={kernelName:cc,backendName:"wasm",setupFunc:cae,kernelFunc:uae},P_;function dae(e){P_=e.wasm.cwrap(Xa,null,["number","number","number","number","number","number"])}function pae(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,c=s.shape.length;k.assert(s.dtype==="float32"||s.dtype==="int32",()=>`cumsum does not support ${s.dtype} tensors in the WASM backend`);let l=_.getAxesPermutation([a],c),u=s;l!==null&&(u=zu({inputs:{x:s},attrs:{perm:l},backend:n}));let d=_.getInnerMostAxes(1,c)[0];_.assertAxesAreInnerMostDims("cumsum",[d],c);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;P_(f,o?1:0,i?1:0,h,m,Rt[s.dtype]);let g=p;if(l!==null){let b=_.getUndoAxesPermutation(l);g=zu({inputs:{x:p},attrs:{perm:b},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var hae={kernelName:Xa,backendName:"wasm",setupFunc:dae,kernelFunc:pae},O_;function fae(e){O_=e.wasm.cwrap(uc,null,["number","number","number","array","number","array","array","number","number"])}function mae(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{blockSize:a,dataFormat:o}=r,i=s.shape[0],c=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],u=o==="NHWC"?s.shape[3]:s.shape[1],d=c*a,p=l*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),v=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return O_(b,a,o==="NHWC"?1:0,y,s.shape.length-1,v,x,f.length,w),m}var gae={kernelName:uc,backendName:"wasm",setupFunc:fae,kernelFunc:mae},M_;function bae(e){M_=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yae(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:c,dilations:l,pad:u,dimRoundingMode:d}=n,p=l==null?[1,1]:l,h=_.computeConv2DInfo(s.shape,a.shape,c,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,w=h.dilationWidth,T=h.strideHeight,N=h.strideWidth,$=h.inChannels,D=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=r.makeOutput(h.outShape,"float32"),R=r.dataIdMap.get(F.dataId).id;return M_(o,s.shape[0],s.shape[1],s.shape[2],i,f,m,g,b,y,v,P,x,w,T,N,$,D,R),F}var vae={kernelName:Ya,backendName:"wasm",setupFunc:bae,kernelFunc:yae},xae=ln(Ja),wae=!1,kae=Nn(dc,wae,"bool"),Iae=ln(Qa,"float32");function l0(e){let{inputs:t,attrs:n,backend:r}=e,{input:s}=t,{dim:a}=n,o=s.shape.length,i=s.shape.slice(),c=a;return a<0&&(k.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+a+1),i.splice(c,0,1),Un({inputs:{x:s},backend:r,attrs:{shape:i}})}var Sae={kernelName:pc,backendName:"wasm",kernelFunc:l0};function L_(e){let{attrs:{shape:t,value:n,dtype:r},backend:s}=e,a=s.makeOutput(t,r);return s.typedArrayFromHeap(a).fill(n),a}var Tae={kernelName:Al,backendName:"wasm",kernelFunc:L_},B_;function Cae(e){B_=e.wasm.cwrap(fc,null,["number","number","number","number","number","number"])}function Nae(e){let{inputs:t,backend:n}=e,{image:r}=t,s=n.makeOutput(r.shape,r.dtype),a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,[i,c,l,u]=r.shape;return B_(a,i,c,l,u,o),s}var _ae={kernelName:fc,backendName:"wasm",kernelFunc:Nae,setupFunc:Cae},Eae=ln(eo),Aae=!1,Dae=Nn(to,Aae),z_;function $ae(e){z_=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number"])}function Fae(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:s}=r,{x:a,mean:o,variance:i,offset:c,scale:l}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=c!=null?t.dataIdMap.get(c.dataId).id:0,f=l!=null?t.dataIdMap.get(l.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(k.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return z_(u,d,p,h,f,s,g),m}var Rae={kernelName:no,backendName:"wasm",setupFunc:$ae,kernelFunc:Fae},W_;function Pae(e){W_=e.wasm.cwrap(Mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Oae(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(s.shape,a.shape,c,u,l,p),g=Zd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,y=r.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(o!=null){let re=r.dataIdMap.get(o.dataId);if(re.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${re.shape.length}.`);if(re.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${re.shape}) does not match the number of output channels (${v})`);x=re.id}let w=m.filterHeight,T=m.filterWidth,N=m.padInfo.top,$=m.padInfo.right,D=m.padInfo.bottom,P=m.padInfo.left,F=m.dilationHeight,R=m.dilationWidth,C=m.strideHeight,L=m.strideWidth,G=m.inChannels,j=m.padInfo.type==="SAME"?1:0,K=m.batchSize,q=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=r.makeOutput(m.outShape,"float32"),se=r.dataIdMap.get(te.dataId).id,oe=i==null?0:r.dataIdMap.get(i.dataId).id;return W_(b,K,q,Z,y,w,T,x,N,$,D,P,j,F,R,C,L,G,v,g,oe,f||0,se),te}var Mae={kernelName:Mo,backendName:"wasm",setupFunc:Pae,kernelFunc:Oae},V_;function Lae(e){V_=e.wasm.cwrap(Lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bae(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(s.shape,a.shape,c,u,l,p,!0),g=Zd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,y=r.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(o!=null){let re=r.dataIdMap.get(o.dataId);if(re.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${re.shape.length}.`);if(re.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${re.shape}) does not match the number of output channels (${v})`);x=re.id}let w=m.filterHeight,T=m.filterWidth,N=m.padInfo.top,$=m.padInfo.right,D=m.padInfo.bottom,P=m.padInfo.left,F=m.dilationHeight,R=m.dilationWidth,C=m.strideHeight,L=m.strideWidth,G=m.inChannels,j=m.padInfo.type==="SAME"?1:0,K=m.batchSize,q=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=r.makeOutput(m.outShape,"float32"),se=r.dataIdMap.get(te.dataId).id,oe=i==null?0:r.dataIdMap.get(i.dataId).id;return V_(b,K,q,Z,y,w,T,x,N,$,D,P,j,F,R,C,L,G,v,g,oe,f||0,se),te}var zae={kernelName:Lo,backendName:"wasm",setupFunc:Lae,kernelFunc:Bae},U_;function Wae(e){U_=e.wasm.cwrap(gc,null,["number","number","number","number","number","number","array","number"])}function Vae(e){let{backend:t,inputs:n}=e,{params:r,indices:s}=n,[a,o,i,c]=Iy.prepareAndValidate(r,s),l=t.makeOutput(a,r.dtype);if(o===0)return l;let u=s.shape,d=u[u.length-1],h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,g=new Uint8Array(new Int32Array(c).buffer),b=t.dataIdMap.get(l.dataId).id;return U_(h,Rt[r.dtype],m,o,d,i,g,b),l}var Uae={kernelName:gc,backendName:"wasm",setupFunc:Wae,kernelFunc:Vae},G_;function Gae(e){G_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Hae(e){let{backend:t,inputs:n,attrs:r}=e,{x:s,indices:a}=n,{axis:o,batchDims:i}=r,c=k.parseAxisParam(o,s.shape)[0],l=t.readSync(a.dataId),u=s.shape[c];for(let D=0;D<l.length;++D){let P=l[D];k.assert(P<=u-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${u-1}]`)}let d=_.segment_util.collectGatherOpShapeInfo(s,a,c,i),p=Un({inputs:{x:s},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=k.sizeFromShape(a.shape),f=Un({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,s.dtype);if(k.sizeFromShape(s.shape)===0)return g;let b=p.shape.length-1,v=t.dataIdMap.get(p.dataId).id,w=t.dataIdMap.get(f.dataId).id,T=t.dataIdMap.get(g.dataId).id,N=new Uint8Array(new Int32Array(k.computeStrides(p.shape)).buffer),$=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer);return G_(v,Rt[s.dtype],N,b,w,d.batchSize,$,T),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var jae={kernelName:mc,backendName:"wasm",setupFunc:Gae,kernelFunc:Hae},qae=!1,Kae=Nn(bc,qae,"bool"),Xae=!1,Yae=Nn(ro,Xae,"bool"),H_;function Zae(e){H_=e.wasm.cwrap(ao,null,["number","number","number","number"])}function Jae(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,s=r.dataIdMap.get(t.dataId).id,a=r.makeOutput(t.shape,"float32");if(k.sizeFromShape(t.shape)!==0){let o=r.dataIdMap.get(a.dataId).id;H_(s,Rt[t.dtype],n,o)}return a}var Qae={kernelName:ao,backendName:"wasm",setupFunc:Zae,kernelFunc:Jae},eoe=!1,toe=Nn(wc,eoe,"bool"),noe=!1,roe=Nn(kc,noe,"bool"),soe=ln(oo),aoe=!1,ooe=Nn(Sc,aoe,"bool"),j_;function ioe(e){j_=e.wasm.cwrap(io,null,["number","number","number","number"])}function coe(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t);if(h){let v=t.dataIdMap.get(u.dataId).id;l=u,c=v}let f=l.shape.length;_.assertAxesAreInnerMostDims("max",d,f);let[m,g]=_.computeOutAndReduceShapes(l.shape,d),b=k.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(k.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;j_(c,Rt[o.dtype],b,v)}if(h&&t.disposeData(u.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var uoe={kernelName:io,backendName:"wasm",setupFunc:ioe,kernelFunc:coe},loe=!1,doe=Nn(co,loe),q_;function poe(e){q_=e.wasm.cwrap(uo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hoe(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id;k.assert(s.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${s.dtype}.`);let{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=n,u=_.computePool2DInfo(s.shape,o,i,1,c,l),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,b=u.dilationHeight,y=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,w=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(u.outShape,"float32"),$=r.dataIdMap.get(N.dataId).id;return q_(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,y,v,x,w,T,$),N}var foe={kernelName:uo,backendName:"wasm",setupFunc:poe,kernelFunc:hoe},K_;function moe(e){K_=e.wasm.cwrap(lo,null,["number, number, number"])}function goe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(l=u,c=x,f=_.getInnerMostAxes(f.length,l.shape.length))}_.assertAxesAreInnerMostDims("mean",f,l.shape.length);let[m,g]=_.computeOutAndReduceShapes(l.shape,f),b=k.sizeFromShape(g),y=l;l.dtype!=="float32"&&(y=Jd({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),c=t.dataIdMap.get(y.dataId).id);let v=t.makeOutput(m,"float32");if(k.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;K_(c,b,x)}if(h&&t.disposeData(u.dataId),a){let x=_.expandShapeToKeepDim(v.shape,p);v.shape=x}return l.dtype!=="float32"&&t.disposeData(y.dataId),v}var boe={kernelName:lo,backendName:"wasm",setupFunc:moe,kernelFunc:goe},X_;function yoe(e){X_=e.wasm.cwrap(po,null,["number","number","number","number"])}function voe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==i&&(l=u,c=v)}let f=l.shape.length;_.assertAxesAreInnerMostDims("min",d,f);let[m,g]=_.computeOutAndReduceShapes(l.shape,d),b=k.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(k.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;X_(c,Rt[o.dtype],b,v)}if(h&&t.disposeData(u.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var xoe={kernelName:po,backendName:"wasm",setupFunc:yoe,kernelFunc:voe},woe=!1,koe=Nn(ho,woe),d0;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(d0||(d0={}));var Y_;function Ioe(e){Y_=e.wasm.cwrap(fo,null,["number","array","number","number","array","array","number","number"])}function Soe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),d=r.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return Y_(o,l,t.shape.length,Rt[t.dtype],p,h,d0[s],c),i}var Toe={kernelName:fo,backendName:"wasm",kernelFunc:Soe,setupFunc:Ioe},Coe=!0,Noe=Nn(mo,Coe),_oe=ln(Cc);function p0(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],s=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:s,pSelectedScores:a,pValidOutputs:o}}var Z_;function Eoe(e){Z_=e.wasm.cwrap(_c,"number",["number","number","number","number","number"])}function Aoe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o}=r,{boxes:i,scores:c}=n,l=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(c.dataId).id,d=Z_(l,u,a,s,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=p0(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Doe={kernelName:_c,backendName:"wasm",setupFunc:Eoe,kernelFunc:Aoe},J_;function $oe(e){J_=e.wasm.cwrap(Ec,"number",["number","number","number","number","number","bool"])}function Foe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=r,{boxes:c,scores:l}=n,u=t.dataIdMap.get(c.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=J_(u,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=p0(t,p);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var Roe={kernelName:Ec,backendName:"wasm",setupFunc:$oe,kernelFunc:Foe},Q_;function Poe(e){Q_=e.wasm.cwrap(Ac,"number",["number","number","number","number","number","number"])}function Ooe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=r,{boxes:c,scores:l}=n,u=t.dataIdMap.get(c.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=Q_(u,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=p0(t,p);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[b,y]}var Moe={kernelName:Ac,backendName:"wasm",setupFunc:Poe,kernelFunc:Ooe},Loe=!1,Boe=Nn(Nc,Loe,"bool"),eE;function zoe(e){eE=e.wasm.cwrap(go,null,["number","number","number","number","number"])}function Woe(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,c=n.makeOutput([...s.shape,a],"int32"),l=n.dataIdMap.get(c.dataId).id,d=n.dataIdMap.get(s.dataId).id;return eE(d,a,o,i,l),c}var Voe={kernelName:go,backendName:"wasm",setupFunc:zoe,kernelFunc:Woe};function Uoe(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var Goe={kernelName:Dc,backendName:"wasm",kernelFunc:Uoe};function Hoe(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return l0({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(u=>{let d=l0({inputs:{input:u},backend:n,attrs:{dim:s}});return i.push(d),d}),l=D_({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(u=>n.disposeData(u.dataId)),l}var joe={kernelName:$c,backendName:"wasm",kernelFunc:Hoe},tE;function qoe(e){tE=e.wasm.cwrap(bo,null,["number","array","number","number","array","array","number","number"])}function Koe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:s}}=e,a=r.map((m,g)=>m[0]+t.shape[g]+m[1]);if(k.sizeFromShape(t.shape)===0)return L_({backend:n,attrs:{shape:a,value:s,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=r.map(m=>m[0]),p=r.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return tE(o,u,t.shape.length,Rt[t.dtype],h,f,s,l),i}var nE={kernelName:bo,backendName:"wasm",kernelFunc:Koe,setupFunc:qoe},Xoe=!1,Yoe=Nn(yo,Xoe),rE;function Zoe(e){rE=e.wasm.cwrap(vo,null,["number","number","number"])}function Joe(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,i=a,c=r,l=c;c.dtype!=="float32"&&(l=Jd({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(l.dataId).id);let u=n.makeOutput(r.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return rE(i,o,d),c.dtype!=="float32"&&n.disposeData(l.dataId),u}var Qoe={kernelName:vo,backendName:"wasm",setupFunc:Zoe,kernelFunc:Joe},sE;function eie(e){sE=e.wasm.cwrap(Fc,null,["number","number","number","number"])}function tie(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t),f=d;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==i&&(l=u,c=v,f=_.getInnerMostAxes(f.length,l.shape.length))}_.assertAxesAreInnerMostDims("prod",f,l.shape.length);let[m,g]=_.computeOutAndReduceShapes(l.shape,f),b=k.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(k.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;sE(c,b,Rt[y.dtype],v)}if(h&&t.disposeData(u.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var nie={kernelName:Fc,backendName:"wasm",setupFunc:eie,kernelFunc:tie},rie=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=Rw(r,s,a,o),c=t.makeOutput([i.length],o);return t.typedArrayFromHeap(c).set(i),c},sie={kernelName:Pl,backendName:"wasm",kernelFunc:rie},aie=!0,oie=Nn(Za,aie),iie=ln(xo),cie=ln(ko),aE;function uie(e){aE=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number"])}function lie(e){let{backend:t,inputs:n,attrs:r}=e,{images:s}=n,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,l]=i,[u,d,p,h]=s.shape,f=[u,c,l,h],m=t.dataIdMap.get(s.dataId),g;m.dtype!=="float32"&&(g=Jd({backend:t,inputs:{x:s},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,y=t.makeOutput(f,"float32");if(k.sizeFromShape(s.shape)===0)return y;let v=t.dataIdMap.get(y.dataId).id;return aE(b,u,d,p,h,c,l,a?1:0,o?1:0,v),g!=null&&t.disposeData(g.dataId),y}var die={kernelName:wo,backendName:"wasm",setupFunc:uie,kernelFunc:lie},oE;function pie(e){oE=e.wasm.cwrap(Io,null,["number","array","number","array","number","number"])}function hie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=k.parseAxisParam(a,s.shape);if(s.shape.length===0)return Om({inputs:{x:s},backend:n});let i=n.makeOutput(s.shape,s.dtype),c=n.dataIdMap.get(s.dataId).id,l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(s.shape).buffer);oE(c,u,o.length,d,s.shape.length,l);let p=Un({inputs:{x:i},attrs:{shape:s.shape},backend:n});return n.disposeData(i.dataId),p}var fie={kernelName:Io,backendName:"wasm",kernelFunc:hie,setupFunc:pie},iE;function mie(e){iE=e.wasm.cwrap(Zc,null,["number","number","number","number","number","number","number","number","array","number","number"])}function gie(e){let{inputs:t,backend:n,attrs:r}=e,{image:s}=t,{radians:a,fillValue:o,center:i}=r,c=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(s.dataId).id,u=n.dataIdMap.get(c.dataId).id,[d,p,h,f]=s.shape,[m,g]=_.getImageCenter(i,p,h),b=o===0,y=255,v=typeof o=="number"?[o,o,o,b?0:y]:[...o,y],x=new Uint8Array(new Int32Array(v).buffer);return iE(l,d,p,h,f,a,m,g,x,v.length,u),c}var bie={kernelName:Zc,backendName:"wasm",kernelFunc:gie,setupFunc:mie},yie=ln(So),vie=ln(To),cE;function xie(e){cE=e.wasm.cwrap(Oc,null,["number","number","number","number","number","number","array","number","number"])}function wie(e){let{backend:t,inputs:n,attrs:r}=e,{indices:s,updates:a}=n,{shape:o}=r,i=t.makeOutput(o,a.dtype);if(k.sizeFromShape(o)===0)return i;let{sliceRank:c,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=Sy.calculateShapes(a,s,o),f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return cE(f,g,Rt[a.dtype],c,l,u,b,p,y),i}var kie={kernelName:Oc,backendName:"wasm",setupFunc:xie,kernelFunc:wie},uE;function Iie(e){uE=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Sie(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(s.dataId).id,c=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(l.dataId).id,d=r.shape.length,p=s.shape.length,h=d===0||d>1||p===1?1:k.sizeFromShape(s.shape.slice(1));return uE(o,i,c,h,u),l}var Tie={kernelName:Mc,backendName:"wasm",kernelFunc:Sie,setupFunc:Iie},lE;function Cie(e){lE=e.wasm.cwrap(No,null,["number","number"])}function Nie(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(s.dataId).id;return k.sizeFromShape(s.shape)===0||lE(r,a),s}var _ie={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Cie,kernelFunc:Nie},Eie=ln(Co),dE;function Aie(e){dE=e.wasm.cwrap(Ao,null,["number","number","number","number"])}function Die(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,s=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[r],c=k.sizeFromShape(n.shape)/i;return k.sizeFromShape(a.shape)===0||dE(s,o,i,c),a}var $ie={kernelName:Ao,backendName:"wasm",setupFunc:Aie,kernelFunc:Die};function Fie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r,i=k.sizeFromShape(a),c=[[0,0]];c.push(...o);for(let T=1+a.length;T<s.shape.length;++T)c.push([0,0]);let l=nE.kernelFunc({inputs:{x:s},backend:n,attrs:{paddings:c,constantValue:0}}),u=_.getReshaped(l.shape,a,i,!1),d=_.getPermuted(u.length,a.length,!1),p=_.getReshapedPermuted(l.shape,a,i,!1),m=Un({inputs:{x:l},backend:n,attrs:{shape:u}}),y=zu({inputs:{x:m},backend:n,attrs:{perm:d}}),w=Un({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(l.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),w}var Rie={kernelName:Uc,backendName:"wasm",kernelFunc:Fie},pE;function Pie(e){pE=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Oie(e){let{backend:t,inputs:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=n,i=r.shape[0],c=r.shape[1],l=t.readSync(a.dataId)[0],u=[i+l,c],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(u,r.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(u.slice(0,1),s.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([l],"bool"),v=t.dataIdMap.get(y.dataId).id,x=t.makeOutput([i],r.dtype),w=t.dataIdMap.get(x.dataId).id,T=t.makeOutput([4],"int32"),N=t.dataIdMap.get(T.dataId).id,$=pE(d,p,Rt[s.dtype],i,l,c,h,m,b,v,w,N),D=t.readSync(T.dataId),P;switch(D[0]){case 1:{P=_.getSparseFillEmptyRowsIndicesDenseShapeMismatch(D[1]);break}case 2:{P=_.getSparseFillEmptyRowsNegativeIndexErrorMessage(D[1],D[2]);break}case 3:P=_.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(D[1],D[2],D[3]);break;default:P=""}if(t.disposeData(T.dataId),P)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(x.dataId),new Error(P);let F=f,R=g;return $!==u[0]&&(F=xi({inputs:{x:f},attrs:{begin:0,size:[$,c]},backend:t}),R=xi({inputs:{x:g},attrs:{begin:0,size:$},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[F,R,y,x]}var Mie={kernelName:Ml,backendName:"wasm",setupFunc:Pie,kernelFunc:Oie},hE;function Lie(e){hE=e.wasm.cwrap(Hc,null,["number","number","number","number","number","number","number"])}function Bie(e){let{backend:t,inputs:n}=e,{inputIndices:r,inputShape:s,newShape:a}=n;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(r.dataId).id,i=t.dataIdMap.get(s.dataId).id,c=t.dataIdMap.get(a.dataId).id,l=r.shape[0],u=k.sizeFromShape(a.shape),d=t.makeOutput([l,u],r.dtype),p=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([u],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;hE(o,i,c,l,p,f,g);let b=t.readSync(m.dataId),y;switch(b[0]){case 0:{y=_.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=_.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=_.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let v=Array.from(t.readSync(s.dataId)),x=Array.from(t.readSync(h.dataId));y=_.getSparseReshapeInputOutputMultipleErrorMessage(v,x);break}case 4:{let v=Array.from(t.readSync(s.dataId)),x=Array.from(t.readSync(h.dataId));y=_.getSparseReshapeInputOutputMismatchErrorMessage(v,x);break}default:y=""}if(t.disposeData(m.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var zie={kernelName:Hc,backendName:"wasm",setupFunc:Lie,kernelFunc:Bie},fE;function mE(e){fE=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function gE(e,t){let{backend:n,inputs:r}=e,{data:s,indices:a,segmentIds:o}=r,i=a.shape[0],c=n.readSync(o.dataId,i-1,i)[0],u=i>0?c+1:0;if(u<0)throw new Error(_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=s.shape.slice();d[0]=u;let p=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(d,s.dtype),g=n.dataIdMap.get(m.dataId).id,b=n.makeOutput([4],"int32"),y=n.dataIdMap.get(b.dataId).id;fE(p,Rt[s.dtype],s.shape[0],h,f,g,y,t,0);let v=n.readSync(b.dataId),x;switch(v[0]){case 0:{x=_.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=_.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=_.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(v[1],v[2]);break;case 3:x=_.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v[1],v[2],v[3]);break;default:x=""}if(n.disposeData(b.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Wie(e){return gE(e,!0)}var Vie={kernelName:Ll,backendName:"wasm",setupFunc:mE,kernelFunc:Wie};function Uie(e){return gE(e,!1)}var Gie={kernelName:Bl,backendName:"wasm",setupFunc:mE,kernelFunc:Uie};function Hie(e){let{inputs:t,attrs:n,backend:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=n,i=k.parseAxisParam(o,s.shape)[0],c=_.prepareSplitSize(s,a,i),l=new Array(s.shape.length).fill(0),u=s.shape.slice();return c.map(d=>{let p=[...u];p[i]=d;let h=xi({inputs:{x:s},attrs:{begin:l,size:p},backend:r});return l[i]+=d,h})}var jie={kernelName:Gc,backendName:"wasm",kernelFunc:Hie},qie=ln(_o),Kie=ln(zl),Xie=!0,Yie=Nn(Do,Xie),bE;function Zie(e){bE=e.wasm.cwrap(ta,null,["number","number","number","number"])}function Jie(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),c=t.dataIdMap.get(i.dataId).id;return bE(o,s,Rt[a.dtype],c),i}var Qie={kernelName:ta,backendName:"wasm",setupFunc:Zie,kernelFunc:Jie},yE;function ece(e){yE=e.wasm.cwrap(jc,null,["number","array","number","array","array","array","array","array","number","number"])}function tce(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{begin:a,end:o,strides:i,beginMask:c,endMask:l,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=Ht.sliceInfo(s.shape,a,o,i,c,l,u,d,p),w;if(m)w=Un({inputs:{x:s},backend:t,attrs:{shape:f}});else if(g||b){k.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let T=Ht.computeOutShape(y,v,x),N=xi({inputs:{x:s},backend:t,attrs:{begin:y,size:T}});w=Un({inputs:{x:N},backend:t,attrs:{shape:f}}),t.disposeData(N.dataId)}else{let T=t.makeOutput(h,"float32"),N=t.dataIdMap.get(s.dataId).id,$=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),D=new Uint8Array(new Int32Array(y).buffer),P=new Uint8Array(new Int32Array(v).buffer),F=new Uint8Array(new Int32Array(x).buffer),R=new Uint8Array(new Int32Array(h).buffer),C=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer),L=t.dataIdMap.get(T.dataId).id;yE(N,$,s.shape.length,D,P,F,R,C,h.length,L),w=Un({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}return w}var nce={kernelName:jc,backendName:"wasm",setupFunc:ece,kernelFunc:tce},rce=!0,sce=Nn($o,rce),vE;function ace(e){vE=e.wasm.cwrap(Eo,null,["number","number","number","number"])}function oce(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ca(o,s,t),f=d;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==i&&(l=u,c=v,f=_.getInnerMostAxes(f.length,l.shape.length))}_.assertAxesAreInnerMostDims("sum",f,l.shape.length);let[m,g]=_.computeOutAndReduceShapes(l.shape,f),b=k.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(k.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;vE(c,b,Rt[y.dtype],v)}if(h&&t.disposeData(u.dataId),a){let v=_.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var ice={kernelName:Eo,backendName:"wasm",setupFunc:ace,kernelFunc:oce},cce=ln(Fo),uce=ln(Ro),xE;function lce(e){xE=e.wasm.cwrap(ea,null,["number","array","number","array","number","number"])}function dce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,a=n.dataIdMap.get(s.dataId).id,{reps:o}=r,i=new Array(s.shape.length);for(let p=0;p<i.length;p++)i[p]=s.shape[p]*o[p];let c=new Uint8Array(new Int32Array(s.shape).buffer),l=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,s.dtype),d=n.dataIdMap.get(u.dataId).id;return xE(a,c,s.shape.length,l,i.length,Rt[u.dtype],d),u}var pce={kernelName:ea,backendName:"wasm",setupFunc:lce,kernelFunc:dce},wE;function hce(e){wE=e.wasm.cwrap(qc,null,["number","array","number","number","number","bool","number","number"])}var fce=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:s,sorted:a}=n,o=t.dataIdMap.get(r.dataId).id,i=new Uint8Array(new Int32Array(r.shape).buffer),c=r.shape.slice();c[c.length-1]=s;let l=t.makeOutput(c,r.dtype),u=t.dataIdMap.get(l.dataId).id,d=t.makeOutput(c,"int32"),p=t.dataIdMap.get(d.dataId).id;return wE(o,i,r.shape.length,Rt[r.dtype],s,a,u,p),[l,d]},mce={kernelName:qc,backendName:"wasm",setupFunc:hce,kernelFunc:fce},kE;function gce(e){kE=e.wasm.cwrap(Kc,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function bce(e){let{backend:t,inputs:n,attrs:r}=e,{image:s,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:c,outputShape:l}=r,[u,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[u,f,m,h],b=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),y=t.makeOutput(g,s.dtype),v=t.dataIdMap.get(y.dataId).id,w=t.dataIdMap.get(s.dataId).id,N=t.dataIdMap.get(a.dataId).id,$=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return kE(w,N,a.shape[0]>1,u,f,m,h,p,d,b,s.shape.length-1,$,D,c,v),y}var yce={kernelName:Kc,backendName:"wasm",setupFunc:gce,kernelFunc:bce};function vce(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape[a],i=s.shape.length,c=new Array(i-1),l=0;for(let h=0;h<i;h++)h!==a&&(c[l++]=s.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=s.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=xi({inputs:{x:s},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:c}))}var xce={kernelName:Xc,backendName:"wasm",kernelFunc:vce};function wce(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var kce={kernelName:Yc,backendName:"wasm",kernelFunc:wce},Ice=[fse,mse,bse,xse,_se,Dse,Rse,Mse,Wse,qse,Kse,Xse,Jse,Qse,nae,aae,oae,iae,lae,hae,gae,vae,xae,kae,Iae,Sae,Tae,_ae,Eae,Dae,Rae,Mae,zae,Uae,jae,Kae,Yae,wse,Qae,toe,roe,soe,ooe,uoe,doe,foe,boe,xoe,koe,Toe,Noe,_oe,Doe,Roe,Moe,Boe,Voe,Goe,joe,nE,Yoe,Qoe,nie,sie,oie,iie,cie,Lse,die,fie,bie,yie,vie,kie,Tie,_ie,Eie,Hse,$ie,Rie,Mie,zie,Vie,Gie,jie,qie,Kie,Yie,Qie,nce,sce,ice,cce,uce,pce,mce,yce,Tse,xce,kce];for(let e of Ice)Ul(e);var h0=J();h0.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));h0.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(h0.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var IE=Oa(WD()),Sce='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Tce=Oa(VD()),SE=class extends kl{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(CE),m0=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new qp(this,ns())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r,s){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null,refCount:s});return}let o=k.sizeFromShape(n),i=o*k.bytesPerElement(r),c=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:c,shape:n,dtype:r,refCount:s}),this.wasm.tfjs.registerTensor(a,o,c),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),c)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:r,dtype:s,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(s==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||k.sizeFromShape(a);let i=k.bytesPerElement(s),c=this.wasm.HEAPU8.slice(r+t*i,r+n*i);return _ce(c.buffer,s)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,s,a);case"int32":return new Int32Array(r,s,a);case"bool":return new Uint8Array(r,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Cce(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(s=>{WebAssembly.instantiate(s,t).then(a=>{n(a.instance,a.module)})})}),{})}function TE(e,t,n){if(Mm!=null)return Mm;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),ep!=null&&ep[r]!=null?ep[r]:n+r}async function Nce(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let s={};s.locateFile=(i,c)=>{if(i.endsWith(".worker.js")){let l=Sce,u=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?TE(e,t,Qd!=null?Qd:c):c+i},f0&&(s.instantiateWasm=Cce(TE(e,t,Qd!=null?Qd:"")));let a=!1;s.onAbort=()=>{if(a||tp)return;tp=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Mm==null?(s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+IE.default.toString()],{type:"text/javascript"}),o=(0,IE.default)(s)):o=(0,Tce.default)(s),o.then(i=>{a=!0,tp=!1;let c=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",c,["number"]),dispose:i.cwrap("dispose",c,[])},n({wasm:i})})})}function _ce(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ece=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Mm=null,Qd=null,ep={},tp=!1,f0=!1;function Ace(e,t=!1){if(Dy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),tp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Mm=e,f0=t}function Dce(e,t=!1){if(tp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Qd=e;else{ep=e;let n=Ece.filter(r=>ep[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}f0=t}var CE=-1,m0=-1;function $ce(e){CE=e}function Fce(){if(m0===-1)throw new Error("WASM backend not initialized.");return m0}var Rce="3.13.0",Pce=2;Uh("wasm",async()=>{let{wasm:e}=await Nce();return new SE(e)},Pce);var Oce="3.13.0",Mce="3.13.0",Lce="3.13.0",Bce="3.13.0",zce="3.13.0",Wce="3.13.0",Vce="3.13.0",Uce="3.13.0",Gce={tfjs:Oce,"tfjs-core":Mce,"tfjs-data":Lce,"tfjs-layers":Bce,"tfjs-converter":zce,"tfjs-backend-cpu":Wce,"tfjs-backend-webgl":Vce,"tfjs-backend-wasm":Uce};var W0={};Gp(W0,{AnchorPosition:()=>E0,DrawBox:()=>Wm,DrawBoxOptions:()=>A0,DrawFaceLandmarks:()=>z0,DrawFaceLandmarksOptions:()=>B0,DrawTextField:()=>_a,DrawTextFieldOptions:()=>op,drawContour:()=>Rs,drawDetections:()=>Qce,drawFaceExpressions:()=>sue,drawFaceLandmarks:()=>oue});function Rs(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:r,y:s},a)=>{let o=t[a];e.moveTo(o.x,o.y),e.lineTo(r,s)}),n){let r=t[t.length-1],s=t[0];if(!r||!s)return;e.moveTo(r.x,r.y),e.lineTo(s.x,s.y)}e.stroke()}var v0={};Gp(v0,{computeReshapedDimensions:()=>y0,getCenterPoint:()=>Ii,isDimensions:()=>Bm,isEven:()=>Lm,isFloat:()=>b0,isTensor:()=>wi,isTensor1D:()=>Hce,isTensor2D:()=>g0,isTensor3D:()=>Ps,isTensor4D:()=>vr,isValidNumber:()=>Jr,isValidProbablitiy:()=>Wu,range:()=>ms,round:()=>ki});var _n=class{constructor(t,n){if(!Jr(t)||!Jr(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new _n(1/this.width,1/this.height)}};function wi(e,t){return e instanceof Ee&&e.shape.length===t}function Hce(e){return wi(e,1)}function g0(e){return wi(e,2)}function Ps(e){return wi(e,3)}function vr(e){return wi(e,4)}function b0(e){return e%1!==0}function Lm(e){return e%2===0}function ki(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Bm(e){return e&&e.width&&e.height}function y0({width:e,height:t},n){let r=n/Math.max(t,e);return new _n(Math.round(e*r),Math.round(t*r))}function Ii(e){return e.reduce((t,n)=>t.add(n),new Oe(0,0)).div(new Oe(e.length,e.length))}function ms(e,t,n){return Array(e).fill(0).map((r,s)=>t+s*n)}function Jr(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Wu(e){return Jr(e)&&e>=0&&e<=1}var Oe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Oe(this.x+t.x,this.y+t.y)}sub(t){return new Oe(this.x-t.x,this.y-t.y)}mul(t){return new Oe(this.x*t.x,this.y*t.y)}div(t){return new Oe(this.x/t.x,this.y/t.y)}abs(){return new Oe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Oe(Math.floor(this.x),Math.floor(this.y))}};var lt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Jr)}static assertIsValidBox(t,n,r=!1){if(!lt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let r=t||{},s=[r.left,r.top,r.right,r.bottom].every(Jr),a=[r.x,r.y,r.width,r.height].every(Jr);if(!a&&!s)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[o,i,c,l]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];lt.assertIsValidBox({x:o,y:i,width:c,height:l},"Box.constructor",n),this._x=o,this._y=i,this._width=c,this._height=l}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Oe(this.left,this.top)}get topRight(){return new Oe(this.right,this.top)}get bottomLeft(){return new Oe(this.left,this.bottom)}get bottomRight(){return new Oe(this.right,this.bottom)}round(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new lt({x:t,y:n,width:r,height:s})}floor(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new lt({x:t,y:n,width:r,height:s})}toSquare(){let{x:t,y:n,width:r,height:s}=this,a=Math.abs(r-s);return r<s&&(t-=a/2,r+=a),s<r&&(n-=a/2,s+=a),new lt({x:t,y:n,width:r,height:s})}rescale(t){let n=Bm(t)?t.width:t,r=Bm(t)?t.height:t;return new lt({x:this.x*n,y:this.y*r,width:this.width*n,height:this.height*r})}pad(t,n){let[r,s,a,o]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new lt({x:r,y:s,width:a,height:o})}clipAtImageBorders(t,n){let{x:r,y:s,right:a,bottom:o}=this,i=Math.max(r,0),c=Math.max(s,0),l=a-i,u=o-c,d=Math.min(l,t-i),p=Math.min(u,n-c);return new lt({x:i,y:c,width:d,height:p}).floor()}shift(t,n){let{width:r,height:s}=this,a=this.x+t,o=this.y+n;return new lt({x:a,y:o,width:r,height:s})}padAtBorders(t,n){let r=this.width+1,s=this.height+1,a=1,o=1,i=r,c=s,l=this.left,u=this.top,d=this.right,p=this.bottom;return d>n&&(i=-d+n+r,d=n),p>t&&(c=-p+t+s,p=t),l<1&&(c=2-l,l=1),u<1&&(c=2-u,u=1),{dy:o,edy:c,dx:a,edx:i,y:u,ey:p,x:l,ex:d,w:r,h:s}}calibrate(t){return new lt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vu=class extends lt{constructor(t,n,r,s,a=!1){super({left:t,top:n,right:r,bottom:s},a)}};var Na=class{constructor(t,n,r,s,a){this._imageDims=new _n(a.width,a.height),this._score=t,this._classScore=n,this._className=r,this._box=new lt(s).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new lt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Na(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var wt=class extends Na{constructor(t,n,r){super(t,t,"",n,r)}forSize(t,n){let{score:r,relativeBox:s,imageDims:a}=super.forSize(t,n);return new wt(r,s,a)}};function x0(e,t,n=!0){let r=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),s=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),a=r*s;return n?a/(e.area+t.area-a):a/Math.min(e.area,t.area)}function w0(e){let t=e.map(i=>i.x),n=e.map(i=>i.y),r=t.reduce((i,c)=>c<i?c:i,1/0),s=n.reduce((i,c)=>c<i?c:i,1/0),a=t.reduce((i,c)=>i<c?c:i,0),o=n.reduce((i,c)=>i<c?c:i,0);return new Vu(r,s,a,o)}function k0(e,t,n,r=!0){let s=t.map((o,i)=>({score:o,boxIndex:i})).sort((o,i)=>o.score-i.score).map(o=>o.boxIndex),a=[];for(;s.length>0;){let o=s.pop();a.push(o);let i=s,c=[];for(let l=0;l<i.length;l++){let u=i[l],d=e[o],p=e[u];c.push(x0(d,p,r))}s=s.filter((l,u)=>c[u]<=n)}return a}function Qr(e,t){return M(()=>{let[n,r,s]=t,a=wn([...e.shape.slice(0,3),1],n,"float32"),o=wn([...e.shape.slice(0,3),1],r,"float32"),i=wn([...e.shape.slice(0,3),1],s,"float32"),c=tt([a,o,i],3);return fe(e,c)})}function I0(e,t=!1){return M(()=>{let[n,r]=e.shape.slice(1);if(n===r)return e;let s=Math.abs(n-r),a=Math.round(s*(t?.5:1)),o=n>r?2:1,i=p=>{let h=e.shape.slice();return h[o]=p,wn(h,0,"float32")},c=i(a),l=s-c.shape[o],d=[t&&l?i(l):null,e,c].filter(p=>!!p).map(p=>ce(p,"float32"));return tt(d,o)})}function jce(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let r=Math.floor(Math.random()*(n+1)),s=t[n];t[n]=t[r],t[r]=s}return t}function np(e){return 1/(1+Math.exp(-e))}function qce(e){return Math.log(e/(1-e))}var Uu=class extends lt{constructor(t,n,r,s,a=!1){super({x:t,y:n,width:r,height:s},a)}};var Kce=.5,Xce=.43,Yce=.45,xr=class{constructor(t,n,r=new Oe(0,0)){let{width:s,height:a}=n;this._imgDims=new _n(s,a),this._shift=r,this._positions=t.map(o=>o.mul(new Oe(s,a)).add(r))}get shift(){return new Oe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Oe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Oe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let a=t instanceof wt?t.box.floor():new lt(t);return this.shiftBy(a.x,a.y).align(null,n)}let{useDlibAlignment:r,minBoxPadding:s}={useDlibAlignment:!1,minBoxPadding:.2,...n};return r?this.alignDlib():this.alignMinBbox(s)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,r,s]=t,a=d=>s.sub(d).magnitude(),o=(a(n)+a(r))/2,i=Math.floor(o/Yce),c=Ii(t),l=Math.floor(Math.max(0,c.x-Kce*i)),u=Math.floor(Math.max(0,c.y-Xce*i));return new Uu(l,u,Math.min(i,this.imageWidth+l),Math.min(i,this.imageHeight+u))}alignMinBbox(t){let n=w0(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var NE=class extends xr{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ii([t[3],t[4]])]}};var Gu=class extends xr{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ii)}};var rp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${ki(this.distance)})`:""}`}};var sp=class extends lt{static assertIsValidLabeledBox(t,n){if(lt.assertIsValidBox(t,n),!Jr(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Os=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(r=>new Float32Array(r));return new Os(t.label,n)}};var _E=class extends sp{static assertIsValidPredictedBox(t,n){if(sp.assertIsValidLabeledBox(t,n),!Wu(t.score)||!Wu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,r,s){super(t,n);this._score=r,this._classScore=s}get score(){return this._score}get classScore(){return this._classScore}};function gs(e){return e.detection instanceof wt}function Si(e,t){return{...e,...{detection:t}}}function S0(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function ap(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function zm(e){let t="";if(!e&&ap())try{e=pD("fs")}catch(r){t=r.toString()}return{readFile:e?r=>new Promise((s,a)=>{e.readFile(r,(o,i)=>o?a(o):s(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function T0(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,r=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},s=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},o=global.fetch,i=zm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:s,createVideoElement:a,fetch:o,...i}}function C0(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var rn;function Zce(){if(!rn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return rn}function N0(e){rn=e}function _0(){return C0()?N0(S0()):ap()?N0(T0()):null}function Jce(e){if(rn||_0(),!rn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=rn.Canvas,Image:n=rn.Image}=e;rn.Canvas=t,rn.Image=n,rn.createCanvasElement=e.createCanvasElement||(()=>new t),rn.createImageElement=e.createImageElement||(()=>new n),rn.ImageData=e.ImageData||rn.ImageData,rn.Video=e.Video||rn.Video,rn.fetch=e.fetch||rn.fetch,rn.readFile=e.readFile||rn.readFile}var nt={getEnv:Zce,setEnv:N0,initialize:_0,createBrowserEnv:S0,createFileSystem:zm,createNodejsEnv:T0,monkeyPatch:Jce,isBrowser:C0,isNodejs:ap};_0();function Ti(e){return!nt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Gn(e){let{Canvas:t,CanvasRenderingContext2D:n}=nt.getEnv();if(e instanceof n)return e;let r=Ti(e);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let s=r.getContext("2d");if(!s)throw new Error("resolveContext2d - canvas 2d context is null");return s}var E0=(s=>(s.TOP_LEFT="TOP_LEFT",s.TOP_RIGHT="TOP_RIGHT",s.BOTTOM_LEFT="BOTTOM_LEFT",s.BOTTOM_RIGHT="BOTTOM_RIGHT",s))(E0||{}),op=class{constructor(t={}){let{anchorPosition:n,backgroundColor:r,fontColor:s,fontSize:a,fontStyle:o,padding:i}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=s||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=o||"Georgia",this.padding=i||4}},_a=class{constructor(t,n,r={}){this.text=typeof t=="string"?[t]:t instanceof _a?t.text:t,this.anchor=n,this.options=new op(r)}measureWidth(t){let{padding:n}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,s)=>r<s?s:r,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:r}=this.options,s=r==="BOTTOM_RIGHT"||r==="TOP_RIGHT",a=r==="BOTTOM_LEFT"||r==="BOTTOM_RIGHT",o=this.measureWidth(t),i=this.measureHeight(),c=s?this.anchor.x-o:this.anchor.x,l=a?this.anchor.y-i:this.anchor.y;if(n){let{width:u,height:d}=n,p=Math.max(Math.min(c,u-o),0),h=Math.max(Math.min(l,d-i),0);return{x:p,y:h}}return{x:c,y:l}}draw(t){let n=Ti(t),r=Gn(n),{backgroundColor:s,fontColor:a,fontSize:o,fontStyle:i,padding:c}=this.options;r.font=`${o}px ${i}`;let l=this.measureWidth(r),u=this.measureHeight();r.fillStyle=s;let d=this.getUpperLeft(r,n);r.fillRect(d.x,d.y,l,u),r.fillStyle=a,this.text.forEach((p,h)=>{let f=c+d.x,m=c+d.y+(h+1)*o;r.fillText(p,f,m)})}};var A0=class{constructor(t={}){let{boxColor:n,lineWidth:r,label:s,drawLabelOptions:a}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=s;let o={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new op({...o,...a})}},Wm=class{constructor(t,n={}){this.box=new lt(t),this.options=new A0(n)}draw(t){let n=Gn(t),{boxColor:r,lineWidth:s}=this.options,{x:a,y:o,width:i,height:c}=this.box;n.strokeStyle=r,n.lineWidth=s,n.strokeRect(a,o,i,c);let{label:l}=this.options;l&&new _a([l],{x:a-s/2,y:o},this.options.drawLabelOptions).draw(t)}};function Qce(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof wt?r.score:gs(r)?r.detection.score:void 0,a=r instanceof wt?r.box:gs(r)?r.detection.box:new lt(r),o=s?`${ki(s)}`:void 0;new Wm(a,{label:o}).draw(e)})}function ip(e){let{Image:t,Video:n}=nt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function D0(e){return new Promise((t,n)=>{(e instanceof nt.getEnv().Canvas||ip(e))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),n(a))}function s(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),t(a))}e.addEventListener("load",s),e.addEventListener("error",r)})}function $0(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let s=nt.getEnv().createImageElement();s.onload=()=>t(s),s.onerror=n,s.src=r.result},r.onerror=n,r.readAsDataURL(e)})}function Ci(e){let{Image:t,Video:n}=nt.getEnv();return e instanceof t?new _n(e.naturalWidth,e.naturalHeight):e instanceof n?new _n(e.videoWidth,e.videoHeight):new _n(e.width,e.height)}function Ni({width:e,height:t}){let{createCanvasElement:n}=nt.getEnv(),r=n();return r.width=e,r.height=t,r}function cp(e,t){let{ImageData:n}=nt.getEnv();if(!(e instanceof n)&&!ip(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:s}=t||Ci(e),a=Ni({width:r,height:s});return e instanceof n?Gn(a).putImageData(e,0,0):Gn(a).drawImage(e,0,0,r,s),a}async function F0(e,t){let n=t||nt.getEnv().createCanvasElement(),[r,s,a]=e.shape.slice(vr(e)?1:0),o=M(()=>e.as3D(r,s,a).toInt());return await Go.toPixels(o,n),o.dispose(),n}function Vm(e){let{Image:t,Canvas:n,Video:r}=nt.getEnv();return e instanceof t||e instanceof n||e instanceof r}function R0(e,t,n=!1){let{Image:r,Canvas:s}=nt.getEnv();if(!(e instanceof r||e instanceof s))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Ni({width:1,height:1});let a=Ci(e),o=t/Math.max(a.height,a.width),i=o*a.width,c=o*a.height,l=Ni({width:t,height:t}),u=e instanceof s?e:cp(e),d=Math.abs(i-c)/2,p=n&&i<c?d:0,h=n&&c<i?d:0;return u.width>0&&u.height>0&&Gn(l).drawImage(u,p,h,i,c),l}var Ms=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((r,s)=>{if(Ps(r)){this._imageTensors[s]=r,this._inputDimensions[s]=r.shape;return}if(vr(r)){let o=r.shape[0];if(o!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${o} passed, but not supported in input array`);this._imageTensors[s]=r,this._inputDimensions[s]=r.shape.slice(1);return}let a=r instanceof nt.getEnv().Canvas?r:cp(r);this._canvases[s]=a,this._inputDimensions[s]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ms(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),r=this.getInputHeight(t);return y0({width:n,height:r},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,M(()=>{let r=ms(this.batchSize,0,1).map(a=>{let o=this.getInput(a);if(o instanceof Ee){let i=vr(o)?o:gn(o);return i=I0(i,n),(i.shape[1]!==t||i.shape[2]!==t)&&(i=tr.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(o instanceof nt.getEnv().Canvas)return Go.fromPixels(R0(o,t,n));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${o}`)});return Mt(r.map(a=>ce(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function yt(e){if(e instanceof Ms)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=s=>Array.isArray(e)?` at input index ${s}:`:"",r=t.map(Ti);return r.forEach((s,a)=>{if(!Vm(s)&&!Ps(s)&&!vr(s))throw typeof t[a]=="string"?new Error(`toNetInput -${n(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${n(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(vr(s)){let o=s.shape[0];if(o!==1)throw new Error(`toNetInput -${n(a)} tf.Tensor4D with batchSize ${o} passed, but not supported in input array`)}}),await Promise.all(r.map(s=>Vm(s)&&D0(s))),new Ms(r,Array.isArray(e))}async function Hu(e,t){let{Canvas:n}=nt.getEnv(),r=e;if(!(e instanceof n)){let o=await yt(e);if(o.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=o.getInput(0);r=i instanceof n?i:await F0(i)}let s=Gn(r);return t.map(o=>o instanceof wt?o.forSize(r.width,r.height).box.floor():o).map(o=>o.clipAtImageBorders(r.width,r.height)).map(({x:o,y:i,width:c,height:l})=>{let u=Ni({width:c,height:l});return c>0&&l>0&&Gn(u).putImageData(s.getImageData(o,i,c,l),0,0),u})}async function ju(e,t){if(!Ps(e)&&!vr(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(vr(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return M(()=>{let[n,r,s]=e.shape.slice(vr(e)?1:0);return t.map(i=>i instanceof wt?i.forSize(r,n).box:i).map(i=>i.clipAtImageBorders(r,n)).map(({x:i,y:c,width:l,height:u})=>pu(e.as3D(n,r,s),[c,i,0],[u,l,s]))})}async function Ls(e,t){let{fetch:n}=nt.getEnv(),r=await n(e,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function eue(e){let t=await Ls(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return $0(n)}async function P0(e){return(await Ls(e)).json()}async function tue(e){return new Float32Array(await(await Ls(e)).arrayBuffer())}function EE(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=nt.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=n,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(e),r.play()})}async function nue(e){let t=await Ls(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return EE(n)}function Um(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let r=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(r,"");let s=e.split("/").filter(i=>i),a=e.endsWith(".json")?s[s.length-1]:n,o=r+(e.endsWith(".json")?s.slice(0,s.length-1):s).join("/");return o=e.startsWith("/")?`/${o}`:o,{modelBaseUri:o,manifestUri:o==="/"?`/${a}`:`${o}/${a}`}}async function O0(e,t){let{manifestUri:n,modelBaseUri:r}=Um(e,t),s=await P0(n);return Zt.loadWeights(s,r)}function rue(e,t,n=!1){let{width:r,height:s}=n?Ci(t):t;return e.width=r,e.height=s,{width:r,height:s}}var dn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:r}=this.traversePropertyPath(t);return n[r]}reassignParamFromPath(t,n){let{obj:r,objProp:s}=this.traversePropertyPath(t);r[s].dispose(),r[s]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof sa)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof sa))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let r=Xn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await O0(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=nt.getEnv(),{manifestUri:r,modelBaseUri:s}=Um(t,this.getDefaultModelName()),a=l=>Promise.all(l.map(u=>n(u).then(d=>d.buffer))),o=Zt.weightsLoaderFactory(a),i=JSON.parse((await n(r)).toString()),c=await o(i,s);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:n,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=r}extractWeights(t){let{paramMappings:n,params:r}=this.extractParams(t);this._paramMappings=n,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((a,o)=>{if(!a.nextObj.hasOwnProperty(o))throw new Error(`traversePropertyPath - object does not have property ${o}, for path ${t}`);return{obj:a.nextObj,objProp:o,nextObj:a.nextObj[o]}},{nextObj:this.params}),{obj:r,objProp:s}=n;if(!r||!s||!(r[s]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:s}}};function Hn(e,t,n){return M(()=>{let r=ei(e,t.depthwise_filter,t.pointwise_filter,n,"same");return r=Y(r,t.bias),r})}function Gm(e,t,n=!1){return M(()=>{let r=Ke(n?Y(Pt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Hn(e,t.conv0,[2,2])),s=Hn(r,t.conv1,[1,1]),a=Ke(Y(r,s)),o=Hn(a,t.conv2,[1,1]);return Ke(Y(r,Y(s,o)))})}function up(e,t,n=!1,r=!0){return M(()=>{let s=Ke(n?Y(Pt(e,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):Hn(e,t.conv0,r?[2,2]:[1,1])),a=Hn(s,t.conv1,[1,1]),o=Ke(Y(s,a)),i=Hn(o,t.conv2,[1,1]),c=Ke(Y(s,Y(a,i))),l=Hn(c,t.conv3,[1,1]);return Ke(Y(s,Y(a,Y(i,l))))})}function _i(e,t,n="same",r=!1){return M(()=>{let s=Y(Pt(e,t.filters,[1,1],n),t.bias);return r?Ke(s):s})}function En(e,t){Object.keys(e).forEach(n=>{t.some(r=>r.originalPath===n)||e[n].dispose()})}function qu(e,t){return(n,r,s,a)=>{let o=Vr(e(n*r*s*s),[s,s,n,r]),i=je(e(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:o,bias:i}}}function Hm(e,t){return(n,r,s)=>{let a=Wr(e(n*r),[n,r]),o=je(e(r));return t.push({paramPath:`${s}/weights`},{paramPath:`${s}/bias`}),{weights:a,bias:o}}}var jm=class{constructor(t,n,r){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=r}};function Ku(e,t){return(n,r,s)=>{let a=Vr(e(3*3*n),[3,3,n,1]),o=Vr(e(n*r),[1,1,n,r]),i=je(e(r));return t.push({paramPath:`${s}/depthwise_filter`},{paramPath:`${s}/pointwise_filter`},{paramPath:`${s}/bias`}),new jm(a,o,i)}}function Xu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),r=e(`${t}/pointwise_filter`,4),s=e(`${t}/bias`,1);return new jm(n,r,s)}}function or(e,t){return(n,r,s)=>{let a=e[n];if(!wi(a,r))throw new Error(`expected weightMap[${n}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:n,paramPath:s||n}),a}}function An(e){let t=e;function n(s){let a=t.slice(0,s);return t=t.slice(s),a}function r(){return t}return{extractWeights:n,getRemainingWeights:r}}function qm(e,t){let n=qu(e,t),r=Ku(e,t);function s(o,i,c,l=!1){let u=l?n(o,i,3,`${c}/conv0`):r(o,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),p=r(i,i,`${c}/conv2`);return{conv0:u,conv1:d,conv2:p}}function a(o,i,c,l=!1){let{conv0:u,conv1:d,conv2:p}=s(o,i,c,l),h=r(i,i,`${c}/conv3`);return{conv0:u,conv1:d,conv2:p,conv3:h}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function AE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=An(e),{extractDenseBlock4Params:s}=qm(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2"),c=s(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i,dense3:c}}}function Km(e){return t=>{let n=e(`${t}/filters`,4),r=e(`${t}/bias`,1);return{filters:n,bias:r}}}function Xm(e,t){let n=or(e,t),r=Km(n),s=Xu(n);function a(i,c=!1){let l=c?r(`${i}/conv0`):s(`${i}/conv0`),u=s(`${i}/conv1`),d=s(`${i}/conv2`);return{conv0:l,conv1:u,conv2:d}}function o(i,c=!1){let l=c?r(`${i}/conv0`):s(`${i}/conv0`),u=s(`${i}/conv1`),d=s(`${i}/conv2`),p=s(`${i}/conv3`);return{conv0:l,conv1:u,conv2:d,conv3:p}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:o}}function DE(e){let t=[],{extractDenseBlock4Params:n}=Xm(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return En(e,t),{params:r,paramMappings:t}}var lp=class extends dn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Qr(r,[122.782,117.001,104.298]).div(255),o=up(a,n.dense0,!0);return o=up(o,n.dense1),o=up(o,n.dense2),o=up(o,n.dense3),o=pr(o,[7,7],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await yt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return DE(t)}extractParams(t){return AE(t)}};function dp(e,t){return M(()=>Y(De(e,t.weights),t.bias))}function $E(e,t,n){let r=[],{extractWeights:s,getRemainingWeights:a}=An(e),i=Hm(s,r)(t,n,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function FE(e){let t=[],n=or(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:r("fc")};return En(e,t),{params:s,paramMappings:t}}function Ym(e){let t={},n={};return Object.keys(e).forEach(r=>{let s=r.startsWith("fc")?n:t;s[r]=e[r]}),{featureExtractorMap:t,classifierMap:n}}var pp=class extends dn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ms?this.faceFeatureExtractor.forwardInput(t):t;return dp(r.as2D(r.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return $E(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=Ym(t);return this.faceFeatureExtractor.loadFromWeightMap(n),FE(r)}extractParams(t){let n=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*n+r,a=t.slice(0,t.length-s),o=t.slice(t.length-s);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(o)}};var M0=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Ea=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);M0.forEach((n,r)=>{this[n]=t[r]})}asSortedArray(){return M0.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Zm=class extends pp{constructor(t=new lp){super("FaceExpressionNet",t)}forwardInput(t){return M(()=>zr(this.runNet(t)))}async forward(t){return this.forwardInput(await yt(t))}async predictExpressions(t){let n=await yt(t),r=await this.forwardInput(n),s=await Promise.all(ft(r).map(async o=>{let i=o.dataSync();return o.dispose(),i}));r.dispose();let a=s.map(o=>new Ea(o));return n.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function L0(e){return e.expressions instanceof Ea}function Jm(e,t){return{...e,...{expressions:t}}}function sue(e,t,n=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let o=a instanceof Ea?a:L0(a)?a.expressions:void 0;if(!o)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=o.asSortedArray().filter(d=>d.probability>n),l=gs(a)?a.detection.box.bottomLeft:r||new Oe(0,0);new _a(c.map(d=>`${d.expression} (${ki(d.probability)})`),l).draw(e)})}function Ei(e){return gs(e)&&e.landmarks instanceof xr&&e.unshiftedLandmarks instanceof xr&&e.alignedRect instanceof wt}function aue(e){let t=(i,c,l,u)=>Math.atan2(u-c,l-i)%Math.PI,n=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return r;let s=e._positions;r.roll=-t(s[36]._x,s[36]._y,s[45]._x,s[45]._y),r.pitch=t(0,Math.abs(s[0]._x-s[30]._x)/s[30]._x,Math.PI,Math.abs(s[16]._x-s[30]._x)/s[30]._x);let a=s.reduce((i,c)=>i<c._y?i:c._y,1/0),o=s.reduce((i,c)=>i>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(e._imgDims._height/(o-a)/1.4-1),r}function Yu(e,t){let{box:n}=e.detection,r=t.shiftBy(n.x,n.y),s=r.align(),{imageDims:a}=e.detection,o=new wt(e.detection.score,s.rescale(a.reverse()),a),i=aue(t);return{...e,...{landmarks:r,unshiftedLandmarks:t,alignedRect:o,angle:i}}}var B0=class{constructor(t={}){let{drawLines:n=!0,drawPoints:r=!0,lineWidth:s,lineColor:a,pointSize:o,pointColor:i}=t;this.drawLines=n,this.drawPoints=r,this.lineWidth=s||1,this.pointSize=o||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},z0=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new B0(n)}draw(t){let n=Gn(t),{drawLines:r,drawPoints:s,lineWidth:a,lineColor:o,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gu&&(n.strokeStyle=o,n.lineWidth=a,Rs(n,this.faceLandmarks.getJawOutline()),Rs(n,this.faceLandmarks.getLeftEyeBrow()),Rs(n,this.faceLandmarks.getRightEyeBrow()),Rs(n,this.faceLandmarks.getNose()),Rs(n,this.faceLandmarks.getLeftEye(),!0),Rs(n,this.faceLandmarks.getRightEye(),!0),Rs(n,this.faceLandmarks.getMouth(),!0)),s){n.strokeStyle=c,n.fillStyle=c;let l=u=>{n.beginPath(),n.arc(u.x,u.y,i,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(l)}}};function oue(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof xr?r:Ei(r)?r.landmarks:void 0;if(!s)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new z0(s).draw(e)})}var RE="1.6.4";function uue(e,t){let n=qu(e,t),r=Ku(e,t);function s(o,i,c){let l=r(o,i,`${c}/separable_conv0`),u=r(i,i,`${c}/separable_conv1`),d=n(o,i,1,`${c}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:d}}function a(o,i){let c=r(o,o,`${i}/separable_conv0`),l=r(o,o,`${i}/separable_conv1`),u=r(o,o,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:l,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:a}}function PE(e,t){let n=[],{extractWeights:r,getRemainingWeights:s}=An(e),{extractConvParams:a,extractSeparableConvParams:o,extractReductionBlockParams:i,extractMainBlockParams:c}=uue(r,n),l=a(3,32,3,"entry_flow/conv_in"),u=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),p={conv_in:l,reduction_block_0:u,reduction_block_1:d},h={};ms(t,0,1).forEach(b=>{h[`main_block_${b}`]=c(128,`middle_flow/main_block_${b}`)});let f=i(128,256,"exit_flow/reduction_block"),m=o(256,512,"exit_flow/separable_conv"),g={reduction_block:f,separable_conv:m};if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:n,params:{entry_flow:p,middle_flow:h,exit_flow:g}}}function lue(e,t){let n=or(e,t),r=Km(n),s=Xu(n);function a(i){let c=s(`${i}/separable_conv0`),l=s(`${i}/separable_conv1`),u=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:l,expansion_conv:u}}function o(i){let c=s(`${i}/separable_conv0`),l=s(`${i}/separable_conv1`),u=s(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:l,separable_conv2:u}}return{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}}function OE(e,t){let n=[],{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}=lue(e,n),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),l=a("entry_flow/reduction_block_1"),u={conv_in:i,reduction_block_0:c,reduction_block_1:l},d={};ms(t,0,1).forEach(m=>{d[`main_block_${m}`]=o(`middle_flow/main_block_${m}`)});let p=a("exit_flow/reduction_block"),h=s("exit_flow/separable_conv"),f={reduction_block:p,separable_conv:h};return En(e,n),{params:{entry_flow:u,middle_flow:d,exit_flow:f},paramMappings:n}}function ME(e,t,n){return Y(Pt(e,t.filters,n,"same"),t.bias)}function V0(e,t,n=!0){let r=n?Ke(e):e;return r=Hn(r,t.separable_conv0,[1,1]),r=Hn(Ke(r),t.separable_conv1,[1,1]),r=Ot(r,[3,3],[2,2],"same"),r=Y(r,ME(e,t.expansion_conv,[2,2])),r}function due(e,t){let n=Hn(Ke(e),t.separable_conv0,[1,1]);return n=Hn(Ke(n),t.separable_conv1,[1,1]),n=Hn(Ke(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var U0=class extends dn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Qr(r,[122.782,117.001,104.298]).div(255),o=Ke(ME(a,n.entry_flow.conv_in,[2,2]));return o=V0(o,n.entry_flow.reduction_block_0,!1),o=V0(o,n.entry_flow.reduction_block_1),ms(this._numMainBlocks,0,1).forEach(i=>{o=due(o,n.middle_flow[`main_block_${i}`])}),o=V0(o,n.exit_flow.reduction_block),o=Ke(Hn(o,n.exit_flow.separable_conv,[1,1])),o})}async forward(t){return this.forwardInput(await yt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return OE(t,this._numMainBlocks)}extractParams(t){return PE(t,this._numMainBlocks)}};function LE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=An(e),s=Hm(n,t),a=s(512,1,"fc/age"),o=s(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:o}}}}function BE(e){let t=[],n=or(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:{age:r("fc/age"),gender:r("fc/gender")}};return En(e,t),{params:s,paramMappings:t}}var Qm=(n=>(n.FEMALE="female",n.MALE="male",n))(Qm||{});var eg=class extends dn{constructor(t=new U0(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ms?this.faceFeatureExtractor.forwardInput(t):t,s=pr(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=dp(s,n.fc.age).as1D(),o=dp(s,n.fc.gender);return{age:a,gender:o}})}forwardInput(t){return M(()=>{let{age:n,gender:r}=this.runNet(t);return{age:n,gender:zr(r)}})}async forward(t){return this.forwardInput(await yt(t))}async predictAgeAndGender(t){let n=await yt(t),r=await this.forwardInput(n),s=ft(r.age),a=ft(r.gender),o=s.map((c,l)=>({ageTensor:c,genderTensor:a[l]})),i=await Promise.all(o.map(async({ageTensor:c,genderTensor:l})=>{let u=c.dataSync()[0],d=l.dataSync()[0],p=d>.5,h=p?"male":"female",f=p?d:1-d;return c.dispose(),l.dispose(),{age:u,gender:h,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),n.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return LE(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=Ym(t);return this.faceFeatureExtractor.loadFromWeightMap(n),BE(r)}extractParams(t){let n=512*1+1+(512*2+2),r=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var hp=class extends pp{postProcess(t,n,r){let s=r.map(({width:o,height:i})=>{let c=n/Math.max(i,o);return{width:o*c,height:i*c}}),a=s.length;return M(()=>{let o=(d,p)=>Mt([wn([68],d,"float32"),wn([68],p,"float32")],1).as2D(1,136).as1D(),i=(d,p)=>{let{width:h,height:f}=s[d];return p(h,f)?Math.abs(h-f)/2:0},c=d=>i(d,(p,h)=>p<h),l=d=>i(d,(p,h)=>h<p);return t.mul(wn([a,136],n,"float32")).sub(Mt(Array.from(Array(a),(d,p)=>o(c(p),l(p))))).div(Mt(Array.from(Array(a),(d,p)=>o(s[p].width,s[p].height))))})}forwardInput(t){return M(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([r,s])=>({height:r,width:s})))})}async forward(t){return this.forwardInput(await yt(t))}async detectLandmarks(t){let n=await yt(t),r=M(()=>ft(this.forwardInput(n))),s=await Promise.all(r.map(async(a,o)=>{let i=Array.from(a.dataSync()),c=i.filter((u,d)=>Lm(d)),l=i.filter((u,d)=>!Lm(d));return new Gu(Array(68).fill(0).map((u,d)=>new Oe(c[d],l[d])),{height:n.getInputHeight(o),width:n.getInputWidth(o)})}));return r.forEach(a=>a.dispose()),n.isBatchInput?s:s[0]}getClassifierChannelsOut(){return 136}};var Zu=class extends hp{constructor(t=new lp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function zE(e){let t=[],{extractDenseBlock3Params:n}=Xm(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return En(e,t),{params:r,paramMappings:t}}function WE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=An(e),{extractDenseBlock3Params:s}=qm(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i}}}var G0=class extends dn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Qr(r,[122.782,117.001,104.298]).div(255),o=Gm(a,n.dense0,!0);return o=Gm(o,n.dense1),o=Gm(o,n.dense2),o=pr(o,[14,14],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await yt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return zE(t)}extractParams(t){return WE(t)}};var tg=class extends hp{constructor(t=new G0){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var VE=class extends Zu{};function UE(e,t){return Y(V(e,t.weights),t.biases)}function H0(e,t,n,r,s="same"){let{filters:a,bias:o}=t.conv,i=Pt(e,a,n,s);return i=Y(i,o),i=UE(i,t.scale),r?Ke(i):i}function GE(e,t){return H0(e,t,[1,1],!0)}function j0(e,t){return H0(e,t,[1,1],!1)}function ng(e,t){return H0(e,t,[2,2],!0,"valid")}function pue(e,t){function n(i,c,l){let u=e(i),d=u.length/(c*l*l);if(b0(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${u.length}, numFilters: ${c}, filterSize: ${l}`);return M(()=>Re(Vr(u,[c,d,l,l]),[2,3,1,0]))}function r(i,c,l,u){let d=n(i,c,l),p=je(e(c));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:d,bias:p}}function s(i,c){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:l,biases:u}}function a(i,c,l,u){let d=r(i,c,l,`${u}/conv`),p=s(c,`${u}/scale`);return{conv:d,scale:p}}function o(i,c,l,u,d=!1){let p=a((d?.5:1)*i,c,l,`${u}/conv1`),h=a(i,c,l,`${u}/conv2`);return{conv1:p,conv2:h}}return{extractConvLayerParams:a,extractResidualLayerParams:o}}function HE(e){let{extractWeights:t,getRemainingWeights:n}=An(e),r=[],{extractConvLayerParams:s,extractResidualLayerParams:a}=pue(t,r),o=s(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),l=a(9216,32,3,"conv32_3"),u=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),p=a(36864,64,3,"conv64_2"),h=a(36864,64,3,"conv64_3"),f=a(147456,128,3,"conv128_down",!0),m=a(147456,128,3,"conv128_1"),g=a(147456,128,3,"conv128_2"),b=a(589824,256,3,"conv256_down",!0),y=a(589824,256,3,"conv256_1"),v=a(589824,256,3,"conv256_2"),x=a(589824,256,3,"conv256_down_out"),w=M(()=>Re(Wr(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:o,conv32_1:i,conv32_2:c,conv32_3:l,conv64_down:u,conv64_1:d,conv64_2:p,conv64_3:h,conv128_down:f,conv128_1:m,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:v,conv256_down_out:x,fc:w},paramMappings:r}}function hue(e,t){let n=or(e,t);function r(o){let i=n(`${o}/scale/weights`,1),c=n(`${o}/scale/biases`,1);return{weights:i,biases:c}}function s(o){let i=n(`${o}/conv/filters`,4),c=n(`${o}/conv/bias`,1),l=r(o);return{conv:{filters:i,bias:c},scale:l}}function a(o){return{conv1:s(`${o}/conv1`),conv2:s(`${o}/conv2`)}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function jE(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:r}=hue(e,t),s=n("conv32_down"),a=r("conv32_1"),o=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),l=r("conv64_1"),u=r("conv64_2"),d=r("conv64_3"),p=r("conv128_down"),h=r("conv128_1"),f=r("conv128_2"),m=r("conv256_down"),g=r("conv256_1"),b=r("conv256_2"),y=r("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!g0(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:s,conv32_1:a,conv32_2:o,conv32_3:i,conv64_down:c,conv64_1:l,conv64_2:u,conv64_3:d,conv128_down:p,conv128_1:h,conv128_2:f,conv256_down:m,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:v};return En(e,t),{params:x,paramMappings:t}}function es(e,t){let n=GE(e,t.conv1);return n=j0(n,t.conv2),n=Y(n,e),n=Ke(n),n}function fp(e,t){let n=ng(e,t.conv1);n=j0(n,t.conv2);let r=pr(e,2,2,"valid"),s=Tt(r.shape),a=r.shape[3]!==n.shape[3];if(r.shape[1]!==n.shape[1]||r.shape[2]!==n.shape[2]){let i=[...n.shape];i[1]=1;let c=Tt(i);n=tt([n,c],1);let l=[...n.shape];l[2]=1;let u=Tt(l);n=tt([n,u],2)}return r=a?tt([r,s],3):r,n=Y(r,n),n=Ke(n),n}var Ju=class extends dn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(150,!0),"float32"),a=Qr(r,[122.782,117.001,104.298]).div(255),o=ng(a,n.conv32_down);o=Ot(o,3,2,"valid"),o=es(o,n.conv32_1),o=es(o,n.conv32_2),o=es(o,n.conv32_3),o=fp(o,n.conv64_down),o=es(o,n.conv64_1),o=es(o,n.conv64_2),o=es(o,n.conv64_3),o=fp(o,n.conv128_down),o=es(o,n.conv128_1),o=es(o,n.conv128_2),o=fp(o,n.conv256_down),o=es(o,n.conv256_1),o=es(o,n.conv256_2),o=fp(o,n.conv256_down_out);let i=o.mean([1,2]);return De(i,n.fc)})}async forward(t){return this.forwardInput(await yt(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(o=>o<=0))return new Float32Array(128);let n=await yt(t),r=M(()=>ft(this.forwardInput(n))),s=await Promise.all(r.map(o=>o.data()));return r.forEach(o=>o.dispose()),n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jE(t)}extractParams(t){return HE(t)}};function fue(e){let t=new Ju;return t.extractWeights(e),t}function rg(e,t){return{...e,...{descriptor:t}}}function mue(e){return typeof e.age=="number"}function sg(e,t){return{...e,...{age:t}}}function gue(e){return(e.gender==="male"||e.gender==="female")&&Wu(e.genderProbability)}function ag(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function bue(e,t){function n(c,l){let u=Vr(e(3*3*c),[3,3,c,1]),d=je(e(c)),p=je(e(c)),h=je(e(c)),f=je(e(c));return t.push({paramPath:`${l}/filters`},{paramPath:`${l}/batch_norm_scale`},{paramPath:`${l}/batch_norm_offset`},{paramPath:`${l}/batch_norm_mean`},{paramPath:`${l}/batch_norm_variance`}),{filters:u,batch_norm_scale:d,batch_norm_offset:p,batch_norm_mean:h,batch_norm_variance:f}}function r(c,l,u,d,p){let h=Vr(e(c*l*u*u),[u,u,c,l]),f=je(e(l));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${p?"batch_norm_offset":"bias"}`}),{filters:h,bias:f}}function s(c,l,u,d){let{filters:p,bias:h}=r(c,l,u,d,!0);return{filters:p,batch_norm_offset:h}}function a(c,l,u){let d=n(c,`${u}/depthwise_conv`),p=s(c,l,1,`${u}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:p}}function o(){let c=s(3,32,3,"mobilenetv1/conv_0"),l=a(32,64,"mobilenetv1/conv_1"),u=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),p=a(128,256,"mobilenetv1/conv_4"),h=a(256,256,"mobilenetv1/conv_5"),f=a(256,512,"mobilenetv1/conv_6"),m=a(512,512,"mobilenetv1/conv_7"),g=a(512,512,"mobilenetv1/conv_8"),b=a(512,512,"mobilenetv1/conv_9"),y=a(512,512,"mobilenetv1/conv_10"),v=a(512,512,"mobilenetv1/conv_11"),x=a(512,1024,"mobilenetv1/conv_12"),w=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:l,conv_2:u,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,conv_8:g,conv_9:b,conv_10:y,conv_11:v,conv_12:x,conv_13:w}}function i(){let c=s(1024,256,1,"prediction_layer/conv_0"),l=s(256,512,3,"prediction_layer/conv_1"),u=s(512,128,1,"prediction_layer/conv_2"),d=s(128,256,3,"prediction_layer/conv_3"),p=s(256,128,1,"prediction_layer/conv_4"),h=s(128,256,3,"prediction_layer/conv_5"),f=s(256,64,1,"prediction_layer/conv_6"),m=s(64,128,3,"prediction_layer/conv_7"),g=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),w=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),N=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),D=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),P=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:l,conv_2:u,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:w},box_predictor_3:{box_encoding_predictor:T,class_predictor:N},box_predictor_4:{box_encoding_predictor:$,class_predictor:D},box_predictor_5:{box_encoding_predictor:P,class_predictor:F}}}return{extractMobilenetV1Params:o,extractPredictionLayerParams:i}}function qE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=An(e),{extractMobilenetV1Params:s,extractPredictionLayerParams:a}=bue(n,t),o=s(),i=a(),l={extra_dim:Wh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:o,prediction_layer:i,output_layer:l},paramMappings:t}}function yue(e,t){let n=or(e,t);function r(l,u,d){let p=n(`${l}/Conv2d_${u}_pointwise/weights`,4,`${d}/filters`),h=n(`${l}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:p,batch_norm_offset:h}}function s(l){let u=`mobilenetv1/conv_${l}`,d=`MobilenetV1/Conv2d_${l}_depthwise`,p=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,f=n(`${d}/depthwise_weights`,4,`${p}/filters`),m=n(`${d}/BatchNorm/gamma`,1,`${p}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${p}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${p}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${p}/batch_norm_variance`);return{depthwise_conv:{filters:f,batch_norm_scale:m,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:r("MobilenetV1",l,h)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:s(1),conv_2:s(2),conv_3:s(3),conv_4:s(4),conv_5:s(5),conv_6:s(6),conv_7:s(7),conv_8:s(8),conv_9:s(9),conv_10:s(10),conv_11:s(11),conv_12:s(12),conv_13:s(13)}}function o(l,u){let d=n(`${l}/weights`,4,`${u}/filters`),p=n(`${l}/biases`,1,`${u}/bias`);return{filters:d,bias:p}}function i(l){let u=o(`Prediction/BoxPredictor_${l}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${l}/box_encoding_predictor`),d=o(`Prediction/BoxPredictor_${l}/ClassPredictor`,`prediction_layer/box_predictor_${l}/class_predictor`);return{box_encoding_predictor:u,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function KE(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:r}=yue(e,t),s=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Ps(s))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${s}`);let a={mobilenetv1:n(),prediction_layer:r(),output_layer:{extra_dim:s}};return En(e,t),{params:a,paramMappings:t}}function Rr(e,t,n){return M(()=>{let r=Pt(e,t.filters,n,"same");return r=Y(r,t.batch_norm_offset),Qt(r,0,6)})}var vue=.0010000000474974513;function xue(e,t,n){return M(()=>{let r=la(e,t.filters,n,"same");return r=Ss(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,vue),Qt(r,0,6)})}function wue(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function XE(e,t){return M(()=>{let n,r=Rr(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,o)=>{let i=o+1,c=wue(i);r=xue(r,a.depthwise_conv,c),r=Rr(r,a.pointwise_conv,[1,1]),i===11&&(n=r)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:n}})}function kue(e,t,n){let r=e.arraySync(),s=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),o=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[n][0],r[n][2]),l=Math.min(r[n][1],r[n][3]),u=Math.max(r[n][0],r[n][2]),d=Math.max(r[n][1],r[n][3]),p=(o-s)*(i-a),h=(u-c)*(d-l);if(p<=0||h<=0)return 0;let f=Math.max(s,c),m=Math.max(a,l),g=Math.min(o,u),b=Math.min(i,d),y=Math.max(g-f,0)*Math.max(b-m,0);return y/(p+h-y)}function YE(e,t,n,r,s){let a=e.shape[0],o=Math.min(n,a),i=t.map((u,d)=>({score:u,boxIndex:d})).filter(u=>u.score>s).sort((u,d)=>d.score-u.score),c=u=>u<=r?1:0,l=[];return i.forEach(u=>{if(l.length>=o)return;let d=u.score;for(let p=l.length-1;p>=0;--p){let h=kue(e,u.boxIndex,l[p]);if(h!==0&&(u.score*=c(h),u.score<=s))break}d===u.score&&l.push(u.boxIndex)}),l}function Iue(e){let t=ft(Re(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],r=[Y(t[0],me(n[0],2)),Y(t[1],me(n[1],2))];return{sizes:n,centers:r}}function Sue(e,t){let{sizes:n,centers:r}=Iue(e),s=ft(Re(t,[1,0])),a=me(V(mn(me(s[2],5)),n[0]),2),o=Y(V(me(s[0],10),n[0]),r[0]),i=me(V(mn(me(s[3],5)),n[1]),2),c=Y(V(me(s[1],10),n[1]),r[1]);return Re(Mt([fe(o,a),fe(c,i),Y(o,a),Y(c,i)]),[1,0])}function ZE(e,t,n){return M(()=>{let r=e.shape[0],s=Sue(U(On(n.extra_dim,[r,1,1]),[-1,4]),U(e,[-1,4]));s=U(s,[r,s.shape[0]/r,4]);let a=hr(We(t,[0,0,1],[-1,-1,-1])),o=We(a,[0,0,0],[-1,-1,1]);o=U(o,[r,o.shape[1]]);let i=ft(s),c=ft(o);return{boxes:i,scores:c}})}function Ai(e,t){return M(()=>{let n=e.shape[0],r=U(_i(e,t.box_encoding_predictor),[n,-1,1,4]),s=U(_i(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:r,classPrediction:s}})}function JE(e,t,n){return M(()=>{let r=Rr(e,n.conv_0,[1,1]),s=Rr(r,n.conv_1,[2,2]),a=Rr(s,n.conv_2,[1,1]),o=Rr(a,n.conv_3,[2,2]),i=Rr(o,n.conv_4,[1,1]),c=Rr(i,n.conv_5,[2,2]),l=Rr(c,n.conv_6,[1,1]),u=Rr(l,n.conv_7,[2,2]),d=Ai(t,n.box_predictor_0),p=Ai(e,n.box_predictor_1),h=Ai(s,n.box_predictor_2),f=Ai(o,n.box_predictor_3),m=Ai(c,n.box_predictor_4),g=Ai(u,n.box_predictor_5),b=tt([d.boxPredictionEncoding,p.boxPredictionEncoding,h.boxPredictionEncoding,f.boxPredictionEncoding,m.boxPredictionEncoding,g.boxPredictionEncoding],1),y=tt([d.classPrediction,p.classPrediction,h.classPrediction,f.classPrediction,m.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Pr=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Di=class extends dn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(512,!1),"float32"),s=fe(me(r,127.5),1),a=XE(s,n.mobilenetv1),{boxPredictions:o,classPredictions:i}=JE(a.out,a.conv11,n.prediction_layer);return ZE(o,i,n.output_layer)})}async forward(t){return this.forwardInput(await yt(t))}async locateFaces(t,n={}){let{maxResults:r,minConfidence:s}=new Pr(n),a=await yt(t),{boxes:o,scores:i}=this.forwardInput(a),c=o[0],l=i[0];for(let v=1;v<o.length;v++)o[v].dispose(),i[v].dispose();let u=Array.from(l.dataSync()),p=YE(c,u,r,.5,s),h=a.getReshapedInputDimensions(0),f=a.inputSize,m=f/h.width,g=f/h.height,b=c.arraySync(),y=p.map(v=>{let[x,w]=[Math.max(0,b[v][0]),Math.min(1,b[v][2])].map($=>$*g),[T,N]=[Math.max(0,b[v][1]),Math.min(1,b[v][3])].map($=>$*m);return new wt(u[v],new Uu(T,x,N-T,w-x),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),l.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return KE(t)}extractParams(t){return qE(t)}};function QE(e){let t=new Di;return t.extractWeights(e),t}function Tue(e){return QE(e)}var eA=class extends Di{};var tA=.4,nA=[new Oe(.738768,.874946),new Oe(2.42204,2.65704),new Oe(4.30971,7.04493),new Oe(10.246,4.59428),new Oe(12.6868,11.8741)],rA=[new Oe(1.603231,2.094468),new Oe(6.041143,7.080126),new Oe(2.882459,3.518061),new Oe(4.266906,5.178857),new Oe(9.041765,10.66308)],sA=[117.001,114.697,97.404],aA="tiny_yolov2_model",oA="tiny_yolov2_separable_conv_model";var og=e=>typeof e=="number";function q0(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!og(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>og(t.x)&&og(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(og)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Qu(e){return M(()=>{let t=V(e,Ie(.10000000149011612));return Y(Ke(fe(e,t)),t)})}function Bs(e,t){return M(()=>{let n=fr(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Pt(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=V(n,t.bn.truediv),n=Y(n,t.conv.bias),Qu(n)})}function zs(e,t){return M(()=>{let n=fr(e,[[0,0],[1,1],[1,1],[0,0]]);return n=ei(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),Qu(n)})}function Cue(e,t){let n=qu(e,t);function r(o,i){let c=je(e(o)),l=je(e(o));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:l}}function s(o,i,c){let l=n(o,i,3,`${c}/conv`),u=r(i,`${c}/bn`);return{conv:l,bn:u}}let a=Ku(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function iA(e,t,n,r){let{extractWeights:s,getRemainingWeights:a}=An(e),o=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:l}=Cue(s,o),u;if(t.withSeparableConvs){let[d,p,h,f,m,g,b,y,v]=r,x=t.isFirstLayerConv2d?i(d,p,3,"conv0"):l(d,p,"conv0"),w=l(p,h,"conv1"),T=l(h,f,"conv2"),N=l(f,m,"conv3"),$=l(m,g,"conv4"),D=l(g,b,"conv5"),P=y?l(b,y,"conv6"):void 0,F=v?l(y,v,"conv7"):void 0,R=i(v||y||b,5*n,1,"conv8");u={conv0:x,conv1:w,conv2:T,conv3:N,conv4:$,conv5:D,conv6:P,conv7:F,conv8:R}}else{let[d,p,h,f,m,g,b,y,v]=r,x=c(d,p,"conv0"),w=c(p,h,"conv1"),T=c(h,f,"conv2"),N=c(f,m,"conv3"),$=c(m,g,"conv4"),D=c(g,b,"conv5"),P=c(b,y,"conv6"),F=c(y,v,"conv7"),R=i(v,5*n,1,"conv8");u={conv0:x,conv1:w,conv2:T,conv3:N,conv4:$,conv5:D,conv6:P,conv7:F,conv8:R}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:u,paramMappings:o}}function Nue(e,t){let n=or(e,t);function r(i){let c=n(`${i}/sub`,1),l=n(`${i}/truediv`,1);return{sub:c,truediv:l}}function s(i){let c=n(`${i}/filters`,4),l=n(`${i}/bias`,1);return{filters:c,bias:l}}function a(i){let c=s(`${i}/conv`),l=r(`${i}/bn`);return{conv:c,bn:l}}let o=Xu(n);return{extractConvParams:s,extractConvWithBatchNormParams:a,extractSeparableConvParams:o}}function cA(e,t){let n=[],{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}=Nue(e,n),o;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;o={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else o={conv0:s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:s("conv6"),conv7:s("conv7"),conv8:r("conv8")};return En(e,n),{params:o,paramMappings:n}}var bs=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var K0=class extends dn{constructor(t){super("TinyYolov2");q0(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let r=Bs(t,n.conv0);return r=Ot(r,[2,2],[2,2],"same"),r=Bs(r,n.conv1),r=Ot(r,[2,2],[2,2],"same"),r=Bs(r,n.conv2),r=Ot(r,[2,2],[2,2],"same"),r=Bs(r,n.conv3),r=Ot(r,[2,2],[2,2],"same"),r=Bs(r,n.conv4),r=Ot(r,[2,2],[2,2],"same"),r=Bs(r,n.conv5),r=Ot(r,[2,2],[1,1],"same"),r=Bs(r,n.conv6),r=Bs(r,n.conv7),_i(r,n.conv8,"valid",!1)}runMobilenet(t,n){let r=this.config.isFirstLayerConv2d?Qu(_i(t,n.conv0,"valid",!1)):zs(t,n.conv0);return r=Ot(r,[2,2],[2,2],"same"),r=zs(r,n.conv1),r=Ot(r,[2,2],[2,2],"same"),r=zs(r,n.conv2),r=Ot(r,[2,2],[2,2],"same"),r=zs(r,n.conv3),r=Ot(r,[2,2],[2,2],"same"),r=zs(r,n.conv4),r=Ot(r,[2,2],[2,2],"same"),r=zs(r,n.conv5),r=Ot(r,[2,2],[1,1],"same"),r=n.conv6?zs(r,n.conv6):r,r=n.conv7?zs(r,n.conv7):r,_i(r,n.conv8,"valid",!1)}forwardInput(t,n){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return M(()=>{let s=ce(t.toBatchTensor(n,!1),"float32");return s=this.config.meanRgb?Qr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(t,n){return this.forwardInput(await yt(t),n)}async detect(t,n={}){let{inputSize:r,scoreThreshold:s}=new bs(n),a=await yt(t),o=await this.forwardInput(a,r),i=M(()=>ft(o)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},l=await this.extractBoxes(i,a.getReshapedInputDimensions(0),s);o.dispose(),i.dispose();let u=l.map(g=>g.box),d=l.map(g=>g.score),p=l.map(g=>g.classScore),h=l.map(g=>this.config.classes[g.label]);return k0(u.map(g=>g.rescale(r)),d,this.config.iouThreshold,!0).map(g=>new Na(d[g],p[g],h[g],u[g],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return cA(t,this.config)}extractParams(t){let n=this.config.filterSizes||K0.DEFAULT_FILTER_SIZES,r=n?n.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return iA(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,r){let{width:s,height:a}=n,o=Math.max(s,a),i=o/s,c=o/a,l=t.shape[1],u=this.config.anchors.length,[d,p,h]=M(()=>{let b=t.reshape([l,l,u,this.boxEncodingSize]),y=b.slice([0,0,0,0],[l,l,u,4]),v=b.slice([0,0,0,4],[l,l,u,1]),x=this.withClassScores?zr(b.slice([0,0,0,5],[l,l,u,this.config.classes.length]),3):Ie(0);return[y,v,x]}),f=[],m=await p.array(),g=await d.array();for(let b=0;b<l;b++)for(let y=0;y<l;y++)for(let v=0;v<u;v++){let x=np(m[b][y][v][0]);if(!r||x>r){let w=(y+np(g[b][y][v][0]))/l*i,T=(b+np(g[b][y][v][1]))/l*c,N=Math.exp(g[b][y][v][2])*this.config.anchors[v].x/l*i,$=Math.exp(g[b][y][v][3])*this.config.anchors[v].y/l*c,D=w-N/2,P=T-$/2,F={row:b,col:y,anchor:v},{classScore:R,label:C}=this.withClassScores?await this.extractPredictedClass(h,F):{classScore:1,label:0};f.push({box:new Vu(D,P,D+N,P+$),score:x,classScore:x*R,label:C,...F})}}return d.dispose(),p.dispose(),h.dispose(),f}async extractPredictedClass(t,n){let{row:r,col:s,anchor:a}=n,o=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>o[r][s][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},el=K0;el.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var tl=class extends el{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:tA,classes:["face"],...t?{anchors:rA,meanRgb:sA}:{anchors:nA,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new wt(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?oA:aA}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function _ue(e,t=!0){let n=new tl(t);return n.extractWeights(e),n}var ig=class extends bs{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Or=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function $i(e,t,n,r,s=({alignedRect:a})=>a){let a=e.map(c=>Ei(c)?s(c):c.detection),o=r||(t instanceof Ee?await ju(t,a):await Hu(t,a)),i=await n(o);return o.forEach(c=>c instanceof Ee&&c.dispose()),i}async function nl(e,t,n,r,s){return $i([e],t,async a=>n(a[0]),r,s)}var uA=.4,lA=[new Oe(1.603231,2.094468),new Oe(6.041143,7.080126),new Oe(2.882459,3.518061),new Oe(4.266906,5.178857),new Oe(9.041765,10.66308)],dA=[117.001,114.697,97.404];var rl=class extends el{constructor(){let t={withSeparableConvs:!0,iouThreshold:uA,classes:["face"],anchors:lA,meanRgb:dA,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new wt(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new Di,tinyFaceDetector:new rl,tinyYolov2:new tl,faceLandmark68Net:new Zu,faceLandmark68TinyNet:new tg,faceRecognitionNet:new Ju,faceExpressionNet:new Zm,ageGenderNet:new eg},pA=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),Eue=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),Aue=(e,t)=>rt.tinyYolov2.locateFaces(e,t),hA=e=>rt.faceLandmark68Net.detectLandmarks(e),Due=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),$ue=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),Fue=e=>rt.faceExpressionNet.predictExpressions(e),Rue=e=>rt.ageGenderNet.predictAgeAndGender(e),fA=e=>rt.ssdMobilenetv1.load(e),Pue=e=>rt.tinyFaceDetector.load(e),Oue=e=>rt.tinyYolov2.load(e),Mue=e=>rt.faceLandmark68Net.load(e),Lue=e=>rt.faceLandmark68TinyNet.load(e),Bue=e=>rt.faceRecognitionNet.load(e),zue=e=>rt.faceExpressionNet.load(e),Wue=e=>rt.ageGenderNet.load(e),Vue=fA,Uue=pA,Gue=hA;var X0=class extends Or{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},sl=class extends X0{async run(){let t=await this.parentTask,n=await $i(t,this.input,async r=>Promise.all(r.map(s=>rt.faceExpressionNet.predictExpressions(s))),this.extractedFaces);return t.map((r,s)=>Jm(r,n[s]))}withAgeAndGender(){return new ol(this,this.input)}},al=class extends X0{async run(){let t=await this.parentTask;if(!t)return;let n=await nl(t,this.input,r=>rt.faceExpressionNet.predictExpressions(r),this.extractedFaces);return Jm(t,n)}withAgeAndGender(){return new il(this,this.input)}},Fi=class extends sl{withAgeAndGender(){return new Pi(this,this.input)}withFaceDescriptors(){return new Aa(this,this.input)}},Ri=class extends al{withAgeAndGender(){return new Oi(this,this.input)}withFaceDescriptor(){return new Da(this,this.input)}};var Y0=class extends Or{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},ol=class extends Y0{async run(){let t=await this.parentTask,n=await $i(t,this.input,async r=>Promise.all(r.map(s=>rt.ageGenderNet.predictAgeAndGender(s))),this.extractedFaces);return t.map((r,s)=>{let{age:a,gender:o,genderProbability:i}=n[s];return sg(ag(r,o,i),a)})}withFaceExpressions(){return new sl(this,this.input)}},il=class extends Y0{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:r,genderProbability:s}=await nl(t,this.input,a=>rt.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return sg(ag(t,r,s),n)}withFaceExpressions(){return new al(this,this.input)}},Pi=class extends ol{withFaceExpressions(){return new Fi(this,this.input)}withFaceDescriptors(){return new Aa(this,this.input)}},Oi=class extends il{withFaceExpressions(){return new Ri(this,this.input)}withFaceDescriptor(){return new Da(this,this.input)}};var cg=class extends Or{constructor(t,n){super();this.parentTask=t;this.input=n}},Aa=class extends cg{async run(){let t=await this.parentTask;return(await $i(t,this.input,r=>Promise.all(r.map(s=>rt.faceRecognitionNet.computeFaceDescriptor(s))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,s)=>rg(t[s],r))}withFaceExpressions(){return new Fi(this,this.input)}withAgeAndGender(){return new Pi(this,this.input)}},Da=class extends cg{async run(){let t=await this.parentTask;if(!t)return;let n=await nl(t,this.input,r=>rt.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return rg(t,n)}withFaceExpressions(){return new Ri(this,this.input)}withAgeAndGender(){return new Oi(this,this.input)}};var ug=class extends Or{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},lg=class extends ug{async run(){let t=await this.parentTask,n=t.map(a=>a.detection),r=this.input instanceof Ee?await ju(this.input,n):await Hu(this.input,n),s=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Ee&&a.dispose()),t.map((a,o)=>Yu(a,s[o]))}withFaceExpressions(){return new Fi(this,this.input)}withAgeAndGender(){return new Pi(this,this.input)}withFaceDescriptors(){return new Aa(this,this.input)}},dg=class extends ug{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,r=this.input instanceof Ee?await ju(this.input,[n]):await Hu(this.input,[n]),s=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Ee&&a.dispose()),Yu(t,s)}withFaceExpressions(){return new Ri(this,this.input)}withAgeAndGender(){return new Oi(this,this.input)}withFaceDescriptor(){return new Da(this,this.input)}};var pg=class extends Or{constructor(t,n=new Pr){super();this.input=t;this.options=n}},mp=class extends pg{async run(){let{input:t,options:n}=this,r;if(n instanceof ig)r=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Pr)r=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof bs)r=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(r=>t(r.map(s=>Si({},s)))).catch(r=>n(r))})}withFaceLandmarks(t=!1){return new lg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new sl(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ol(this.runAndExtendWithFaceDetections(),this.input)}},hg=class extends pg{async run(){let t=await new mp(this.input,this.options),n=t[0];return t.forEach(r=>{r.score>n.score&&(n=r)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Si({},n):void 0)})}withFaceLandmarks(t=!1){return new dg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new al(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new il(this.runAndExtendWithFaceDetection(),this.input)}};function Hue(e,t=new Pr){return new hg(e,t)}function fg(e,t=new Pr){return new mp(e,t)}async function mA(e,t){return fg(e,new Pr(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function jue(e,t={}){return fg(e,new bs(t)).withFaceLandmarks().withFaceDescriptors()}var que=mA;function Z0(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),r=Array.from(t);return Math.sqrt(n.map((s,a)=>s-r[a]).reduce((s,a)=>s+a**2,0))}var mg=class{constructor(t,n=.6){this._distanceThreshold=n;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let s=1,a=()=>`person ${s++}`;this._labeledDescriptors=r.map(o=>{if(o instanceof Os)return o;if(o instanceof Float32Array)return new Os(a(),[o]);if(o.descriptor&&o.descriptor instanceof Float32Array)return new Os(a(),[o.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(r=>Z0(r,t)).reduce((r,s)=>r+s,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:r})=>new rp(r,this.computeMeanDistance(t,n))).reduce((n,r)=>n.distance<r.distance?n:r)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new rp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(r=>Os.fromJSON(r));return new mg(n,t.distanceThreshold)}};function Kue(e){let t=new rl;return t.extractWeights(e),t}function gA(e,t){let{width:n,height:r}=new _n(t.width,t.height);if(n<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:r})}`);if(Array.isArray(e))return e.map(s=>gA(s,{width:n,height:r}));if(Ei(e)){let s=e.detection.forSize(n,r),a=e.unshiftedLandmarks.forSize(s.box.width,s.box.height);return Yu(Si(e,s),a)}return gs(e)?Si(e,e.detection.forSize(n,r)):e instanceof xr||e instanceof wt?e.forSize(n,r):e}var Xue=RE;return fD(Yue);})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|