4342 lines
1.0 MiB
4342 lines
1.0 MiB
|
|
/*
|
|
Face-API
|
|
homepage: <https://github.com/vladmandic/face-api>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var h3=Object.create,Oh=Object.defineProperty,g3=Object.getPrototypeOf,x3=Object.prototype.hasOwnProperty,y3=Object.getOwnPropertyNames,b3=Object.getOwnPropertyDescriptor;var w3=r=>Oh(r,"__esModule",{value:!0});var dt=(r,e)=>()=>(e||(e={exports:{}},r(e.exports,e)),e.exports),Je=(r,e)=>{for(var t in e)Oh(r,t,{get:e[t],enumerable:!0})},_3=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let o of y3(e))!x3.call(r,o)&&o!=="default"&&Oh(r,o,{get:()=>e[o],enumerable:!(t=b3(e,o))||t.enumerable});return r},Ac=r=>_3(w3(Oh(r!=null?h3(g3(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var bI=dt(()=>{});var QI=dt((JI,$w)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(JI,typeof $w=="object"&&$w,typeof define=="function"&&define)});var tN=dt((eN,Rw)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(eN,typeof Rw=="object"&&Rw,typeof define=="function"&&define)});var oN=dt((rN,Fw)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(rN,typeof Fw=="object"&&Fw,typeof define=="function"&&define)});var sN=dt((nN,Ow)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(nN,typeof Ow=="object"&&Ow,typeof define=="function"&&define)});var aN=dt((iN,Pw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(iN,typeof Pw=="object"&&Pw,typeof define=="function"&&define)});var uN=dt((lN,Mw)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(lN,typeof Mw=="object"&&Mw,typeof define=="function"&&define)});var ng=dt(()=>{});var cN=dt((Fye,sg)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(b,_,k){var A=[];_=_==!0?{entropy:!0}:_||{};var N=g(h(_.entropy?[b,w(r)]:b==null?x():b,3),A),$=new f(A),F=function(){for(var M=$.g(n),V=i,W=0;M<l;)M=(M+W)*o,V*=o,W=$.g(1);for(;M>=u;)M/=2,V/=2,W>>>=1;return(M+W)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(w($.S),r),(_.pass||k||function(M,V,W,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),W?(e[a]=M,V):M})(F,N,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(b){var _,k=b.length,A=this,N=0,$=A.i=A.j=0,F=A.S=[];for(k||(b=[k++]);N<o;)F[N]=N++;for(N=0;N<o;N++)F[N]=F[$=c&$+b[N%k]+(_=F[N])],F[$]=_;(A.g=function(M){for(var V,W=0,U=A.i,H=A.j,q=A.S;M--;)V=q[U=c&U+1],W=W*o+q[c&(q[U]=q[H=c&H+V])+(q[H]=V)];return A.i=U,A.j=H,W})(o)}function d(b,_){return _.i=b.i,_.j=b.j,_.S=b.S.slice(),_}function h(b,_){var k=[],A=typeof b,N;if(_&&A=="object")for(N in b)try{k.push(h(b[N],_-1))}catch($){}return k.length?k:A=="string"?b:b+"\0"}function g(b,_){for(var k=b+"",A,N=0;N<k.length;)_[c&N]=c&(A^=_[c&N]*19)+k.charCodeAt(N++);return w(_)}function x(){try{var b;return p&&(b=p.randomBytes)?b=b(o):(b=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(b)),w(b)}catch(A){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,w(r)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(e.random(),r),typeof sg=="object"&&sg.exports){sg.exports=m;try{p=ng()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var mN=dt((Oye,pN)=>{var X4=QI(),Y4=tN(),Z4=oN(),J4=sN(),Q4=aN(),eU=uN(),$u=cN();$u.alea=X4;$u.xor128=Y4;$u.xorwow=Z4;$u.xorshift7=J4;$u.xor4096=Q4;$u.tychei=eU;pN.exports=$u});var TA=dt((SA,Ak)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(SA,typeof Ak=="object"&&Ak,typeof define=="function"&&define)});var EA=dt((AA,Ek)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(AA,typeof Ek=="object"&&Ek,typeof define=="function"&&define)});var $A=dt((DA,Dk)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(DA,typeof Dk=="object"&&Dk,typeof define=="function"&&define)});var FA=dt((RA,$k)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(RA,typeof $k=="object"&&$k,typeof define=="function"&&define)});var PA=dt((OA,Rk)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(OA,typeof Rk=="object"&&Rk,typeof define=="function"&&define)});var LA=dt((MA,Fk)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(MA,typeof Fk=="object"&&Fk,typeof define=="function"&&define)});var zA=dt((CJe,dx)=>{(function(r,e){var t=(0,eval)("this"),o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(b,_,k){var A=[];_=_==!0?{entropy:!0}:_||{};var N=g(h(_.entropy?[b,w(r)]:b==null?x():b,3),A),$=new f(A),F=function(){for(var M=$.g(n),V=i,W=0;M<l;)M=(M+W)*o,V*=o,W=$.g(1);for(;M>=u;)M/=2,V/=2,W>>>=1;return(M+W)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(w($.S),r),(_.pass||k||function(M,V,W,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),W?(e[a]=M,V):M})(F,N,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(b){var _,k=b.length,A=this,N=0,$=A.i=A.j=0,F=A.S=[];for(k||(b=[k++]);N<o;)F[N]=N++;for(N=0;N<o;N++)F[N]=F[$=c&$+b[N%k]+(_=F[N])],F[$]=_;(A.g=function(M){for(var V,W=0,U=A.i,H=A.j,q=A.S;M--;)V=q[U=c&U+1],W=W*o+q[c&(q[U]=q[H=c&H+V])+(q[H]=V)];return A.i=U,A.j=H,W})(o)}function d(b,_){return _.i=b.i,_.j=b.j,_.S=b.S.slice(),_}function h(b,_){var k=[],A=typeof b,N;if(_&&A=="object")for(N in b)try{k.push(h(b[N],_-1))}catch($){}return k.length?k:A=="string"?b:b+"\0"}function g(b,_){for(var k=b+"",A,N=0;N<k.length;)_[c&N]=c&(A^=_[c&N]*19)+k.charCodeAt(N++);return w(_)}function x(){try{var b;return p&&(b=p.randomBytes)?b=b(o):(b=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(b)),w(b)}catch(A){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,w(r)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(e.random(),r),typeof dx=="object"&&dx.exports){dx.exports=m;try{p=ng()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var Ok=dt((IJe,BA)=>{var d5=TA(),h5=EA(),g5=$A(),x5=FA(),y5=PA(),b5=LA(),oc=zA();oc.alea=d5;oc.xor128=h5;oc.xorwow=g5;oc.xorshift7=x5;oc.xor4096=y5;oc.tychei=b5;BA.exports=oc});var dE=dt(()=>{});var HD=dt((jD,pv)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(jD,typeof pv=="object"&&pv,typeof define=="function"&&define)});var KD=dt((qD,mv)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(qD,typeof mv=="object"&&mv,typeof define=="function"&&define)});var YD=dt((XD,fv)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(XD,typeof fv=="object"&&fv,typeof define=="function"&&define)});var JD=dt((ZD,dv)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(ZD,typeof dv=="object"&&dv,typeof define=="function"&&define)});var e$=dt((QD,hv)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(QD,typeof hv=="object"&&hv,typeof define=="function"&&define)});var r$=dt((t$,gv)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(t$,typeof gv=="object"&&gv,typeof define=="function"&&define)});var o$=dt((Alt,Nx)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(b,_,k){var A=[];_=_==!0?{entropy:!0}:_||{};var N=g(h(_.entropy?[b,w(r)]:b==null?x():b,3),A),$=new f(A),F=function(){for(var M=$.g(n),V=i,W=0;M<l;)M=(M+W)*o,V*=o,W=$.g(1);for(;M>=u;)M/=2,V/=2,W>>>=1;return(M+W)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(w($.S),r),(_.pass||k||function(M,V,W,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),W?(e[a]=M,V):M})(F,N,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(b){var _,k=b.length,A=this,N=0,$=A.i=A.j=0,F=A.S=[];for(k||(b=[k++]);N<o;)F[N]=N++;for(N=0;N<o;N++)F[N]=F[$=c&$+b[N%k]+(_=F[N])],F[$]=_;(A.g=function(M){for(var V,W=0,U=A.i,H=A.j,q=A.S;M--;)V=q[U=c&U+1],W=W*o+q[c&(q[U]=q[H=c&H+V])+(q[H]=V)];return A.i=U,A.j=H,W})(o)}function d(b,_){return _.i=b.i,_.j=b.j,_.S=b.S.slice(),_}function h(b,_){var k=[],A=typeof b,N;if(_&&A=="object")for(N in b)try{k.push(h(b[N],_-1))}catch($){}return k.length?k:A=="string"?b:b+"\0"}function g(b,_){for(var k=b+"",A,N=0;N<k.length;)_[c&N]=c&(A^=_[c&N]*19)+k.charCodeAt(N++);return w(_)}function x(){try{var b;return p&&(b=p.randomBytes)?b=b(o):(b=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(b)),w(b)}catch(A){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,w(r)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(e.random(),r),typeof Nx=="object"&&Nx.exports){Nx.exports=m;try{p=ng()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var s$=dt((Elt,n$)=>{var w8=HD(),_8=KD(),k8=YD(),v8=JD(),C8=e$(),I8=r$(),sc=o$();sc.alea=w8;sc.xor128=_8;sc.xorwow=k8;sc.xorshift7=v8;sc.xor4096=C8;sc.tychei=I8;n$.exports=sc});var Jp=dt(()=>{});var hB=dt(()=>{});var gB=dt(()=>{});var xB=dt((Zx,x0)=>{var y0=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return J.buffer!=Ue&&or(J.buffer),ut}function o(){return J.buffer!=Ue&&or(J.buffer),mt}function n(){return J.buffer!=Ue&&or(J.buffer),Xt}function s(){return J.buffer!=Ue&&or(J.buffer),to}function a(){return J.buffer!=Ue&&or(J.buffer),Uo}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(I,R){l=I,u=R});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(I,R){throw R},h=!1,g=!1,x=!1,w=!1;h=typeof window=="object",g=typeof importScripts=="function",x=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!h&&!x&&!g;var b=i.ENVIRONMENT_IS_PTHREAD||!1;b&&(Ue=i.buffer);var _="";function k(I){return i.locateFile?i.locateFile(I,_):_+I}var A,N,$,F,M,V;if(x){g?_=Jp().dirname(_)+"/":_=__dirname+"/",A=function(R,B){return M||(M=require("fs")),V||(V=Jp()),R=V.normalize(R),M.readFileSync(R,B?null:"utf8")},$=function(R){var B=A(R,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof lm))throw I}),process.on("unhandledRejection",Zi),d=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var W;try{W=hB()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=W.Worker}else w?(typeof read!="undefined"&&(A=function(R){return read(R)}),$=function(R){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(R)):(B=read(R,"binary"),fe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",x?(A=function(R,B){return M||(M=require("fs")),V||(V=Jp()),R=V.normalize(R),M.readFileSync(R,B?null:"utf8")},$=function(R){var B=A(R,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B}):(A=function(I){var R=new XMLHttpRequest;return R.open("GET",I,!1),R.send(null),R.responseText},g&&($=function(I){var R=new XMLHttpRequest;return R.open("GET",I,!1),R.responseType="arraybuffer",R.send(null),new Uint8Array(R.response)}),N=function(I,R,B){var K=new XMLHttpRequest;K.open("GET",I,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){R(K.response);return}B()},K.onerror=B,K.send(null)}),F=function(I){document.title=I});x&&typeof performance=="undefined"&&(global.performance=gB().performance);var U=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,oe=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&Zi("no native wasm support detected");var J,ie,ue=!1,ae;function fe(I,R){I||Zi("Assertion failed: "+R)}function de(I){var R=i["_"+I];return fe(R,"Cannot call unknown function "+I+", make sure it is exported"),R}function xe(I,R,B,K,be){var he={string:function(Wr){var Tc=0;if(Wr!=null&&Wr!==0){var F0=(Wr.length<<2)+1;Tc=Ic(F0),qe(Wr,Tc,F0)}return Tc},array:function(Wr){var Tc=Ic(Wr.length);return At(Wr,Tc),Tc}};function ye(Wr){return R==="string"?Ie(Wr):R==="boolean"?Boolean(Wr):Wr}var Se=de(I),_t=[],wr=0;if(K)for(var fr=0;fr<K.length;fr++){var Ka=he[B[fr]];Ka?(wr===0&&(wr=am()),_t[fr]=Ka(K[fr])):_t[fr]=K[fr]}var Sc=Se.apply(null,_t);return Sc=ye(Sc),wr!==0&&Cc(wr),Sc}function we(I,R,B,K){B=B||[];var be=B.every(function(ye){return ye==="number"}),he=R!=="string";return he&&be&&!K?de(I):function(){return xe(I,R,B,arguments,K)}}function De(I,R,B){for(var K=R+B,be="";!(R>=K);){var he=I[R++];if(!he)return be;if(!(he&128)){be+=String.fromCharCode(he);continue}var ye=I[R++]&63;if((he&224)==192){be+=String.fromCharCode((he&31)<<6|ye);continue}var Se=I[R++]&63;if((he&240)==224?he=(he&15)<<12|ye<<6|Se:he=(he&7)<<18|ye<<12|Se<<6|I[R++]&63,he<65536)be+=String.fromCharCode(he);else{var _t=he-65536;be+=String.fromCharCode(55296|_t>>10,56320|_t&1023)}}return be}function Ie(I,R){return I?De(o(),I,R):""}function ze(I,R,B,K){if(!(K>0))return 0;for(var be=B,he=B+K-1,ye=0;ye<I.length;++ye){var Se=I.charCodeAt(ye);if(Se>=55296&&Se<=57343){var _t=I.charCodeAt(++ye);Se=65536+((Se&1023)<<10)|_t&1023}if(Se<=127){if(B>=he)break;R[B++]=Se}else if(Se<=2047){if(B+1>=he)break;R[B++]=192|Se>>6,R[B++]=128|Se&63}else if(Se<=65535){if(B+2>=he)break;R[B++]=224|Se>>12,R[B++]=128|Se>>6&63,R[B++]=128|Se&63}else{if(B+3>=he)break;R[B++]=240|Se>>18,R[B++]=128|Se>>12&63,R[B++]=128|Se>>6&63,R[B++]=128|Se&63}}return R[B]=0,B-be}function qe(I,R,B){return ze(I,o(),R,B)}function it(I){for(var R=0,B=0;B<I.length;++B){var K=I.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|I.charCodeAt(++B)&1023),K<=127?++R:K<=2047?R+=2:K<=65535?R+=3:R+=4}return R}function At(I,R){t().set(I,R)}function Et(I,R){return I%R>0&&(I+=R-I%R),I}var Ue,ut,mt,Mt,xo,Xt,to,$r,Uo;function or(I){Ue=I,i.HEAP8=ut=new Int8Array(I),i.HEAP16=Mt=new Int16Array(I),i.HEAP32=Xt=new Int32Array(I),i.HEAPU8=mt=new Uint8Array(I),i.HEAPU16=xo=new Uint16Array(I),i.HEAPU32=to=new Uint32Array(I),i.HEAPF32=$r=new Float32Array(I),i.HEAPF64=Uo=new Float64Array(I)}var yo=i.INITIAL_MEMORY||16777216;if(b)J=i.wasmMemory,Ue=i.buffer;else if(i.wasmMemory)J=i.wasmMemory;else if(J=new WebAssembly.Memory({initial:yo/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ue=J.buffer),yo=Ue.byteLength,or(Ue);var Gr,br=[],ro=[],Ao=[],Dl=[],Wa=[],ns=!1,Xi=!1;b||ro.push({func:function(){Th()}}),b&&(ns=!0);function Qp(){if(!b){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)hh(i.preRun.shift());bc(br)}}function xc(){ns=!0,bc(ro)}function ty(){b||bc(Ao)}function dh(){b||(Xi=!0)}function oo(){if(!b){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)ry(i.postRun.shift());bc(Wa)}}function hh(I){br.unshift(I)}function ry(I){Wa.unshift(I)}var Yi=0,Ua=null,$l=null;function oy(I){fe(!b,"addRunDependency cannot be used in a pthread worker"),Yi++,i.monitorRunDependencies&&i.monitorRunDependencies(Yi)}function ny(I){if(Yi--,i.monitorRunDependencies&&i.monitorRunDependencies(Yi),Yi==0&&(Ua!==null&&(clearInterval(Ua),Ua=null),$l)){var R=$l;$l=null,R()}}i.preloadedImages={},i.preloadedAudios={};function Zi(I){i.onAbort&&i.onAbort(I),b&&console.error("Pthread aborting at "+new Error().stack),I+="",H(I),ue=!0,ae=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var R=new WebAssembly.RuntimeError(I);throw u(R),R}function gh(I,R){return String.prototype.startsWith?I.startsWith(R):I.indexOf(R)===0}var yc="data:application/octet-stream;base64,";function xh(I){return gh(I,yc)}var sy="file://";function yh(I){return gh(I,sy)}var no="tfjs-backend-wasm-threaded-simd.wasm";xh(no)||(no=k(no));function iy(I){try{if(I==no&&Y)return new Uint8Array(Y);if($)return $(I);throw"both async and sync fetching of the wasm failed"}catch(R){Zi(R)}}function bh(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!yh(no))return fetch(no,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+no+"'";return I.arrayBuffer()}).catch(function(){return iy(no)});if(N)return new Promise(function(I,R){N(no,function(B){I(new Uint8Array(B))},R)})}return Promise.resolve().then(function(){return iy(no)})}function ay(){var I={a:Zy};function R(ye,Se){var _t=ye.exports;if(i.asm=_t,Gr=i.asm.F,ie=Se,!b){var wr=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(fr){Ee.loadWasmModuleToWorker(fr,function(){--wr||ny("wasm-instantiate")})})}}b||oy("wasm-instantiate");function B(ye){R(ye.instance,ye.module)}function K(ye){return bh().then(function(Se){return WebAssembly.instantiate(Se,I)}).then(ye,function(Se){H("failed to asynchronously prepare wasm: "+Se),Zi(Se)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!xh(no)&&!yh(no)&&typeof fetch=="function"?fetch(no,{credentials:"same-origin"}).then(function(ye){var Se=WebAssembly.instantiateStreaming(ye,I);return Se.then(B,function(_t){return H("wasm streaming compile failed: "+_t),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var he=i.instantiateWasm(I,R);return he}catch(ye){return H("Module.instantiateWasm callback failed with error: "+ye),!1}return be().catch(u),{}}var wh={8991:function(I,R){setTimeout(function(){T0(I,R)},0)}};function ly(){Ee.initRuntime()}function bc(I){for(;I.length>0;){var R=I.shift();if(typeof R=="function"){R(i);continue}var B=R.func;typeof B=="number"?R.arg===void 0?Gr.get(B)():Gr.get(B)(R.arg):B(R.arg===void 0?null:R.arg)}}function wc(I,R){if(I<=0||I>t().length||I&!0||R<0)return-28;if(R==0)return 0;R>=2147483647&&(R=Infinity);var B=Atomics.load(n(),Nc>>2),K=0;if(B==I){var be=Atomics.compareExchange(n(),Nc>>2,B,0);if(be==B&&(--R,K=1,R<=0))return 1}var he=Atomics.notify(n(),I>>2,R);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=wc;function uy(I){if(b)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";n()[I+12>>2]=0;var R=Ee.pthreads[I];R.worker.terminate(),Ee.freeThreadData(R),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(R.worker),1),R.worker.pthread=void 0}function cy(I){if(b)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var R=Ee.pthreads[I];R.worker.postMessage({cmd:"cancel"})}function py(I){if(b)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";n()[I+12>>2]=0;var R=Ee.pthreads[I];if(R){var B=R.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,R=0;R<I;++R)Ee.allocateUnusedWorker()},initRuntime:function(){for(var I=Fl(228),R=0;R<228/4;++R)s()[I/4+R]=0;n()[I+12>>2]=I;var B=I+152;n()[B>>2]=B;for(var K=Fl(512),R=0;R<128;++R)s()[K/4+R]=0;Atomics.store(s(),I+100>>2,K),Atomics.store(s(),I+40>>2,I),Rh(I,!g,1),S0(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();b&&vc()&&N0()},threadExit:function(I){var R=vc();R&&(Atomics.store(s(),R+4>>2,I),Atomics.store(s(),R+0>>2,1),Atomics.store(s(),R+56>>2,1),Atomics.store(s(),R+60>>2,0),Ee.runExitHandlers(),wc(R+0,2147483647),Rh(0,0,0),b&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlers();var I=vc();Atomics.store(s(),I+4>>2,-1),Atomics.store(s(),I+0>>2,1),wc(I+0,2147483647),Rh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Ee.pthreads){var R=Ee.pthreads[I];R&&R.worker&&Ee.returnWorkerToPool(R.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var K=Ee.unusedWorkers[B];K.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var K=Ee.runningWorkers[B],R=K.pthread;Ee.freeThreadData(R),K.terminate()}Ee.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var R=n()[I.threadInfoStruct+100>>2];n()[I.threadInfoStruct+100>>2]=0,im(R),im(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&im(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[I.pthread.threadInfoStruct],Ee.unusedWorkers.push(I),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(I),1),Ee.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){n()[R0>>2]=0;try{I()}finally{n()[R0>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,R){I.onmessage=function(B){var K=B.data,be=K.cmd;if(I.pthread&&(Ee.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=vc()){var he=Ee.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")mb();else if(be==="spawnThread")Nh(B.data);else if(be==="cleanupThread")py(K.thread);else if(be==="killThread")uy(K.thread);else if(be==="cancelThread")cy(K.thread);else if(be==="loaded")I.loaded=!0,R&&R(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(be==="print")U("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var ye=I.pthread&&Atomics.load(s(),I.pthread.threadInfoStruct+64>>2);ye&&Ee.returnWorkerToPool(I)}else if(be==="exitProcess")try{d3(K.returnCode)}catch(Se){if(Se instanceof lm)return;throw Se}else be==="cancelDone"?Ee.returnWorkerToPool(I):be==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?I.postMessage(B.data):H("worker sent an unknown command "+be);Ee.currentProxiedOperationCallerThread=void 0},I.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},x&&(I.on("message",function(B){I.onmessage({data:B})}),I.on("error",function(B){I.onerror(B)}),I.on("exit",function(B){})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var I=k("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(I){for(var R=performance.now()+I;performance.now()<R;);}};function my(I,R){D0(I,R),Cc(I)}i.establishStackSpace=my;function fy(){return re}i.getNoExitRuntime=fy;function dy(I,R){return Gr.get(I)(R)}i.invokeEntryPoint=dy;function hy(I,R,B,K){Zi("Assertion failed: "+Ie(I)+", at: "+[R?Ie(R):"unknown filename",B,K?Ie(K):"unknown function"])}function gy(I,R){var B=_main(I,R)}var Rl;x?Rl=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:b?Rl=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Rl=dateNow:Rl=function(){return performance.now()};function xy(I){return n()[C0()>>2]=I,I}function yy(I,R){if(b)return ja(1,1,I,R)}function by(I,R){if(I==R)postMessage({cmd:"processQueuedMainThreadWork"});else if(b)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var B=Ee.pthreads[I],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function wy(){Zi()}function _y(I,R,B){var K=Ny(R,B);return wh[I].apply(null,K)}function ky(I,R){}function vy(I,R,B){if(I<=0||I>t().length||I&!0)return-28;if(h){if(Atomics.load(n(),I>>2)!=R)return-6;for(var be=performance.now(),he=be+B,ye=Atomics.exchange(n(),Nc>>2,I);;){if(be=performance.now(),be>he)return ye=Atomics.exchange(n(),Nc>>2,0),-73;if(ye=Atomics.exchange(n(),Nc>>2,0),ye==0)break;if(mb(),Atomics.load(n(),I>>2)!=R)return-6;ye=Atomics.exchange(n(),Nc>>2,I)}return 0}else{var K=Atomics.wait(n(),I>>2,R,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Cy(I,R,B){o().copyWithin(I,R,R+B)}function Iy(){return x?require("os").cpus().length:navigator.hardwareConcurrency}function ja(I,R){for(var B=arguments.length-2,K=am(),be=B,he=Ic(be*8),ye=he>>3,Se=0;Se<B;Se++){var _t=arguments[2+Se];a()[ye+Se]=_t}var wr=E0(I,be,he,R);return Cc(K),wr}var em=[],tm=[];function Ny(I,R){tm.length=0;var B;for(R>>=2;B=o()[I++];){var K=B<105;K&&R&1&&R++,tm.push(K?a()[R++>>1]:n()[R]),++R}return tm}function Sy(I,R,B){em.length=R;for(var K=B>>3,be=0;be<R;be++)em[be]=a()[K+be];var he=I<0,ye=he?wh[-I-1]:Yy[I];return ye.apply(null,em)}function Ty(){return o().length}function Ay(I){try{return J.grow(I-Ue.byteLength+65535>>>16),or(J.buffer),1}catch(R){}}function Ey(I){var R=Ty();if(I<=R)return!1;var B=2147483648;if(I>B)return!1;for(var K=1;K<=4;K*=2){var be=R*(1+.2/K);be=Math.min(be,I+100663296);var he=Math.min(B,Et(Math.max(I,be),65536)),ye=Ay(he);if(ye)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var I=Xe.eventHandlers.length-1;I>=0;--I)Xe._removeHandler(I);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||(Dl.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,R,B){function K(ye,Se){if(ye.length!=Se.length)return!1;for(var _t in ye)if(ye[_t]!=Se[_t])return!1;return!0}for(var be in Xe.deferredCalls){var he=Xe.deferredCalls[be];if(he.targetFunction==I&&K(he.argsList,B))return}Xe.deferredCalls.push({targetFunction:I,precedence:R,argsList:B}),Xe.deferredCalls.sort(function(ye,Se){return ye.precedence<Se.precedence})},removeDeferredCalls:function(I){for(var R=0;R<Xe.deferredCalls.length;++R)Xe.deferredCalls[R].targetFunction==I&&(Xe.deferredCalls.splice(R,1),--R)},canPerformEventHandlerRequests:function(){return Xe.inEventHandler&&Xe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Xe.canPerformEventHandlerRequests())for(var I=0;I<Xe.deferredCalls.length;++I){var R=Xe.deferredCalls[I];Xe.deferredCalls.splice(I,1),--I,R.targetFunction.apply(null,R.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,R){for(var B=0;B<Xe.eventHandlers.length;++B)Xe.eventHandlers[B].target==I&&(!R||R==Xe.eventHandlers[B].eventTypeString)&&Xe._removeHandler(B--)},_removeHandler:function(I){var R=Xe.eventHandlers[I];R.target.removeEventListener(R.eventTypeString,R.eventListenerFunc,R.useCapture),Xe.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var R=function(be){++Xe.inEventHandler,Xe.currentEventHandler=I,Xe.runDeferredCalls(),I.handlerFunc(be),Xe.runDeferredCalls(),--Xe.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=R,I.target.addEventListener(I.eventTypeString,R,I.useCapture),Xe.eventHandlers.push(I),Xe.registerRemoveEventListeners();else for(var B=0;B<Xe.eventHandlers.length;++B)Xe.eventHandlers[B].target==I.target&&Xe.eventHandlers[B].eventTypeString==I.eventTypeString&&Xe._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(I,R,B,K,be){var he=am(),ye=Ic(12);n()[ye>>2]=B,n()[ye+4>>2]=K,n()[ye+8>>2]=be,fb(0,I,637534208,R,K,ye),Cc(he)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Dy(I){var R=it(I)+1,B=Fl(R);return qe(I,B,R),B}function $y(I,R,B,K){var be=am(),he=Ic(12),ye=0;R&&(ye=Dy(R)),n()[he>>2]=ye,n()[he+4>>2]=B,n()[he+8>>2]=K,fb(0,I,657457152,0,ye,he),Cc(be)}function Ry(I,R,B,K){R=R?Ie(R):"",$y(I,R,B,K)}function Fy(I){return I>2?Ie(I):I}var Oy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Py(I){I=Fy(I);var R=Oy[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return R}function rm(I){return Py(I)}function _h(I,R,B){var K=rm(I);if(!K)return-4;if(K.canvasSharedPtr&&(n()[K.canvasSharedPtr>>2]=R,n()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);be=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=R,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,R,B)}else if(K.canvasSharedPtr){var ye=n()[K.canvasSharedPtr+8>>2];return Ry(ye,I,R,B),1}else return-4;return 0}function kh(I,R,B){return b?ja(2,1,I,R,B):_h(I,R,B)}function My(I,R,B){var K=rm(I);return K?_h(I,R,B):kh(I,R,B)}function Ly(I){}function zy(I,R){}function By(I){var R=I.getExtension("ANGLE_instanced_arrays");if(R)return I.vertexAttribDivisor=function(B,K){R.vertexAttribDivisorANGLE(B,K)},I.drawArraysInstanced=function(B,K,be,he){R.drawArraysInstancedANGLE(B,K,be,he)},I.drawElementsInstanced=function(B,K,be,he,ye){R.drawElementsInstancedANGLE(B,K,be,he,ye)},1}function Vy(I){var R=I.getExtension("OES_vertex_array_object");if(R)return I.createVertexArray=function(){return R.createVertexArrayOES()},I.deleteVertexArray=function(B){R.deleteVertexArrayOES(B)},I.bindVertexArray=function(B){R.bindVertexArrayOES(B)},I.isVertexArray=function(B){return R.isVertexArrayOES(B)},1}function Gy(I){var R=I.getExtension("WEBGL_draw_buffers");if(R)return I.drawBuffers=function(B,K){R.drawBuffersWEBGL(B,K)},1}function Wy(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(R){ft.lastError||(ft.lastError=R)},getNewId:function(I){for(var R=ft.counter++,B=I.length;B<R;B++)I[B]=null;return R},getSource:function(I,R,B,K){for(var be="",he=0;he<R;++he){var ye=K?n()[K+he*4>>2]:-1;be+=Ie(n()[B+he*4>>2],ye<0?void 0:ye)}return be},createContext:function(I,R){var B=I.getContext("webgl",R);if(!B)return 0;var K=ft.registerContext(B,R);return K},registerContext:function(I,R){var B=Fl(8);n()[B+4>>2]=vc();var K={handle:B,attributes:R,version:R.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof R.enableExtensionsByDefault=="undefined"||R.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(I){return ft.currentContext=ft.contexts[I],i.ctx=Ha=ft.currentContext&&ft.currentContext.GLctx,!(I&&!Ha)},getContext:function(I){return ft.contexts[I]},deleteContext:function(I){ft.currentContext===ft.contexts[I]&&(ft.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget(ft.contexts[I].GLctx.canvas),ft.contexts[I]&&ft.contexts[I].GLctx.canvas&&(ft.contexts[I].GLctx.canvas.GLctxObject=void 0),im(ft.contexts[I].handle),ft.contexts[I]=null},initExtensions:function(I){if(I||(I=ft.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var R=I.GLctx;By(R),Vy(R),Gy(R),R.disjointTimerQueryExt=R.getExtension("EXT_disjoint_timer_query"),Wy(R);var B=R.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&R.getExtension(K)})}},populateUniformTable:function(I){for(var R=ft.programs[I],B=ft.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=Ha.getProgramParameter(R,35718),he=0;he<be;++he){var ye=Ha.getActiveUniform(R,he),Se=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Se.length+1),Se.slice(-1)=="]"&&(Se=Se.slice(0,Se.lastIndexOf("[")));var _t=Ha.getUniformLocation(R,Se);if(_t){var wr=ft.getNewId(ft.uniforms);K[Se]=[ye.size,wr],ft.uniforms[wr]=_t;for(var fr=1;fr<ye.size;++fr){var Ka=Se+"["+fr+"]";_t=Ha.getUniformLocation(R,Ka),wr=ft.getNewId(ft.uniforms),ft.uniforms[wr]=_t}}}}},Uy=["default","low-power","high-performance"];function jy(I,R){var B=R>>2,K=n()[B+(24>>2)],be={alpha:!!n()[B+(0>>2)],depth:!!n()[B+(4>>2)],stencil:!!n()[B+(8>>2)],antialias:!!n()[B+(12>>2)],premultipliedAlpha:!!n()[B+(16>>2)],preserveDrawingBuffer:!!n()[B+(20>>2)],powerPreference:Uy[K],failIfMajorPerformanceCaveat:!!n()[B+(28>>2)],majorVersion:n()[B+(32>>2)],minorVersion:n()[B+(36>>2)],enableExtensionsByDefault:n()[B+(40>>2)],explicitSwapControl:n()[B+(44>>2)],proxyContextToMainThread:n()[B+(48>>2)],renderViaOffscreenBackBuffer:n()[B+(52>>2)]},he=rm(I);if(!he||be.explicitSwapControl)return 0;var ye=ft.createContext(he,be);return ye}function Hy(I,R){return jy(I,R)}var _c={mappings:{},buffers:[null,[],[]],printChar:function(I,R){var B=_c.buffers[I];R===0||R===10?((I===1?U:H)(De(B,0)),B.length=0):B.push(R)},varargs:void 0,get:function(){_c.varargs+=4;var I=n()[_c.varargs-4>>2];return I},getStr:function(I){var R=Ie(I);return R},get64:function(I,R){return I}};function vh(I){return b?ja(3,1,I):0}function Ch(I,R,B,K,be){if(b)return ja(4,1,I,R,B,K,be)}function Ih(I,R,B,K){if(b)return ja(5,1,I,R,B,K);for(var be=0,he=0;he<B;he++){for(var ye=n()[R+he*8>>2],Se=n()[R+(he*8+4)>>2],_t=0;_t<Se;_t++)_c.printChar(I,o()[ye+_t]);be+=Se}return n()[K>>2]=be,0}function qy(I){var R=Ee.threadExitHandlers.pop();I&&R()}function Ky(I,R){Ee.threadExitHandlers.push(function(){Gr.get(I)(R)})}function Nh(I){if(b)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var R=Ee.getNewWorker();if(R.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push(R);for(var B=Fl(128*4),K=0;K<128;++K)n()[B+K*4>>2]=0;var be=I.stackBase+I.stackSize,he=Ee.pthreads[I.pthread_ptr]={worker:R,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ye=he.threadInfoStruct>>2;Atomics.store(s(),ye+(64>>2),I.detached),Atomics.store(s(),ye+(100>>2),B),Atomics.store(s(),ye+(40>>2),he.threadInfoStruct),Atomics.store(s(),ye+(80>>2),I.stackSize),Atomics.store(s(),ye+(76>>2),be),Atomics.store(s(),ye+(104>>2),I.stackSize),Atomics.store(s(),ye+(104+8>>2),be),Atomics.store(s(),ye+(104+12>>2),I.detached);var Se=I0(),_t=Se+40;Atomics.store(s(),ye+(172>>2),_t),R.pthread=he;var wr={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};R.runPthread=function(){wr.time=performance.now(),R.postMessage(wr,I.transferList)},R.loaded&&(R.runPthread(),delete R.runPthread)}function Xy(I,R,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return H("pthread_create called with a null thread pointer!"),28;var be=[],he=0;if(b&&(be.length===0||he))return A0(687865856,I,R,B,K);if(he)return he;var ye=0,Se=0,_t=0;R&&R!=-1?(ye=n()[R>>2],ye+=81920,Se=n()[R+8>>2],_t=n()[R+12>>2]!==0):ye=2097152;var wr=Se==0;wr?Se=$0(16,ye):(Se-=ye,fe(Se>0));for(var fr=Fl(228),Ka=0;Ka<228>>2;++Ka)s()[(fr>>2)+Ka]=0;n()[I>>2]=fr,n()[fr+12>>2]=fr;var Sc=fr+152;n()[Sc>>2]=Sc;var Wr={stackBase:Se,stackSize:ye,allocatedOwnStack:wr,detached:_t,startRoutine:B,pthread_ptr:fr,arg:K,transferList:be};return b?(Wr.cmd="spawnThread",postMessage(Wr,be)):Nh(Wr),0}function Sh(I){if(b)return ja(6,1,I);switch(I){case 30:return 16384;case 85:var R=2147483648;return R/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return xy(28),-1}b||Ee.initMainThreadBlock();var Ha,Yy=[null,yy,kh,vh,Ch,Ih,Sh],Zy={e:hy,r:gy,x:by,b:wy,y:_y,j:ky,c:vy,d:wc,f:Rl,p:Cy,z:Iy,u:Sy,q:Ey,v:My,i:Ly,t:zy,w:Hy,m:vh,n:Ch,g:Ih,o:ly,a:J||i.wasmMemory,k:qy,l:Ky,h:Xy,s:Sh},v0=ay(),Th=i.___wasm_call_ctors=function(){return(Th=i.___wasm_call_ctors=i.asm.A).apply(null,arguments)},Jy=i._init=function(){return(Jy=i._init=i.asm.B).apply(null,arguments)},Qy=i._register_tensor=function(){return(Qy=i._register_tensor=i.asm.C).apply(null,arguments)},eb=i._dispose_data=function(){return(eb=i._dispose_data=i.asm.D).apply(null,arguments)},tb=i._dispose=function(){return(tb=i._dispose=i.asm.E).apply(null,arguments)},rb=i._Abs=function(){return(rb=i._Abs=i.asm.G).apply(null,arguments)},ob=i._Add=function(){return(ob=i._Add=i.asm.H).apply(null,arguments)},nb=i._AddN=function(){return(nb=i._AddN=i.asm.I).apply(null,arguments)},sb=i._ArgMax=function(){return(sb=i._ArgMax=i.asm.J).apply(null,arguments)},ib=i._AvgPool=function(){return(ib=i._AvgPool=i.asm.K).apply(null,arguments)},ab=i._BatchMatMul=function(){return(ab=i._BatchMatMul=i.asm.L).apply(null,arguments)},lb=i._Ceil=function(){return(lb=i._Ceil=i.asm.M).apply(null,arguments)},ub=i._ClipByValue=function(){return(ub=i._ClipByValue=i.asm.N).apply(null,arguments)},cb=i._Conv2D=function(){return(cb=i._Conv2D=i.asm.O).apply(null,arguments)},Ah=i._Conv2DBackpropInput=function(){return(Ah=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Eh=i._Cos=function(){return(Eh=i._Cos=i.asm.Q).apply(null,arguments)},om=i._CropAndResize=function(){return(om=i._CropAndResize=i.asm.R).apply(null,arguments)},kc=i._Cumsum=function(){return(kc=i._Cumsum=i.asm.S).apply(null,arguments)},pb=i._DepthToSpace=function(){return(pb=i._DepthToSpace=i.asm.T).apply(null,arguments)},nm=i._DepthwiseConv2dNative=function(){return(nm=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},Z=i._Equal=function(){return(Z=i._Equal=i.asm.V).apply(null,arguments)},se=i._Exp=function(){return(se=i._Exp=i.asm.W).apply(null,arguments)},ke=i._FlipLeftRight=function(){return(ke=i._FlipLeftRight=i.asm.X).apply(null,arguments)},at=i._Floor=function(){return(at=i._Floor=i.asm.Y).apply(null,arguments)},Yt=i._FloorDiv=function(){return(Yt=i._FloorDiv=i.asm.Z).apply(null,arguments)},Bt=i._FusedBatchNorm=function(){return(Bt=i._FusedBatchNorm=i.asm._).apply(null,arguments)},tt=i._FusedConv2D=function(){return(tt=i._FusedConv2D=i.asm.$).apply(null,arguments)},rt=i._FusedDepthwiseConv2D=function(){return(rt=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},vr=i._Gather=function(){return(vr=i._Gather=i.asm.ba).apply(null,arguments)},Ji=i._GatherNd=function(){return(Ji=i._GatherNd=i.asm.ca).apply(null,arguments)},Qi=i._Greater=function(){return(Qi=i._Greater=i.asm.da).apply(null,arguments)},Dh=i._GreaterEqual=function(){return(Dh=i._GreaterEqual=i.asm.ea).apply(null,arguments)},sm=i._LeakyRelu=function(){return(sm=i._LeakyRelu=i.asm.fa).apply(null,arguments)},bo=i._Less=function(){return(bo=i._Less=i.asm.ga).apply(null,arguments)},qa=i._LessEqual=function(){return(qa=i._LessEqual=i.asm.ha).apply(null,arguments)},$h=i._Log=function(){return($h=i._Log=i.asm.ia).apply(null,arguments)},vB=i._LogicalAnd=function(){return(vB=i._LogicalAnd=i.asm.ja).apply(null,arguments)},CB=i._Max=function(){return(CB=i._Max=i.asm.ka).apply(null,arguments)},IB=i._MaxPool=function(){return(IB=i._MaxPool=i.asm.la).apply(null,arguments)},NB=i._Maximum=function(){return(NB=i._Maximum=i.asm.ma).apply(null,arguments)},SB=i._Mean=function(){return(SB=i._Mean=i.asm.na).apply(null,arguments)},TB=i._Min=function(){return(TB=i._Min=i.asm.oa).apply(null,arguments)},AB=i._Minimum=function(){return(AB=i._Minimum=i.asm.pa).apply(null,arguments)},EB=i._Multiply=function(){return(EB=i._Multiply=i.asm.qa).apply(null,arguments)},DB=i._Neg=function(){return(DB=i._Neg=i.asm.ra).apply(null,arguments)},$B=i._NonMaxSuppressionV3=function(){return($B=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},RB=i._NonMaxSuppressionV4=function(){return(RB=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},FB=i._NonMaxSuppressionV5=function(){return(FB=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},OB=i._NotEqual=function(){return(OB=i._NotEqual=i.asm.va).apply(null,arguments)},PB=i._OneHot=function(){return(PB=i._OneHot=i.asm.wa).apply(null,arguments)},MB=i._PadV2=function(){return(MB=i._PadV2=i.asm.xa).apply(null,arguments)},LB=i._Pow=function(){return(LB=i._Pow=i.asm.ya).apply(null,arguments)},zB=i._Prelu=function(){return(zB=i._Prelu=i.asm.za).apply(null,arguments)},BB=i._Prod=function(){return(BB=i._Prod=i.asm.Aa).apply(null,arguments)},VB=i._RealDiv=function(){return(VB=i._RealDiv=i.asm.Ba).apply(null,arguments)},GB=i._Relu=function(){return(GB=i._Relu=i.asm.Ca).apply(null,arguments)},WB=i._Relu6=function(){return(WB=i._Relu6=i.asm.Da).apply(null,arguments)},UB=i._ResizeBilinear=function(){return(UB=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},jB=i._Reverse=function(){return(jB=i._Reverse=i.asm.Fa).apply(null,arguments)},HB=i._RotateWithOffset=function(){return(HB=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},qB=i._Round=function(){return(qB=i._Round=i.asm.Ha).apply(null,arguments)},KB=i._Rsqrt=function(){return(KB=i._Rsqrt=i.asm.Ia).apply(null,arguments)},XB=i._ScatterNd=function(){return(XB=i._ScatterNd=i.asm.Ja).apply(null,arguments)},YB=i._SelectV2=function(){return(YB=i._SelectV2=i.asm.Ka).apply(null,arguments)},ZB=i._Sigmoid=function(){return(ZB=i._Sigmoid=i.asm.La).apply(null,arguments)},JB=i._Sin=function(){return(JB=i._Sin=i.asm.Ma).apply(null,arguments)},QB=i._Softmax=function(){return(QB=i._Softmax=i.asm.Na).apply(null,arguments)},e3=i._Sqrt=function(){return(e3=i._Sqrt=i.asm.Oa).apply(null,arguments)},t3=i._Square=function(){return(t3=i._Square=i.asm.Pa).apply(null,arguments)},r3=i._SquaredDifference=function(){return(r3=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},o3=i._Step=function(){return(o3=i._Step=i.asm.Ra).apply(null,arguments)},n3=i._StridedSlice=function(){return(n3=i._StridedSlice=i.asm.Sa).apply(null,arguments)},s3=i._Sub=function(){return(s3=i._Sub=i.asm.Ta).apply(null,arguments)},i3=i._Sum=function(){return(i3=i._Sum=i.asm.Ua).apply(null,arguments)},a3=i._Tanh=function(){return(a3=i._Tanh=i.asm.Va).apply(null,arguments)},l3=i._Tile=function(){return(l3=i._Tile=i.asm.Wa).apply(null,arguments)},u3=i._TopK=function(){return(u3=i._TopK=i.asm.Xa).apply(null,arguments)},c3=i._Transpose=function(){return(c3=i._Transpose=i.asm.Ya).apply(null,arguments)},p3=i.__FusedMatMul=function(){return(p3=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},Fl=i._malloc=function(){return(Fl=i._malloc=i.asm._a).apply(null,arguments)},im=i._free=function(){return(im=i._free=i.asm.$a).apply(null,arguments)},C0=i.___errno_location=function(){return(C0=i.___errno_location=i.asm.ab).apply(null,arguments)},I0=i._emscripten_get_global_libc=function(){return(I0=i._emscripten_get_global_libc=i.asm.bb).apply(null,arguments)},vc=i._pthread_self=function(){return(vc=i._pthread_self=i.asm.cb).apply(null,arguments)},N0=i.___pthread_tsd_run_dtors=function(){return(N0=i.___pthread_tsd_run_dtors=i.asm.db).apply(null,arguments)},mb=i._emscripten_main_thread_process_queued_calls=function(){return(mb=i._emscripten_main_thread_process_queued_calls=i.asm.eb).apply(null,arguments)},m3=i._emscripten_current_thread_process_queued_calls=function(){return(m3=i._emscripten_current_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},S0=i._emscripten_register_main_browser_thread_id=function(){return(S0=i._emscripten_register_main_browser_thread_id=i.asm.gb).apply(null,arguments)},T0=i.__emscripten_do_dispatch_to_thread=function(){return(T0=i.__emscripten_do_dispatch_to_thread=i.asm.hb).apply(null,arguments)},A0=i._emscripten_sync_run_in_main_thread_4=function(){return(A0=i._emscripten_sync_run_in_main_thread_4=i.asm.ib).apply(null,arguments)},E0=i._emscripten_run_in_main_runtime_thread_js=function(){return(E0=i._emscripten_run_in_main_runtime_thread_js=i.asm.jb).apply(null,arguments)},fb=i.__emscripten_call_on_thread=function(){return(fb=i.__emscripten_call_on_thread=i.asm.kb).apply(null,arguments)},f3=i._emscripten_tls_init=function(){return(f3=i._emscripten_tls_init=i.asm.lb).apply(null,arguments)},Rh=i.__emscripten_thread_init=function(){return(Rh=i.__emscripten_thread_init=i.asm.mb).apply(null,arguments)},am=i.stackSave=function(){return(am=i.stackSave=i.asm.nb).apply(null,arguments)},Cc=i.stackRestore=function(){return(Cc=i.stackRestore=i.asm.ob).apply(null,arguments)},Ic=i.stackAlloc=function(){return(Ic=i.stackAlloc=i.asm.pb).apply(null,arguments)},D0=i._emscripten_stack_set_limits=function(){return(D0=i._emscripten_stack_set_limits=i.asm.qb).apply(null,arguments)},$0=i._memalign=function(){return($0=i._memalign=i.asm.rb).apply(null,arguments)},R0=i.__emscripten_allow_main_runtime_queued_calls=9880,Nc=i.__emscripten_main_thread_futex=11368;i.cwrap=we,i.PThread=Ee,i.PThread=Ee,i.wasmMemory=J,i.ExitStatus=lm;var Fh;function lm(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}$l=function I(){Fh||db(),Fh||($l=I)};function db(I){if(I=I||m,Yi>0)return;if(b){l(i),postMessage({cmd:"loaded"});return}if(Qp(),Yi>0)return;function R(){Fh||(Fh=!0,i.calledRun=!0,!ue&&(xc(),ty(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),oo()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),R()},1)):R()}i.run=db;function d3(I,R){if(!(R&&re&&I===0)){if(!R&&b)throw postMessage({cmd:"exitProcess",returnCode:I}),new lm(I);re||(Ee.terminateAllThreads(),ae=I,dh(),i.onExit&&i.onExit(I),ue=!0),d(I,new lm(I))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return b&&(re=!1,Ee.initWorker()),db(),e.ready}}();typeof Zx=="object"&&typeof x0=="object"?x0.exports=y0:typeof define=="function"&&define.amd?define([],function(){return y0}):typeof Zx=="object"&&(Zx.WasmBackendModuleThreadedSimd=y0)});var bB=dt((Jx,b0)=>{var w0=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o,n;t.ready=new Promise(function(Z,se){o=Z,n=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,x,w,b,_,k;m?(p?d=Jp().dirname(d)+"/":d=__dirname+"/",g=function(se,ke){return _||(_=require("fs")),k||(k=Jp()),se=k.normalize(se),_.readFileSync(se,ke?null:"utf8")},w=function(se){var ke=g(se,!0);return ke.buffer||(ke=new Uint8Array(ke)),U(ke.buffer),ke},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof pb))throw Z}),process.on("unhandledRejection",ns),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),w=function(se){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(ke=read(se,"binary"),U(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(w=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=function(Z,se,ke){var at=new XMLHttpRequest;at.open("GET",Z,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){se(at.response);return}ke()},at.onerror=ke,at.send(null)},b=function(Z){document.title=Z});var A=t.print||console.log.bind(console),N=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var $;t.wasmBinary&&($=t.wasmBinary);var F=t.noExitRuntime||!0;typeof WebAssembly!="object"&&ns("no native wasm support detected");var M,V=!1,W;function U(Z,se){Z||ns("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return U(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,ke,at,Yt){var Bt={string:function(bo){var qa=0;if(bo!=null&&bo!==0){var $h=(bo.length<<2)+1;qa=om($h),ie(bo,qa,$h)}return qa},array:function(bo){var qa=om(bo.length);return ue(bo,qa),qa}};function tt(bo){return se==="string"?re(bo):se==="boolean"?Boolean(bo):bo}var rt=H(Z),vr=[],Ji=0;if(at)for(var Qi=0;Qi<at.length;Qi++){var Dh=Bt[ke[Qi]];Dh?(Ji===0&&(Ji=Ah()),vr[Qi]=Dh(at[Qi])):vr[Qi]=at[Qi]}var sm=rt.apply(null,vr);return sm=tt(sm),Ji!==0&&Eh(Ji),sm}function X(Z,se,ke,at){ke=ke||[];var Yt=ke.every(function(tt){return tt==="number"}),Bt=se!=="string";return Bt&&Yt&&!at?H(Z):function(){return q(Z,se,ke,arguments,at)}}var oe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,ke){for(var at=se+ke,Yt=se;Z[Yt]&&!(Yt>=at);)++Yt;if(Yt-se>16&&Z.subarray&&oe)return oe.decode(Z.subarray(se,Yt));for(var Bt="";se<Yt;){var tt=Z[se++];if(!(tt&128)){Bt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){Bt+=String.fromCharCode((tt&31)<<6|rt);continue}var vr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|vr:tt=(tt&7)<<18|rt<<12|vr<<6|Z[se++]&63,tt<65536)Bt+=String.fromCharCode(tt);else{var Ji=tt-65536;Bt+=String.fromCharCode(55296|Ji>>10,56320|Ji&1023)}}return Bt}function re(Z,se){return Z?Y(xe,Z,se):""}function J(Z,se,ke,at){if(!(at>0))return 0;for(var Yt=ke,Bt=ke+at-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var vr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|vr&1023}if(rt<=127){if(ke>=Bt)break;se[ke++]=rt}else if(rt<=2047){if(ke+1>=Bt)break;se[ke++]=192|rt>>6,se[ke++]=128|rt&63}else if(rt<=65535){if(ke+2>=Bt)break;se[ke++]=224|rt>>12,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}else{if(ke+3>=Bt)break;se[ke++]=240|rt>>18,se[ke++]=128|rt>>12&63,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}}return se[ke]=0,ke-Yt}function ie(Z,se,ke){return J(Z,xe,se,ke)}function ue(Z,se){de.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,de,xe,we,De,Ie,ze,qe,it;function At(Z){fe=Z,t.HEAP8=de=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=Ie=new Int32Array(Z),t.HEAPU8=xe=new Uint8Array(Z),t.HEAPU16=De=new Uint16Array(Z),t.HEAPU32=ze=new Uint32Array(Z),t.HEAPF32=qe=new Float32Array(Z),t.HEAPF64=it=new Float64Array(Z)}var Et=t.INITIAL_MEMORY||16777216,Ue,ut=[],mt=[],Mt=[],xo=[],Xt=!1;mt.push({func:function(){bh()}});function to(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)yo(t.preRun.shift());Ua(ut)}function $r(){Xt=!0,Ua(mt)}function Uo(){Ua(Mt)}function or(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)Gr(t.postRun.shift());Ua(xo)}function yo(Z){ut.unshift(Z)}function Gr(Z){xo.unshift(Z)}var br=0,ro=null,Ao=null;function Dl(Z){br++,t.monitorRunDependencies&&t.monitorRunDependencies(br)}function Wa(Z){if(br--,t.monitorRunDependencies&&t.monitorRunDependencies(br),br==0&&(ro!==null&&(clearInterval(ro),ro=null),Ao)){var se=Ao;Ao=null,se()}}t.preloadedImages={},t.preloadedAudios={};function ns(Z){t.onAbort&&t.onAbort(Z),Z+="",N(Z),V=!0,W=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw n(se),se}function Xi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var Qp="data:application/octet-stream;base64,";function xc(Z){return Xi(Z,Qp)}var ty="file://";function dh(Z){return Xi(Z,ty)}var oo="tfjs-backend-wasm.wasm";xc(oo)||(oo=h(oo));function hh(Z){try{if(Z==oo&&$)return new Uint8Array($);if(w)return w(Z);throw"both async and sync fetching of the wasm failed"}catch(se){ns(se)}}function ry(){if(!$&&(c||p)){if(typeof fetch=="function"&&!dh(oo))return fetch(oo,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+oo+"'";return Z.arrayBuffer()}).catch(function(){return hh(oo)});if(x)return new Promise(function(Z,se){x(oo,function(ke){Z(new Uint8Array(ke))},se)})}return Promise.resolve().then(function(){return hh(oo)})}function Yi(){var Z={a:no};function se(tt,rt){var vr=tt.exports;t.asm=vr,M=t.asm.g,At(M.buffer),Ue=t.asm.m,Wa("wasm-instantiate")}Dl("wasm-instantiate");function ke(tt){se(tt.instance)}function at(tt){return ry().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){N("failed to asynchronously prepare wasm: "+rt),ns(rt)})}function Yt(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!xc(oo)&&!dh(oo)&&typeof fetch=="function"?fetch(oo,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(ke,function(vr){return N("wasm streaming compile failed: "+vr),N("falling back to ArrayBuffer instantiation"),at(ke)})}):at(ke)}if(t.instantiateWasm)try{var Bt=t.instantiateWasm(Z,se);return Bt}catch(tt){return N("Module.instantiateWasm callback failed with error: "+tt),!1}return Yt().catch(n),{}}function Ua(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var ke=se.func;typeof ke=="number"?se.arg===void 0?Ue.get(ke)():Ue.get(ke)(se.arg):ke(se.arg===void 0?null:se.arg)}}function $l(){ns()}function oy(Z,se,ke){xe.copyWithin(Z,se,se+ke)}function ny(){return xe.length}function Zi(Z){try{return M.grow(Z-fe.byteLength+65535>>>16),At(M.buffer),1}catch(se){}}function gh(Z){var se=ny(),ke=2147483648;if(Z>ke)return!1;for(var at=1;at<=4;at*=2){var Yt=se*(1+.2/at);Yt=Math.min(Yt,Z+100663296);var Bt=Math.min(ke,ae(Math.max(Z,Yt),65536)),tt=Zi(Bt);if(tt)return!0}return!1}var yc={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var ke=yc.buffers[Z];se===0||se===10?((Z===1?A:N)(Y(ke,0)),ke.length=0):ke.push(se)},varargs:void 0,get:function(){yc.varargs+=4;var Z=Ie[yc.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function xh(Z){return 0}function sy(Z,se,ke,at,Yt){}function yh(Z,se,ke,at){for(var Yt=0,Bt=0;Bt<ke;Bt++){for(var tt=Ie[se+Bt*8>>2],rt=Ie[se+(Bt*8+4)>>2],vr=0;vr<rt;vr++)yc.printChar(Z,xe[tt+vr]);Yt+=rt}return Ie[at>>2]=Yt,0}var no={a:$l,d:oy,e:gh,f:xh,c:sy,b:yh},iy=Yi(),bh=t.___wasm_call_ctors=function(){return(bh=t.___wasm_call_ctors=t.asm.h).apply(null,arguments)},ay=t._init=function(){return(ay=t._init=t.asm.i).apply(null,arguments)},wh=t._register_tensor=function(){return(wh=t._register_tensor=t.asm.j).apply(null,arguments)},ly=t._dispose_data=function(){return(ly=t._dispose_data=t.asm.k).apply(null,arguments)},bc=t._dispose=function(){return(bc=t._dispose=t.asm.l).apply(null,arguments)},wc=t._Abs=function(){return(wc=t._Abs=t.asm.n).apply(null,arguments)},uy=t._Add=function(){return(uy=t._Add=t.asm.o).apply(null,arguments)},cy=t._AddN=function(){return(cy=t._AddN=t.asm.p).apply(null,arguments)},py=t._ArgMax=function(){return(py=t._ArgMax=t.asm.q).apply(null,arguments)},Ee=t._AvgPool=function(){return(Ee=t._AvgPool=t.asm.r).apply(null,arguments)},my=t._BatchMatMul=function(){return(my=t._BatchMatMul=t.asm.s).apply(null,arguments)},fy=t._Ceil=function(){return(fy=t._Ceil=t.asm.t).apply(null,arguments)},dy=t._ClipByValue=function(){return(dy=t._ClipByValue=t.asm.u).apply(null,arguments)},hy=t._Conv2D=function(){return(hy=t._Conv2D=t.asm.v).apply(null,arguments)},gy=t._Conv2DBackpropInput=function(){return(gy=t._Conv2DBackpropInput=t.asm.w).apply(null,arguments)},Rl=t._Cos=function(){return(Rl=t._Cos=t.asm.x).apply(null,arguments)},xy=t._CropAndResize=function(){return(xy=t._CropAndResize=t.asm.y).apply(null,arguments)},yy=t._Cumsum=function(){return(yy=t._Cumsum=t.asm.z).apply(null,arguments)},by=t._DepthToSpace=function(){return(by=t._DepthToSpace=t.asm.A).apply(null,arguments)},wy=t._DepthwiseConv2dNative=function(){return(wy=t._DepthwiseConv2dNative=t.asm.B).apply(null,arguments)},_y=t._Equal=function(){return(_y=t._Equal=t.asm.C).apply(null,arguments)},ky=t._Exp=function(){return(ky=t._Exp=t.asm.D).apply(null,arguments)},vy=t._FlipLeftRight=function(){return(vy=t._FlipLeftRight=t.asm.E).apply(null,arguments)},Cy=t._Floor=function(){return(Cy=t._Floor=t.asm.F).apply(null,arguments)},Iy=t._FloorDiv=function(){return(Iy=t._FloorDiv=t.asm.G).apply(null,arguments)},ja=t._FusedBatchNorm=function(){return(ja=t._FusedBatchNorm=t.asm.H).apply(null,arguments)},em=t._FusedConv2D=function(){return(em=t._FusedConv2D=t.asm.I).apply(null,arguments)},tm=t._FusedDepthwiseConv2D=function(){return(tm=t._FusedDepthwiseConv2D=t.asm.J).apply(null,arguments)},Ny=t._Gather=function(){return(Ny=t._Gather=t.asm.K).apply(null,arguments)},Sy=t._GatherNd=function(){return(Sy=t._GatherNd=t.asm.L).apply(null,arguments)},Ty=t._Greater=function(){return(Ty=t._Greater=t.asm.M).apply(null,arguments)},Ay=t._GreaterEqual=function(){return(Ay=t._GreaterEqual=t.asm.N).apply(null,arguments)},Ey=t._LeakyRelu=function(){return(Ey=t._LeakyRelu=t.asm.O).apply(null,arguments)},Xe=t._Less=function(){return(Xe=t._Less=t.asm.P).apply(null,arguments)},Dy=t._LessEqual=function(){return(Dy=t._LessEqual=t.asm.Q).apply(null,arguments)},$y=t._Log=function(){return($y=t._Log=t.asm.R).apply(null,arguments)},Ry=t._LogicalAnd=function(){return(Ry=t._LogicalAnd=t.asm.S).apply(null,arguments)},Fy=t._Max=function(){return(Fy=t._Max=t.asm.T).apply(null,arguments)},Oy=t._MaxPool=function(){return(Oy=t._MaxPool=t.asm.U).apply(null,arguments)},Py=t._Maximum=function(){return(Py=t._Maximum=t.asm.V).apply(null,arguments)},rm=t._Mean=function(){return(rm=t._Mean=t.asm.W).apply(null,arguments)},_h=t._Min=function(){return(_h=t._Min=t.asm.X).apply(null,arguments)},kh=t._Minimum=function(){return(kh=t._Minimum=t.asm.Y).apply(null,arguments)},My=t._Multiply=function(){return(My=t._Multiply=t.asm.Z).apply(null,arguments)},Ly=t._Neg=function(){return(Ly=t._Neg=t.asm._).apply(null,arguments)},zy=t._NonMaxSuppressionV3=function(){return(zy=t._NonMaxSuppressionV3=t.asm.$).apply(null,arguments)},By=t._NonMaxSuppressionV4=function(){return(By=t._NonMaxSuppressionV4=t.asm.aa).apply(null,arguments)},Vy=t._NonMaxSuppressionV5=function(){return(Vy=t._NonMaxSuppressionV5=t.asm.ba).apply(null,arguments)},Gy=t._NotEqual=function(){return(Gy=t._NotEqual=t.asm.ca).apply(null,arguments)},Wy=t._OneHot=function(){return(Wy=t._OneHot=t.asm.da).apply(null,arguments)},ft=t._PadV2=function(){return(ft=t._PadV2=t.asm.ea).apply(null,arguments)},Uy=t._Pow=function(){return(Uy=t._Pow=t.asm.fa).apply(null,arguments)},jy=t._Prelu=function(){return(jy=t._Prelu=t.asm.ga).apply(null,arguments)},Hy=t._Prod=function(){return(Hy=t._Prod=t.asm.ha).apply(null,arguments)},_c=t._RealDiv=function(){return(_c=t._RealDiv=t.asm.ia).apply(null,arguments)},vh=t._Relu=function(){return(vh=t._Relu=t.asm.ja).apply(null,arguments)},Ch=t._Relu6=function(){return(Ch=t._Relu6=t.asm.ka).apply(null,arguments)},Ih=t._ResizeBilinear=function(){return(Ih=t._ResizeBilinear=t.asm.la).apply(null,arguments)},qy=t._Reverse=function(){return(qy=t._Reverse=t.asm.ma).apply(null,arguments)},Ky=t._RotateWithOffset=function(){return(Ky=t._RotateWithOffset=t.asm.na).apply(null,arguments)},Nh=t._Round=function(){return(Nh=t._Round=t.asm.oa).apply(null,arguments)},Xy=t._Rsqrt=function(){return(Xy=t._Rsqrt=t.asm.pa).apply(null,arguments)},Sh=t._ScatterNd=function(){return(Sh=t._ScatterNd=t.asm.qa).apply(null,arguments)},Ha=t._SelectV2=function(){return(Ha=t._SelectV2=t.asm.ra).apply(null,arguments)},Yy=t._Sigmoid=function(){return(Yy=t._Sigmoid=t.asm.sa).apply(null,arguments)},Zy=t._Sin=function(){return(Zy=t._Sin=t.asm.ta).apply(null,arguments)},v0=t._Softmax=function(){return(v0=t._Softmax=t.asm.ua).apply(null,arguments)},Th=t._Sqrt=function(){return(Th=t._Sqrt=t.asm.va).apply(null,arguments)},Jy=t._Square=function(){return(Jy=t._Square=t.asm.wa).apply(null,arguments)},Qy=t._SquaredDifference=function(){return(Qy=t._SquaredDifference=t.asm.xa).apply(null,arguments)},eb=t._Step=function(){return(eb=t._Step=t.asm.ya).apply(null,arguments)},tb=t._StridedSlice=function(){return(tb=t._StridedSlice=t.asm.za).apply(null,arguments)},rb=t._Sub=function(){return(rb=t._Sub=t.asm.Aa).apply(null,arguments)},ob=t._Sum=function(){return(ob=t._Sum=t.asm.Ba).apply(null,arguments)},nb=t._Tanh=function(){return(nb=t._Tanh=t.asm.Ca).apply(null,arguments)},sb=t._Tile=function(){return(sb=t._Tile=t.asm.Da).apply(null,arguments)},ib=t._TopK=function(){return(ib=t._TopK=t.asm.Ea).apply(null,arguments)},ab=t._Transpose=function(){return(ab=t._Transpose=t.asm.Fa).apply(null,arguments)},lb=t.__FusedMatMul=function(){return(lb=t.__FusedMatMul=t.asm.Ga).apply(null,arguments)},ub=t._malloc=function(){return(ub=t._malloc=t.asm.Ha).apply(null,arguments)},cb=t._free=function(){return(cb=t._free=t.asm.Ia).apply(null,arguments)},Ah=t.stackSave=function(){return(Ah=t.stackSave=t.asm.Ja).apply(null,arguments)},Eh=t.stackRestore=function(){return(Eh=t.stackRestore=t.asm.Ka).apply(null,arguments)},om=t.stackAlloc=function(){return(om=t.stackAlloc=t.asm.La).apply(null,arguments)};t.cwrap=X;var kc;function pb(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}Ao=function Z(){kc||nm(),kc||(Ao=Z)};function nm(Z){if(Z=Z||i,br>0||(to(),br>0))return;function se(){kc||(kc=!0,t.calledRun=!0,!V&&($r(),Uo(),o(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),or()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=nm,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return nm(),e.ready}}();typeof Jx=="object"&&typeof b0=="object"?b0.exports=w0:typeof define=="function"&&define.amd?define([],function(){return w0}):typeof Jx=="object"&&(Jx.WasmBackendModule=w0)});var k3=1e-7,v3=1e-4,Xa=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ws=class{refCount(e){return jo("refCount")}incRef(e){return jo("incRef")}timerAvailable(){return!0}time(e){return jo("time")}read(e){return jo("read")}readSync(e){return jo("readSync")}numDataIds(){return jo("numDataIds")}disposeData(e,t){return jo("disposeData")}write(e,t,o){return jo("write")}move(e,t,o,n,s){return jo("move")}memory(){return jo("memory")}floatPrecision(){return jo("floatPrecision")}epsilon(){return this.floatPrecision()===32?k3:v3}dispose(){return jo("dispose")}};function jo(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function O0(r){let e=r.length,t=0,o=0;for(;e>0;)o=Math.random()*e|0,e--,t=r[e],r[e]=r[o],r[o]=t}function C3(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,o,n,s=0;for(;t>0;)s=Math.random()*t|0,t--,o=r[t],n=e[t],r[t]=r[s],e[t]=e[s],r[s]=o,e[s]=n}function Ec(r,e,t){return Math.max(r,Math.min(e,t))}function I3(r){return r%2==0?r:r+1}function N3(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function S3(r,e){let t=Math.random();return e*t+(1-t)*r}function T3(r,e){let t=0;for(let o=0;o<r.length;o++){let n=Number(r[o])-Number(e[o]);t+=n*n}return t}function E(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function Ct(r,e,t=""){E(Ur(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Eo(r){E(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ss(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||nr(r)&&!t)for(let o=0;o<r.length;++o)ss(r[o],e,t);else e.push(r);return e}function ct(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function A3(r){return r.length===0}function Ur(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function ot(r){return r%1==0}function E3(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function D3(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function $3(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return O0(e),e}function Ol(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function R3(r,e=o=>0,t){return new Promise((o,n)=>{let s=0,a=()=>{if(r()){o();return}s++;let i=e(s);if(t!=null&&s>=t){n();return}setTimeout(a,i)};a()})}function F3(r,e){let t=1,o=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function Qt(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),E(r.every(o=>o>=-t&&o<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),E(r.every(o=>ot(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function hb(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:Qt(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function gb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function xb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function yb(r,e){for(let t=0;t<r.length;t++){let o=r[t];if(isNaN(o)||!isFinite(o))throw Error(`A tensor of type ${e} being uploaded contains ${o}.`)}}function bb(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function O3(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function nr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Ph(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function wb(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function is(r){return typeof r=="string"||r instanceof String}function P0(r){return typeof r=="boolean"}function M0(r){return typeof r=="number"}function Dc(r){return Array.isArray(r)?Dc(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":M0(r)?"float32":is(r)?"string":P0(r)?"bool":"float32"}function Us(r){return!!(r&&r.constructor&&r.call&&r.apply)}function $c(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function js(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let o=e-3;o>=0;--o)t[o]=t[o+1]*r[o+1];return t}function L0(r,e,t){let o=new Array;if(e.length===1){let n=e[0];for(let s=0;s<n;s++)o[s]=t[r+s]}else{let n=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<n;i++)o[i]=L0(r+i*a,s,t)}return o}function Pl(r,e){if(r.length===0)return e[0];let t=r.reduce((o,n)=>o*n);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return L0(0,r,e)}function um(r,e){let t=Rc(r,e);for(let o=0;o<t.length;o++)t[o]=1;return t}function Rc(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function P3(r,e){let t=r.reduce((o,n)=>o*n,1);if(e==null||e==="float32")return Pl(r,new Float32Array(t));if(e==="int32")return Pl(r,new Int32Array(t));if(e==="bool")return Pl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function cm(r){r.forEach(e=>{E(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function M3(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n<r.length-1;++n)o+=t[n]*r[n];return o}function L3(r,e,t){if(e===0)return[];if(e===1)return[r];let o=new Array(e);for(let n=0;n<o.length-1;++n)o[n]=Math.floor(r/t[n]),r-=o[n]*t[n];return o[o.length-1]=r,o}function pm(r){return r&&r.then&&typeof r.then=="function"}var z0="tfjsflags",Mh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,o){if(this.flagRegistry[e]={evaluationFn:t,setHook:o},this.urlFlags[e]!=null){let n=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(pm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=z3(this.global.location.search);z0 in e&&e[z0].split(",").forEach(o=>{let[n,s]=o.split(":");this.urlFlags[n]=B3(n,s)})}};function z3(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(V3(e,o[0],o[1]),o.join("="))),e}function V3(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function B3(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function j(){return _b}var _b=null;function B0(r){_b=r}var kb;function vb(){if(kb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");kb=r}return kb}function G3(){let r=vb();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function mm(r,e){let t=G3();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var as="Abs",Hs="Acos",qs="Acosh",wo="Add",Ho="AddN",Ml="All",Ll="Any",qo="ArgMax",ea="ArgMin",Ks="Asin",Xs="Asinh",Ys="Atan",Zs="Atanh",Js="Atan2",Ko="AvgPool",zl="AvgPoolGrad",ta="AvgPool3D",Bl="AvgPool3DGrad",Xo="BatchMatMul",ra="BatchToSpaceND",Vl="Bincount",Cb="BroadcastTo",Do="Cast",Yo="Ceil",$o="ClipByValue",Gl="Complex",oa="ComplexAbs",ls="Concat",Zo="Conv2D",Wl="Conv2DBackpropFilter",Jo="Conv2DBackpropInput",na="Conv3D",Ul="Conv3DBackpropFilterV2",jl="Conv3DBackpropInputV2",Qo="Cos",Qs="Cosh",en="Cumsum",ei="CropAndResize",Hl="DenseBincount",ti="DepthToSpace",tn="DepthwiseConv2dNative",ql="DepthwiseConv2dNativeBackpropFilter",Kl="DepthwiseConv2dNativeBackpropInput",Xl="Diag",sa="Dilation2D",Fc="Dilation2DBackpropInput",Oc="Dilation2DBackpropFilter",rn="RealDiv",ri="Elu",Yl="EluGrad",oi="Erf",ni="Equal",on="Exp",us="ExpandDims",si="Expm1",Zl="FFT",ia="Fill",ii="FlipLeftRight",nn="Floor",sn="FloorDiv",an="FusedBatchNorm",cs="GatherV2",ai="GatherNd",li="Greater",ln="GreaterEqual",Ro="Identity",Jl="IFFT",Ql="Imag",ui="IsFinite",ci="IsInf",pi="IsNan",un="LeakyRelu",mi="Less",fi="LessEqual",eu="LinSpace",cn="Log",di="Log1p",hi="LogicalAnd",Ya="LogicalNot",Za="LogicalOr",Ib="LogSoftmax",aa="LRN",tu="LRNGrad",pn="Max",mn="Maximum",fn="MaxPool",ru="MaxPoolGrad",la="MaxPool3D",ou="MaxPool3DGrad",nu="MaxPoolWithArgmax",dn="Mean",hn="Min",gn="Minimum",ua="MirrorPad",gi="Mod",su="Multinomial",xn="Multiply",ps="Neg",xi="NotEqual",yi="NonMaxSuppressionV3",bi="NonMaxSuppressionV4",wi="NonMaxSuppressionV5",ms="OnesLike",yn="OneHot",fs="Pack",bn="PadV2",W3="Pool",wn="Pow",_n="Prelu",_i="Prod",ca="Range",iu="Real",ki="Reciprocal",kn="Relu",ds="Reshape",pa="ResizeNearestNeighbor",au="ResizeNearestNeighborGrad",vn="ResizeBilinear",lu="ResizeBilinearGrad",Cn="Relu6",In="Reverse",Nn="Round",Sn="Rsqrt",vi="ScatterNd",hs="Select",Ci="Selu",gs="Slice",Tn="Sin",Ii="Sinh",Ni="Sign",An="Sigmoid",Si="Softplus",En="Sqrt",Dn="Sum",ma="SpaceToBatchND",xs="SplitV",$n="Softmax",Rn="SquaredDifference",fa="Square",Fn="Sub",uu="SparseToDense",Ti="StridedSlice",Ai="Tan",On="Tanh",_o="Tile",Ei="TopK",cu="Transform",Pn="Transpose",pu="Unique",ys="Unpack",da="UnsortedSegmentSum",bs="ZerosLike",Fo="Step",Pc="FromPixels",Di="RotateWithOffset",ws="_FusedMatMul",_s="FusedConv2D",ks="FusedDepthwiseConv2D";var Mc=mm("kernelRegistry",()=>new Map),fm=mm("gradRegistry",()=>new Map);function Lc(r,e){let t=Nb(r,e);return Mc.get(t)}function Lh(r){return fm.get(r)}function dm(r){let e=Mc.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function Ja(r){let{kernelName:e,backendName:t}=r,o=Nb(e,t);Mc.has(o)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Mc.set(o,r)}function Sb(r){let{kernelName:e}=r;fm.has(e)&&j().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),fm.set(e,r)}function U3(r,e){let t=Nb(r,e);if(!Mc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Mc.delete(t)}function j3(r){if(!fm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);fm.delete(r)}function H3(r,e){dm(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});Ja(n)})}function Nb(r,e){return`${e}_${r}`}var y={};Je(y,{arraysEqual:()=>Ur,assert:()=>E,assertNonNegativeIntegerDimensions:()=>cm,assertNonNull:()=>Eo,assertShapesMatch:()=>Ct,bytesFromStringArray:()=>wb,bytesPerElement:()=>Ph,checkConversionForErrors:()=>yb,clamp:()=>Ec,computeStrides:()=>js,createScalarValue:()=>q3,createShuffledIndices:()=>$3,decodeString:()=>Bc,distSquared:()=>T3,encodeString:()=>Qa,fetch:()=>X3,flatten:()=>ss,getArrayFromDType:()=>xb,getTypedArrayFromDType:()=>gb,hasEncodingLoss:()=>O3,indexToLoc:()=>L3,inferDtype:()=>Dc,inferFromImplicitShape:()=>F3,isBoolean:()=>P0,isFunction:()=>Us,isInt:()=>ot,isNumber:()=>M0,isPromise:()=>pm,isScalarShape:()=>A3,isString:()=>is,isTypedArray:()=>nr,isValidDtype:()=>bb,locToIndex:()=>M3,makeOnesTypedArray:()=>um,makeZerosNestedTypedArray:()=>P3,makeZerosTypedArray:()=>Rc,nearestDivisor:()=>$c,nearestLargerEven:()=>I3,now:()=>mu,parseAxisParam:()=>Qt,randUniform:()=>S3,repeatedTry:()=>R3,rightPad:()=>Ol,shuffle:()=>O0,shuffleCombo:()=>C3,sizeFromShape:()=>ct,sizeToSquarishShape:()=>D3,squeezeShape:()=>hb,sum:()=>N3,tanh:()=>E3,toNestedArray:()=>Pl,toTypedArray:()=>zc});function q3(r,e){return e==="string"?Qa(r):zc([r],e)}function K3(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function zc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=ss(r)),j().getBool("DEBUG")&&yb(r,e),K3(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o<t.length;++o)Math.round(r[o])!==0&&(t[o]=1);return t}else throw new Error(`Unknown data type ${e}`)}function mu(){return j().platform.now()}function X3(r,e){return j().platform.fetch(r,e)}function Qa(r,e="utf-8"){return e=e||"utf-8",j().platform.encode(r,e)}function Bc(r,e="utf-8"){return e=e||"utf-8",j().platform.decode(r,e)}var Tb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new V0)}profileKernel(e,t,o){let n,s=()=>{n=o()},a,i=mu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of n)u.dataSync();a=Promise.resolve({kernelMs:mu()-i})}if(j().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<n.length;u++){let c=n[u];c.data().then(p=>{Y3(p,c.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function Y3(r,e,t){if(e!=="float32")return!1;for(let o=0;o<r.length;o++){let n=r[o];if(isNaN(n)||!isFinite(n))return console.warn(`Found ${n} in the result of '${t}'`),!0}return!1}var V0=class{logKernelProfile(e,t,o,n,s,a){let i=typeof n=="number"?Ol(`${n}ms`,9):n.error,l=Ol(e,25),u=t.rank,c=t.size,p=Ol(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function G0(r,e,t){let o={},n={};for(let l=0;l<e.length;l++)o[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(o[m.id]){u.outputs.forEach(h=>o[h.id]=!0),f=!0,n[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(n[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];o[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function W0(r,e,t,o){for(let n=e.length-1;n>=0;n--){let s=e[n],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Ur(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=o(p,u),p.dispose()}}}}var U0=20,hm=3,Ab=7;function j0(r,e,t,o){let n=js(e),s=Z3(r,e,t,n),a=e.length,i=zh(r,e,t,n,s),l=["Tensor"];return o&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function Z3(r,e,t,o){let n=ct(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?xm(r):r;if(i>1)for(let u=0;u<n/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],gm(l[c+p],0,t).length)}return a}function gm(r,e,t){let o;return Array.isArray(r)?o=`${parseFloat(r[0].toFixed(Ab))} + ${parseFloat(r[1].toFixed(Ab))}j`:is(r)?o=`'${r}'`:t==="bool"?o=H0(r):o=parseFloat(r.toFixed(Ab)).toString(),Ol(o,e)}function H0(r){return r===0?"false":"true"}function zh(r,e,t,o,n,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=xm(r);return[gm(h[0],0,t)]}return t==="bool"?[H0(r[0])]:[r[0].toString()]}if(l===1){if(i>U0){let g=hm*a,x=Array.from(r.slice(0,g)),w=Array.from(r.slice((i-hm)*a,i*a));return t==="complex64"&&(x=xm(x),w=xm(w)),["["+x.map((b,_)=>gm(b,n[_],t)).join(", ")+", ..., "+w.map((b,_)=>gm(b,n[i-hm+_],t)).join(", ")+"]"]}let h=t==="complex64"?xm(r):Array.from(r);return["["+h.map((g,x)=>gm(g,n[x],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),p=o[0]*a,m=[];if(i>U0){for(let h=0;h<hm;h++){let g=h*p,x=g+p;m.push(...zh(r.slice(g,x),u,t,c,n,!1))}m.push("...");for(let h=i-hm;h<i;h++){let g=h*p,x=g+p;m.push(...zh(r.slice(g,x),u,t,c,n,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...zh(r.slice(g,x),u,t,c,n,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
|
|
`;for(let h=2;h<l;h++)d+=`
|
|
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function xm(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var lt=class{constructor(e,t,o){if(this.dtype=t,this.shape=e.slice(),this.size=ct(e),o!=null){let n=o.length;E(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||xb(t,this.size),this.strides=js(e)}set(e,...t){t.length===0&&(t=[0]),E(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;n<e.length-1;++n)o+=this.strides[n]*e[n];return this.values[o]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let o=0;o<e.length-1;++o)t+=this.strides[o]*e[o];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let o=0;o<t.length-1;++o)t[o]=Math.floor(e/this.strides[o]),e-=t[o]*this.strides[o];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return $i().makeTensor(this.values,this.shape,this.dtype)}},$i=null,Vc=null,J3=null;function q0(r){$i=r}function K0(r){Vc=r}function X0(r){J3=r}var Ve=class{constructor(e,t,o,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ct(e),this.strides=js(e),this.dataId=o,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Vc.buffer(this.shape,this.dtype,e)}bufferSync(){return Vc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Pl(this.shape,e)}arraySync(){return Pl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=$i().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(o=>Bc(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$i().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Bc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $i().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($i().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Vc.print(this,e)}clone(){return this.throwIfDisposed(),Vc.clone(this)}toString(e=!1){let t=this.dataSync();return j0(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Vc.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),$i().makeVariable(this,e,t,o)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return mm("Tensor",()=>Ve)}O();var el=class extends Ve{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ur(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$i().disposeTensor(this),this.dataId=e.dataId,$i().incRef(this,null)}dispose(){$i().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(el,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var Mn={};Je(Mn,{assertTypesMatch:()=>Ob,getTensorsInContainer:()=>ym,isTensorInList:()=>eV,makeTypesMatch:()=>Ge});var Eb;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(Eb||(Eb={}));var Db;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(Db||(Db={}));var $b;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})($b||($b={}));var Rb;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(Rb||(Rb={}));var Fb;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Fb||(Fb={}));var Q3={float32:Rb,int32:Db,bool:$b,complex64:Fb};function dr(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return Q3[r][e]}function fu(r){return dr(r,"int32")}function Ge(r,e){if(r.dtype===e.dtype)return[r,e];let t=dr(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Ob(r,e){E(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function eV(r,e){return e.some(t=>t.id===r.id)}function ym(r){let e=[],t=new Set;return Y0(r,e,t),e}function Y0(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!tV(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),Y0(s,e,t))}}function tV(r){return Array.isArray(r)||typeof r=="object"}function Pb(r){return r.kernelName!=null}var Mb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},du=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Mb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t];if(await this.initializeBackend(o).success){await this.setBackend(o);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,o=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:o},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:o}=this.initializeBackend(e);if(!(o?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new Tb(this.backendInstance),!0}setupRegisteredKernels(){dm(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){dm(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof Ws)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=o,{success:!0,asyncInit:!1}}catch(o){return console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t],{success:n,asyncInit:s}=this.initializeBackend(o);if(s||n)return{name:o,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let o=this.state.tensorInfo.get(t),n=o.backend,s=this.readSync(t),a=n.refCount(t);n.disposeData(t,!0),o.backend=e,e.move(t,s,o.shape,o.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let o=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");o=e}let n;return this.scopedRun(()=>this.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return du.nextTensorId++}nextVariableId(){return du.nextVariableId++}clone(e){let t=D.runKernel(Ro,{x:e}),o={x:e},n=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return D.runKernel(Do,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o){if(!(Lc(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:o})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,o=[],n=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=Pb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Pb(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=Lc(d,this.backendName);E(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let w=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let b=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,w,b);let _=b.map(k=>{if(k.rank!=null)return k;let{dataId:A,shape:N,dtype:$}=k;return this.makeTensorFromDataId(A,N,$)});if(n){let k=this.getTensorsForGradient(d,h,_);o=this.saveTensorsForBackwardMode(k)}return _}}else{let{forwardFunc:d}=e,h=g=>{!n||(o=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=Pb(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),n&&this.addTapeNode(u,c,t,m,o,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=Lh(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(E(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=o.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&is(e[0])&&(s=e.map(l=>Qa(l)));let a=n.write(s,t,o),i=new Ve(t,o,a,this.nextTensorId());if(this.trackTensor(i,n),o==="string"){let l=this.state.tensorInfo.get(a),u=wb(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s=new Ve(t,o,e,this.nextTensorId());return this.trackTensor(s,n),s}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new el(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Ph(e.dtype)),this.state.numBytes+=o,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o})),e instanceof el||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let o=e.size*Ph(e.dtype);this.state.numBytes-=o}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},l=Lh(e);l!=null&&(n=l.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=o[p],f=Rc(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=ym(e),o=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!o.has(a.id)&&a.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(E(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));E(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=G0(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?rV(s.shape):o,W0(i,a,u=>this.tidy(u),oV);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return E(Us(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{E(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};t.forEach((i,l)=>{n[l]=i});let s=(i,l)=>(o=e(...t,l),E(o.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),E(Us(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),a=(i,l)=>{let u=o.gradFunc(i,l),c=Array.isArray(u)?u:[u];E(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),E(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=mu(),o=await this.backend.time(e);return o.wallMs=mu()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Mb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};du.nextTensorId=0;du.nextVariableId=0;function rV(r){let e=um(ct(r),"float32");return D.makeTensor(e,r,"float32")}function Lb(){let r=vb();if(r._tfengine==null){let e=new Mh(r);r._tfengine=new du(e)}return B0(r._tfengine.ENV),q0(()=>r._tfengine),r._tfengine}var D=Lb();function oV(r,e){let t={a:r,b:e};return D.runKernel(wo,t)}var hu={};Je(hu,{isBrowser:()=>zb,isMobile:()=>sV});function nV(){return typeof navigator!="undefined"&&navigator!=null}function sV(){if(nV()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function zb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var vs=j();vs.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});vs.registerFlag("IS_BROWSER",()=>zb());vs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");vs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vs.registerFlag("PROD",()=>!1);vs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>vs.getBool("DEBUG"));vs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);vs.registerFlag("IS_TEST",()=>!1);vs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);vs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Cr(r,e){let t=r;if(nr(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||nr(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&j().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Z0(r,o,[]),o}function Z0(r,e,t){if(t=t||[],!Array.isArray(r)&&!nr(r)){E(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}E(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),E(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n<r.length;++n)Z0(r[n],o,t.concat(n))}function J0(r,e,t,o){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${o}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,o="numeric"){if(r instanceof Ve)return J0(o,r.dtype,e,t),r;let n=Dc(r);if(n!=="string"&&["bool","int32","float32"].indexOf(o)>=0&&(n=o),J0(o,n,e,t),r==null||!nr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Cr(r,n);!nr(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?zc(r,n):ss(r,[],!0);return D.makeTensor(i,s,n)}function ha(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,o))}var Q0="__op";function T(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+Q0;let n=(...s)=>{D.startScope(t);try{let a=o(...s);return pm(a)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(a),a}catch(a){throw D.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function iV(r,e){let t=v(r,"real","complex"),o=v(e,"imag","complex");Ct(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return D.runKernel(Gl,n)}var ko=T({complex_:iV});function jr(r,e,t,o){if(o==null&&(o=Dc(r)),o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!nr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){cm(e);let n=ct(e),s=ct(t);E(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ct(e.slice(a)):!0;E(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!nr(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?zc(r,o):ss(r,[],!0),D.makeTensor(r,e,o)}function Rr(r,e,t){let o=Cr(r,t);return jr(r,e,o,t)}var bm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Bh=4;async function eI(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<n.length;++a){let i=n[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Bh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],w=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(w,h),h+=Bh,d.set(x,h),h+=x.length}p(d)});o.push(c)}else o.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(o);return{data:aV(s),specs:t}}function Vh(r,e){let t={},o,n=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ct(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=bm[p.dtype],f=r.slice(n,n+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")o===void 0&&(o=lV()),c=o(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*m}else if(i==="string"){let p=ct(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(n,n+Bh))[0];n+=Bh;let d=new Uint8Array(r.slice(n,n+f));c.push(d),n+=f}}else{let p=bm[i],m=r.slice(n,n+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=Rr(f,l,"float32"),g=Rr(d,l,"float32");t[a]=ko(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*p}i!=="complex64"&&(t[a]=Rr(c,l,i))}return t}function aV(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var Bb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function tI(r){return Bb?Buffer.byteLength(r):new Blob([r]).size}function rI(r){if(Bb)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o<n;o++)t+=String.fromCharCode(e[o]);return btoa(t)}function oI(r){if(Bb){let o=Buffer.from(r,"base64");return o.buffer.slice(o.byteOffset,o.byteOffset+o.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let o=0;o<e.length;++o)t.set([e.charCodeAt(o)],o);return t.buffer}function Gc(r){if(r.length===1)return r[0];let e=0;r.forEach(n=>{e+=n.byteLength});let t=new Uint8Array(e),o=0;return r.forEach(n=>{t.set(new Uint8Array(n),o),o+=n.byteLength}),t.buffer}function Vb(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Ri(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:tI(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:tI(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function uV(){let r=t=>{let o=t<<13,n=0;for(;(o&8388608)==0;)n-=8388608,o<<=1;return o&=~8388608,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function cV(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function pV(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function lV(){let r=uV(),e=cV(),t=pV();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a<o.length;a++){let i=o[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(n)}}var It=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return It.instance==null&&(It.instance=new It),It.instance}static registerSaveRouter(e){It.getInstance().saveRouters.push(e)}static registerLoadRouter(e){It.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return It.getHandlers(e,"save")}static getLoadHandlers(e,t){return It.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?It.getInstance().loadRouters:It.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},nI=r=>It.registerSaveRouter(r),sI=r=>It.registerLoadRouter(r),iI=r=>It.getSaveHandlers(r),aI=(r,e)=>It.getLoadHandlers(r,e);var Gb="tensorflowjs",Wb=1,gu="models_store",tl="model_info_store";function lI(){if(!j().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function Ub(r){let e=r.result;e.createObjectStore(gu,{keyPath:"modelPath"}),e.createObjectStore(tl,{keyPath:"modelPath"})}var ga=class{constructor(e){if(this.indexedDB=lI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(Gb,Wb);s.onupgradeneeded=()=>Ub(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(gu,"readonly"),u=i.objectStore(gu).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{let i=Ri(t),l=a.transaction(tl,"readwrite"),u=l.objectStore(tl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(gu,"readwrite");let f=p.objectStore(gu).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>o({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(tl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(f.error)),h.onerror=g=>(a.close(),n(f.error))}},c.onerror=m=>(a.close(),n(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};ga.URL_SCHEME="indexeddb://";var uI=r=>j().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ga.URL_SCHEME)?mV(r.slice(ga.URL_SCHEME.length)):null;It.registerSaveRouter(uI);It.registerLoadRouter(uI);function mV(r){return new ga(r)}function fV(r){return r.startsWith(ga.URL_SCHEME)?r.slice(ga.URL_SCHEME.length):r}var jb=class{constructor(){this.indexedDB=lI()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(Gb,Wb);o.onupgradeneeded=()=>Ub(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(tl,"readonly"),i=s.objectStore(tl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=fV(e),new Promise((t,o)=>{let n=this.indexedDB.open(Gb,Wb);n.onupgradeneeded=()=>Ub(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(tl,"readwrite"),i=a.objectStore(tl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(gu,"readwrite");let f=u.objectStore(gu).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>o(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),o(l.error))}},l.onerror=c=>(s.close(),o(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var xa="/",Wc="tensorflowjs_models",cI="info",dV="model_topology",hV="weight_specs",gV="weight_data",xV="model_metadata";function pI(r){return{info:[Wc,r,cI].join(xa),topology:[Wc,r,dV].join(xa),weightSpecs:[Wc,r,hV].join(xa),weightData:[Wc,r,gV].join(xa),modelMetadata:[Wc,r,xV].join(xa)}}function yV(r){let e=r.split(xa);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(xa)}function bV(r){return r.startsWith(ya.URL_SCHEME)?r.slice(ya.URL_SCHEME.length):r}var ya=class{constructor(e){if(!j().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=pI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=Ri(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,rI(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:n}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=oI(a),t}};ya.URL_SCHEME="localstorage://";var mI=r=>j().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ya.URL_SCHEME)?wV(r.slice(ya.URL_SCHEME.length)):null;It.registerSaveRouter(mI);It.registerLoadRouter(mI);function wV(r){return new ya(r)}var Hb=class{constructor(){E(j().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),E(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Wc+xa,o=xa+cI;for(let n=0;n<this.LS.length;++n){let s=this.LS.key(n);if(s.startsWith(t)&&s.endsWith(o)){let a=yV(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=bV(e);let t=pI(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let o=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),o}};var Uc="://",Hr=class{constructor(){this.managers={}}static getInstance(){return Hr.instance==null&&(Hr.instance=new Hr),Hr.instance}static registerManager(e,t){E(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Uc)&&(e=e.slice(0,e.indexOf(Uc))),E(e.length>0,()=>"scheme must not be an empty string.");let o=Hr.getInstance();E(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Gh(r){if(r.indexOf(Uc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Hr.getSchemes().join(",")}`);return{scheme:r.split(Uc)[0],path:r.split(Uc)[1]}}async function fI(r,e,t=!1){E(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=It.getLoadHandlers(r);E(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),E(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=It.getSaveHandlers(e);E(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),E(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Gh(r).scheme,l=Gh(r).path,u=i===Gh(r).scheme,c=await n.load();t&&u&&await Hr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Hr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function dI(){let r=Hr.getSchemes(),e={};for(let t of r){let o=await Hr.getManager(t).listModels();for(let n in o){let s=t+Uc+n;e[s]=o[n]}}return e}async function hI(r){let e=Gh(r);return Hr.getManager(e.scheme).removeModel(e.path)}async function gI(r,e){return fI(r,e,!1)}async function xI(r,e){return fI(r,e,!0)}var yI=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(j().get("IS_BROWSER")){j().setPlatform("browser",new yI);try{Hr.registerManager(ya.URL_SCHEME,new Hb)}catch(r){}try{Hr.registerManager(ga.URL_SCHEME,new jb)}catch(r){}}var _V={importFetch:()=>bI()},qb;var wI=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return j().global.fetch!=null?j().global.fetch(e,t):(qb==null&&(qb=_V.importFetch()),qb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};j().get("IS_NODE")&&j().setPlatform("node",new wI);function ve(r,e="float32",t){return e=e||"float32",cm(r),new lt(r,e,t)}function kV(r,e){let t=v(r,"x","cast");if(!bb(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return D.runKernel(Do,o,n)}var ne=T({cast_:kV});function vV(r){let t={x:v(r,"x","clone","string_or_numeric")};return D.runKernel(Ro,t)}var Oo=T({clone_:vV});function Kb(r,e=!1){console.log(r.toString(e))}Lb();var CV={buffer:ve,cast:ne,clone:Oo,print:Kb};K0(CV);var Ir={};Je(Ir,{browserFiles:()=>vI,browserHTTPRequest:()=>NI,concatenateArrayBuffers:()=>Gc,copyModel:()=>gI,decodeWeights:()=>Vh,encodeWeights:()=>eI,fromMemory:()=>TI,getLoadHandlers:()=>aI,getModelArtifactsInfoForJSON:()=>Ri,getSaveHandlers:()=>iI,http:()=>jh,isHTTPScheme:()=>Uh,listModels:()=>dI,loadWeights:()=>CI,moveModel:()=>xI,registerLoadRouter:()=>sI,registerSaveRouter:()=>nI,removeModel:()=>hI,weightsLoaderFactory:()=>Zb,withSaveHandler:()=>AI});var IV="model",NV=".json",SV=".weights.bin";function _I(r){return new Promise(e=>setTimeout(e)).then(r)}var rl=class{constructor(e){if(!j().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(rl.URL_SCHEME)&&(e=e.slice(rl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=IV),this.modelTopologyFileName=e+NV,this.weightDataFileName=e+SV}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let o=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await _I(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await _I(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ri(e)}}}};rl.URL_SCHEME="downloads://";var kI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&o({modelTopology:l});let u=i.weightsManifest;if(u==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){n(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let w=x.target.result,b=m.indexOf(h);if(f[b]=w,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:Gc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),o(_)}},g.onerror=x=>n(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let o=[],n=t.map(a=>Vb(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=Vb(i);if(o.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(o.push(l),n.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[n.indexOf(l)]});if(o.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${o.length}) and the number of weight files provided (${t.length}).`);return s}},AV=r=>j().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(rl.URL_SCHEME)?TV(r.slice(rl.URL_SCHEME.length)):null;It.registerSaveRouter(AV);function TV(r="model"){return new rl(r)}function vI(r){return new kI(r)}function Xb(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=l=>(l.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),l);function a(l){E(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){E(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),E(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),E(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function Yb(r,e){e==null&&(e={});let t=e.fetchFunc==null?j().platform.fetch:e.fetchFunc,o=r.map(p=>t(p,e.requestInit,{isBinary:!0})),n=0,s=.5,i=(e.onProgress==null?await Promise.all(o):await Xb(o,e.onProgress,n,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await Xb(i,e.onProgress,l,u)}async function CI(r,e="",t,o){return Zb(a=>Yb(a,{requestInit:o}))(r,e,t)}function Zb(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,w=bm[x]*ct(g.shape),b=()=>{n[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:w})};o!=null?o.forEach((_,k)=>{_===g.name&&(b(),a[k]=!0)}):b(),i.push(g.name),h+=w})}),!a.every(f=>f)){let f=o.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=n.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),w=0;for(let _=0;_<d;_++){let k=new Uint8Array(c[m+_]);x.set(k,w),w+=k.byteLength}s[f].forEach(_=>{let k=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),A=Vh(k,[_.manifestEntry]);for(let N in A)p[N]=A[N]}),m+=d}),p}}var EV="application/octet-stream",DV="application/json",Wh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(E(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=j().platform.fetch,E(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&E(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(n)],{type:DV}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:EV}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Ri(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let o=t.modelTopology,n=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;n!=null&&([c,p]=await this.loadWeights(n));let m={modelTopology:o,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=$V(t),s=this.weightPathPrefix||o,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+n);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await Yb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Gc(u)]}};Wh.URL_SCHEME_REGEX=/^https?:\/\//;function $V(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function Uh(r){return r.match(Wh.URL_SCHEME_REGEX)!=null}var II=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>Uh(o)):t=Uh(r),t)return jh(r,e)}return null};It.registerSaveRouter(II);It.registerLoadRouter(II);function jh(r,e){return new Wh(r,e)}function NI(r,e){return jh(r,e)}var Hh=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},SI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function TI(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Hh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hh({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function AI(r){return new SI(r)}var EI={};Je(EI,{confusionMatrix:()=>MV});function RV(r,e,t=!1,o=!1){let n=v(r,"a","matMul"),s=v(e,"b","matMul");[n,s]=Ge(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return D.runKernel(Xo,a,i)}var We=T({matMul_:RV});function FV(r,e,t=1,o=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:o};return D.runKernel(yn,s,a)}var Cs=T({oneHot_:FV});function OV(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),E(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{E(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let o={x:t},n={perm:e};return D.runKernel(Pn,o,n)}var je=T({transpose_:OV});function PV(r,e,t){let o=v(r,"labels","confusionMatrix"),n=v(e,"predictions","confusionMatrix");E(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),E(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),E(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),E(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),E(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=Cs(ne(o,"int32"),t),a=Cs(ne(n,"int32"),t),i=je(s),l=We(i,a);return ne(l,"int32")}var MV=T({confusionMatrix_:PV});var qh={};Je(qh,{fromPixels:()=>UV,fromPixelsAsync:()=>GV,toPixels:()=>WV});function Jb(r,e,t){if(Eo(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=Cr(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return jr(r,e,o,t)}var jc;function DI(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(n){let d=2;if(n&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Lc(Pc,D.backendName)!=null){let d={pixels:r},h={numChannels:e};return D.runKernel(Pc,d,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:o||t?p=r.data:(s||n||i)&&(jc==null&&(jc=document.createElement("canvas").getContext("2d")),jc.canvas.width=u,jc.canvas.height=c,jc.drawImage(r,0,0,u,c),p=jc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return Jb(m,[c,u,e],"int32")}function LV(r){return r!=null&&r.data instanceof Uint8Array}function zV(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function BV(r){return r!=null&&r.width!==0&&r.height!==0}function VV(r){return zV()&&!(r instanceof ImageBitmap)&&BV(r)&&!LV(r)}async function GV(r,e=3){let t=null;if(j().getBool("WRAP_TO_IMAGEBITMAP")&&VV(r)){let o;try{o=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(n){o=null}o!=null&&o.width===r.width&&o.height===r.height?t=o:t=r}else t=r;return DI(t,e)}async function WV(r,e){let t=v(r,"img","toPixels");if(!(r instanceof Ve)){let u=t;t=ne(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[o,n]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(n*o*4);for(let u=0;u<o*n;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(l,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var UV=T({fromPixels_:DI});var Kh={};Je(Kh,{prepareAndValidate:()=>$I});function $I(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ct(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let p=0;p<n.length-1;++p)a*=n[p];let i=r.shape,l=n.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...js(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var Xh={};Je(Xh,{calculateShapes:()=>RI,validateInput:()=>Yh,validateUpdateShape:()=>Qb});function Qb(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank<n)throw new Error(s+` update.rank < ${n}. `);if(r.length<o+(t.rank-n))throw new Error(s+` Output shape length < ${o+(t.rank-n)}`);if(t.rank!==n+r.length-o)throw new Error(s+` update.rank != ${n+r.length-o}`);for(let a=0;a<n;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-n;++a)if(t.shape[a+n]!==r[a+o])throw new Error(s+` updates.shape[${a+n}] (${t.shape[a+n]}) != shape[${a+n}] (${r[a+n]})`)}function Yh(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}Qb(t,e,r)}function RI(r,e,t){let o=e.shape.length,n=o>1?e.shape[o-1]:1,s=t.length,a=1;for(let p=n;p<s;++p)a*=t[p];let i=n<1?1:n,l=ct(e.shape)/i,u=[...js(t.slice(0,n)),1],c=ct(t);return{sliceRank:n,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var sr={};Je(sr,{assertParamsValid:()=>jV,computeFlatOffset:()=>qV,computeOutShape:()=>FI,getNormalizedAxes:()=>WI,isSliceContinous:()=>HV,maskToAxes:()=>Zh,parseSliceParams:()=>ew,sliceInfo:()=>KV,startForAxis:()=>VI,startIndicesWithElidedDims:()=>LI,stopForAxis:()=>GI,stopIndicesWithElidedDims:()=>zI,stridesForAxis:()=>BI,stridesWithElidedDims:()=>OI});function jV(r,e,t){let o=r.shape.length;E(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),E(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n<o;++n)E(e[n]+t[n]<=r.shape[n],()=>`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function Zh(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function FI(r,e,t){let o=[];for(let n=0;n<r.length;n++)o[n]=Math.ceil((e[n]-r[n])/t[n]);return o}function OI(r,e,t,o){let n=[...r];for(let s=n.length;s<o.length;s++)n.push(1);for(let s=0;s<t;s++)s===0?n[e]=1:(n.splice(e,0,1),n.pop());return n}function PI(r,e,t){return t<=r?t:t-(e-1)}function MI(r,e){let t=[];for(let o=0;o<r;o++)t.push(e+o);return t}function WI(r,e,t,o,n,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=LI(a,f,d,o,r),p=zI(i,f,d,n,r),m=OI(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=VI(a,o,s,r,f,l),p[f]=GI(i,n,s,r,f,l),m[f]=BI(s,f,l);return{begin:c,end:p,strides:m}}function LI(r,e,t,o,n){let s=[...n],a=MI(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=PI(e,t,i),u=o[l];r&1<<l&&(u=0),s[i]=u}return s}function zI(r,e,t,o,n){let s=[...n],a=MI(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=PI(e,t,i),u=o[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=n[i];s[i]<0&&(s[i]+=l),s[i]=Ec(0,s[i],n[i])}return s}function BI(r,e,t){let o=r[e];return(t&1<<e||o==null)&&(o=1),o}function VI(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),a=Ec(0,a,l-1),a}function GI(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),i>0?a=Ec(0,a,l):a=Ec(-1,a,l-1),a}function HV(r,e,t){let o=t.length;for(let n=0;n<t.length;n++)if(t[n]>1){o=n;break}for(let n=o+1;n<t.length;n++)if(e[n]>0||t[n]!==r[n])return!1;return!0}function qV(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o<r.length-1;o++)t+=r[o]*e[o];return t}function ew(r,e,t){let o,n=r.shape.length;typeof e=="number"?o=[e,...new Array(n-1).fill(0)]:e.length<n?o=e.concat(new Array(n-e.length).fill(0)):o=e.slice(),o.forEach(a=>{E(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.length<n?s=t.concat(new Array(n-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(E(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function KV(r,e,t,o,n,s,a,i,l){let u=e.slice(),c=t.slice(),p=o;o==null&&(p=new Array(u.length));let m=Zh(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=Zh(i),h=r.slice();d.forEach(N=>{u[N]=0,c[N]=1,h.splice(N,0,1)});let{begin:g,end:x,strides:w}=WI(h,m,f,u,c,p,n,s,a);u=g,c=x,p=w;let b=Zh(l);b.forEach(N=>{c[N]=u[N]+1,p[N]=1});let _=FI(u,c,p),k=_.filter((N,$)=>b.indexOf($)===-1);return{nonStrided:p.every(N=>N===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:k}}var Q={};Je(Q,{Serializable:()=>Jh,SerializationMap:()=>ba,registerClass:()=>so});var Jh=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ba=class{constructor(){this.classNameMap={}}static getMap(){return ba.instance==null&&(ba.instance=new ba),ba.instance}static register(e){ba.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function so(r){E(r.className!=null,()=>"Class being registered does not have the static className property defined."),E(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),E(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ba.register(r)}var UI={};Je(UI,{TEST_EPSILON_FLOAT16:()=>jI,encodeStrings:()=>HI,expectArrayBuffersEqual:()=>tG,expectArraysClose:()=>YV,expectArraysEqual:()=>JV,expectNumbersClose:()=>QV,expectPromiseToFail:()=>ZV,expectValuesInRange:()=>eG,testEpsilon:()=>tw});var XV=.001,jI=.1;function YV(r,e,t){return t==null&&(t=tw()),rw(r,e,(o,n)=>ow(o,n,t))}function tw(){return D.backend.floatPrecision()===32?XV:jI}function rw(r,e,t){let o=!0;if((nr(r)||nr(e))&&(o=!1),nr(r)&&nr(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Cr(r),i=Cr(e);if(!Ur(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=nr(r)?r:ss(r),s=nr(e)?e:ss(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}.
|
|
Actual: ${n}.
|
|
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=n[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
|
|
Actual: ${n}.
|
|
Expected: ${s}.`)}}function ZV(r,e){r().then(()=>e.fail(),()=>e())}function JV(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return is(r)||is(r[0])||is(e)||is(e[0])?rw(r,t,(o,n)=>o==n):rw(r,e,(o,n)=>ow(o,n,0))}function QV(r,e,t){if(t==null&&(t=tw()),!ow(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function ow(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function eG(r,e,t){for(let o=0;o<r.length;o++)if(r[o]<e||r[o]>t)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function tG(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function HI(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?HI(t):r[e]=Qa(t)}return r}var nw="3.3.0";function rG(){j().set("PROD",!0)}function oG(){j().set("DEBUG",!0)}function nG(){j().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Qh(r){j().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}X0(Qh);function sG(){D.disposeVariables()}function Po(){return D}function Hc(){return D.memory()}function iG(r){return D.profile(r)}function G(r,e){return D.tidy(r,e)}function Te(r){ym(r).forEach(t=>t.dispose())}function Dt(r){return D.keep(r)}function aG(r){return D.time(r)}function qI(r){return D.setBackend(r)}function lG(){return D.ready()}function uG(){return D.backendName}function cG(r){D.removeBackend(r)}function pG(r){return D.findBackend(r)}function mG(r){return D.findBackendFactory(r)}function xu(r,e,t=1){return D.registerBackend(r,e,t)}function sw(){return D.backend}function fG(r,e){j().setPlatform(r,e)}function dG(r,e){let t=v(r,"a","add"),o=v(e,"b","add");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(wo,n)}var ee=T({add_:dG});function hG(r,e){let t=v(r,"a","floorDiv"),o=v(e,"b","floorDiv");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(sn,n)}var yu=T({floorDiv_:hG});function gG(r,e){let t=v(r,"a","div"),o=v(e,"b","div");if([t,o]=Ge(t,o),t.dtype==="int32"&&o.dtype==="int32")return yu(t,o);let n={a:t,b:o},s={};return D.runKernel(rn,n,s)}var me=T({div_:gG});function xG(r,e){let t=v(r,"a","mul"),o=v(e,"b","mul");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(xn,n)}var P=T({mul_:xG});function yG(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return D.runKernel(oa,t)}else{let t={x:e};return D.runKernel(as,t)}}var Nt=T({abs_:yG});function bG(r){let t={x:v(r,"x","acos")};return D.runKernel(Hs,t)}var wm=T({acos_:bG});function wG(r){let t={x:v(r,"x","acosh")};return D.runKernel(qs,t)}var _m=T({acosh_:wG});function _G(r){E(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),E(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>v(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!Ur(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return D.runKernel(Ho,o)}var iw=T({addN_:_G});function kG(r,e=null,t=!1){let n={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return D.runKernel(Ml,n,s)}var bu=T({all_:kG});function vG(r,e=null,t=!1){let n={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return D.runKernel(Ll,n,s)}var ol=T({any_:vG});function CG(r,e=0){let o={x:v(r,"x","argMax")},n={axis:e};return D.runKernel(qo,o,n)}var nl=T({argMax_:CG});function IG(r,e=0){let o={x:v(r,"x","argMin")},n={axis:e};return D.runKernel(ea,o,n)}var km=T({argMin_:IG});function NG(r){let t={x:v(r,"x","asin")};return D.runKernel(Ks,t)}var vm=T({asin_:NG});function SG(r){let t={x:v(r,"x","asinh")};return D.runKernel(Xs,t)}var Cm=T({asinh_:SG});function TG(r){let t={x:v(r,"x","atan")};return D.runKernel(Ys,t)}var Im=T({atan_:TG});function AG(r,e){let t=v(r,"a","atan2"),o=v(e,"b","atan2");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(Js,n)}var Nm=T({atan2_:AG});function EG(r){let t={x:v(r,"x","atanh")};return D.runKernel(Zs,t)}var Sm=T({atanh_:EG});function DG(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],l=KI(n);return wu(r,i,t,s,o,null,null,l)}function aw(r,e,t,o,n,s,a="channelsLast"){let[i,l]=eg(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return wu(r,u,t,o,n,s,!1,a)}function $G(r,e,t,o,n,s,a="NDHWC"){let[i,l,u]=lw(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return XI(r,c,t,o,n,!1,p,s)}function wu(r,e,t,o,n,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=eg(t),[x,w]=eg(o),b=qc(m,x),_=qc(f,w),{padInfo:k,outHeight:A,outWidth:N}=RG(n,u,c,h,g,b,_,s,i),$=a?d*p:d,F;return i==="channelsFirst"?F=[l,$,A,N]:i==="channelsLast"&&(F=[l,A,N,$]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:A,outWidth:N,outChannels:$,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:b,effectiveFilterWidth:_,dilationHeight:x,dilationWidth:w,inShape:r,outShape:F,filterShape:e}}function XI(r,e,t,o,n,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,w,b]=lw(t),[_,k,A]=lw(o),N=qc(f,_),$=qc(d,k),F=qc(h,A),{padInfo:M,outDepth:V,outHeight:W,outWidth:U}=FG(n,u,c,p,x,w,b,N,$,F,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,V,W,U]:a==="channelsLast"&&(q=[l,V,W,U,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:W,outWidth:U,outChannels:H,padInfo:M,strideDepth:x,strideHeight:w,strideWidth:b,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:N,effectiveFilterHeight:$,effectiveFilterWidth:F,dilationDepth:_,dilationHeight:k,dilationWidth:A,inShape:r,outShape:q,filterShape:e}}function OG(r,e,t,o,n){o==null&&(o=uw(r,e,t));let s=r[0],a=r[1],i=_u((s-e+2*o)/t+1,n),l=_u((a-e+2*o)/t+1,n);return[i,l]}function PG(r,e,t,o,n,s){n==null&&(n=uw(r,e,o));let a=r[0],i=r[1],l=r[2],u=_u((a-e+2*n)/o+1,s),c=_u((i-e+2*n)/o+1,s),p=_u((l-e+2*n)/o+1,s);return[u,c,p,t]}function uw(r,e,t,o=1){let n=qc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function eg(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function lw(r){return typeof r=="number"?[r,r,r]:r}function qc(r,e){return e<=1?r:r+(r-1)*(e-1)}function RG(r,e,t,o,n,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=OG([e,t],s,o,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/o),p=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),f=Math.max(0,(p-1)*n+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),p=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=_u((e-s+m+f)/o+1,i),p=_u((t-a+d+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function FG(r,e,t,o,n,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=PG([e,t,o,1],i,1,n,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/n),f=Math.ceil(t/s),d=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-o,w=Math.floor(h/2),b=h-w,_=Math.floor(g/2),k=g-_,A=Math.floor(x/2),N=x-A;p={top:_,bottom:k,left:A,right:N,front:w,back:b,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/n),f=Math.ceil((t-l+1)/s),d=Math.ceil((o-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function _u(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Mo(r){let[e,t,o]=eg(r);return e===1&&t===1&&o===1}function _r(r,e){return Mo(r)||Mo(e)}function KI(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function MG(r,e){let o={x:v(r,"x","reshape","string_or_numeric")},n={shape:e};return D.runKernel(ds,o,n)}var L=T({reshape_:MG});function LG(r,e,t,o,n){let s=v(r,"x","avgPool","float32"),a=1;E(_r(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),n!=null&&E(ot(o),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=D.runKernel(Ko,u,c);return p=ne(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wa=T({avgPool_:LG});function zG(r,e,t,o,n,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),E(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&E(ot(o),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=D.runKernel(ta,u,c);return p=ne(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Tm=T({avgPool3d_:zG});function BG(r,e=0){E(r.length>=1,()=>"Pass at least one tensor to concat");let t=ha(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),t.length===1)return Oo(t[0]);let o=t,n={axis:e};return D.runKernel(ls,o,n)}var Ye=T({concat_:BG});function VG(r){let t={x:v(r,"x","sigmoid")};return D.runKernel(An,t)}var qr=T({sigmoid_:VG});function GG(r,e,t){let o=v(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return D.runKernel(gs,n,s)}var Re=T({slice_:GG});function WG(r){let t={x:v(r,"x","tanh")};return D.runKernel(On,t)}var Fi=T({tanh_:WG});function UG(r,e,t,o,n,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(o,"data","basicLSTMCell"),c=v(n,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Ye([u,p],1),f=We(m,i),d=ee(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],w=Re(d,[0,0],x),b=Re(d,[0,g],x),_=Re(d,[0,g*2],x),k=Re(d,[0,g*3],x),A=ee(P(qr(w),Fi(b)),P(c,qr(ee(a,_)))),N=P(Fi(A),qr(k));return[A,N]}var jG=T({basicLSTMCell_:UG});function HG(r,e,t){let o=v(r,"x","batchToSpaceND"),n=e.reduce((i,l)=>i*l);E(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),E(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),E(o.shape[0]%n==0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return D.runKernel(ra,s,a)}var _a=T({batchToSpaceND_:HG});function YI(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function qG(r,e,t,o,n,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;o!=null&&(c=v(o,"offset","batchNorm")),E(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),E(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),E(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:YI(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=D.runKernel(an,m,f);return L(d,a.shape)}var Ln=T({batchNorm_:qG});function KG(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),E(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),E(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),E(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&E(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ln(a,i,l,c,u,s)}var cw=T({batchNorm2d_:KG});function XG(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),E(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),E(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),E(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&E(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ln(a,i,l,c,u,s)}var pw=T({batchNorm3d_:XG});function YG(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),E(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),E(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),E(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&E(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ln(a,i,l,c,u,s)}var mw=T({batchNorm4d_:YG});function ZG(r,e,t){let o=v(r,"x","bincount"),n=v(e,"weights","bincount");E(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),E(t>=0,()=>`size must be non-negative, but got ${t}.`),E(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return D.runKernel(Vl,s,a)}var fw=T({bincount_:ZG});function JG(r,e){let t=v(r,"broadcastTo","x"),o=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let n=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Oo(t);let i={x:t},l={reps:s};return D.runKernel(_o,i,l)}var sl=T({broadcastTo_:JG});function QG(r){let t={x:v(r,"x","ceil")};return D.runKernel(Yo,t)}var Am=T({ceil_:QG});function eW(r,e,t){let o=v(r,"x","clipByValue");E(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let n={x:o},s={clipValueMin:e,clipValueMax:t};return D.runKernel($o,n,s)}var ir=T({clipByValue_:eW});function tW(r){return Ye(r,0)}var dw=T({concat1d_:tW});function rW(r,e){return Ye(r,e)}var hw=T({concat2d_:rW});function oW(r,e){return Ye(r,e)}var gw=T({concat3d_:oW});function nW(r,e){return Ye(r,e)}var xw=T({concat4d_:nW});function sW(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),E(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&E(ot(o),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p=n==="NHWC"?u.shape[3]:u.shape[1];E(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),E(_r(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},d=D.runKernel(Zo,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kr=T({conv2d_:sW});function iW(r,e,t,o,n="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),E(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),E(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&E(ot(o),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),E(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),E(_r(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),E(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Kr(m,p,[1,t],o,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var ku=T({conv1d_:iW});function aW(r,e,t,o,n,s="NHWC",a){E(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),E(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),E(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),E(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];E(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),E(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&E(ot(n),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let m={dy:l,filter:t},f={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},d=D.runKernel(Jo,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kc=T({conv2DBackpropInput_:aW});function lW(r,e,t,o,n,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Kc(t,a,i,o,n,"NHWC",s)}var vu=T({conv2dTranspose_:lW});function uW(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),E(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),E(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),E(_r(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),E(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:o,dataFormat:n,dilations:s},m=D.runKernel(na,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Em=T({conv3d_:uW});function cW(r,e,t,o,n){E(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];E(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),E(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),E(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),E(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),E(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:n,strides:o,inputShape:s},m=D.runKernel(jl,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var tg=T({conv3DBackpropInput_:cW});function pW(r,e,t,o,n){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return tg(t,s,a,o,n)}var mW=T({conv3dTranspose_:pW});function fW(r){let t={x:v(r,"x","cos")};return D.runKernel(Qo,t)}var ka=T({cos_:fW});function dW(r){let t={x:v(r,"x","cosh")};return D.runKernel(Qs,t)}var Cu=T({cosh_:dW});function hW(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return D.runKernel(en,s,a)}var Iu=T({cumsum_:hW});function gW(r,e,t,o=!1){let n=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");E(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),E(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),E(t>=0,()=>`size must be non-negative, but got ${t}.`),E(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return D.runKernel(Hl,a,i)}var yw=T({denseBincount_:gW});function xW(r,e,t="NHWC"){let o=v(r,"x","depthToSpace"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];E(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${n} and ${e} for depthToSpace with input shape
|
|
${o.shape}`),E(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${e} for depthToSpace with input shape
|
|
${o.shape}`),E(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},l={blockSize:e,dataFormat:t};return D.runKernel(ti,i,l)}var Dm=T({depthToSpace_:xW});function yW(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),E(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),E(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&E(ot(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:u,filter:l},m={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=D.runKernel(tn,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Is=T({depthwiseConv2d_:yW});function bW(r){let t={x:v(r,"x","diag")};return D.runKernel(Xl,t)}var wW=T({diag_:bW});function _W(r,e,t,o,n=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");E(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),E(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),E(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:o,dilations:n},m=D.runKernel(sa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var $m=T({dilation2d_:_W});function kW(r,e){let t=r.length,o=[];for(let n=0;n<t;n++){let s=t-1-n,a=r[s]||1;(e[e.length-1-n]||1)>1&&a===1&&o.unshift(s)}return o}function kt(r,e){let t=[];for(let o=0;o<e.length;o++){let n=r[r.length-o-1],s=e.length-o-1,a=e[s];(n==null||n===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],o=Math.max(r.length,e.length);for(let n=0;n<o;n++){let s=r[r.length-n-1];s==null&&(s=1);let a=e[e.length-n-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function vW(r,e){let t=v(r,"a","equal"),o=v(e,"b","equal");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(ni,n)}var vo=T({equal_:vW});function CW(r,e,t){let o=v(e,"a","where"),n=v(t,"b","where"),s=v(r,"condition","where","bool"),a=Be(o.shape,n.shape),i=sl(o,a),l=sl(n,a);s.rank===1&&E(s.shape[0]===o.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&Ct(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return D.runKernel(hs,u)}var $t=T({where_:CW});function IW(r){let t={x:v(r,"x","zerosLike")};return D.runKernel(bs,t)}var Ce=T({zerosLike_:IW});function NW(r,e){let t=v(r,"a","div"),o=v(e,"b","div");[t,o]=Ge(t,o);let n=me(t,o),s=Ce(n),a=vo(o,s);return $t(a,s,n)}var Rm=T({divNoNan_:NW});function SW(r,e){let t=v(r,"t1","dot"),o=v(e,"t2","dot");E((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(E(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=L(t,[1,-1]),i=L(o,[-1,1]),l=We(a,i);return L(l,[])}else if(t.rank===1&&o.rank===2){let a=L(t,[1,-1]),i=L(o,[o.shape[0],o.shape[1]]),l=We(a,i);return L(l,[l.size])}else if(t.rank===2&&o.rank===1){let a=L(o,[-1,1]),i=We(t,a);return L(i,[i.size])}else{let a=L(o,[o.shape[0],o.shape[1]]);return We(t,a)}}var bw=T({dot_:SW});function TW(r){let t={x:v(r,"x","elu")};return D.runKernel(ri,t)}var Ns=T({elu_:TW});function AW(r){let e=v(r,"x","erf");E(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=ne(e,"float32"));let t={x:e};return D.runKernel(oi,t)}var Fm=T({erf_:AW});function EW(r){let t={x:v(r,"x","exp")};return D.runKernel(on,t)}var Zt=T({exp_:EW});function DW(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");E(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return D.runKernel(us,o,n)}var ar=T({expandDims_:DW});function $W(r){let t={x:v(r,"x","expm1")};return D.runKernel(si,t)}var Om=T({expm1_:$W});function RW(r,e){let t=v(r,"x","tile","string_or_numeric");E(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return D.runKernel(_o,o,n)}var Lo=T({tile_:RW});function FW(r,e,t,o="float32"){e==null&&(e=r);let n=ve([r,e],o),s=r<=e?r:e;for(let i=0;i<s;++i)n.set(1,i,i);let a=L(n.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return Lo(ar(a,0),[t[0],1,1]);if(t.length===2)return Lo(ar(ar(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return Lo(ar(ar(ar(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Xc=T({eye_:FW});function va(r,e,t){let o={shape:r,value:e,dtype:t};return D.runKernel(ia,{},o)}function OW(r){let t={x:v(r,"x","floor")};return D.runKernel(nn,t)}var Ss=T({floor_:OW});function PW(r,e,t=0,o=0){let n=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:n,indices:s},i={axis:t,batchDims:o};return D.runKernel(cs,a,i)}var zn=T({gather_:PW});function MW(r,e){let t=v(r,"a","greater"),o=v(e,"b","greater");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(li,n)}var er=T({greater_:MW});function LW(r,e){let t=v(r,"a","greaterEqual"),o=v(e,"b","greaterEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(ln,n)}var io=T({greaterEqual_:LW});function zW(r){let t={input:v(r,"input","imag")};return D.runKernel(Ql,t)}var Nu=T({imag_:zW});function BW(r){let t={x:v(r,"x","isFinite")};return D.runKernel(ui,t)}var ww=T({isFinite_:BW});function VW(r){let t={x:v(r,"x","isInf")};return D.runKernel(ci,t)}var _w=T({isInf_:VW});function GW(r){let t={x:v(r,"x","isNaN")};return D.runKernel(pi,t)}var kw=T({isNaN_:GW});function WW(r,e=.2){let o={x:v(r,"x","leakyRelu")},n={alpha:e};return D.runKernel(un,o,n)}var Ca=T({leakyRelu_:WW});function UW(r,e){let t=v(r,"a","less"),o=v(e,"b","less");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(mi,n)}var Su=T({less_:UW});function jW(r,e){let t=v(r,"a","lessEqual"),o=v(e,"b","lessEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(fi,n)}var zo=T({lessEqual_:jW});function vw(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let o={start:r,stop:e,num:t};return D.runKernel(eu,{},o)}function HW(r,e=5,t=1,o=1,n=.5){let s=v(r,"x","localResponseNormalization");E(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),E(ot(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=D.runKernel(aa,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Pm=T({localResponseNormalization_:HW});function qW(r){let t={x:v(r,"x","log")};return D.runKernel(cn,t)}var lr=T({log_:qW});function KW(r){let t={x:v(r,"x","log1p")};return D.runKernel(di,t)}var Tu=T({log1p_:KW});function XW(r){return E(Us(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=v(e,"x","tf.grad","string_or_numeric"),n=t!=null?v(t,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:a}=D.gradients(()=>r(o),[o],n);return n!=null&&Ct(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),rg(a),a[0]})}}function YW(r){return E(Us(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{E(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=ha(e,"args","tf.grads","string_or_numeric"),n=t!=null?v(t,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:a}=D.gradients(()=>r(...o),o,n);return n!=null&&Ct(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),rg(a),a})}}function ZW(r){return E(Us(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{E(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),E(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=D.gradients(()=>r(e),[e],t);return rg(o),{grad:o[0],value:n}}}function JW(r){return E(Us(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{E(Array.isArray(e)&&e.every(n=>n instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),E(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=D.gradients(()=>r(...e),e,t);return t!=null&&Ct(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),rg(o.grads),o}}function og(r,e){E(Us(r),()=>"The f passed in variableGrads(f) must be a function"),E(e==null||Array.isArray(e)&&e.every(u=>u instanceof el),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in D.registeredVariables)e.push(D.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),E(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=D.gradients(r,e,null,s);E(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),E(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),o!=null&&o.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Xr(r){return D.customGrad(r)}function rg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function QW(r){let t={x:v(r,"x","neg")};return D.runKernel(ps,t)}var He=T({neg_:QW});function e4(r){let t={x:v(r,"x","softplus")};return D.runKernel(Si,t)}var Ts=T({softplus_:e4});function t4(r){let e=v(r,"x","logSigmoid");return Xr(o=>({value:He(Ts(He(o))),gradFunc:a=>P(a,qr(He(o)))}))(e)}var Cw=T({logSigmoid_:t4});function r4(r,e=null,t=!1){let n={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return D.runKernel(pn,n,s)}var ur=T({max_:r4});function o4(r,e){let t=v(r,"a","sub"),o=v(e,"b","sub");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(Fn,n)}var ce=T({sub_:o4});function n4(r,e=null,t=!1){let o=v(r,"x","sum");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return D.runKernel(Dn,n,s)}var ge=T({sum_:n4});function s4(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Xr((n,s)=>{let a=!0,i=ur(n,e,!0),l=ce(n,i),u=ce(ne(l,"float32"),lr(ge(Zt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Zt(f);return ce(p,P(ge(p,e,d),h))}}})(t)}var Au=T({logSoftmax_:s4});function Iw(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function ZI(r,e,t){let o=r.length+e.length,n=[],s=0,a=0;for(let i=0;i<o;i++)t.indexOf(i)===-1?n.push(r[s++]):n.push(e[a++]);return n}function Nw(r,e){let t=[],o=r.length;for(let s=0;s<o;s++)e.indexOf(s)===-1&&t.push(r[s]);let n=e.map(s=>r[s]);return[t,n]}function Bn(r,e){let t=e.map(o=>1);return ZI(r,t,e)}function i4(r,e,t){E(Iw(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function Sw(r,e){if(Iw(r,e))return null;let t=[];for(let o=0;o<e;++o)r.indexOf(o)===-1&&t.push(o);return r.forEach(o=>t.push(o)),t}function Mm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function a4(r,e){let t=[];for(let o=e-r;o<e;++o)t.push(o);return t}function l4(r,e=null,t=!1){let o=v(r,"x","logSumExp"),n=Qt(e,o.shape),s=ur(o,n,!0),a=ce(o,s),i=Zt(a),l=ge(i,n),u=lr(l),c=ee(L(s,u.shape),u);if(t){let p=Bn(c.shape,n);return L(c,p)}return c}var Lm=T({logSumExp_:l4});function u4(r,e){let t=v(r,"a","logicalAnd","bool"),o=v(e,"b","logicalAnd","bool");Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(hi,n)}var hr=T({logicalAnd_:u4});function c4(r){let t={x:v(r,"x","logicalNot","bool")};return D.runKernel(Ya,t)}var Ia=T({logicalNot_:c4});function p4(r,e){let t=v(r,"a","logicalOr","bool"),o=v(e,"b","logicalOr","bool");Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(Za,n)}var Eu=T({logicalOr_:p4});function m4(r,e){let t=v(r,"a","logicalXor","bool"),o=v(e,"b","logicalXor","bool");return Be(t.shape,o.shape),hr(Eu(r,e),Ia(hr(r,e)))}var Tw=T({logicalXor_:m4});function f4(r,e,t,o,n){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),E(_r(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&E(ot(o),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=D.runKernel(fn,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Na=T({maxPool_:f4});function d4(r,e=[1,1,1],t,o,n,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),E(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&E(ot(o),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=D.runKernel(la,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var zm=T({maxPool3d_:d4});function h4(r,e,t,o,n=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},l=D.runKernel(nu,a,i);return{result:l[0],indexes:l[1]}}var Aw=T({maxPoolWithArgmax_:h4});function g4(r,e){let t=v(r,"a","maximum"),o=v(e,"b","maximum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(mn,n)}var Yr=T({maximum_:g4});function x4(r,e=null,t=!1){let n={x:v(r,"x","mean")},s={axis:e,keepDims:t};return D.runKernel(dn,n,s)}var ht=T({mean_:x4});function y4(r,e=null,t=!1){let n={x:v(r,"x","min")},s={axis:e,keepDims:t};return D.runKernel(hn,n,s)}var Oi=T({min_:y4});function b4(r,e){let t=v(r,"a","minimum"),o=v(e,"b","minimum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(gn,n)}var As=T({minimum_:b4});function w4(r,e,t){E(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=v(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");E(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i<o.rank;i++)E(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),E(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return D.runKernel(ua,a,s)}var Bm=T({mirrorPad_:w4});function _4(r,e){let t=v(r,"a","mod"),o=v(e,"b","mod");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(gi,n)}var Vm=T({mod_:_4});function k4(r){let e=v(r,"x","square"),t={};return D.runKernel("Square",{x:e},t)}var Oe=T({square_:k4});function v4(r,e=null,t=!1){r=v(r,"x","moments");let o=Qt(e,r.shape),n=ht(r,o,t),s=n.shape;t||(s=Bn(n.shape,o));let a=Oe(ce(ne(r,"float32"),L(n,s))),i=ht(a,o,t);return{mean:n,variance:i}}var Yc=T({moments_:v4});function C4(r,e,t,o){let n=v(e,"data","multiRNNCell"),s=ha(t,"c","multiRNNCell"),a=ha(o,"h","multiRNNCell"),i=n,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var I4=T({multiRNNCell_:C4});function N4(r,e,t,o=!1){let n=v(r,"logits","multinomial"),s=n.size,a=n.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=D.runKernel(su,l,u);return a===1?L(c,[c.size]):c}var Ew=T({multinomial_:N4});function S4(r,e){let t=v(r,"a","notEqual"),o=v(e,"b","notEqual");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return D.runKernel(xi,n)}var Vn=T({notEqual_:S4});function gt(r,e="float32"){if(e==="complex64"){let o=gt(r,"float32"),n=gt(r,"float32");return ko(o,n)}let t=Rc(ct(r),e);return D.makeTensor(t,r,e)}function Nr(r,e="float32"){if(e==="complex64"){let o=Nr(r,"float32"),n=gt(r,"float32");return ko(o,n)}let t=um(ct(r),e);return D.makeTensor(t,r,e)}function T4(r){let t={x:v(r,"x","onesLike")};return D.runKernel(ms,t)}var tr=T({onesLike_:T4});function A4(r,e){let t=v(r,"v1","outerProduct"),o=v(e,"v2","outerProduct");E(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=L(t,[-1,1]),s=L(o,[1,-1]);return We(n,s)}var E4=T({outerProduct_:A4});function D4(r,e,t=0){let o=v(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return D.runKernel(bn,s,n)}var Fr=T({pad_:D4});function $4(r,e,t=0){return E(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Fr(r,[e],t)}var R4=T({pad1d_:$4});function F4(r,e,t=0){return E(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(r,e,t)}var O4=T({pad2d_:F4});function P4(r,e,t=0){return E(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(r,e,t)}var M4=T({pad3d_:P4});function L4(r,e,t=0){return E(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(r,e,t)}var z4=T({pad4d_:L4});function B4(r,e,t){let o=v(r,"x","spaceToBatchND");E(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),E(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),E(o.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return D.runKernel(ma,n,s)}var Sa=T({spaceToBatchND_:B4});function W4(r,e,t,o,n,s){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),E(_r(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let u=aw(i.shape,e,s,n,o),c=[u.dilationHeight,u.dilationWidth],p;o==="same"?p=G4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=V4([u.inHeight,u.inWidth],c,p),h=m?o:"valid",g=m?i:Sa(i,c,f),w=(t==="avg"?()=>wa(g,e,s,h):()=>Na(g,e,s,h))(),b=m?w:_a(w,c,d);return l?L(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function V4(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,p)=>(c-s[p]%c)%c),i=n.map((c,p)=>c+a[p]),l=e.map((c,p)=>[o[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function G4(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var Dw=T({pool_:W4});function U4(r,e){let t=v(r,"base","pow"),o=v(e,"exp","pow");[t,o]=Ge(t,o);let n={a:t,b:o};return D.runKernel(wn,n)}var Or=T({pow_:U4});function j4(r,e){let t=v(r,"x","prelu"),o=v(e,"alpha","prelu"),n={x:t,alpha:o};return D.runKernel(_n,n)}var Ta=T({prelu_:j4});function H4(r,e=null,t=!1){let o=v(r,"x","prod");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return D.runKernel(_i,n,s)}var Du=T({prod_:H4});function q4(r,e,t){let o=ct(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<o;s++)n[s]=e();return D.makeTensor(n,r,t)}var K4=T({rand_:q4});var ig=Ac(mN());var Zc=class{constructor(e,t,o,n,s){this.mean=e,this.stdDev=t,this.dtype=o,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=ig.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,o=!1;for(;!o;){let n,s,a;do n=2*this.random()-1,s=2*this.random()-1,a=n*n+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},Lw=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=ig.alea(s.toString()),this.randn=new Zc(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<o)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},zw=class{constructor(e=0,t=1,o,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=ig.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function tU(r,e,t=1,o="float32",n){if(t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new Lw(e,t,o,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var rU=T({randomGamma_:tU});function oU(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error(`Unsupported data type ${o}`);let s=new Zc(e,t,o,!1,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var ag=T({randomNormal_:oU});function nU(r,e=0,t=1,o="float32",n){let s=ve(r,o),a=new zw(e,t,null,n);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var Es=T({randomUniform_:nU});function Jc(r,e,t=1,o="float32"){if(t===0)throw new Error("Cannot have a step of zero");let n={start:r,stop:e,step:t,dtype:o};return D.runKernel(ca,{},n)}function sU(r){let t={input:v(r,"input","real")};return D.runKernel(iu,t)}var il=T({real_:sU});function iU(r){let t={x:v(r,"x","reciprocal")};return D.runKernel(ki,t)}var Gm=T({reciprocal_:iU});function aU(r){let t={x:v(r,"x","relu")};return D.runKernel(kn,t)}var Sr=T({relu_:aU});function lU(r){let t={x:v(r,"x","relu6")};return D.runKernel(Cn,t)}var Ru=T({relu6_:lU});function uU(r,e){let o={x:v(r,"x","reverse")},n={dims:e};return D.runKernel(In,o,n)}var qt=T({reverse_:uU});function cU(r){let e=v(r,"x","reverse");return E(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),qt(e,0)}var pU=T({reverse1d_:cU});function mU(r,e){let t=v(r,"x","reverse");return E(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),qt(t,e)}var fU=T({reverse2d_:mU});function dU(r,e){let t=v(r,"x","reverse");return E(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),qt(t,e)}var hU=T({reverse3d_:dU});function gU(r,e){let t=v(r,"x","reverse");return E(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),qt(t,e)}var xU=T({reverse4d_:gU});function yU(r){let t={x:v(r,"x","round")};return D.runKernel(Nn,t)}var Wm=T({round_:yU});function bU(r){let t={x:v(r,"x","rsqrt")};return D.runKernel(Sn,t)}var Fu=T({rsqrt_:bU});function le(r,e){if((nr(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&nr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return jr(r,[],[],e)}function wU(r){let t={x:v(r,"x","selu")};return D.runKernel(Ci,t)}var Ou=T({selu_:wU});function _U(r,e,t,o,n,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");E(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),E(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),E(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),E(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),E(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];E(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=Is(c,l,o,n,a,s),g=Kr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Um=T({separableConv2d_:_U});async function kU(r,e){let t=v(r,"x","setdiff1d"),o=v(e,"y","setdiff1d");E(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),E(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),E(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c<n.length;c++)a.has(n[c])||i++;let l=new lt([i],t.dtype),u=new lt([i],"int32");for(let c=0,p=0;c<n.length;c++)a.has(n[c])||(l.values[p]=n[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Bw=kU;function vU(r){let t={x:v(r,"x","sign")};return D.runKernel(Ni,t)}var jm=T({sign_:vU});function CU(r){let t={x:v(r,"x","sin")};return D.runKernel(Tn,t)}var Pu=T({sin_:CU});function IU(r){let t={x:v(r,"x","sinh")};return D.runKernel(Ii,t)}var Mu=T({sinh_:IU});function NU(r,e,t){let o=v(r,"x","slice1d");return E(o.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Re(o,[e],[t])}var Hm=T({slice1d_:NU});function SU(r,e,t){let o=v(r,"x","slice2d");return E(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var lg=T({slice2d_:SU});function TU(r,e,t){let o=v(r,"x","slice3d");return E(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var qm=T({slice3d_:TU});function AU(r,e,t){let o=v(r,"x","slice4d");return E(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var Qc=T({slice4d_:AU});function EU(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return D.runKernel($n,o,n)}var Aa=T({softmax_:EU});function DU(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return D.runKernel(Zl,e)}var Ea=T({fft_:DU});function $U(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return D.runKernel(Jl,e)}var Pi=T({ifft_:$U});function RU(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=L(r,[t,e]);o=Pi(n)}else{let n=[t,2*(e-1)],s=L(il(r),[t,e]),a=L(Nu(r),[t,e]),i=qt(Re(s,[0,1],[t,e-2]),1),l=P(qt(Re(a,[0,1],[t,e-2]),1),le(-1)),u=Ye([s,i],1),c=Ye([a,l],1),p=L(ko(u,c),[n[0],n[1]]);o=Pi(p)}if(o=il(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=L(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var Lu=T({irfft_:RU});function FU(r,e,t=0){let n={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return D.runKernel(xs,n,s)}var cr=T({split_:FU});function OU(r,e){E(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Re(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,n=Ye([r,gt(d)],r.shape.length-1),t=e}else n=r;let s=Ce(n),a=L(ko(n,s),[o,t]),i=Ea(a),l=Math.floor(t/2)+1,u=il(i),c=Nu(i),p=cr(u,[l,t-l],u.shape.length-1),m=cr(c,[l,t-l],c.shape.length-1),f=n.shape.slice();return f[n.shape.length-1]=l,L(ko(p[0],m[0]),f)}var Da=T({rfft_:OU});function PU(r){let t={x:v(r,"x","sqrt")};return D.runKernel(En,t)}var xt=T({sqrt_:PU});function MU(r,e){let t=v(r,"a","squaredDifference"),o=v(e,"b","squaredDifference");[t,o]=Ge(t,o),Be(t.shape,o.shape);let n={a:t,b:o},s={};return D.runKernel(Rn,n,s)}var zu=T({squaredDifference_:MU});function LU(r,e){let t=v(r,"x","squeeze");return L(t,hb(t.shape,e).newShape)}var Co=T({squeeze_:LU});function zU(r,e=0){let t=ha(r,"tensors","stack","string_or_numeric");E(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&E(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return D.runKernel(fs,o,n)}var Vt=T({stack_:zU});function BU(r,e=0){let o={x:v(r,"x","step")},n={alpha:e};return D.runKernel(Fo,o,n)}var Ds=T({step_:BU});function VU(r,e,t,o,n=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return D.runKernel(Ti,c,p)}var Km=T({stridedSlice_:VU});function GU(r){let t={x:v(r,"x","tan")};return D.runKernel(Ai,t)}var Xm=T({tan_:GU});function Gt(r,e){Eo(r);let t=Cr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return jr(r,null,t,e)}function Mi(r,e,t){if(Eo(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=Cr(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return jr(r,e,o,t)}function WU(r,e,t){if(Eo(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=Cr(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return jr(r,e,o,t)}function UU(r,e,t){if(Eo(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=Cr(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return jr(r,e,o,t)}function jU(r,e,t){if(Eo(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=Cr(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,jr(r,e,o,t)}function HU(r,e=1,t=!0){let o=v(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,l]=D.runKernel(Ei,s,a);return{values:i,indices:l}}var Ym=T({topk_:HU});function qU(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Zc(e,t,o,!0,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Bu=T({truncatedNormal_:qU});function KU(r,e=0){let t=v(r,"x","unique","string_or_numeric");E(t.rank>0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=D.runKernel(pu,o,n);return{values:s,indices:a}}var ep=T({unique_:KU});function XU(r,e,t){let o=v(r,"x","unsortedSegmentSum"),n=v(e,"segmentIds","unsortedSegmentSum","int32");E(ot(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return D.runKernel(da,s,a)}var Zm=T({unsortedSegmentSum_:XU});function YU(r,e=0){let t=v(r,"x","unstack","string_or_numeric");E(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return D.runKernel(ys,o,n)}var pr=T({unstack_:YU});function Vw(r,e=!0,t,o){return D.makeVariable(r,e,t,o)}function Gw(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let o=ve(r,"int32"),n=ve([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=o.indexToLoc(t[s]),i=s*r.length;n.values.set(a,i)}return n.toTensor()}async function ZU(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),o=Gw(e.shape,t);return r!==e&&e.dispose(),o}var Jm=ZU;async function JU(r,e,t){let o=v(r,"tensor","boolMask"),n=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=n.rank,i=o.shape;E(a>0,()=>"mask cannot be scalar"),Ct(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(o,u),p=L(n,[-1]),m=await Jm(p),f=Co(m,[1]),d=zn(c,f,s);return r!==o&&o.dispose(),e!==n&&n.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var QU=JU;function ej(r,e="euclidean",t=null,o=!1){r=v(r,"x","norm");let n=fN(r,e,t),s=n.shape;if(o){let a=Qt(t,r.shape);s=Bn(n.shape,a)}return L(n,s)}function fN(r,e,t=null){if(r.rank===0)return Nt(r);if(r.rank!==1&&t===null)return fN(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ge(Nt(r),t);if(e===Infinity)return ur(Nt(r),t);if(e===-Infinity)return Oi(Nt(r),t);if(e==="euclidean"||e===2)return xt(ge(Or(Nt(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return ur(ge(Nt(r),t[0]),t[1]-1);if(e===Infinity)return ur(ge(Nt(r),t[1]),t[0]);if(e===-Infinity)return Oi(ge(Nt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return xt(ge(Oe(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var Vu=T({norm_:ej});function tj(r,e,t,o,n=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");Ob(s,a),E(Ur(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=ce(l,i),c=P(ce(a,s),u);if(n){E(o!=null,()=>"When using zeroDebias: true, step is required.");let p=v(o,"step","movingAverage");c=me(c,ce(l,Or(i,p)))}return ee(s,c)}var rj=T({movingAverage_:tj});function oj(r,e,t){let o=v(r,"indices","scatterND","int32"),n=v(e,"updates","scatterND");Yh(n,o,t);let s={indices:o,updates:n},a={shape:t};return D.runKernel(vi,s,a)}var Ww=T({scatterND_:oj});function dN(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function nj(r,e,t,o=0){let n=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(o,"defaultValue","sparseToDense",s.dtype);dN(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},l={outputShape:t};return D.runKernel(uu,i,l)}var Qm=T({sparseToDense_:nj});function sj(r,e){let t=v(e,"indices","gatherND","int32"),n={params:v(r,"x","gatherND"),indices:t};return D.runKernel(ai,n)}var Uw=T({gatherND_:sj});function hN(r,e){if(e==null)return r.shape.slice();if(Ur(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o<r.shape.length;o++)e[o]==null&&r.shape[o]!=null?t.push(r.shape[o]):t.push(e[o]);return t}return e}function ij(r,e,t,o){let n=v(r,"x","dropout");if(E(n.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),E(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?n.clone():n;let s=hN(n,t),a=1-e,i=me(Ss(ee(Es(s,0,1,"float32",o),a)),a);return P(n,i)}var jw=T({dropout_:ij});function Hw(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function ef(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+o-1);n[s]=e-t*Math.cos(a)}return Gt(n,"float32")}async function aj(r,e,t=1){let o=v(r,"predictions","inTopK"),n=v(e,"targets","inTopK");E(o.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),E(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),Ct(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];E(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[l,u]=[a.length/s,s],c=gb("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==o&&o.dispose(),e!==n&&n.dispose(),Rr(c,n.shape,"bool")}var lj=aj;var Gn={};Je(Gn,{conv2d:()=>pj,depthwiseConv2d:()=>hj,matMul:()=>xj});function uj(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),E(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),E(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),E(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];E(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),E(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&E(ot(n),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:i,dy:l},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return D.runKernel(Wl,p,m)}var tp=T({conv2DBackpropFilter_:uj});function Gu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return P(r,Ds(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function Wu(r,e){let t=e,o=kt(r.shape,e.shape);return o.length>0&&(t=ge(t,o)),L(t,r.shape)}function Uu(r,e,t,o){if(e==="linear")return r;if(e==="relu")return Sr(r);if(e==="elu")return Ns(r);if(e==="relu6")return Ru(r);if(e==="prelu")return Ta(r,t);if(e==="leakyrelu")return Ca(r,o);throw new Error(`Unknown fused activation ${e}.`)}var ju=(r,e)=>!(r>0)||e==="linear";function cj({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",ju(D.state.gradientDepth,l)===!1){let k=Kr(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),Uu(k,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),E(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),E(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&E(ot(o),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),E(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),E(_r(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),E(n==="NHWC",()=>`Error in conv2d: got dataFormat of ${n} but only NHWC is currently supported.`);let h=wu(f.shape,m.shape,t,s,o,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused conv2d"));let w=(k,A)=>{let[N,$,F,M]=A,V=Gu(k,F,l);E(Mo(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=Kc($.shape,V,N,t,o),U=tp($,V,N.shape,t,o),H=[W,U];if(M!=null){let q=Wu(M,V);H.push(q)}return H},b={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Xr((A,N,$)=>{let F=D.runKernel(_s,b,_);return $([N,A,F]),d&&(F=L(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:w}})(f,m):Xr((A,N,$,F)=>{let M=D.runKernel(_s,b,_);return F([N,A,M,$]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m,g)}var pj=T({fusedConv2d_:cj});function mj(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return D.runKernel(ql,u,c)}var ug=T({depthwiseConv2dNativeBackpropFilter_:mj});function fj(r,e,t,o,n,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},p=D.runKernel(Kl,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var cg=T({depthwiseConv2dNativeBackpropInput_:fj});function dj({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(ju(D.state.gradientDepth,l)===!1){let k=Is(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),Uu(k,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),E(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),E(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),E(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),E(_r(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&E(ot(o),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${o}.`);let h=wu(f.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let w=(k,A)=>{E(Mo(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,$,F,M]=A,V=Gu(k,F,l),W=cg($.shape,V,N,t,o,s,a),U=ug($,V,N.shape,t,o,s,a);if(M!=null){let H=Wu(g,V);return[W,U,H]}return[W,U]},b={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Xr((A,N,$)=>{let F=D.runKernel(ks,b,_);return $([N,A,F]),d&&(F=L(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:w}})(f,m):Xr((A,N,$,F)=>{let M=D.runKernel(ks,b,_);return F([N,A,M,$]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m,g)}var hj=T({fusedDepthwiseConv2d_:dj});function gj({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(ju(D.state.gradientDepth,s)===!1){let M=We(r,e,t,o);return n!=null&&(M=ee(M,n)),Uu(M,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=Ge(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=o?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ct(d),x=ct(h);E(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),E(Ur(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),E(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let w=l.shape.slice(0,-2).concat([m,f]),b=t?L(l,[g,c,m]):L(l,[g,m,c]),_=o?L(u,[x,f,p]):L(u,[x,p,f]),k;n!=null&&(k=v(n,"bias","fused matMul"),[k]=Ge(k,l),Be(w,k.shape));let A;a!=null&&(A=v(a,"prelu weights","fused matMul"));let N=(M,V)=>{let[W,U,H,q]=V,X=Gu(L(M,H.shape),H,s),oe,Y;if(!t&&!o?(oe=We(X,U,!1,!0),Y=We(W,X,!0,!1)):!t&&o?(oe=We(X,U,!1,!1),Y=We(X,W,!0,!1)):t&&!o?(oe=We(U,X,!1,!0),Y=We(W,X,!1,!1)):(oe=We(U,X,!0,!0),Y=We(X,W,!0,!0)),n!=null){let re=Wu(q,X);return[oe,Y,re]}else return[oe,Y]},$={a:b,b:_,bias:k,preluActivationWeights:A},F={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?Xr((V,W,U)=>{let H=D.runKernel(ws,$,F);return U([V,W,H]),{value:L(H,w),gradFunc:N}})(b,_):Xr((V,W,U,H)=>{let q=D.runKernel(ws,$,F);return H([V,W,q,U]),{value:L(q,w),gradFunc:N}})(b,_,k)}var xj=T({fusedMatMul_:gj});function yj(r){return ef(r,.54,.46)}var gN=T({hammingWindow_:yj});function bj(r){return ef(r,.5,.5)}var pg=T({hannWindow_:bj});function wj(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Re(r,s,e)),s+=t;if(o)for(;s<r.size;){let i=s+e-r.size,l=Ye([Re(r,s,e-i),va([i],n)]);a.push(l),s+=t}return a.length===0?Mi([],[0,e]):L(Ye(a),[a.length,e])}var mg=T({frame_:wj});function _j(r,e,t,o,n=pg){o==null&&(o=Hw(e));let s=mg(r,e,t),a=P(s,n(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(Da(Re(a,[l,0],[1,e]),o));return Ye(i)}var xN=T({stft_:_j});function kj(r,e,t,o,n="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];E(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),E(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),E(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),E(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),E(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),E(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:l},p={method:n,extrapolationValue:s,cropSize:o};return D.runKernel(ei,c,p)}var yN=T({cropAndResize_:kj});function vj(r){let e=v(r,"image","flipLeftRight","float32");E(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return D.runKernel(ii,t,{})}var bN=T({flipLeftRight_:vj});function Cj(r,e,t=0,o=.5){let n=v(r,"image","rotateWithOffset","float32");E(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return D.runKernel(Di,s,a)}var wN=T({rotateWithOffset_:Cj});function Wn(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),E(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),E(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),E(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),E(e.rank===1,()=>"scores must be a 1D tensor"),E(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),E(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function Ij(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=Wn(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return D.runKernel(yi,{boxes:s,scores:a},l)}var _N=T({nonMaxSuppression_:Ij});function kN(r,e,t){let o=Nj(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function Nj(r,e,t){return Tj(r,e,t||Sj)}function Sj(r,e){return r>e?1:r<e?-1:0}function Tj(r,e,t){let o=0,n=r.length,s=0,a=!1;for(;o<n;){s=o+(n-o>>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function Kw(r,e,t,o,n){return qw(r,e,t,o,n,0)}function Xw(r,e,t,o,n,s){return qw(r,e,t,o,n,0,!1,s,!0)}function Yw(r,e,t,o,n,s){return qw(r,e,t,o,n,s,!0)}function qw(r,e,t,o,n,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>n&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(vN);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:w,suppressBeginIndex:b}=g;if(x<n)break;let _=!1;for(let k=p.length-1;k>=b;--k){let A=Aj(r,w,p[k]);if(A>=o){_=!0;break}if(g.score=g.score*Ej(o,c,A),g.score<=n)break}g.suppressBeginIndex=p.length,_||(g.score===x?(p.push(w),m.push(g.score)):g.score>n&&kN(u,g,vN))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function Aj(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),l=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),p=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),w=Math.min(l,m),b=Math.max(x-h,0)*Math.max(w-g,0);return b/(f+d-b)}function Ej(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function vN(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function Dj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=Wn(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=Kw(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),Gt(p,"int32")}var CN=Dj;function $j(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Wn(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},p=D.runKernel(wi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var IN=T({nonMaxSuppressionWithScore_:$j});async function Rj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Wn(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=Yw(c,p,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(m,"int32"),selectedScores:Gt(f)}}var NN=Rj;function Fj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Wn(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=D.runKernel(bi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var SN=T({nonMaxSuppressionPadded_:Fj});async function Oj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Wn(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=Xw(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(d,"int32"),validOutputs:le(h,"int32")}}var TN=Oj;function Pj(r,e,t=!1,o=!1){let n=v(r,"images","resizeBilinear");E(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),E(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),E(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=D.runKernel(vn,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var fg=T({resizeBilinear_:Pj});function Mj(r,e,t=!1,o=!1){let n=v(r,"images","resizeNearestNeighbor");E(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),E(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),E(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),E(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=D.runKernel(pa,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var dg=T({resizeNearestNeighbor_:Mj});function Lj(r,e,t="nearest",o="constant",n=0,s){let a=v(r,"image","transform","float32"),i=v(e,"transforms","transform","float32");E(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),E(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),E(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:o,fillValue:n,outputShape:s};return D.runKernel(cu,l,u)}var AN=T({transform_:Lj});function zj(r,e,t){E(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),E(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let o=v(r,"a","bandPart");E(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(Jc(0,s,1,"int32"),[-1,1]),l=Jc(0,a,1,"int32"),u=ce(i,l),c=hr(zo(u,le(+e,"int32")),io(u,le(-t,"int32"))),p=gt([s,a],o.dtype);return L(Vt(pr(L(o,[-1,s,a])).map(m=>$t(c,m,p))),n)}var EN=T({bandPart_:zj});function Bj(r){let e;if(Array.isArray(r)){e=!1,E(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s<r.length;++s)E(r[s].shape[0]===n,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=cr(r,r.shape[0],0).map(n=>Co(n,[0]));E(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n<r.length;++n)t.push(D.tidy(()=>{let s=o[n];if(n>0)for(let a=0;a<n;++a){let i=P(ge(P(t[a],s)),t[a]);s=ce(s,i)}return me(s,Vu(s,"euclidean"))}));return e?Vt(t,0):t}var DN=T({gramSchmidt_:Bj});function Vj(r,e=!1){if(E(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return $N(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),o=pr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(l=>{let[u,c]=$N(l,e);n.push(u),s.push(c)});let a=L(Vt(n,0),r.shape),i=L(Vt(s,0),r.shape);return[a,i]}}function $N(r,e=!1){return D.tidy(()=>{E(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=Xc(t),s=Oo(r),a=Mi([[1]],[1,1]),i=Oo(a),l=t>=o?o:t;for(let u=0;u<l;++u){let c=s,p=i,m=n;[i,s,n]=D.tidy(()=>{let f=Re(s,[u,u],[t-u,1]),d=Vu(f),h=Re(s,[u,u],[1,1]),g=$t(er(h,0),Mi([[-1]]),Mi([[1]])),x=ce(h,P(g,d)),w=me(f,x);w.shape[0]===1?i=Oo(a):i=Ye([a,Re(w,[1,0],[w.shape[0]-1,w.shape[1]])],0);let b=He(me(We(g,x),d)),_=Re(s,[u,0],[t-u,o]),k=P(b,i),A=je(i);if(u===0)s=ce(_,We(k,We(A,_)));else{let F=ce(_,We(k,We(A,_)));s=Ye([Re(s,[0,0],[u,o]),F],0)}let N=je(k),$=Re(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=ce($,We(We($,i),N));else{let F=ce($,We(We($,i),N));n=Ye([Re(n,[0,0],[t,u]),F],1)}return[i,s,n]}),Te([c,p,m])}return!e&&t>o&&(n=Re(n,[0,0],[t,o]),s=Re(s,[0,0],[o,o])),[n,s]})}var RN=T({qr_:Vj});var Wt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Wt||(Wt={}));function Gj(r,e,t=Wt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=v(e,"weights","computeWeightedLoss"));let s=n==null?o:P(o,n);if(t===Wt.NONE)return s;if(t===Wt.SUM)return ge(s);if(t===Wt.MEAN){if(n==null)return ht(s);{let a=o.size/n.size,i=me(ge(s),ge(n));return a>1?me(i,le(a)):i}}if(t===Wt.SUM_BY_NONZERO_WEIGHTS){if(n==null)return me(ge(s),le(o.size));{let a=P(n,Nr(o.shape)),i=ne(ge(Vn(a,le(0))),"float32");return me(ge(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Tr=T({computeWeightedLoss_:Gj});function Wj(r,e,t,o=Wt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),Ct(n.shape,s.shape,"Error in absoluteDifference: ");let i=Nt(ce(n,s));return Tr(i,a,o)}var FN=T({absoluteDifference_:Wj});function Uj(r,e,t,o,n=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;o!=null&&(i=v(o,"weights","cosineDistance")),Ct(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=ce(l,ge(P(s,a),t,!0));return Tr(u,i,n)}var ON=T({cosineDistance_:Uj});function jj(r,e,t,o=Wt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),Ct(n.shape,s.shape,"Error in hingeLoss: ");let i=le(1);n=ce(P(le(2),n),i);let l=Sr(ce(i,P(n,s)));return Tr(l,a,o)}var PN=T({hingeLoss_:jj});function Hj(r,e,t,o=1,n=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),Ct(s.shape,a.shape,"Error in huberLoss: ");let l=le(o),u=Nt(ce(a,s)),c=As(u,l),p=ce(u,c),m=ee(P(le(.5),Oe(c)),P(l,p));return Tr(m,i,n)}var MN=T({huberLoss_:Hj});function qj(r,e,t,o=1e-7,n=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),Ct(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(o),c=He(P(s,lr(ee(a,u)))),p=P(ce(l,s),lr(ee(ce(l,a),u))),m=ce(c,p);return Tr(m,i,n)}var LN=T({logLoss_:qj});function Kj(r,e,t,o=Wt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),Ct(n.shape,s.shape,"Error in meanSquaredError: ");let i=zu(n,s);return Tr(i,a,o)}var zN=T({meanSquaredError_:Kj});function Xj(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),o=v(e,"logits","sigmoidCrossEntropyWithLogits");Ct(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=Sr(o),s=P(o,t),a=Tu(Zt(He(Nt(o))));return ee(ce(n,s),a)}function Yj(r,e,t,o=0,n=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),Ct(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(.5);s=ee(P(s,ce(c,u)),P(p,u))}let l=Xj(s,a);return Tr(l,i,n)}var BN=T({sigmoidCrossEntropy_:Yj});function Zj(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Xr((n,s,a)=>{let l=Lm(s,[t],!0),u=ce(ne(s,"float32"),l);a([n,u]);let c=He(P(u,n));return{value:ge(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=Bn(f.shape,[t]);return[P(L(f,x),ce(ne(h,"float32"),Zt(g))),P(L(f,x),ce(Zt(g),ne(h,"float32")))]}}})(r,e)}function Jj(r,e,t,o=0,n=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),Ct(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(s.shape[1]);s=ee(P(s,ce(c,u)),me(u,p))}let l=Zj(s,a);return Tr(l,i,n)}var VN=T({softmaxCrossEntropy_:Jj});var Qj={fft:Ea,ifft:Pi,rfft:Da,irfft:Lu},eH={hammingWindow:gN,hannWindow:pg,frame:mg,stft:xN},$s={flipLeftRight:bN,resizeNearestNeighbor:dg,resizeBilinear:fg,rotateWithOffset:wN,cropAndResize:yN,nonMaxSuppression:_N,nonMaxSuppressionAsync:CN,nonMaxSuppressionWithScore:IN,nonMaxSuppressionWithScoreAsync:NN,nonMaxSuppressionPadded:SN,nonMaxSuppressionPaddedAsync:TN,transform:AN},Zw={bandPart:EN,gramSchmidt:DN,qr:RN},tH={absoluteDifference:FN,computeWeightedLoss:Tr,cosineDistance:ON,hingeLoss:PN,huberLoss:MN,logLoss:LN,meanSquaredError:zN,sigmoidCrossEntropy:BN,softmaxCrossEntropy:VN};var Pr=class extends Jh{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Te(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return og(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Pr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var rp=class extends Pr{constructor(e,t,o=null){super();this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=D.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:G(()=>Ce(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:G(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;G(()=>{let c=ee(P(l,this.rho),P(Oe(i),1-this.rho)),p=P(me(xt(ee(u,this.epsilon)),xt(ee(l,this.epsilon))),i),m=ee(P(u,this.rho),P(Oe(p),1-this.rho));l.assign(c),u.assign(m);let f=ee(P(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};rp.className="Adadelta";so(rp);var op=class extends Pr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=D.registeredVariables[o];if(this.accumulatedGrads[n]==null){let l=!1;this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:G(()=>va(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;G(()=>{let l=ee(i,Oe(a));i.assign(l);let u=ee(P(me(a,xt(ee(l,D.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};op.className="Adagrad";so(op);var np=class extends Pr{constructor(e,t,o,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],G(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(o).variable()}),n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);G(()=>{let o=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((s,a)=>{let i=D.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:G(()=>Ce(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:G(()=>Ce(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=ee(P(p,this.beta2),P(Oe(u),1-this.beta2)),d=me(m,o),h=me(f,n);c.assign(m),p.assign(f);let g=ee(P(me(d,ee(xt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),G(()=>{this.accBeta1.assign(Or(this.beta1,this.iterations_+1)),this.accBeta2.assign(Or(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};np.className="Adam";so(np);var sp=class extends Pr{constructor(e,t,o,n=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],G(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);G(()=>{let o=ce(1,this.accBeta1),n=me(-this.learningRate,ee(P(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=D.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ce(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ce(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=P(p,this.beta2),d=Nt(u),h=Yr(f,d);c.assign(m),p.assign(h);let g=ee(P(me(n,o),me(m,ee(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(ee(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sp.className="Adamax";so(sp);var al=class extends Pr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=D.registeredVariables[o];G(()=>{let i=ee(P(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Dt(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};al.className="SGD";so(al);var ip=class extends al{constructor(e,t,o=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=D.registeredVariables[o];if(this.accumulations[n]==null){let l=!1;this.accumulations[n]={originalName:`${o}/momentum`,variable:G(()=>Ce(s).variable(l))}}let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&G(()=>{let l,u=ee(P(this.m,a),i);this.useNesterov?l=ee(P(this.c,ee(i,P(u,this.m))),s):l=ee(P(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ip.className="Momentum";so(ip);var ap=class extends Pr{constructor(e,t=.9,o=0,n=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=D.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:G(()=>Ce(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:G(()=>Ce(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:G(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;G(()=>{let c=ee(P(l,this.decay),P(Oe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[n].variable,m=ee(P(p,this.decay),P(i,1-this.decay)),f=me(P(i,this.learningRate),xt(ce(c,ee(Oe(m),this.epsilon)))),d=ee(P(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ce(s,d);s.assign(h)}else{let p=ee(P(l,this.decay),P(Oe(i),1-this.decay)),m=ee(P(u,this.momentum),me(P(i,this.learningRate),xt(ee(p,this.epsilon))));l.assign(p),u.assign(m);let f=ce(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ap.className="RMSProp";so(ap);var $a=class{static sgd(e){return new al(e)}static momentum(e,t,o=!1){return new ip(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new ap(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new np(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new rp(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new sp(e,t,o,n,s)}static adagrad(e,t=.1){return new op(e,t)}};var ll={sgd:$a.sgd,momentum:$a.momentum,adadelta:$a.adadelta,adagrad:$a.adagrad,rmsprop:$a.rmsprop,adamax:$a.adamax,adam:$a.adam};var rH=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function tf(){return new Promise(r=>rH(()=>r()))}var S={};Je(S,{ERF_A1:()=>fH,ERF_A2:()=>dH,ERF_A3:()=>hH,ERF_A4:()=>gH,ERF_A5:()=>xH,ERF_P:()=>mH,PARALLELIZE_THRESHOLD:()=>hg,SELU_SCALE:()=>Qw,SELU_SCALEALPHA:()=>Jw,applyActivation:()=>Uu,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>i4,assertParamsConsistent:()=>oH,assignToTypedArray:()=>IH,axesAreInnerMostDims:()=>Iw,calculateShapes:()=>RI,combineLocations:()=>ZI,complexWithEvenIndex:()=>kH,complexWithOddIndex:()=>vH,computeConv2DInfo:()=>wu,computeConv3DInfo:()=>XI,computeDefaultPad:()=>uw,computeDilation2DInfo:()=>DG,computeOptimalWindowSize:()=>sH,computeOutAndReduceShapes:()=>Nw,computeOutShape:()=>nH,computePool2DInfo:()=>aw,computePool3DInfo:()=>$G,convertConv2DDataFormat:()=>KI,eitherStridesOrDilationsAreOne:()=>_r,expandShapeToKeepDim:()=>Bn,exponent:()=>SH,exponents:()=>NH,fromStringArrayToUint8:()=>RH,fromUint8ToStringArray:()=>$H,getAxesPermutation:()=>Sw,getBroadcastDims:()=>kW,getComplexWithIndex:()=>CH,getFusedBiasGradient:()=>Wu,getFusedDyActivation:()=>Gu,getImageCenter:()=>iH,getInnerMostAxes:()=>a4,getPermuted:()=>lH,getReductionAxes:()=>kt,getReshaped:()=>aH,getReshapedPermuted:()=>uH,getSliceBeginCoords:()=>cH,getSliceSize:()=>pH,getUndoAxesPermutation:()=>Mm,log:()=>bH,mergeRealAndImagArrays:()=>wH,prepareAndValidate:()=>$I,prepareSplitSize:()=>TH,segment_util:()=>GN,shouldFuse:()=>ju,slice_util:()=>sr,splitRealAndImagArrays:()=>_H,tupleValuesAreOne:()=>Mo,upcastType:()=>dr,validateInput:()=>Yh,validateUpdateShape:()=>Qb,warn:()=>yH});function oH(r,e){let t=r[0].length;r.forEach((n,s)=>{E(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),E(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a<t;a++)E(a===e||n[a]===o[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function nH(r,e){let t=r[0].slice();for(let o=1;o<r.length;o++)t[e]+=r[o][e];return t}var hg=30;function sH(r){return r<=hg?r:$c(r,Math.floor(Math.sqrt(r)))}function iH(r,e,t){let o=t*(typeof r=="number"?r:r[0]),n=e*(typeof r=="number"?r:r[1]);return[o,n]}function aH(r,e,t,o=!0){let n=[];if(o)n=n.concat(e.slice(0)),n.push(r[0]/t),n=n.concat(r.slice(1));else{n=n.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)n=n.concat([r[a+1]/e[a],e[a]]);n=n.concat(r.slice(s+1))}return n}function lH(r,e,t=!0){let o=[];if(t){o.push(e);for(let n=e+1;n<r;++n)n<=2*e?(o.push(n),o.push(n-(e+1))):o.push(n)}else{let n=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function uH(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?o?n.push(e[s-1]*r[s]):n.push(r[s]/e[s-1]):n.push(r[s]);return n}function cH(r,e){let t=[0];for(let o=0;o<e;++o)t.push(r[o][0]);return t}function pH(r,e,t){let o=r.slice(0,1);for(let n=0;n<t;++n)o.push(r[n+1]-e[n][0]-e[n][1]);return o}var Jw=1.7580993408473768,Qw=1.0507009873554805;var mH=.3275911,fH=.254829592,dH=-.284496736,hH=1.421413741,gH=-1.453152027,xH=1.061405429;function yH(...r){j().getBool("IS_TEST")||console.warn(...r)}function bH(...r){j().getBool("IS_TEST")||console.log(...r)}function wH(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let o=0;o<t.length;o+=2)t[o]=r[o/2],t[o+1]=e[o/2];return t}function _H(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let o=0;o<r.length;o+=2)e[o/2]=r[o],t[o/2]=r[o+1];return{real:e,imag:t}}function kH(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=0;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function vH(r){let e=Math.floor(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=2;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function CH(r,e){let t=r[e*2],o=r[e*2+1];return{real:t,imag:o}}function IH(r,e,t,o){r[o*2]=e,r[o*2+1]=t}function NH(r,e){let t=new Float32Array(r/2),o=new Float32Array(r/2);for(let n=0;n<Math.ceil(r/2);n++){let s=(e?2:-2)*Math.PI*(n/r);t[n]=Math.cos(s),o[n]=Math.sin(s)}return{real:t,imag:o}}function SH(r,e,t){let o=(t?2:-2)*Math.PI*(r/e),n=Math.cos(o),s=Math.sin(o);return{real:n,imag:s}}function TH(r,e,t=0){let o=[];if(typeof e=="number")E(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);E(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}E(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}var GN={};Je(GN,{collectGatherOpShapeInfo:()=>DH,computeOutShape:()=>EH,segOpComputeOptimalWindowSize:()=>AH});function AH(r,e){let t=!1,o;for(r<=hg?(o=r,t=!0):o=$c(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=$c(r,o+1);return o}function EH(r,e,t){let o=[],n=r.length;for(let s=0;s<n;s++)s!==e?o.push(r[s]):o.push(t);return o}function DH(r,e,t,o){let n=e.shape.length,s=r.shape.length;if(o!==0&&(o<-n||o>n))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) (
|
|
${s}).`);if(t<o)throw new Error(`batchDims (${o}) must be less than or equal to axis (${t}).`);for(let p=0;p<o;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<o;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=o;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=o;p<n;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function $H(r){try{return r.map(e=>Bc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function RH(r){return r.map(e=>Qa(e))}var Ar={};Je(Ar,{nonMaxSuppressionV3Impl:()=>Kw,nonMaxSuppressionV4Impl:()=>Xw,nonMaxSuppressionV5Impl:()=>Yw,whereImpl:()=>Gw});var gg={kernelName:as,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Ds(ne(t,"float32"),-1))}}};var WN={kernelName:Hs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Oe(ne(t,"float32")),n=xt(ce(le(1),o));return He(me(r,n))}}}};var UN={kernelName:qs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=xt(ce(Oe(ne(t,"float32")),1));return me(r,o)}}}};var jN={kernelName:wo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=kt(t.shape,n);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=kt(o.shape,n);return l.length>0&&(i=ge(i,l)),L(i,o.shape)}}}};var HN={kernelName:Ho,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((o,n)=>{t[n]=()=>r.clone()}),t}};var qN={kernelName:qo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var KN={kernelName:ea,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var XN={kernelName:Ks,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,xt(ce(le(1),Oe(ne(t,"float32")))))}}};var YN={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=xt(ee(le(1),Oe(ne(t,"float32"))));return me(r,o)}}}};var ZN={kernelName:Js,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=ee(Oe(t),Oe(o)),l=P(r,me(o,i)),u=kt(t.shape,n);return u.length>0&&(l=ge(l,u)),L(l,t.shape)},b:()=>{let i=ee(Oe(t),Oe(o)),l=He(P(r,me(t,i))),u=kt(o.shape,n);return u.length>0&&(l=ge(l,u)),L(l,o.shape)}}}};var JN={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(Oe(ne(t,"float32")),1))}}};var QN={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ce(le(1),Oe(ne(t,"float32"))))}}};function FH(r,e,t,o,n,s){let a=v(r,"dy","avgPool3dGrad"),i=v(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),E(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),E(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&E(ot(n),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${n}.`);let p={dy:l,input:u},m={filterSize:t,strides:o,pad:n,dimRoundingMode:s},f=D.runKernel(Bl,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var eS=T({avgPool3dGrad_:FH});var tS={kernelName:ta,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>eS(r,o,n,s,a,i)}}};function OH(r,e,t,o,n){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");E(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),E(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:o,pad:n},m=D.runKernel(zl,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var rS=T({avgPoolGrad_:OH});var oS={kernelName:Ko,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a}=t;return{x:()=>rS(r,o,n,s,a)}}};var nS={kernelName:Xo,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[o,n]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>We(r,n,!1,!0),b:()=>We(o,r,!0,!1)}:!s&&a?{a:()=>We(r,n,!1,!1),b:()=>We(r,o,!0,!1)}:s&&!a?{a:()=>We(n,r,!1,!0),b:()=>We(o,r,!1,!1)}:{a:()=>We(n,r,!0,!0),b:()=>We(r,o,!0,!0)}}};var sS={kernelName:ra,gradFunc:(r,e,t)=>{let{blockShape:o,crops:n}=t;return{x:()=>Sa(r,o,n)}}};var iS={kernelName:Cb,gradFunc:(r,e,t)=>{let o=t,n=o.inputShape,s=o.shape,a=Array.from(s);for(let l=n.length-1;l>=0;l--)if(n[l]===s[l])a[l]=1;else if(n[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ge(r,i,!0)}}};var aS={kernelName:Do,gradFunc:r=>({x:()=>r.clone()})};var lS={kernelName:Yo,gradFunc:r=>({x:()=>Ce(r)})};var uS={kernelName:$o,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{clipValueMin:n,clipValueMax:s}=t;return{x:()=>$t(hr(io(o,n),zo(o,s)),r,Ce(r))}}};var cS={kernelName:oa,inputsToSave:["x"],gradFunc:gg.gradFunc};var pS={kernelName:ls,saveAllInputs:!0,gradFunc:(r,e,t)=>{let o=e.map(l=>l.shape),{axis:n}=t,s=Qt(n,e[0].shape)[0],a=o.map(l=>l[s]);return cr(r,a,s).map(l=>()=>l)}};var mS={kernelName:Zo,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return E(Mo(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Kc(o.shape,r,n,a,i,l),filter:()=>tp(o,r,n.shape,a,i,l)}}};var fS={kernelName:Jo,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Kr(r,n,s,a,i,1,l),filter:()=>tp(r,o,n.shape,s,a,i,l)}}};function PH(r,e,t,o,n){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),E(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),E(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),E(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),E(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),E(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:o,pad:n,filterShape:t};return D.runKernel(Ul,i,l)}var dS=T({conv3DBackpropFilter_:PH});var hS={kernelName:na,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s}=t;E(Mo(o),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);let[a,i]=e;return{x:()=>tg(a.shape,r,i,n,s),filter:()=>dS(a,r,i.shape,n,s)}}};var gS={kernelName:Qo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(He(Pu(ne(t,"float32"))),r)}}};var xS={kernelName:Qs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Mu(ne(t,"float32")),r)}}};var yS={kernelName:en,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n,exclusive:s,reverse:a}=t;return{x:()=>{let i=Sw([n],o.rank),l=Iu(r,n,s,!a);return i!=null&&(l=je(l,i)),l}}}};var bS={kernelName:tn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s,dimRoundingMode:a}=t,i=o==null?[1,1]:o;E(Mo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return E(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),E(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),E(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),E(_r(n,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'.`),a!=null&&E(ot(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>cg(l.shape,r,u,n,s,o,a),filter:()=>ug(l,r,u.shape,n,s,o,a)}}};var wS={kernelName:sa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,s={x:o,filter:n,dy:r},a={x:o,filter:n,dy:r};return{x:()=>D.runKernel(Fc,s,t),filter:()=>D.runKernel(Oc,a,t)}}};var _S={kernelName:ri,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,o={dy:r,y:t};return{x:()=>D.runKernel(Yl,o)}}};var kS={kernelName:oi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(Zt(He(Oe(t))),2/Math.sqrt(Math.PI));return{x:()=>P(r,o)}}};var vS={kernelName:on,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,t)}}};var CS={kernelName:us,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var IS={kernelName:si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Zt(t))}}};var NS={kernelName:nn,gradFunc:r=>({x:()=>Ce(r)})};var SS={kernelName:sn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=kt(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=kt(o.shape,n);l.length>0&&(i=L(ge(i,l),o.shape));let u=Oe(o);return He(me(i,ne(u,"float32")))}}}};var TS={kernelName:an,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:o}=t,[n,s,a,i]=e,l=i==null?le(1):i,u=kt(s.shape,n.shape),c=[];if(s.rank===1){for(let _=0;_<n.shape.length-1;++_)c.push(n.shape[_]);c.push(1)}let p=ce(n,s),m=P(r,l),f=Fu(ee(a,le(o))),d=P(P(P(f,f),f),le(-.5));return{x:()=>s.rank===1?L(P(P(r,Lo(L(f,[1,1,1,s.shape[0]]),c)),l),n.shape):L(P(P(r,f),l),n.shape),mean:()=>{let _=P(P(f,le(-1)),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},variance:()=>{let _=P(P(d,p),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},scale:()=>{let _=P(p,f),k=P(r,_);return s.rank===1&&(k=ge(k,u)),L(k,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=ge(_,u)),L(_,s.shape)}}}};var DS={kernelName:cs,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[o,n]=e,{axis:s}=t,a=Qt(s,o.shape)[0];return{x:()=>{let l=o.shape,u=n.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=AS(0,p),h=AS(p+1,p+1+f),g=ES([c,[u],m]),x=L(r,g),w=L(n,[u]),b=ES([[p],d,h]),_=je(x,b),k=Zm(_,w,o.shape[a]),A=Mm(b);return k=je(k,A),k},indices:()=>n}}};function AS(r,e){let t=[];for(let o=r;o<e;++o)t.push(o);return t}function ES(r){let e=[];for(let t=0;t<r.length;++t)for(let o=0;o<r[t].length;++o)e.push(r[t][o]);return e}var $S={kernelName:ln,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>Ce(t),b:()=>Ce(o)}}};var RS={kernelName:Ro,gradFunc:r=>({x:()=>ne(r,"float32")})};var FS={kernelName:ui,gradFunc:r=>({x:()=>Ce(r)})};var OS={kernelName:ci,gradFunc:r=>({x:()=>Ce(r)})};var PS={kernelName:pi,gradFunc:r=>({x:()=>Ce(r)})};var MS={kernelName:un,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{alpha:n}=t,s=er(o,0);return{x:()=>$t(s,r,P(r,n))}}};var LS={kernelName:di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(t,1))}}};var zS={kernelName:cn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ne(t,"float32"))}}};var BS={kernelName:Ib,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t;return{logits:()=>{let s=!0,a=Zt(o);return ce(r,P(ge(r,n,s),a))}}}};function MH(r,e,t,o=5,n=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:o,bias:n,alpha:s,beta:a};return D.runKernel(tu,i,l)}var VS=T({localResponseNormalizationBackprop_:MH});var GS={kernelName:aa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>VS(o,n,r,s,a,i,l)}}};function xg(r,e,t,o){return e.rank<t.rank&&(e=L(e,Bn(e.shape,o))),r.rank<t.rank&&(r=L(r,Bn(r.shape,o))),{x:()=>P(r,ne(vo(t,e),r.dtype))}}var e_={kernelName:pn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{reductionIndices:n}=o,s=e[0],a=e[1],i=Qt(n,s.shape),l=xg(r,a,s,i);return{x:()=>l.x()}}};var WS={kernelName:mn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(io(t,o),"float32")),b:()=>P(r,ne(Su(t,o),"float32"))}}};function LH(r,e,t,o,n,s,a){let i=v(r,"dy","maxPool3dGrad"),l=v(e,"input","maxPool3dGrad"),u=v(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),E(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),E(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),E(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&E(ot(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:o,strides:n,pad:s,dimRoundingMode:a},g=D.runKernel(ou,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var US=T({maxPool3dGrad_:LH});var jS={kernelName:la,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>US(r,o,n,s,a,i,l)}}};function zH(r,e,t,o,n,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");E(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),E(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),E(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&E(ot(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:o,strides:n,pad:s,dimRoundingMode:a};return D.runKernel(ru,c,p)}var HS=T({maxPoolGrad_:zH});var qS={kernelName:fn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>HS(r,o,n,s,a,i)}}};var KS={kernelName:dn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t,s=Qt(n,o.shape),i=Nw(o.shape,s)[1],l=ct(i);return{x:()=>{let c=o.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return me(P(p,Nr(o.shape,"float32")),l)}}}};var XS={kernelName:hn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{axis:n}=o,[s,a]=e,i=Qt(n,s.shape),l=xg(r,a,s,i);return{x:()=>l.x()}}};var YS={kernelName:gn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(zo(t,o),"float32")),b:()=>P(r,ne(er(t,o),"float32"))}}};var ZS={kernelName:ua,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var JS={kernelName:gi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=kt(t.shape,n);return i.length>0?L(ge(r,i),t.shape):r},b:()=>{let i=P(r,He(Ss(me(t,o)))),l=kt(o.shape,n);return l.length>0?L(ge(i,l),o.shape):i}}}};var QS={kernelName:xn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=P(r,ne(o,"float32")),l=kt(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=kt(o.shape,n);return l.length>0?L(ge(i,l),o.shape):i}}}};var eT={kernelName:ps,gradFunc:r=>({x:()=>He(r)})};var tT={kernelName:yn,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>gt(t.shape,"float32")}}};var rT={kernelName:ms,gradFunc:r=>({x:()=>Ce(r)})};var oT={kernelName:fs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:o}=t;return pr(r,o).map(s=>()=>s)}};var t_={kernelName:bn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var nT={kernelName:wn,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,o,n]=e,s=t,a=o,i=Be(s.shape,a.shape);return{a:()=>{let c=ne(a,"float32"),p=P(r,P(c,Or(s,ce(c,le(1))))),m=kt(s.shape,i);return m.length>0&&(p=ge(p,m)),L(p,s.shape)},b:()=>{let c=er(s,0),p=$t(c,lr(s),Ce(s)),m=P(r,P(n,p)),f=kt(a.shape,i);return f.length>0&&(m=ge(m,f)),L(m,a.shape)}}}};var sT={kernelName:_n,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,o]=e,n=er(t,0);return{x:()=>$t(n,r,P(r,o)),alpha:()=>{let s=$t(n,Ce(r),P(r,t)),a=kt(o.shape,r.shape);return a.length>0&&(s=ge(s,a)),L(s,o.shape)}}}};var iT={kernelName:rn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=kt(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=kt(o.shape,n);l.length>0&&(i=L(ge(i,l),o.shape));let u=Oe(o);return He(me(i,ne(u,"float32")))}}}};var aT={kernelName:ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,He(Oe(t)))}}};var lT={kernelName:Cn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(zo(t,6),Ds(t));return{x:()=>P(r,ne(o,"float32"))}}};var uT={kernelName:kn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ne(Ds(t),"float32"))}}};var cT={kernelName:ds,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var pT={kernelName:vn,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>D.runKernel(lu,n,t)}}};var mT={kernelName:pa,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>D.runKernel(au,n,t)}}};var fT={kernelName:In,gradFunc:(r,e,t)=>{let{dims:o}=t,n=Qt(o,r.shape);return{x:()=>qt(r,n)}}};var dT={kernelName:Nn,gradFunc:r=>({x:()=>Ce(r)})};var hT={kernelName:Sn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>He(me(r,P(Or(t,1.5),2)))}}};var gT={kernelName:hs,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>ne(Ce(t),"float32"),t:()=>P(r,ne(t,r.dtype)),e:()=>P(r,ne(Ia(t),r.dtype))}}};var xT={kernelName:Ci,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=er(t,le(0)),n=le(Jw),s=le(Qw),a=P(r,s),i=P(P(r,n),Zt(ne(t,"float32")));return $t(o,a,i)}}}};var yT={kernelName:An,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(t,ce(le(1),t)))}}};var bT={kernelName:Ni,gradFunc:r=>({x:()=>Ce(r)})};var wT={kernelName:Tn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ka(ne(t,"float32")),r)}}};var _T={kernelName:Ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Cu(ne(t,"float32")),r)}}};var kT={kernelName:gs,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{begin:n,size:s}=t,a=o.shape,[i,l]=ew(o,n,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Fr(r,u)}}};var vT={kernelName:$n,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{dim:n}=t,s=!0,a=P(r,o);return{logits:()=>ce(a,P(ge(a,[n],s),o))}}};var CT={kernelName:Si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,qr(t))}}};var r_={kernelName:ma,gradFunc:(r,e,t)=>{let{blockShape:o,paddings:n}=t;return{x:()=>_a(r,o,n)}}};var o_={kernelName:xs,gradFunc:(r,e,t)=>{let{axis:o}=t;return{x:()=>Ye(r,o)}}};var IT={kernelName:En,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,P(xt(ne(t,"float32")),2))}}};var NT={kernelName:fa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(ne(t,"float32"),2))}}};var ST={kernelName:Rn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=le(2);return{a:()=>P(r,P(n,ce(t,o))),b:()=>P(r,P(n,ce(o,t)))}}};var TT={kernelName:Fo,gradFunc:r=>({x:()=>Ce(r)})};var AT={kernelName:Fn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=kt(t.shape,n);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=kt(o.shape,n);return l.length>0&&(i=ge(i,l)),L(He(i),o.shape)}}}};var ET={kernelName:Dn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,n=o.shape.slice(),{axis:s}=t;Qt(s,o.shape).forEach(u=>{n[u]=1});let i=L(r,n),l=P(i,Nr(o.shape,"float32"));return{x:()=>l}}};var DT={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,Oe(ka(t)))}}};var $T={kernelName:On,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ce(le(1),Oe(t)),r)}}};var RT={kernelName:_o,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{reps:n}=t;return{x:()=>{let a=Ce(o);if(o.rank===1)for(let i=0;i<n[0];++i)a=ee(a,Re(r,[i*o.shape[0]],[o.shape[0]]));else if(o.rank===2)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1]],[o.shape[0],o.shape[1]]));else if(o.rank===3)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2]],[o.shape[0],o.shape[1],o.shape[2]]));else if(o.rank===4)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)for(let c=0;c<n[3];++c)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2],c*o.shape[3]],[o.shape[0],o.shape[1],o.shape[2],o.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${o.rank} tensors yet.`);return a}}}};var FT={kernelName:Pn,gradFunc:(r,e,t)=>{let o=t,{perm:n}=o,s=Mm(n);return{x:()=>je(r,s)}}};var OT={kernelName:ys,gradFunc:(r,e,t)=>{let o=t,{axis:n}=o;return{value:()=>Vt(r,n)}}};var PT={kernelName:da,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>BH(r,t)}}};function BH(r,e){let t=Yr(e,Ce(e)),o=zn(r,t),n=io(e,le(0,"int32")),s=o.rank-n.rank;for(let i=0;i<s;++i)n=ar(n,i+1);n=hr(n,Nr(o.shape,"bool"));let a=Ce(o);return $t(n,o,a)}var MT={kernelName:bs,gradFunc:r=>({x:()=>Ce(r)})};var VH=[gg,WN,UN,jN,HN,qN,KN,XN,YN,ZN,JN,QN,tS,oS,nS,sS,iS,aS,lS,uS,cS,pS,fS,mS,hS,gS,xS,yS,bS,wS,iT,_S,kS,vS,CS,IS,SS,NS,TS,DS,$S,RS,FS,OS,PS,MS,LS,zS,BS,GS,e_,e_,WS,jS,qS,KS,XS,YS,ZS,JS,QS,eT,tT,rT,oT,t_,t_,nT,sT,aT,lT,uT,cT,pT,mT,fT,dT,hT,gT,xT,yT,bT,wT,_T,kT,vT,CT,r_,r_,o_,o_,IT,ST,NT,TT,AT,ET,DT,$T,RT,FT,OT,PT,MT];for(let r of VH)Sb(r);O().prototype.abs=function(){return this.throwIfDisposed(),Nt(this)};O().prototype.acos=function(){return this.throwIfDisposed(),wm(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),_m(this)};O().prototype.add=function(r){return this.throwIfDisposed(),ee(this,r)};O().prototype.all=function(r,e){return this.throwIfDisposed(),bu(this,r,e)};O().prototype.any=function(r,e){return this.throwIfDisposed(),ol(this,r,e)};O().prototype.argMax=function(r){return this.throwIfDisposed(),nl(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),km(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),E(this.size===1,()=>"The array must have only 1 element."),L(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),ne(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};O().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};O().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};O().prototype.as4D=function(r,e,t,o){return this.throwIfDisposed(),L(this,[r,e,t,o])};O().prototype.as5D=function(r,e,t,o,n){return this.throwIfDisposed(),L(this,[r,e,t,o,n])};O().prototype.asin=function(){return this.throwIfDisposed(),vm(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),Cm(this)};O().prototype.atan=function(){return this.throwIfDisposed(),Im(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),Nm(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),Sm(this)};O().prototype.avgPool=function(r,e,t,o){return this.throwIfDisposed(),wa(this,r,e,t,o)};O().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),_a(this,r,e)};O().prototype.batchNorm=function(r,e,t,o,n){return this.throwIfDisposed(),Ln(this,r,e,t,o,n)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),sl(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),ne(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),Am(this)};O().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),ir(this,r,e)};O().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Ye([this,...r],e)};O().prototype.conv1d=function(r,e,t,o,n,s){return this.throwIfDisposed(),ku(this,r,e,t,o,n,s)};O().prototype.conv2dTranspose=function(r,e,t,o,n){return this.throwIfDisposed(),vu(this,r,e,t,o,n)};O().prototype.conv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Kr(this,r,e,t,o,n,s)};O().prototype.cos=function(){return this.throwIfDisposed(),ka(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),Cu(this)};O().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Iu(this,r,e,t)};O().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Dm(this,r,e)};O().prototype.depthwiseConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Is(this,r,e,t,o,n,s)};O().prototype.dilation2d=function(r,e,t,o,n){return this.throwIfDisposed(),$m(this,r,e,t,o,n)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),Rm(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),me(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),bw(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),Ns(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),vo(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),Fm(this)};O().prototype.exp=function(){return this.throwIfDisposed(),Zt(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),ar(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),Om(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Ea(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),Ss(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),yu(this,r)};O().prototype.gather=function(r,e){return this.throwIfDisposed(),zn(this,r,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),io(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),er(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),Pi(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),Lu(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),ww(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),_w(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),kw(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Ca(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),zo(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),Su(this,r)};O().prototype.localResponseNormalization=function(r,e,t,o){return this.throwIfDisposed(),Pm(this,r,e,t,o)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),Cw(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),Au(this,r)};O().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Lm(this,r,e)};O().prototype.log=function(){return this.throwIfDisposed(),lr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),Tu(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),hr(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Ia(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),Eu(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Tw(this,r)};O().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),We(this,r,e,t)};O().prototype.maxPool=function(r,e,t,o){return this.throwIfDisposed(),Na(this,r,e,t,o)};O().prototype.max=function(r,e){return this.throwIfDisposed(),ur(this,r,e)};O().prototype.maximum=function(r){return this.throwIfDisposed(),Yr(this,r)};O().prototype.mean=function(r,e){return this.throwIfDisposed(),ht(this,r,e)};O().prototype.min=function(r,e){return this.throwIfDisposed(),Oi(this,r,e)};O().prototype.minimum=function(r){return this.throwIfDisposed(),As(this,r)};O().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),Bm(this,r,e)};O().prototype.mod=function(r){return this.throwIfDisposed(),Vm(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),P(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),He(this)};O().prototype.norm=function(r,e,t){return this.throwIfDisposed(),Vu(this,r,e,t)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),Vn(this,r)};O().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),Cs(this,r,e,t)};O().prototype.onesLike=function(){return this.throwIfDisposed(),tr(this)};O().prototype.pad=function(r,e){return this.throwIfDisposed(),Fr(this,r,e)};O().prototype.pool=function(r,e,t,o,n){return this.throwIfDisposed(),Dw(this,r,e,t,o,n)};O().prototype.pow=function(r){return this.throwIfDisposed(),Or(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),Ta(this,r)};O().prototype.prod=function(r,e){return this.throwIfDisposed(),Du(this,r,e)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),Gm(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Sr(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),Ru(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};O().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),fg(this,r,e,t)};O().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),dg(this,r,e,t)};O().prototype.reverse=function(r){return this.throwIfDisposed(),qt(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Da(this)};O().prototype.round=function(){return this.throwIfDisposed(),Wm(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),Fu(this)};O().prototype.selu=function(){return this.throwIfDisposed(),Ou(this)};O().prototype.separableConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Um(this,r,e,t,o,n,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),qr(this)};O().prototype.sign=function(){return this.throwIfDisposed(),jm(this)};O().prototype.sin=function(){return this.throwIfDisposed(),Pu(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),Mu(this)};O().prototype.slice=function(r,e){return this.throwIfDisposed(),Re(this,r,e)};O().prototype.softmax=function(r){return this.throwIfDisposed(),Aa(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),Ts(this)};O().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),Sa(this,r,e)};O().prototype.split=function(r,e){return this.throwIfDisposed(),cr(this,r,e)};O().prototype.sqrt=function(){return this.throwIfDisposed(),xt(this)};O().prototype.square=function(){return this.throwIfDisposed(),Oe(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),zu(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Co(this,r)};O().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Vt(t,e)};O().prototype.step=function(r){return this.throwIfDisposed(),Ds(this,r)};O().prototype.stridedSlice=function(r,e,t,o,n,s,a,i){return this.throwIfDisposed(),Km(this,r,e,t,o,n,s,a,i)};O().prototype.sub=function(r){return this.throwIfDisposed(),ce(this,r)};O().prototype.sum=function(r,e){return this.throwIfDisposed(),ge(this,r,e)};O().prototype.tan=function(){return this.throwIfDisposed(),Xm(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),Fi(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),Lo(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),ne(this,"bool")};O().prototype.toFloat=function(){return this.throwIfDisposed(),ne(this,"float32")};O().prototype.toInt=function(){return this.throwIfDisposed(),ne(this,"int32")};O().prototype.topk=function(r,e){return this.throwIfDisposed(),Ym(this,r,e)};O().prototype.transpose=function(r){return this.throwIfDisposed(),je(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),ep(this,r)};O().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),Zm(this,r,e)};O().prototype.unstack=function(r){return this.throwIfDisposed(),pr(this,r)};O().prototype.where=function(r,e){return this.throwIfDisposed(),$t(r,this,e)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),Ce(this)};var l_={};Je(l_,{maxNorm:()=>WH,minMaxNorm:()=>HH,nonNeg:()=>jH,unitNorm:()=>UH});var n_;function Jt(){return n_==null&&(n_=sw().epsilon()),n_}function Zr(){return"channelsLast"}var Io=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Io.prototype)}},Mr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Mr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Ne=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ne.prototype)}},rf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,rf.prototype)}};function Un(r,e){if(Array.isArray(r)){let t=[];for(let o=0;o<e;o++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Bo(r,e){if(!r)throw new rf(e)}function s_(r,e){let t=0;for(let o of r)o===e&&t++;return t}function gr(r){return r.length===1?r[0]:r}function yt(r){return Array.isArray(r)?r:[r]}function jn(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ra(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var Hn={};function lp(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function i_(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>i_(e));else{let e=Object.keys(r);for(let t of e){let o=r[t];o!=null&&typeof o=="object"&&(!Array.isArray(o)&&o.type==="ndarray"&&typeof o.value=="number"?r[t]=o.value:i_(o))}}}function Li(r,e={},t={},o="object",n=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in Hn)a=Hn[s];else if(a=e[s],a==null)throw new z(`Unknown ${o}: ${r}. This may be due to one of the following reasons:
|
|
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${o}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in Hn?[i,l]=Hn.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${o}: ${a}. This may be due to one of the following reasons:
|
|
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(Hn))u[f]=Hn[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},Hn);for(let f of Object.keys(t))Hn[f]=t[f];i_(s.config);let m=l(i,s.config,t,n);return Hn=Object.assign({},p),m}else{let u=Object.assign({},Hn);for(let p of Object.keys(t))Hn[p]=t[p];let c=new i(s.config);return Hn=Object.assign({},u),c}}}function GH(r,e){return r<e?-1:r>e?1:0}function of(r,e){return-1*GH(r,e)}function qn(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function LT(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function zi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function yg(r,e,t=0,o=Infinity){return Bo(t>=0),Bo(o>=t),Array.isArray(r)&&r.length>=t&&r.length<=o&&r.every(n=>typeof n===e)}function Ut(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,o)=>Ut(t,`element ${o+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${zT(r)}.`)}function zT(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>zT(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function BT(r,e){let t=y.now(),o;return(...s)=>{let a=y.now();return a-t<e||(t=a,o=r(...s)),o}}function bg(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function a_(r,e){return G(()=>xt(ge(P(r,r),e,!0)))}var up=class extends Q.Serializable{getConfig(){return{}}},nf=class extends up{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=a_(e,this.axis),o=ir(t,0,this.maxValue);return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};nf.className="MaxNorm";Q.registerClass(nf);var sf=class extends up{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>me(e,ee(Jt(),a_(e,this.axis))))}getConfig(){return{axis:this.axis}}};sf.className="UnitNorm";Q.registerClass(sf);var af=class extends up{apply(e){return Sr(e)}};af.className="NonNeg";Q.registerClass(af);var lf=class extends up{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=a_(e,this.axis),o=ee(P(this.rate,ir(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};lf.className="MinMaxNorm";Q.registerClass(lf);var VT={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ft(r){return lp(r)}function GT(r,e={}){return Li(r,Q.SerializationMap.getMap().classNameMap,e,"constraint")}function Ot(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in VT?VT[r]:r,config:{}};return GT(t)}else return r instanceof up?r:GT(r)}function WH(r){return new nf(r)}function UH(r){return new sf(r)}function jH(){return new af}function HH(r){return new lf(r)}var f_={};Je(f_,{constant:()=>eq,glorotNormal:()=>aq,glorotUniform:()=>iq,heNormal:()=>lq,heUniform:()=>uq,identity:()=>nq,leCunNormal:()=>cq,leCunUniform:()=>pq,ones:()=>QH,orthogonal:()=>mq,randomNormal:()=>rq,randomUniform:()=>tq,truncatedNormal:()=>oq,varianceScaling:()=>sq,zeros:()=>JH});var WT=["channelsFirst","channelsLast"],UT=["nearest","bilinear"],jT=["valid","same","causal"],HT=["max","avg"],qT=["sum","mul","concat","ave"];var cp=new Map;function Rt(r){zi(WT,"DataFormat",r)}function KT(r){zi(UT,"InterpolationFormat",r)}function Jr(r){zi(jT,"PaddingMode",r)}function u_(r){zi(HT,"PoolMode",r)}var uf=[],XT="/";function Rs(r,e){uf.push(r);try{let t=e();return uf.pop(),t}catch(t){throw uf.pop(),t}}function qH(){return uf.length===0?"":uf.join(XT)+XT}function wg(r){if(!YT(r))throw new Error("Not a valid tensor name: '"+r+"'");return qH()+r}function _g(r){if(!YT(r))throw new Error("Not a valid tensor name: '"+r+"'");cp.has(r)||cp.set(r,0);let e=cp.get(r);if(cp.set(r,cp.get(r)+1),e>0){let t=`${r}_${e}`;return cp.set(t,1),t}else return r}var KH=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function YT(r){return!!r.match(KH)}function ZT(r){return r===parseInt(r.toString(),10)}function Kn(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let o=1;for(let n=e;n<t;++n)o*=r[n];return o}function JT(r){return r=Array.isArray(r)?new Float32Array(r):r,Gt(r)}function Hu(r){return Oi(JT(r)).dataSync()[0]}function Fs(r){return ur(JT(r)).dataSync()[0]}function Lr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let o=r;o<e;++o)t.push(o);return t}function Fa(r,e){return r.asType(e)}function Oa(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function QT(r,e){return G(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Oa(r,1);return kg(t,[1,e,1])})}function e1(r){let e=[Kn(r.shape)];return r.reshape(e)}function t1(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],Kn(r.shape,1)];return r.reshape(e)}function Pa(r,e,t){return G(()=>{switch(r.rank){case 1:return Hm(r,e,t);case 2:return lg(r,[e,0],[t,r.shape[1]]);case 3:return qm(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return Qc(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Re(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Re(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function c_(r,e,t){return G(()=>{switch(r.rank){case 1:return Hm(r,e,t);case 2:return lg(r,[0,e],[r.shape[0],t]);case 3:return qm(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return Qc(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function cf(r,e,t,o){return G(()=>{switch(r.rank){case 1:return Hm(r,e,t);case 2:switch(o){case 1:return Pa(r,e,t);case 2:return c_(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 3:switch(o){case 1:return Pa(r,e,t);case 2:return qm(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return c_(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 4:switch(o){case 1:return Pa(r,e,t);case 2:return Qc(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return Qc(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return c_(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function pp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Ye(r,e)}function p_(r,e){switch(r.rank){case 1:return dw([r,e]);case 2:return hw([r,e],0);case 3:return gw([r,e],0);case 4:return xw([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function kg(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Lo(r,e)}function mp(r,e=0,t=1,o,n){return ag(r,e,t,o,n)}function Xn(r,e,t,o){if(r.rank<2||e.rank<2)throw new Ne(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let n=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(n!==s)throw new Ne(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let n=!1,s=!1;return Gn.matMul({a:r,b:e,transposeA:n,transposeB:s,bias:o?m_(r.rank,o,Zr()):null,activation:t})}else{let n=r.shape.slice(),s=n.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...n,...u],m=!1,f=!1;return Gn.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:o?m_(r.rank,o,Zr()):null,activation:t}).reshape(p)}}function vg(r,e,t){return G(()=>(Array.isArray(e)?e=Gt(e,"int32"):e=e.toInt(),zn(r,e,t)))}function qu(r){return P(r,r)}function m_(r,e,t){let o=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1,1]):e.reshape([1,o[3],o[0],o[1],o[2]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===4){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1]):e.reshape([1,o[2],o[0],o[1]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===3){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1]):e.reshape([1,o[1],o[0]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,o[0]]):e.reshape([1].concat(o))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function ao(r,e,t){return G(()=>(t==null&&(t=Zr()),Rt(t),r.add(m_(r.rank,e,t))))}function r1(r,e=1){if(e!==1)throw new Ne(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return Ns(r)}function o1(r){return G(()=>me(r,Nt(r).add(1)))}function Cg(r,e,t,o){return G(()=>jw(r,e,t,o))}function n1(r){return G(()=>{let e=ee(.5,P(.2,r));return ir(e,0,1)})}function ul(r,e,t=!1){return t?r():e()}var s1=["fanIn","fanOut","fanAvg"],i1=["normal","uniform","truncatedNormal"];function XH(r){zi(s1,"FanMode",r)}function YH(r){zi(i1,"Distribution",r)}var lo=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},pf=class extends lo{apply(e,t){return gt(e,t)}};pf.className="Zeros";Q.registerClass(pf);var Ku=class extends lo{apply(e,t){return Nr(e,t)}};Ku.className="Ones";Q.registerClass(Ku);var mf=class extends lo{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return G(()=>P(le(this.value),Nr(e,t)))}getConfig(){return{value:this.value}}};mf.className="Constant";Q.registerClass(mf);var ff=class extends lo{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Es(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ff.className="RandomUniform";Q.registerClass(ff);var df=class extends lo{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};df.className="RandomNormal";Q.registerClass(df);var hf=class extends lo{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`truncatedNormal does not support dType ${t}.`);return Bu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};hf.className="TruncatedNormal";Q.registerClass(hf);var gf=class extends lo{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return G(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Xc(e[0]))})}getConfig(){return{gain:this.gain}}};gf.className="Identity";Q.registerClass(gf);function ZH(r,e="channelsLast"){let t,o;if(Rt(e),r.length===2)t=r[0],o=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let n=Kn(r,2);t=r[1]*n,o=r[0]*n}else if(e==="channelsLast"){let n=Kn(r,0,r.length-2);t=r[r.length-2]*n,o=r[r.length-1]*n}}else{let n=Kn(r);t=Math.sqrt(n),o=Math.sqrt(n)}return[t,o]}var zr=class extends lo{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,XH(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,YH(this.distribution),this.seed=e.seed}apply(e,t){let o=ZH(e),n=o[0],s=o[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,n):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(n+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`${this.getClassName()} does not support dType ${t}.`);return Bu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Es(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};zr.className="VarianceScaling";Q.registerClass(zr);var fp=class extends zr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zr.className}};fp.className="GlorotUniform";Q.registerClass(fp);var dp=class extends zr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zr.className}};dp.className="GlorotNormal";Q.registerClass(dp);var hp=class extends zr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zr.className}};hp.className="HeNormal";Q.registerClass(hp);var gp=class extends zr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zr.className}};gp.className="HeUniform";Q.registerClass(gp);var xp=class extends zr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zr.className}};xp.className="LeCunNormal";Q.registerClass(xp);var yp=class extends zr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zr.className}};yp.className="LeCunNormal";Q.registerClass(yp);var xf=class extends lo{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ne("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return G(()=>{if(e.length<2)throw new Ne("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let o=e[0]>e[1]?[e[1],e[0]]:e,n=mp(o,0,1,"float32"),s=Zw.gramSchmidt(n);return e[0]>e[1]&&(s=s.transpose()),P(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};xf.className="Orthogonal";Q.registerClass(xf);var a1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function l1(r,e={}){return Li(r,Q.SerializationMap.getMap().classNameMap,e,"initializer")}function vt(r){return lp(r)}function pt(r){if(typeof r=="string"){let e=r in a1?a1[r]:r;if(e==="GlorotNormal")return new dp;if(e==="GlorotUniform")return new fp;if(e==="HeNormal")return new hp;if(e==="HeUniform")return new gp;if(e==="LeCunNormal")return new xp;if(e==="LeCunUniform")return new yp;{let t={};return t.className=e,t.config={},l1(t)}}else return r instanceof lo?r:l1(r)}function JH(){return new pf}function QH(){return new Ku}function eq(r){return new mf(r)}function tq(r){return new ff(r)}function rq(r){return new df(r)}function oq(r){return new hf(r)}function nq(r){return new gf(r)}function sq(r){return new zr(r)}function iq(r){return new fp(r)}function aq(r){return new dp(r)}function lq(r){return new hp(r)}function uq(r){return new gp(r)}function cq(r){return new xp(r)}function pq(r){return new yp(r)}function mq(r){return new xf(r)}var X_={};Je(X_,{Layer:()=>Pe,RNN:()=>mo,RNNCell:()=>yl,activation:()=>EK,add:()=>zK,alphaDropout:()=>k6,average:()=>BK,averagePooling1d:()=>Y_,averagePooling2d:()=>Z_,averagePooling3d:()=>J_,avgPool1d:()=>XK,avgPool2d:()=>ZK,avgPool3d:()=>QK,avgPooling1d:()=>YK,avgPooling2d:()=>JK,avgPooling3d:()=>e6,batchNormalization:()=>HK,bidirectional:()=>d6,concatenate:()=>VK,conv1d:()=>kK,conv2d:()=>vK,conv2dTranspose:()=>CK,conv3d:()=>IK,convLstm2d:()=>c6,convLstm2dCell:()=>p6,cropping2D:()=>SK,dense:()=>DK,depthwiseConv2d:()=>AK,dot:()=>jK,dropout:()=>$K,elu:()=>gK,embedding:()=>LK,flatten:()=>FK,gaussianDropout:()=>_6,gaussianNoise:()=>w6,globalAveragePooling1d:()=>t6,globalAveragePooling2d:()=>r6,globalMaxPool1d:()=>g6,globalMaxPool2d:()=>x6,globalMaxPooling1d:()=>W1,globalMaxPooling2d:()=>U1,gru:()=>n6,gruCell:()=>s6,input:()=>Hg,inputLayer:()=>hK,layerNormalization:()=>qK,leakyReLU:()=>yK,lstm:()=>i6,lstmCell:()=>a6,masking:()=>v6,maxPool1d:()=>y6,maxPool2d:()=>b6,maxPooling1d:()=>j1,maxPooling2d:()=>H1,maxPooling3d:()=>o6,maximum:()=>GK,minimum:()=>WK,multiply:()=>UK,permute:()=>MK,prelu:()=>bK,reLU:()=>xK,repeatVector:()=>OK,reshape:()=>PK,rnn:()=>m6,separableConv2d:()=>NK,simpleRNN:()=>l6,simpleRNNCell:()=>u6,softmax:()=>wK,spatialDropout1d:()=>RK,stackedRNNCells:()=>f6,thresholdedReLU:()=>_K,timeDistributed:()=>h6,upSampling2d:()=>TK,zeroPadding2d:()=>KK});var fq=0;function Ig(){return fq++}var Ng={};function cl(r=""){return r in Ng||(Ng[r]=0),Ng[r]+=1,r+Ng[r].toString()}function Sg(r){return Array.isArray(r)&&Array.isArray(r[0])}function bp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Fe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Ze(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function wp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((o,n)=>o*n);return e}var u1="Variable",yf=class{constructor(e,t="float32",o=u1,n=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ig(),o=o==null?u1:o,this.originalName=wg(o),this.name=_g(this.originalName),this.trainable_=n,this.constraint=s,this.val=Vw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),dq(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function dq(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function bf(r){return r.map(e=>e.read())}function _p(r){r.forEach(e=>{e[0].write(e[1])})}var St=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Br=class{constructor(e,t,o,n,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=o,this.inputs=n,this.callArgs=s,this.outputTensorIndex=i,this.id=Ig(),a!=null&&(this.originalName=wg(a),this.name=_g(this.originalName)),this.rank=t.length}},hq=0,pl=class{constructor(e,t){this.callArgs=t,this.id=hq++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let o of e.inboundLayers)o!=null&&o.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},gq=0,Pe=class extends Q.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=gq++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let o=this.getClassName();t=jn(o)+"_"+cl(o)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let o;if(e.batchInputShape!=null)o=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),o=[s].concat(e.inputShape)}this.batchInputShape=o;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Mr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return gr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return gr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Io(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Io(`Layer ${this.name} is not connected, no input to return.`);return gr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Io(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Io(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return gr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let o=0;o<e.length;o++){let n=e[o],s=t[o];if(s==null)continue;let a=n.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&n.dtype!==s.dtype)throw new z(`Input ${o} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${n.dtype}.`);if(s.axes){let i=n.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=n.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let o=yt(e),n=!0;for(let a of o)if(!(a instanceof Br)){n=!1;break}let s=!0;for(let a of o)if(a instanceof Br){s=!1;break}if(n===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Rs(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of yt(e))a.push(i.shape);this.build(gr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=yt(a),l=[];for(let u of i)o.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=gr(l),this.activityRegularizer!=null)throw new Ne("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=xq(e),i=this.computeOutputShape(a),l,u=yq(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new Br(u,c,this,yt(e),t,this.name,p)):l=new Br(u,i,this,yt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ne("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((o,n)=>{o!=null&&e[n]!=null&&e[n]!==o&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Io(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let o=JSON.stringify(t.outputShapes);e.indexOf(o)===-1&&e.push(o)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Io(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Mr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return wp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return bf(e?this.trainableWeights:this.weights)}setWeights(e){G(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let o=[],n=bf(t);for(let s=0;s<n.length;++s){let a=n[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);o.push([i,l])}_p(o)})}addWeight(e,t,o,n,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),o==null&&(o="float32"),this.fastWeightInitDuringBuild&&(n=pt("zeros"));let l=n.apply(t,o),u=new yf(l,o,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(o=>{if(o!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,o,n,s,a,i=null){let l=yt(e);t=yt(t),o=yt(o),n=yt(n),s=bp(s),a=bp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new pl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:o,outputMasks:n,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function xq(r){r=yt(r);let e=[];for(let t of r)e.push(t.shape);return gr(e)}function yq(r){return"float32"}function d_(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let o=e.inboundNodes[t];if(o.inboundLayers.length===0)return o.inputTensors;{let n=[];for(let s=0;s<o.inboundLayers.length;s++){let a=o.inputTensors[s],i=o.inboundLayers[s],l=o.nodeIndices[s],u=d_(a,i,l);for(let c of u)n.indexOf(c)===-1&&n.push(c)}return n}}}var Bi=class extends Pe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:cl("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let o=e.dtype||"float32";this.batchInputShape=t,this.dtype=o,this.inputSpec=[{shape:t}];let n=new Br(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new pl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Bi.className="InputLayer";Q.registerClass(Bi);function Tg(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new Bi({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function Vi(r){if(r==null)return;let e=[],t=[],o=[];for(let n in r){let s=r[n];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(n),o.push(a)}}if(e.length>0){let n=await Promise.all(e);for(let s=0;s<n.length;++s)r[t[s]]=n[s][0];Te(o)}}function Ag(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var c1;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(c1||(c1={}));var bq=125,ml=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Eg=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},p1=class extends ml{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let o=t.size==null?0:t.size;this.seen+=o;for(let n in t){let s=t[n];if(typeof s=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+s*o;else{let a;n in this.totals?a=this.totals[n]:this.totals[n]=0;let i=G(()=>ee(this.totals[n],P(s,o)));this.totals[n]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let o of this.params.metrics)this.totals[o]!=null&&(typeof this.totals[o]=="number"?t[o]=this.totals[o]/this.seen:G(()=>{let n=P(me(1,this.seen),this.totals[o]);t[o]=n,this.totals[o].dispose(),Dt(t[o])}))}},Dg=class extends ml{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let o in t)this.history[o]==null&&(this.history[o]=[]),this.history[o].push(t[o])}async syncData(){let e=[],t=[],o=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),o.push(i)}}let n=await Promise.all(e);for(let s=0;s<n.length;++s)this.history[t[s]][o[s]].dispose(),this.history[t[s]][o[s]]=n[s][0]}},$g=class extends ml{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=bq),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=BT(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,o){let n=[];this.yield!=null&&(await Vi(o),n.push(this.yield(e,t,o))),n.push(tf()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Vi(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let o=[];this.epochEnd!=null&&(await Vi(t),o.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&o.push(tf()),await Promise.all(o)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Vi(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let o=[];this.batchEnd!=null&&(await Vi(t),o.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?o.push(tf()):y.isNumber(this.yieldEvery)&&o.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(o)}async onTrainBegin(e){this.trainBegin!=null&&(await Vi(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Vi(e),await this.trainEnd(e))}};function Rg(r,e){return r==null&&(r={}),r instanceof ml?[r]:Array.isArray(r)&&r[0]instanceof ml?r:yt(r).map(o=>new $g(o,e))}var uo=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),uo.checkForDuplicate(t),uo.constructors[e]==null&&(uo.constructors[e]=[]),uo.constructors[e].push(t)}static checkForDuplicate(e){for(let t in uo.constructors)uo.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){uo.constructors={}}static createCallbacks(e){let t=[];for(let o in uo.constructors){let n=+o;e>=n&&t.push(...uo.constructors[n])}return t.map(o=>new o)}};uo.constructors={};function Fg(r,e,t,o,n,s,a,i,l){let u=new Dg,c=[new p1,...uo.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new Eg(c);return p.setParams({epochs:t,initialEpoch:o,samples:n,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Qr(r,e={},t=!1){return Li(r,Q.SerializationMap.getMap().classNameMap,e,"layer",t)}function wf(r,e){return G(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ge(qu(r),e,!0),o=va(t.shape,Jt()),n=xt(Yr(t,o));return me(r,n)})}function Gi(r,e){return G(()=>ht(qu(ce(e,r)),-1))}function kp(r,e){return G(()=>ht(Nt(ce(e,r)),-1))}function fl(r,e){return G(()=>{let t=ce(r,e),o=ir(Nt(r),Jt(),Number.MAX_VALUE),n=Nt(me(t,o));return P(100,ht(n,-1))})}function wq(r,e){return G(()=>{let t=ir(e,Jt(),Number.MAX_VALUE),o=lr(ee(1,t)),n=ir(r,Jt(),Number.MAX_VALUE),s=lr(ee(1,n));return ht(qu(ce(o,s)),-1)})}function _q(r,e){return G(()=>{let t=Yr(0,ce(1,P(r,e)));return ht(qu(t),-1)})}function kq(r,e){return G(()=>{let t=Yr(0,ce(1,P(r,e)));return ht(t,-1)})}function vq(r,e){return G(()=>{let t=ge(P(r,e),-1),o=ur(P(ce(1,r),e),-1);return Yr(0,ee(1,ce(o,t)))})}function Cq(r,e){return G(()=>{let t=Math.log(2),o=ce(e,r),n=ce(ee(o,Ts(P(-2,o))),t);return ht(n,-1)})}function Xu(r,e,t=!1){return G(()=>{if(t)e=Aa(e);else{let o=ge(e,e.shape.length-1,!0);e=me(e,o)}return e=ir(e,Jt(),1-Jt()),He(ge(P(r.toFloat(),lr(e)),e.shape.length-1))})}function vp(r,e,t=!1){return G(()=>{let o=Ss(e1(r)).toInt();e=ir(e,Jt(),1-Jt());let n=e.shape,s=Cs(o,n[n.length-1]).reshape(n);return Xu(s,e,t)})}function Iq(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return G(()=>{let t=e.relu(),o=e.abs().neg();return t.sub(e.mul(r)).add(o.exp().log1p())})}function Cp(r,e){return G(()=>{let t;return t=ir(e,Jt(),1-Jt()),t=lr(me(t,ce(1,t))),ht(Iq(r,t),-1)})}function Nq(r,e){return G(()=>{let t=ir(r,Jt(),1),o=ir(e,Jt(),1);return ge(P(r,lr(me(t,o))),-1)})}function Sq(r,e){return G(()=>{let t=lr(ee(Jt(),e));return ht(ce(e,P(r,t)),-1)})}function _f(r,e){return G(()=>{let t=wf(r,-1),o=wf(e,-1),n=P(t,o);return He(ge(n,-1))})}var kf={meanSquaredError:Gi,meanAbsoluteError:kp,meanAbsolutePercentageError:fl,meanSquaredLogarithmicError:wq,squaredHinge:_q,hinge:kq,categoricalHinge:vq,logcosh:Cq,categoricalCrossentropy:Xu,sparseCategoricalCrossentropy:vp,binaryCrossentropy:Cp,kullbackLeiblerDivergence:Nq,poisson:Sq,cosineProximity:_f};function Og(r){if(typeof r=="string"){if(r in kf)return kf[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function vf(r,e){return G(()=>{let t=P(.5,tr(e)),o=Fa(er(e,t),r.dtype);return ht(vo(r,o),-1)})}function Cf(r,e){return G(()=>Fa(vo(nl(r,-1),nl(e,-1)),"float32"))}function m1(r,e){return G(()=>hr(r.equal(1),e.equal(1)).sum().cast("float32"))}function Tq(r,e){return G(()=>hr(r.equal(1),e.equal(0)).sum().cast("float32"))}function Aq(r,e){return G(()=>hr(r.equal(0),e.equal(1)).sum().cast("float32"))}function h_(r,e){return G(()=>{let t=m1(r,e),o=Aq(r,e),n=t.add(o);return $t(er(n,0),t.div(n),0).cast("float32")})}function f1(r,e){return G(()=>{let t=m1(r,e),o=Tq(r,e),n=t.add(o);return $t(er(n,0),t.div(n),0).cast("float32")})}function Pg(r,e){return Cp(r,e)}function Mg(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),vo(r,e).asType("float32")}var Eq=Gi,Dq=Gi,$q=kp,Rq=kp,Fq=fl,Oq=fl,If=Xu,Pq=_f,g_=vp,Lg={binaryAccuracy:vf,categoricalAccuracy:Cf,precision:h_,categoricalCrossentropy:If,sparseCategoricalCrossentropy:g_,mse:Eq,MSE:Dq,mae:$q,MAE:Rq,mape:Fq,MAPE:Oq,cosine:Pq};function d1(r){if(typeof r=="string"&&r in Lg)return Lg[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Nf(r){if(Bo(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(kf))if(kf[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(Lg))if(Lg[t]===r){e=t;break}return e!==void 0?e:r.name}}function h1(r){let e={Adagrad:()=>ll.adagrad(.01),Adadelta:()=>ll.adadelta(1,.95,Jt()),Adam:()=>ll.adam(.001,.9,.999,Jt()),Adamax:()=>ll.adamax(.002,.9,.999,Jt(),0),RMSProp:()=>ll.rmsprop(.001,.9,0,Jt()),SGD:()=>ll.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var g1=1*1024*1024;function y_(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!x_(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let o=JSON.stringify(r);o.length>g1&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${o.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${g1}.`)}}function x_(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!x_(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!x_(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function x1(r,e,t,o=console.log){let n=Lq(r),s=["Layer (type)","Output shape","Param #"];n?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!n){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}o("_".repeat(e)),zg(s,t,o),o("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)n?zq(i[c],t,o):Bq(i[c],t,a,o),o((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=Mq(r),u=wp(r.nonTrainableWeights);o(`Total params: ${l+u}`),o(`Trainable params: ${l}`),o(`Non-trainable params: ${u}`),o("_".repeat(e))}function Mq(r){let e;return r.collectedTrainableWeights!=null?e=wp(r.collectedTrainableWeights):e=wp(r.trainableWeights),e}function Lq(r){let e=!0,t=[],o=[];for(let n in r.nodesByDepth)t.push(r.nodesByDepth[n]);for(let n of t){if(n.length>1||n.length===1&&n[0].inboundLayers.length>1){e=!1;break}o.push(...n)}if(e)for(let n of r.layers){let s=!1;for(let a of n.inboundNodes)if(o.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function zg(r,e,t=console.log){let o="";for(let n=0;n<r.length;++n)n>0&&(o=o.slice(0,o.length-1)+" "),o+=r[n],o=o.slice(0,e[n]),o+=" ".repeat(e[n]-o.length);t(o)}function zq(r,e,t){let o;try{o=JSON.stringify(r.outputShape)}catch(i){o="multiple"}let n=r.name,s=r.getClassName(),a=[`${n} (${s})`,o,r.countParams().toString()];zg(a,e,t)}function Bq(r,e,t,o){let n;try{n=JSON.stringify(r.outputShape)}catch(c){n="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,n,r.countParams().toString(),l];zg(u,e,o);for(let c=1;c<s.length;++c)zg(["","","",s[c]],e,o)}function y1(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function Yu(r,e){if(r===null)return null;if(typeof r=="string")return Ra(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];y1(e,n,s)?t.push(s):t.push(Yu(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o];if(o==="name"&&typeof n=="string")t[o]=n;else{let s=Ra(o);t[s]=Yu(n,s)}}return t}}function Bg(r,e){if(r==null)return null;if(typeof r=="string")return jn(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];y1(e,n,s)?t.push(s):t.push(Bg(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o],s=jn(o);(o==="name"||o==="className")&&typeof n=="string"?t[s]=n:t[s]=Bg(n,o)}return t}}var dl="3.3.0";function Vq(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return ne(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Os=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Os)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,o){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Vq(e,t),this.name2Id[e.name]=e.id,o!=null&&(this.id2Mask[e.id]=o);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Br){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Br){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Te(this.id2Mask)}},b_={},b1={};function Zu(r,e,t,o){let n=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);o!=null&&(o.maxNumTensors=-Infinity,o.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(b_[c]==null){let d=Gq(a,e);p=d.sorted,m=d.recipientCounts,b_[c]=p,b1[c]=m}p=b_[c],m={},n||Object.assign(m,b1[c]);let f=new Os(e);for(let d=0;d<p.length;++d){if(o!=null){let F=Hc().numTensors;F>o.maxNumTensors&&(o.maxNumTensors=F),F<o.minNumTensors&&(o.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof Bi)continue;let x=[],w=[],b=[],_=!1;for(let F of h.inputs){let M=f.getValue(F),V=f.getMask(F);x.push(M),w.push(V),V!=null&&(_=!0),n||(m[F.name]--,m[F.name]===0&&!e.hasKey(F)&&i.indexOf(F.name)===-1&&!M.isDisposed&&F.sourceLayer.stateful!==!0&&b.push(M))}_&&(t=t||{},t.mask=w[0]);let k=yt(g.apply(x,t)),A=null;g.supportsMasking&&(A=g.computeMask(x,w));let N=Wq(h),$=Array.isArray(N)?N:[N];for(let F=0;F<$.length;++F){f.hasKey($[F])||f.add($[F],k[F],Array.isArray(A)?A[0]:A);let M=i.indexOf($[F].name);M!==-1&&(l[M]=k[F])}n||Te(b)}return f.disposeMasks(),s?l:l[0]}function Gq(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],o={};if(r.length===1){let n=w1(r[0],e);t=n.sorted,o=n.recipientMap}else{let n=new Set;for(let s of r){let{sorted:a,recipientMap:i}=w1(s,e);for(let l of a)n.has(l.name)||(t.push(l),n.add(l.name));for(let l in i)o[l]==null&&(o[l]=new Set),i[l].forEach(u=>o[l].add(u))}}return{sorted:t,recipientCounts:Uq(o)}}function Uq(r){let e={};for(let t in r)e[t]=r[t].size;return e}function w1(r,e){let t=new Set,o=[],n={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),o.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)n[u.name]==null&&(n[u.name]=new Set),n[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:o,recipientMap:n}}function Wq(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let o=0;o<r.sourceLayer.inboundNodes.length;++o)for(let n of r.sourceLayer.inboundNodes[o].outputTensors)if(n.id===r.id){t=o;break}e=r.sourceLayer.getOutputAt(t)}return e}var Vo=class extends Pe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let w=this.getClassName().toLowerCase();this.name=cl(w)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],qn(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(w=>w.name)}`);qn(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(w=>w.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let w of this.outputs){let b=w.sourceLayer,_=w.nodeIndex,k=w.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(k)}for(let w of this.inputs){let b=w.sourceLayer,_=w.nodeIndex,k=w.tensorIndex;Bo(_===0,"input layer has >1 nodes"),Bo(k===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let w=0;w<this.inputLayers.length;w++){let b=this.inputLayers[w];if(!(b instanceof Bi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${w} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let w of this.outputLayers)this.outputNames.push(w.name);this.internalInputShapes=this.inputs.map(w=>w.shape),this.internalOutputShapes=this.outputs.map(w=>w.shape);let t={},o={},n={},s={},a={},i=[],l=(w,b,_,k,A,N)=>{(k==null||A==null||N==null)&&(k=w.sourceLayer,A=w.nodeIndex,N=w.tensorIndex);let $=k.inboundNodes[A];if(_.indexOf($)!==-1)throw new Mr(`The tensor ${w.name} at layer "${k.name}" is part of a cycle.`);if(b.indexOf($)!==-1)return;this.containerNodes.add(Vo.nodeKey(k,A)),k.id in a||(a[k.id]=Object.keys(a).length),_.indexOf($)===-1&&_.push($);let F=$.inboundLayers.length;for(let M=0;M<F;M++){let V=$.inputTensors[M],W=$.inboundLayers[M],U=$.nodeIndices[M],H=$.tensorIndices[M];l(V,b,_,W,U,H)}for(b.push($);_.indexOf($)>=0;)_.splice(_.indexOf($),1);i.push($)},u=[],c=[];for(let w of this.outputs)l(w,u,c);let p=i.slice().reverse();for(let w of p){o[w.id]=w,w.id in t||(t[w.id]=0);let b=t[w.id],_=n[w.outboundLayer.id]==null?0:n[w.outboundLayer.id];b=Math.max(b,_),n[w.outboundLayer.id]=b,s[w.outboundLayer.id]=w.outboundLayer,t[w.id]=b;for(let k=0;k<w.inboundLayers.length;k++){let A=w.inboundLayers[k],N=w.nodeIndices[k],$=A.inboundNodes[N],F=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(b+1,F),o[$.id]=$}}let m={};for(let w in t){let b=t[w];b in m||(m[b]=[]),m[b].push(o[w])}let f={};for(let w in n){let b=n[w];b in f||(f[b]=[]),f[b].push(s[w])}let d=Object.keys(f).map(w=>parseInt(w,10)).sort(of);this.layers=[];for(let w of d){let b=f[w];b.sort((_,k)=>{let A=a[_.id],N=a[k.id];return A<N?-1:A>N?1:0});for(let _ of b)_ instanceof Vo&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(w=>parseInt(w,10)).sort(of);let h=this.inputs.slice(),g=[];for(let w of d)for(let b of m[w]){let _=b.outboundLayer;if(_!=null){for(let k of b.inputTensors)if(h.indexOf(k)===-1)throw new Mr(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let k of b.outputTensors)h.push(k);g.push(_.name)}}this.nodesByDepth=m;let x=this.layers.map(w=>w.name);for(let w of x){let b=x.filter(_=>_===w).length;if(b!==1)throw new Mr(`The name "${w}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new pl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(w=>null),outputMasks:this.outputs.map(w=>null),inputShapes:this.inputs.map(w=>w.shape),outputShapes:this.outputs.map(w=>w.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(o=>o.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.layers)t.push(...o.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let o={},n=0;for(let a of this.layers)for(let i of a.weights){if(o[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);o[i.originalName]=i,n++}let s=[];for(let a in e){let i=a;if(o[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(o[i]!=null)s.push([o[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete o[i]}if(t){let a=[];for(let i in o)a.push(i);if(a.length>0)throw new z(`${a.length} of ${n} weights are not set: ${a}`)}_p(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${dl}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let o=Bg(this.updatedConfig());return t?JSON.stringify(o):o}call(e,t){return G(()=>{e=yt(e);let o=new Os;for(let n=0;n<this.inputs.length;++n)o.add(this.inputs[n],e[n]);return Zu(this.outputs,o,t)})}computeMask(e,t){return G(()=>{e=yt(e);let o;return t==null?o=Un(null,e.length):o=yt(t),this.runInternalGraph(e,o)[1]})}computeOutputShape(e){let t=bp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let o={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";o[c]=u}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(of);if(n.length>1)for(let i of n){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],w=u.tensorIndices[h],b=`${g.name}_${x}_${w}`,_=o[b];p.push(_)}let m=c.computeOutputShape(gr(p)),f=bp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;o[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Bo(l in o),s.push(o[l])}return gr(s)}runInternalGraph(e,t){t==null&&(t=Un(null,e.length));let o={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];o[u.id]=[c,p]}let n=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(of);for(let l of n){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in o&&d.push(o[h.id]);if(d.length===m.length){let h={},g,x,w,b;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,k]=d[0];h.mask==null&&(h.mask=k),w=yt(p.call(_,h)),b=yt(p.computeMask(_,k)),g=[_],x=[k]}else g=d.map(_=>_[0]),x=d.map(_=>_[1]),h.mask==null&&(h.mask=x),w=yt(p.call(g,h)),b=yt(p.computeMask(g,x));if(p.activityRegularizer)throw new Ne("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let k=f[_],A=w[_],N=b[_];o[k.id]=[A,N]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Bo(l.id in o,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=o[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},o;for(let n of this.layers){o=n instanceof Vo?1:0;for(let s=0;s<n.inboundNodes.length;s++){let a=Vo.nodeKey(n,s);this.containerNodes.has(a)&&(t[a]=o,o+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let o of this.layers)if(o.name===e)return o;throw new z(`No such layer: ${e}`)}calculateLosses(){return G(()=>{let e=[];for(let t of this.layers)for(let o=0;o<t.inboundNodes.length;++o){let n=Vo.nodeKey(t,o);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),o=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Vo.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],w=m.nodeIndices[g],b=m.tensorIndices[g],_=Vo.nodeKey(x,w),k=t[_];k==null&&(k=0),h.push([x.name,k,b,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,o.push(c)}e.layers=o;let n=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Vo.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];n.push([i.name,c,p])}e.inputLayers=n;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Vo.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,o={},n=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let w=[],b;for(let _ of x){let k=_[0],A=_[1],N=_[2];if(b=_[3]==null?{}:_[3],!(k in s)){i(g,x);return}let $=s[k];if($.inboundNodes.length<=A){i(g,x);return}let F=$.inboundNodes[A];w.push(F.outputTensors[N])}w.length>0&&g.apply(gr(w),b)}function u(g){let x=g.name,w=Qr(g,t.customObjects!=null?t.customObjects:{});w.setFastWeightInitDuringBuild(n),s[x]=w,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${_}`);i(w,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!LT(a);)for(let g of p){let x=s[g.name];if(x.name in a){let w=a[x.name];delete a[x.name];for(let b of w)l(x,b)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],w=g[1],b=g[2];Bo(x in s);let k=s[x].inboundNodes[w].outputTensors;m.push(k[b])}let h=t.outputLayers;for(let g of h){let x=g[0],w=g[1],b=g[2];Bo(x in s);let k=s[x].inboundNodes[w].outputTensors;f.push(k[b])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){G(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function jq(r,e,t){let o=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>null);if(o===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==o)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${o} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let n=[];return e.forEach(s=>{s in r?n.push(r[s]):n.push(null)}),n}else throw new Error(`The model has multiple (${o}) outputs, so ${t} must be either an array with ${o} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Vg(r,e){return jq(r,e,"classWeight")}async function Gg(r,e,t,o){if(e!=null||o!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let n=G(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await n.data());Te(n);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Gt(a,"float32")}else return null}function _1(r,e){return P(r,e)}var Hq=32;function v1(r,e){let t,o,n=e;t=n.xs,o=n.ys,y.assert(t!=null&&o!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=k1("input",r.inputNames,t),a=k1("output",r.outputNames,o),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function k1(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let o=[];for(let n of e){if(t[n]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${n}'.`);o.push(t[n])}return o}}function qq(r){if(r.length===3)throw new Ne("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function I1(r,e,t){let o=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!o||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let n=t.validationData!=null,s,a;if(n)if(C1(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=qq(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;n?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Rg(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Fg(c,p,t.epochs,null,null,Kq(e,t),null,n,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,w=0;for(o||(h=await e.iterator());o?x<t.batchesPerEpoch:!0;){let b=await h.next();if(o&&b.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(b.value!=null){let{xs:_,ys:k}=v1(r,b.value),A={};A.batch=w,A.size=_[0].shape[0],await m.onBatchBegin(w,A);let N=[];if(t.classWeight!=null){let M=Vg(t.classWeight,r.outputNames);for(let V=0;V<M.length;++V)N.push(await Gg(k[V],null,M[V]))}let $=_.concat(k).concat(N),F=i($);Te($);for(let M=0;M<l.length;++M){let V=l[M],W=F[M];A[V]=W,Dt(W)}await m.onBatchEnd(w,A),Ag(A),w++,x++}if(o?x>=t.batchesPerEpoch:b.done){if(n){let _;C1(t.validationData)?_=yt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=yt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?Hq:t.validationBatchSize,verbose:0}));for(let k=0;k<r.metricsNames.length;++k)g[`val_${r.metricsNames[k]}`]=_[k]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function Kq(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function C1(r){return typeof r.iterator=="function"}function Xq(r){return typeof r.next=="function"}async function N1(r,e,t){t=t||{};let o=t.batches!=null,n=r.testFunction,s=[];if(t.verbose>0)throw new Ne("Verbose mode is not implemented yet.");y.assert(!o||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=Xq(e)?e:await e.iterator(),i=0,l=0;for(;o?l<t.batches:!0;){let u=await a.next();if(s=G(()=>{if(u.value){let{xs:c,ys:p}=v1(r,u.value),m=c.concat(p),f=G(()=>n(m));if(Te(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=G(()=>ee(s[h],P(d,g))),l>0&&Te(x)}Te(f),i+=d,++l}return s}),u.done){o&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=me(s[u],i),Te(c)}return gr(s)}function Wg(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Ip(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(o=>Pa(o,e,t-e)):Pa(r,e,t-e)}function Ug(r,e){return G(()=>r==null?null:Array.isArray(r)?r.map(t=>Ug(t,e)):vg(r,e.dtype==="int32"?e:e.toInt()))}function jg(r,e){let t=[],o=0,n=null;for(;o<r;)n=o+e,n>=r&&(n=r),t.push([o,n]),o=n;return t}async function Yq(r,e,t,o,n,s,a,i,l,u,c,p,m,f,d){n==null&&(n=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,n,f,"steps_per_epoch"),x;g!=null&&(x=Lr(0,g)),a==null&&(a=1);let{callbackList:w,history:b}=Fg(i,a,s,m,g,f,n,h,p);w.setModel(r),r.history=b,await w.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await w.onEpochBegin(_);let k={};if(f!=null)throw new Ne("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Ne("batch shuffling is not implemneted yet");c&&y.shuffle(x);let A=Gt(x),N=jg(g,n);for(let $=0;$<N.length;++$){let F={};if(await w.onBatchBegin($,F),G(()=>{let M=N[$][0],V=N[$][1],W=Pa(A,M,V-M);F.batch=$,F.size=V-M;let U=Ug(t,W),H=e(U);for(let q=0;q<o.length;++q){let X=o[q],oe=H[q];F[X]=oe,Dt(oe)}if($===N.length-1&&h){let q=r.testLoop(l,u,n);for(let X=0;X<o.length;++X){let oe=o[X],Y=q[X];Dt(Y),k["val_"+oe]=Y}}}),await w.onBatchEnd($,F),Ag(F),r.stopTraining_)break}A.dispose()}if(await w.onEpochEnd(_,k),r.stopTraining_)break}return await w.onTrainEnd(),await r.history.syncData(),r.history}async function S1(r,e,t,o={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let n,s,a,i,l,u,c;try{let p=o.batchSize==null?32:o.batchSize;Wg(p);let m=!1,f=await r.standardizeUserData(e,t,o.sampleWeight,o.classWeight,m,p);n=f[0],s=f[1],c=f[2];let d=!1,h;if(o.validationData!=null&&o.validationData.length>0){if(d=!0,o.validationData.length===2)a=o.validationData[0],i=o.validationData[1];else throw o.validationData.length===3?new Ne("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${o.validationData} is invalid.`);let N=!0,$=await r.standardizeUserData(a,i,null,null,N,p);l=$[0],u=$[1],h=l.concat(u)}else if(o.validationSplit!=null&&o.validationSplit>0&&o.validationSplit<1){d=!0;let N=Math.floor(n[0].shape[0]*(1-o.validationSplit)),$=n[0].shape[0];l=Ip(n,N,$),n=Ip(n,0,N),u=Ip(s,N,$),s=Ip(s,0,N),h=l.concat(u)}else o.validationSteps!=null&&(d=!0);let g=n.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),w=r.getDedupedMetricsNames(),b,_;d?(r.makeTestFunction(),b=r.testFunction,_=w.slice().concat(w.map(N=>"val_"+N))):(b=null,h=[],_=w.slice());let k=Rg(o.callbacks,o.yieldEvery);return await Yq(r,x,g,w,p,o.epochs,o.verbose,k,b,h,o.shuffle,_,o.initialEpoch,null,null)}finally{r.isTraining=!1,hl(n,e),hl(s,t),hl(l,a),hl(u,i),c!=null&&Te(c)}}function w_(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;t<r.length;++t){let o=r[t];if(o.rank===1)e.push(Oa(o,1));else{if(o.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(o)}}return e}function hl(r,e){if(r==null)return;let t=[];if(e instanceof Ve)t.push(e.id);else if(Array.isArray(e))e.forEach(n=>t.push(n.id));else if(e!=null)for(let n in e){let s=e[n];t.push(s.id)}let o=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&o.push(r);else if(Array.isArray(r))r.forEach(n=>{t.indexOf(n.id)===-1&&o.push(n)});else if(r!=null)for(let n in r){let s=r[n];t.indexOf(s.id)===-1&&o.push(s)}o.forEach(n=>{n.isDisposed||n.dispose()})}function Zq(r){return r instanceof Ve}function __(r){return Array.isArray(r)}function T1(r){return!Zq(r)&&!__(r)}function A1(r,e,t,o=!0,n=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(__(r)&&r.length>0)a=!0;else if(T1(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${n} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(T1(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(__(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${n} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=w_(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function Jq(r,e,t){let o=qn(r.map(s=>s.shape[0]));o.sort();let n=qn(e.map(s=>s.shape[0]));if(n.sort(),o.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(n.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(o.length>0&&n.length>0&&!y.arraysEqual(o,n))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${o[0]} input sample(s) and ${n[0]} target sample(s).`)}function Qq(r,e,t){let o=[Gi,Cp,Xu];for(let n=0;n<r.length;++n){let s=r[n],a=e[n],i=t[n];if(a!=null){if(a===Xu&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(o.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function E1(r,e,t,o=!0,n=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${n} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function eK(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(o=>t);{let o=[];for(let n of e){let s=t.hasOwnProperty(n)?t[n]:[];Array.isArray(s)||(s=[s]),o.push(s)}return o}}var tK="layers-model",No=class extends Vo{constructor(e){super(e);this.isTraining=!1}summary(e,t,o=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");x1(this,e,t,o)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=h1(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Pr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Og(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Og(i))}else{let a=Og(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let o=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Rs("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let n=eK(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Rs("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=n[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Cp?["accuracy","acc"].indexOf(d)!==-1?m=vf:["crossentropy","ce"].indexOf(d)!==-1&&(m=Pg):this.lossFunctions[a]===vp?["accuracy","acc"].indexOf(d)!==-1?m=Mg:["crossentropy","ce"].indexOf(d)!==-1&&(m=g_):["accuracy","acc"].indexOf(d)!==-1?m=Cf:["crossentropy","ce"].indexOf(d)!==-1&&(m=If);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=d1(d),p=c+Nf(d);let h;Rs(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,o={}){let n=o.batchSize==null?32:o.batchSize;Wg(n);let s=!0,a=this.standardizeUserDataXY(e,t,s,n);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,n,o.verbose,o.steps);return gr(u)}finally{hl(a[0],e),hl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),N1(this,e,t)}checkNumSamples(e,t,o,n="steps"){let s;if(o!=null){if(s=null,t!=null)throw new z(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let o=Array.isArray(t),n=o?t:[t],s=this.retrieveSymbolicTensors(n),a=new Os;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Zu(s,a);return o?i:i[0]}retrieveSymbolicTensors(e){let t=Un(null,e.length),o=e.length;for(let n of this.layers){let s=Array.isArray(n.output)?n.output:[n.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],o--),o===0)break}if(o===0)break}if(o>0){let n=[];throw t.forEach((s,a)=>{s==null&&n.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,o=!1){return G(()=>{let n=this.checkNumSamples(e);if(o)throw new Ne("Verbose predictLoop() is not implemented yet.");let s=jg(n,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)G(()=>{let u=s[i][0],c=s[i][1],p=Ip(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Os(m);return Zu(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return gr(a.map(i=>Ye(i,0)))})}predict(e,t={}){let o=w_(e);E1(o,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Wg(n),this.predictLoop(o,n)}finally{hl(o,e)}}predictOnBatch(e){E1(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,o=!0,n){if(this.optimizer_==null)throw new Mr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===vp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=A1(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=A1(t,this.feedOutputNames,s,!1,"target"),Jq(e,t,null),Qq(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,o,n,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(o!=null)throw new Error("sample weight is not supported yet.");let u=null;if(n!=null){let c=Vg(n,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await Gg(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,o,n=0,s){return G(()=>{let a=this.checkNumSamples(t,o,s,"steps"),i=[];if(n>0)throw new Ne("Verbose mode is not implemented yet.");if(s!=null)throw new Ne("steps mode in testLoop() is not implemented yet");{let l=jg(a,o),u=Gt(Lr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Pa(u,p,m-p),d=Ug(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=ee(i[g],P(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=me(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let o=0;o<e.length;++o){let n=e[o],s=n;s_(e,n)>1&&(s+=`_${s_(e.slice(0,o),n)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],o=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:o[h]});let m=new Os(p),f=Zu(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](n[h],f[h]);s[h]!=null&&(x=_1(x,s[h]));let w=ht(x);t.push(w),h===0?d=x:d=ee(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],w=this.metricsTensors[h][1];g=ht(x(n[w],f[w]))}Dt(g),a.push(g)}return d=ht(d),this.calculateLosses().forEach(h=>{d=ee(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>G(()=>{let t=[],o,n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:n[u]});let i=new Os(a),l=Zu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=ht(c(s[u],l[u]));u===0?o=p:o=ee(o,p),t.push(o)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=ht(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,o={}){return S1(this,e,t,o)}async fitDataset(e,t){return I1(this,e,t)}async trainOnBatch(e,t){let o=await this.standardizeUserData(e,t),n=o[0],s=o[1],i=this.makeTrainFunction()(n.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Te(i),gr(l)}getNamedWeights(e){let t=[],o=e!=null&&e.trainableOnly,n=o?this.trainableWeights:this.weights,s=this.getWeights(o);for(let a=0;a<n.length;++a)o&&!n[a].trainable||t.push({name:n[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Hc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Hc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=jn(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>jn(t))}else{let t=Object.keys(this.loss);e={};let o=this.loss;for(let n of t)if(typeof o[n]=="string")e[n]=jn(o[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[jn(Nf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>jn(Nf(e)));{let e={};for(let t in this.metrics)e[t]=jn(Nf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Yu(e.optimizer_config),o=Qr(t),n;if(typeof e.loss=="string")n=Ra(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(a=>Ra(a));else if(e.loss!=null){n={};for(let a in e.loss)n[a]=Ra(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Ra(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Ra(e.metrics[a])}this.compile({loss:n,metrics:s,optimizer:o})}async save(e,t){if(typeof e=="string"){let u=Ir.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let o=await Ir.encodeWeights(this.getNamedWeights(t)),n=!1,s=null,i={modelTopology:this.toJSON(s,n),format:tK,generatedBy:`TensorFlow.js tfjs-layers v${dl}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Ir.encodeWeights(await this.optimizer.getWeights(),u);o.specs.push(...p),o.data=Ir.concatenateArrayBuffers([o.data,c])}if(this.userDefinedMetadata!=null){let u=!0;y_(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=o.data,i.weightSpecs=o.specs,e.save(i)}setUserDefinedMetadata(e){y_(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};No.className="Model";Q.registerClass(No);var k_=class extends No{};k_.className="Functional";Q.registerClass(k_);async function D1(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let o=Yu(t),n=Qr(o,e);if(r.weightsManifest!=null){let s=await Ir.loadWeights(r.weightsManifest,r.pathPrefix,n.weights.map(i=>i.originalName)),a={};for(let i of n.weights)a[i.originalName]=s[i.originalName];n.loadWeights(a),Te(s)}return n}async function $1(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Ir.getLoadHandlers(r,e);if(t.length===0)t.push(Ir.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return rK(r,void 0,e)}async function rK(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let o=await r.load(),n=o.modelTopology;n.model_config!=null&&(n=n.model_config);let s=t.strict==null?!0:t.strict,a=o.weightData!=null&&o.weightSpecs!=null&&s,i=Qr(Yu(n),e,a),l=o.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),o.userDefinedMetadata!=null&&i.setUserDefinedMetadata(o.userDefinedMetadata),o.weightData!=null){if(o.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=oK(o.weightData,o.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Te(u),Te(c.map(p=>p.tensor))}return i}function oK(r,e){let t=Ir.decodeWeights(r,e),o={},n=[];return e.forEach(s=>{s.group==="optimizer"?n.push({name:s.name,tensor:t[s.name]}):o[s.name]=t[s.name]}),{modelWeights:o,optimizerWeights:n}}var Wi=class extends No{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:cl("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(o=>o<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Wi||e instanceof No,o;if(t){if(o=e,o.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(o.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=Tg({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=o.outputs,this.inputs=o.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=d_(this.outputs[0])}this.inboundNodes=[],new pl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Un(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Ze(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new No({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,o=console.log){this.built||this.build(),super.summary(e,t,o)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,o={}){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,o)}async evaluateDataset(e,t){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,o={}){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.fit(e,t,o)}async fitDataset(e,t){if(!this.built)throw new Mr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,o={},n=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Wi))throw new Ne(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=Qr(l,void 0,n);n&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let o={};o.className=t.getClassName(),o.config=t.getConfig(),e.push(o)}return{name:this.name,layers:e}}};Wi.className="Sequential";Q.registerClass(Wi);function R1(r){return new No(r)}function F1(r){return new Wi(r)}function O1(r,e){return e==null&&(e={}),$1(r,e)}function Hg(r){return Tg(r)}function P1(r,e){uo.registerCallbackConstructor(r,e)}var co=class extends Q.Serializable{getConfig(){return{}}},v_=class extends co{apply(e,t=1){return r1(e,t)}};v_.className="elu";Q.registerClass(v_);var C_=class extends co{apply(e){return Ou(e)}};C_.className="selu";Q.registerClass(C_);var I_=class extends co{apply(e){return Sr(e)}};I_.className="relu";Q.registerClass(I_);var N_=class extends co{apply(e){return G(()=>As(6,Sr(e)))}};N_.className="relu6";Q.registerClass(N_);var S_=class extends co{apply(e){return e}};S_.className="linear";Q.registerClass(S_);var T_=class extends co{apply(e){return qr(e)}};T_.className="sigmoid";Q.registerClass(T_);var A_=class extends co{apply(e){return n1(e)}};A_.className="hardSigmoid";Q.registerClass(A_);var E_=class extends co{apply(e){return Ts(e)}};E_.className="softplus";Q.registerClass(E_);var D_=class extends co{apply(e){return o1(e)}};D_.className="softsign";Q.registerClass(D_);var $_=class extends co{apply(e){return Fi(e)}};$_.className="tanh";Q.registerClass($_);var Sf=class extends co{apply(e,t=-1){return Aa(e,t)}};Sf.className="softmax";Q.registerClass(Sf);var R_=class extends co{apply(e,t=-1){return Au(e,t)}};R_.className="logSoftmax";Q.registerClass(R_);var F_=class extends co{apply(e,t=1){return G(()=>qr(e.mul(t)).mul(e))}};F_.className="swish";Q.registerClass(F_);function Ps(r){return r.getClassName()}function O_(r,e={}){return Li(r,Q.SerializationMap.getMap().classNameMap,e,"activation")}function Ms(r){if(r==null){let e={};return e.className="linear",e.config={},O_(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},O_(e)}else return r instanceof co?r:O_(r)}function P_(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var M_=class extends Q.Serializable{},Ju=class extends M_{constructor(e){super();P_(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return G(()=>{let t=gt([1]);return this.hasL1&&(t=ee(t,ge(P(this.l1,Nt(e))))),this.hasL2&&(t=ee(t,ge(P(this.l2,qu(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ju.className="L1L2";Q.registerClass(Ju);function M1(r){return P_(r),new Ju({l1:r!=null?r.l1:null,l2:0})}function L1(r){return P_(r),new Ju({l2:r!=null?r.l2:null,l1:0})}var z1={l1l2:"L1L2"};function st(r){return lp(r)}function B1(r,e={}){return Li(r,Q.SerializationMap.getMap().classNameMap,e,"regularizer")}function bt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in z1?z1[r]:r,config:{}};return B1(t)}else return r instanceof M_?r:B1(r)}var Tf=class extends Pe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Fe(e);let o=Sr(e);return this.maxValue!=null&&(o=ir(o,0,this.maxValue)),o}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Tf.className="ReLU";Q.registerClass(Tf);var Af=class extends Pe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return Ca(o,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Af.className="LeakyReLU";Q.registerClass(Af);var Ef=class extends Pe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=bt(e.alphaRegularizer),this.alphaConstraint=Ot(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Ze(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let o={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)o[n]=e[n];this.inputSpec=[new St({ndim:e.length,axes:o})],this.built=!0}call(e,t){return e=Fe(e),Ta(e,this.alpha.read())}getConfig(){let e={alphaInitializer:vt(this.alphaInitializer),alphaRegularizer:st(this.alphaRegularizer),alphaConstraint:Ft(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Ef.className="PReLU";Q.registerClass(Ef);var Df=class extends Pe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ne(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return Ns(o)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Df.className="ELU";Q.registerClass(Df);var $f=class extends Pe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let o=Fe(e);return o.mul(Fa(o.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};$f.className="ThresholdedReLU";Q.registerClass($f);var Rf=class extends Pe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Sf().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let o=Fe(e);return this.softmax(o,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Rf.className="Softmax";Q.registerClass(Rf);function gl(r,e,t){if(typeof r=="number")return Un(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let o=0;o<e;++o){let n=r[o];if(!ZT(n))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${n}`)}return r}function po(r,e,t,o,n=1){if(r==null)return r;let s=e+(e-1)*(n-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+o-1)/o)}function Ff(r,e,t,o){if(r==null)return null;if(o==="valid")r=r*e+Fs([t-e,0]);else if(o==="same")r=r*e;else throw new z(`Unsupport padding mode: ${o}.`);return r}function Of(r,e){return G(()=>(Rt(e),e==="channelsFirst"?je(r,[0,2,3,1]):r))}function L_(r,e){return G(()=>(Rt(e),e==="channelsFirst"?je(r,[0,2,3,4,1]):r))}function nK(r,e,t,o=1,n="valid",s,a=1){return G(()=>{if(s==null&&(s=Zr()),Rt(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=je(r,[0,2,1])),n==="causal")throw new Ne("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=ku(r,e,o,n==="same"?"same":"valid","NWC",a);return t!=null&&(i=ao(i,t)),i})}function V1(r,e,t,o=[1,1],n="valid",s,a,i=null){return G(()=>{if(s==null&&(s=Zr()),Rt(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=Of(r,s);if(n==="causal")throw new Ne("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Gn.conv2d({x:l,filter:e,strides:o,pad:n==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=je(l,[0,3,1,2])),l})}function sK(r,e,t,o=[1,1,1],n="valid",s,a){return G(()=>{if(s==null&&(s=Zr()),Rt(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=L_(r,s);if(n==="causal")throw new Ne("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Em(i,e,o,n==="same"?"same":"valid","NDHWC",a),t!=null&&(i=ao(i,t)),s==="channelsFirst"&&(i=je(i,[0,4,1,2,3])),i})}var Np=class extends Pe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Np.verifyArgs(t),this.rank=e,Ut(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ne(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=gl(t.kernelSize,e,"kernelSize"),this.strides=gl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Jr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=Ms(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ot(t.biasConstraint),this.biasRegularizer=bt(t.biasRegularizer),this.activityRegularizer=bt(t.activityRegularizer),this.dilationRate=gl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Bo("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!yg(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ps(this.activation),useBias:this.useBias,biasInitializer:vt(this.biasInitializer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),biasConstraint:Ft(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Qu=class extends Np{constructor(e,t){super(e,t);this.kernel=null,Qu.verifyArgs(t),this.filters=t.filters,Ut(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ot(t.kernelConstraint),this.kernelRegularizer=bt(t.kernelRegularizer)}build(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let o=e[t],n=this.kernelSize.concat([o,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:o}}],this.built=!0}call(e,t){return G(()=>{e=Fe(e);let o,n=this.bias==null?null:this.bias.read(),s=bg(this.activation.getClassName());if(s!=null&&this.rank===2)o=V1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)o=nK(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)o=V1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)o=sK(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ne("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(o=this.activation.apply(o))}return o})}computeOutputShape(e){e=Ze(e);let t=[],o=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<o.length;++s){let a=po(o[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:vt(this.kernelInitializer),kernelRegularizer:st(this.kernelRegularizer),kernelConstraint:Ft(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},xl=class extends Qu{constructor(e){super(2,e);xl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!yg(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};xl.className="Conv2D";Q.registerClass(xl);var ec=class extends Qu{constructor(e){super(3,e);ec.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};ec.className="Conv3D";Q.registerClass(ec);var Pf=class extends xl{constructor(e){super(e);if(this.inputSpec=[new St({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ze(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let o=e[t],n=this.kernelSize.concat([this.filters,o]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new St({ndim:4,axes:{[t]:o}})],this.built=!0}call(e,t){return G(()=>{let o=Fe(e);if(o.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${o.shape.length}`);let n=o.shape,s=n[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=n[a],u=n[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Ff(l,m,c,this.padding),h=Ff(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(o=je(o,[0,2,3,1]));let x=vu(o,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=je(x,[0,3,1,2])),this.bias!=null&&(x=ao(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=Ze(e);let t=e.slice(),o,n,s;this.dataFormat==="channelsFirst"?(o=1,n=2,s=3):(o=3,n=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[o]=this.filters,t[n]=Ff(t[n],l,a,this.padding),t[s]=Ff(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Pf.className="Conv2DTranspose";Q.registerClass(Pf);var z_=class extends Qu{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=bt(t.depthwiseRegularizer),this.depthwiseConstraint=Ot(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=bt(t.pointwiseRegularizer),this.pointwiseConstraint=Ot(t.pointwiseConstraint)}build(e){if(e=Ze(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let o=e[t],n=this.kernelSize.concat([o,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(o*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new St({ndim:this.rank+2,axes:{[t]:o}})],this.built=!0}call(e,t){return G(()=>{e=Fe(e);let o;if(this.rank===1)throw new Ne("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=je(e,[0,2,3,1])),o=Um(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(o=ao(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),this.dataFormat==="channelsFirst"&&(o=je(o,[0,3,1,2])),o})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.pointwiseInitializer=vt(this.pointwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.pointwiseRegularizer=st(this.pointwiseRegularizer),e.depthwiseConstraint=Ft(this.depthwiseConstraint),e.pointwiseConstraint=Ft(this.pointwiseConstraint),e}};z_.className="SeparableConv";var Mf=class extends z_{constructor(e){super(2,e)}};Mf.className="SeparableConv2D";Q.registerClass(Mf);var tc=class extends Qu{constructor(e){super(1,e);tc.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!yg(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};tc.className="Conv1D";Q.registerClass(tc);var Lf=class extends Pe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return G(()=>{if(e=Fe(e),this.dataFormat==="channelsLast"){let o=cf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return cf(o,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let o=cf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return cf(o,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Lf.className="Cropping2D";Q.registerClass(Lf);var zf=class extends Pe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,KT(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],o=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,o]}else{let t=e[1]==null?null:this.size[0]*e[1],o=e[2]==null?null:this.size[1]*e[2];return[e[0],t,o,e[3]]}}call(e,t){return G(()=>{let o=Fe(e),n=o.shape;if(this.dataFormat==="channelsFirst"){o=je(o,[0,2,3,1]);let s=this.size[0]*n[2],a=this.size[1]*n[3],i=this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a]);return je(i,[0,3,1,2])}else{let s=this.size[0]*n[1],a=this.size[1]*n[2];return this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};zf.className="UpSampling2D";Q.registerClass(zf);function iK(r,e,t=[1,1],o="valid",n,s){return G(()=>{n==null&&(n=Zr()),Rt(n);let a=Of(r,n);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=Is(a,e,t,o==="same"?"same":"valid","NHWC",s),n==="channelsFirst"&&(a=je(a,[0,3,1,2])),a})}var Bf=class extends Np{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ot(e.depthwiseConstraint),this.depthwiseRegularizer=bt(e.depthwiseRegularizer)}build(e){if(e=Ze(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let o=e[t],n=[this.kernelSize[0],this.kernelSize[1],o,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[o*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{e=Fe(e);let o=iK(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(o=ao(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),o})}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=po(t,this.kernelSize[0],this.padding,this.strides[0]),a=po(o,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,s,a]:[e[0],s,a,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.depthwiseConstraint=Ft(this.depthwiseRegularizer),e}};Bf.className="DepthwiseConv2D";Q.registerClass(Bf);function B_(r,e,t,o){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");o!=null&&(t=r.slice(r.length-o,r.length),r=r.slice(0,r.length-o)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function n(s){return s==null||Array.isArray(s)?s:[s]}return e=n(e),t=n(t),{inputs:r,initialState:e,constants:t}}function V_(r,e,t,o=!1,n,s,a=!1,i=!1){return G(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Lr(2,l));if(e=je(e,u),s!=null)throw new Ne("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),n!=null&&(n=n.asType("bool").asType("float32"),n.rank===l-1&&(n=ar(n,-1)),n=je(n,u)),o&&(e=qt(e,0),n!=null&&(n=qt(n,0)));let c=[],p,m=t,f=e.shape[0],d=pr(e),h;n!=null&&(h=pr(n));for(let x=0;x<f;++x){let w=d[x],b=G(()=>r(w,m));if(n==null)p=b[0],m=b[1];else{let _=G(()=>{let k=h[x],A=tr(k).sub(k),N=b[0].mul(k).add(m[0].mul(A)),$=m.map((F,M)=>b[1][M].mul(k).add(F.mul(A)));return{output:N,newStates:$}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Vt(c,1)),[p,g,m]})}var mo=class extends Pe{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Sp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new St({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Lr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Sg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let o=t[0],n;if(this.returnSequences?n=[e[0],e[1],o]:n=[e[0],o],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[n].concat(s)}else return n}computeMask(e,t){return G(()=>{Array.isArray(t)&&(t=t[0]);let o=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(s=>null);return[o].concat(n)}else return o})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let o=0;o<e;++o)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Ne("Constants support is not implemented in RNN yet.");Sg(e)&&(e=e[0]),e=e;let o=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new St({shape:[o,null,...n]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Ne("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new St({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Io("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape[0];if(o==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>gt([o,n])):this.states_=[gt([o,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>gt([o,n])):this.states_[0]=gt([o,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let n=0;n<this.states_.length;++n){let s=e[n],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[o,a];if(!y.arraysEqual(s.shape,i))throw new z(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[n]=s}}this.states_=this.states_.map(n=>Dt(n.clone()))})}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=B_(e,o,n,this.numConstants);e=s.inputs,o=s.initialState,n=s.constants;let a=[],i=[];if(o!=null){t.initialState=o,a=a.concat(o),this.stateSpec=[];for(let u of o)this.stateSpec.push(new St({shape:u.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,a=a.concat(n),this.numConstants=n.length),a[0]instanceof Br){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return G(()=>{let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;e=Fe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},u=V_((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,o,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,n);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return G(()=>{let t=gt(e.shape);return t=ge(t,[1,2]),t=Oa(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(o=>o>1?kg(t,[1,o]):t):this.cell.stateSize>1?[kg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let o=this.cell.getConfig();return this.getClassName()===mo.className&&(t.cell={className:this.cell.getClassName(),config:o}),Object.assign({},o,e,t)}static fromConfig(e,t,o={}){let n=t.cell,s=Qr(n,o);return new e(Object.assign(t,{cell:s}))}};mo.className="RNN";Q.registerClass(mo);var yl=class extends Pe{},Tp=class extends yl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Ms(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Hu([1,Fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hu([1,Fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ze(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let o=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ma({ones:()=>tr(e),rate:this.dropout,training:n})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ma({ones:()=>tr(o),rate:this.recurrentDropout,training:n}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=Xn(P(e,a),this.kernel.read()):s=Xn(e,this.kernel.read()),this.bias!=null&&(s=ao(s,this.bias.read())),i!=null&&(o=P(o,i));let l=ee(s,Xn(o,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ps(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Tp.className="SimpleRNNCell";Q.registerClass(Tp);var Vf=class extends mo{constructor(e){e.cell=new Tp(e),super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return new e(t)}};Vf.className="SimpleRNN";Q.registerClass(Vf);var Ap=class extends yl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ut(this.units,"units"),this.activation=Ms(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ms(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Hu([1,Fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hu([1,Fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ze(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ma({ones:()=>tr(e),rate:this.dropout,training:o,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ma({ones:()=>tr(n),rate:this.recurrentDropout,training:o,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let c=Xn(e,this.kernel.read());this.useBias&&(c=ao(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,a[0]));let p=this.recurrentKernel.read(),[m,f]=cr(p,[2*this.units,this.units],p.rank-1),d=Xn(n,m),[h,g,x]=cr(c,3,c.rank-1),[w,b]=cr(d,2,d.rank-1);i=this.recurrentActivation.apply(ee(h,w)),l=this.recurrentActivation.apply(ee(g,b));let _=Xn(P(l,n),f);u=this.activation.apply(ee(x,_));let k=ee(P(i,n),P(ee(1,He(i)),u));return[k,k]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ps(this.activation),recurrentActivation:Ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Ap.className="GRUCell";Q.registerClass(Ap);var Gf=class extends mo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Ap(e),super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Gf.className="GRU";Q.registerClass(Gf);var bl=class extends yl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=Ms(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ms(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Hu([1,Fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hu([1,Fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Ze(e);let o=e[e.length-1];this.kernel=this.addWeight("kernel",[o,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;n=new(t=class extends lo{apply(l,u){let c=s.apply([a]),p=new Ku().apply([a]),m=s.apply([a*2]);return p_(p_(c,p),m)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return G(()=>{let o=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ma({ones:()=>tr(e),rate:this.dropout,training:o,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ma({ones:()=>tr(n),rate:this.recurrentDropout,training:o,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let m=Xn(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,i[0])),m=ee(m,Xn(n,this.recurrentKernel.read())),this.useBias&&(m=ao(m,this.bias.read()));let[f,d,h,g]=cr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=ee(P(u,s),P(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=P(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ps(this.activation),recurrentActivation:Ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};bl.className="LSTMCell";Q.registerClass(bl);var Wf=class extends mo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new bl(e),super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Wf.className="LSTM";Q.registerClass(Wf);var Sp=class extends yl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return G(()=>{e=e;let o=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(o.splice(0,i.stateSize.length)):n.push(o.splice(0,1));n.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];o=n[i],i===0?a=[e[0]].concat(o):a=[a[0]].concat(o),a=l.call(a,t),s.push(a.slice(1))}o=[];for(let i of s.slice().reverse())o.push(...i);return[a[0]].concat(o)})}build(e){Sg(e)&&(e=e[0]),e=e;let t;this.cells.forEach((o,n)=>{Rs(`RNNCell_${n}`,()=>{o.build(e),Array.isArray(o.stateSize)?t=o.stateSize[0]:t=o.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,o={}){let n=[];for(let s of t.cells)n.push(Qr(s,o));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.cells)t.push(...o.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return bf(e)}setWeights(e){let t=[];for(let o of this.cells){let n=o.weights.length,s=e.splice(n);for(let a=0;a<o.weights.length;++a)t.push([o.weights[a],s[a]])}_p(t)}};Sp.className="StackedRNNCells";Q.registerClass(Sp);function Ma(r){let{ones:e,rate:t,training:o=!1,count:n=1}=r,s=()=>Cg(e(),t),a=()=>ul(s,e,o);return!n||n<=1?Dt(a().clone()):Array(n).fill(void 0).map(a).map(l=>Dt(l.clone()))}var aK=function(r,e){var t={};for(var o in r)Object.prototype.hasOwnProperty.call(r,o)&&e.indexOf(o)<0&&(t[o]=r[o]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var n=0,o=Object.getOwnPropertySymbols(r);n<o.length;n++)e.indexOf(o[n])<0&&Object.prototype.propertyIsEnumerable.call(r,o[n])&&(t[o[n]]=r[o[n]]);return t};var G_=class extends mo{constructor(e){if(e.unroll)throw new Ne("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ne("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new St({ndim:5})]}call(e,t){return G(()=>{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return G(()=>{let{stateSize:t}=this.cell,o=e.shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)],a=gt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Io("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)];if(o[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>gt(s)):this.states_=[gt(s)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>gt(s)):this.states_[0]=gt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Dt(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:o,kernelSize:n,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=po(u,n[0],s,a[0],i[0]),m=po(c,n[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[o,p,m]:[p,m,o]]}};G_.className="ConvRNN2D";var Ep=class extends bl{constructor(e){let{filters:t,kernelSize:o,strides:n,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ut(this.filters,"filters"),this.kernelSize=gl(o,2,"kernelSize"),this.kernelSize.forEach(l=>Ut(l,"kernelSize")),this.strides=gl(n||1,2,"strides"),this.strides.forEach(l=>Ut(l,"strides")),this.padding=s||"valid",Jr(this.padding),this.dataFormat=a||"channelsLast",Rt(this.dataFormat),this.dilationRate=gl(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Ut(l,"dilationRate"))}build(e){var t;e=Ze(e);let o=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[o]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[o]}`);let n=e[o],s=4,a=this.kernelSize.concat([n,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends lo{apply(m,f){let d=u.apply([c]),h=Nr([c]),g=u.apply([c*2]);return pp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return G(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training||!1,n=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ma({ones:()=>tr(n),rate:this.dropout,training:o,count:i}));let l=this.dropoutMask,u=(J,ie,ue)=>!ie||!ie[ue]?J:P(ie[ue],J),c=u(n,l,0),p=u(n,l,1),m=u(n,l,2),f=u(n,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ma({ones:()=>tr(s),rate:this.recurrentDropout,training:o,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),w=u(s,d,3),b=3,[_,k,A,N]=cr(this.kernel.read(),i,b),[$,F,M,V]=this.useBias?cr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,$,this.padding),p=this.inputConv(p,k,F,this.padding),m=this.inputConv(m,A,M,this.padding),f=this.inputConv(f,N,V,this.padding);let[W,U,H,q]=cr(this.recurrentKernel.read(),i,b);h=this.recurrentConv(h,W),g=this.recurrentConv(g,U),x=this.recurrentConv(x,H),w=this.recurrentConv(w,q);let X=this.recurrentActivation.apply(ee(c,h)),oe=this.recurrentActivation.apply(ee(p,g)),Y=ee(P(oe,a),P(X,this.activation.apply(ee(m,x)))),re=P(this.recurrentActivation.apply(ee(f,w)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,o=aK(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},o,n)}inputConv(e,t,o,n){let s=Kr(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return o?ao(s,o,this.dataFormat):s}recurrentConv(e,t){return Kr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Ep.className="ConvLSTM2DCell";Q.registerClass(Ep);var Uf=class extends G_{constructor(e){let t=new Ep(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Uf.className="ConvLSTM2D";Q.registerClass(Uf);var Dp=class extends Pe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,o=[];for(let n=0;n<this.noiseShape.length;++n)o.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return o}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,s=this.getNoiseShape(o);return ul(()=>Cg(o,this.rate,s,this.seed),()=>o,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Dp.className="Dropout";Q.registerClass(Dp);var jf=class extends Dp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};jf.className="SpatialDropout1D";Q.registerClass(jf);var Hf=class extends Pe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ut(this.units,"units"),this.activation=Ms(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ot(e.kernelConstraint),this.biasConstraint=Ot(e.biasConstraint),this.kernelRegularizer=bt(e.kernelRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Ze(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Ze(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=bg(this.activation.getClassName()),s;return n!=null?s=Xn(o,this.kernel.read(),n,this.bias?this.bias.read():null):(s=Xn(o,this.kernel.read()),this.bias!=null&&(s=ao(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Ps(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),biasConstraint:Ft(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Hf.className="Dense";Q.registerClass(Hf);var qf=class extends Pe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Ze(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Kn(e,1)]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(this.dataFormat==="channelsFirst"&&o.rank>1){let n=[0];for(let s=2;s<o.rank;++s)n.push(s);n.push(1),o=o.transpose(n)}return t1(o)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};qf.className="Flatten";Q.registerClass(qf);var Kf=class extends Pe{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ms(e.activation)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.activation.apply(o)})}getConfig(){let e={activation:Ps(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Kf.className="Activation";Q.registerClass(Kf);var Xf=class extends Pe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return G(()=>(e=Fe(e),QT(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Xf.className="RepeatVector";Q.registerClass(Xf);var Yf=class extends Pe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let o="Total size of new array must be unchanged.",n=t.slice(),s=1,a=null;for(let l=0;l<n.length;++l){let u=n[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=Kn(e);if(a!==null){if(s===0||i%s!=0)throw new z(o);n[a]=i/s}else if(i!==s)throw new z(o);return n}computeOutputShape(e){let t=!1;for(let o=0;o<e.length;++o)if(this.isUnknown(e[o])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=o.shape,s=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return o.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Yf.className="Reshape";Q.registerClass(Yf);var Zf=class extends Pe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Lr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new St({ndim:this.dims.length+1})]}computeOutputShape(e){e=Ze(e);let t=e.slice();return this.dims.forEach((o,n)=>{t[n+1]=e[o]}),t}call(e,t){return je(Fe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Zf.className="Permute";Q.registerClass(Zf);var Jf=class extends Pe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let o=Fe(e),n=-1;return ol(Vn(o,this.maskValue),n)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=-1,s=!0,a=ol(Vn(o,this.maskValue),n,s);return o.mul(a.asType(o.dtype))})}};Jf.className="Masking";Q.registerClass(Jf);var Qf=class extends Pe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Ut(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ut(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=bt(e.embeddingsRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.embeddingsConstraint=Ot(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return G(()=>this.maskZero?(e=Fe(e),Vn(e,Ce(e))):null)}computeOutputShape(e){if(e=Ze(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let o=0;for(let n=0;n<t.length;++n){let s=t[n],a=e[n+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[o]=a),o++}}return[e[0],...t,this.outputDim]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e);return o.dtype!=="int32"&&(o=Fa(o,"int32")),vg(this.embeddings.read(),o.as1D()).reshape(Ze(this.computeOutputShape(o.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:vt(this.embeddingsInitializer),embeddingsRegularizer:st(this.embeddingsRegularizer),activityRegularizer:st(this.activityRegularizer),embeddingsConstraint:Ft(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Qf.className="Embedding";Q.registerClass(Qf);var wl=class extends Pe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ne}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let o=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let s=e[e.length-t.length+n],a=t[n];if(s==null||a==null||s<0||a<0)o.push(null);else if(s===1)o.push(a);else if(a===1)o.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));o.push(s)}}return o}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Ze(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=qn(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let o=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);o=this.computeElementwiseOpOutputShape(o,a)}let n=e.map(s=>s.length);e.indexOf(null)===-1&&qn(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return G(()=>{if(e=e,this.reshapeRequired){let o=[],n=e.map(s=>s.rank);if(n.indexOf(null)===-1){let s=Fs(n);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Oa(a,1);o.push(a)}return this.mergeFunction(o)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(Kn(c.slice(1))));f=je(f,[1,0]),f=f.reshape(m),o.push(f),s=!0}else if(u>1){let c=Lr(1,u).concat([0]);o.push(je(l,c)),s=!0}else o.push(l)}let a=this.mergeFunction(o),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=je(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Lr(0,i-1));a=je(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let s=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let o=[];for(let n of e)n!=null&&n[0]!==null&&o.push(n[0]);return o=qn(o),o.length===1?t=o.concat(t):t=[null].concat(t),t}computeMask(e,t){return G(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:ar(n,0));let o=t[0];for(let n=1;n<t.length-1;++n)o=hr(o,t[n]);return o})}},ed=class extends wl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return t})}};ed.className="Add";Q.registerClass(ed);var td=class extends wl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=P(t,e[o]);return t})}};td.className="Multiply";Q.registerClass(td);var rd=class extends wl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return P(1/e.length,t)})}};rd.className="Average";Q.registerClass(rd);var od=class extends wl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=Yr(t,e[o]);return t})}};od.className="Maximum";Q.registerClass(od);var nd=class extends wl{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=As(t,e[o]);return t})}};nd.className="Minimum";Q.registerClass(nd);var sd=class extends wl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let o=[];for(let n=0;n<e.length;++n){let s=e[n].slice();s.splice(this.axis,1);let a=!1;for(let i of o)if(y.arraysEqual(i,s)){a=!0;break}a||o.push(s)}if(o.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return G(()=>pp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,o=t[0].slice(),n=this.axis<0?o.length+this.axis:this.axis;for(let s of t.slice(1)){if(o[n]==null||s[n]==null){o[n]=null;break}o[n]+=s[n]}return o}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return G(()=>{let o=!0;if(t.forEach(a=>{if(a!=null){o=!1;return}}),o)return null;let n=[];for(let a=0;a<e.length;++a)t[a]==null?n.push(tr(e[a]).asType("bool")):t[a].rank<e[a].rank?n.push(ar(t[a],-1)):n.push(t[a]);let s=Ye(n,this.axis);return bu(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};sd.className="Concatenate";Q.registerClass(sd);function id(r,e){for(;r<0;)r+=e;return r}function lK(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Ne("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Ne("batchDot is not implemented for complex64-type Tensors yet.");let o=r.shape.length,n=e.shape.length;t==null&&(t=[o-1,n-2]);let s=t;return G(()=>{let a;if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;o>n?l=o+n-3:l=o-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var ad=class extends wl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],o=e[1];if(t.length>3||o.length>3)throw new Ne("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);if(t[n[0]]!==o[n[1]])throw new z(`Dimension incompatibility: ${t[n[0]]} !== ${o[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],o=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((s,a)=>id(s,e[a].shape.length)):n=[id(this.axes,t.shape.length),id(this.axes,o.shape.length)],this.normalize&&(t=wf(t,n[0]),o=wf(o,n[1])),lK(t,o,n)}interpretAxes(e,t){let o;return Array.isArray(this.axes)?o=this.axes:o=[id(this.axes,e.length),id(this.axes,t.length)],o}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),o=e[1].slice();if(t.length>3||o.length>3)throw new Ne("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);t.splice(n[0],1),o.splice(n[1],1),o.splice(0,1);let s=t.concat(o);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ad.className="Dot";Q.registerClass(ad);var ld=class extends Pe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e);return ul(()=>mp(o.shape,0,this.stddev).add(o),()=>o,t.training||!1)})}};ld.className="GaussianNoise";Q.registerClass(ld);var ud=class extends Pe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.rate>0&&this.rate<1?ul(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return o.mul(mp(o.shape,1,s))},()=>o,t.training||!1):o})}};ud.className="GaussianDropout";Q.registerClass(ud);var cd=class extends Pe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Fe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{if(this.rate<1&&this.rate>0){let o=this._getNoiseShape(e);return ul(()=>{let s=Fe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=io(Es(o),this.rate);u=Fa(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Fe(e),t.training||!1)}return e})}};cd.className="AlphaDropout";Q.registerClass(cd);function pd(r,e,t,o,n,s=.001){let a;if(r.rank===2)a=cw(r,e,t,o,n,s);else if(r.rank===3)a=pw(r,e,t,o,n,s);else if(r.rank===4)a=mw(r,e,t,o,n,s);else throw new Ne(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function uK(r,e,t,o,n=.001){return G(()=>{let s=Yc(r,o),a=s.mean,i=s.variance;return[pd(r,a,i,t,e,n),a,i]})}function cK(r,e,t,o,n=.001){return G(()=>{let s=Yc(r,o),a=s.mean,i=s.variance,l=[];for(let d of Lr(0,r.rank))o.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[pd(r,u,c,m,p,n),a,i]})}function pK(r,e,t,o,n=.001){return y.arraysEqual(o.slice().sort(),Lr(0,r.rank-1))?uK(r,e,t,o,n):cK(r,e,t,o,n)}var md=class extends Pe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ot(e.betaConstraint),this.gammaConstraint=Ot(e.gammaConstraint),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer)}build(e){e=Ze(e);let t=this.axis>=0?this.axis:this.axis+e.length,o=e[t];if(o==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new St({ndim:e.length,axes:{[t]:o}})];let n=[o];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return G(()=>{let o=t.training==null?!1:t.training,n=Fe(e),s=n.shape,a=s.length,i=Lr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=Un(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,Lr(0,a).slice(0,a-1)),m=()=>{if(p){let w=this.movingMean.read().reshape(u),b=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,k=this.scale?this.gamma.read().reshape(u):null;return pd(n,w,b,_,k,this.epsilon)}else return pd(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!o)return m();let[f,d,h]=pK(n,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(w,b,_)=>{G(()=>{let k=1-_,A=w.read(),N=A.sub(b).mul(k);w.write(A.sub(N))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),movingMeanInitializer:vt(this.movingMeanInitializer),movingVarianceInitializer:vt(this.movingVarianceInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer),betaConstraint:Ft(this.betaConstraint),gammaConstraint:Ft(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};md.className="BatchNormalization";Q.registerClass(md);var fd=class extends Pe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Ze(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==qn(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let o=this.axis.map(s=>e[s]),n=!0;this.scale?this.gamma=this.addWeight("gamma",o,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",o,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let o=Fe(e),n=o.shape,s=n.length;return G(()=>{let a=!0,{mean:i,variance:l}=Yc(o,this.axis,a),u=Un(1,s);for(let h of this.axis)u[h]=n[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(n[h]),d.push(1)):(f.push(1),d.push(n[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),pd(o,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};fd.className="LayerNormalization";Q.registerClass(fd);function mK(r,e,t){return G(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Zr()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let o;return t==="channelsFirst"?o=[[0,0],[0,0],e[0],e[1]]:o=[[0,0],e[0],e[1],[0,0]],Fr(r,o)})}var dd=class extends Pe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Zr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,o;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],o=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);o=e.padding[1]}this.padding=[t,o]}this.inputSpec=[new St({ndim:4})]}computeOutputShape(e){e=Ze(e);let t,o;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?o=e[3]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],e[1],t,o]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?o=e[2]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],t,o,e[3]])}call(e,t){return G(()=>mK(Fe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};dd.className="ZeroPadding2D";Q.registerClass(dd);function qg(r,e,t,o,n,s){return G(()=>{Rt(n),u_(s),Jr(o),t==null&&(t=[1,1]),o==null&&(o="valid"),n==null&&(n=Zr()),s==null&&(s="max"),r=Of(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Na(r,e,t,i):a=wa(r,e,t,i),n==="channelsFirst"&&(a=je(a,[0,3,1,2])),a})}function G1(r,e,t,o,n,s){return G(()=>{Rt(n),u_(s),Jr(o),t==null&&(t=[1,1,1]),o==null&&(o="valid"),n==null&&(n=Zr()),s==null&&(s="max"),r=L_(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=zm(r,e,t,i):a=Tm(r,e,t,i),n==="channelsFirst"&&(a=je(a,[0,4,1,2,3])),a})}var W_=class extends Pe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ut(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Jr(this.padding),this.inputSpec=[new St({ndim:3})]}computeOutputShape(e){e=Ze(e);let t=po(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return G(()=>{this.invokeCallHook(e,t),e=Oa(Fe(e),2);let o=this.poolingFunction(Fe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Co(o,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},hd=class extends W_{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Jr(n),qg(e,t,o,n,s,"max")}};hd.className="MaxPooling1D";Q.registerClass(hd);var gd=class extends W_{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Jr(n),qg(e,t,o,n,s,"avg")}};gd.className="AveragePooling1D";Q.registerClass(gd);var U_=class extends Pe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Jr(this.padding),this.inputSpec=[new St({ndim:4})]}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=po(t,this.poolSize[0],this.padding,this.strides[0]),o=po(o,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o]:[e[0],t,o,e[3]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},xd=class extends U_{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Jr(n),qg(e,t,o,n,s,"max")}};xd.className="MaxPooling2D";Q.registerClass(xd);var yd=class extends U_{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Jr(n),qg(e,t,o,n,s,"avg")}};yd.className="AveragePooling2D";Q.registerClass(yd);var j_=class extends Pe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Jr(this.padding),this.inputSpec=[new St({ndim:5})]}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=po(t,this.poolSize[0],this.padding,this.strides[0]),o=po(o,this.poolSize[1],this.padding,this.strides[1]),n=po(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o,n]:[e[0],t,o,n,e[4]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},bd=class extends j_{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Jr(n),G1(e,t,o,n,s,"max")}};bd.className="MaxPooling3D";Q.registerClass(bd);var wd=class extends j_{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Jr(n),G1(e,t,o,n,s,"avg")}};wd.className="AveragePooling3D";Q.registerClass(wd);var H_=class extends Pe{constructor(e){super(e);this.inputSpec=[new St({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ne}},_d=class extends H_{constructor(e){super(e||{})}call(e,t){return G(()=>{let o=Fe(e);return ht(o,1)})}};_d.className="GlobalAveragePooling1D";Q.registerClass(_d);var kd=class extends H_{constructor(e){super(e||{})}call(e,t){return G(()=>{let o=Fe(e);return ur(o,1)})}};kd.className="GlobalMaxPooling1D";Q.registerClass(kd);var q_=class extends Pe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new St({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ne}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},vd=class extends q_{call(e,t){return G(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?ht(o,[1,2]):ht(o,[2,3])})}};vd.className="GlobalAveragePooling2D";Q.registerClass(vd);var Cd=class extends q_{call(e,t){return G(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?ur(o,[1,2]):ur(o,[2,3])})}};Cd.className="GlobalMaxPooling2D";Q.registerClass(Cd);var K_=class extends Pe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,o={}){let n=t.layer,s=Qr(n,o);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},Id=class extends K_{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Ze(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Ze(e);let t=[e[0]].concat(e.slice(2)),o=this.layer.computeOutputShape(t),n=e[1];return[o[0],n].concat(o.slice(1))}call(e,t){return G(()=>(e=Fe(e),V_((a,i)=>[Fe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Id.className="TimeDistributed";Q.registerClass(Id);function fK(r){zi(qT,"BidirectionalMergeMode",r)}var dK="concat",Nd=class extends K_{constructor(e){super(e);let t=e.layer.getConfig(),o={};o.className=e.layer.getClassName(),o.config=t,this.forwardLayer=Qr(o),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=Qr(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?dK:e.mergeMode,fK(this.mergeMode),e.weights)throw new Ne("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,o=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,o)),this.backwardLayer.setWeights(e.slice(o))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let o,n,s;return this.returnState&&(s=t.slice(1)),o=t[0],o=o,this.mergeMode==="concat"?(o[o.length-1]*=2,n=[o]):this.mergeMode==null?n=[o,o.slice()]:n=[o],this.returnState?this.mergeMode==null?n.concat(s).concat(s.slice()):[o].concat(s).concat(s.slice()):gr(n)}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=B_(e,o,n,this.numConstants);if(e=s.inputs,o=s.initialState,n=s.constants,Array.isArray(e)&&(o=e.slice(1),e=e[0]),(o==null||o.length===0)&&n==null)return super.apply(e,t);let a=[],i=[];if(o!=null){let u=o.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=o,a.push(...o);let c=o.map(p=>new St({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(n!=null)throw new Ne("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof Br;for(let u of a)if(u instanceof Br!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return G(()=>{let o=t.initialState,n,s;if(o==null)n=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=o.slice(0,o.length/2),u=o.slice(o.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(n)&&(a=n.slice(1).concat(s.slice(1))),n=n[0],s=s[0]),this.returnSequences&&(s=qt(s,1));let i;return this.mergeMode==="concat"?i=pp([n,s]):this.mergeMode==="sum"?i=ee(n,s):this.mergeMode==="ave"?i=P(.5,ee(n,s)):this.mergeMode==="mul"?i=P(n,s):this.mergeMode==null&&(i=[n,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Rs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Rs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let o;if(this.returnSequences?this.mergeMode==null?o=[t,t]:o=t:this.mergeMode==null?o=[null,null]:o=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(o)?o.concat(s).concat(s):[o].concat(s).concat(s)}else return o}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let o=Qr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ne("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=o,new e(n)}};Nd.className="Bidirectional";Q.registerClass(Nd);function hK(r){return new Bi(r)}function gK(r){return new Df(r)}function xK(r){return new Tf(r)}function yK(r){return new Af(r)}function bK(r){return new Ef(r)}function wK(r){return new Rf(r)}function _K(r){return new $f(r)}function kK(r){return new tc(r)}function vK(r){return new xl(r)}function CK(r){return new Pf(r)}function IK(r){return new ec(r)}function NK(r){return new Mf(r)}function SK(r){return new Lf(r)}function TK(r){return new zf(r)}function AK(r){return new Bf(r)}function EK(r){return new Kf(r)}function DK(r){return new Hf(r)}function $K(r){return new Dp(r)}function RK(r){return new jf(r)}function FK(r){return new qf(r)}function OK(r){return new Xf(r)}function PK(r){return new Yf(r)}function MK(r){return new Zf(r)}function LK(r){return new Qf(r)}function zK(r){return new ed(r)}function BK(r){return new rd(r)}function VK(r){return new sd(r)}function GK(r){return new od(r)}function WK(r){return new nd(r)}function UK(r){return new td(r)}function jK(r){return new ad(r)}function HK(r){return new md(r)}function qK(r){return new fd(r)}function KK(r){return new dd(r)}function Y_(r){return new gd(r)}function XK(r){return Y_(r)}function YK(r){return Y_(r)}function Z_(r){return new yd(r)}function ZK(r){return Z_(r)}function JK(r){return Z_(r)}function J_(r){return new wd(r)}function QK(r){return J_(r)}function e6(r){return J_(r)}function t6(r){return new _d(r)}function r6(r){return new vd(r)}function W1(r){return new kd(r)}function U1(r){return new Cd(r)}function j1(r){return new hd(r)}function H1(r){return new xd(r)}function o6(r){return new bd(r)}function n6(r){return new Gf(r)}function s6(r){return new Ap(r)}function i6(r){return new Wf(r)}function a6(r){return new bl(r)}function l6(r){return new Vf(r)}function u6(r){return new Tp(r)}function c6(r){return new Uf(r)}function p6(r){return new Ep(r)}function m6(r){return new mo(r)}function f6(r){return new Sp(r)}function d6(r){return new Nd(r)}function h6(r){return new Id(r)}var g6=W1,x6=U1,y6=j1,b6=H1;function w6(r){return new ld(r)}function _6(r){return new ud(r)}function k6(r){return new cd(r)}function v6(r){return new Jf(r)}var Q_={};Je(Q_,{MAPE:()=>F6,MSE:()=>M6,binaryAccuracy:()=>C6,binaryCrossentropy:()=>I6,categoricalAccuracy:()=>S6,categoricalCrossentropy:()=>T6,cosineProximity:()=>D6,mape:()=>O6,meanAbsoluteError:()=>$6,meanAbsolutePercentageError:()=>R6,meanSquaredError:()=>P6,mse:()=>L6,precision:()=>A6,recall:()=>E6,sparseCategoricalAccuracy:()=>N6});function C6(r,e){return vf(r,e)}function I6(r,e){return Pg(r,e)}function N6(r,e){return Mg(r,e)}function S6(r,e){return Cf(r,e)}function T6(r,e){return If(r,e)}function A6(r,e){return h_(r,e)}function E6(r,e){return f1(r,e)}function D6(r,e){return _f(r,e)}function $6(r,e){return kp(r,e)}function R6(r,e){return fl(r,e)}function F6(r,e){return fl(r,e)}function O6(r,e){return fl(r,e)}function P6(r,e){return Gi(r,e)}function M6(r,e){return Gi(r,e)}function L6(r,e){return Gi(r,e)}var ek={};Je(ek,{modelFromJSON:()=>D1});var tk={};Je(tk,{l1:()=>B6,l1l2:()=>z6,l2:()=>V6});function z6(r){return new Ju(r)}function B6(r){return M1(r)}function V6(r){return L1(r)}var Kg=class extends ml{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof No))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Xg(r,e){return r<e}function q1(r,e){return r>e}var Yg=class extends Kg{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ne("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Xg:this.mode==="max"?this.monitorFunc=q1:this.monitor.indexOf("acc")!==-1?this.monitorFunc=q1:this.monitorFunc=Xg,this.monitorFunc===Xg&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Xg?Infinity:-Infinity}async onEpochEnd(e,t){await Vi(t);let o=this.getMonitorValue(t);o!=null&&(this.monitorFunc(o-this.minDelta,this.best)?(this.best=o,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function G6(r){return new Yg(r)}var K1={earlyStopping:G6};var Yn;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Yn||(Yn={}));var X1;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(X1||(X1={}));var rk={};function Y1(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};rk[r]=t}function Zg(r){return rk[r]}function Z1(r){delete rk[r]}function C(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return xr(e.inputNames[s.inputIndexStart],t,o,n);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>xr(m,t,o,n));let u=xr(e.inputNames.slice(i)[0],t,o,n),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function xr(r,e,t,o){let[n,s]=eo(r);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[Jg(n,i)]);return a!==void 0?e[Jg(n,a)][s]:void 0}function J1(r,e,t){return e[Jg(r,t.currentContextId)]}function Ls(r,e){let[t,o]=eo(r);return[Jg(t,e&&e.currentContextId),o]}function Jg(r,e){return e?`${r}-${e}`:r}function eo(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function Sd(r,e,t){let o=C("pad",r,e,t);if(o==="explicit"){o=C("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function zs(r){return r.kept?r:Oo(r)}var ok={};Je(ok,{json:()=>W6});var W6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var nk={};Je(nk,{json:()=>U6});var U6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var sk={};Je(sk,{json:()=>j6});var j6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var ik={};Je(ik,{json:()=>H6});var H6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var ak={};Je(ak,{json:()=>q6});var q6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var lk={};Je(lk,{json:()=>K6});var K6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var uk={};Je(uk,{json:()=>X6});var X6=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var ck={};Je(ck,{json:()=>Y6});var Y6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var pk={};Je(pk,{json:()=>Z6});var Z6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var mk={};Je(mk,{json:()=>J6});var J6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var fk={};Je(fk,{json:()=>Q6});var Q6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var dk={};Je(dk,{json:()=>e5});var e5=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var hk={};Je(hk,{json:()=>t5});var t5=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var gk={};Je(gk,{json:()=>r5});var r5=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var xk={};Je(xk,{json:()=>o5});var o5=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var yk={};Je(yk,{json:()=>n5});var n5=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var bk={};Je(bk,{json:()=>s5});var s5=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var Qg=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[ok,nk,sk,ik,ak,lk,uk,fk,mk,ck,dk,hk,gk,xk,yk,bk,pk],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[w]=Ls(x);g.inputs.push(i[w]),i[w].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Ls(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Ls(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=n;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:n,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=Zg(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=ex(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ex(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=ax(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ax(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=rx(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=rx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=ix(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ix(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=tx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=tx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=ux(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ux(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=sx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=sx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=lx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=lx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=ox(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ox(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=nx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=nx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=Q1(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Q1(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&n.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Ls(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:wk(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Ls(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Ls(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function i5(r){let e=j().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function eA(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):i5(r);return e?t:t.toLowerCase()}function ex(r,e,t,o=!1){let n=r[e];return n!=null?eA(n.s,o):t}function tx(r,e,t){let o=r[e];return o?o.b:t}function rx(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function wk(r){switch(typeof r=="string"&&(r=Yn[r]),r){case Yn.DT_FLOAT:return"float32";case Yn.DT_INT32:case Yn.DT_INT64:case Yn.DT_INT8:case Yn.DT_UINT8:return"int32";case Yn.DT_BOOL:return"bool";case Yn.DT_DOUBLE:return"float32";case Yn.DT_STRING:return"string";default:return null}}function Q1(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function ox(r,e,t){let o=r[e];return o&&o.type?wk(o.type):t}function nx(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>wk(n)):t}function tA(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function sx(r,e,t){let o=r[e];return o&&o.shape?tA(o.shape):t}function ix(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function ax(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>eA(s,o)):t}function lx(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>tA(n)):t}function ux(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var _k=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return xr(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return xr(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return rx(this.node.rawAttrs,e,t);if(o.s!=null)return ex(this.node.rawAttrs,e,t);if(o.b!=null)return tx(this.node.rawAttrs,e,t);if(o.shape!=null)return sx(this.node.rawAttrs,e,t);if(o.type!=null)return ox(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return ix(this.node.rawAttrs,e,t);if(o.list.s!=null)return ax(this.node.rawAttrs,e,t);if(o.list.shape!=null)return lx(this.node.rawAttrs,e,t);if(o.list.b!=null)return ux(this.node.rawAttrs,e,t);if(o.list.type!=null)return nx(this.node.rawAttrs,e,t)}return t}};var rA=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[ee(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[iw(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[Vm(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[P(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[me(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[Rm(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[yu(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[ce(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[As(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[Yr(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Or(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[zu(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oA=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Nt(C("x",r,e,t))];case"Acos":return[wm(C("x",r,e,t))];case"Acosh":return[_m(C("x",r,e,t))];case"Asin":return[vm(C("x",r,e,t))];case"Asinh":return[Cm(C("x",r,e,t))];case"Atan":return[Im(C("x",r,e,t))];case"Atan2":return[Nm(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[Sm(C("x",r,e,t))];case"Ceil":return[Am(C("x",r,e,t))];case"Complex":return[ko(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[ka(C("x",r,e,t))];case"Cosh":return[Cu(C("x",r,e,t))];case"Elu":return[Ns(C("x",r,e,t))];case"Erf":return[Fm(C("x",r,e,t))];case"Exp":return[Zt(C("x",r,e,t))];case"Expm1":return[Om(C("x",r,e,t))];case"Floor":return[Ss(C("x",r,e,t))];case"Log":return[lr(C("x",r,e,t))];case"Log1p":return[Tu(C("x",r,e,t))];case"Imag":return[Nu(C("x",r,e,t))];case"Neg":return[He(C("x",r,e,t))];case"Reciprocal":return[Gm(C("x",r,e,t))];case"Real":return[il(C("x",r,e,t))];case"Relu":return[Sr(C("x",r,e,t))];case"Round":return[Wm(C("x",r,e,t))];case"Selu":return[Ou(C("x",r,e,t))];case"Sigmoid":return[qr(C("x",r,e,t))];case"Sin":return[Pu(C("x",r,e,t))];case"Sign":return[jm(C("x",r,e,t))];case"Sinh":return[Mu(C("x",r,e,t))];case"Softplus":return[Ts(C("x",r,e,t))];case"Sqrt":return[xt(C("x",r,e,t))];case"Square":return[Oe(C("x",r,e,t))];case"Tanh":return[Fi(C("x",r,e,t))];case"Tan":return[Xm(C("x",r,e,t))];case"ClipByValue":return[ir(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[Ru(C("x",r,e,t))];case"Rsqrt":return[Fu(xr(r.inputNames[0],e,t))];case"Prod":return[Du(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[Ca(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[Ta(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function So(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let o=0;o<r.length;o++){let n=r[o],s=e[o];y.assert(n<0||s<0||n===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function nA(r){return!(typeof r=="number"||r.some(e=>e<0))}function $p(r,e,t){let o=cx(r,t),n=!nA(o);if(n&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${o}`);if(n&&e.forEach(s=>{o=cx(s.shape,o)}),!nA(o))throw new Error(`Non-fully-defined elementShape: ${o}`);return o}function cx(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let o=0;o<r.length;++o){let n=r[o],s=e[o];if(n>=0&&s>=0&&n!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[o]=n>=0?n:s}return t}var kk=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Dt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),So(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,Dt(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Rr([],[0].concat(this.elementShape));let o=this.readMany(e);return So(this.elementShape,o[0].shape,"TensorArray shape mismatch: "),Vt(o,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Rr([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let o=this.readMany(t);return So(this.elementShape,o[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${o[0].shape})`),Ye(o,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let o=Math.max(...e);if(!this.dynamicSize&&o>=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,pr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(l=>(o+=l,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];G(()=>{t=L(t,[1,o,s]);for(let l=0;l<e.length;++l){let u=l===0?0:n[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Re(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var rc=class{constructor(e,t,o,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=o,e!=null&&e.forEach(s=>{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);So(t,s.shape,"TensorList shape mismatch: "),Dt(s)}),this.idTensor=le(0),this.maxNumElements=n,Dt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new rc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);So(e,this.elementShape,"TensorList shape mismatch: ");let n=$p(this.elementShape,this.tensors,e);return G(()=>{let s=this.tensors.map(a=>L(a,n));return Vt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=$p(this.elementShape,this.tensors,e),n=this.tensors.pop();return So(n.shape,e,"TensorList shape mismatch: "),L(n,o)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(So(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Dt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);So(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=$p(this.elementShape,this.tensors,t);return L(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);So(this.elementShape,t.shape,"TensorList shape mismatch: "),Dt(t),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);So(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=$p(this.elementShape,this.tensors,o);return e.length===0?Rr([],[0].concat(n)):G(()=>{let s=e.map(a=>L(this.tensors[a],n));return Vt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);So(this.elementShape,t,"TensorList shape mismatch: ");let o=$p(this.elementShape,this.tensors,t);return this.size()===0?Rr([],[0].concat(o)):G(()=>{let n=this.tensors.map(s=>L(s,o));return Ye(n,0)})}};function sA(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);So(n,e,"TensorList shape mismatch: ");let s=pr(r);return new rc(s,e,o)}function iA(r,e,t){return new rc([],r,e,t)}function aA(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new rc([],t,r.dtype,o),a=pr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function lA(r,e,t){let o=0,n=e.map(c=>(o+=c,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${o}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=cx(s,t),i=o===0?0:r.size/o,l=G(()=>{let c=[];r=L(r,[1,o,i]);for(let p=0;p<e.length;++p){let m=p===0?0:n[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Re(r,f,d),a)}return r.dispose(),c}),u=new rc([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var uA=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let o=C("thenBranch",r,e,t),n=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=C("body",r,e,t),n=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let o=C("pred",r,e,t);return[zs(o)]}case"Switch":{let o=C("pred",r,e,t),n=C("data",r,e,t);return n.kept||(n=zs(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>xr(n,e,t)!==void 0);if(o){let n=xr(o,e,t);return[zs(n)]}return}case"Enter":{let o=C("frameName",r,e,t),n=C("tensor",r,e,t);return t.enterFrame(o),[zs(n)]}case"Exit":{let o=C("tensor",r,e,t);return t.exitFrame(),[zs(o)]}case"NextIteration":{let o=C("tensor",r,e,t);return t.nextIteration(),[zs(o)]}case"TensorArrayV3":{let o=C("size",r,e,t),n=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new kk(u,n,o,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=C("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=C("tensorArrayId",r,e,t),n=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[le(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=C("indices",r,e,t),n=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=aA(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=C("elementShape",r,e,t),n=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=iA(o,n,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let o=C("tensorListId",r,e,t),n=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=sA(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let o=C("tensorListId",r,e,t),n=t.getTensorList(o.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=C("tensorListId",r,e,t),n=C("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=lA(o,s,n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function cA(r,e,t){let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=o==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=Sd(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:n,leakyreluAlpha:h}}var pA=(r,e,t)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[ku(C("x",r,e,t),C("filter",r,e,t),o,n,s,a)]}case"Conv2D":{let o=C("strides",r,e,t),n=Sd(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Kr(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=cA(r,e,t);return[Gn.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=cA(r,e,t);return[Gn.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,e,t),n=C("strides",r,e,t),s=Sd(r,e,t);return[vu(C("x",r,e,t),C("filter",r,e,t),o,[n[1],n[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,e,t),n=Sd(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[Is(C("input",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,a,[s[1],s[2]])]}case"Conv3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Em(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2],o[3]],n,s,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[wa(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Na(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPoolWithArgmax":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=Aw(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n,a);return[i,l]}case"AvgPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Tm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"MaxPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[zm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"Dilation2D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dilations",r,e,t),a=o[1],i=o[2],l=s[1],u=s[2];return[$m(C("x",r,e,t),C("filter",r,e,t),[a,i],n,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var mA=(r,e,t)=>{switch(r.op){case"Fill":{let o=C("shape",r,e,t),n=C("dtype",r,e,t),s=C("value",r,e,t);return[va(o,s,n)]}case"LinSpace":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("num",r,e,t);return[vw(o,n,s)]}case"Multinomial":{let o=C("logits",r,e,t),n=C("numSamples",r,e,t),s=C("seed",r,e,t);return[Ew(o,n,s)]}case"OneHot":{let o=C("indices",r,e,t),n=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[Cs(o,n,s,a)]}case"Ones":return[Nr(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[tr(C("x",r,e,t))];case"RandomUniform":return[Es(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("step",r,e,t);return[Jc(o,n,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let o=C("shape",r,e,t),n=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[Bu(o,n,s,C("dtype",r,e,t),a)]}case"Zeros":return[gt(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ce(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function vk(r,e,t){let o=C("boxes",r,e,t),n=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var fA=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=vk(r,e,t),u=await $s.nonMaxSuppressionWithScoreAsync(o,n,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=vk(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await $s.nonMaxSuppressionPaddedAsync(o,n,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=vk(r,e,t);return[await $s.nonMaxSuppressionAsync(o,n,s,a,i)]}case"Where":{let o=ne(C("condition",r,e,t),"bool"),n=[await Jm(o)];return o.dispose(),n}case"ListDiff":return Bw(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var dA=(r,e,t)=>{switch(r.op){case"TopKV2":{let o=C("x",r,e,t),n=C("k",r,e,t),s=C("sorted",r,e,t),a=Ym(o,n,s);return[a.values,a.indices]}case"Unique":{let o=C("x",r,e,t),n=ep(o);return[n.values,n.indices]}case"UniqueV2":{let o=C("x",r,e,t),n=C("axis",r,e,t),s=ep(o,n);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var hA=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let o=C("default",r,e,t);return[xr(r.name,e,t)||o];case"Placeholder":return[xr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[zs(u)]}case"IdentityN":return C("x",r,e,t).map(u=>zs(u));case"Snapshot":let n=C("x",r,e,t);return[zs(n)];case"Shape":return[Gt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>Gt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Ck=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Dt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return le(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),G(()=>{let n=pr(t),s=o.length,a=n.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=o[i],u=n[i];Dt(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return G(()=>{let n=[];for(let s=0;s<o.length;s++){let a=o[s],i=this.findWithDefault(a,t);n.push(i)}return Vt(n)})}findWithDefault(e,t){let o=this.tensorMap.get(e);return o!=null?o:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var gA=async(r,e,t,o)=>{switch(r.op){case"HashTable":case"HashTableV2":{let n=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new Ck(n,s);return o.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let n=C("tableHandle",r,e,t,o);return[o.getHashTableById(n.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var xA=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[$s.resizeBilinear(o,[n[0],n[1]],s,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[$s.resizeNearestNeighbor(o,[n[0],n[1]],s,a)]}case"CropAndResize":{let o=C("image",r,e,t),n=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[$s.cropAndResize(o,n,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var yA=(r,e,t)=>{switch(r.op){case"Equal":return[vo(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[Vn(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[er(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[io(C("a",r,e,t),C("b",r,e,t))];case"Less":return[Su(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[zo(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[hr(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[Ia(C("a",r,e,t))];case"LogicalOr":return[Eu(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[$t(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var bA=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[je(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[Gn.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:n,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var wA=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ln(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[Ln(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[Pm(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[Aa(C("x",r,e,t))];case"LogSoftmax":return[Au(C("x",r,e,t))];case"SparseToDense":return[Qm(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var _A=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ur(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ht(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Oi(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ge(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[bu(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ol(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[nl(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[km(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Du(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Iu(C("x",r,e,t),a,i,l)]}case"Bincount":let o=C("x",r,e,t),n=C("weights",r,e,t),s=C("size",r,e,t);return[fw(o,n,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[yw(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var kA=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,e,t),n=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,o),[Ye(s,n)]}case"Gather":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[zn(o,ne(n,"int32"),0)]}case"GatherV2":{let o=C("axis",r,e,t),n=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[zn(s,ne(a,"int32"),o,n)]}case"Reverse":{let o=C("dims",r,e,t),n=[];for(let a=0;a<o.length;a++)o[a]&&n.push(a);let s=C("x",r,e,t);return[qt(s,n)]}case"ReverseV2":{let o=C("axis",r,e,t),n=C("x",r,e,t);return[qt(n,o)]}case"Slice":{let o=C("begin",r,e,t),n=C("size",r,e,t);return[Re(C("x",r,e,t),o,n)]}case"StridedSlice":{let o=C("begin",r,e,t),n=C("end",r,e,t),s=C("strides",r,e,t),a=C("beginMask",r,e,t),i=C("endMask",r,e,t),l=C("ellipsisMask",r,e,t),u=C("newAxisMask",r,e,t),c=C("shrinkAxisMask",r,e,t),p=C("x",r,e,t);return[Km(p,o,n,s,a,i,l,u,c)]}case"Pack":return G(()=>{let o=C("axis",r,e,t),n=C("tensors",r,e,t),s=n[0].shape,a=Co(n[0]).shape,i=n.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(Co(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Vt(i,o)]});case"Unpack":{let o=C("axis",r,e,t),n=C("tensor",r,e,t);return pr(n,o)}case"Tile":{let o=C("reps",r,e,t);return[Lo(C("x",r,e,t),o)]}case"Split":case"SplitV":{let o=C("axis",r,e,t),n=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return cr(s,n,o)}case"ScatterNd":{let o=C("indices",r,e,t),n=C("values",r,e,t),s=C("shape",r,e,t);return[Ww(o,n,s)]}case"GatherNd":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[Uw(o,n)]}case"SparseToDense":{let o=C("sparseIndices",r,e,t),n=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[Qm(o,s,n,s.dtype===a.dtype?a:ne(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vA=(r,e,t)=>{switch(r.op){case"FFT":return[Ea(C("x",r,e,t))];case"IFFT":return[Pi(C("x",r,e,t))];case"RFFT":return[Da(C("x",r,e,t))];case"IRFFT":return[Lu(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var CA=(r,e,t)=>{switch(r.op){case"Cast":return[ne(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let o=C("axis",r,e,t);return[ar(C("x",r,e,t),o)]}case"Squeeze":{let o=C("axis",r,e,t);return[Co(C("x",r,e,t),o)]}case"Reshape":return[L(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[Bm(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[Fr(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let o=C("blockShape",r,e,t),n=C("paddings",r,e,t);return[Sa(C("x",r,e,t),o,n)]}case"BatchToSpaceND":{let o=C("blockShape",r,e,t),n=C("crops",r,e,t);return[_a(C("x",r,e,t),o,n)]}case"DepthToSpace":{let o=C("blockSize",r,e,t),n=C("dataFormat",r,e,t).toUpperCase();return[Dm(C("x",r,e,t),o,n)]}case"BroadcastTo":return[sl(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ik(r,e,t,o){let n=((s,a,i)=>{switch(s.category){case"arithmetic":return G(()=>rA(s,a,i));case"basic_math":return G(()=>oA(s,a,i));case"control":return uA(s,a,i);case"convolution":return G(()=>pA(s,a,i));case"creation":return G(()=>mA(s,a,i));case"dynamic":return fA(s,a,i);case"evaluation":return G(()=>dA(s,a,i));case"image":return G(()=>xA(s,a,i));case"graph":return G(()=>hA(s,a,i));case"logical":return G(()=>yA(s,a,i));case"matrices":return G(()=>bA(s,a,i));case"normalization":return G(()=>wA(s,a,i));case"reduction":return G(()=>_A(s,a,i));case"slice_join":return G(()=>kA(s,a,i));case"spectral":return G(()=>vA(s,a,i));case"transformation":return G(()=>CA(s,a,i));case"hash_table":return gA(s,a,i,o);case"custom":let l=Zg(s.op);if(l&&l.customExecutor)return l.customExecutor(new _k(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(n)?n.then(s=>[].concat(s)):[].concat(n)}var px=class{constructor(e={},t={},o={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let o=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(o))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Sk(r,e,t,o){let n=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>eo(m)[0]),c=[];o!=null&&(c=o.map(m=>eo(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((Nk(m)||a5(m)||l5(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>n.has(f))),n.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function IA(r,e,t){let{usedNodes:o,inputs:n}=t,s=[],a=Object.keys(n).map(c=>eo(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{o.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{o.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{o.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&o.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var u5=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],c5=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],p5=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Nk(r){return u5.indexOf(r.op)>=0}function a5(r){return c5.indexOf(r.op)>=0}function l5(r){return p5.indexOf(r.op)>=0}var Rp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new Rp(e.functions[o],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let o=Sk(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${n}]`)}return IA(this.graph,this.weightMap,o)}execute(e,t){e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(p=>this.graph.nodes[eo(p)[0]]),s=t.map(p=>eo(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(n,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return G(()=>{let p=new px(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=eo(h),w=[];w[x]=e[h],m[g]=w});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=Ik(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>xr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(o[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=J1(l.name,o,n);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,o=!1,n={},s={}){o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new px(this.weightMap,n,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,o),l=t.map(m=>xr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(b=>this.graph.nodes[eo(b)[0]]),i=o.map(b=>eo(b)[0]),l=i.map(b=>this.graph.nodes[b]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=Sk(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[_,k]=eo(b),A=[];A[k]=e[b],d[_]=A});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let b=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(b)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let w=l.filter(b=>!Nk(b)&&!xr(b.name,d,t)).map(b=>b.name);if(w.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${w}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${b}`)}return d}processStack(e,t,o,n,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();o.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,n,o)&&([m]=Ls(p.node.name,o)),n[p.node.name]==null){let f=Ik(p.node,n,o,this._resourceManager);m||([m]=Ls(p.node.name,o));let d=o.currentContext;y.isPromise(f)?c.push(f.then(h=>(n[m]=h,o.currentContext=d,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u),h))):(n[m]=f,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u))}else this.processChildNodes(p.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[l]=Ls(i.name,o);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!xr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!xr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=eo(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){let t={};for(let o in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[o]!=null){let n=this._signature.inputs[o];t[n.name]=e[o]}else t[o]=e[o];return t}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=eo(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[o]=eo(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var Tk=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var m5="?tfjs-format=file",f5="model.json",mx=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Tk}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ir.browserHTTPRequest(e,this.loadOptions);else{let t=Ir.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ir.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,o;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?o=this.artifacts.userDefinedMetadata.signature:o=this.artifacts.signature,this.signature=o,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Ir.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Rp(Qg.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=Qg.Instance.transformGraph(e.modelInitializer);this.initializer=new Rp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let o=Ir.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,o,n)=>(t[o]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function NA(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${f5}${m5}`);let t=new mx(r,e);return await t.load(),t}var fx="3.3.0";var Wk={};Je(Wk,{CSVDataset:()=>$d,Dataset:()=>Ui,FileDataSource:()=>Md,TextLineDataset:()=>Ed,URLDataSource:()=>Ld,array:()=>lE,csv:()=>yE,func:()=>bE,generator:()=>wE,microphone:()=>kE,version_data:()=>_x,webcam:()=>_E,zip:()=>uE});var aE=Ac(Ok());var HA=Ac(Ok());function VA(r,e){return hx(r,e)}function hx(r,e,t=new Map,o=new Set){if(r==null)return null;if(o.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(n.recurse)if(_l(r)){let s=Array.isArray(r)?[]:{};o.add(r);for(let a in r){let i=r[a],l=hx(i,e,t,o);s[a]=l}return o.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,n.value),n.value}function WA(r,e=Pk){return GA(r,e)}function GA(r,e,t=new Set){let o=r[0];if(t.has(o))throw new Error("Circular references are not supported.");let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(n.recurse)if(_l(o)){let s=Array.isArray(o)?[]:{};t.add(o);for(let a in o){let i=r.map(u=>u[a]),l=GA(i,e,t);s[a]=l}return t.delete(o),s}else throw new Error(`Can't recurse into non-iterable type: ${o}`);else return n.value}function Pk(r){return r===null?null:_l(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function gx(r,e){let t=new Map;hx(r,e,t);for(let n of Array.from(t.keys())){let s=t.get(n);if(y.isPromise(s)){let a=await s;t.set(n,a)}}return hx(r,e,t)}function _l(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function UA(r){return r==null||w5(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||y.isTypedArray(r)}function w5(r){return r===null||typeof r!="object"&&typeof r!="function"}function jA(r){return VA(r,_5)}function _5(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:_l(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var Td=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),o=this.get(t);return this.set(t,this.pop()),o}};var Fp=class extends Td{constructor(){super(Fp.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),o=this.length();for(let n=0;n<o;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=o}};Fp.INITIAL_CAPACITY=32;function Mk(r){return new qA(r)}function Ad(r){return new KA(r)}function XA(r,e){return new Lk(r,e)}function ZA(r,e=La.FAIL){return new YA(r,e)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],o=await e.next();for(;!o.done;)t.push(o.value),o=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),o=e(t.value);for(;!t.done&&o;)t=await this.next(),o=e(t.value)}handleErrors(e){return new nE(this,e)}filter(e){return new rE(this,e)}map(e){return new oE(this,e)}mapAsync(e){return new zk(this,e)}serialMapAsync(e){return new zk(this,e).serial()}flatmap(e){return new sE(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new tE(this,e,t)}columnMajorBatch(e,t=!0,o=Pk){return this.rowMajorBatch(e,t).map(s=>WA(s,o))}concatenate(e,t){return new Lk(Mk([this,e]),t)}take(e){return e<0||e==null?this:new eE(this,e)}skip(e){return e<0||e==null?this:new QA(this,e)}prefetch(e){return new Bk(this,e)}shuffle(e,t){return new iE(this,e,t)}serial(){return new JA(this)}},qA=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:jA(e),done:!1}}},KA=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},JA=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},QA=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Te(e.value)}return this.upstream.next()}},eE=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},tE=class extends Kt{constructor(e,t,o=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=o,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},rE=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},oE=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Mn.getTensorsInContainer(e.value),o=this.transform(e.value),n=Mn.getTensorsInContainer(o);for(let s of t)Mn.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},nE=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},zk=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Mn.getTensorsInContainer(e.value),o=await this.transform(e.value),n=Mn.getTensorsInContainer(o);for(let s of t)Mn.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},Op=class extends Kt{constructor(){super();this.outputQueue=new Fp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},sE=class extends Op{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Mn.getTensorsInContainer(e.value),o=this.transform(e.value),n=Mn.getTensorsInContainer(o);this.outputQueue.pushAll(o);for(let s of t)Mn.isTensorInList(s,n)||s.dispose();return!0}},Lk=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let o=await this.moreIterators.next();if(o.done)return{value:null,done:!0};this.iterator=o.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},La;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(La||(La={}));var YA=class extends Kt{constructor(e,t=La.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,o=0;function n(a){return a instanceof Kt?{value:a.next().then(l=>(t++,l.done&&o++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await gx(this.iterators,n);if(t===o)return{value:null,done:!0};if(o>0)switch(this.mismatchMode){case La.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case La.SHORTEST:return{value:null,done:!0};case La.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Bk=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Td(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},iE=class extends Bk{constructor(e,t,o){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=HA.alea(o||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var Ui=class{constructor(){this.size=null}batch(e,t=!0){let o=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),fo(async()=>(await o.iterator()).columnMajorBatch(e,t,k5),n)}concatenate(e){let t=this,o;return this.size===Infinity||e.size===Infinity?o=Infinity:this.size!=null&&e.size!=null?o=this.size+e.size:o=null,fo(async()=>(await t.iterator()).concatenate(await e.iterator()),o)}filter(e){let t=this,o;return this.size===Infinity?o=Infinity:o=null,fo(async()=>(await t.iterator()).filter(n=>G(()=>e(n))),o)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return fo(async()=>(await t.iterator()).map(o=>G(()=>e(o))),this.size)}mapAsync(e){let t=this;return fo(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return fo(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,o;return this.size!=null&&e>0?o=this.size*e:e===0?o=0:this.size!=null&&(e===void 0||e<0)?o=Infinity:o=null,fo(async()=>{let n=Ad(async()=>({value:await t.iterator(),done:!1}));return XA(n.take(e))},o)}skip(e){let t=this,o;return this.size!=null&&e>=0&&this.size>=e?o=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?o=0:o=null,fo(async()=>(await t.iterator()).skip(e),o)}shuffle(e,t,o=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,s=aE.alea(t||y.now().toString());return fo(async()=>{let a=s.int32();return o&&(a+=s.int32()),(await n.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,o;return this.size!=null&&this.size>e?o=e:this.size!=null&&this.size<=e?o=this.size:o=null,fo(async()=>(await t.iterator()).take(e),o)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ui.MAX_BUFFER_SIZE=1e4;function fo(r,e=null){return new class extends Ui{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function lE(r){return fo(async()=>Mk(r),r.length)}function uE(r){if(!_l(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return fo(async()=>{let t=await gx(r,o=>{if(o instanceof Ui)return{value:o.iterator(),recurse:!1};if(_l(o))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return ZA(t,La.SHORTEST)},e)}function k5(r){if(r===null)return null;let e=r[0];return UA(e)?{value:v5(r),recurse:!1}:{value:null,recurse:!0}}function v5(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Vt(r):Rr(r)}var Ed=class extends Ui{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n))}};var xx='"',Dd=Symbol("out"),cE=Symbol("field"),yx=Symbol("quote"),Vk=Symbol("quoteafterquote"),pE=Symbol("quoteinquote"),$d=class extends Ui{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Ed(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,s)=>(n[s]=n[s]+1||1,n),{}),o=Object.keys(t).filter(n=>t[n]>1);if(y.assert(o.length===0,()=>"Duplicate column names found: "+o.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let o=t.value;return this.parseRow(o,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),o={},n={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?n[a]=u:o[a]=u}}return Object.keys(n).length===0?o:{xs:o,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let o=[],n=0,s=e.length,a=Dd;for(let i=0;i<s;i++)switch(a){case Dd:switch(e.charAt(i)){case xx:n=i+1,a=yx;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;o.push(""),a=Dd;break;default:a=cE,n=i;break}break;case cE:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i)),a=Dd,n=i+1;break;default:}break;case yx:switch(e.charAt(i)){case xx:a=Vk;break;default:}break;case Vk:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i-1)),a=Dd,n=i+1;break;case xx:a=yx;break;default:a=pE;break}break;case pE:switch(e.charAt(i)){case xx:a=yx;break;default:}break;default:}if(a===Vk?o.push(e.substring(n,s-1)):o.push(e.substring(n)),t&&o.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${o}`);return o}};var Rd=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(j().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Rd(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(o){throw new Error(`Error thrown while initializing video stream: ${o.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,o=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(o.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(o.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],o=0;return new Promise(n=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++o===this.numFrames&&(clearInterval(s),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,o=new Float32Array(e.length*t);return e.forEach((n,s)=>o.set(n,s*t)),o}getTensorFromAudioDataArray(e,t){let o=new Float32Array(y.sizeFromShape(t));return o.set(e,o.length-e.length),Rr(o,t)}};var Fd=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Gt([0],"int32"),this.webcamConfig.centerCrop){let o=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-o)/2,a=(1-n)/2,i=s+o,l=n+a;this.cropBox=Mi([a,s,l,i],[1,4])}else this.cropBox=Mi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(j().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let o=new Fd(e,t);return await o.start(),o}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=qh.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return G(()=>{let t=ar(ne(e,"float32"),0),o;o=$s.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=o.shape;return L(o,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var Od=class{};var bx=class extends Kt{split(e){return new mE(this,e)}},mE=class extends bx{constructor(e,t){super();this.upstream=e,this.impl=new fE(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},fE=class extends Op{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let o of t.slice(0,-1))this.outputQueue.push(o);return this.carryover=t[t.length-1],!0}};var Gk=class extends Kt{decodeUTF8(){return new hE(this)}},hE=class extends bx{constructor(e){super();this.upstream=e,this.impl=new gE(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gE=class extends Op{constructor(e){super();if(this.upstream=e,j().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=dE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let o;return j().get("IS_BROWSER")?o=this.decoder.decode(t,{stream:!0}):o=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(o),!0}};var Pd=class extends Gk{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(j().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,o)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return o(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>o(new Error("Aborted")),s.onerror=i=>o(new Error(i.type));let a=this.file.slice(this.offset,n);s.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function xE(r,e={}){let t,o;typeof r=="string"?t=r:(t=r.url,o=C5(r));let n=await y.fetch(t,o);if(n.ok){let s=new Uint8Array(await n.arrayBuffer());return new Pd(s,e)}else throw new Error(n.statusText)}var C5=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function wx(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var Md=class extends Od{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(wx(this.input)&&j().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Pd(this.input,this.options)}};var Ld=class extends Od{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return wx(this.url)?new Md(this.url,this.fileOptions).iterator():xE(this.url,this.fileOptions)}};function yE(r,e={}){return new $d(new Ld(r),e)}function bE(r){let e=Ad(r);return fo(async()=>e)}function wE(r){return fo(async()=>{let e=await r();return Ad(()=>e.next())})}async function _E(r,e){return Fd.create(r,e)}async function kE(r){return Rd.create(r)}var _x="3.3.0";function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var I5=Ar.whereImpl,Pp=class extends Ws{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Xa(this,Po())}nextDataId(){return Pp.nextDataId++}write(e,t,o){this.firstUse&&(this.firstUse=!1,j().get("IS_NODE")&&S.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n,s){this.data.set(e,{values:t,dtype:n,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return S.mergeRealAndImagArrays(n,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,o)}makeOutput(e,t,o){let n=this.write(e,t,o);return Po().makeTensorFromDataId(n,t,o,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:o}=this.data.get(e);o!=null&&(this.disposeData(o.real.dataId,!0),this.disposeData(o.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return I5(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Pp.nextDataId=0;var Qk={};Je(Qk,{addImpl:()=>AE,bincountImpl:()=>zd,bincountReduceImpl:()=>Uk,ceilImpl:()=>DE,concatImpl:()=>Bd,expImpl:()=>RE,expm1Impl:()=>OE,floorImpl:()=>ME,gatherV2Impl:()=>Hk,greaterImpl:()=>zE,lessImpl:()=>VE,linSpaceImpl:()=>qk,logImpl:()=>WE,maxImpl:()=>Kk,maximumImpl:()=>jE,minimumImpl:()=>qE,multiplyImpl:()=>kx,negImpl:()=>YE,notEqualImpl:()=>JE,prodImpl:()=>t2,rangeImpl:()=>Wd,rsqrtImpl:()=>o2,simpleAbsImpl:()=>vE,sliceImpl:()=>Ud,squaredDifferenceImpl:()=>i2,stridedSliceImpl:()=>Xk,subImpl:()=>l2,tileImpl:()=>Yk,topKImpl:()=>Zk,transposeImpl:()=>Gd,uniqueImpl:()=>Jk});function vE(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var N5=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=vE(n),t.makeOutput(o,e.shape,"float32")},CE={kernelName:as,backendName:"cpu",kernelFunc:N5};function Ke(r){return(e,t,o,n,s)=>{let a=S.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=S.getBroadcastDims(e,a),g=S.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(o[x%o.length],n[x%n.length]);else for(let x=0;x<c.length;++x){let w=y.indexToLoc(x,i,l),b=w.slice(-p);h.forEach(N=>b[N]=0);let _=y.locToIndex(b,p,f),k=w.slice(-m);g.forEach(N=>k[N]=0);let A=y.locToIndex(k,m,d);c[x]=r(o[_],n[A])}return[c,a]}}function mr(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var IE={kernelName:Gl,backendName:"cpu",kernelFunc:mr};function Mp(r,e,t="float32"){if(t==="complex64"){let n=Mp(r,e,"float32"),s=Mp(r,e,"float32");return mr({inputs:{real:n,imag:s},backend:r})}let o=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function Er(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var NE={kernelName:Ro,backendName:"cpu",kernelFunc:Er};function Zn(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var SE={kernelName:iu,backendName:"cpu",kernelFunc:Zn};function Jn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Er({inputs:{x:n},backend:t});let a=Mp(t,n.shape,n.dtype),i=Jn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=mr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Zn({inputs:{input:n},backend:t}),i=Jn({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Er({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(n.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(n.shape,"int32",i)}if(s==="bool"){let a=t.data.get(n.dataId).values,i=y.toTypedArray([0],n.dtype),[l,u]=Ke((c,p)=>c!==p?1:0)(n.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var TE={kernelName:Do,backendName:"cpu",kernelFunc:Jn};function et(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=Jn({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=Jn({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,w=g.complexTensorInfos.imag,b=l.data.get(x.dataId).values,_=l.data.get(w.dataId).values,[k,A,N]=t(a.shape,i.shape,f,d,b,_),$=l.makeTensorInfo(N,"float32",k),F=l.makeTensorInfo(N,"float32",A),M=mr({inputs:{real:$,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo($),l.disposeIntermediateTensorInfo(F),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function Lp(r){return(e,t,o,n,s,a)=>{let i=S.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=S.getBroadcastDims(e,i),d=S.getBroadcastDims(t,i),h=S.mergeRealAndImagArrays(o,n),g=S.mergeRealAndImagArrays(s,a),x=e.length,w=y.computeStrides(e),b=t.length,_=y.computeStrides(t);if(f.length+d.length===0)for(let k=0;k<p.length;k++){let A=k%h.length,N=k%g.length,$=r(h[A*2],h[A*2+1],g[N*2],g[N*2+1]);p[k]=$.real,m[k]=$.imag}else for(let k=0;k<p.length;k++){let A=y.indexToLoc(k,u,c),N=A.slice(-x);f.forEach(W=>N[W]=0);let $=y.locToIndex(N,x,w),F=A.slice(-b);d.forEach(W=>F[W]=0);let M=y.locToIndex(F,b,_),V=r(h[$*2],h[$*2+1],g[M*2],g[M*2+1]);p[k]=V.real,m[k]=V.imag}return[p,m,i]}}var AE=Ke((r,e)=>r+e),S5=Lp((r,e,t,o)=>({real:r+t,imag:e+o})),za=et(wo,AE,S5),EE={kernelName:wo,backendName:"cpu",kernelFunc:za};function zd(r,e,t,o,n){let s=y.sizeFromShape(o),a=y.makeZerosTypedArray(n,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Uk(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=ve([n,t],e.dtype);for(let i=0;i<n;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function Qn(r){return(e,t,o)=>{let n=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)n[s]=r(e[s],o);return n}}function $e(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],n);return i.makeTensorInfo(a.shape,c,p)}}function es(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,n);return i.makeTensorInfo(a.shape,u,c)}}var DE=Qn(r=>Math.ceil(r)),T5=es(Yo,DE),$E={kernelName:Yo,backendName:"cpu",kernelFunc:T5};function Bd(r,e,t,o){let n=y.getArrayFromDType(t,y.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?S.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)n[c+p]=i[l++]}s+=a.shape[1]})}return n}var RE=Qn(r=>Math.exp(r)),jk=es(on,RE),FE={kernelName:on,backendName:"cpu",kernelFunc:jk};var OE=Qn(r=>Math.expm1(r)),A5=es(si,OE),PE={kernelName:si,backendName:"cpu",kernelFunc:A5};var ME=Qn(r=>Math.floor(r)),E5=es(nn,ME),LE={kernelName:nn,backendName:"cpu",kernelFunc:E5};function Hk(r,e,t){let o=ve(t,r.dtype);for(let n=0;n<o.size;++n){let a=o.indexToLoc(n).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);o.values[n]=r.values[c]}return o}var zE=Ke((r,e)=>r>e?1:0),D5=et(li,zE,null,"bool"),BE={kernelName:li,backendName:"cpu",kernelFunc:D5};var VE=Ke((r,e)=>r<e?1:0),$5=et(mi,VE,null,"bool"),GE={kernelName:mi,backendName:"cpu",kernelFunc:$5};function qk(r,e,t){let o=(e-r)/(t-1),n=y.makeZerosTypedArray(t,"float32");n[0]=r;for(let s=1;s<n.length;s++)n[s]=n[s-1]+o;return n}var WE=Qn(r=>Math.log(r)),R5=es(cn,WE),UE={kernelName:cn,backendName:"cpu",kernelFunc:R5};function Kk(r,e,t,o){let n=y.getTypedArrayFromDType(o,y.sizeFromShape(t));for(let s=0;s<n.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}n[s]=i}return n}var jE=Ke((r,e)=>Math.max(r,e)),F5=et(mn,jE),HE={kernelName:mn,backendName:"cpu",kernelFunc:F5};var qE=Ke((r,e)=>Math.min(r,e)),O5=et(gn,qE),KE={kernelName:gn,backendName:"cpu",kernelFunc:O5};var kx=Ke((r,e)=>r*e),P5=Lp((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),Vd=et(xn,kx,P5),XE={kernelName:xn,backendName:"cpu",kernelFunc:Vd};function YE(r,e,t){let o=y.createScalarValue(-1,t);return kx([],e,o,r,t)}function M5(r){let{inputs:e,backend:t}=r,{x:o}=e;te(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=YE(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var ZE={kernelName:ps,backendName:"cpu",kernelFunc:M5};var JE=Ke((r,e)=>r!==e?1:0),L5=et(xi,JE,null,"bool"),QE={kernelName:xi,backendName:"cpu",kernelFunc:L5};function Gd(r,e,t,o,n){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(n),u=y.getTypedArrayFromDType(t,y.sizeFromShape(n));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[o[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function rr(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{perm:s}=t;te(n,"transpose");let a=n.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=n.shape[s[p]];let l=o.data.get(n.dataId).values,u=Gd(l,n.shape,n.dtype,s,i);return{dataId:o.write(u,i,n.dtype),shape:i,dtype:n.dtype}}var e2={kernelName:Pn,backendName:"cpu",kernelFunc:rr};function t2(r,e,t,o){let[n,s]=S.computeOutAndReduceShapes(r,o),a=dr(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(n),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:n,outDtype:a}}function z5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"prod");let i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=S.getAxesPermutation(l,i),c=l,p=n,m=[];u!=null&&(p=rr({inputs:{x:n},backend:t,attrs:{perm:u}}),m.push(p),c=S.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=t2(p.shape,p.dtype,f,c),x=h;return a&&(x=S.expandShapeToKeepDim(h,l)),m.forEach(w=>t.disposeIntermediateTensorInfo(w)),t.makeTensorInfo(x,g,d)}var r2={kernelName:_i,backendName:"cpu",kernelFunc:z5};function Wd(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return y.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var o2=Qn(r=>1/Math.sqrt(r)),B5=es(Sn,o2),n2={kernelName:Sn,backendName:"cpu",kernelFunc:B5};function Ud(r,e,t,o,n){let s=sr.isSliceContinous(o,e,t),a=y.sizeFromShape(t),i=y.computeStrides(o);if(s){let p=sr.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?S.fromUint8ToStringArray(r):r,u=ve(o,n,l),c=ve(t,n);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return n==="string"?S.fromStringArrayToUint8(c.values):c.values}function ts(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;te(n,"slice");let[i,l]=sr.parseSliceParams(n,s,a);sr.assertParamsValid(n,i,l);let u=t.data.get(n.dataId).values,c=Ud(u,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,c)}var s2={kernelName:gs,backendName:"cpu",kernelFunc:ts};var i2=Ke((r,e)=>{let t=r-e;return t*t}),V5=et(Rn,i2),a2={kernelName:Rn,backendName:"cpu",kernelFunc:V5};function Xk(r,e,t,o){let n=ve(r,e.dtype);for(let s=0;s<n.size;s++){let a=n.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+o[l];n.set(e.get(...i),...a)}return n}var l2=Ke((r,e)=>r-e),G5=Lp((r,e,t,o)=>({real:r-t,imag:e-o})),jd=et(Fn,l2,G5),u2={kernelName:Fn,backendName:"cpu",kernelFunc:jd};function Yk(r,e){let t=new Array(r.rank);for(let n=0;n<t.length;n++)t[n]=r.shape[n]*e[n];let o=ve(t,r.dtype);for(let n=0;n<o.values.length;++n){let s=o.indexToLoc(n),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);o.values[n]=r.values[i]}return o}function Zk(r,e,t,o,n){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*o),u=y.getTypedArrayFromDType("int32",a*o);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let w=0;w<f.length;w++)d.push({value:f[w],index:w});d.sort((w,b)=>b.value-w.value);let h=p*o,g=l.subarray(h,h+o),x=u.subarray(h,h+o);for(let w=0;w<o;w++)g[w]=d[w].value,x[w]=d[w].index}let c=e.slice();return c[c.length-1]=o,[ve(c,t,l),ve(c,"int32",u)]}function Jk(r,e,t,o){let n=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<n;d++)s[0]*=t[d];s[1]=t[n];for(let d=n+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[n]),l=new lt(s,o,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[n];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let w=0;w<s[2];w++)g.push(l.get(x,d,w));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new lt(p,o);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[n]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var c2="3.3.0";xu("cpu",()=>new Pp,1);var ev=$e(ri,r=>r>=0?r:Math.exp(r)-1),p2={kernelName:ri,backendName:"cpu",kernelFunc:ev};function tv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;te([n],"leakyRelu");let a=y.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(n.shape,"float32",l)}var m2={kernelName:un,backendName:"cpu",kernelFunc:tv};var W5=Ke((r,e)=>r<0?e*r:r);function rv(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;te([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,l]=W5(o.shape,n.shape,s,a,o.dtype);return t.makeTensorInfo(l,o.dtype,i)}var f2={kernelName:_n,backendName:"cpu",kernelFunc:rv};var ov=$e(kn,r=>Math.max(0,r)),d2={kernelName:kn,backendName:"cpu",kernelFunc:ov};var nv=$e(Cn,r=>Math.min(Math.max(0,r),6)),h2={kernelName:Cn,backendName:"cpu",kernelFunc:nv};function zp(r,e,t,o,n){if(t==="linear")return Er({inputs:{x:e},backend:r});if(t==="relu")return ov({inputs:{x:e},backend:r});if(t==="elu")return ev({inputs:{x:e},backend:r});if(t==="relu6")return nv({inputs:{x:e},backend:r});if(t==="prelu")return rv({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return tv({inputs:{x:e},backend:r,attrs:{alpha:n}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Qe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var g2={kernelName:ds,backendName:"cpu",kernelFunc:Qe};function sv(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;te([n,s],"matMul");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],A=i?[x,f,p]:[x,p,f],N=Qe({inputs:{x:n},backend:t,attrs:{shape:k}}),$=Qe({inputs:{x:s},backend:t,attrs:{shape:A}}),F=a?N.shape[1]:N.shape[2],M=a?N.shape[2]:N.shape[1],V=i?$.shape[1]:$.shape[2],W=Math.max(g,x),U=t.data.get(N.dataId).values,H=t.data.get($.dataId).values,q=y.computeStrides(N.shape),X=y.computeStrides($.shape),[oe,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[J,ie,ue]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*V,fe=ve([W,M,V],N.dtype),de=fe.values,xe=t.blockSize;for(let we=0;we<W;we++)for(let De=0;De<M;De+=xe)for(let Ie=0;Ie<V;Ie+=xe)for(let ze=0;ze<F;ze+=xe){let qe=Math.min(De+xe,M),it=Math.min(Ie+xe,V),At=Math.min(ze+xe,F);for(let Et=De;Et<qe;Et++)for(let Ue=Ie;Ue<it;Ue++){let ut=0;for(let mt=ze;mt<At;mt++){let Mt=Math.min(we,g-1)*oe,xo=Math.min(we,x-1)*ue,Xt=U[Mt+Et*Y+mt*re],to=H[mt*J+Ue*ie+xo];ut+=Xt*to}de[we*ae+(Et*V+Ue)]+=ut}}return t.disposeIntermediateTensorInfo(N),t.disposeIntermediateTensorInfo($),t.makeTensorInfo(_,fe.dtype,fe.values)}var x2={kernelName:Xo,backendName:"cpu",kernelFunc:sv};function U5(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m,f,d,h=[];m=sv({inputs:{a:n,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=za({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=zp(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var y2={kernelName:ws,backendName:"cpu",kernelFunc:U5};var j5=$e(Hs,r=>Math.acos(r)),b2={kernelName:Hs,backendName:"cpu",kernelFunc:j5};var H5=$e(qs,r=>Math.acosh(r)),w2={kernelName:qs,backendName:"cpu",kernelFunc:H5};function q5(r){let{inputs:e,backend:t}=r,o=e;te(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=ve(o[0].shape,o[0].dtype),a=s.values;for(let i=0;i<o.length;i++){let l=n[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var _2={kernelName:Ho,backendName:"cpu",kernelFunc:q5};function K5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"all");let i=y.parseAxisParam(s,n.shape),l=i,u=S.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=rr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,n.shape.length)),S.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let w=x*f,b=h[w];for(let _=0;_<f;++_){let k=h[w+_];b=b&&k}d[x]=b}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),w=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),w}return g}var k2={kernelName:Ml,backendName:"cpu",kernelFunc:K5};function X5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"any");let i=y.parseAxisParam(s,n.shape),l=i,u=S.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=rr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,n.shape.length)),S.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let w=x*f,b=h[w];for(let _=0;_<f;++_){let k=h[w+_];b=b||k}d[x]=b}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),w=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),w}return g}var v2={kernelName:Ll,backendName:"cpu",kernelFunc:X5};function Y5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMax");let a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=rr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],S.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=S.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,w=h[x],b=0;for(let _=0;_<d;++_){let k=h[x+_];k>w&&(w=k,b=_)}f[g]=b}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var C2={kernelName:qo,backendName:"cpu",kernelFunc:Y5};function Z5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMin");let a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=rr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],S.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=S.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,w=h[x],b=0;for(let _=0;_<d;++_){let k=h[x+_];k<w&&(w=k,b=_)}f[g]=b}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var I2={kernelName:ea,backendName:"cpu",kernelFunc:Z5};var J5=$e(Ks,r=>Math.asin(r)),N2={kernelName:Ks,backendName:"cpu",kernelFunc:J5};var Q5=$e(Xs,r=>Math.asinh(r)),S2={kernelName:Xs,backendName:"cpu",kernelFunc:Q5};var eX=$e(Ys,r=>Math.atan(r)),T2={kernelName:Ys,backendName:"cpu",kernelFunc:eX};var tX=Ke((r,e)=>Math.atan2(r,e)),rX=et(Js,tX),A2={kernelName:Js,backendName:"cpu",kernelFunc:rX};var oX=$e(Zs,r=>Math.atanh(r)),E2={kernelName:Zs,backendName:"cpu",kernelFunc:oX};function Bp(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,l=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,p=n.effectiveFilterWidth,m=n.padInfo.top,f=n.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=ve(n.outShape,t),g=h.values,x=n.outShape[1]*n.outShape[2]*n.outShape[3],w=n.outShape[2]*n.outShape[3],b=n.outShape[3];for(let _=0;_<n.batchSize;++_){let k=_*x,A=_*o[0];for(let N=0;N<n.inChannels;++N)for(let $=0;$<n.outHeight;++$){let F=$*a-m,M=Math.max(0,F),V=Math.min(n.inHeight,c+F),W=k+$*w;for(let U=0;U<n.outWidth;++U){let H=U*i-f,q=Math.max(0,H),X=Math.min(n.inWidth,p+H),oe=d,Y=0,re=0;for(let ie=M;ie<V;ie+=l){let ue=A+ie*o[1];for(let ae=q;ae<X;ae+=u){let fe=ue+ae*o[2],de=r[fe+N];s==="max"&&de>oe?oe=de:s==="avg"&&(Y+=de,re++)}if(isNaN(oe))break}let J=W+U*b+N;g[J]=s==="avg"?Y/re:oe}}}return h}function vx(r,e,t,o,n=!1,s=!1){let a=ve(o.outShape,"int32"),i=o.strideHeight,l=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,p=o.effectiveFilterHeight,m=o.effectiveFilterWidth,f=o.padInfo.top,d=o.padInfo.left,h=ve(e,t,r);for(let g=0;g<o.batchSize;++g)for(let x=0;x<o.inChannels;++x)for(let w=0;w<o.outHeight;++w){let b=w*i-f,_=b;for(;_<0;)_+=u;let k=Math.min(o.inHeight,p+b);for(let A=0;A<o.outWidth;++A){let N=A*l-d,$=N;for(;$<0;)$+=c;let F=Math.min(o.inWidth,m+N),M=Number.NEGATIVE_INFINITY,V=-1;for(let W=_;W<k;W+=u){let U=W-b;for(let H=$;H<F;H+=c){let q=H-N,X=h.get(g,W,H,x);X>M&&(M=X,n?V=s?((g*o.inHeight+W)*o.inWidth+H)*o.inChannels+x:(W*o.inWidth+H)*o.inChannels+x:V=U*m+q)}}a.set(V,g,w,A,x)}}return a}function Cx(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,l=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,m=n.effectiveFilterDepth,f=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,x=n.padInfo.left,w=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,b=ve(n.outShape,t),_=b.values,k=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],A=n.outShape[2]*n.outShape[3]*n.outShape[4],N=n.outShape[3]*n.outShape[4],$=n.outShape[4];for(let F=0;F<n.batchSize;++F){let M=F*k,V=F*o[0];for(let W=0;W<n.inChannels;++W)for(let U=0;U<n.outDepth;++U){let H=U*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(n.inDepth,m+H),oe=M+U*A;for(let Y=0;Y<n.outHeight;++Y){let re=Y*i-g,J=re;for(;J<0;)J+=c;let ie=Math.min(n.inHeight,f+re),ue=oe+Y*N;for(let ae=0;ae<n.outWidth;++ae){let fe=ae*l-x,de=fe;for(;de<0;)de+=p;let xe=Math.min(n.inWidth,d+fe),we=ue+ae*$,De=w,Ie=0,ze=0;for(let it=q;it<X;it+=u){let At=V+it*o[1];for(let Et=J;Et<ie;Et+=c){let Ue=At+Et*o[2];for(let ut=de;ut<xe;ut+=p){let mt=Ue+ut*o[3],Mt=r[mt+W];if(s==="max"&&Mt>De?De=Mt:s==="avg"&&(Ie+=Mt,ze++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let qe=we+W;_[qe]=s==="avg"?Ie/ze:De}}}}return b}function D2(r,e){let t=ve(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let w=x*o-m,b=w;for(;b<0;)b+=a;let _=Math.min(e.inDepth,u+w);for(let k=0;k<e.outHeight;++k){let A=k*n-f,N=A;for(;N<0;)N+=i;let $=Math.min(e.inHeight,c+A);for(let F=0;F<e.outWidth;++F){let M=F*s-d,V=M;for(;V<0;)V+=l;let W=Math.min(e.inWidth,p+M),U=Number.NEGATIVE_INFINITY,H=-1;for(let q=b;q<_;q+=a){let X=q-w;for(let oe=N;oe<$;oe+=i){let Y=oe-A;for(let re=V;re<W;re+=l){let J=re-M,ie=r.get(h,q,oe,re,g);ie>=U&&(U=ie,H=X*c*p+Y*c+J)}}}t.set(H,h,x,k,F,g)}}}return t}function nX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Er({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=Bp(m,n.shape,n.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var $2={kernelName:Ko,backendName:"cpu",kernelFunc:nX};function sX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"avgPool3d");let c=S.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=Cx(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var R2={kernelName:ta,backendName:"cpu",kernelFunc:sX};function iX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"avgPool3DGrad");let c=S.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,w=c.dilationHeight,b=c.dilationWidth,_=c.effectiveFilterDepth,k=c.effectiveFilterHeight,A=c.effectiveFilterWidth,N=_-1-c.padInfo.front,$=A-1-c.padInfo.left,F=k-1-c.padInfo.top,M=ve(s.shape,"float32"),V=1/(d*h*g),W=t.bufferSync(n);for(let U=0;U<c.batchSize;++U)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let oe=0;oe<c.inWidth;++oe){let Y=q-N,re=X-F,J=oe-$,ie=0;for(let ue=0;ue<_;ue+=x){let ae=(Y+ue)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=w){let de=(re+fe)/m;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let xe=0;xe<A;xe+=b){let we=(J+xe)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=W.get(U,ae,de,we,H)}}}M.set(ie*V,U,q,X,oe,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var F2={kernelName:Bl,backendName:"cpu",kernelFunc:iX};function aX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;te([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=S.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,_=x-1-c.padInfo.top,k=ve(a.shape,"float32"),A=1/(f*d),N=t.data.get(n.dataId).values,$=ve(n.shape,"float32",N);for(let F=0;F<c.batchSize;++F)for(let M=0;M<c.inChannels;++M)for(let V=0;V<c.inHeight;++V)for(let W=0;W<c.inWidth;++W){let U=V-_,H=W-b,q=0;for(let X=0;X<x;X+=h){let oe=(U+X)/p;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let Y=0;Y<w;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=$.get(F,oe,re,M)}}k.set(q*A,F,V,W,M)}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var O2={kernelName:zl,backendName:"cpu",kernelFunc:aX};function lX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([n,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,w=m.length,b=p.length,_=0,k=0,A=0,N=0;for(let $=0;$<c.length;++$)h[$]=d[_++]+(c[$]-p[k++])*f[A++]/Math.sqrt(m[N++]+u),_>=g&&(_=0),k>=b&&(k=0),A>=x&&(A=0),N>=w&&(N=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var P2={kernelName:an,backendName:"cpu",kernelFunc:lX};function uX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;te([n],"batchToSpaceND");let i=s.reduce((x,w)=>x*w),l=S.getReshaped(n.shape,s,i),u=S.getPermuted(l.length,s.length),c=S.getReshapedPermuted(n.shape,s,i),p=S.getSliceBeginCoords(a,s.length),m=S.getSliceSize(c,a,s.length),f=Qe({inputs:{x:n},backend:t,attrs:{shape:l}}),d=rr({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=ts({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var M2={kernelName:ra,backendName:"cpu",kernelFunc:uX};function cX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,u=zd(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var L2={kernelName:Vl,backendName:"cpu",kernelFunc:cX};var pX=$e($o,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),z2={kernelName:$o,backendName:"cpu",kernelFunc:pX};var mX=r=>{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];o[u]=Math.hypot(c,p)}return t.makeOutput(o,e.shape,"float32")},B2={kernelName:oa,backendName:"cpu",kernelFunc:mX};function ji(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.imag,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var V2={kernelName:Ql,backendName:"cpu",kernelFunc:ji};function kl(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=S.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Er({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(S.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>Zn({inputs:{input:_},backend:t})),g=i.map(_=>ji({inputs:{input:_},backend:t})),x=kl({inputs:h,backend:t,attrs:{axis:s}}),w=kl({inputs:g,backend:t,attrs:{axis:s}}),b=mr({inputs:{real:x,imag:w},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(w),b}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return Qe({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=Bd(c,a,e[0].dtype,p),f=S.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var G2={kernelName:ls,backendName:"cpu",kernelFunc:kl};function iv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"conv2d");let p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,w=m.padInfo.top,b=m.dataFormat==="channelsLast",_=new lt(m.outShape,n.dtype),k=y.computeStrides(n.shape),A=y.computeStrides(s.shape),N=k[0],$=b?k[1]:k[2],F=b?k[2]:1,M=b?1:k[1],V=_.strides[0],W=b?_.strides[1]:_.strides[2],U=b?_.strides[2]:1,H=b?1:_.strides[1],q=t.data.get(n.dataId).values,X=t.data.get(s.dataId).values,oe=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*N,J=Y*V;for(let ie=0;ie<m.outHeight;++ie){let ue=J+ie*W,ae=ie*m.strideHeight-w;for(let fe=0;fe<f;++fe){let de=ae+fe*h;if(de<0||de>=m.inHeight)continue;let xe=fe*A[0],we=re+de*$;for(let De=0;De<m.outWidth;++De){let Ie=ue+De*U,ze=De*m.strideWidth-x;for(let qe=0;qe<d;++qe){let it=ze+qe*g;if(it<0||it>=m.inWidth)continue;let At=xe+qe*A[1],Et=we+it*F,Ue=At;for(let ut=0;ut<m.inChannels;++ut){let mt=q[Et+ut*M];for(let Mt=0;Mt<m.outChannels;++Mt)oe[Ie+Mt*H]+=mt*X[Ue+Mt];Ue+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,oe)}var W2={kernelName:Zo,backendName:"cpu",kernelFunc:iv};function fX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",w=new lt(m.filterShape,"float32"),b=m.padInfo.left,_=m.padInfo.top,k=t.data.get(n.dataId).values,A=t.data.get(s.dataId).values,N=new lt(n.shape,n.dtype,k),$=new lt(s.shape,s.dtype,A);for(let F=0;F<h;++F){let M=Math.max(0,Math.ceil((_-F)/f)),V=Math.min(m.outHeight,(m.inHeight+_-F)/f);for(let W=0;W<g;++W){let U=Math.max(0,Math.ceil((b-W)/d)),H=Math.min(m.outWidth,(m.inWidth+b-W)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let oe=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<V;++re){let J=F+re*f-_;for(let ie=U;ie<H;++ie){let ue=W+ie*d-b;x?oe+=N.get(Y,J,ue,q)*$.get(Y,re,ie,X):oe+=N.get(Y,q,J,ue)*$.get(Y,X,re,ie)}}w.set(oe,F,W,q,X)}}}return t.makeTensorInfo(w.shape,w.dtype,w.values)}var U2={kernelName:Wl,backendName:"cpu",kernelFunc:fX};function dX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o;te([n,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(n.shape),f=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new lt(d.inShape,"float32"),g=h.values,x=t.data.get(n.dataId).values,w=t.data.get(s.dataId).values,[b,_,k]=p,{batchSize:A,filterHeight:N,filterWidth:$,inChannels:F,inHeight:M,inWidth:V,outChannels:W,outHeight:U,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let oe=N-1-d.padInfo.top,Y=$-1-d.padInfo.left,re=f==="channelsLast",J=h.strides[0],ie=re?h.strides[1]:h.strides[2],ue=re?h.strides[2]:1,ae=re?1:h.strides[1],fe=m[0],de=re?m[1]:m[2],xe=re?m[2]:1,we=re?1:m[1];for(let De=0;De<A;++De)for(let Ie=0;Ie<F;++Ie)for(let ze=0;ze<M;++ze){let qe=ze-oe,it=Math.max(0,Math.ceil(qe/q)),At=Math.min(U,(N+qe)/q);for(let Et=0;Et<V;++Et){let Ue=Et-Y,ut=Math.max(0,Math.ceil(Ue/X)),mt=Math.min(H,($+Ue)/X),Mt=0;for(let Xt=it;Xt<At;++Xt){let to=Xt*q-qe;for(let $r=ut;$r<mt;++$r){let Uo=$r*X-Ue,or=fe*De+de*Xt+xe*$r,yo=b*(N-1-to)+_*($-1-Uo)+k*Ie;for(let Gr=0;Gr<W;++Gr){let br=x[or+we*Gr],ro=w[yo+Gr];Mt+=br*ro}}}let xo=J*De+ie*ze+ue*Et+ae*Ie;g[xo]=Mt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var j2={kernelName:Jo,backendName:"cpu",kernelFunc:dX};function hX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o;te([n,s],"conv3d");let u=S.computeConv3DInfo(n.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,w=g.left,b=g.top,_=new lt(u.outShape,n.dtype),k=t.data.get(n.dataId).values,A=t.data.get(s.dataId).values,N=_.values,$=y.computeStrides(n.shape),F=y.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let V=M*$[0],W=M*_.strides[0];for(let U=0;U<u.outDepth;++U){let H=W+U*_.strides[1],q=U*u.strideDepth-x;for(let X=0;X<c;++X){let oe=q+X*f;if(oe<0||oe>=u.inDepth)continue;let Y=X*F[0],re=V+oe*$[1];for(let J=0;J<u.outHeight;++J){let ie=H+J*_.strides[2],ue=J*u.strideHeight-b;for(let ae=0;ae<p;++ae){let fe=ue+ae*d;if(fe<0||fe>=u.inHeight)continue;let de=Y+ae*F[1],xe=re+fe*$[2];for(let we=0;we<u.outWidth;++we){let De=ie+we*u.outChannels,Ie=we*u.strideWidth-w;for(let ze=0;ze<m;++ze){let qe=Ie+ze*h;if(qe<0||qe>=u.inWidth)continue;let it=de+ze*F[2],At=xe+qe*u.inChannels,Et=it;for(let Ue=0;Ue<u.inChannels;++Ue){let ut=k[At+Ue];for(let mt=0;mt<u.outChannels;++mt)N[De+mt]+=ut*A[Et+mt];Et+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var H2={kernelName:na,backendName:"cpu",kernelFunc:hX};function gX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o;te([n,s],"conv3dBackpropFilterV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(n.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,w=new lt(p.filterShape,"float32"),b=w.values,[_,k,A,N]=w.strides,$=t.data.get(s.dataId).values,[F,M,V,W]=c,U=t.data.get(n.dataId).values,[H,q,X,oe]=u,Y=p.padInfo.front,re=p.padInfo.left,J=p.padInfo.top;for(let ie=0;ie<h;++ie){let ue=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),fe=ie*_;for(let de=0;de<g;++de){let xe=Math.max(0,Math.ceil((J-de)/f)),we=Math.min(p.outHeight,(p.inHeight+J-de)/f),De=de*k+fe;for(let Ie=0;Ie<x;++Ie){let ze=Math.max(0,Math.ceil((re-Ie)/d)),qe=Math.min(p.outWidth,(p.inWidth+re-Ie)/d),it=Ie*A+De;for(let At=0;At<p.inChannels;++At){let Et=At*N+it;for(let Ue=0;Ue<p.outChannels;++Ue){let ut=0;for(let mt=0;mt<p.batchSize;++mt){let Mt=mt*H,xo=mt*F;for(let Xt=ue;Xt<ae;++Xt){let $r=(ie+Xt*m-Y)*q+Mt,Uo=Xt*M+xo;for(let or=xe;or<we;++or){let Gr=(de+or*f-J)*X+$r,br=or*V+Uo;for(let ro=ze;ro<qe;++ro){let Dl=(Ie+ro*d-re)*oe+Gr,Wa=ro*W+br;ut+=U[Dl+At]*$[Wa+Ue]}}}}b[Et+Ue]=ut}}}}}return t.makeTensorInfo(w.shape,w.dtype,w.values)}var q2={kernelName:Ul,backendName:"cpu",kernelFunc:gX};function xX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o;te([n],"conv3dBackpropInputV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(l,s.shape,i,1,a),m=new lt(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,w=t.data.get(n.dataId).values,[b,_,k,A]=u,N=t.data.get(s.dataId).values,[$,F,M,V]=c,{batchSize:W,filterDepth:U,filterHeight:H,filterWidth:q,inChannels:X,inDepth:oe,inHeight:Y,inWidth:re,outChannels:J,outDepth:ie,outHeight:ue,outWidth:ae,strideDepth:fe,strideHeight:de,strideWidth:xe}=p,we=U-1-p.padInfo.front,De=H-1-p.padInfo.top,Ie=q-1-p.padInfo.left;for(let ze=0;ze<W;++ze)for(let qe=0;qe<X;++qe)for(let it=0;it<oe;++it){let At=it-we,Et=Math.max(0,Math.ceil(At/fe)),Ue=Math.min(ie,(U+At)/fe);for(let ut=0;ut<Y;++ut){let mt=ut-De,Mt=Math.max(0,Math.ceil(mt/de)),xo=Math.min(ue,(H+mt)/de);for(let Xt=0;Xt<re;++Xt){let to=Xt-Ie,$r=Math.max(0,Math.ceil(to/xe)),Uo=Math.min(ae,(q+to)/xe),or=0;for(let yo=Et;yo<Ue;++yo){let Gr=yo*fe-At;for(let br=Mt;br<xo;++br){let ro=br*de-mt;for(let Ao=$r;Ao<Uo;++Ao){let Dl=Ao*xe-to,Wa=b*ze+_*yo+k*br+A*Ao,ns=$*(U-1-Gr)+F*(H-1-ro)+M*(q-1-Dl)+V*qe;for(let Xi=0;Xi<J;++Xi){let Qp=w[Wa+Xi],xc=N[ns+Xi];or+=Qp*xc}}}}f[d*ze+h*it+g*ut+x*Xt+qe]=or}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var K2={kernelName:jl,backendName:"cpu",kernelFunc:xX};var yX=$e(Qo,r=>Math.cos(r)),X2={kernelName:Qo,backendName:"cpu",kernelFunc:yX};var bX=$e(Qs,r=>Math.cosh(r)),Y2={kernelName:Qs,backendName:"cpu",kernelFunc:bX};function wX(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,[c,p,m,f]=n.shape,d=s.shape[0],[h,g]=i,x=ve([d,h,g,f],"float32"),w=t.data.get(s.dataId).values,b=t.data.get(a.dataId).values,_=t.data.get(n.dataId).values,k=y.computeStrides(n.shape),A=y.computeStrides(x.shape);for(let N=0;N<d;N++){let $=N*4,F=w[$],M=w[$+1],V=w[$+2],W=w[$+3],U=b[N];if(U>=c)continue;let H=h>1?(V-F)*(p-1)/(h-1):0,q=g>1?(W-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let oe=h>1?F*(p-1)+X*H:.5*(F+V)*(p-1);if(oe<0||oe>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let J=re+Y*A[2]+X*A[1]+N*A[0];x.values[J]=u}continue}if(l==="bilinear"){let Y=Math.floor(oe),re=Math.ceil(oe),J=oe-Y;for(let ie=0;ie<g;ie++){let ue=g>1?M*(m-1)+ie*q:.5*(M+W)*(m-1);if(ue<0||ue>m-1){for(let xe=0;xe<f;xe++){let we=xe+ie*A[2]+X*A[1]+N*A[0];x.values[we]=u}continue}let ae=Math.floor(ue),fe=Math.ceil(ue),de=ue-ae;for(let xe=0;xe<f;xe++){let we=xe+ae*k[2]+Y*k[1]+U*k[0],De=_[we];we=xe+fe*k[2]+Y*k[1]+U*k[0];let Ie=_[we];we=xe+ae*k[2]+re*k[1]+U*k[0];let ze=_[we];we=xe+fe*k[2]+re*k[1]+U*k[0];let qe=_[we],it=De+(Ie-De)*de,At=ze+(qe-ze)*de;we=xe+ie*A[2]+X*A[1]+N*A[0],x.values[we]=it+(At-it)*J}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+W)*(m-1);if(re<0||re>m-1){for(let ue=0;ue<f;ue++){let ae=ue+Y*A[2]+X*A[1]+N*A[0];x.values[ae]=u}continue}let J=Math.round(re),ie=Math.round(oe);for(let ue=0;ue<f;ue++){let ae=ue+J*k[2]+ie*k[1]+U*k[0],fe=ue+Y*A[2]+X*A[1]+N*A[0];x.values[fe]=_[ae]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var Z2={kernelName:ei,backendName:"cpu",kernelFunc:wX};function _X(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;te(n,"cumsum");let l=S.getAxesPermutation([s],n.shape.length),u=n;l!=null&&(u=rr({inputs:{x:n},backend:t,attrs:{perm:l}}));let c=S.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=dr(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,w)=>x+d-w-1:(x,w)=>x+w;for(let x=0;x<f.length;x+=d)for(let w=0;w<d;w++){let b=h(x,w);if(w===0)m[b]=a?0:f[b];else{let _=h(x,w-1);m[b]=a?f[_]+m[_]:f[b]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=S.getUndoAxesPermutation(l),w=rr({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),w}return g}var J2={kernelName:en,backendName:"cpu",kernelFunc:_X};function kX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=zd(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=Uk(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var Q2={kernelName:Hl,backendName:"cpu",kernelFunc:kX};function vX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=n.shape[1],u=n.shape[2],c=n.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(n.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let w=0;w<p;++w){let b=Math.floor(w/s),_=w%s;for(let k=0;k<m;++k){let A=Math.floor(k/s),N=k%s,$=(_*s+N)*f;for(let F=0;F<f;++F){let V=F+$+c*(A+u*(b+l*x));h[g++]=d[V]}}}return t.makeTensorInfo([i,p,m,f],n.dtype,h)}var eD={kernelName:ti,backendName:"cpu",kernelFunc:vX};function av(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o;te([n,s],"depthwiseConv2DNative");let c=y.computeStrides(n.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=S.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:w}=f,b=w.left,_=w.top,k=f.outChannels/f.inChannels,A=new lt(f.outShape,n.dtype),N=t.data.get(n.dataId).values,$=t.data.get(s.dataId).values,F=A.values;for(let M=0;M<f.batchSize;++M){let V=M*c[0],W=M*A.strides[0];for(let U=0;U<f.outHeight;++U){let H=W+U*A.strides[1],q=U*f.strideHeight-b;for(let X=0;X<d;++X){let oe=q+X*g;if(oe<0||oe>=f.inHeight)continue;let Y=X*p[0],re=V+oe*c[1];for(let J=0;J<f.outWidth;++J){let ie=H+J*A.strides[2],ue=J*f.strideWidth-_;for(let ae=0;ae<h;++ae){let fe=ue+ae*x;if(fe<0||fe>=f.inWidth)continue;let de=Y+ae*p[1],xe=re+fe*f.inChannels,we=ie,De=de;for(let Ie=0;Ie<f.inChannels;++Ie){let ze=N[xe+Ie];for(let qe=0;qe<k;++qe)F[we+qe]+=ze*$[De+qe];we+=k,De+=k}}}}}}return t.makeTensorInfo(A.shape,A.dtype,A.values)}var tD={kernelName:tn,backendName:"cpu",kernelFunc:av};function CX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(n.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new lt(p.filterShape,"float32"),x=p.padInfo.left,w=p.padInfo.top,b=p.outChannels/p.inChannels,_=t.data.get(n.dataId).values,k=new lt(n.shape,n.dtype,_),A=t.data.get(s.dataId).values,N=new lt(s.shape,s.dtype,A);for(let $=0;$<d;++$){let F=Math.max(0,Math.ceil((w-$)/m)),M=Math.min(p.outHeight,(p.inHeight+w-$)/m);for(let V=0;V<h;++V){let W=Math.max(0,Math.ceil((x-V)/f)),U=Math.min(p.outWidth,(p.inWidth+x-V)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/b),X=H%b,oe=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=F;re<M;++re){let J=$+re*m-w;for(let ie=W;ie<U;++ie){let ue=V+ie*f-x;oe+=k.get(Y,J,ue,q)*N.get(Y,re,ie,H)}}g.set(oe,$,V,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var rD={kernelName:ql,backendName:"cpu",kernelFunc:CX};function IX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o;te([n,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(n.shape),m=y.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new lt(f.inShape,"float32"),h=d.values,[g,x,w]=d.strides,b=t.data.get(n.dataId).values,[_,k,A]=p,N=t.data.get(s.dataId).values,[$,F,M]=m,{batchSize:V,filterHeight:W,filterWidth:U,inChannels:H,inHeight:q,inWidth:X,outChannels:oe,outHeight:Y,outWidth:re,strideHeight:J,strideWidth:ie}=f,ue=W-1-f.padInfo.top,ae=U-1-f.padInfo.left,fe=oe/H;for(let de=0;de<V;++de)for(let xe=0;xe<H;++xe)for(let we=0;we<q;++we){let De=we-ue,Ie=Math.max(0,Math.ceil(De/J)),ze=Math.min(Y,(W+De)/J);for(let qe=0;qe<X;++qe){let it=qe-ae,At=Math.max(0,Math.ceil(it/ie)),Et=Math.min(re,(U+it)/ie),Ue=0;for(let ut=Ie;ut<ze;++ut){let mt=ut*J-De;for(let Mt=At;Mt<Et;++Mt){let xo=Mt*ie-it,Xt=_*de+k*ut+A*Mt,to=$*(W-1-mt)+F*(U-1-xo)+M*xe;for(let $r=0;$r<fe;++$r){let Uo=xe*fe+$r,or=b[Xt+Uo],yo=N[to+$r];Ue+=or*yo}}}h[g*de+x*we+w*qe+xe]=Ue}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var oD={kernelName:Kl,backendName:"cpu",kernelFunc:IX};function NX(r){let{inputs:e,backend:t}=r,{x:o}=e,n=y.sizeFromShape(o.shape),s=t.data.get(o.dataId).values,a=ve([n,n],o.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*n+u]=s[u];let l=[...o.shape,...o.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var nD={kernelName:Xl,backendName:"cpu",kernelFunc:NX};var sD={kernelName:sa,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(o.dataId).values,c=o.shape.length,p=l.data.get(n.dataId).values,m=n.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:w,padInfo:b,strideHeight:_,strideWidth:k,filterHeight:A,filterWidth:N,dilationHeight:$,dilationWidth:F,outShape:M}=S.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),V=y.sizeFromShape(M),W=M.length,U=y.getArrayFromDType(o.dtype,V);for(let q=0;q<f;++q)for(let X=0;X<x;++X){let oe=X*_-b.top;for(let Y=0;Y<w;++Y){let re=Y*k-b.left;for(let J=0;J<g;++J){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<A;++ae){let fe=oe+ae*$;if(fe>=0&&fe<d)for(let de=0;de<N;++de){let xe=re+de*F;if(xe>=0&&xe<h){let we=y.locToIndex([q,fe,xe,J],c,y.computeStrides(o.shape)),De=y.locToIndex([ae,de,J],m,y.computeStrides(n.shape)),Ie=u[we]+p[De];Ie>ie&&(ie=Ie)}}}let ue=y.locToIndex([q,X,Y,J],W,y.computeStrides(M));U[ue]=ie}}}return{dataId:l.write(y.toTypedArray(U,o.dtype),M,o.dtype),shape:M,dtype:o.dtype}}};var iD={kernelName:Oc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:w,strideHeight:b,strideWidth:_,filterHeight:k,filterWidth:A,dilationHeight:N,dilationWidth:$,outShape:F}=S.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===F.length,()=>`Error in ${Oc}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,u.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*b-w.top;for(let X=0;X<x;++X){let oe=X*_-w.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=0,ie=0;for(let ue=0;ue<k;++ue){let ae=q+ue*N;if(ae>=0&&ae<f)for(let fe=0;fe<A;++fe){let de=oe+fe*$;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ue,ie=fe)}}}V[J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(V,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var aD={kernelName:Fc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:w,strideHeight:b,strideWidth:_,filterHeight:k,filterWidth:A,dilationHeight:N,dilationWidth:$,outShape:F}=S.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===F.length,()=>`Error in ${Fc}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,u.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*b-w.top;for(let X=0;X<x;++X){let oe=X*_-w.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=q<0?0:q,ie=oe<0?0:oe;for(let ue=0;ue<k;++ue){let ae=q+ue*N;if(ae>=0&&ae<f)for(let fe=0;fe<A;++fe){let de=oe+fe*$;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ae,ie=de)}}}V[U][J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(V,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function SX(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;te([o,n],"eluGrad");let s=new Float32Array(y.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var lD={kernelName:Yl,backendName:"cpu",kernelFunc:SX};var TX=Ke((r,e)=>r===e?1:0),lv=et(ni,TX,null,"bool"),uD={kernelName:ni,backendName:"cpu",kernelFunc:lv};var AX=S.ERF_P,EX=S.ERF_A1,DX=S.ERF_A2,$X=S.ERF_A3,RX=S.ERF_A4,FX=S.ERF_A5,OX=$e(oi,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+AX*t);return e*(1-((((FX*o+RX)*o+$X)*o+DX)*o+EX)*o*Math.exp(-t*t))}),cD={kernelName:oi,backendName:"cpu",kernelFunc:OX};function Vp(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Qe({inputs:{x:n},backend:t,attrs:{shape:i}})}var pD={kernelName:us,backendName:"cpu",kernelFunc:Vp};var PX=Ke((r,e)=>r/e),Hd=et(rn,PX),qd={kernelName:rn,backendName:"cpu",kernelFunc:Hd};function Ix(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[n,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<n;g++){let x=ts({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=ts({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=mr({inputs:{real:x,imag:w},backend:t}),{real:_,imag:k}=MX(b,e,t),A=S.mergeRealAndImagArrays(_,k);for(let N=0;N<s;N++){let $=S.getComplexWithIndex(A,N);p[g*s+N]=$.real,m[g*s+N]=$.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(b)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=mr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function MX(r,e,t){let o=y.sizeFromShape(r.shape),n=t.data.get(r.dataId),s=t.data.get(n.complexTensorInfos.real.dataId).values,a=t.data.get(n.complexTensorInfos.imag.dataId).values;if(LX(o)){let i=uv(s,a,o,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(o,"float32")),m=Er({inputs:{x:p},backend:t}),f=qd.kernelFunc({inputs:{a:u,b:p},backend:t}),d=qd.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=S.mergeRealAndImagArrays(s,a),l=zX(i,o,e);return S.splitRealAndImagArrays(l)}}function LX(r){return(r&r-1)==0}function uv(r,e,t,o,n){if(t===1)return{real:r,imag:e};let s=S.mergeRealAndImagArrays(r,e),a=t/2,i=S.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=n.makeTensorInfo(c,"float32",l),m=n.makeTensorInfo(c,"float32",u),f=mr({inputs:{real:p,imag:m},backend:n}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],w=n.makeTensorInfo(x,"float32",h),b=n.makeTensorInfo(x,"float32",g),_=mr({inputs:{real:w,imag:b},backend:n}),k=uv(l,u,a,o,n),A=k.real,N=k.imag,$=[A.length],F=n.makeTensorInfo($,"float32",A),M=n.makeTensorInfo($,"float32",N),V=mr({inputs:{real:F,imag:M},backend:n}),W=uv(h,g,a,o,n),U=W.real,H=W.imag,q=[U.length],X=n.makeTensorInfo(q,"float32",U),oe=n.makeTensorInfo(q,"float32",H),Y=mr({inputs:{real:X,imag:oe},backend:n}),re=S.exponents(t,o),J=[re.real.length],ie=n.makeTensorInfo(J,"float32",re.real),ue=n.makeTensorInfo(J,"float32",re.imag),ae=mr({inputs:{real:ie,imag:ue},backend:n}),fe=Vd({inputs:{a:ae,b:Y},backend:n}),de=za({inputs:{a:V,b:fe},backend:n}),xe=jd({inputs:{a:V,b:fe},backend:n}),we=Zn({inputs:{input:de},backend:n}),De=Zn({inputs:{input:xe},backend:n}),Ie=ji({inputs:{input:de},backend:n}),ze=ji({inputs:{input:xe},backend:n}),qe=kl({inputs:[we,De],backend:n,attrs:{axis:0}}),it=kl({inputs:[Ie,ze],backend:n,attrs:{axis:0}}),At=n.data.get(qe.dataId).values,Et=n.data.get(it.dataId).values;return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(F),n.disposeIntermediateTensorInfo(M),n.disposeIntermediateTensorInfo(V),n.disposeIntermediateTensorInfo(X),n.disposeIntermediateTensorInfo(oe),n.disposeIntermediateTensorInfo(Y),n.disposeIntermediateTensorInfo(ie),n.disposeIntermediateTensorInfo(ue),n.disposeIntermediateTensorInfo(ae),n.disposeIntermediateTensorInfo(fe),n.disposeIntermediateTensorInfo(de),n.disposeIntermediateTensorInfo(xe),n.disposeIntermediateTensorInfo(we),n.disposeIntermediateTensorInfo(Ie),n.disposeIntermediateTensorInfo(De),n.disposeIntermediateTensorInfo(ze),n.disposeIntermediateTensorInfo(qe),n.disposeIntermediateTensorInfo(it),{real:At,imag:Et}}function zX(r,e,t){let o=new Float32Array(e*2);for(let n=0;n<e;n++){let s=0,a=0;for(let i=0;i<e;i++){let l=S.exponent(n*i,e,t),u=S.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),S.assignToTypedArray(o,s,a,n)}return o}function BX(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Ix(i,!1,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var mD={kernelName:Zl,backendName:"cpu",kernelFunc:BX};function Kd(r){let{backend:e,attrs:t}=r,{shape:o,value:n,dtype:s}=t,a=s||y.inferDtype(n),i=y.getArrayFromDType(a,y.sizeFromShape(o));return VX(i,n,a),e.makeTensorInfo(o,a,i)}var fD={kernelName:ia,backendName:"cpu",kernelFunc:Kd};function VX(r,e,t){r.fill(e)}var dD={kernelName:ii,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,n=t,s=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[a,i,l,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let w=0;w<u;w++){let _=[a,d,g,w][2],k=Math.round(l-_),A=f+h+x+w,N=c[A];if(k>=0&&k<l){let $=k*u,F=f+h+$+w;N=c[F]}s[A]=N}}}}return{dataId:n.write(s,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var GX=Ke((r,e)=>Math.floor(r/e)),WX=et(sn,GX,null,"int32"),hD={kernelName:sn,backendName:"cpu",kernelFunc:WX};function UX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=iv({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=za({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=zp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var gD={kernelName:_s,backendName:"cpu",kernelFunc:UX};function jX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=av({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=za({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=zp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var xD={kernelName:ks,backendName:"cpu",kernelFunc:jX};function HX(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=y.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[l,u,c,p]=S.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(l,o.dtype,[]);let m=ve([u,c],o.dtype),f=t.data.get(n.dataId).values,d=t.data.get(o.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let w=0;w<i;w++){let b=f[h*i+w];x+=b*p[w],g.push(b)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${o.shape}`);for(let w=0;w<c;w++)m.values[h*c+w]=d[x*c+w]}return t.makeTensorInfo(l,m.dtype,m.values)}var yD={kernelName:ai,backendName:"cpu",kernelFunc:HX};function qX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o;te([n,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,n.shape)[0],p=S.segment_util.collectGatherOpShapeInfo(n,s,c,l),m=Qe({inputs:{x:n},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Qe({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=Hk(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var bD={kernelName:cs,backendName:"cpu",kernelFunc:qX};var KX=Ke((r,e)=>r>=e?1:0),XX=et(ln,KX,null,"bool"),wD={kernelName:ln,backendName:"cpu",kernelFunc:XX};function YX(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Ix(i,!0,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var _D={kernelName:Jl,backendName:"cpu",kernelFunc:YX};var ZX=$e(ui,r=>Number.isFinite(r)?1:0,"bool"),kD={kernelName:ui,backendName:"cpu",kernelFunc:ZX};var JX=$e(ci,r=>Math.abs(r)===Infinity?1:0,"bool"),vD={kernelName:ci,backendName:"cpu",kernelFunc:JX};var QX=$e(pi,r=>Number.isNaN(r)?1:0,"bool"),CD={kernelName:pi,backendName:"cpu",kernelFunc:QX};var e8=Ke((r,e)=>r<=e?1:0),t8=et(fi,e8,null,"bool"),ID={kernelName:fi,backendName:"cpu",kernelFunc:t8};function r8(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=qk(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var ND={kernelName:eu,backendName:"cpu",kernelFunc:r8};var o8=$e(di,r=>Math.log1p(r)),SD={kernelName:di,backendName:"cpu",kernelFunc:o8};var n8=Ke((r,e)=>r&&e),s8=et(hi,n8,null,"bool"),TD={kernelName:hi,backendName:"cpu",kernelFunc:s8};var i8=$e(Ya,r=>r?0:1,"bool"),AD={kernelName:Ya,backendName:"cpu",kernelFunc:i8};var a8=Ke((r,e)=>r||e),l8=et(Za,a8,null,"bool"),ED={kernelName:Za,backendName:"cpu",kernelFunc:l8};function u8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o;te(n,"LRN");let u=n.shape[3],c=u-1,p=t.data.get(n.dataId).values,m=y.sizeFromShape(n.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),w=h-g+Math.min(g+s,c),b=0;for(;x<=w;x++){let _=p[x];b+=_*_}return b}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(n.shape,n.dtype,f)}var DD={kernelName:aa,backendName:"cpu",kernelFunc:u8};function c8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o;te(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(n.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let w=0;w<x;w++){let b=w%m,_=w-b+Math.max(0,b-i),k=w-b+Math.min(m,b+i+1),A=0;for(let N=_;N<k;N++)A+=Math.pow(d[N],2);A=u*A+l;for(let N=_;N<k;N++){let $=-2*u*c*d[N]*h[w]/A;w===N&&($+=Math.pow(A,-c)),$*=f[w],g[N]+=$}}return t.makeTensorInfo(a.shape,n.dtype,g)}var $D={kernelName:tu,backendName:"cpu",kernelFunc:c8};function cv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=t,l=n.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=S.getAxesPermutation(p,u),f=i.data.get(n.dataId).values;if(m!=null){let _=new Array(u);for(let k=0;k<_.length;k++)_[k]=l[m[k]];f=Gd(f,l,n.dtype,m,_),p=S.getInnerMostAxes(p.length,u),l=_}te(n,"max"),S.assertAxesAreInnerMostDims("max",p,u);let[d,h]=S.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=Kk(f,g,d,n.dtype),w=i.write(x,d,n.dtype),b=d;return a&&(b=S.expandShapeToKeepDim(d,c)),{dataId:w,shape:b,dtype:n.dtype}}var RD={kernelName:pn,backendName:"cpu",kernelFunc:cv};function p8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Er({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=Bp(m,n.shape,n.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var FD={kernelName:fn,backendName:"cpu",kernelFunc:p8};function m8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"maxPool3d");let c=S.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=Cx(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var OD={kernelName:la,backendName:"cpu",kernelFunc:m8};function f8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"maxPool3DGrad");let c=S.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=D2(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,w=c.dilationWidth,b=c.effectiveFilterDepth,_=c.effectiveFilterHeight,k=c.effectiveFilterWidth,A=b-1-c.padInfo.front,N=k-1-c.padInfo.left,$=_-1-c.padInfo.top,F=ve(s.shape,"float32"),M=t.bufferSync(n);for(let V=0;V<c.batchSize;++V)for(let W=0;W<c.inChannels;++W)for(let U=0;U<c.inDepth;++U)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=U-A,oe=H-$,Y=q-N,re=0;for(let J=0;J<b;J+=g){let ie=(X+J)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let ue=0;ue<_;ue+=x){let ae=(oe+ue)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=w){let de=(Y+fe)/h;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let xe=b*_*k-1-m.get(V,ie,ae,de,W),we=J*_*k+ue*k+fe,De=xe===we?1:0;if(De===0)continue;re+=M.get(V,ie,ae,de,W)*De}}}F.set(re,V,U,H,q,W)}return t.makeTensorInfo(F.shape,F.dtype,F.values)}var PD={kernelName:ou,backendName:"cpu",kernelFunc:f8};function d8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=S.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=ve(m.outShape,i.dtype,vx(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,w=m.dilationWidth,b=m.effectiveFilterHeight,_=m.effectiveFilterWidth,k=_-1-m.padInfo.left,A=b-1-m.padInfo.top,N=ve(i.shape,"float32"),$=t.data.get(n.dataId).values,F=ve(n.shape,"float32",$);for(let M=0;M<m.batchSize;++M)for(let V=0;V<m.inChannels;++V)for(let W=0;W<m.inHeight;++W)for(let U=0;U<m.inWidth;++U){let H=W-A,q=U-k,X=0;for(let oe=0;oe<b;oe+=x){let Y=(H+oe)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=w){let J=(q+re)/g;if(J<0||J>=m.outWidth||Math.floor(J)!==J)continue;let ie=b*_-1-d.get(M,Y,J,V),ue=oe*_+re,ae=ie===ue?1:0;if(ae===0)continue;X+=F.get(M,Y,J,V)*ae}}N.set(X,M,W,U,V)}return t.makeTensorInfo(N.shape,N.dtype,N.values)}var MD={kernelName:ru,backendName:"cpu",kernelFunc:d8};function LD(r,e,t,o,n){let s=y.computeStrides(e),a=Bp(r,e,t,s,n,"max"),i=vx(r,e,t,n,!0,o);return[a.values,i.values]}var zD={kernelName:nu,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(o,"MaxPoolWithArgmax");let u=l.data.get(o.dataId).values,c=S.computePool2DInfo(o.shape,n,s,[1,1],a),[p,m]=LD(u,o.shape,o.dtype,i,c),f=l.write(p,c.outShape,o.dtype),d=l.write(m,c.outShape,o.dtype);return[{dataId:f,shape:c.outShape,dtype:o.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function nc(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"sum");let i;n.dtype==="bool"?i=Jn({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=Er({inputs:{x:n},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=S.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=rr({inputs:{x:i},backend:t,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,l)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=Mp(t,f,h),x=y.sizeFromShape(d),w=t.data.get(g.dataId).values,b=t.data.get(m.dataId).values;for(let _=0;_<w.length;++_){let k=_*x,A=0;for(let N=0;N<x;++N)A+=b[k+N];w[_]=A}if(a){let _=S.expandShapeToKeepDim(g.shape,u),k=g;g=Qe({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(k)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var BD={kernelName:Dn,backendName:"cpu",kernelFunc:nc};function h8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=y.parseAxisParam(s,n.shape),u=S.computeOutAndReduceShapes(n.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Jn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=Hd({inputs:{a:f,b:m},backend:t});p.push(d);let h=nc({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var VD={kernelName:dn,backendName:"cpu",kernelFunc:h8};function g8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"min");let i=y.parseAxisParam(s,n.shape),l=i,u=S.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=rr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,n.shape.length)),S.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let w=x*f,b=h[w];for(let _=0;_<f;++_){let k=h[w+_];k<b&&(b=k)}d[x]=b}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),w=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),w}return g}var GD={kernelName:hn,backendName:"cpu",kernelFunc:g8};function x8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,mode:a}=o;te(n,"mirrorPad");let i=s.map((b,_)=>b[0]+n.shape[_]+b[1]),l=s.map(b=>b[0]),u=s.map((b,_)=>b[0]+n.shape[_]),c=a==="reflect"?0:1,p=t.data.get(n.dataId).values,m=n.shape.length,f=y.computeStrides(n.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(n.dtype,d);for(let b=0;b<d;b++){let _=y.indexToLoc(b,h,g);for(let A=0;A<h;A++)_[A]<l[A]?_[A]=l[A]*2-_[A]-c:_[A]>=u[A]&&(_[A]=(u[A]-1)*2-_[A]+c);_=_.map((A,N)=>A-l[N]);let k=y.locToIndex(_,m,f);x[b]=p[k]}return{dataId:t.write(x,i,n.dtype),shape:i,dtype:n.dtype}}var WD={kernelName:ua,backendName:"cpu",kernelFunc:x8};var y8=Ke((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),b8=et(gi,y8),UD={kernelName:gi,backendName:"cpu",kernelFunc:b8};var a$=Ac(s$());function xv(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],n.shape),u=cv({inputs:{x:n},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=S.expandShapeToKeepDim(u.shape,l),p=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),m=jd({inputs:{a:n,b:p},backend:t}),f=jk({inputs:{x:m},backend:t}),d=nc({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=Hd({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var i$={kernelName:$n,backendName:"cpu",kernelFunc:xv};function N8(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;te(n,"multinomial");let l=i?n:xv({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let b=1;b<g.length;++b)g[b]=g[b-1]+p[h+b];let x=a$.alea(a.toString()),w=d*s;for(let b=0;b<s;++b){let _=x();f[w+b]=g.length;for(let k=0;k<g.length;k++)if(_<g[k]){f[w+b]=k;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var l$={kernelName:su,backendName:"cpu",kernelFunc:N8};var S8=Ar.nonMaxSuppressionV3Impl;function T8(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o;te(n,"NonMaxSuppression");let u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=S8(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var u$={kernelName:yi,backendName:"cpu",kernelFunc:T8};var A8=Ar.nonMaxSuppressionV4Impl;function E8(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o;te(n,"NonMaxSuppressionPadded");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=A8(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var c$={kernelName:bi,backendName:"cpu",kernelFunc:E8};var D8=Ar.nonMaxSuppressionV5Impl;function $8(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o;te(n,"NonMaxSuppressionWithScore");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=D8(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var p$={kernelName:wi,backendName:"cpu",kernelFunc:$8};function R8(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o;te(n,"oneHot");let l=y.sizeFromShape(n.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(n.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...n.shape,s],"int32",u)}var m$={kernelName:yn,backendName:"cpu",kernelFunc:R8};function Xd(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(o.dtype==="complex64"){let n=Zn({inputs:{input:o},backend:t}),s=Xd({inputs:{x:n},backend:t}),a=ji({inputs:{input:o},backend:t}),i=Xd({inputs:{x:a},backend:t}),l=mr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Kd({backend:t,attrs:{shape:o.shape,value:0,dtype:o.dtype}})}var f$={kernelName:bs,backendName:"cpu",kernelFunc:Xd};function d$(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(o.dtype==="complex64"){let n=Zn({inputs:{input:o},backend:t}),s=d$({inputs:{x:n},backend:t}),a=ji({inputs:{input:o},backend:t}),i=Xd({inputs:{x:a},backend:t}),l=mr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Kd({backend:t,attrs:{shape:o.shape,value:1,dtype:o.dtype}})}var h$={kernelName:ms,backendName:"cpu",kernelFunc:d$};function yv(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Vp({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Vp({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=kl({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var g$={kernelName:fs,backendName:"cpu",kernelFunc:yv};function F8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;te(n,"pad");let i=s.map((w,b)=>w[0]+n.shape[b]+w[1]),l=s.map(w=>w[0]),u=t.data.get(n.dataId).values,c=y.sizeFromShape(n.shape),p=n.shape.length,m=y.computeStrides(n.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(n.dtype,f);a!==0&&g.fill(a);for(let w=0;w<c;w++){let _=y.indexToLoc(w,p,m).map((A,N)=>A+l[N]),k=y.locToIndex(_,d,h);g[k]=u[w]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var Sx={kernelName:bn,backendName:"cpu",kernelFunc:F8};var O8=Ke((r,e)=>Math.pow(r,e)),P8=et(wn,O8),x$={kernelName:wn,backendName:"cpu",kernelFunc:P8};function M8(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=Wd(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var y$={kernelName:ca,backendName:"cpu",kernelFunc:M8};var L8=$e(ki,r=>1/r),b$={kernelName:ki,backendName:"cpu",kernelFunc:L8};function z8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeBilinear");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],w=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=0,_=x[0]/w[0],k=x[1]/w[1];for(let A=0;A<p;A++)for(let N=0;N<u;N++){let $;a?$=_*(N+.5)-.5:$=_*N;let F=Math.max(0,Math.floor($)),M=$-F,V=Math.min(m-1,Math.ceil($)),W=A*l[0]+F*l[1],U=A*l[0]+V*l[1];for(let H=0;H<c;H++){let q;a?q=k*(H+.5)-.5:q=k*H;let X=Math.max(0,Math.floor(q)),oe=q-X,Y=Math.min(f-1,Math.ceil(q)),re=W+X*l[2],J=U+X*l[2],ie=W+Y*l[2],ue=U+Y*l[2];for(let ae=0;ae<d;ae++){let fe=h[re+ae],de=h[J+ae],xe=h[ie+ae],we=h[ue+ae],De=fe+(xe-fe)*oe,Ie=de+(we-de)*oe,ze=De+(Ie-De)*M;g[b++]=ze}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var w$={kernelName:vn,backendName:"cpu",kernelFunc:z8};function B8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeBilinearGrad");let i=y.computeStrides(n.shape),[l,u,c,p]=n.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],w=h[1]/g[1],b=t.data.get(s.dataId).values,_=0;for(let k=0;k<l;k++){let A=k*i[0];for(let N=0;N<m;N++){let $=N*x,F=Math.floor($),M=Math.min(Math.ceil($),u-1),V=A+F*i[1],W=A+M*i[1],U=$-F,H=1-U;for(let q=0;q<f;q++){let X=q*w,oe=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-oe,J=1-re,ie=V+oe*i[2],ue=V+Y*i[2],ae=W+oe*i[2],fe=W+Y*i[2],de=H*J,xe=H*re,we=U*J,De=U*re;for(let Ie=0;Ie<p;Ie++){let ze=b[_++];d[ie+Ie]+=ze*de,d[ue+Ie]+=ze*xe,d[ae+Ie]+=ze*we,d[fe+Ie]+=ze*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var _$={kernelName:lu,backendName:"cpu",kernelFunc:B8};function V8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeNearestNeighbor");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],w=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=x[0]/w[0],_=x[1]/w[1],k=0;for(let A=0;A<p;A++){let N=A*l[0];for(let $=0;$<u;$++){let F=a?b*($+.5):b*$,M=Math.min(m-1,s?Math.round(F):Math.floor(F));a&&(M=Math.max(0,M));let V=N+M*l[1];for(let W=0;W<c;W++){let U=a?_*(W+.5):_*W,H=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(H=Math.max(0,H));let q=V+H*l[2];for(let X=0;X<d;X++){let oe=h[q+X];g[k++]=oe}}}}return t.makeTensorInfo([p,u,c,d],n.dtype,g)}var k$={kernelName:pa,backendName:"cpu",kernelFunc:V8};function G8(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeNearestNeighborGrad");let i=y.computeStrides(n.shape),l=y.computeStrides(s.shape),[u,c,p,m]=n.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],w=[a&&f>1?f-1:f,a&&d>1?d-1:d],b=x[0]/w[0],_=x[1]/w[1],k=1/b,A=1/_,N=Math.ceil(k)*2+2,$=Math.ceil(A)*2+2;for(let F=0;F<u;F++){let M=F*i[0];for(let V=0;V<c;V++){let W=M+V*i[1],U=Math.floor(V*k),H=Math.floor(U-N/2);for(let q=0;q<p;q++){let X=W+q*i[2],oe=Math.floor(q*A),Y=Math.floor(oe-$/2);for(let re=0;re<m;re++){let J=0;for(let ie=0;ie<N;ie++){let ue=ie+H;if(ue<0||ue>=f)continue;let ae=M+ue*l[1],fe=ue*b,de=Math.min(c-1,a?Math.round(fe):Math.floor(fe));if(V===de)for(let xe=0;xe<$;xe++){let we=xe+Y;if(we<0||we>=d)continue;let De=ae+we*l[2],Ie=we*_,ze=Math.min(p-1,a?Math.round(Ie):Math.floor(Ie));q===ze&&(J+=g[De+re])}}h[X+re]=J}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var v$={kernelName:au,backendName:"cpu",kernelFunc:G8};function W8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;te(n,"reverse");let a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Er({inputs:{x:n},backend:t});let l=new lt(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=n.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var C$={kernelName:In,backendName:"cpu",kernelFunc:W8};var I$={kernelName:Di,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[u,c,p,m]=o.shape,[f,d]=S.getImageCenter(a,c,p),h=255,g=Math.sin(n),x=Math.cos(n),w=i.data.get(o.dataId).values;for(let _=0;_<u;_++){let k=_*p*c*m;for(let A=0;A<c;A++){let N=A*(p*m);for(let $=0;$<p;$++){let F=$*m;for(let M=0;M<m;M++){let V=[u,A,$,M],W=V[2],U=V[1],H=(W-f)*x-(U-d)*g,q=(W-f)*g+(U-d)*x;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,J=k+Y+re+M;X=w[J]}let oe=k+N+F+M;l[oe]=X}}}}return{dataId:i.write(l,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var U8=$e(Nn,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),N$={kernelName:Nn,backendName:"cpu",kernelFunc:U8};function Tx(r,e,t,o,n,s,a,i,l,u){let c=[o/n,n],p=r.values,m=e.values;if(o===0)return ve(t,e.dtype);let f=ve(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let w=p[d*a+x];h.push(w),g+=w*i[x]}if(g<0||g>=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<n;x++)u?f.values[g*n+x]+=m[d*n+x]:f.values[g*n+x]=e.rank===0?m[0]:m[d*n+x]}return f}function j8(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=S.calculateShapes(s,n,a),m=!0,f=t.bufferSync(n),d=t.bufferSync(s),h=Tx(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var S$={kernelName:vi,backendName:"cpu",kernelFunc:j8};function H8(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e;te([o,n,s],"select");let a=o.shape.length,i=t.data.get(o.dataId).values,l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=dr(n.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(n.shape),c),m=0,f=a===0||a>1||n.shape.length===1?1:y.sizeFromShape(n.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(n.shape,c,p)}var T$={kernelName:hs,backendName:"cpu",kernelFunc:H8};var q8=S.SELU_SCALEALPHA,K8=S.SELU_SCALE,X8=$e(Ci,r=>r>=0?K8*r:q8*(Math.exp(r)-1)),A$={kernelName:Ci,backendName:"cpu",kernelFunc:X8};var Y8=$e(An,r=>1/(1+Math.exp(-r))),E$={kernelName:An,backendName:"cpu",kernelFunc:Y8};var Z8=$e(Ni,r=>r<0?-1:r>0?1:0),D$={kernelName:Ni,backendName:"cpu",kernelFunc:Z8};var J8=$e(Tn,r=>Math.sin(r)),$$={kernelName:Tn,backendName:"cpu",kernelFunc:J8};var Q8=$e(Ii,r=>Math.sinh(r)),R$={kernelName:Ii,backendName:"cpu",kernelFunc:Q8};var eY=11920928955078125e-23,F$=Math.log(eY)+2,tY=$e(Si,r=>{let e=r>-F$,t=r<F$,o=Math.exp(r),n;return t?n=o:e?n=r:n=Math.log(1+o),n}),O$={kernelName:Si,backendName:"cpu",kernelFunc:tY};function rY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;te([n],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let A=1+s.length;A<n.shape.length;++A)l.push([0,0]);let u=Sx.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),c=S.getReshaped(u.shape,s,i,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(u.shape,s,i,!1),h=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),w=rr({inputs:{x:h},backend:t,attrs:{perm:p}}),k=Qe({inputs:{x:w},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(w),k}var P$={kernelName:ma,backendName:"cpu",kernelFunc:rY};function oY(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,n,i),f=!1,d=t.bufferSync(n),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Tx(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var M$={kernelName:uu,backendName:"cpu",kernelFunc:oY};function nY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=S.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=ts({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var L$={kernelName:xs,backendName:"cpu",kernelFunc:nY};var sY=$e(En,r=>Math.sqrt(r)),z$={kernelName:En,backendName:"cpu",kernelFunc:sY};var B$={kernelName:fa,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;te(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i<n.length;++i){let l=n[i];s[i]=l*l}return{dataId:o.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var iY=$e(Fo,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),V$={kernelName:Fo,backendName:"cpu",kernelFunc:iY};function aY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o;te(n,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:w}=sr.sliceInfo(n.shape,s,a,i,l,u,c,p,m),b=Qe({inputs:{x:n},backend:t,attrs:{shape:x}}),_;if(f){let A=ts({inputs:{x:b},backend:t,attrs:{begin:d,size:g}});_=Qe({inputs:{x:A},backend:t,attrs:{shape:w}}),t.disposeIntermediateTensorInfo(A)}else if(w.some(A=>A===0))_=t.makeTensorInfo(w,n.dtype,[]);else{let A=t.bufferSync(b),N=Xk(w,A,h,d);_=t.makeTensorInfo(N.shape,N.dtype,N.values)}let k=Qe({inputs:{x:_},backend:t,attrs:{shape:w}});return t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(_),k}var G$={kernelName:Ti,backendName:"cpu",kernelFunc:aY};var lY=$e(Ai,r=>Math.tan(r)),W$={kernelName:Ai,backendName:"cpu",kernelFunc:lY};var uY=$e(On,r=>Math.tanh(r)),U$={kernelName:On,backendName:"cpu",kernelFunc:uY};function cY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;te(n,"tile");let a=Yk(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var j$={kernelName:_o,backendName:"cpu",kernelFunc:cY};function pY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;te(n,"topk");let i=t.data.get(n.dataId).values,[l,u]=Zk(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var H$={kernelName:Ei,backendName:"cpu",kernelFunc:pY};function dY(r){let{inputs:e,attrs:t,backend:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=y.computeStrides(n.shape),w=x[0],b=x[1],_=x[2],k=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(g));k.fill(l);let A=o.data.get(n.dataId).values,N=o.data.get(s.dataId).values;for(let F=0;F<c;++F){let M=s.shape[0]===1?N:N.subarray(F*8,F*8+8);for(let V=0;V<d;++V)for(let W=0;W<h;++W)for(let U=0;U<f;++U){let H,q=M[6]*W+M[7]*V+1;if(q===0)continue;let X=(M[0]*W+M[1]*V+M[2])/q,oe=(M[3]*W+M[4]*V+M[5])/q,Y=q$(X,m,i),re=q$(oe,p,i);switch(a){case"nearest":H=mY(A,p,m,w,b,_,F,re,Y,U,l);break;case"bilinear":H=fY(A,p,m,w,b,_,F,re,Y,U,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let J=F*w+V*b+W*_+U;k[J]=H}return o.makeTensorInfo(g,n.dtype,k)}return{dataId:o.write(k,g,n.dtype),shape:n.shape,dtype:n.dtype}}var K$={kernelName:cu,backendName:"cpu",kernelFunc:dY};function q$(r,e,t){switch(t){case"reflect":return hY(r,e);case"wrap":return gY(r,e);case"nearest":return yY(r,e);case"constant":default:return xY(r,e)}}function hY(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=2*e;t<o&&(t=o*Math.trunc(-t/o)+t),t=t<-e?t+o:-t-1}else if(t>e-1)if(e<=1)t=0;else{let o=2*e;t-=o*Math.trunc(t/o),t>=e&&(t=o-t-1)}return y.clamp(0,t,e-1)}function gY(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=e-1;t+=e*(Math.trunc(-t/o)+1)}else if(t>e-1)if(e<=1)t=0;else{let o=e-1;t-=e*Math.trunc(t/o)}return y.clamp(0,t,e-1)}function xY(r,e){return r}function yY(r,e){return y.clamp(0,r,e-1)}function Yd(r,e,t,o,n,s,a,i,l,u,c){let p=a*o+i*n+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function mY(r,e,t,o,n,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return Yd(r,e,t,o,n,s,a,p,m,u,c)}function fY(r,e,t,o,n,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*Yd(r,e,t,o,n,s,a,p,m,u,c)+(l-m)*Yd(r,e,t,o,n,s,a,p,d,u,c),g=(d-l)*Yd(r,e,t,o,n,s,a,f,m,u,c)+(l-m)*Yd(r,e,t,o,n,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function bY(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;te(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=Jk(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var X$={kernelName:pu,backendName:"cpu",kernelFunc:bY};function wY(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a).fill(0),p=n.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=ts({inputs:{x:n},backend:t,attrs:{begin:c,size:p}});m[f]=Qe({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var Y$={kernelName:ys,backendName:"cpu",kernelFunc:wY};function _Y(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o;te(n,"unsortedSegmentSum");let i=n.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=Vp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=lv({inputs:{a:g,b:m},backend:t}),w=Jn({inputs:{x},backend:t,attrs:{dtype:"float32"}}),b=Vd({inputs:{a:w,b:n},backend:t}),_=nc({inputs:{x:b},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(x),c.push(w),c.push(b),c.push(_)}let f=yv({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var Z$={kernelName:da,backendName:"cpu",kernelFunc:_Y};var kY=[y2,CE,b2,w2,EE,_2,k2,v2,C2,I2,N2,S2,T2,A2,E2,$2,R2,F2,O2,x2,P2,M2,L2,TE,$E,z2,IE,B2,G2,U2,j2,W2,q2,K2,H2,X2,Y2,Z2,J2,Q2,eD,tD,rD,oD,nD,sD,aD,iD,qd,p2,lD,uD,cD,FE,pD,PE,mD,fD,dD,LE,hD,gD,xD,yD,bD,BE,wD,NE,_D,V2,kD,vD,CD,m2,GE,ID,ND,UE,SD,TD,AD,ED,DD,$D,HE,FD,OD,PD,MD,zD,RD,VD,GD,KE,WD,UD,l$,XE,ZE,u$,c$,p$,QE,m$,h$,g$,Sx,x$,f2,r2,y$,SE,b$,d2,h2,g2,w$,_$,k$,v$,C$,I$,N$,n2,S$,T$,A$,E$,D$,$$,R$,s2,i$,O$,P$,M$,L$,z$,B$,a2,V$,G$,u2,BD,W$,U$,j$,H$,e2,K$,X$,Y$,Z$,f$];for(let r of kY)Ja(r);var ic={},bv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function J$(r,e){ic[r]=e}function Go(r){if(!(r in ic)){let t=vY(r);if(t!==null)ic[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=ic[r];return e.isContextLost()?(delete ic[r],Go(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),ic[r])}function CY(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function vY(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=CY(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete ic[r]},!1),r===1?e.getContext("webgl",bv)||e.getContext("experimental-webgl",bv):e.getContext("webgl2",bv)}var vl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(vl||(vl={}));var Dr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Dr||(Dr={}));var kr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(kr||(kr={}));function ac(r,e){return[e,r]}function Q$(r,e){return r*e}function Cl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function Hi(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function eR(r,e){let[t,o]=Hi(r,e);return t*o*4}function Zd(r,e){let t=r,o,n,s,a,i,l,u,c,p,m;return j().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ae(r,e){let t=e();return j().getBool("DEBUG")&&IY(r),t}function IY(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+NY(r,e))}var SY=596e-10,TY=65504;function tR(r){return!!(j().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||SY<Math.abs(r)&&Math.abs(r)<TY)}function NY(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function Jd(r,e){return Ba(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function rR(r,e){let t=Ba(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ae(r,()=>r.shaderSource(t,e)),Ae(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function oR(r,e){let t=Ba(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ae(r,()=>r.shaderSource(t,e)),Ae(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw AY(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var EY=/ERROR: [0-9]+:([0-9]+):/g;function AY(r,e){let t=EY.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(`
|
|
`),s=n.length.toString().length+2,a=n.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,o-1),u=a.slice(o-1,o),c=a.slice(o);console.log(l.join(`
|
|
`)),console.log(e.split(`
|
|
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function nR(r){return Ba(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function sR(r,e){if(Ae(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Ax(r,e){if(Ae(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function iR(r,e){let t=Ba(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ae(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ae(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function aR(r,e){let t=Ba(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ae(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ae(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function lR(r){return Ba(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function uR(r,e){let t=j().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function cR(r){return Ba(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function wv(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ae(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),Ae(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),Ae(r,()=>r.enableVertexAttribArray(i)),!0)}function $Y(r,e,t){DY(r,t),Ae(r,()=>r.activeTexture(r.TEXTURE0+t)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function pR(r,e,t){return Ba(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function mR(r,e,t){return r.getUniformLocation(e,t)}function fR(r,e,t,o){Ae(r,()=>$Y(r,e,o)),Ae(r,()=>r.uniform1i(t,o))}function Ex(r,e,t){Ae(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ae(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function _v(r,e){Ae(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ae(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function Qd(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+RY(r,e))}function RY(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function Ba(r,e,t){let o=Ae(r,()=>e());if(o==null)throw new Error(t);return o}function DY(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(o<r.TEXTURE0||o>t){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function Il(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function Nl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Dx(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Il(r),...Nl(r)]),e}function dR(r,e=!1){let t=j().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((n,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r);if(r.length<=1&&o<=t)return[1,o];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let n=Il(r),s=2,a=2;return r.length&&([s,a]=Nl(r)),o=n*(s/2)*(a/2),y.sizeToSquarishShape(o).map(i=>i*2)}return y.sizeToSquarishShape(o)}function $x(r){return r%2==0}function lc(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],o=e.slice(-1)[0];if(t===o||$x(t)&&$x(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&$x(r[0])&&$x(e[0])}var kv,vv;function hR(r){if(kv==null){let e=Go(r);kv=e.getParameter(e.MAX_TEXTURE_SIZE)}return kv}function gR(r){if(vv==null){let e=Go(r);vv=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,vv)}function xR(r){if(r===0)return 0;let e,t=Go(r);return Wo(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:Wo(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function Wo(r,e){return r.getExtension(e)!=null}function Cv(r){try{if(Go(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function yR(r){if(r===0)return!1;let e=Go(r);if(r===1){if(!Wo(e,"OES_texture_float"))return!1}else if(!Wo(e,"EXT_color_buffer_float"))return!1;return Iv(e)}function bR(r){if(r===0)return!1;let e=Go(r);if(r===1){if(!Wo(e,"OES_texture_float")||!Wo(e,"WEBGL_color_buffer_float"))return!1}else{if(Wo(e,"EXT_color_buffer_float"))return Iv(e);let o="EXT_color_buffer_half_float";if(Wo(e,o)){let n=e.getExtension(o);return FY(e,n)}return!1}return Iv(e)}function Iv(r){let e=Zd(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let o=1,n=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,o,n,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function FY(r,e){let t=Zd(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o);let n=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,n,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function wR(r){return r!==2?!1:Go(r).fenceSync!=null}function qi(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Me=j();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>Cv(2)?2:Cv(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>hR(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>gR(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Me.getNumber("WEBGL_VERSION");return r===0?0:xR(r)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!hu.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>yR(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>bR(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>wR(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>hu.isMobile()&&Me.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Pt(){let r,e,t,o,n,s,a,i,l,u;return j().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Bs(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function Gp(r){let e=y.computeStrides(r).map(t=>t.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
|
|
}
|
|
`}var Rx=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`;var Nv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=vl.DENSE;let t=Cl(e),o=Pt();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Bs(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${o.output} = result;
|
|
}
|
|
`}};var Sv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=vl.DENSE;let t=Cl(e),o=Pt();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Bs(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${o.output} = result;
|
|
}
|
|
`}};var Tv=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Dr.DOWNLOAD;let t=Pt();this.outputShape=e,this.userCode=`
|
|
${Rx}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}};var Av=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Dr.DOWNLOAD;let t=Pt();this.outputShape=e,this.userCode=`
|
|
${Rx}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}};var Ev=class{constructor(e,t,o=!1){this.variableNames=["A"];let n=Pt(),[s,a]=t;this.outputShape=e;let i="result";o&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Gp(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${a};
|
|
int c = imod(flatIndex, ${a});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}};var Dv=class{constructor(e,t,o=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let n=Pt(),[s,a]=t;this.outputShape=e;let i="",l="result";o&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${c} < ${e[2]}) {
|
|
localCoords[2] += ${c};
|
|
if(localCoords[1] + ${u} < ${e[1]}) {
|
|
localCoords[1] += ${u};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${a};
|
|
c = imod(flatIndex, ${a});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${p}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${p}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${p}] = values[2];
|
|
} else {
|
|
result[${p}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Gp(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${n.output} = ${l};
|
|
}
|
|
`}};function _R(r){let e=Pt(),t=`${e.version}
|
|
precision highp float;
|
|
${e.attribute} vec3 clipSpacePos;
|
|
${e.attribute} vec2 uv;
|
|
${e.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return rR(r,t)}function kR(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return iR(r,e)}function vR(r){let e=new Uint16Array([0,1,2,2,1,3]);return aR(r,e)}function eh(r,e,t,o,n,s){uR(e,t);let a=lR(r),i=r.TEXTURE_2D;return Ae(r,()=>r.bindTexture(i,a)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ae(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ae(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function $v(r){return r.internalFormatFloat}function CR(r,e,t,o){let[n,s]=ac(e,t);return eh(r,n,s,$v(o),o.textureFormatFloat,r.FLOAT)}function Rv(r){return r.internalFormatHalfFloat}function IR(r,e,t,o){let[n,s]=ac(e,t);return eh(r,n,s,Rv(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function Fv(r){return r.downloadTextureFormat}function NR(r,e,t,o){let[n,s]=ac(e,t);return eh(r,n,s,Fv(o),r.RGBA,r.UNSIGNED_BYTE)}function Ov(r){return r.internalFormatPackedFloat}function SR(r,e,t,o){let[n,s]=Hi(e,t);return eh(r,n,s,Ov(o),r.RGBA,r.FLOAT)}function Pv(r){return r.internalFormatPackedHalfFloat}function TR(r,e,t,o){let[n,s]=Hi(e,t);return eh(r,n,s,Pv(o),r.RGBA,o.textureTypeHalfFloat)}function AR(r,e,t){let o=0,n=3*4,s=3*4+2*4;return Ae(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),wv(r,e,"clipSpacePos",t,3,s,o)&&wv(r,e,"uv",t,2,s,n)}function ER(r,e,t,o,n,s){Ae(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(n),Ae(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,o,0,r.RGBA,i,a)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function DR(r,e,t){Ae(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ae(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ae(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ae(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function $R(r,e,t,o){let n=r.createBuffer();Ae(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return Ae(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ae(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ae(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function RR(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function FR(r,e,t,o){let[n,s]=ac(e,t),a=4,i=new Uint8Array(Q$(e*t,a));return Ae(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function OR(r,e,t,o,n,s,a,i){let l=r,u=new Float32Array(eR(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function PR(r,e,t){let o=new Float32Array(e*t*4);return Ae(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var Mv=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=j().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,J$(t,e)):this.gl=Go(t);let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(j().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Jd(this.gl,s),Wo(this.gl,a))this.textureHalfFloatExtension=Jd(this.gl,a);else if(j().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),Wo(this.gl,n))this.colorBufferHalfFloatExtension=Jd(this.gl,n);else if(j().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",Wo(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(Wo(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=kR(this.gl),this.indexBuffer=vR(this.gl),this.framebuffer=cR(this.gl),this.textureConfig=Zd(this.gl,this.textureHalfFloatExtension)}get debug(){return j().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ae(e,()=>e.finish()),Ae(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ae(e,()=>e.deleteFramebuffer(this.framebuffer)),Ae(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ae(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ae(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),CR(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),IR(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),NR(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),DR(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),ER(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),TR(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),SR(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(_v(this.gl,this.framebuffer),this.outputTexture=null),Ae(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>FR(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return OR(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return RR(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=$R(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(j().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>PR(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl,o=oR(t,e),n=_R(t),s=nR(t);return Ae(t,()=>t.attachShader(s,n)),Ae(t,()=>t.attachShader(s,o)),sR(t,s),this.debug&&Ax(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=AR(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ae(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Ax(this.gl,this.program),Ae(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?pR(this.gl,e,t):mR(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ae(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),fR(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=Hi(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Ax(this.gl,this.program),Qd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ae(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ae(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Jd(this.gl,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=OY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ex(this.gl,e,this.framebuffer),this.debug&&Qd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ex(this.gl,this.outputTexture,this.framebuffer),this.debug&&Qd(this.gl)):_v(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;Ex(n,e,this.framebuffer),this.debug&&Qd(n),this.outputTexture=e,Ae(n,()=>n.viewport(0,0,t,o)),Ae(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),Ae(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function OY(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:MR}=S;function LR(r,e,t,o){let n=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`))});let s=n.join(`
|
|
`),a=r.map(d=>PY(d,e,o)).join(`
|
|
`),i=e.texShape,l=Pt(),u=zY(l),c,p,m=GY(l);return e.isPacked?(c=MY(e.logicalShape,i),p=VY(l)):(c=LY(e.logicalShape,i),p=BY(l)),o&&(m+=WY),[m,u,p,s,c,a,t].join(`
|
|
`)}function Wp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return UY(r);case 1:return jY(r);case 2:return HY(r);case 3:return qY(r);case 4:return KY(r);case 5:return XY(r);case 6:return YY(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function zR(r){switch(r.shapeInfo.logicalShape.length){case 0:return ZY(r);case 1:return JY(r);case 2:return QY(r);case 3:return e7(r);default:return t7(r)}}function PY(r,e,t=!1){let o="";t?o+=zR(r):o+=Wp(r);let n=r.shapeInfo.logicalShape,s=e.logicalShape;return n.length<=s.length&&(t?o+=r7(r,e):o+=o7(r,e)),o}function MY(r,e){switch(r.length){case 0:return BR();case 1:return n7(r,e);case 2:return a7(r,e);case 3:return s7(r,e);default:return i7(r,e)}}function LY(r,e){switch(r.length){case 0:return BR();case 1:return l7(r,e);case 2:return f7(r,e);case 3:return u7(r,e);case 4:return c7(r,e);case 5:return p7(r,e);case 6:return m7(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function zY(r){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${r.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function BY(r){return`
|
|
void setOutput(float val) {
|
|
${r.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function VY(r){return`
|
|
void setOutput(vec4 val) {
|
|
${r.output} = val;
|
|
}
|
|
`}function GY(r){return`${r.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${r.varyingFs} vec2 resultUV;
|
|
${r.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${r.defineSpecialNaN}
|
|
${r.defineSpecialInf}
|
|
${r.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${d7}
|
|
${h7}
|
|
${g7}
|
|
`}var d7=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,h7=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,g7=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,WY=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function BR(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function n7(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
}
|
|
`}function l7(r,e){return e[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${e[1]}.0);
|
|
}
|
|
`:e[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${e[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
return resTexRC.x * ${e[1]} + resTexRC.y;
|
|
}
|
|
`}function s7(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[2]/2),n=o*Math.ceil(r[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
int b = index / ${n};
|
|
index -= b * ${n};
|
|
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function u7(r,e){let t=Bs(["r","c","d"],r);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
${t}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function i7(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[r.length-1]/2),n=o*Math.ceil(r[r.length-2]/2),s=n,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+a,i=`b${l}, `+i;return`
|
|
ivec${r.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${a}
|
|
|
|
int b = index / ${n};
|
|
index -= b * ${n};
|
|
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec${r.length}(${i});
|
|
}
|
|
`}function c7(r,e){let t=Bs(["r","c","d","d2"],r);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
${t}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function p7(r,e){let t=Bs(["r","c","d","d2","d3"],r);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
|
|
${e[1]}));
|
|
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
|
|
${t}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function m7(r,e){let t=Bs(["r","c","d","d2","d3","d4"],r);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
|
|
${t}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function a7(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`;let o=Math.ceil(r[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${o});
|
|
int c = imod(index, ${o}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function f7(r,e){return y.arraysEqual(r,e)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
|
|
}
|
|
`:r[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:r[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${e[0]}, ${e[1]}));
|
|
int index = resTexRC.x * ${e[1]} + resTexRC.y;
|
|
int r = index / ${r[1]};
|
|
int c = index - r * ${r[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function uc(r){return`offset${r}`}function ZY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=Pt();return`
|
|
vec4 ${t}() {
|
|
return ${o.texture2D}(${e}, halfCR);
|
|
}
|
|
`}function UY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[o,n]=r.shapeInfo.texShape;if(o===1&&n===1)return`
|
|
float ${t}() {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let[s,a]=r.shapeInfo.texShape,i=uc(e);return`
|
|
float ${t}() {
|
|
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function JY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,n=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],s=Pt();return`
|
|
vec4 ${t}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${n[0]}, ${n[1]}, index);
|
|
return ${s.texture2D}(${e}, uv);
|
|
}
|
|
`}function jY(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
|
|
float ${t}(int index) {
|
|
${Up(r)}
|
|
}
|
|
`;let o=r.shapeInfo.texShape,n=o[0],s=o[1];if(s===1&&n===1)return`
|
|
float ${t}(int index) {
|
|
return sampleTexture(${e}, halfCR);
|
|
}
|
|
`;let a=uc(e);return s===1?`
|
|
float ${t}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${n}.0);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:n===1?`
|
|
float ${t}(int index) {
|
|
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`:`
|
|
float ${t}(int index) {
|
|
vec2 uv = uvFromFlat(${n}, ${s}, index + ${a});
|
|
return sampleTexture(${e}, uv);
|
|
}
|
|
`}function QY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=n[0],a=n[1],i=Pt();if(n!=null&&y.arraysEqual(e,n))return`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
|
|
|
|
return ${i.texture2D}(${t}, uv);
|
|
}
|
|
`;let l=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],u=Math.ceil(e[1]/2);return`
|
|
vec4 ${o}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${i.texture2D}(${t}, uv);
|
|
}
|
|
`}function HY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape;if(n!=null&&y.arraysEqual(e,n)){let p=n[0],m=n[1];return`
|
|
float ${o}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=jp(r,i),m=["row","col"];return`
|
|
${Wp(p)}
|
|
float ${o}(int row, int col) {
|
|
return ${o}(${Hp(m,a)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
|
|
${Up(r)}
|
|
}
|
|
`;let l=n[0],u=n[1],c=uc(t);return u===1?`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${o}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${o}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${e[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function e7(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=jp(r,p),d=["b","row","col"];return`
|
|
${zR(f)}
|
|
vec4 ${o}(int b, int row, int col) {
|
|
return ${o}(${Hp(d,m)});
|
|
}
|
|
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Pt();return`
|
|
vec4 ${o}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${a}, ${i}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${t}, uv);
|
|
}
|
|
`}function qY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=jp(r,l),h=["row","col","depth"];return`
|
|
${Wp(d)}
|
|
float ${o}(int row, int col, int depth) {
|
|
return ${o}(${Hp(h,i)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${n}, ${s}, 1)));
|
|
${Up(r)}
|
|
}
|
|
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===n&&m==null)return`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(p===s&&m==null)return`
|
|
float ${o}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let f=uc(t);return`
|
|
float ${o}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n} + col * ${s} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${c}, ${p}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function t7(r){let e=r.shapeInfo.logicalShape,t=e.length,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Pt();return`
|
|
vec4 ${n}(${p}) {
|
|
int index = ${m};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
|
|
return ${f.texture2D}(${o}, uv);
|
|
}
|
|
`}function KY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[3],s=e[2]*n,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=jp(r,i),h=["row","col","depth","depth2"];return`
|
|
${Wp(d)}
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
return ${o}(${Hp(h,l)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${a}, ${s}, ${n}, 1)));
|
|
${Up(r)}
|
|
}
|
|
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${n}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(m===n&&u==null)return`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${e[1]*e[2]}, ${e[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let f=uc(t);return`
|
|
float ${o}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} +
|
|
depth * ${n} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function XY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[4],s=e[3]*n,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=jp(r,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Wp(h)}
|
|
float ${o}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${o}(${Hp(g,u)});
|
|
}
|
|
`}if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${a}, ${s}, ${n})) +
|
|
depth3;
|
|
${Up(r)}
|
|
}
|
|
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
|
|
float ${o}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${a}, ${s}, ${n}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(f===n&&c==null)return`
|
|
float ${o}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${e[1]*e[2]*e[3]},
|
|
${e[2]*e[3]}, ${e[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${m}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let d=uc(t);return`
|
|
float ${o}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${a} + depth * ${s} +
|
|
depth2 * ${n} + depth3 + ${d};
|
|
vec2 uv = uvFromFlat(${m}, ${f}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function YY(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:n,keptDims:s}=y.squeezeShape(e);if(n.length<e.length){let g=jp(r,n),x=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Wp(g)}
|
|
float ${o}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${o}(${Hp(x,s)});
|
|
}
|
|
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
|
|
float ${o}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${a}, 1)));
|
|
${Up(r)}
|
|
}
|
|
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
|
|
float ${o}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${a})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;if(d===a&&p==null)return`
|
|
float ${o}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${e[1]*e[2]*e[3]*e[4]},
|
|
${e[2]*e[3]*e[4]},
|
|
${e[3]*e[4]},
|
|
${e[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${f}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`;let h=uc(t);return`
|
|
float ${o}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
|
|
vec2 uv = uvFromFlat(${f}, ${d}, index);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function Up(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
|
|
for (int i = 0; i < ${t}; i++) {
|
|
if (i == index) {
|
|
return ${e}[i];
|
|
}
|
|
}
|
|
`}function r7(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=MR(r.shapeInfo.logicalShape,e.logicalShape),l=Le(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(w=>`coords.${p[w+u]} = 0;`).join(`
|
|
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((w,b)=>`coords.${p[b+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(h&&!x)a===1?f=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:f=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let w=s-2,b=s-1;i.indexOf(w)>-1&&i.indexOf(b)>-1?f="return vec4(outputValue.x);":i.indexOf(w)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(b)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${n}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${o}(${m});
|
|
${f}
|
|
}
|
|
`}function o7(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, resultUV);
|
|
}
|
|
`;let u=Le(l),c=MR(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
|
|
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
|
|
float ${n}() {
|
|
${u} coords = getOutputCoords();
|
|
${m}
|
|
return get${o}(${d});
|
|
}
|
|
`}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function jp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Hp(r,e){return e.map(t=>r[t]).join(", ")}function VR(r,e,t,o){let n=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},l=LR(s,i,n,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);j().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function GR(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,o)=>{let n=t.logicalShape,s=e[o],a=s.shape;if(!y.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function WR(r,e,t,o,n){GR(e.inShapeInfos,t),GR([e.outShapeInfo],[o]);let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),j().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),n!=null&&n(r,e.webGLProgram),r.executeProgram()}function UR(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${l}_${i}`});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n,s}var{addImpl:jR,bincountImpl:Fx,bincountReduceImpl:HR,ceilImpl:qR,concatImpl:KR,expImpl:XR,expm1Impl:YR,floorImpl:ZR,gatherV2Impl:JR,greaterImpl:QR,lessImpl:eF,linSpaceImpl:tF,logImpl:rF,maxImpl:oF,maximumImpl:nF,minimumImpl:sF,multiplyImpl:iF,negImpl:aF,prodImpl:lF,rangeImpl:uF,rsqrtImpl:cF,simpleAbsImpl:Ox,sliceImpl:pF,stridedSliceImpl:mF,subImpl:fF,tileImpl:dF,topKImpl:hF,transposeImpl:qp,uniqueImpl:gF}=Qk;function Lv(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function jt(r,e){return e===1?[r]:Lv(r,e)}function xF(r,e){if(r===1)return"rc";let t="";for(let o=0;o<r;o++)t+=e[o],o<r-1&&(t+=",");return t}var zv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let o=jt("rc",t),n=Le(t),s=x7(t,e,o),a=y7(t,e[e.length-1],e[e.length-2],o),i=b7(e,o);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function w7(r,e){let t=[];for(let o=0;o<=1;o++)for(let n=0;n<=1;n++){let s=`${o===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function x7(r,e,t){if(r===1)return`rc > ${e[0]}`;let o="";for(let n=r-2;n<r;n++)o+=`${t[n]} >= ${e[n]}`,n<r-1&&(o+="||");return o}function y7(r,e,t,o){if(r===1)return"";let n=o.slice(-2);return`
|
|
int r = ${n[0]};
|
|
int c = ${n[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${e};
|
|
bool rEdge = rp1 >= ${t};
|
|
`}function b7(r,e){let t=r.length,o=w7(t,e);return t===1?`getA(rc),
|
|
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${o[0]}),
|
|
cEdge ? 0. : getA(${o[1]}),
|
|
rEdge ? 0. : getA(${o[2]}),
|
|
rEdge || cEdge ? 0. : getA(${o[3]})`}var th=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2==1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=`
|
|
${s}
|
|
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${n}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${n>0?"}":""}
|
|
`}this.userCode=`
|
|
${_7(t)}
|
|
${Gp(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${o}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function _7(r){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Bs(["r","c","d"],r)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Bv=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,o){let n=bF(t,o),s=wF(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=yF(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return n===kr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===kr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===kr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===kr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===kr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=bF(o,n),a=wF(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=yF(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),l=j().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function k7(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function yF(r,e,t,o,n){let s=v7(e,o),a;if(n){let[l,u]=Hi(r[0],r[1]);a=l*u}else{let[l,u]=ac(r[0],r[1]);a=l*u}let i=k7(t,s);return a*i}function v7(r,e){switch(r){case kr.PACKED_2X2_FLOAT32:return Ov(e);case kr.PACKED_2X2_FLOAT16:return Pv(e);case kr.UNPACKED_FLOAT32:return $v(e);case kr.UNPACKED_FLOAT16:return Rv(e);case kr.PACKED_4X1_UNSIGNED_BYTE:return Fv(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function C7(r){return j().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?kr.PACKED_2X2_FLOAT32:kr.UNPACKED_FLOAT32:r?kr.PACKED_2X2_FLOAT16:kr.UNPACKED_FLOAT16}function bF(r,e){if(r===Dr.UPLOAD)return kr.PACKED_2X2_FLOAT32;if(r===Dr.RENDER||r==null)return C7(e);if(r===Dr.DOWNLOAD||r===Dr.PIXELS)return kr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function wF(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var ho=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},yr="if (isnan(x)) return x;",_F="return x;",Vv="return abs(x);";var kF="return (x >= 0.0) ? x : (exp(x) - 1.0);",vF=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,CF=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,rh="return x;";var IF="return x;",NF=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,SF=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,TF=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Vs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}};var Gv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,o=jt("rc",t),n=Le(t),s=xF(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${s});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}};var I7=Ar.whereImpl,N7=1e-7,S7=1e-4,Px={};function T7(r){return r in Px||(Px[r]={}),Px[r]}var A7=128,E7=600;function D7(){return j().global.screen==null?1024:j().global.screen.height*j().global.screen.width*window.devicePixelRatio*E7/1024/1024}var Kp=class extends Ws{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!j().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Go(j().getNumber("WEBGL_VERSION"));this.binaryCache=T7(j().getNumber("WEBGL_VERSION")),this.gpgpu=new Mv(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Bv(this.gpgpu),this.numMBBeforeWarning=D7(),this.texData=new Xa(this,Po())}nextDataId(){return Kp.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,o){if((j().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||j().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:Dr.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,o,n,s){if(j().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:Dr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Vs(i,rh):m=new ho(i,rh);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(n==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Vs(n,rh):d=new ho(n,rh);let h=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(!j().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&j().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&j().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...Cl(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Po().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,o)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let o=e[t];if(!tR(o))throw j().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${o} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${o} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:o,isPacked:n}=this.texData.get(e),s=y.sizeFromShape(t);if(j().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...Cl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=j().getBool("WEBGL_PACK")&&n===!0,i=a?Dx(t):t,l=a?new Av(i):new Tv(i),u=this.runWebGLProgram(l,[{shape:i,dtype:o,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:o}=this.texData.get(e);return o!=null&&(this.disposeData(o.real.dataId,t),this.disposeData(o.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return j().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Po().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=A7){let o=this.getCPUBackend();return!j().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&o==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),o!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return I7(e.shape,t)}packedUnaryOp(e,t,o){let n=new Vs(e.shape,t),s=this.compileAndRun(n,[e],o);return Po().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=Ox(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(j().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Vv,e.dtype);let t=new ho(e.shape,Vv),o=this.compileAndRun(t,[e]);return Po().makeTensorFromDataId(o.dataId,o.shape,o.dtype)}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){let{dataId:n}=this.makeTensorInfo(e,t,o);return Po().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new Gv(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new zv(e.shape),o=!0;return this.runWebGLProgram(t,[e],e.dtype,null,o)}packedReshape(e,t){let o=[Il(e.shape),...Nl(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[Il(t),...Nl(t)],a=new th(s,o),i=!0,l=this.runWebGLProgram(a,[n],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:o,shape:n,dtype:s}=t,a=Dx(n),i;o?i=new Sv(a):i=new Nv(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:n,dataId:u.dataId}}runWebGLProgram(e,t,o,n,s=!1){let a=this.makeTensorInfo(e.outputShape,o),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===vl.DENSE){let g=Cl(e.outputShape);i.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&y.sizeFromShape(g.shape)<=j().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}else if(!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!lc(x.shape,g.shape)){let w=g,b=g.shape;g.shape=x.shape,g=this.packedReshape(g,b),l.push(g),x=this.texData.get(g.dataId),w.shape=b}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=UR(e,u,c),m=this.getAndSaveBinary(p,()=>VR(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),WR(this.gpgpu,m,u,c,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=j().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=y.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!j().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,o,n,s=!1){return o=o||t[0].dtype,this.runWebGLProgram(e,t,o,n,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(j().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=G(()=>{if(!j().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=j().getBool("DEBUG");j().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(j().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?N7:S7}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=dR(o,l),t.texShape=p),s!=null){let m=Dx(o),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=Hi(p[0],p[1]),f=new Dv(m,[h,d],g)):f=new Ev(m,[h,d],g);let x=this.makeTensorInfo([h,d],n);g?this.texData.get(x.dataId).usage=Dr.PIXELS:this.texData.get(x.dataId).usage=Dr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let w=!0,b=this.runWebGLProgram(f,[x],n,null,w),_=this.texData.get(b.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(b.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,n,l);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return this.releaseGPUData(e),t!=null&&(o.values=$7(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};Kp.nextDataId=0;function $7(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;o<t.length;++o)t[o]=Math.round(r[o]);return t}else throw new Error(`Unknown dtype ${e}`)}var AF="3.3.0";hu.isBrowser()&&xu("webgl",()=>new Kp,2);var Mx=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`;var rs=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(t,o),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}};var Sl=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;var Gs=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length,a="";if(n)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${Le(s)} coords = getOutputCoords();
|
|
`,s===1)a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let l=jt("coords",s);a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
|
|
bool nextColOutOfBounds =
|
|
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Ht(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var EF={kernelName:Ro,backendName:"webgl",kernelFunc:Ht};function go(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=Ht({inputs:{x:o},backend:t}),l=Ht({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var DF={kernelName:Gl,backendName:"webgl",kernelFunc:go};var Wv="return (a < 0.) ? b * a : a;",Uv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function R7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Gs(Uv,n.shape,a.shape):new rs(Wv,n.shape,a.shape),l=t.runWebGLProgram(i,[n,a],n.dtype);return t.disposeIntermediateTensorInfo(a),l}var $F={kernelName:un,backendName:"webgl",kernelFunc:R7};var jv="return (a < 0.) ? b * a : a;",Hv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function F7(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Gs(Hv,o.shape,n.shape):new rs(jv,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)}var RF={kernelName:_n,backendName:"webgl",kernelFunc:F7};var Lx="if (isnan(x)) return x;",FF=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,OF=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function _e({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,l=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=j().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Vs(a.shape,e):c=new ho(a.shape,r),i.runWebGLProgram(c,[a],l)}}function nt({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(o&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(b=>{let[_,k]=b,A={dataId:_.dataId,dtype:_.dtype,shape:l.shape},N={dataId:k.dataId,dtype:k.dtype,shape:u.shape},$=new rs(r,l.shape,u.shape);return c.runWebGLProgram($,[A,N],dr(_.dtype,k.dtype))}),w=go({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),w}let p=s||dr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&n!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=n(l.shape,u.shape,d.values,h.values,p),w=c.makeTensorInfo(x,p),b=c.texData.get(w.dataId);return b.values=g,w}let m=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Gs(e,l.shape,u.shape,t):f=new rs(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function Tl(r,e=!1){if(r==="linear")return e?IF:_F;if(r==="relu")return e?SF:vF;if(r==="elu")return e?NF:kF;if(r==="relu6")return e?TF:CF;if(r==="prelu")return e?Hv:jv;if(r==="leakyrelu")return e?Uv:Wv;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var oh=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o;let c=n?e[1]:e[2],p=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,x="result = activation(result);");let w=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let b="rc.x",_="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${g}
|
|
|
|
const float sharedDimension = ${p}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${p}; i++) {
|
|
int batchA = ${b};
|
|
int batchB = ${_};
|
|
vec4 a = getMatrixA(batchA, ${m});
|
|
vec4 b = getMatrixB(batchB, ${f});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${d[0]} * ${h[0]});
|
|
result += (${d[1]} * ${h[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${w}
|
|
|
|
${x}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};var qv={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},zx=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(t,o),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}};var PF="return a * b;";function Kv(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=S.upcastType(o.dtype,n.dtype);if(o.dtype==="complex64"){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),u=new zx(qv.REAL,o.shape,n.shape),c=new zx(qv.IMAG,o.shape,n.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:o.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:n.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:n.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=go({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([o,n])){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),[u,c]=iF(o.shape,n.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Gs(PF,o.shape,n.shape):a=new rs(PF,o.shape,n.shape),t.runWebGLProgram(a,[o,n],s)}var MF={kernelName:xn,backendName:"webgl",kernelFunc:Kv};function LF(r,e,t){let o=[Il(r.shape),...Nl(r.shape)],n={dtype:r.dtype,shape:o,dataId:r.dataId},s=[Il(e),...Nl(e)],a=new th(s,o),i=!0,l=t.runWebGLProgram(a,[n],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function pe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=t,i=y.sizeFromShape(n.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!lc(n.shape,l)&&!(c.texture!==null&&lc(c.shape,l))?LF(n,l,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:l,dtype:n.dtype})}var zF={kernelName:ds,backendName:"webgl",kernelFunc:pe};var Bx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,l=o%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%o>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${o};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${l===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${l===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${l===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}};var Xv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,p=o%4,m=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${l}(values, minMaxValue);
|
|
}
|
|
`,f="vec4";t==="all"?(i="1.0",m=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,f="bvec4"):t==="any"&&(i="0.0",m=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,f="bvec4");let d="";s%o>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${o};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
${f} values = ${f}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function O7(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=S.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function To(r,e,t,o){let n=O7(r.shape),s=r;for(let a=0;a<n.length;a++){let{inSize:i,windowSize:l,outSize:u}=n[a],c,p;t==="mean"?c=a===0?new Bx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new Bx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new Xv({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=o.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&o.disposeIntermediateTensorInfo(p)}return s}var Yv=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[t[a]];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=P7(t);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function P7(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n<r.length;n++)o[r[n]]=t[n];return o.join()}var Zv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let o=new Array(e.length);for(let c=0;c<o.length;c++)o[c]=e[t[c]];if(this.outputShape=o,this.rank=o.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=Le(this.rank),s=Lv("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${o[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${l}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${s[this.rank-1]};
|
|
if(++${s[this.rank-2]} < ${o[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${l}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Al(r,e,t){let o=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Zv(r.shape,e):new Yv(r.shape,e);return t.runWebGLProgram(o,[r],r.dtype)}function BF(r,e,t,o){let n=e,s=r.shape.length,a=y.parseAxisParam(n,r.shape),i=a,l=S.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=Al(r,l,o),i=S.getInnerMostAxes(i.length,s)),S.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=S.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=pe({inputs:{x:c},attrs:{shape:[g,d]},backend:o}),w=fu(r.dtype),b=To(x,w,"sum",o),_=pe({inputs:{x:b},attrs:{shape:f},backend:o});return o.disposeIntermediateTensorInfo(x),o.disposeIntermediateTensorInfo(b),u&&o.disposeIntermediateTensorInfo(c),_}function nh(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return BF(n,s,a,t)}var VF={kernelName:Dn,backendName:"webgl",kernelFunc:nh};function Lt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=n.shape[s[c]];let u;if(a.shouldExecuteOnCPU([n])){let p=a.texData.get(n.dataId).values,m=qp(p,n.shape,n.dtype,s,l);u=a.makeTensorInfo(l,n.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=Al(n,s,a);return u}var GF={kernelName:Pn,backendName:"webgl",kernelFunc:Lt};var Jv=1e3;function cc({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),w=y.sizeFromShape(g),b=x===w||x===1||w===1;y.assert(u>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let k=(x>w?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let A=t?[x,p,f]:[x,f,p],N=o?[w,d,m]:[w,m,d],$=pe({inputs:{x:r},backend:n,attrs:{shape:A}}),F=pe({inputs:{x:e},backend:n,attrs:{shape:N}}),M=[$,F],V=Math.max(x,w),W=t?$.shape[1]:$.shape[2],U=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?Tl(l,!0):null,oe=U||H||q||X!=null,Y;if((f===1||d===1)&&W>Jv&&oe===!1){let J=$,ie=F;t&&(J=Lt({inputs:{x:$},backend:n,attrs:{perm:[0,2,1]}}),M.push(J)),o&&(ie=Lt({inputs:{x:F},backend:n,attrs:{perm:[0,2,1]}}),M.push(ie));let ue=d!==1,ae=d===1,fe=J;ue&&(fe=pe({inputs:{x:J},backend:n,attrs:{shape:[V,W,1]}}),M.push(fe));let de=d===1?2:1,xe=ie;ae&&(xe=pe({inputs:{x:ie},backend:n,attrs:{shape:[V,1,W]}}),M.push(xe));let we=Kv({inputs:{a:fe,b:xe},backend:n});Y=nh({inputs:{x:we},backend:n,attrs:{axis:de,keepDims:!0}}),M.push(we)}else{let J=dr(r.dtype,e.dtype),ie=new oh(A,N,[V,f,d],t,o,U,X,H,q),ue=[$,F];if(s!=null&&ue.push(s),H&&ue.push(a),q){let ae=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));ue.push(ae),M.push(ae)}Y=n.runWebGLProgram(ie,ue,J)}let re=pe({inputs:{x:Y},backend:n,attrs:{shape:k}});M.push(Y);for(let J of M)n.disposeIntermediateTensorInfo(J);return re}function M7(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o;return cc({a:n,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var WF={kernelName:ws,backendName:"webgl",kernelFunc:M7};var UF="return abs(x);";function L7(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=Ox(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return j().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Vs(o.shape,UF):n=new ho(o.shape,UF),t.runWebGLProgram(n,[o],o.dtype)}var jF={kernelName:as,backendName:"webgl",kernelFunc:L7};var z7=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,B7=_e({opSnippet:z7}),HF={kernelName:Hs,backendName:"webgl",kernelFunc:B7};var V7=yr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,G7=_e({opSnippet:V7}),qF={kernelName:qs,backendName:"webgl",kernelFunc:G7};var KF="return a + b;",W7=nt({opSnippet:KF,packedOpSnippet:KF,supportsComplex:!0,cpuKernelImpl:jR}),XF={kernelName:wo,backendName:"webgl",kernelFunc:W7};var Qv=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${o.join(`
|
|
`)}
|
|
|
|
float result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}};var eC=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${o.join(`
|
|
`)}
|
|
|
|
vec4 result = ${n};
|
|
setOutput(result);
|
|
}
|
|
`}};function Vx(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return Ht({inputs:{x:o[0]},backend:t});if(o.length>j().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(o.length/2),u=Vx({inputs:o.slice(0,l),backend:t}),c=Vx({inputs:o.slice(l),backend:t});return Vx({inputs:[u,c],backend:t})}let n=o.map(l=>l.dtype).reduce((l,u)=>dr(l,u)),s=o.map(l=>l.shape),i=j().getBool("WEBGL_PACK")?new eC(o[0].shape,s):new Qv(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var YF={kernelName:Ho,backendName:"webgl",kernelFunc:Vx};function U7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,i)),S.assertAxesAreInnerMostDims("all",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"all",t),x;if(a){let w=S.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:w}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var ZF={kernelName:Ml,backendName:"webgl",kernelFunc:U7};function j7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,i)),S.assertAxesAreInnerMostDims("any",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"any",t),x;if(a){let w=S.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:w}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var JF={kernelName:Ll,backendName:"webgl",kernelFunc:j7};var tC=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
int inIdx = ${l};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}};var rC=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=jt("coords",l),p,m;if(a===1){m=l+1;let $=Le(m);p=`
|
|
${$} sourceLocR = ${$}(${c.join()}, 0);
|
|
++${c[l-1]};
|
|
${$} sourceLocG = ${$}(${c.join()}, 0);
|
|
++${c[l-2]};
|
|
${$} sourceLocA = ${$}(${c.join()}, 0);
|
|
--${c[l-1]};
|
|
${$} sourceLocB = ${$}(${c.join()}, 0);
|
|
--${c[l-2]};`}else m=l,p=`
|
|
${u} sourceLocR = coords;
|
|
++${c[l-1]};
|
|
${u} sourceLocG = coords;
|
|
++${c[l-2]};
|
|
${u} sourceLocA = coords;
|
|
--${c[l-1]};
|
|
${u} sourceLocB = coords;
|
|
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map($=>"int "+$),g=jt("sourceLocR",m-1).concat("inIdx.r"),x=jt("sourceLocG",m-1).concat("inIdx.g"),w=jt("sourceLocB",m-1).concat("inIdx.b"),b=jt("sourceLocA",m-1).concat("inIdx.a"),_=o==="max"?"greaterThan":"lessThan",k=n?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${x.join()}),
|
|
getBestIndicesAChannel(${w.join()}),
|
|
getBestIndicesAChannel(${b.join()})));`,A=`vec4(
|
|
getAChannel(${g.join()}),
|
|
hasNextCol ? getAChannel(${x.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${w.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,N=n?"":`
|
|
float getBestIndicesAChannel(${h.join()}) {
|
|
return getChannel(getBestIndicesA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${h.join()}) {
|
|
return getChannel(getA(${f.join()}),
|
|
vec2(${f.slice(-2).join()}));
|
|
}
|
|
${N}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
|
|
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
|
|
${p}
|
|
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
|
|
sourceLocB${d}, sourceLocA${d}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${A};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${k}
|
|
vec4 candidate = ${A};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function QF(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=S.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},l=new tC(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=QF(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function eO(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=S.computeOptimalWindowSize(s),i=new rC(n,a,t,o==null),l=o==null?[e]:[e,o],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=eO(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function Gx(r,e,t,o){let n=[t];if(S.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!j().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=S.computeOutAndReduceShapes(e.shape,n),l=y.sizeFromShape(i),u=pe({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=QF(r,u,o);s.push(c);let p=pe({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return eO(r,e,o)}function H7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Lt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),S.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=Gx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var tO={kernelName:qo,backendName:"webgl",kernelFunc:H7};function q7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=S.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Lt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),S.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=Gx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var rO={kernelName:ea,backendName:"webgl",kernelFunc:q7};var K7=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,X7=_e({opSnippet:K7}),oO={kernelName:Ks,backendName:"webgl",kernelFunc:X7};var Y7=yr+"return log(x + sqrt(x * x + 1.0));",Z7=_e({opSnippet:Y7}),nO={kernelName:Xs,backendName:"webgl",kernelFunc:Z7};var J7=yr+`
|
|
return atan(x);
|
|
`,Q7=_e({opSnippet:J7}),sO={kernelName:Ys,backendName:"webgl",kernelFunc:Q7};var e9=FF+`
|
|
return atan(a, b);
|
|
`,t9=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+OF+`
|
|
return result;
|
|
`,r9=nt({opSnippet:e9,packedOpSnippet:t9}),iO={kernelName:Js,backendName:"webgl",kernelFunc:r9};var o9=yr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,n9=_e({opSnippet:o9}),aO={kernelName:Zs,backendName:"webgl",kernelFunc:n9};var Ki=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,w="0.0";if(h||(w="-1.0 / 1e-20"),o){let $=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?s?g:x:`wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let k=Math.floor(a/4)*4,A=a%4,N=`
|
|
if (${h}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${f}, ${d});
|
|
const float initializationValue = ${w};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${w});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${N}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${A===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${A===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${A===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
`}},pc=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,w=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",_="0.0";if(b||(_="-1.0 / 1e-20"),o){let M=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${l}, ${u});
|
|
const ivec3 pads = ivec3(${g}, ${x}, ${w});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${m}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${M} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
|
|
wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let k="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let N=Math.floor(a/4)*4,$=a%4,F=`
|
|
if (${b}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${k}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${l}, ${u});
|
|
const ivec3 pads = ivec3(${g}, ${x}, ${w});
|
|
const float initializationValue = ${_};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${_});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${f};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${p}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${N}; wC += 4) {
|
|
int xC = xCCorner + wC * ${m};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
|
|
);
|
|
|
|
${F}
|
|
}
|
|
|
|
int xC = xCCorner + ${N};
|
|
if (${$===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
} else if (${$===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
} else if (${$===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${m}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${F}
|
|
}
|
|
}
|
|
setOutput(${A});
|
|
}
|
|
}
|
|
`}};function s9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;qi(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ht({inputs:{x:n},backend:t});let p=new Ki(c,"avg",!1);return t.runWebGLProgram(p,[n],"float32")}var lO={kernelName:Ko,backendName:"webgl",kernelFunc:s9};function i9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o,c=[1,1,1],p=S.computePool3DInfo(n.shape,s,a,c,i,l,u),m=new pc(p,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var uO={kernelName:ta,backendName:"webgl",kernelFunc:i9};var oC=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*o);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float avgMultiplier = float(${m});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},nC=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*o*n);this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${h}, ${g});
|
|
const float avgMultiplier = float(${x});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${l}) {
|
|
float dyD = float(dyDCorner + wD) / ${s}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${m};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function a9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=S.computePool3DInfo(a.shape,i,l,p,u,c),f=new nC(m);return t.runWebGLProgram(f,[n],a.dtype)}var cO={kernelName:Bl,backendName:"webgl",kernelFunc:a9};function l9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;qi([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=S.computePool2DInfo(a.shape,i,l,1,u),p=new oC(c);return t.runWebGLProgram(p,[n],a.dtype)}var pO={kernelName:zl,backendName:"webgl",kernelFunc:l9};function u9(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return cc({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var mO={kernelName:Xo,backendName:"webgl",kernelFunc:u9};var sC=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(S.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${l};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}};var iC=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(S.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${l};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}};var c9=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;y.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=j().getBool("WEBGL_PACK_NORMALIZATION")?new iC(o.shape,n.shape,s.shape,c,p,l):new sC(o.shape,n.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},fO={kernelName:an,backendName:"webgl",kernelFunc:c9};var aC=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=`uniform int start[${this.rank}];`,n=p9(this.rank),s,a=e.map((i,l)=>`sourceLoc.${lC[l]} = start[${l}] + coords.${lC[l]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${a.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${o}
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},lC=["x","y","z","w","u","v"];function p9(r){if(r===1)return"sourceLoc";if(r<=6)return lC.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var uC=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=jt("coords",this.rank),n=jt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=`
|
|
result.x = ${a};
|
|
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.y = ${a};
|
|
--${n[this.rank-1]};
|
|
}
|
|
`,l=this.rank===1?"":`
|
|
--${o[this.rank-1]};
|
|
if (++${o[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${n[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${n[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${o[p]} + start[${p}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function m9(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=sr.computeFlatOffset(e,y.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let l=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,l+1),s}function Va(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,l]=sr.parseSliceParams(n,s,a);if(sr.assertParamsValid(n,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let p=t.texData.get(n.dataId),m=pF(p.values,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=sr.isSliceContinous(n.shape,i,l);if(u||!c){let p=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uC(l):new aC(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),m9(n,i,l,t)}var dO={kernelName:gs,backendName:"webgl",kernelFunc:Va};var f9=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((w,b)=>w*b),l=S.getReshaped(n.shape,s,i),u=S.getPermuted(l.length,s.length),c=S.getReshapedPermuted(n.shape,s,i),p=S.getSliceBeginCoords(a,s.length),m=S.getSliceSize(c,a,s.length),f=[],d=pe({inputs:{x:n},backend:t,attrs:{shape:l}}),h=Lt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Va({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(w=>t.disposeIntermediateTensorInfo(w)),x},hO={kernelName:ra,backendName:"webgl",kernelFunc:f9};function d9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),l=t.readSync(s.dataId),u=Fx(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var gO={kernelName:Vl,backendName:"webgl",kernelFunc:d9};var h9="return float(a != b);",cC=nt({opSnippet:h9,dtype:"bool"}),xO={kernelName:xi,backendName:"webgl",kernelFunc:cC};function Ga(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Ht({inputs:{x:n.complexTensorInfos.real},backend:t})}var yO={kernelName:iu,backendName:"webgl",kernelFunc:Ga};var g9="return float(int(x));";function bO(r,e){let t=new ho(r.shape,g9),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function pC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Ht({inputs:{x:n},backend:t});let a=gt(n.shape),i=pC({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=go({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Ga({inputs:{input:n},backend:t}),i=pC({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Ht({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return bO(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=cC({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var wO={kernelName:Do,backendName:"webgl",kernelFunc:pC};var _O="return ceil(x);",x9=_e({opSnippet:_O,packedOpSnippet:_O,cpuKernelImpl:qR}),kO={kernelName:Yo,backendName:"webgl",kernelFunc:x9};var mC=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};var fC=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};function y9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;j().getBool("WEBGL_PACK_CLIP")?i=new fC(n.shape):i=new mC(n.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[n],n.dtype,l)}var vO={kernelName:$o,backendName:"webgl",kernelFunc:y9};var dC=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function CO(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function b9(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new dC(o.shape),a=[CO(o,n.complexTensorInfos.real),CO(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var IO={kernelName:oa,backendName:"webgl",kernelFunc:b9};var hC=class{constructor(e){this.outputShape=[],this.outputShape=S.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let o=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];o.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let n=t.length,s=t[t.length-1];o.push(`else setOutput(getT${n}(yR, yC-${s}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${o.join(`
|
|
`)}
|
|
}
|
|
`}};var gC=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(e,t);let o=this.outputShape,n=o.length,s=Le(n),a=jt("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
|
|
return getChannel(
|
|
getT0(${p}), vec2(${c.join()}));
|
|
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
|
|
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
|
|
return getChannel(
|
|
getT${h}(${Wx(i,u,g)}),
|
|
vec2(${Wx(c,u,g)}));
|
|
}`}let f=l.length,d=l[l.length-1];m+=`
|
|
return getChannel(
|
|
getT${f}(${Wx(i,u,d)}),
|
|
vec2(${Wx(c,u,d)}));`,this.userCode=`
|
|
float getValue(${i.map(h=>"int "+h)}) {
|
|
${m}
|
|
}
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[n-1]} = ${a[n-1]} + 1;
|
|
if (${a[n-1]} < ${o[n-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[n-2]} = ${a[n-2]} + 1;
|
|
if (${a[n-2]} < ${o[n-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[n-1]} = ${a[n-1]} - 1;
|
|
if (${a[n-2]} < ${o[n-2]} &&
|
|
${a[n-1]} < ${o[n-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Wx(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function mc(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return Ht({inputs:{x:n.complexTensorInfos.imag},backend:t})}var NO={kernelName:Ql,backendName:"webgl",kernelFunc:mc};function fc(r,e,t){let o=r[0].dtype;if(o==="complex64"){let u=r.map(d=>Ga({inputs:{input:d},backend:t})),c=r.map(d=>mc({inputs:{input:d},backend:t})),p=fc(u,e,t),m=fc(c,e,t),f=go({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(o==="string"){let{tensors2D:u,outShape:c}=SO(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=KR(p,c,o,m),d=S.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,o,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>j().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=fc(r.slice(0,u),e,t),p=fc(r.slice(u),e,t),m=fc([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new gC(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,o)}let{tensors2D:n,outShape:s}=SO(r,e,t),a=new hC(n.map(u=>u.shape)),i=t.runWebGLProgram(a,n,o);n.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=pe({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function SO(r,e,t){let o=S.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>pe({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function xC(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=S.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return Ht({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return S.assertParamsConsistent(l,s),fc(i,s,t)}var TO={kernelName:ls,backendName:"webgl",kernelFunc:xC};var sh=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,w=g?2:3,b=g?3:1,_="",k="";o&&(n?_=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:s?_=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:_=`
|
|
float activation(float x) {
|
|
${o}
|
|
}
|
|
`,k="result = activation(result);");let A=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${_}
|
|
|
|
const ivec2 strides = ivec2(${l}, ${u});
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${b}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${x}], coords[${w}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${h===1}) {
|
|
|
|
if (${g}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${d}) *
|
|
getW(wR, wC, ${d}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${d}, xR, xC) *
|
|
getW(wR, wC, ${d}, d2);
|
|
}
|
|
|
|
} else if (${h===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${h===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2),
|
|
getW(wR, wC, ${d} + 2, d2)
|
|
);
|
|
|
|
if (${g}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1),
|
|
getX(batch, xR, xC, ${d} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC),
|
|
getX(batch, ${d} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${A}
|
|
${k}
|
|
setOutput(result);
|
|
}
|
|
`}},yC=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${s}, ${a}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${o}, ${n});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${p}; wF++) {
|
|
int xF = xFCorner + wF * ${l};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${m}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${h===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${d}) *
|
|
getW(wF, wR, wC, ${d}, d2);
|
|
} else if (${h===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${h===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1),
|
|
getX(batch, xF, xR, xC, ${d} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2),
|
|
getW(wF, wR, wC, ${d} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};var bC=class{constructor(e,t,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:n,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=o,{left:f,top:d}=l,h=s*n,g=Pt(),x=m==="channelsLast",w=x?0:1,b=x?1:2,_="";for(let k=0;k<=1;k++)for(let A=0;A<=1;A++)_+=`
|
|
blockIndex = rc.y + ${A};
|
|
pos = rc.x + ${k};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
|
|
d0 = offsetY + ${p} * (pos / ${h});
|
|
|
|
if(d0 < ${t[w]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
|
|
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
|
|
|
|
if(d1 < ${t[b]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${s}.));
|
|
|
|
if (${x}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${k*2+A}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${k*2+A}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${_}
|
|
|
|
${g.output} = result;
|
|
}
|
|
`}};function Ux({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],w=(p===1||m===1)&&c>Jv,b=l[2]%2!=0&&!!u.isPacked;if(w||!j().getBool("WEBGL_LAZILY_UNPACK")||!j().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!b){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],k=pe({inputs:{x:r},backend:o,attrs:{shape:[1,_,t.inChannels]}}),A=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),N=cc({a:k,b:A,transposeA:d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=pe({inputs:{x:N},backend:o,attrs:{shape:t.outShape}}),x.push(k),x.push(A),x.push(N)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),k={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},A=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(lc(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let N=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(N);let $=cc({a:k,b:N,backend:o,transposeA:d,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),F=o.texData.get($.dataId);y.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=A,F.shape=t.outShape,g=Ht({inputs:{x:$},backend:o}),g.shape=t.outShape,x.push($)}for(let _ of x)o.disposeIntermediateTensorInfo(_);return g}function jx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],w=!0,b=!1,_=[],k=pe({inputs:{x:r},backend:o,attrs:{shape:r.shape.slice(1)}}),A=pe({inputs:{x:e},backend:o,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});_.push(k),_.push(A);let N=new bC(x,k.shape,t),$=o.runWebGLProgram(N,[k],"float32"),F=pe({inputs:{x:$},backend:o,attrs:{shape:[1,x[0],x[1]]}});_.push($),_.push(F);let M=n!=null,V=s!=null,W=i==="leakyrelu",U=i?Tl(i,!0):null,H=new oh(F.shape,A.shape,[1,g,t.outChannels],w,b,M,U,V,W),q=[F,A];if(n&&q.push(n),V&&q.push(s),W){let re=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));q.push(re),_.push(re)}let X=o.runWebGLProgram(H,q,"float32"),oe=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=pe({inputs:{x:X},backend:o,attrs:{shape:oe}});_.push(X);for(let re of _)o.disposeIntermediateTensorInfo(re);return Y}function w9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=Ux({x:n,filter:s,convInfo:m,backend:t});else if(j().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)f=jx({x:n,filter:s,convInfo:m,backend:t});else{let h=new sh(m);f=t.runWebGLProgram(h,[n,s],"float32")}let d=pe({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var AO={kernelName:Zo,backendName:"webgl",kernelFunc:w9};var wC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${o} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},_C=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${p}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${o} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${s};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${o} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${l}, ${u}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${s}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${o}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${o} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function _9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),f=new wC(m);return t.runWebGLProgram(f,[n,s],"float32")}var EO={kernelName:Wl,backendName:"webgl",kernelFunc:_9};function k9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new _C(m);return t.runWebGLProgram(f,[n,s],"float32")}var DO={kernelName:Jo,backendName:"webgl",kernelFunc:k9};function v9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=S.computeConv3DInfo(n.shape,s.shape,a,l,i),c=new yC(u);return t.runWebGLProgram(c,[n,s],"float32")}var $O={kernelName:na,backendName:"webgl",kernelFunc:v9};function C9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o,u=S.computeConv3DInfo(n.shape,l,a,1,i),c=new kC(u);return t.runWebGLProgram(c,[n,s],"float32")}var RO={kernelName:Ul,backendName:"webgl",kernelFunc:C9};function I9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o,u=S.computeConv3DInfo(l,s.shape,i,1,a),c=new vC(u);return t.runWebGLProgram(c,[n,s],"float32")}var FO={kernelName:jl,backendName:"webgl",kernelFunc:I9};var N9=Lx+`
|
|
return cos(x);
|
|
`,S9=_e({opSnippet:N9}),OO={kernelName:Qo,backendName:"webgl",kernelFunc:S9};var T9=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,A9=_e({opSnippet:T9}),PO={kernelName:Qs,backendName:"webgl",kernelFunc:A9};var CC=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=o;this.outputShape=[c,p,m,u];let f=n==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,w]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[b,_,k]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
|
|
const float height_ratio = float(${g});
|
|
const float width_ratio = float(${b});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${x};
|
|
float width_scale = ${_};
|
|
|
|
float in_y = ${w};
|
|
if( in_y < 0.0 || in_y > ${d} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
float in_x = ${k};
|
|
if( in_x < 0.0 || in_x > ${h} ) {
|
|
setOutput(float(${s}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${f} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}};var E9=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,c=new CC(n.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[n,s,a],"float32")},MO={kernelName:ei,backendName:"webgl",kernelFunc:E9};var Hx=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=e;let n=e.length,s=t?"0.0":`getX(${LO(n,"coords")})`,a=e[e.length-1],i="",l="";t?(i=o?`end != ${a-1}`:"end != 0",l=o?"end + 1":"end - 1"):(i=o?`end + pow2 < ${a}`:"end >= pow2",l=o?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${Le(n)} coords = getOutputCoords();
|
|
int end = ${zO(n,"coords")};
|
|
float val = ${s};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${l};
|
|
${zO(n,"coords")} = idx;
|
|
val += getX(${LO(n,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,o)=>{this.index==null&&(this.index=t.getUniformLocation(o,"index")),t.gl.uniform1f(this.index,e)}}};function LO(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function zO(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function D9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length,u=S.getAxesPermutation([s],l),c=n;u!=null&&(c=Lt({inputs:{x:n},backend:t,attrs:{perm:u}}));let p=S.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${n.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=Ht({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new Hx(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new Hx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=S.getUndoAxesPermutation(u),h=Lt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var BO={kernelName:en,backendName:"webgl",kernelFunc:D9};function $9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.readSync(n.dataId),u=t.readSync(s.dataId),c=Fx(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=HR(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var VO={kernelName:Hl,backendName:"webgl",kernelFunc:$9};var IC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function R9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new IC(d,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var GO={kernelName:ti,backendName:"webgl",kernelFunc:R9};var ih=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",w="";o&&(n?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:s?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${o}
|
|
}
|
|
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${g};
|
|
int q = d2 - d1 * ${g};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${m};
|
|
|
|
if (xR < 0 || xR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h}; wC++) {
|
|
int xC = xCCorner + wC * ${f};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}};var ah=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let k=0;k<d;k++)for(let A=0;A<h;A++)x+=`
|
|
vec4 xTexelR${k}C${A*2} = vec4(0.);
|
|
vec4 wR${k}C${A} = vec4(0.);
|
|
vec4 xR${k}C${A} = vec4(0.);`;for(let k=0;k<d;k++)for(let A=0;A<g;A++){let N=A*2;if(x+=`
|
|
xR = xRCorner + ${k*m};
|
|
xC = xCCorner + ${N*f};
|
|
`,p===1){if(N<h&&(u%2==1?x+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${k}C${N} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${k}C${N}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${k}C${N} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${k}C${N} = vec4(previous.zw, xTexelR${k}C${N}.xy);
|
|
} else {
|
|
xR${k}C${N} = vec4(0, 0, xTexelR${k}C${N}.xy);
|
|
}
|
|
`:x+=`
|
|
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${k}C${N} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${k}C${N} = vec4(0.);
|
|
}
|
|
|
|
xR${k}C${N} = xTexelR${k}C${N};
|
|
`,N+1<h)){let $=u%2==0?y.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(x+=`
|
|
xCOffset = xC + ${u%2} + ${$};
|
|
|
|
if(xR >= 0 && xR < ${a} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${k}C${N+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,f>1&&(x+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${a} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${k}C${N} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${k}C${N} = vec4(0.);
|
|
}
|
|
`),x+=`
|
|
xR${k}C${N+1} = vec4(
|
|
xTexelR${k}C${N}.zw, xTexelR${k}C${N+2}.xy);
|
|
`):x+=`
|
|
xCOffset = xC + ${$};
|
|
|
|
if(xR >= 0 && xR < ${a} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${k}C${N+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${k}C${N+1} = xTexelR${k}C${N+2};
|
|
`}}else N<h&&(x+=`
|
|
if(xR >= 0 && xR < ${a}) {
|
|
`,u%2==1?(x+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${k}C${N} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${k}C${N} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${k}C${N+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${k}C${N+2} = vec4(0.);
|
|
}
|
|
|
|
xR${k}C${N} = vec4(
|
|
xTexelR${k}C${N}.zw, xTexelR${k}C${N+2}.zw);
|
|
`,N+1<h&&(x+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${k}C${N+1} = vec4(xTexelR${k}C${N+2}.xy, final.xy);
|
|
`)):(x+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${k}C${N} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${k}C${N} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${k}C${N+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${k}C${N+2} = vec4(0.);
|
|
}
|
|
|
|
xR${k}C${N} = vec4(
|
|
xTexelR${k}C${N}.xy, xTexelR${k}C${N+2}.xy);
|
|
`,N+1<h&&(x+=`
|
|
xR${k}C${N+1} = vec4(
|
|
xTexelR${k}C${N}.zw, xTexelR${k}C${N+2}.zw);
|
|
`)),x+="}");N<h&&(x+=`
|
|
vec4 wTexelR${k}C${N} = getW(${k}, ${N}, d1, q);
|
|
wR${k}C${N} = vec4(wTexelR${k}C${N}.xz, wTexelR${k}C${N}.xz);
|
|
`,N+1<h&&(x+=`
|
|
vec4 wTexelR${k}C${N+1} = getW(${k}, ${N+1}, d1, q);
|
|
wR${k}C${N+1} =
|
|
vec4(wTexelR${k}C${N+1}.xz, wTexelR${k}C${N+1}.xz);`))}for(let k=0;k<d;k++)for(let A=0;A<h;A++)x+=`dotProd += xR${k}C${A} * wR${k}C${A};`;let w="",b="";o&&(n?w=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:s?w=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:w=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,b="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${w}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${x}
|
|
|
|
vec4 result = dotProd;
|
|
${_}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}};function F9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o,c=l;c==null&&(c=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=S.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;return j().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new ah(p):m=new ih(p),t.runWebGLProgram(m,[n,s],"float32")}var WO={kernelName:tn,backendName:"webgl",kernelFunc:F9};var NC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${n};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${o} - ${s};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},SC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${o} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${l}; dm++) {
|
|
int d2 = d1 * ${l} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function O9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o,p=S.computeConv2DInfo(n.shape,c,a,i,l,u,!0),m=new NC(p);return t.runWebGLProgram(m,[n,s],"float32")}var UO={kernelName:ql,backendName:"webgl",kernelFunc:O9};function P9(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o,p=S.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new SC(p);return t.runWebGLProgram(m,[n,s],"float32")}var jO={kernelName:Kl,backendName:"webgl",kernelFunc:P9};var TC=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function M9(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=pe({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new TC(s),l=t.runWebGLProgram(i,[a],a.dtype),u=pe({inputs:{x:l},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var HO={kernelName:Xl,backendName:"webgl",kernelFunc:M9};var AC=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=n;this.userCode=`
|
|
const ivec2 strides = ivec2(${s}, ${a});
|
|
const ivec2 pads = ivec2(${p}, ${m});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${l}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${o}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function L9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=S.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",l),c,p=new AC(u);c=t.runWebGLProgram(p,[n,s],"float32");let m=pe({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var qO={kernelName:sa,backendName:"webgl",kernelFunc:L9};var z9="return (x >= 0.0) ? x : (exp(x) - 1.0);",B9=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,V9=_e({opSnippet:z9,packedOpSnippet:B9}),KO={kernelName:ri,backendName:"webgl",kernelFunc:V9};var G9="return (b >= 1.0) ? a : a * (b + 1.0);",W9=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,U9=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Gs(W9,o.shape,n.shape):new rs(G9,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},XO={kernelName:Yl,backendName:"webgl",kernelFunc:U9};var j9=`
|
|
return vec4(equal(a, b));
|
|
`,H9="return float(a == b);",q9=nt({opSnippet:H9,packedOpSnippet:j9,dtype:"bool"}),YO={kernelName:ni,backendName:"webgl",kernelFunc:q9};var K9=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${S.ERF_P};
|
|
float a1 = ${S.ERF_A1};
|
|
float a2 = ${S.ERF_A2};
|
|
float a3 = ${S.ERF_A3};
|
|
float a4 = ${S.ERF_A4};
|
|
float a5 = ${S.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,X9=_e({opSnippet:K9}),ZO={kernelName:oi,backendName:"webgl",kernelFunc:X9};var JO="return exp(x);",EC=_e({opSnippet:JO,packedOpSnippet:JO,cpuKernelImpl:XR}),QO={kernelName:on,backendName:"webgl",kernelFunc:EC};function qx(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+n+1),i.splice(l,0,1),pe({inputs:{x:s},backend:o,attrs:{shape:i}})}var eP={kernelName:us,backendName:"webgl",kernelFunc:qx};var tP="return exp(x) - 1.0;",Y9=_e({opSnippet:tP,packedOpSnippet:tP,cpuKernelImpl:YR}),rP={kernelName:si,backendName:"webgl",kernelFunc:Y9};var Kx=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${s};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${n});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${n}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Xx(r,e,t){let o=t.texData.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=pe({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new Kx("real",l,e),c=new Kx("imag",l,e),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:l},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=go({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=pe({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function Z9(r){let{inputs:e,backend:t}=r,{input:o}=e;return Xx(o,!1,t)}var oP={kernelName:Zl,backendName:"webgl",kernelFunc:Z9};var DC=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function lh(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new DC(o,n),i=a.getCustomSetupFunc(n);return e.runWebGLProgram(a,[],s,i)}}var nP={kernelName:ia,backendName:"webgl",kernelFunc:lh};var $C=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};var sP={kernelName:ii,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new $C(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var iP="return floor(x);",J9=_e({opSnippet:iP,packedOpSnippet:iP,cpuKernelImpl:ZR}),aP={kernelName:nn,backendName:"webgl",kernelFunc:J9};var Q9=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,eZ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,tZ=nt({opSnippet:Q9,packedOpSnippet:eZ,dtype:"int32"}),lP={kernelName:sn,backendName:"webgl",kernelFunc:tZ};var RC=class{constructor(e){this.variableNames=["A"];let t=Pt(),[o,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}};var FC=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Pt(),[o,n]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${n}.0, ${o}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}};var uP={kernelName:Pc,backendName:"webgl",kernelFunc:rZ},Xp;function rZ(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,[l,u]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],c=[u,l],p=[u,l,s];(i||a)&&(Xp==null&&(Xp=document.createElement("canvas").getContext("2d")),Xp.canvas.width=l,Xp.canvas.height=u,Xp.drawImage(n,0,0,l,u),n=Xp.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=Dr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),n);let f=j().getBool("WEBGL_PACK")?new FC(p):new RC(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function oZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(n.shape,s.shape,l,p,u,m,!1,h),x,w=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=Ux({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(j().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)x=jx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,k=i!=null,A=f==="leakyrelu",N=f?Tl(f,!1):null,$=new sh(g,_,N,k,A),F=[n,s];if(a&&F.push(a),i&&F.push(i),A){let M=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));F.push(M),w.push(M)}x=t.runWebGLProgram($,F,"float32")}let b=pe({inputs:{x},backend:t,attrs:{shape:g.outShape}});return w.push(x),w.forEach(_=>t.disposeIntermediateTensorInfo(_)),b}var cP={kernelName:_s,backendName:"webgl",kernelFunc:oZ};function nZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=o,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=S.computeConv2DInfo(n.shape,s.shape,l,h,u,p,!0),x=j().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,w=m?Tl(m,x):null,b=[n,s],_=a!=null,k=i!=null,A=m==="leakyrelu";if(_&&b.push(a),k&&b.push(i),A){let F=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));b.push(F),d.push(F)}let N;x?N=new ah(g,_,w,k,A):N=new ih(g,_,w,k,A);let $=t.runWebGLProgram(N,b,"float32");return d.forEach(F=>t.disposeIntermediateTensorInfo(F)),$}var pP={kernelName:ks,backendName:"webgl",kernelFunc:nZ};var OC=class{constructor(e,t,o){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=o;let n=Le(t.length),s=Le(o.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${n} strides = ${n}(${this.strides});
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function sZ(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],[i,l,u,c]=S.prepareAndValidate(o,n),p=pe({inputs:{x:n},backend:t,attrs:{shape:[l,a]}}),m=pe({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/u,u]}}),f=new OC(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var mP={kernelName:ai,backendName:"webgl",kernelFunc:sZ};var PC=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=Le(this.rank),n=iZ(e,2);this.userCode=`
|
|
void main() {
|
|
${o} resRC = getOutputCoords();
|
|
setOutput(getA(${n}));
|
|
}
|
|
`}};function iZ(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r.length;n++)n===2?o.push("int(getIndices(resRC.x, resRC.z))"):o.push(`${t[n]}`);return o.join()}function aZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=S.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=pe({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=pe({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])||n.dtype==="string"){let w=t.bufferSync(f),b=t.bufferSync(m),_=JR(b,w,d);return p.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new PC(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=pe({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(w=>t.disposeIntermediateTensorInfo(w)),x}var fP={kernelName:cs,backendName:"webgl",kernelFunc:aZ};var lZ="return float(a > b);",uZ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,cZ=nt({opSnippet:lZ,packedOpSnippet:uZ,cpuKernelImpl:QR,dtype:"bool"}),dP={kernelName:li,backendName:"webgl",kernelFunc:cZ};var pZ="return float(a >= b);",mZ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,fZ=nt({opSnippet:pZ,packedOpSnippet:mZ,dtype:"bool"}),hP={kernelName:ln,backendName:"webgl",kernelFunc:fZ};function dZ(r){let{inputs:e,backend:t}=r,{input:o}=e;return Xx(o,!0,t)}var gP={kernelName:Jl,backendName:"webgl",kernelFunc:dZ};var hZ="return float(!isnan(x) && !isinf(x));",gZ=_e({opSnippet:hZ,dtype:"bool"}),xP={kernelName:ui,backendName:"webgl",kernelFunc:gZ};var xZ="return float(isinf(x));",yZ=_e({opSnippet:xZ,dtype:"bool"}),yP={kernelName:ci,backendName:"webgl",kernelFunc:yZ};var bZ="return float(isnan(x));",wZ=_e({opSnippet:bZ,dtype:"bool"}),bP={kernelName:pi,backendName:"webgl",kernelFunc:wZ};var _Z="return float(a < b);",kZ=`
|
|
return vec4(lessThan(a, b));
|
|
`,vZ=nt({opSnippet:_Z,packedOpSnippet:kZ,cpuKernelImpl:eF,dtype:"bool"}),wP={kernelName:mi,backendName:"webgl",kernelFunc:vZ};var CZ="return float(a <= b);",IZ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,NZ=nt({opSnippet:CZ,packedOpSnippet:IZ,dtype:"bool"}),_P={kernelName:fi,backendName:"webgl",kernelFunc:NZ};function SZ(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=tF(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var kP={kernelName:eu,backendName:"webgl",kernelFunc:SZ};var TZ=`if (x < 0.0) return NAN;
|
|
return log(x);`,AZ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,EZ=_e({opSnippet:TZ,packedOpSnippet:AZ,cpuKernelImpl:rF}),vP={kernelName:cn,backendName:"webgl",kernelFunc:EZ};var DZ="return log(1.0 + x);",$Z=_e({opSnippet:DZ}),CP={kernelName:di,backendName:"webgl",kernelFunc:$Z};var RZ="return float(a >= 1.0 && b >= 1.0);",FZ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,OZ=nt({opSnippet:RZ,packedOpSnippet:FZ,dtype:"bool"}),IP={kernelName:hi,backendName:"webgl",kernelFunc:OZ};var PZ="return float(!(x >= 1.0));",MZ=_e({opSnippet:PZ}),NP={kernelName:Ya,backendName:"webgl",kernelFunc:MZ};var LZ="return float(a >= 1.0 || b >= 1.0);",zZ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,BZ=nt({opSnippet:LZ,packedOpSnippet:zZ,dtype:"bool"}),SP={kernelName:Za,backendName:"webgl",kernelFunc:BZ};var MC=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${l};
|
|
setOutput(val);
|
|
}
|
|
`}};var LC=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${l};
|
|
setOutput(result);
|
|
}
|
|
`}};var VZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o,u=j().getBool("WEBGL_PACK_NORMALIZATION")?new LC(n.shape,s,a,i,l):new MC(n.shape,s,a,i,l);return t.runWebGLProgram(u,[n],n.dtype)},TP={kernelName:aa,backendName:"webgl",kernelFunc:VZ};var zC=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${n}) * norm + float(${o});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${n})
|
|
* float(${s})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${s});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};var GZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o,p=new zC(n.shape,i,l,u,c);return t.runWebGLProgram(p,[n,s,a],n.dtype)},AP={kernelName:tu,backendName:"webgl",kernelFunc:GZ};function EP(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=pe({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,r.dtype,"max",o),u=pe({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}function BC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([n]),f=n;if(p){if(m){let b=t.texData.get(f.dataId).values,_=new Array(i);for(let N=0;N<_.length;N++)_[N]=n.shape[c[N]];let k=qp(b,n.shape,n.dtype,c,_);f=t.makeTensorInfo(_,n.dtype);let A=t.texData.get(f.dataId);A.values=k}else f=Al(n,c,t);u=S.getInnerMostAxes(u.length,i)}S.assertAxesAreInnerMostDims("max",u,i);let[d,h]=S.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=S.expandShapeToKeepDim(d,l));let x;if(m){let b=t.texData.get(f.dataId).values,_=oF(b,y.sizeFromShape(h),g,n.dtype);x=t.makeTensorInfo(g,n.dtype);let k=t.texData.get(x.dataId);k.values=_}else x=EP(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var DP={kernelName:pn,backendName:"webgl",kernelFunc:BC};var WZ=Mx+`
|
|
return max(a, b);
|
|
`,UZ=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Sl+`
|
|
return result;
|
|
`,jZ=nt({opSnippet:WZ,packedOpSnippet:UZ,cpuKernelImpl:nF}),$P={kernelName:mn,backendName:"webgl",kernelFunc:jZ};function HZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;qi(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ht({inputs:{x:n},backend:t});let p=new Ki(c,"max",!1);return t.runWebGLProgram(p,[n],n.dtype)}var RP={kernelName:fn,backendName:"webgl",kernelFunc:HZ};function qZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=o,c=[1,1,1],p=S.computePool3DInfo(n.shape,s,a,c,i,u,l),m=new pc(p,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var FP={kernelName:la,backendName:"webgl",kernelFunc:qZ};var VC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${s};
|
|
wR += ${n}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},GC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${l};
|
|
wD += ${s}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${o}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${d} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function KZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=S.computePool3DInfo(a.shape,i,l,p,u,c),f=new pc(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new GC(m),g=t.runWebGLProgram(h,[n,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var OP={kernelName:ou,backendName:"webgl",kernelFunc:KZ};function XZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;qi([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=S.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new Ki(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new VC(m),x=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var PP={kernelName:ru,backendName:"webgl",kernelFunc:XZ};function MP(r,e,t,o){let n=new Ki(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new Ki(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var LP={kernelName:nu,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=S.computePool2DInfo(o.shape,n,s,u,a),[p,m]=MP(o,i,c,l);return[p,m]}};function zP(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=pe({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,"float32","mean",o),u=pe({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}var BP={kernelName:dn,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=S.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([o]),f=[],d=o;if(p){if(m){let _=a.texData.get(d.dataId).values,k=new Array(i);for(let $=0;$<k.length;$++)k[$]=o.shape[c[$]];let A=qp(_,o.shape,o.dtype,c,k);d=a.makeTensorInfo(k,o.dtype);let N=a.texData.get(d.dataId);N.values=A}else d=Al(o,c,a);f.push(d),u=S.getInnerMostAxes(u.length,i)}S.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=S.computeOutAndReduceShapes(d.shape,u),x=h;n&&(x=S.expandShapeToKeepDim(h,l));let w=zP(d,g,x,a);for(let b of f)a.disposeIntermediateTensorInfo(b);return w}};function YZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,n.shape.length)),S.assertAxesAreInnerMostDims("min",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"min",t),x;if(a){let w=S.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:w}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var VP={kernelName:hn,backendName:"webgl",kernelFunc:YZ};var ZZ=Mx+`
|
|
return min(a, b);
|
|
`,JZ=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Sl+`
|
|
return result;
|
|
`,QZ=nt({opSnippet:ZZ,packedOpSnippet:JZ,cpuKernelImpl:sF}),GP={kernelName:gn,backendName:"webgl",kernelFunc:QZ};var WC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let n=e.length,s=Le(n),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${i});
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${l}));
|
|
}
|
|
`}};var UC=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let n=e.length,s=Le(n),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=jt("rc",n),u=jt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,f="";if(n===1){let d=`
|
|
${s} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${m};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${m};
|
|
}
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${u.join()}), ${p});
|
|
${l[n-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
`}else{let d=`
|
|
${s} source = rc;
|
|
${s} lt = ${s}(lessThan(source, start));
|
|
${s} gte = ${s}(greaterThanEqual(source, end));
|
|
${s} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${m}) +
|
|
gte * ((end - 1) * 2 - source + ${m});
|
|
source -= start;
|
|
`;f=`
|
|
${s} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${u.join()}), ${p});
|
|
${l[n-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
rc = outputLoc;
|
|
${l[n-2]} += 1;
|
|
if(${l[n-2]} < ${this.outputShape[n-2]}) {
|
|
${d}
|
|
result[2] = getChannel(getX(${u.join()}), ${p});
|
|
${l[n-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[3] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${i});
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};var eJ=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UC(o.shape,n,s):new WC(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},WP={kernelName:ua,backendName:"webgl",kernelFunc:eJ};var tJ=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,rJ=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Sl+`
|
|
return result;
|
|
`,oJ=nt({opSnippet:tJ,packedOpSnippet:rJ}),UP={kernelName:gi,backendName:"webgl",kernelFunc:oJ};var jC=class{constructor(e,t,o){this.variableNames=["probs"],this.outputShape=[e,o],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,o)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(o,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var nJ=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,sJ=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,HC=nt({opSnippet:nJ,packedOpSnippet:sJ,checkOutOfBounds:!0}),jP={kernelName:rn,backendName:"webgl",kernelFunc:HC};var HP="return a - b;",qC=nt({opSnippet:HP,packedOpSnippet:HP,supportsComplex:!0,cpuKernelImpl:fF}),qP={kernelName:Fn,backendName:"webgl",kernelFunc:qC};function KC(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=y.parseAxisParam([s],n.shape),i=BC({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=S.expandShapeToKeepDim(i.shape,a),u=pe({inputs:{x:i},backend:t,attrs:{shape:l}}),c=qC({inputs:{a:n,b:u},backend:t}),p=EC({inputs:{x:c},backend:t}),m=nh({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=pe({inputs:{x:m},backend:t,attrs:{shape:l}}),d=HC({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var KP={kernelName:$n,backendName:"webgl",kernelFunc:KC};function iJ(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,l=i?n:KC({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new jC(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var XP={kernelName:su,backendName:"webgl",kernelFunc:iJ};var YP="return -x;";function aJ(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=aF(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return j().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Vs(o.shape,YP):n=new ho(o.shape,YP),t.runWebGLProgram(n,[o],o.dtype)}var ZP={kernelName:ps,backendName:"webgl",kernelFunc:aJ};var lJ=Ar.nonMaxSuppressionV3Impl;function uJ(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=lJ(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var JP={kernelName:yi,backendName:"webgl",kernelFunc:uJ};var cJ=Ar.nonMaxSuppressionV4Impl;function pJ(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=cJ(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var QP={kernelName:bi,backendName:"webgl",kernelFunc:pJ};var mJ=Ar.nonMaxSuppressionV5Impl;function fJ(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=mJ(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var eM={kernelName:wi,backendName:"webgl",kernelFunc:fJ};var XC=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${n}), float(${o}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}};var dJ=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=y.sizeFromShape(n.shape),u=new XC(l,s,a,i),c=pe({inputs:{x:n},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],n.dtype);t.disposeIntermediateTensorInfo(c);let m=[...n.shape,s],f=pe({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},tM={kernelName:yn,backendName:"webgl",kernelFunc:dJ};function uh(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=Ga({inputs:{input:o},backend:t}),s=uh({inputs:{x:n},backend:t}),a=mc({inputs:{input:o},backend:t}),i=uh({inputs:{x:a},backend:t}),l=go({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return lh({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var rM={kernelName:bs,backendName:"webgl",kernelFunc:uh};function oM(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=Ga({inputs:{input:o},backend:t}),s=oM({inputs:{x:n},backend:t}),a=mc({inputs:{input:o},backend:t}),i=uh({inputs:{x:a},backend:t}),l=go({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return lh({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var nM={kernelName:ms,backendName:"webgl",kernelFunc:oM};function hJ(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return qx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=qx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=xC({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var sM={kernelName:fs,backendName:"webgl",kernelFunc:hJ};var YC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=Le(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${s} start = ${s}(${a});
|
|
${s} end = ${s}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${s} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${s} coords = outC - start;
|
|
setOutput(getX(${l}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var ZC=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=Le(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=jt("rc",n),u=jt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[n-1]} += 1;
|
|
if(${c}) {
|
|
`,n===1?"":`}
|
|
rc = outputLoc;
|
|
${l[n-2]} += 1;
|
|
if(${l[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${l[n-1]} += 1;
|
|
if(${c}) {`],f=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=n===1?2:4;h<g;h++)d+=`
|
|
${m[h]}
|
|
if (${f}) {
|
|
result[${h}] = float(value);
|
|
} else {
|
|
${s} source = rc - start;
|
|
result[${h}] = getChannel(getX(${u.join()}), ${p});
|
|
}
|
|
`;d+=n===1?"} ":"}}",this.userCode=`
|
|
const ${s} start = ${s}(${a});
|
|
const ${s} end = ${s}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${s} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var JC=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o,i=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ZC(n.shape,s,a):new YC(n.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[n],n.dtype,l)},iM={kernelName:bn,backendName:"webgl",kernelFunc:JC};var gJ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,xJ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Sl+`
|
|
return result;
|
|
`,yJ=nt({opSnippet:gJ,packedOpSnippet:xJ}),aM={kernelName:wn,backendName:"webgl",kernelFunc:yJ};function bJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=[],u=y.parseAxisParam(s,n.shape),c=u,p=S.getAxesPermutation(c,i),m=n;p!=null&&(m=Lt({inputs:{x:n},backend:t,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,i),l.push(m)),S.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=lF(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=pe({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),w=fu(n.dtype),b=To(x,w,"prod",t);f=pe({inputs:{x:b},backend:t,attrs:{shape:d}}),l.push(x),l.push(b)}if(a){l.push(f);let d=S.expandShapeToKeepDim(f.shape,u);f=pe({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var lM={kernelName:_i,backendName:"webgl",kernelFunc:bJ};var QC=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=uF(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},uM={kernelName:ca,backendName:"webgl",kernelFunc:QC};var wJ="return 1.0 / x;",_J=_e({opSnippet:wJ}),cM={kernelName:ki,backendName:"webgl",kernelFunc:_J};var kJ=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,vJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,CJ=_e({opSnippet:kJ,packedOpSnippet:vJ}),pM={kernelName:kn,backendName:"webgl",kernelFunc:CJ};var IJ=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,NJ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,SJ=_e({opSnippet:IJ,packedOpSnippet:NJ}),mM={kernelName:Cn,backendName:"webgl",kernelFunc:SJ};var e0=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};var t0=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]},
|
|
${c[1]/p[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
|
|
${l}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${m};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${o-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function TJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=j().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new t0(n.shape,l,u,s,a):new e0(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var fM={kernelName:vn,backendName:"webgl",kernelFunc:TJ};var r0=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function AJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new r0(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var dM={kernelName:lu,backendName:"webgl",kernelFunc:AJ};var o0=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/p[0]},
|
|
${c[1]/p[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${f};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function EJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=new o0(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var hM={kernelName:pa,backendName:"webgl",kernelFunc:EJ};var n0=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${p});
|
|
|
|
const float invHeightScale = float(${m});
|
|
const float invWidthScale = float(${f});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${h});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${l[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${l[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${n}) - 1),
|
|
${o} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${s}) - 1),
|
|
${o} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function DJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new n0(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var gM={kernelName:au,backendName:"webgl",kernelFunc:DJ};var s0=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>n(l)).join(","),a=Le(o);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${s}));
|
|
}
|
|
`}};var i0=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=jt("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=Le(o);o===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${s}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${l(n.slice())};
|
|
if(${s}){
|
|
result.g = ${u(n.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(n.slice())};
|
|
if(${s}) {
|
|
result.a = ${p(n.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function l(d){return m(d)}function u(d){return d[o-1]="("+d[o-1]+" + 1)",m(d)}function c(d){return d[o-2]="("+d[o-2]+" + 1)",m(d)}function p(d){return d[o-1]="("+d[o-1]+" + 1)",d[o-2]="("+d[o-2]+" + 1)",m(d)}function m(d){let h=e.map((w,b)=>f(b,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function $J(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Ht({inputs:{x:n},backend:t});let l=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new i0(n.shape,i):new s0(n.shape,i);return t.runWebGLProgram(l,[n],n.dtype)}var xM={kernelName:In,backendName:"webgl",kernelFunc:$J};var a0=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let o=e[1],n=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${s}
|
|
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${o}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,o,n){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,o,n)}}};var yM={kernelName:Di,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=new a0(o.shape,s),[u,c]=S.getImageCenter(a,o.shape[1],o.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(n),Math.cos(n));return i.runWebGLProgram(l,[o],o.dtype,p)}};var RJ=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,FJ=_e({opSnippet:RJ}),bM={kernelName:Nn,backendName:"webgl",kernelFunc:FJ};var OJ="return inversesqrt(x);",PJ=_e({opSnippet:OJ,cpuKernelImpl:cF}),wM={kernelName:Sn,backendName:"webgl",kernelFunc:PJ};var ch=class{constructor(e,t,o,n,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";o===1?c="i":o===2&&(c="i, j");let p=`getIndices(${c})`,m="";n===1?m="i":n===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
|
|
${l} strides = ${l}(${s});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${p});
|
|
flattenedIndex += index * ${d};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${f};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function MJ(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=S.calculateShapes(s,n,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,n.dtype);let f=pe({inputs:{x:n},backend:t,attrs:{shape:[l,i]}}),d=pe({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new ch(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),w=pe({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),w}var _M={kernelName:vi,backendName:"webgl",kernelFunc:MJ};var l0=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);n=l.join(),s=u.join()}let a=Le(o);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${n});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${s}));
|
|
} else {
|
|
setOutput(getB(${s}));
|
|
}
|
|
}
|
|
`}};function LJ(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new l0(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],dr(n.dtype,s.dtype))}var kM={kernelName:hs,backendName:"webgl",kernelFunc:LJ};var zJ=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${S.SELU_SCALEALPHA};
|
|
float scale = ${S.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,BJ=_e({opSnippet:zJ}),vM={kernelName:Ci,backendName:"webgl",kernelFunc:BJ};var VJ="return 1.0 / (1.0 + exp(-1.0 * x));",GJ=_e({opSnippet:VJ}),CM={kernelName:An,backendName:"webgl",kernelFunc:GJ};var WJ=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,UJ=_e({opSnippet:WJ}),IM={kernelName:Ni,backendName:"webgl",kernelFunc:UJ};var jJ=Lx+`
|
|
return sin(x);
|
|
`,HJ=_e({opSnippet:jJ}),NM={kernelName:Tn,backendName:"webgl",kernelFunc:HJ};var qJ=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,KJ=_e({opSnippet:qJ}),SM={kernelName:Ii,backendName:"webgl",kernelFunc:KJ};var XJ=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,YJ=_e({opSnippet:XJ}),TM={kernelName:Si,backendName:"webgl",kernelFunc:YJ};var ZJ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,w)=>x*w),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<n.shape.length;++x)l.push([0,0]);let u=[],c=JC({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),p=S.getReshaped(c.shape,s,i,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,i,!1),d=pe({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Lt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},AM={kernelName:ma,backendName:"webgl",kernelFunc:ZJ};function JJ(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=S.calculateShapes(s,n,i),m=!1,f=new ch(u,l,n.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,n,a],s.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var EM={kernelName:uu,backendName:"webgl",kernelFunc:JJ};function QJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=S.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),p=n.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Va({inputs:{x:n},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var DM={kernelName:xs,backendName:"webgl",kernelFunc:QJ};var eQ="return sqrt(x);",tQ=_e({opSnippet:eQ}),$M={kernelName:En,backendName:"webgl",kernelFunc:tQ};var rQ="return x * x;",oQ=_e({opSnippet:rQ}),RM={kernelName:fa,backendName:"webgl",kernelFunc:oQ};var FM="return (a - b) * (a - b);",nQ=nt({opSnippet:FM,packedOpSnippet:FM}),OM={kernelName:Rn,backendName:"webgl",kernelFunc:nQ};function sQ({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=yr+`
|
|
return x > 0.0 ? 1.0 : float(${e.alpha});
|
|
`,s=new ho(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var PM={kernelName:Fo,backendName:"webgl",kernelFunc:sQ};var u0=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=Le(o.length),a=Le(o.length),i="";if(n===1)i="coords * strides + begin";else{let l=0;i=o.map((u,c)=>(l++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${s} begin = ${s}(${e});
|
|
${s} strides = ${s}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function iQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:w}=sr.sliceInfo(n.shape,s,a,i,l,u,c,p,m),b=pe({inputs:{x:n},backend:t,attrs:{shape:x}}),_;if(f){let A=Va({inputs:{x:b},backend:t,attrs:{begin:d,size:g}});_=pe({inputs:{x:A},backend:t,attrs:{shape:w}}),t.disposeIntermediateTensorInfo(A)}else if(w.some(A=>A===0))_=t.makeTensorInfo(w,n.dtype,[]);else if(t.shouldExecuteOnCPU([b])){let $=t.texData.get(b.dataId).values,F=ve(b.shape,b.dtype,$),M=mF(w,F,h,d);_=t.makeTensorInfo(w,b.dtype,M.values)}else{let N=new u0(d,h,w);_=t.runWebGLProgram(N,[b],b.dtype)}let k=pe({inputs:{x:_},backend:t,attrs:{shape:w}});return t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(_),k}var MM={kernelName:Ti,backendName:"webgl",kernelFunc:iQ};var aQ="return tan(x);",lQ=_e({opSnippet:aQ}),LM={kernelName:Ai,backendName:"webgl",kernelFunc:lQ};var uQ=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,cQ=_e({opSnippet:uQ}),zM={kernelName:On,backendName:"webgl",kernelFunc:cQ};var c0=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[a]*t[a];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=pQ(e);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function pQ(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;n<r.length;n++)o.push(`imod(${t[n]}, ${r[n]})`);return o.join()}function p0(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(n.dtype==="string"){let u=t.readSync(n.dataId).map(m=>y.decodeString(m)),c=ve(n.shape,n.dtype,u),p=dF(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new c0(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var BM={kernelName:_o,backendName:"webgl",kernelFunc:p0};function mQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=t.readSync(n.dataId),[l,u]=hF(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var VM={kernelName:Ei,backendName:"webgl",kernelFunc:mQ};var m0=class{constructor(e,t,o,n,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=o==="nearest"?1:2,l;switch(n){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${l} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${l} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${l} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${s});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${s});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function fQ(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=o,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=new m0(p,m,a,i,l,g);return t.runWebGLProgram(x,[n,s],"float32")}var GM={kernelName:cu,backendName:"webgl",kernelFunc:fQ};function dQ(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;qi(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=gF(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var WM={kernelName:pu,backendName:"webgl",kernelFunc:dQ};function hQ(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,l=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=Va({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=pe({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var UM={kernelName:ys,backendName:"webgl",kernelFunc:hQ};var f0=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let l="0.0",u="sumValue",c=Math.floor(o/4)*4,p=o%4,m=`
|
|
sumValue += dot(values, segFilter);
|
|
`,f="";s%o>0&&(f=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return initializationValue;
|
|
}
|
|
`);let d="";s%o>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${s}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${l};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${f}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${d}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${o}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${p===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
} else if (${p===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${m}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function gQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,l=[],u=0,c=S.getAxesPermutation([u],i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),l.push(p),u=S.getInnerMostAxes(1,i)[0]);let m=S.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=fu(n.dtype),g=(_,k,A,N,$)=>{let F=_.shape[0],M=_.shape[1],V=S.segment_util.segOpComputeOptimalWindowSize(M,$),W={windowSize:V,inSize:M,batchSize:F,numSegments:$},U=new f0(W,k),H=t.compileAndRun(U,[_,A],N);if(l.push(H),H.shape[1]===$)return H;let q=QC({backend:t,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),X=p0({inputs:{x:q},backend:t,attrs:{reps:[M/V]}});return l.push(q),l.push(X),g(H,k,X,N,$)},x=g(d,"unsortedSegmentSum",s,h,a),w=pe({inputs:{x},backend:t,attrs:{shape:m}}),b=w;if(c!=null){l.push(w);let _=S.getUndoAxesPermutation(c);b=Lt({inputs:{x:b},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),b}var jM={kernelName:da,backendName:"webgl",kernelFunc:gQ};var xQ=[TP,AP,WF,jF,HF,qF,XF,YF,ZF,JF,tO,rO,oO,nO,iO,sO,aO,uO,lO,cO,pO,mO,fO,hO,gO,wO,kO,vO,IO,DF,TO,EO,DO,AO,RO,FO,$O,OO,PO,MO,BO,VO,GO,UO,jO,WO,HO,qO,KO,XO,YO,ZO,QO,eP,rP,oP,nP,sP,aP,lP,uP,cP,pP,mP,fP,dP,hP,EF,gP,NO,xP,yP,bP,$F,wP,_P,kP,CP,vP,IP,NP,SP,DP,FP,RP,OP,PP,LP,$P,BP,VP,GP,WP,UP,XP,MF,ZP,JP,QP,eM,xO,tM,nM,sM,iM,aM,RF,lM,uM,yO,jP,cM,mM,pM,zF,fM,dM,hM,gM,xM,yM,bM,wM,_M,kM,vM,CM,IM,NM,SM,dO,KP,TM,AM,EM,DM,$M,RM,OM,PM,MM,qP,VF,LM,zM,BM,VM,GM,GF,WM,UM,jM,rM];for(let r of xQ)Ja(r);var HM="3.3.0";var yQ={"tfjs-core":nw,"tfjs-backend-cpu":c2,"tfjs-backend-webgl":AF,"tfjs-data":_x,"tfjs-layers":dl,"tfjs-converter":fx,tfjs:HM};var zt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(zt||(zt={}));var El;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(El||(El={}));var qM;function bQ(r){qM=r.wasm.cwrap(ws,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function wQ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m=t.dataIdMap.get(n.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let $=t.dataIdMap.get(a.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);d=$.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=El[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?n.shape[2]:n.shape[1],w=u?s.shape[1]:s.shape[2],b=n.shape[0],_=t.makeOutput([b,x,w],n.dtype),k=t.dataIdMap.get(_.dataId).id,A=new Uint8Array(new Int32Array(n.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return qM(m,A,n.shape.length,f,N,s.shape.length,l,u,g,d,h,p||0,k),_}var KM={kernelName:ws,backendName:"wasm",setupFunc:bQ,kernelFunc:wQ};function Tt(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number"])}function o(n){let{backend:s,inputs:{x:a}}=n,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var XM=Tt(as);function wt(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=S.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),w=i.dataIdMap.get(h.dataId).id,b=()=>o(p,g,u.shape.length,m,x,c.shape.length,zt[u.dtype],w);if(e&&u.dtype==="float32")return b(),h;let _=S.getBroadcastDims(u.shape,d),k=S.getBroadcastDims(c.shape,d),A=_.every(($,F)=>$===F),N=k.every(($,F)=>$===F);if(A&&N)return b(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var _Q=!0,YM=wt(wo,_Q);var ZM;function kQ(r){ZM=r.wasm.cwrap(Ho,null,["array","number","number","number"])}function vQ(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return ZM(s,n.length,zt[o.dtype],a),o}var JM={kernelName:Ho,backendName:"wasm",setupFunc:kQ,kernelFunc:vQ};function dc(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var QM={kernelName:Ro,backendName:"wasm",kernelFunc:dc};var eL;function CQ(r){eL=r.wasm.cwrap(Pn,null,["number","array","number","number","number","array","number"])}function Yp(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=NQ(e.x.shape,o.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=IQ(e.x.shape,o.perm),l={dataId:e.x.dataId,shape:n,dtype:e.x.dtype};if(a){let d=dc({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return eL(c,f,l.shape.length,zt[l.dtype],p,m,s.length),u}function IQ(r,e){let t=new Array(r.length);for(let o=0;o<t.length;o++)t[o]=r[e[o]];return t}function NQ(r,e){let t=[],o=[];for(let n=0;n<r.length;++n)r[n]!==1&&t.push(r[n]),r[e[n]]!==1&&o.push(e[n]);for(let n=0;n<o.length;++n){let s=-1;for(let a=0;a<o.length;++a)o[a]>=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var tL={kernelName:Pn,backendName:"wasm",kernelFunc:Yp,setupFunc:CQ};function os(r,e,t){let o=r.shape,n=r.shape.length,s=y.parseAxisParam(e,o),a=s,i=S.getAxesPermutation(a,n),l=null,u=!1;if(i!=null){let c=new Array(n);for(let f=0;f<c.length;f++)c[f]=o[i[f]];a=S.getInnerMostAxes(a.length,n),l=Yp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var rL;function SQ(r){rL=r.wasm.cwrap(qo,null,["number","number","number","number","number"])}function TQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=os(s,n,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return rL(i,zt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var oL={kernelName:qo,backendName:"wasm",kernelFunc:TQ,setupFunc:SQ};var nL;function AQ(r){nL=r.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function EQ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=S.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,w=c.strideWidth,b=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=o.makeOutput(c.outShape,"float32"),k=o.dataIdMap.get(_.dataId).id;return nL(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,w,b,k),_}var sL={kernelName:Ko,backendName:"wasm",setupFunc:AQ,kernelFunc:EQ};function Vr(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(n,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var iL={kernelName:ds,backendName:"wasm",kernelFunc:Vr};var aL;function DQ(r){aL=r.wasm.cwrap(Xo,null,["number","array","number","number","array","number","number","number","number"])}function $Q(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],A=i?[x,f,p]:[x,p,f],N=Vr({inputs:{x:n},backend:t,attrs:{shape:k}}),$=Vr({inputs:{x:s},backend:t,attrs:{shape:A}}),F=t.dataIdMap.get(N.dataId).id,M=t.dataIdMap.get($.dataId).id,V=a?N.shape[2]:N.shape[1],W=i?$.shape[1]:$.shape[2],U=Math.max(g,x),H=t.makeOutput([U,V,W],N.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array(N.shape).buffer),oe=new Uint8Array(new Int32Array($.shape).buffer);return aL(F,X,N.shape.length,M,oe,$.shape.length,a,i,q),t.disposeData(N.dataId),t.disposeData($.dataId),H.shape=_,H}var lL={kernelName:Xo,backendName:"wasm",setupFunc:DQ,kernelFunc:$Q};function hc(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var uL={kernelName:Do,backendName:"wasm",kernelFunc:hc};var cL=Tt(Yo);var pL;function RQ(r){pL=r.wasm.cwrap($o,null,["number","number","number","number"])}function FQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(l.dataId).id;return pL(i,s,a,u),l}var mL={kernelName:$o,backendName:"wasm",setupFunc:RQ,kernelFunc:FQ};function d0(r){let{inputs:e,backend:t}=r,o=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=S.computeOutShape(e.map(f=>f.shape),o),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return dc({inputs:{x:s[0]},backend:t});let a=t.makeOutput(n,e[0].dtype);if(y.sizeFromShape(n)===0)return a;let i=s.map(f=>f.shape);if(S.assertParamsConsistent(i,o),s[0].dtype==="string"){let f=s.map(b=>{let _=y.sizeFromShape(b.shape.slice(o));return Vr({inputs:{x:b},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(b=>({vals:t.readSync(b.dataId),shape:b.shape}));n=S.computeOutShape(f.map(b=>b.shape),1);let h=f[0].shape[0]===1,g=Bd(d,n,e[0].dtype,h),x=S.computeOutShape(s.map(b=>b.shape),o);a.shape=x;let w=t.dataIdMap.get(a.dataId);return w.stringBytes=S.fromStringArrayToUint8(g),f.forEach(b=>t.disposeData(b.dataId)),a}let l=y.sizeFromShape(s[0].shape.slice(0,o)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(o));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,w=p[h].subarray(x,x+g);m.set(w,d),d+=g}}return a}var fL={kernelName:ls,backendName:"wasm",kernelFunc:d0};var dL;function OQ(r){dL=r.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function PQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(n.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,w=d.padInfo.right,b=d.padInfo.bottom,_=d.padInfo.left,k=d.dilationHeight,A=d.dilationWidth,N=d.strideHeight,$=d.strideWidth,F=d.inChannels,M=d.outChannels,V=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let W=o.makeOutput(d.outShape,"float32"),U=o.dataIdMap.get(W.dataId).id;return dL(a,n.shape[0],n.shape[1],n.shape[2],i,h,g,x,w,b,_,V,k,A,N,$,F,M,U),W}var hL={kernelName:Zo,backendName:"wasm",setupFunc:OQ,kernelFunc:PQ};var gL;function MQ(r){gL=r.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function LQ(r){let{backend:e,inputs:t,attrs:o}=r,{dy:n,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=o,p=1,m=S.convertConv2DDataFormat(l),f=S.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:w,inWidth:b,outChannels:_,outHeight:k,outWidth:A,strideHeight:N,strideWidth:$}=f,F=h-1-f.padInfo.top,M=g-1-f.padInfo.left,V=f.dataFormat==="channelsLast",W=y.computeStrides(f.inShape),U=y.computeStrides(n.shape),[H,q,X]=y.computeStrides(s.shape),oe=W[0],Y=V?W[1]:W[2],re=V?W[2]:1,J=V?1:W[1],ie=U[0],ue=V?U[1]:U[2],ae=V?U[2]:1,fe=V?1:U[1],de=e.makeOutput(f.inShape,"float32"),xe=e.dataIdMap.get(de.dataId).id,we=e.dataIdMap.get(n.dataId).id,De=e.dataIdMap.get(s.dataId).id;return gL(we,De,d,h,g,w,b,x,k,A,_,N,$,F,M,H,q,X,oe,Y,re,J,ie,ue,ae,fe,xe),de}var xL={kernelName:Jo,backendName:"wasm",setupFunc:MQ,kernelFunc:LQ};var yL=Tt(Qo);var h0;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(h0||(h0={}));var bL;function zQ(r){bL=r.wasm.cwrap(ei,null,["number","number","number","number","array","number","number","number","number","number"])}function BQ(r){let{backend:e,inputs:t,attrs:o}=r,{method:n,extrapolationValue:s,cropSize:a}=o,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=hc({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,w=e.dataIdMap.get(u.dataId).id,b=e.makeOutput(f,"float32"),_=e.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return bL(g,x,w,c,k,p,m,h0[n],s,_),h!=null&&e.disposeData(h.dataId),b}var wL={kernelName:ei,backendName:"wasm",setupFunc:zQ,kernelFunc:BQ};var _L;function VQ(r){_L=r.wasm.cwrap(en,null,["number","number","number","number","number","number"])}function GQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length;y.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=S.getAxesPermutation([s],l),c=n;u!==null&&(c=Yp({inputs:{x:n},attrs:{perm:u},backend:t}));let p=S.getInnerMostAxes(1,l)[0];S.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;_L(d,a?1:0,i?1:0,f,h,zt[n.dtype]);let g=m;if(u!==null){let x=S.getUndoAxesPermutation(u);g=Yp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var kL={kernelName:en,backendName:"wasm",setupFunc:VQ,kernelFunc:GQ};var vL;function WQ(r){vL=r.wasm.cwrap(ti,null,["number","number","number","array","number","array","array","number","number"])}function UQ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(n.dataId).id,w=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),b=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),k=e.dataIdMap.get(h.dataId).id;return vL(x,s,a==="NHWC"?1:0,w,n.shape.length-1,b,_,d.length,k),h}var CL={kernelName:ti,backendName:"wasm",setupFunc:WQ,kernelFunc:UQ};var IL;function jQ(r){IL=r.wasm.cwrap(tn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function HQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=S.computeConv2DInfo(n.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,w=f.padInfo.bottom,b=f.padInfo.left,_=f.dilationHeight,k=f.dilationWidth,A=f.strideHeight,N=f.strideWidth,$=f.inChannels,F=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=o.makeOutput(f.outShape,"float32"),W=o.dataIdMap.get(V.dataId).id;return IL(a,n.shape[0],n.shape[1],n.shape[2],i,d,h,g,x,w,b,M,_,k,A,N,$,F,W),V}var NL={kernelName:tn,backendName:"wasm",setupFunc:jQ,kernelFunc:HQ};var qQ=!1,SL=wt(ni,qQ,"bool");var TL=Tt(on);function Yx(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Vr({inputs:{x:n},backend:o,attrs:{shape:i}})}var AL={kernelName:us,backendName:"wasm",kernelFunc:Yx};function KQ(r){let{attrs:{shape:e,value:t,dtype:o},backend:n}=r,s=n.makeOutput(e,o);return n.typedArrayFromHeap(s).fill(t),s}var EL={kernelName:ia,backendName:"wasm",kernelFunc:KQ};var DL;function XQ(r){DL=r.wasm.cwrap(ii,null,["number","number","number","number","number","number"])}function YQ(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,l,u,c]=o.shape;return DL(s,i,l,u,c,a),n}var $L={kernelName:ii,backendName:"wasm",kernelFunc:YQ,setupFunc:XQ};var RL=Tt(nn);var ZQ=!1,FL=wt(sn,ZQ);var OL;function JQ(r){OL=r.wasm.cwrap(an,null,["number","number","number","number","number","number","number"])}function QQ(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return OL(c,p,m,f,d,n,g),h}var PL={kernelName:an,backendName:"wasm",setupFunc:JQ,kernelFunc:QQ};var ML;function eee(r){ML=r.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tee(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=S.computeConv2DInfo(n.shape,s.shape,l,c,u,m),g=El[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,w=o.dataIdMap.get(s.dataId).id,b=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==b)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${b})`);_=ae.id}let k=h.filterHeight,A=h.filterWidth,N=h.padInfo.top,$=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,W=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return ML(x,oe,Y,re,w,k,A,_,N,$,F,M,X,V,W,U,H,q,b,g,ue,d||0,ie),J}var LL={kernelName:_s,backendName:"wasm",setupFunc:eee,kernelFunc:tee};var zL;function ree(r){zL=r.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oee(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=S.computeConv2DInfo(n.shape,s.shape,l,c,u,m,!0),g=El[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,w=o.dataIdMap.get(s.dataId).id,b=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==b)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${b})`);_=ae.id}let k=h.filterHeight,A=h.filterWidth,N=h.padInfo.top,$=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,W=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return zL(x,oe,Y,re,w,k,A,_,N,$,F,M,X,V,W,U,H,q,b,g,ue,d||0,ie),J}var BL={kernelName:ks,backendName:"wasm",setupFunc:ree,kernelFunc:oee};var VL;function nee(r){VL=r.wasm.cwrap(ai,null,["number","number","number","number","number","number","array","number"])}function see(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,l]=Kh.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,p=c[c.length-1],f=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return VL(f,zt[o.dtype],h,a,p,i,g,x),u}var GL={kernelName:ai,backendName:"wasm",setupFunc:nee,kernelFunc:see};var WL;function iee(r){WL=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function aee(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=S.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=Vr({inputs:{x:n},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Vr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,n.dtype);if(y.sizeFromShape(n.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,b=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,k=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),A=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return WL(x,zt[n.dtype],k,h,b,u.batchSize,A,_),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var UL={kernelName:cs,backendName:"wasm",setupFunc:iee,kernelFunc:aee};var lee=!1,jL=wt(li,lee,"bool");var uee=!1,HL=wt(ln,uee,"bool");var qL;function cee(r){qL=r.wasm.cwrap(un,null,["number","number","number"])}function pee(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;qL(n,t,a)}return s}var KL={kernelName:un,backendName:"wasm",setupFunc:cee,kernelFunc:pee};var mee=!1,XL=wt(mi,mee,"bool");var fee=!1,YL=wt(fi,fee,"bool");var ZL=Tt(cn);var dee=!1,JL=wt(hi,dee,"bool");var QL;function hee(r){QL=r.wasm.cwrap(pn,null,["number, number, number"])}function gee(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e);if(f){let b=e.dataIdMap.get(c.dataId).id;u=c,l=b}let d=u.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),w=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;QL(l,x,b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var ez={kernelName:pn,backendName:"wasm",setupFunc:hee,kernelFunc:gee};var xee=!1,tz=wt(mn,xee);var rz;function yee(r){rz=r.wasm.cwrap(fn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function bee(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=S.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,w=c.dilationWidth,b=c.strideHeight,_=c.strideWidth,k=c.inChannels,A=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=o.makeOutput(c.outShape,"float32"),$=o.dataIdMap.get(N.dataId).id;return rz(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,w,b,_,k,A,$),N}var oz={kernelName:fn,backendName:"wasm",setupFunc:yee,kernelFunc:bee};var nz;function wee(r){nz=r.wasm.cwrap(dn,null,["number, number, number"])}function _ee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),w=u;u.dtype!=="float32"&&(w=hc({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(w.dataId).id);let b=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;nz(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=S.expandShapeToKeepDim(b.shape,m);b.shape=_}return u.dtype!=="float32"&&e.disposeData(w.dataId),b}var sz={kernelName:dn,backendName:"wasm",setupFunc:wee,kernelFunc:_ee};var iz;function kee(r){iz=r.wasm.cwrap(hn,null,["number, number, number"])}function vee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e);if(f){let b=e.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b)}let d=u.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),w=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;iz(l,x,b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var az={kernelName:hn,backendName:"wasm",setupFunc:kee,kernelFunc:vee};var Cee=!1,lz=wt(gn,Cee);var Iee=!0,uz=wt(xn,Iee);var cz=Tt(ps);function Zp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var pz;function Nee(r){pz=r.wasm.cwrap(yi,"number",["number","number","number","number","number"])}function See(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=pz(u,c,s,n,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Zp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var mz={kernelName:yi,backendName:"wasm",setupFunc:Nee,kernelFunc:See};var fz;function Tee(r){fz=r.wasm.cwrap(bi,"number",["number","number","number","number","number","bool"])}function Aee(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=fz(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Zp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),w=e.makeOutput([],"int32",g);return[x,w]}var dz={kernelName:bi,backendName:"wasm",setupFunc:Tee,kernelFunc:Aee};var hz;function Eee(r){hz=r.wasm.cwrap(wi,"number",["number","number","number","number","number","number"])}function Dee(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=hz(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Zp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),w=e.makeOutput([d],"float32",h);return[x,w]}var gz={kernelName:wi,backendName:"wasm",setupFunc:Eee,kernelFunc:Dee};var $ee=!1,xz=wt(xi,$ee,"bool");var yz;function Ree(r){yz=r.wasm.cwrap(yn,null,["number","number","number","number","number"])}function Fee(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=t.makeOutput([...n.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(n.dataId).id;return yz(p,s,a,i,u),l}var bz={kernelName:yn,backendName:"wasm",setupFunc:Ree,kernelFunc:Fee};function Oee(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var wz={kernelName:ms,backendName:"wasm",kernelFunc:Oee};function Pee(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Yx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Yx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=d0({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeData(c.dataId)),u}var _z={kernelName:fs,backendName:"wasm",kernelFunc:Pee};var kz;function Mee(r){kz=r.wasm.cwrap(bn,null,["number","array","number","number","array","array","number","number"])}function Lee(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(d=>d[0]),p=o.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return kz(a,u,e.shape.length,zt[e.dtype],m,f,n,l),i}var vz={kernelName:bn,backendName:"wasm",kernelFunc:Lee,setupFunc:Mee};var zee=!1,Cz=wt(wn,zee);var Iz;function Bee(r){Iz=r.wasm.cwrap(_n,null,["number","number","number"])}function Vee(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return Iz(s,a,l),i}var Nz={kernelName:_n,backendName:"wasm",setupFunc:Bee,kernelFunc:Vee};var Sz;function Gee(r){Sz=r.wasm.cwrap(_i,null,["number","number","number","number"])}function Wee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e),d=p;if(f){let b=e.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),w=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;Sz(l,x,zt[w.dtype],b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var Tz={kernelName:_i,backendName:"wasm",setupFunc:Gee,kernelFunc:Wee};var Uee=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=Wd(o,n,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},Az={kernelName:ca,backendName:"wasm",kernelFunc:Uee};var jee=!0,Ez=wt(rn,jee);var Dz=Tt(kn);var $z=Tt(Cn);var Rz;function Hee(r){Rz=r.wasm.cwrap(vn,null,["number","number","number","number","number","number","number","number","number","number"])}function qee(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,[c,p,m,f]=n.shape,d=[c,l,u,f],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=hc({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,w=e.makeOutput(d,"float32");if(y.sizeFromShape(n.shape)===0)return w;let b=e.dataIdMap.get(w.dataId).id;return Rz(x,c,p,m,f,l,u,s?1:0,a?1:0,b),g!=null&&e.disposeData(g.dataId),w}var Fz={kernelName:vn,backendName:"wasm",setupFunc:Hee,kernelFunc:qee};var Oz;function Kee(r){Oz=r.wasm.cwrap(In,null,["number","array","number","array","number","number"])}function Xee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=y.parseAxisParam(s,n.shape);if(n.shape.length===0)return dc({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),l=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(n.shape).buffer);Oz(l,c,a.length,p,n.shape.length,u);let m=Vr({inputs:{x:i},attrs:{shape:n.shape},backend:t});return t.disposeData(i.dataId),m}var Pz={kernelName:In,backendName:"wasm",kernelFunc:Xee,setupFunc:Kee};var Mz;function Yee(r){Mz=r.wasm.cwrap(Di,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Zee(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=n.shape,[h,g]=S.getImageCenter(i,m,f),x=a===0,w=255,b=typeof a=="number"?[a,a,a,x?0:w]:[...a,w],_=new Uint8Array(new Int32Array(b).buffer);return Mz(u,p,m,f,d,s,h,g,_,b.length,c),l}var Lz={kernelName:Di,backendName:"wasm",kernelFunc:Zee,setupFunc:Yee};var zz=Tt(Nn);var Bz=Tt(Sn);var Vz;function Jee(r){Vz=r.wasm.cwrap(vi,null,["number","number","number","number","number","number","array","number","number"])}function Qee(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=Xh.calculateShapes(s,n,a),d=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),w=e.dataIdMap.get(i.dataId).id;return Vz(d,g,zt[s.dtype],l,u,c,x,m,w),i}var Gz={kernelName:vi,backendName:"wasm",setupFunc:Jee,kernelFunc:Qee};var Wz;function ete(r){Wz=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function tte(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,p=o.shape.length,m=n.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(n.shape.slice(1));return Wz(a,i,l,f,c),u}var Uz={kernelName:hs,backendName:"wasm",kernelFunc:tte,setupFunc:ete};var jz;function rte(r){jz=r.wasm.cwrap(An,null,["number","number"])}function ote(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return y.sizeFromShape(n.shape)===0||jz(o,s),n}var Hz={kernelName:"Sigmoid",backendName:"wasm",setupFunc:rte,kernelFunc:ote};var qz=Tt(Tn);function gc(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=sr.parseSliceParams(e,t,o),i=sr.isSliceContinous(e.shape,s,a),l=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=n.dataIdMap.get(u.dataId);if(i){let d=sr.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):n.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=Ud(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=n.typedArrayFromHeap(u),f=e.shape.length;if(f===2)nte(l,c[0],m,s,a);else if(f===3)ste(l,c[0],c[1],m,s,a);else if(f===4)ite(l,c[0],c[1],c[2],m,s,a);else{let d=Ud(l,s,a,e.shape,e.dtype);m.set(d)}return u}function nte(r,e,t,o,n){let s=0,a=o[0],i=o[1],l=a+n[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+n[1]),s),s+=n[1]}}function ste(r,e,t,o,n,s){let a=0,i=n[0],l=n[1],u=n[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;o.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function ite(r,e,t,o,n,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let w=h*e+g*t+x*o+d;n.set(r.subarray(w,w+a[3]),i),i+=a[3]}}var Kz={kernelName:gs,backendName:"wasm",kernelFunc:gc};var Xz;function ate(r){Xz=r.wasm.cwrap($n,null,["number","number","number","number"])}function lte(r){let{backend:e,inputs:{logits:t},attrs:{dim:o}}=r,n=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[o],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||Xz(n,a,i,l),s}var Yz={kernelName:$n,backendName:"wasm",setupFunc:ate,kernelFunc:lte};function ute(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,n.shape)[0],l=S.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=gc({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=p,f})}var Zz={kernelName:xs,backendName:"wasm",kernelFunc:ute};var Jz=Tt(En);var Qz=Tt(fa);var cte=!0,eB=wt(Rn,cte);var tB;function pte(r){tB=r.wasm.cwrap(Fo,null,["number","number","number"])}function mte(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return tB(a,n,l),i}var rB={kernelName:Fo,backendName:"wasm",setupFunc:pte,kernelFunc:mte};var oB;function fte(r){oB=r.wasm.cwrap(Ti,null,["number","array","number","array","array","array","array","array","number","number"])}function dte(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i}=o;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,f=S.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=n.shape.length-s.length,h=S.slice_util.maskToAxes(p),g=n.shape.slice();h.forEach(V=>{s[V]=0,a[V]=1,g.splice(V,0,1)});let x=Vr({inputs:{x:n},attrs:{shape:g},backend:e}),{begin:w,end:b,strides:_}=S.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=w,a=b,i=_;let k=S.slice_util.maskToAxes(m);k.forEach(V=>{a[V]=s[V]+1,i[V]=1});let A=S.slice_util.computeOutShape(s,a,i),N=A.filter((V,W)=>k.indexOf(W)===-1);if(i.every(V=>V===1)){let V=gc({inputs:{x},attrs:{begin:s,size:A},backend:e});e.disposeData(x.dataId);let W=Vr({inputs:{x:V},attrs:{shape:N},backend:e});return e.disposeData(V.dataId),W}let F=e.makeOutput(N,"float32");if(!N.some(V=>V===0)){let V=e.dataIdMap.get(x.dataId).id,W=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array(N).buffer),oe=new Uint8Array(new Int32Array(y.computeStrides(N)).buffer),Y=e.dataIdMap.get(F.dataId).id;oB(V,W,x.shape.length,U,H,q,X,oe,N.length,Y)}e.disposeData(x.dataId);let M=Vr({inputs:{x:F},attrs:{shape:N},backend:e});return e.disposeData(F.dataId),M}var nB={kernelName:Ti,backendName:"wasm",setupFunc:fte,kernelFunc:dte};var hte=!0,sB=wt(Fn,hte);var iB;function gte(r){iB=r.wasm.cwrap(Dn,null,["number, number, number"])}function xte(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=os(a,n,e),d=p;if(f){let b=e.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),w=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;iB(l,x,b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var aB={kernelName:Dn,backendName:"wasm",setupFunc:gte,kernelFunc:xte};var lB=Tt(On);var uB;function yte(r){uB=r.wasm.cwrap(_o,null,["number","array","number","array","number","number"])}function bte(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m<i.length;m++)i[m]=n.shape[m]*a[m];let l=new Uint8Array(new Int32Array(n.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,n.dtype),p=t.dataIdMap.get(c.dataId).id;return uB(s,l,n.shape.length,u,i.length,zt[c.dtype],p),c}var cB={kernelName:_o,backendName:"wasm",setupFunc:yte,kernelFunc:bte};var pB;function wte(r){pB=r.wasm.cwrap(Ei,null,["number","array","number","number","number","bool","number","number"])}var _te=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),l=o.shape.slice();l[l.length-1]=n;let u=e.makeOutput(l,o.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return pB(a,i,o.shape.length,zt[o.dtype],n,s,c,m),[u,p]},mB={kernelName:Ei,backendName:"wasm",setupFunc:wte,kernelFunc:_te};function kte(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=n.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=gc({inputs:{x:n},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var fB={kernelName:ys,backendName:"wasm",kernelFunc:kte};function vte(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var dB={kernelName:bs,backendName:"wasm",kernelFunc:vte};var Cte=[XM,YM,JM,oL,sL,lL,uL,cL,mL,fL,hL,xL,yL,wL,kL,CL,NL,SL,TL,AL,EL,$L,RL,FL,KM,PL,LL,BL,GL,UL,jL,HL,QM,KL,XL,YL,ZL,JL,ez,tz,oz,sz,az,lz,uz,cz,mz,dz,gz,xz,bz,wz,_z,vz,Cz,Nz,Tz,Az,Ez,Dz,$z,iL,Fz,Pz,Lz,Bz,zz,Gz,Uz,Hz,qz,Kz,Yz,Zz,Jz,Qz,eB,rB,nB,sB,aB,lB,cB,mB,tL,fB,dB];for(let r of Cte)Ja(r);var g0=j();g0.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));g0.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(g0.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var _0=Ac(xB());var yB='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var wB=Ac(bB());var Qx=class extends Ws{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Xa(this,Po())}write(e,t,o){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,o,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,o,n,s){let a=this.dataIdNextNumber++;if(n==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:o,dtype:n,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(o),l=i*y.bytesPerElement(n),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:o,dtype:n,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:o,shape:n,stringBytes:s}=this.dataIdMap.get(e);if(o==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(n)*y.bytesPerElement(o));return Ite(a.buffer,o)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let o=this.dataIdMap.get(e);if(o.refCount--,!t&&o.refCount>0)return!1;this.wasm._free(o.memoryOffset),this.wasm.tfjs.disposeData(o.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o){let n;if(o==null)n=this.write(null,e,t);else{let s=this.dataIdNextNumber++;n={id:s},this.dataIdMap.set(n,{id:s,memoryOffset:o,shape:e,dtype:t,refCount:1});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,o)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Nte(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance)})})}),{})}function _B(r,e,t){if(ey!=null)return ey;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),ph!=null&&ph[o]!=null?ph[o]:t+o}async function kB(){let[r,e]=await Promise.all([j().getAsync("WASM_HAS_SIMD_SUPPORT"),j().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=yB,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?_B(r,e,mh!=null?mh:l):l+i},k0&&(n.instantiateWasm=Nte(_B(r,e,mh!=null?mh:"")));let s=!1;n.onAbort=()=>{if(s||fh)return;fh=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&ey==null?(n.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+_0.default.toString()],{type:"text/javascript"}),a=(0,_0.default)(n)):a=(0,wB.default)(n),a.then(i=>{s=!0,fh=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function Ite(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var Ste=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],ey=null,mh=null,ph={},fh=!1,k0=!1;function Tte(r,e=!1){if(Qh("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),fh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");ey=r,k0=e}function Ate(r,e=!1){if(fh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")mh=r;else{ph=r;let t=Ste.filter(o=>ph[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}k0=e}var Ete="3.3.0";var Dte=2;xu("wasm",async()=>{let{wasm:r}=await kB();return new Qx(r)},Dte);export{as as Abs,Hs as Acos,qs as Acosh,rp as AdadeltaOptimizer,op as AdagradOptimizer,np as AdamOptimizer,sp as AdamaxOptimizer,wo as Add,Ho as AddN,Ml as All,Ll as Any,qo as ArgMax,ea as ArgMin,Ks as Asin,Xs as Asinh,Ys as Atan,Js as Atan2,Zs as Atanh,Ko as AvgPool,ta as AvgPool3D,Bl as AvgPool3DGrad,zl as AvgPoolGrad,Qx as BackendWasm,Xo as BatchMatMul,ra as BatchToSpaceND,Vl as Bincount,Cb as BroadcastTo,Kg as Callback,Eg as CallbackList,Do as Cast,Yo as Ceil,$o as ClipByValue,Gl as Complex,oa as ComplexAbs,ls as Concat,Zo as Conv2D,Wl as Conv2DBackpropFilter,Jo as Conv2DBackpropInput,na as Conv3D,Ul as Conv3DBackpropFilterV2,jl as Conv3DBackpropInputV2,Qo as Cos,Qs as Cosh,ei as CropAndResize,en as Cumsum,$g as CustomCallback,Xa as DataStorage,Hl as DenseBincount,ti as DepthToSpace,tn as DepthwiseConv2dNative,ql as DepthwiseConv2dNativeBackpropFilter,Kl as DepthwiseConv2dNativeBackpropInput,Xl as Diag,sa as Dilation2D,Oc as Dilation2DBackpropFilter,Fc as Dilation2DBackpropInput,_b as ENV,Yg as EarlyStopping,ri as Elu,Yl as EluGrad,Mh as Environment,ni as Equal,oi as Erf,on as Exp,us as ExpandDims,si as Expm1,Zl as FFT,ia as Fill,ii as FlipLeftRight,nn as Floor,sn as FloorDiv,Pc as FromPixels,an as FusedBatchNorm,_s as FusedConv2D,ks as FusedDepthwiseConv2D,ai as GatherNd,cs as GatherV2,mx as GraphModel,li as Greater,ln as GreaterEqual,Dg as History,Jl as IFFT,Ro as Identity,Ql as Imag,St as InputSpec,ui as IsFinite,ci as IsInf,pi as IsNan,Ws as KernelBackend,aa as LRN,tu as LRNGrad,yf as LayerVariable,No as LayersModel,un as LeakyRelu,mi as Less,fi as LessEqual,eu as LinSpace,cn as Log,di as Log1p,Ib as LogSoftmax,hi as LogicalAnd,Ya as LogicalNot,Za as LogicalOr,pn as Max,fn as MaxPool,la as MaxPool3D,ou as MaxPool3DGrad,ru as MaxPoolGrad,nu as MaxPoolWithArgmax,mn as Maximum,dn as Mean,hn as Min,gn as Minimum,ua as MirrorPad,gi as Mod,ip as MomentumOptimizer,su as Multinomial,xn as Multiply,ps as Neg,yi as NonMaxSuppressionV3,bi as NonMaxSuppressionV4,wi as NonMaxSuppressionV5,xi as NotEqual,Q0 as OP_SCOPE_SUFFIX,yn as OneHot,ms as OnesLike,Pr as Optimizer,fs as Pack,bn as PadV2,W3 as Pool,wn as Pow,_n as Prelu,_i as Prod,ap as RMSPropOptimizer,mo as RNN,ca as Range,Eb as Rank,iu as Real,rn as RealDiv,ki as Reciprocal,Wt as Reduction,kn as Relu,Cn as Relu6,ds as Reshape,vn as ResizeBilinear,lu as ResizeBilinearGrad,pa as ResizeNearestNeighbor,au as ResizeNearestNeighborGrad,In as Reverse,Di as RotateWithOffset,Nn as Round,Sn as Rsqrt,al as SGDOptimizer,vi as ScatterNd,hs as Select,Ci as Selu,Wi as Sequential,An as Sigmoid,Ni as Sign,Tn as Sin,Ii as Sinh,gs as Slice,$n as Softmax,Si as Softplus,ma as SpaceToBatchND,uu as SparseToDense,xs as SplitV,En as Sqrt,fa as Square,Rn as SquaredDifference,Fo as Step,Ti as StridedSlice,Fn as Sub,Dn as Sum,Br as SymbolicTensor,Ai as Tan,On as Tanh,Ve as Tensor,lt as TensorBuffer,_o as Tile,Ei as TopK,cu as Transform,Pn as Transpose,pu as Unique,ys as Unpack,da as UnsortedSegmentSum,el as Variable,bs as ZerosLike,ws as _FusedMatMul,Nt as abs,wm as acos,_m as acosh,ee as add,iw as addN,bu as all,ol as any,nl as argMax,km as argMin,vm as asin,Cm as asinh,Im as atan,Nm as atan2,Sm as atanh,wa as avgPool,Tm as avgPool3d,sw as backend,S as backend_util,jG as basicLSTMCell,Ln as batchNorm,cw as batchNorm2d,pw as batchNorm3d,mw as batchNorm4d,_a as batchToSpaceND,fw as bincount,QU as booleanMaskAsync,sl as broadcastTo,qh as browser,ve as buffer,K1 as callbacks,ne as cast,Am as ceil,ir as clipByValue,Oo as clone,ko as complex,Ye as concat,dw as concat1d,hw as concat2d,gw as concat3d,xw as concat4d,l_ as constraints,ku as conv1d,Kr as conv2d,vu as conv2dTranspose,Em as conv3d,mW as conv3dTranspose,H3 as copyRegisteredKernels,ka as cos,Cu as cosh,ef as cosineWindow,Iu as cumsum,Xr as customGrad,Wk as data,yw as denseBincount,Qh as deprecationWarn,Dm as depthToSpace,Is as depthwiseConv2d,Z1 as deregisterOp,hu as device_util,wW as diag,$m as dilation2d,nG as disableDeprecationWarnings,Te as dispose,sG as disposeVariables,me as div,Rm as divNoNan,bw as dot,jw as dropout,Ns as elu,oG as enableDebugMode,rG as enableProdMode,Hw as enclosingPowerOfTwo,Po as engine,j as env,vo as equal,Fm as erf,Zt as exp,ar as expandDims,Om as expm1,Xc as eye,Ea as fft,va as fill,pG as findBackend,mG as findBackendFactory,Ss as floor,yu as floorDiv,Gn as fused,zn as gather,Uw as gatherND,Kh as gather_util,uG as getBackend,Lh as getGradient,Lc as getKernel,dm as getKernelsForBackend,XW as grad,YW as grads,er as greater,io as greaterEqual,Pi as ifft,Nu as imag,$s as image,lj as inTopKAsync,f_ as initializers,Hg as input,Ir as io,Lu as irfft,ww as isFinite,_w as isInf,kw as isNaN,Dt as keep,Ar as kernel_impls,X_ as layers,Ca as leakyRelu,Su as less,zo as lessEqual,Zw as linalg,vw as linspace,NA as loadGraphModel,O1 as loadLayersModel,Pm as localResponseNormalization,lr as log,Tu as log1p,Cw as logSigmoid,Au as logSoftmax,Lm as logSumExp,hr as logicalAnd,Ia as logicalNot,Eu as logicalOr,Tw as logicalXor,tH as losses,We as matMul,EI as math,ur as max,Na as maxPool,zm as maxPool3d,Aw as maxPoolWithArgmax,Yr as maximum,ht as mean,Hc as memory,Q_ as metrics,Oi as min,As as minimum,Bm as mirrorPad,Vm as mod,R1 as model,ek as models,Yc as moments,rj as movingAverage,P as mul,I4 as multiRNNCell,Ew as multinomial,He as neg,tf as nextFrame,Vu as norm,Vn as notEqual,Cs as oneHot,Nr as ones,tr as onesLike,T as op,E4 as outerProduct,Fr as pad,R4 as pad1d,O4 as pad2d,M4 as pad3d,z4 as pad4d,Dw as pool,Or as pow,Ta as prelu,Kb as print,Du as prod,iG as profile,K4 as rand,rU as randomGamma,ag as randomNormal,Es as randomUniform,Jc as range,lG as ready,il as real,Gm as reciprocal,xu as registerBackend,P1 as registerCallbackConstructor,Sb as registerGradient,Ja as registerKernel,Y1 as registerOp,tk as regularizers,Sr as relu,Ru as relu6,cG as removeBackend,L as reshape,qt as reverse,pU as reverse1d,fU as reverse2d,hU as reverse3d,xU as reverse4d,Da as rfft,Wm as round,Fu as rsqrt,le as scalar,Ww as scatterND,Xh as scatter_util,Ou as selu,Um as separableConv2d,F1 as sequential,Q as serialization,qI as setBackend,fG as setPlatform,Tte as setWasmPath,Ate as setWasmPaths,Bw as setdiff1dAsync,qr as sigmoid,jm as sign,eH as signal,Pu as sin,Mu as sinh,Re as slice,Hm as slice1d,lg as slice2d,qm as slice3d,Qc as slice4d,sr as slice_util,Aa as softmax,Ts as softplus,Sa as spaceToBatchND,Qm as sparseToDense,Qj as spectral,cr as split,xt as sqrt,Oe as square,zu as squaredDifference,Co as squeeze,Vt as stack,Ds as step,Km as stridedSlice,ce as sub,ge as sum,fu as sumOutType,Xm as tan,Fi as tanh,Rr as tensor,Gt as tensor1d,Mi as tensor2d,Jb as tensor3d,WU as tensor4d,UU as tensor5d,jU as tensor6d,Mn as tensor_util,UI as test_util,G as tidy,Lo as tile,aG as time,Ym as topk,ll as train,je as transpose,Bu as truncatedNormal,ep as unique,j3 as unregisterGradient,U3 as unregisterKernel,Zm as unsortedSegmentSum,pr as unstack,dr as upcastType,y as util,ZW as valueAndGrad,JW as valueAndGrads,Vw as variable,og as variableGrads,yQ as version,fx as version_converter,nw as version_core,dl as version_layers,Ete as version_wasm,$t as where,Jm as whereAsync,gt as zeros,Ce as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=tfjs.esm.js.map
|